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ABSTRACT

Motivation: Cancers are caused by an accumulation of multiple

independent mutations that collectively deregulate cellular path-

ways, e.g. such as those regulating cell division and cell-death. The

publicly available Retroviral Tagged Cancer Gene Database

(RTCGD) contains the data of many insertional mutagenesis screens,

in which the virally induced mutations result in tumor formation in

mice. The insertion loci therefore indicate the location of putative

cancer genes. Additionally, the presence of multiple independent

insertions within one tumor hints towards a cooperation between the

insertionally mutated genes. In this study we focus on the detection

of statistically significant co-mutations.

Results: We propose a two-dimensional Gaussian Kernel

Convolution method (2DGKC), a computational technique that

identifies the cooperating mutations in insertional mutagenesis

data. We define the Common Co-occurrence of Insertions (CCI),

signifying the co-mutations that are statistically significant across all

different screens in the RTCGD. Significance estimates are made on

multiple scales, and the results visualized in a scale space, thereby

providing valuable extra information on the putative cooperation.

The multidimensional analysis of the insertion data results in the

discovery of 86 statistically significant co-mutations, indicating the

presence of cooperating oncogenes that play a role in tumor

development. Since oncogenes may cooperate with several mem-

bers of a parallel pathway, we combined the co-occurrence data

with gene family information to find significant cooperations between

oncogenes and families of genes. We show, for instance, the

interchangeable cooperation of Myc insertions with insertions in the

Pim family.

Availability: A list of the resulting CCIs is available at: http://

ict.ewi.tudelft.nl/�jeroen/CCI/CCI_list.txt

Contact: m.j.t.reinders@tudelft.nl

1 INTRODUCTION

Cancers arise when the regulatory pathways that govern

healthy cell proliferation (cell division) are disrupted.

Moreover, one of the hallmarks of cancer is that multiple

oncogenic events, disrupting multiple pathways, are required

before the state of uncontrolled proliferation is reached
(Hanahan and Weinberg, 2000). For instance, (mutational)

activation of the Myc protooncogene together with the loss of

the p53 tumor-suppressor gene in mice, is a commonly observed

co-occurrence of mutations that can cause cancer. In this

respect, these two genes can be considered to ‘cooperate’ in the

development of the tumor.
In retroviral insertional mutagenesis experiments, genes

involved in the development of cancer are identified by

determining the loci of viral insertions from tumors induced

by retroviruses in cancer-predisposed mice (reviewed in

Mikkers and Berns, 2003; Uren et al., 2005). In van

Lohuizen et al. (1991), for example, the cancer-predisposition

is acquired by inserting an E�Myc transgene in the mouse

DNA. After infecting a host cell, the retrovirus inserts its own

DNA into the host cell’s genome, mutating the host cell’s DNA

in the process. The mutation may cause alteration in expression

of genes in the vicinity of the insertion or, when inserted within

a gene, alteration of the gene product. When the affected gene

is a cancer gene, activation of a proto-oncogene or inactivation

of a tumor-suppressor gene can, in cooperation with the cancer

predisposition, cause uncontrolled proliferation of cells.

Eventually this may give rise to tumors. Throughout this text

these cancer-causing insertions are referred to as oncogenic

insertions.
The tumor tissue contains many copies of the cell

bearing the oncogenic insertions, but only a few copies of

cells carrying non-oncogenic (random, background) insertions.

Consequently, cloning the flanking sequences of the inserted

virus to determine the insertion loci, will result in a data set of

insertion loci (the oncogenic insertions) that are indicative for

the presence of nearby cancer genes contaminated with noise

(the non-oncogenic insertions). This is schematically depicted in

Figures 1A and B. The challenge is to find the regions in the

genome that carry insertions in multiple independent tumors

significantly more frequently than expected by chance. Such a

region is called a Common Integration Site (CIS), and its

location is highly correlated with the location of genes involved

in tumor development. An important factor to consider is that

viral insertions can disrupt gene functioning from various

distances around or within the gene. It is therefore essential that

significance estimates are made for a range of different CIS

widths in order not to miss interesting loci. The discovery of

CISs in insertion data will be referred to as a 1D analysis, for

which recently a kernel convolution method has been developed

(de Ridder et al., 2006).*To whom correspondence should be addressed.
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Instead of revealing cooperation of insertionally targeted
genes with the cancer-predisposition, this study focuses on
revealing the cooperation between virally targeted genes

(Nakamura et al., 1996; Kim et al., 2003). Ideally, for
this purpose the insertions co-occurring in tumors from mice
of a uniform genotype should be examined, but a data set

that is large enough to acquire statistically significant results
is currently absent. Therefore we focus on the co-mutations
that are common across a number of different insertional

mutagenesis screens from publicly available data. The
genes that are targeted by the commonly co-occurring
insertions in these tumors are likely to cooperate in the tumor

development.
To find the cooperation between virally targeted genes, we

propose to analyze the insertion data in the two dimensional
co-occurrence space. We define an Insertion Co-occurrence

(IC) as a unique combination of insertions within one tumor,
and the Common Co-occurrence of Insertions (CCI) as
observing the combination of two insertions significantly

more frequently than expected by chance across multiple
tumors (schematically depicted in Figure 1D). When compared
to a 1D analysis, performing a 2D analysis on the insertion data

will result in the discovery of new loci that play a role in
tumorigenesis. This can be seen by considering a region that is
not hit frequently enough to be labeled a CIS in the 1D

analysis, but may still be called significant in the 2D analysis,
because it co-occurs frequently enough with another inserted
region. To ensure all different configurations of insertions

around or within genes are taken into account, we evaluate the
significance of the CCIs at various scales. Visualizing the CCIs
at multiple widths will contribute essential additional informa-

tion about how insertions disrupt the functioning of their target
genes.
Another hallmark of tumorigenesis is the existence of many

parallel pathways (Hanahan and Weinberg, 2000), and conse-
quently, the many possibilities of reaching the state of
uncontrolled proliferation. This is exemplified by a study

using Pim1 deficient and Pim2 deficient mice. Pim1 is
frequently hit in screens of E�Myc transgenic mice. When
Pim1 is knocked out, Pim2 is frequently hit (van der Lugt et al.,

1995), and when Pim1 and Pim2 are knocked out, Pim3 is
hit (Mikkers et al., 2002), suggesting all three Pim genes
promote tumors in cooperation with Myc. As a consequence,

co-occurring mutations in the RTCGD may not occur
frequently enough to be statistically significant, simply because
there exist too many parallel possibilities for the cell to

become malignant. In this study, we investigate this phenom-
enon by including gene family information, and assess whether
there exists cooperation between genes and a certain gene

family.
The data in the RTCGD are publicly available, and the

screens in the database have been individually studied and

published before. It is therefore likely that the most prominent
CCIs will point to cooperations between genes that have been
discovered before. However, since we are the first to analyze the

combined set of screens in the RTCGD for the presence of
statistically significant cooperations between virally targeted
genes in a systematic fashion, we do expect to discover new

interactions. As we expect a subset of our CCIs to be published,
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Fig. 1. Schematic depiction of insertion data and mapping to the

co-occurrence space. (A) Schematic depiction of the data of six tumors.

The geometric symbols represent the insertions and are given a different

shape for each tumor. The blue region indicates a potential CIS,

a region with significantly more insertions than expected by chance.

(B) An enlargement of the potential CIS. Genes (indicated by the green

bar) may be affected from various loci around or within the gene, and

there is no unique distance across which viral inserts act on their targets.

(C) The result of applying a 1D analysis to the aggregate of all the

insertions. The blue line represents the 1D estimation of the number of

insertions, with peaks indicating high insertion density and therefore

putative CISs. The red line is a significance threshold obtained from a

permutation analysis. The peaks exceeding this threshold qualify as

CISs. (D) The mapping of the tumors to the co-occurrence space. Every

combination of insertions from one tumor is mapped to a single point in

the co-occurrence space, and is referred to as an IC. All co-occurrences

are recorded twice, since the co-occurrence space is symmetric in the

diagonal. The blue ellipses represent regions with a significantly higher

density of co-occurrences, denoted as common co-occurrences of

insertions (CCIs). As in the 1D case, significance is determined based

on a significance threshold obtained from an empirically generated null-

distribution. Note that CCI 1 consists of insertions that also

contributed to CISs in both the g1 and g2 direction. CCI 2, on the

other hand, contains insertions that are only part of a CIS in one

direction, the g2 direction. If a co-occurrence analysis is performed only

on insertions that are part of CISs, CCI 1 will be found. For this reason,

CCI 1 is a CIS–CIS interaction, since, within one tumor, two distinct

CISs are inserted by viruses. However, CCI 2 will not be found, from

which it follows that this approach is prone to false negatives. This can

be explained by the fact that events in the two-dimensional space are

more rare, and hence the threshold for statistical significance can be

lower (while still controlling the average number of false positives at the

desired �-level), thereby gaining extra power. For this reason the 1D

analysis will not be considered any further for the discovery of

cooperating genes.
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we can partially validate our method by showing that the pairs

of genes predicted to cooperate by our method will co-occur in

literature abstracts significantly more frequently than expected

by chance.

2 METHODS

2.1 The data

Over the last few years an extensive amount of insertional mutagenesis

data has been published (see e.g. Hansen et al., 2000; Hwang et al.,

2002; Johansson et al., 2004; Joosten et al., 2002; Li et al., 1999; Lund

et al., 2002; Mikkers et al., 2002; Suzuki et al., 2002). These data have

been compiled in the Retroviral Tagged Cancer Gene Database

(RTCGD) (Akagi et al., 2004) (URL: http://RTCGD.ncifcrf.gov,

accessed January 4, 2007). Currently, the RTCGD contains 5473

retroviral insertions distributed over 1361 tumors. There are 1031

tumors that contain more than one insertion. The vast majority of the

insertions have been acquired in twenty different screens, that used

various experimental setups. Therefore, the number of insertions that

are found in a tumor varies significantly per screen. Additionally, the

mouse models used varied among screens. In this study we analyze the

combined data from all the screens in the RTCGD, irrespective of

the genetic background or cancer predisposition of the mice used in the

screens. Also, we assume that background insertions are distributed

uniformly across the genome, and all insertions are independent of each

other.

2.2 Insertion Co-occurrence

To exploit the information contained in the joint occurrence of

insertions within one tumor, we map the data to the co-occurrence

space. In this space a point indicates the location of an IC, that is, two

insertions co-occurring in one tumor. Finding the regions in the

co-occurrence space that contain ICs more frequently than expected by

chance will point to the genes in the genome that cooperate in the

development of the tumor.

We propose to apply a 2D Gaussian Kernel Convolution (2DGKC)

to determine the statistical significance of the regions with multiple ICs.

The 2DGKC, which is very similar to Parzen density estimation, results

in a smooth estimate for the number of ICs, x̂ðgÞ, at a position

g 2 f0,Gg in the co-occurrence space:

x̂ðgÞ ¼
XN

n¼0

Kð ½g� dn�1ÞKð ½g� dn�2Þ

with f0 < g1 < G, 0 < g2 < Gg,

ð1Þ

where G is the total genome length, K(�) is a univariate kernel function,

dn is the position of the n-th IC, and ½��i denotes the selection of the

i-th element from the vector between brackets. By using the product of

two univariate kernel functions local independence is assumed, but by

summing multiple kernel functions complex correlation structures can

still be discovered. In this study a Gaussian kernel function is used,

given by: KðzÞ ¼ e�2z2=h2 , where h is the kernel width. Note that the

kernel function used in our study is not normalized, as is done in

traditional density estimates (Parzen, 1962). As a result, the modified

density estimate can be interpreted as a continuous estimation of the

number of co-occurrences at a given position. The local maxima in x̂

(the peaks) will now indicate the location of putative CCIs. Since we are

only interested in the local maxima, we reduce the number of

evaluations of Equation (1) (required to find the maxima), by applying

a standard non-linear optimization algorithm (fminunc, MATLAB

Optimization toolbox) started from every IC in the data.

2.3 Significance estimates

Significance of the putative CCIs is evaluated by testing against the

following null-hypothesis:

H2DGKC
0 : �0 ¼ �observedðgÞ

where �0 is the mean height of the peaks under the null-hypothesis and

�observedðgÞ ¼ x̂ðgÞ is the observed height of the peak at position g. The

null-hypothesis is rejected if the observed height of the peak

significantly exceeds the mean height of the peaks under the null-

hypothesis.

The null-distribution is acquired by a permutation approach,

schematically depicted in Figure 2. The kernel convolution is applied

to the ICs that result from a random permutation of the insertions

(Fig. 2A and B). This results in random peaks in the co-occurrence

space. This is repeated K times, to obtain a set of random realizations

(Fig. 2C). From this set, the height of all the peaks is collected, and

the null-distribution is computed (Fig. 2D). Using the null-distribution

we can convert the �-level to a threshold for the real data. This

threshold can now be applied to the smoothed estimate of the number

of ICs, that was obtained by applying the 2DGKC to the real

co-occurrence data (Fig. 2E). We correct for multiple testing using the

Bonferroni multiple testing correction, by dividing the �-level by the

number of tests. Since we only evaluate the height of the peaks,

we take the number of tests to be equal to the number of peaks in the

co-occurrence density.
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Fig. 2. Schematic depiction of the significance analysis of the smoothed

estimate of number of co-occurrences in the insertion data. (A) Within

each tumor, the position of the insertions are permuted. (B) The

permuted set of insertions is mapped to the co-occurrence space and the

2D Gaussian Kernel Convolution (2DGKC) is applied. This is repeated

to obtain a set of K realization of the density estimate on random data.

(C) From these realizations the peak heights are collected, and a null-

distribution is computed. (D) Using a predefined �-level the significance

threshold on real data is computed. (E) Applying this threshold to the

estimated number of Insertion Co-occurrences (ICs) in the real data

results in the Common Co-occurrences of Insertions (CCIs), statistically

significant co-occurrences of insertions.
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2.4 Scale space

The kernel width h can be considered as a scale parameter, thereby

providing an excellent way of controlling at which scale the significance

of the ICs are evaluated. By increasing h, the kernel functions cover a

larger region, and, since potentially more kernel functions will

contribute to the smoothed estimate of the number of ICs, this results

in higher peaks in this estimate. This mechanism will ensure that the

CCIs for which the ICs are confined to one or more very specific

regions (narrow CCIs), will only become significant for small values of

h (small scales), and conversely, the broad CCIs will only be present at

larger scales. This motivates the definition of a cross scale CCI (csCCI),

defined as the detection of a CCI at one or more scales.

Visualizing these phenomena will aid the biologist in determining the

targeted genes. For this purpose we construct three-dimensional scale

space diagrams (see e.g. Figs 5 and 6). In these diagrams the contour,

defined by the intersection of the threshold with the smoothed estimate

of the number of ICs (Fig. 2E), is plotted in the (g1=g2)-plane, as a

function of the scale parameter (z-axis). The scale parameter is chosen

to cover a range of biologically relevant scales (10k � h � 500k).

Since for every scale the - computationally intensive - permutation

procedure has to be performed, the threshold value is computed only

for eight log-uniformly spaced scales. For the 100 intermediate scales,

that are used to build the scale space diagrams, the necessary threshold

values are computed using a piecewise linear interpolation of the

threshold values that were computed using the actual permutation

procedure.

2.5 �2-ranking

In addition to ranking the csCCIs on their average peak height across

the scales, it is also interesting to rank the csCCIs according to a one-

tailed �2-test, which corrects for the frequency with which the

individual co-occurring loci are hit. Using the P-value from the

�2-test, it is possible to filter the csCCIs at a user-defined �-level, which

is an often employed pruning technique in the context of association

rule mining (Liu et al., 2001). Note that, by filtering the results,

statistically significant interactions (based on peak height) are lost, and

should therefore only be employed in case too many interactions were

discovered.

Per CCI and per scale a P-value is computed for the �2-test

performed on the following table:

In this table, Ag1 denotes an area in the co-occurrence space:

Ag1 ¼ fCCIg1 � h < g1 < CCIg1 þ h; 0 < g2 < Gg, that is, an area of

width 2h around CCIg1 , the g1 position of the CCI under investigation,

and the height spanning the complete g2 axis. Ag2 is defined in an

analogous fashion. Now, Ng1, g2 can be defined as the number of ICs in

the intersection of the areas Ag1 and Ag2 . Likewise, Ng1 , Ng2 and N are

defined as the total number of ICs in the areas Ag1 , Ag2 and the

complete co-occurrence space, respectively. The csCCIs can now be

ranked according to their average P-value across the scales in which the

CCI was found to be significant.

2.6 Family mapping

The presence of parallel pathways may prevent co-occurring insertions

from reaching the significance threshold. A clear example is the

previously mentioned cooperation of the Myc proto-oncogene and the

Pim1 and Pim2 proto-oncogenes. Since more than one possibility exists

to cooperate with Myc, the spatial correlation in the g2 direction of the

ICs in the Myc locus will be diminished, that is, the ICs will be divided

into two separate clusters: one near the Pim1/Myc locus on

Chromosome 17/Chromosome 15 and one near the Pim2/Myc locus

on Chromosome X/Chromosome 15. This results in lower peaks at

these positions, and, because the data is far from saturated, possibly

even causes one or both of these peaks to fail the significance test.

This problem is circumvented by increasing spatial correlation of the

regions surrounding the genes that can substitute for each other. There

is, however, no data source available that contains information on

functional substitution. For this reason, we revert to Ensembl gene

family information, which is based on sequence similarity (Hubbard

et al., 2005), and is an indirect indication that the genes in such a family

can act as functional substitutes. To increase the level of confidence that

genes from one family can indeed substitute for each other, only

families with up to ten family members are considered. The spatial

correlation is increased by mapping the regions surrounding genes

within the same family on top of each other, by aligning them with

respect to a common reference (schematically depicted in Fig. 3). In this

alignment the transcriptional direction of the genes is taken into

account. The common reference, referred to as the pivot, is chosen to be

the 5’ end of the genes. A major advantage is that ICs that were

previously separated now may be close enough to reach the significance

threshold. Before the mapping is performed, a few conditions need to be

satisfied: (1) ICs from the same tumor are not mapped, since common

cooperations can only be called significant when encountered in more

than one tumor. (2) Genes within one family that are close together are

excluded, since the ICs in their neighborhood will already be spatially

correlated. (3) ICs with a distance to the pivot exceeding five times the

scale parameter are not mapped. These ICs will not contribute to the

peak height, but may introduce false positives.

After the family mapping is performed, the 2DGKC method is

applied to the ICs in the family mapped space. A Family Mapped CCI

Same gene
family

A

g1g2
Pivot (5′ of gene)

g1

g′2

5h

5h

Ignored,cannot
contributeB

Fig. 3. Schematic depiction of the mapping of the ICs to the families.

(A) The IC space with five ICs. Two genes have been depicted (green

bars) that are members of the same family. The red bars denote the 5’

ends of the genes. (B) The region around the genes are mapped onto

each other, taking into account the direction of transcription of the

gene, and using the pivot (5’ end of the gene) as common reference.

Only a region of five times the scale parameter is considered, since only

ICs within this range will have an additive effect on the smoothed

estimate of the number of ICs belonging to the family under

investigation. ICs outside the region are therefore ignored. From the

schematic it can be seen that, before the mapping, ICs that did not

result in a peak exceeding the significance threshold, after the mapping

may become close enough to have an additive effect on the smoothed

estimate of the number of ICs, resulting in the discovery of Family

Mapped CCI (indicated by the blue ellipse). Note that mapping changes

only the g2 dimension (denoted by g02), the g1 dimension remains the

same.
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(FM-CCI) is defined as a peak that exceeds the significance threshold.

The FM-CCIs indicate the cooperation of a region in the g1 direction

with one or more members of a certain gene family in the g2 direction.

Note that the mapping and 2DGKC is applied per family.

By mapping the regions around the genes from a family onto each

other, the peak height that is expected by chance will increase. As a

consequence, the null-distribution, against which the resulting peaks are

compared, should incorporate this effect. This is achieved by including

the family mapping before the permutation procedure depicted in

Figure 2. The number of regions that are mapped onto each other

changes as a function of the family size, and therefore a null-

distribution is computed per family size. The multiple testing correction

factor is equal to the total number of peaks evaluated in the family

mapped space, which is approximately equal to the one used in the

detection of CCIs.

2.7 Validation from literature

In order to validate the most prominent csCCIs that resulted from our

analysis, we evaluated how often the two genes, close to a csCCI,

co-occurred in the same MEDLINE abstract according to the online

database PubGene (http://www.pubgene.org) (Jenssen et al., 2001).

This required a non-trivial mapping of the csCCI to their target genes.

Although it has been shown that viral insertions most frequently target

their closest neighboring gene (Erkeland et al., 2006), it is likely that this

simple heuristic will introduce some false negatives, thereby diluting the

number of discovered co-occurring gene pairs in the PubGene database.

To overcome this problem we evaluate all nine combinations of the

three nearest genes surrounding the region marked by a csCCI in the g1
direction against their three counterparts in the g2 direction, and use

only the combination that resulted in the maximum number hits in

PubGene. We compare the results obtained by this procedure against

the result obtained by repeating the same procedure with 2500 random

combinations with the genes in our list.

3 RESULTS

3.1 Common co-occurrence of insertions

We have applied the proposed 2DGKC method to the

combined data from the screens in the RTCGD. We evaluated

the data at the following eight log-uniformly spaced scales:

[10000, 17487, 30579, 53472, 93506, 163512, 285930, 500000] at

a significance level of �¼ 0.05. This resulted in the discovery of

86 csCCIs, that is, we find 86 pairs of loci that cooperate with

each other in the development of the tumor. An overview of the

results are given in Figure 4 and the top ten csCCIs are listed in

Table 1 (a complete list is available online).
A number of interactions identified in retroviral mutagenesis

screens have previously been characterized. Myc collaborates

with Pim1 (Verbeek et al., 1991),Myb (Davies et al., 1999), Gfi1

(Schmidt et al., 1998), and Cyclin D1 (Lovec et al., 1994) and

Hoxa9/Hoxa7 collaborate with Meis1 (Kroon et al., 1998). The

majority of co-occurences however, have not been studied in

mouse models of lymphoma, but in some cases the literature

provides supporting evidence for their cooperation. For

instance, the csCCI near Rasgrp1/Cebpb ranked 43rd in the

list. Rasgrp1 is a guanine nucleotide exchange factor that

activates Ras signalling. Cebpb (CCAAT/enhancer-binding

protein beta) is a transcription factor that mediates inter-

leukin-6 (IL-6) signalling. Cebpb is also an important mediator

of Ras induced oncogenesis (Zhu et al., 2002).

Interestingly, when ranking the csCCIs according to the

�2-test, a rather different top 10 is found (Table 2). These

interactions are of special interest, since the individual loci are

inserted in relatively few tumors, which makes it more likely

that the combination of the two mutations is causal for

development of the tumor. Figure 2 shows the result after

applying an additional 0.05 threshold to the P-value resulting

from the �2-test. Indeed, it can be seen that 12 csCCIs

(colored blue in Fig. 4) do not reach this additional threshold,

and may therefore be of less interest. Notably, they mainly

represent interactions with either Sox4 or Gfi1, which, by

themselves, are both frequently targeted in insertional

mutagenesis screens.

3.2 Validation from literature

Table 1 lists the candidate target gene pairs, as indicated by the

top ten of the 86 csCCIs. By searching the PubGene database

we found six of these ten gene pairs to co-occur in the literature

abstracts. This is statistically significant (P < 6:3� 10�4), when

compared to the 322 hits that resulted from querying 2500

random, and therefore mostly unrelated, combinations in our

set. Also when considering the complete list of 86 gene pairs

indicated by the csCCIs, we find a statistically significant
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Fig. 4. (A) Co-occurrence plot for all the data in the RTCGD, where

the axis markings denote the chromosomes and the green dots indicate

the ICs. The red and blue dots mark the locations of the csCCIs,

where the blue ones indicates the csCCIs for which non of the scales

reached the additional 5% threshold according to the �2-test,

described in the Methods section. The radius of the csCCI marker

is proportional to the score obtained by normalizing the peak heights

of the csCCIs per scale, and averaging this normalized peak height

across the scales at which the csCCI was found to be significant. The

arrows indicate the gene pairs discussed in the Results section.
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overrepresentation in the literature abstracts (P < 5:6� 10�4),
since 23 of these co-occurred in the PubGene database. For the

ten gene pairs listed in Table 2, no significant overrepresenta-

tion in literature abstracts was established. This is not
surprising, since these genes are hit relatively infrequently,

and are therefore less likely to be well-characterized in
literature.

3.3 Scale space diagrams

The list in Table 2 contains some interesting putative

cooperations between genes, but by plotting the csCCIs in the
scale space, valuable extra information about the cooperation

can be gained. From Figure 5 it is clear that, at the largest
scales, insertions near Myb clearly co-occur with Gfi1

insertions. Gfi1 and Myb are transcription factors with roles
in hematopoiesis (Mucenski et al., 1991: Zeng et al., 2004). At

the smaller scales however, inserts surrounding Myb can be
divided into two separate clusters, and independently associate

with the Gfi1 locus. This suggests that inserts from both clusters
are functionally equivalent, thereby strengthening the case

for grouping them into a single CCI at larger scales, but

possibly also indicates a different mechanism by which they
disrupt functioning of Myb. This diagram can thus give

valuable insight in the mechanisms that disrupts gene function-
ing. Other examples exist where csCCIs are only significant at

a certain range of scales, for instance the previously mentioned
csCCI near Rasgrp1 and Cebpb (Fig. 6). Clearly,

when evaluating this csCCIs at a single scale or subset of
scales, one runs the risk to miss this significant cooperation if

the scale at which it is evaluated does not match the scale of
the CCI.

3.4 Family mapping

Figure 7A shows the previously mentioned example of the

possible substitution of insertions near Pim2 for Pim1 muta-
tions. The figure exemplifies that, by performing the family

mapping, indeed meaningful extra interactions are found.

Chromosome 10 Chromosome 5

S
ca

le

g1 g2

Fig. 5. Scale space diagram of a csCCI located on the Chromosome 10/

Chromosome 5 intersection, near the Gfi1 and Myb genes. The dark

blue and light blue areas indicate the genes on the top and bottom

strand in the g1 direction, respectively. The dark green and light green

areas indicate the genes on the top and bottom strand in the g2
direction, respectively. The red triangles mark the location of the ICs.

From the scale space diagram it becomes clear that there are in fact two

distinct loci of integration on either side of the Myb gene.

Chromosome 2 Chromosome 2
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ca

le

g1

g2

Fig. 6. Scale space diagram of a csCCI located on the Chromosome 2/

Chromosome 2 intersection, near Rasgrp1 and Cebpb. Nomenclature is

equivalent to Figure 5. Note that this csCCI only is significant at higher

scales, and can therefore be missed if the wrong (subset of) scale(s) is

evaluated.

Table 1. Top ten of the csCCIs, ranked according to their average peak

height across the scales, and their candidate targets and hits in

PubGene. The candidate targets are defined as the gene pairs with most

hits. When no PubGene hits were scored, the RTCGD consensus genes

are listed

csCCI rank Gene(s) 1 Gene(s) 2 Number of

PubGene hits

1 Sox4 Hhex 0

2 Gfi1 Myc 17

3 Rras2 Myc 0

4 Hoxa9/Hoxa7 Meis1 25

5 Myb Myc 151

6 Gfi1 Myb 1

7 Myc Pim1 56

8 AA881470/Iqce Sox4 0

9 Notch2 Sox4 0

10 Ccnd1 Myc 141
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The IC near Pim2 and Myc would have gone undetected in the

normal co-occurrence analysis, the family mapping proves

capable of exploiting the additional information contained in

this IC.
Similarly interesting is the discovered FM-CCI indicating

cooperation between Sox4 and the Cyclin dependent kinases

family. Seven from the nine genes in this family are hit in eight

independent tumors. Figure 7B shows the scale space diagram

for this interaction. Apparently, Sox4 insertions cooperate

interchangeably with one of the members of the Cyclin

dependent kinases family. Figure 8 shows how the ICs

targeting the Sox4/Cyclin dependent kinases family are

distributed over the tumors. Notably, none of the genes in

the Cyclin dependent kinases family is hit frequently enough to

reach significance on its own account (the two ICs near

Sox4/Cdk6 are too far from each other to reach significance). It

is only by applying the family mapping that cooperation

between Sox4 and the Cyclin dependent kinases family can be

discovered.

Table 2. Top 10 of the ranked csCCIs, according to the �2-ranking
procedure. RTCGD consensus genes are listed

csCCI rank Gene(s) 1 Gene(s) 2

1 Hoxa9/Hoxa7 Meis1

2 Meis1 Dnalc4

3 Lmo2 Il2rg

4 Ramp1 Hoxa9/Hoxa7

5 Gabpb1 Eml4

6 Ccr7 Hexim1

7 Pptc7 Pou2f2

8 Sox4 Hhex

9 Zdhhc18/Arid1a Map3k14/Fmnl1

10 Rap1a/6530418L21Rik Nfix/Lyl1

Pim family Chromosome 15
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ca

le
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ca

le

Cyclin Dependent family 
kinases

Chromosome 15

g1
g′2

g1
g′2

B

Fig. 7. Scale space diagrams of FM-CCIs. Nomenclature is equivalent to Figure 5, with the exception of the green area, which indicate the genes of

the gene family under investigation, in the g02 direction. (A) The interaction between Myc and the Pim family (ENSF00000001108: SERINE/

THREONINE KINASE PIM) in the scale space. The red triangles mark ICs near Pim2, and yellow triangles mark ICs near Pim1. (B) The

interaction between Sox4 and the Cyclin dependent kinases Family (ENSF00000000186: CELL DIVISION). The coloring of the ICs indicate near

which seperate family member it occurred. Notably, seven of the nine genes in this family are hit.

Cdk4

Cdc2a

Ccrk

Cdk2

Cdk5

Cdk3

Cdk6

Cdk7

ENSMUSG00000071667

Tumor 1 2 3 4 5 6 7 8

Fig. 8. Schematic depiction of the distribution of ICs that were

encountered near Sox4 (within a 1Mbp square window), over the nine

members from the Cyclin dependent kinases family. Only Cdk6 is hit

twice, but the ICs were too far from each other to reach significance by

themselves. The figure shows that this interaction, among others, can

only be found by applying a family mapping.
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4 CONCLUSIONS AND DISCUSSION

Until now, the main focus of analysis on insertional mutagen-
esis data has been one-dimensional, that is, discovering regions

in the genome that are causal for tumor development, the CISs.
In this article we analyzed the data from publicly available
retroviral insertional mutagenesis screens in the 2D co-

occurrence space. By evaluating the significance of co-occurring
insertions we found 86 statistically significant csCCIs, that
indicate cooperation between insertionally targeted genes. By

analyzing the data in a scale space we are able to detect csCCIs
that are only significant at a limited subset of the scales, for
instance the putative cooperation between Rasgrp1 and Cebpb.

In addition, the scale space provides essential information
about mechanisms that underlie the viral disruption of gene
functioning. This was exemplified by the putative cooperation

between Myb and Gfi1, where the scale space showed two sub-
CCIs at low scales, indicating two confined regions of
integration.
To assess whether also known cooperation between genes are

found, we showed that the set of candidate gene pairs, resulting
from our study, is significantly overrepresented in the PubGene
database, a literature network containing gene-to-gene co-

citations. In addition to known cooperations, our study also
revealed previously unknown putative cooperations, that are
interesting targets for possible follow-up studies. We have

presented two rankings of the resulting csCCIs, one based on
average peak height and one based on the average P-value
resulting from a �2-test. The latter ranking takes into account

the possibility that a csCCI is caused by frequent insertion of
one or both of the individual loci. We can conclude that, by
analyzing the data in the co-occurrence space, and at multiple

scales, we can find new statistically significant regions in the
genome that play a role in tumor development.
To deal with the possibility that cells choose alternative

pathways to become malignant, we have incorporated informa-
tion about gene families in the analysis. By remapping the data
according to putative substitutions derived from gene family

membership, we were able to discover significant cooperations
between genes and genes from a gene family. Examples of the
known substitution of Pim2 insertions for insertions near Pim1
in tumors with virally activated Myc, as well as the putative

cooperation between Sox4 and the Cyclin dependent kinases
family were given. These examples show that much is to be
gained by integrating insertional mutagenesis data with other

data sources, such as gene family information, since the
insertion data in itself is far from saturated.
The methods presented are especially beneficial for data from

high throughput screens with many insertional mutations per
tumor. Therefore, the methods may be applied to other types of
genome wide mutagenesis data as well, for example data from

transposon screens (Collier and Largaespada, 2005). As the
amount of data increases, extensions to a multi-occurrence
analysis become interesting. For the proposed 2DGKC

method, these extensions are fairly straightforward.

ACKNOWLEDGEMENTS

This work was part of the BioRange programme of the
Netherlands Bioinformatics Centre (NBIC), which is supported

by a BSIK grant through the Netherlands Genomics Initiative

(NGI).

Conflict of interest: none declared.

REFERENCES

Akagi,K. et al. (2004) RTCGD: retroviral tagged cancer gene database. Nucleic

Acids Res., 32(Database issue), D523–D527.

Collier,L.S. and Largaespada, D.A. (2005) Hopping around the tumor genome:

transposons for cancer gene discovery. Cancer Res., 65, 9607–9610.

Davies,J. et al. (1999) Cooperation of myb and myc proteins in t cell

lymphomagenesis. Oncogene, 18, 3643–3647.

de Ridder,J. et al. (2006) Detecting statistically significant common insertion sites

in retroviral insertional mutagenesis screens. PLoS Comput. Biol., 2, e166.

Erkeland,S.J., et al. (2006) Significance of murine retroviral mutagenesis for

identification of disease genes in human acute myeloid leukemia. Cancer

Res., 66, 622–626.

Hanahan,D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell, 100,

57–70.

Hansen,G.M. et al. (2000) Genetic profile of insertion mutations in mouse

leukemias and lymphomas. Genome Res., 10, 237–243.

Hubbard,T. et al. 2005. Nucleic Acids Res, 33, D447–D453.

Hwang,H.C. et al. (2002) Identification of oncogenes collaborating with p27Kip1

loss by insertional mutagenesis and high-throughput insertion site analysis.

Proc. Natl Acad. Sci. USA, 99, 11293–11298.

Jenssen,T.K. et al. (2001) A literature network of human genes for high-

throughput analysis of gene expression. Nat. Genet., 28, 21–28.

Johansson,F.K. et al. (2004) Identification of candidate cancer-causing genes in

mouse brain tumors by retroviral tagging. Proc. Natl Acad. Sci. USA, 101,

11334–11337.

Joosten,M. et al. (2002) Large-scale identification of novel potential disease loci

in mouse leukemia applying an improved strategy for cloning common virus

integration sites. Oncogene, 21, 7247–7255.

Kim,R. et al. (2003) Genome-based identification of cancer genes by proviral

tagging in mouse retrovirus-induced T-cell lymphomas. J Virol, 77,

2056–2062.

Kroon,E. et al. (1998) Hoxa9 transforms primary bone marrow cells through

specific collaboration with meis1a but not pbx1b. EMBO J., 17, 3714–3725.

Li,J. et al. (1999) Leukaemia disease genes: large-scale cloning and pathway

predictions. Nat. Genet., 23, 348–353.

Liu,B. et al. (2001) Identifying non-actionable association rules. In KDD ’01:

Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM Press: New York, NY, USA, pp

329–334..

Lovec,H. et al. (1994) Cyclin d1/bcl-1 cooperates with myc genes in the generation

of b-cell lymphoma in transgenic mice. EMBO J., 13, 3487–3495.

Lund,A.H. et al. (2002) Genome-wide retroviral insertional tagging of genes

involved in cancer in Cdkn2a-deficient mice. Nat. Genet., 32, 160–165.

Mikkers,H. and Berns, A. (2003) Retroviral insertional mutagenesis: tagging

cancer pathways. Adv. Cancer Res., 88, 53–99.

Mikkers,H. et al. (2002) High-throughput retroviral tagging to identify

components of specific signaling pathways in cancer. Nat. Genet., 32,

153–159.

Mucenski,M.L. et al. (1991) A functional c-myb gene is required for normal

murine fetal hepatic hematopoiesis. Cell, 65, 677–689.

Nakamura,T. et al. (1996) Cooperative activation of Hoxa and Pbx1-related

genes in murine myeloid leukaemias. Nat. Genet., 12, 149–153.

Parzen,E. (1962) On estimation of a probability density function and mode.

The Ann. Math. Stat., 33, 1065–1076.

Schmidt,T. et al. (1998) Zinc finger protein gfi-1 has low oncogenic potential but

cooperates strongly with pim and myc genes in t-cell lymphomagenesis.

Oncogene, 17, 2661–2667.

Suzuki,T. et al. (2002) New genes involved in cancer identified by retroviral

tagging. Nat Genet, 32, 166–174.

Uren,A.G. et al. (2005) Retroviral insertional mutagenesis: past, present and

future. Oncogene, 24, 7656–7672.

vander Lugt,N.M. et al. (1995) Proviral tagging in e mu-myc transgenic mice

lacking the pim-1 proto-oncogene leads to compensatory activation of

pim-2. EMBO J., 14, 2536–2544.

J.de Ridder et al.

i140



van Lohuizen,M. et al. (1991) Identification of cooperating oncogenes in E

mu-myc transgenic mice by provirus tagging. Cell, 65, 737–752.

Verbeek,S. et al. (1991) Mice bearing the e mu-myc and e mu-pim-1

transgenes develop pre-b-cell leukemia prenatally. Mol. Cell. Biol., 11,

1176–1179.

Zeng,H. et al. (2004) Transcription factor gfi1 regulates self-renewal and

engraftment of hematopoietic stem cells. EMBO J., 23, 4116–4125.

Zhu,S. et al. (2002) Ccaat/enhancer binding protein-beta is a mediator of

keratinocyte survival and skin tumorigenesis involving oncogenic ras

signaling. Proc. Natl Acad. Sci. USA, 99, 207–212.

Co-occurrence analysis of insertional mutagenesis data

i141


