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Abstract

3D Gaussian Splatting (3DGS) is a method for
representing 3D scenes, but is prone to overfitting
when trained with limited viewpoint diversity, of-
ten resulting in artifacts like floating Gaussians at
incorrect depths. This paper addresses this issue
by introducing 3D Gaussian Splatting with Depth,
which incorporates depth supervision from RGB
Depth (RGB-D) cameras into the training process.
By using depth data to guide the placement of
Gaussians, the proposed method aims to reduce ar-
tifacts. Through quantitative and qualitative analy-
sis, this paper demonstrates that depth-supervised
Gaussian splatting mitigates overfitting artifacts,
particularly in outdoor scenes with a mediocre cam-
era point diversity. The depth-supervised model is
able to reduce the depth loss by a factor of three
times without substantially increasing the loss on
regular views.

1 Introduction

The representation of 3-dimensional scenes is a fundamental
challenge in the fields of computer graphics and computer vi-
sion. The ability to turn real-world objects into 3D represen-
tations on computers to generate novel views can be applied
in media such as films and video games [10], for robots and
navigation systems [10], and for medical applications such as
CT scans [8].

First introduced in 2020, Neural Radiance Field (NeRF)
[7] is a novel view synthesis method that represents 3-
dimensional scenes using a Deep Neural Network. NeRF’s
ability to render photorealistic views in a reasonable time
sparked significant interest in the field of radiance field ren-
dering. Although revolutionary, NeRF came with some sig-
nificant disadvantages, one of the main ones being that the
representation as a Multi-Layer Perceptron requires an entire
model to be retrained in order to make changes to a scene.

In July of 2023, Kerbl et al. introduced a novel way of
representing 3D scenes using 3D Gaussians, which allowed
for realtime rendering of scenes captured with multiple pho-
tos [5]. This technique was generally faster in training and
rendering than previous techniques such as NeRF, and the
representation also allowed for changes to the scene without
having to retrain the model.

3D Gaussian Splatting (3DGS) is particularly prone to
overfitting due to its sensitivity to limited viewpoint diver-
sity in the training data. When training a Gaussian splat, it is
possible for some parts of the scene to be visible in only one
or a select amount of training frames. As such, the model will
place a Gaussian of the corresponding color in the scene such
that the rendered splat will look similar to the training frame
when rendered from the same camera position, as can be seen
in figure 1. However, since the part of the scene is only shot
from one angle, the model could place the Gaussian at any
distance from the camera. This could cause Gaussians to ap-
pear at the wrong depth, floating in space when rendered from
a novel view, as can be seen in figure 1.

Figure 1: The white Gaussians representing the sky look decent on
one view, but can be seen floating in mid-air when rendering the
scene from a novel view.

This paper investigates a potential solution for this prob-
lem by training a Gaussian splat using images from RGB-D
cameras. RGB-D cameras have corresponding depth data for
every frame, and these cameras are becoming increasingly
more available both as separate devices and included in mo-
bile phones [2]. It extends the original paper by investigating
if, how, and how much Gaussian splatting can further be im-
proved if depth information is available. The paper will pro-
vide a qualitative comparison between RGB Gaussian splat-
ting and RGB-D Gaussian splatting by investigating floating
Gaussians in novel views. As such, the main research ques-
tion is: How to exploit additional depth information from
RGB-D measurements in 3DGS?

This will be investigated by introducing 3D Gaussian
Splatting with Depth (3DGSw/Depth), a version of 3DGS
that renders depth maps from the Gaussian Splat and super-
vises them with the depth ground truth from RGB-D cameras.
This system will then be evaluated by analyzing the loss dur-
ing training, and by comparing renders from models trained
with both 3DGSw/Depth and 3DGS.



2 Related Work

3DGS wuses Structure-from-Motion (SfM), particularly
COLMAP [9], and gradient descent to create a Gaussian
Splat from a set of 2D RGB images. Before the Gaussian
Splat is created, COLMAP uses features such as corner
points to find correspondence between the input images and
is then able to estimate the 3D structure in the scene, as well
as camera positions and intrinsic parameters. COLMAP
outputs a sparse point cloud, which is then used to initialize
a sparse cloud of Gaussians, where each Gaussian has a
position (mean), covariance matrix, and opacity alpha. Then,
a stochastic gradient descent procedure is used. For multiple
camera positions per iteration, the Gaussians are projected to
2D and blended using alpha-blending to result in a rendered
image. These renders are then compared to the original
image using the L1 loss function, which is the absolute
difference, together with a D-SSIM term 2. The Gaussians
can be cloned, removed, or changed in every iteration in
order to converge to a minimum loss by gradient descent.

Since the original paper on 3DGS has been published, mul-
tiple researches have advanced on the technique using depth
information. Luiten et al. have used RGB-D cameras in order
to obtain sparse point clouds without having to use a lot of
camera positions like SfM requires [6]. Their research also
briefly describes the rendering of depth maps from Gaussian
splats by replacing the color component of each Gaussian by
the depth value of its center. Depth information has also
been used to improve the training of a Gaussian model [4],
although the depth information in this research is not mea-
sured by a camera but instead estimated using a monocu-
lar depth estimation technique [1] combined with the sparse
point cloud generated from COLMAP. This research will be
a combination of sorts, using depth information from RGB-
D cameras to directly supervise the training process of the
Gaussian Splat.

3 Methodology

The original 3DGS model will be compared with the
proposed model that incorporates depth information,
3DGSw/Depth. The original model will use gradient descent
on the loss function L (Figure 2) as described in the original
paper [5] to create a Gaussian Splat from a set of images pro-
vided by the Red-wood dataset [3]. The proposed model will
use these same images with their corresponding depth maps
to train a Gaussian Splat. The gradient descent procedure
for the proposed model will use a combination of the loss
function L and a proposed depth loss function that is derived
from the dissimilarity between the ground truth depth map
and the depth map that is rendered from the Gaussian splat.

L=01-1)L1+ALpssim

Figure 2: The loss function from the original paper [5]

Figure 3: The original RGB-D images are taken from similar posi-
tions.

3.1 Supervising depth during Gaussian Splatting

The 3DGSw/Depth model contains extra depth functionality
that is true to the original Gaussian Splat model in terms of
operation. During training, the model will render both the
image and a depth map (Figure 4) from the Gaussian splats.
The depth map will be rendered by splatting the depth of ev-
ery Gaussian on the image, similarly to how regular views are
rendered from a Gaussian Splat. The depth of every Gaus-
sian can be reused from the original model, as 3DGS already
keeps track of their depths in order to determine the render
order. The resulting depth map will be a black and white im-
age, where lighter pixels correspond to a larger distance from
the camera (Figure 4).

Figure 4: The depth-supervised Gaussian splatting pipeline repre-
sented in images. From top-left to bottom-right: The RGB image,
the depth map from the camera, the depth map rendered from the
Gaussian splat, and the depth loss map.

The rendered depth map and ground truth depth map will
be preprocessed before the loss can be calculated. Firstly,
the ground truth depth map (Figure 4) does not contain data
for every pixel as RGB-D cameras are not perfect (Figure 5).
Most RGB-D cameras use stereo-vision, which is unable to
estimate the depth of objects that are only visible to one of
the cameras. RGB-D cameras also have difficulty with large
planes of just one color, especially in outdoor lighting when



the infrared dot patterns are not visible to the camera. RGB-D
cameras also have problems estimating the depth of the sky.
The parts of the depth maps that do not have data are com-
pletely ignored, neither counting as wrong nor correct. To
achieve this, both the ground truth and rendered depth maps
will be masked so pixels with no ground truth value are re-
moved (Figure 6).

Figure 5: RGB-D images do not contain depth values for every pixel,
such as right next to objects or in the sky.

The values of the rendered depth map will be on a different
range than of the original depth map, as Structure from Mo-
tion and Gaussian Splatting do not maintain real-world dis-
tances. However, both depth maps are 0 for objects that are at
0 distance from the camera, and both depth ranges are linear,
meaning that a depth value is twice as high when something
is twice as far away. As such, the depth ranges only differ
by a scaling factor and the depth maps can be compared after
dividing both by their own means (Figure 6).

The depth loss will be equal to the mean of the absolute dif-
ference between the ground truth and the rendered depth map
(Figure 6). Similarity measures that take into account struc-
ture, such as Structural Similarity Index Measure (SSIM), are
unusable in this case where there are black spots in the depth
map. The total loss will be a weighted average of the depth
loss and the original loss function.

4 Results

4.1 Experimental setup

For this experiment, scans from the Red-Wood dataset [3] in
the ’Sculpture’ category were used. Although the type of ob-
ject does not matter for this research, the ’Sculpture’ category
was chosen because of its diversity; it contains 458 object
scans of varying shapes in both indoor and outdoor scenes.
To keep the sample size manageable, this research only uses
the first 96 object scans starting with the lowest object id’s
in the dataset. The scans in the dataset could contain thou-
sands of frames, and the depth maps were sometimes shot at
a slightly different framerate than the RGB frames. For this
research, all object scans were subsampled to 200 frames by

# Filter pixels for which there is no depth data
mask = gt_depth > 0

gt_depth = gt_depth[mask]
rendered_depth = rendered_depth[mask]

# Divide both maps by their own means
gt_depth = gt_depth / gt_depth.mean()
rendered_depth = rendered_depth

/ rendered_depth.mean()

# Calculate the depth loss
diff = gt_depth - rendered_depth
depth_loss = torch.abs(diff) .mean() / 2

# Compute a weighted average of the original

# loss and the depth loss

final_loss = depth_weight * depth_loss +
(1.0 - depth_weight) * original_loss

Figure 6: The Python code used to calculate the depth loss between
the ground truth and rendered depth maps.

selecting frames at regular intervals, effectively retaining ev-
ery nth frame. COLMAP was then used to create a sparse
point cloud from these 200 images. The COLMAP proce-
dure then kept the minimal amount of images necessary for a
reconstruction, resulting in some subset of less than 200 im-
ages.

The Gaussian splat was trained on these images and the
sparse point cloud using the —eval flag included in the original
Gaussian Splatting repository, which split the images into a
training and test set. Every object scan was used for the train-
ing of two Gaussian Splats: one of them uses the loss function
from the original 3DGS paper, and the other is trained with a
loss function that incorporates the depth loss with weight 0.5,
which will be called 3DGSw/Depth. This weight was chosen
after training several models with a range of weights from 0 to
1.0. Weights between 0.25 and 0.75 drastically decreased the
depth loss while barely impacting the RGB loss, so the cen-
trally positioned weight of 0.5 was chosen (Figure 7). The
Gaussian Splats were trained in 2000 iterations to keep the
computing time and resources manageable. During the train-
ing procedure, the depth and RGB losses were tracked in a
csv file. After the training procedure, the similarity between
the RGB renders and RGB ground truth was calculated using
the SSIM, Peak Signal-to-Noise Ratio (PSNR), and Learned
Perceptual Image Patch Similarity (LPIPS) similarity metrics.
Finally, the Gaussian Splats were visually inspected to gain a
deeper understanding of the effects that the depth information
has on the training of the model.

4.2 Metrical results

Figure 8 shows that introducing a depth loss factor greatly re-
duces the depth loss while only slightly increasing the RGB
loss. This shows that a local optimum of a combination of
these functions lies closely to a local optimum of the original
loss function, which suggests that the depth loss and origi-
nal loss functions are not in conflict with each other. The
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Figure 7: Loss on RGB images (top) and depth maps (bottom) dur-
ing training of a Gaussian Splat on the bicycle scene, per weight
factor of depth loss (20-iteration moving average).

figure additionally shows that the original 3DGS model does
optimize the depth, even without explicitly accounting for a
depth loss in its loss function. However, this depth loss seems
to stagnate after 200 iterations, at a loss value that is around
three times higher than with 3DGSw/Depth.

Figure 9 shows the average SSIM, PSNR, and LPIPS
scores of 3DGS and 3DGSw/Depth on a test set of RGB
images for every of the 96 objects. A higher similarity is
indiciated by a higher SSIM, a higher PSNR, and a lower
LPIPS, which means that the original 3DGS outperformed
3DGSw/Depth with every metric. This could indicate that
3DGSw/Depth does not reduce overfitting. However, the
objects were not scanned systematically which introduced a
huge dependency on the camera positions, as can be seen in
Figure 3. As such, the test set is similar to the training set and
might not be able to account for overfitting.

4.3 Visual results

Because the quantitative analysis is unable to capture com-
pletely how depth-supervision affects 3DGS, the result-
ing 3D models are visually compared for both 3DGS
and 3DGSw/Depth to gain a deeper understanding of
3DGSw/Depth. All trained models are available upon re-
quest as a 7.5 GB Zip-file, this section will highlight views
from several models that conjointly explain the differences
between 3DGSw/Depth and 3DGS.

On indoor scenes such as in figure 10 and 11,
3DGSw/Depth slightly reduces the amount of floating Gaus-
sians in the scene. However, the amount of floating artifacts
remains high as the objects were filmed from especially close
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Figure 8: Loss on RGB images (top) and depth maps (bottom) dur-
ing training of 192 Gaussian Splats on 96 objects with depth weights
0.0 and 0.5. The spikes that occur with intervals of 100 iterations are
caused by densification, which is the splitting and cloning of Gaus-
sians during 3DGS [5].

3DGS  3DGSw/Depth

S51M 0.764 0.743
PSMR 2251 21.52
LPIPS 0.345 0.377

Figure 9: The average SSIM, PSNR, and LPIPS on 96 Gaussian
Splats trained using the original 3DGS and 96 that include a depth
factor.

by, which prevented the RGB-D cameras from gaining a lot
of depth data due to the pitfalls of stereo vision (Figure 5).

Scenes that are decently covered by the camera positions
benefit greatly from the additional depth-supervision. Fig-
ure 12 is of high quality with 3DGS and depth-supervision
reduced the semi-transparent floating artifacts. Especially
outdoor scenes such as in figures 13 and 14 seem to ben-
efit, which might be caused by the more extreme differ-
ence in depth compared to indoor scenes. 3DGSw/Depth re-
moved several floating Gaussians in figure 14 and the depth-
supervision improved figure 13 from near-perfect to perfect
by removing black Gaussians that were floating in the sky.

In some cases, 3DGSw/Depth had a negative impact on the
scene. This was caused by a mismatch between the RGB and
depth data in those particular models, resulting in slightly dif-
ferent camera positions. In figure 15, the house in the distance
was pulled closer to the cameras because of this mismatch.
Figure 16 shows the incorrect depth loss map that resulted
from a mismatched ground truth and render.



Figure 10: An indoor scene with mediocre camera coverage contains slightly less floating Gaussians when trained according to
3DGSw/Depth. Redwood scan 1312 [3], 3DGS on the left and 3DGSw/Depth on the right.

Figure 11: An indoor scene with bad camera coverage contains slightly less floating Gaussians when trained according to 3DGSw/Depth.
Redwood scan 1313 [3], 3DGS on the left and 3DGSw/Depth on the right.

Figure 12: An indoor scene with good camera coverage contains slightly less floating Gaussians when trained according to 3DGSw/Depth.
Redwood scan 1325 [3], 3DGS on the left and 3DGSw/Depth on the right.



Figure 13: An outdoor scene with good camera coverage contains few floating Gaussians with 3DGS but no floating Gaussians when trained
according to 3DGSw/Depth. Redwood scan 2159 [3], 3DGS on the left and 3DGSw/Depth on the right.

Figure 14: An outdoor scene trained with 3DGSw/Depth contains less floating Gaussians than a model trained with 3DGS. Redwood scan
6380 [3], 3DGS on the left and 3DGSw/Depth on the right.

Figure 15: An outdoor scene with mediocre camera coverage is decent when trained with 3DGS but almost unrecognizable when trained with
3DGSw/Depth. Redwood scan 2172 [3], 3DGS on the left and 3DGSw/Depth on the right.



Figure 16: The RGB image and depth map were shot from slightly different camera positions, resulting in a high depth loss. From left to
right: The ground truth depth, the rendered depth, and the depth loss map.

5 Responsible Research

To make this research reproducible, the experimental setup
has been described in great detail. The paper describes the
exact object scans that were used, together with a reference
to the dataset. The steps taken to preprocess the data and
train the Gaussian Splats are exhaustively described, together
with the commands used, so that the reader will be able to
reproduce every step exactly.

Furthermore, this paper has been carefully written to min-
imize the bias. For example, results that did not align with
the rest of the results were not just left out. Instead, these
results were prompts to rethink and explain the limitations,
such as can be seen in the text regarding figure 9. When one
of the models showed how 3DGSw/Depth performed worse
than 3DGS (Figure 15), this was not left out but used as an
opportunity for further research to build upon.

This research has been made verifiable by providing ac-
cess to data such as the trained Gaussian Splats, which allows
anyone to move around in the models and verify the correct-
ness of the renders used in this paper, as well as check that
the used models accurately represent the various other mod-
els. Since the data is several gigabytes, they are too big to
be hosted indefinitely. As such, they are stored locally and
available upon request. To accommodate for this, my email
has been provided on the title page of this paper.

6 Conclusion and Discussion

6.1 Conclusion

This research investigated how additional depth information
from RGB-D cameras can be exploited to enhance 3DGS and
found that incorporating depth data significantly enhances the
model performance by reducing overfitting artifacts. This
was done by rendering depth maps from the Gaussian Splat
during the training process, comparing this render with the
ground truth from the RGB-D camera, and factoring in this
dissimilarity as a loss term for the gradient descent procedure
that Gaussian Splats are trained with. The results showed
that this technique drastically reduces the depth loss without
substantially increasing the loss on the RGB images, indicat-
ing that these function complement each other. Furthermore,
this research provided a visual comparison of renders from
Gaussian Splats that were trained with and without depth-
supervision that showed how depth-supervision reduces float-

ing artifacts, especially in outdoor scenes. However, depth-
supervision could have a big negative impact on 3DGS when
the provided depth data is incorrect or does not align with the
RGB images.

6.2 Limitations

While depth-supervision does seem to be able to reduce
overfitting artifacts in Gaussian splats, there are limitations.
Firstly, this research provides a qualitative comparison, which
might be subjective and might not generalize well. Secondly,
the dataset used in this paper consists of object scans which
are RGBD videos shot while moving around some object.
Object scans are just one of the use cases of 3DGS, which
makes the research hard to generalize to different kinds of
scenes. One of the bigger limitations was the lack of diver-
sity in camera positions, making it hard to split the data into
a training set and test set such that the level of overfitting
could be measured. This caused lower similarity scores for
3DGSw/Depth even though the visual analysis showed less
overfitting.

6.3 Future Research

There are numerous ways in which this research could be
expanded. This research showed that depth data and RGB
data could negatively impact a Gaussian Splat when they
are slightly misaligned. Further research could work on this
problem by using COLMAP to calculate separate camera po-
sitions for the RGB and the depth data, in order to evaluate
the depth and RGB renders in the Gaussian Splat from their
own positions. Additionally, the system presented in this re-
search could be evaluated more thoroughly by using datasets
with diverse camera positions. This would allow more inde-
pendence between the training and test set, so that an accurate
quantitative review of both systems can be presented.
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