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Abstract: In the last two decades, the use of multibeam echosounders has been growing for 

seafloor mapping and characterization. The former uses bathymetry data whereas the latter 

makes use of backscatter data. The use of backscatter data has been the subject of intensive 

research to gain insight into seafloor composition using either empirical or model-based 

methods. Model-based methods employ the available physical models for predicting the 

backscatter strength and determine the seafloor geoacoustic parameters in an inversion 

algorithm using optimization methods. These methods allow for direct coupling between the 

backscatter curve and sediment characteristics. But the methods usually suffer from a 

shortcoming associated to uncalibrated sonars, which is referred to as calibration curve. 

Grab samples at reference areas are required to estimate the calibration curve. A question 

may arise as to whether, or to what extent, the calibration curve can be estimated without 

grab sampling. Knowing that the calibration curve is an unknown function of incident angle, 

in principle, one can approximate it using the available estimation and optimization theories. 

This is elaborated in this paper and its opportunities and challenges will be addressed. The 

potential benefit is twofold. 1) The huge amount of MBES backscatter currently available in 

many hydrographic organizations can directly be used for seafloor characterization. 2) The 

available multiple-frequency MBESs can further improve the performance of the inversion 

process. There are also challenges to be addressed. 1) Estimation of the calibration curve is 

an unstable process because it is merely based on observed backscatter data without using 

grab samples. 2) The physical models, and component parts thereof, are not usually well-

behaved functions, possibly due to their discontinuities or discontinuity of their derivatives. 

These issues will be elaborated in this paper. 

Keywords: Multibeam echosounder (MBES), Backscatter data, Angular calibration curve 

(ACC), Sediment mean grain size. 

1. INTRODUCTION 

Multibeam echosounders (MBESs) data have been intensively used in many marine 

research problems over the last decades. Two kinds of information are widely provided by an 

MBES: bathymetry and backscatter data. MBES-derived bathymetric data are used to map the 

topographic features of the seafloor for a wide range of applications such as maintaining safe 

navigation, off-shore construction and studying seafloor structure and morphology. 

Information on the seafloor composition can mainly be obtained from the backscatter data. 

The use of MBES backscatter data is prone to a few sources of fluctuations and uncertainties. 

They can be considered as deterministic effects, to be compensated for in a functional model. 

Unmodelled effects such as noise are to be taken into consideration in the stochastic model. 



Although the stochastic nature of backscatter data can be an interesting research field by its 

own, the focus of this study is on all deterministic effects. We therefore reduce the backscatter 

fluctuations due to noise by an averaging procedure. The deterministic fluctuation of 

backscatter data, showing an angular dependence, is a function of seafloor sediment type, 

acoustic signal frequency, and calibration of the MBES. This is further investigated in the 

present study. 

There are methods widely used to characterize seafloor using the backscatter data. The 

methods can be classified into two main categories as ‘empirical methods’ and ‘model-based 

methods’. The model-based methods use available physical models and characterize the 

seafloor by maximizing the match between modelled and observed backscatter signal. These 

methods optimize an objective function for seafloor type or parameters indicative for seafloor 

type. These methods allow for direct coupling between the backscatter data and sediment 

characteristics if the MBES sensitivity is known. This is however not usually the case, 

indicating that the correction on the backscatter curve (backscatter as a function of angle) is to 

be estimated prior to the optimization process [1,2]. The empirical methods make use of a few 

statistical features extracted from the data, possibly after dividing the area/data into small 

regions/groups. The principal component analysis (PCA), linked with clustering algorithms—

k-means for instance—can be used to classify backscatter data [3,4]. The clustering 

algorithms aim at partitioning observations into a few clusters in which each observation 

belongs to one cluster satisfying some pre-defined criteria. As a result, the outcome of 

clustering algorithms is a qualitative comparative description of the seafloor sediment 

distribution (e.g. finer, fine, coarse, and coarser). The advantage of the empirical methods is 

their ease of implementation and use. The complication is that ground truth is usually required 

to associate the classification results to sediment physical parameters such as mean grain size. 

This contribution considers the model-based seafloor characterization methods. We aim at 

determining seafloor parameters based on the available physical model interrelating 

backscatter data with sediment geoacoustic parameters. Among such models, the model 

suggested by Jackson et al. [5] is frequently used in geoacoustic inversion algorithms. This 

model states that the total backscatter strength is a combination of the interface roughness 

scattering and volume scattering. Such a model-based method uses the backscatter data at the 

entire angular range, known as angular response curve (ARC). There is a complication that 

the observed backscatter curve, as a function of angle, is not always calibrated. Therefore the 

angular correction curve (ACC) is to be applied to the received backscatter. The ACC is 

usually determined by the calibration of the MBES in flat areas, having homogenous sediment 

types and known grain sizes values. This is achieved through the application of the angular 

range analysis (ARA) to the observed backscatter data [2]. This contribution attempts to avoid 

grab samples when estimating the ACC.  

The above methods thus require grab samples to characterize sediment types. We elaborate 

on characterizing the seafloor without grab samples. Having the available physics-based 

models, one can predict the backscatter data for different sediment types, frequencies and 

incident angles. Given the frequency of the multibeam system, the angular response curve is 

affected by two main factors: 1) the sediment type, 2) the ACC as a function of incident 

angle. To estimate the calibration curve without grab sampling, we will employ the available 

advanced estimation and optimization methods. We propose a method to approximate the 

calibration curve of MBES by employing high-order polynomials as a function of incident 

angle. Having the ACC available, an inversion procedure can be implemented to estimate the 

geoacoustic parameters of the entire survey area. 

The remainder of this paper is structured as follows. Section 2 proposes an algorithm to 

estimate the calibration curve of the sonar system. This section will then apply the method to 

a MBES data set collected in the Brown Bank area of the North Sea in 2017. Section 3 

provides some opportunities and challenges of the proposed algorithm. The conclusions are 

presented in Section 4. 



2. METHODOLOGY AND RESULTS 

2.1 Methodology   

This section presents our algorithm for estimating the sonar calibration curve. In many 

engineering problems, fitting a curve in one-dimensional (1D) space to a set of randomly 

scattered data points is a commonly encountered problem. The calibration curve is an 

unknown function of sonar beam angle, which is to be estimated using only the backscatter 

data, without grab sampling. Having an irregular data set, one can use an approximating 

function to obtain the function values at specific intermediate points. When the data are 

contaminated with random noise—backscatter data for instance—approximation provides 

more accurate results than interpolation. The approximation can be accomplished by using 

high-order polynomial functions. A more elegant alternative, to be considered for future 

research, is to use a spline function consisting of piecewise low-order polynomial segments 

connected together at known knots under some continuity conditions. 

We hypothesize that the calibration curve of the sonar system is a function of signal 

frequency and grazing angle. The difference between the observed (𝐵𝑆𝑜) and modeled 

(𝐵𝑆𝑚) backscatter data is considered to be the calibration curve. One then has 
𝐶(𝑓, 𝜃) = 𝐵𝑆𝑜(𝑓, 𝜃, 𝐴𝐶) − 𝐵𝑆𝑚(𝑓, 𝜃, 𝑀𝑧 , 𝑤2, 𝜎2) where 𝑓 is the signal frequency, 𝜃 is the 

incident angle, 𝐴𝐶 is the acoustic class number, see Ref. [6], and 𝑀𝑧, 𝑤2 and 𝜎2 are the 

sediment mean grain size, spectral strength, and volume scattering parameter, respectively [7]. 

For a given frequency 𝑓, the above equation simplifies to 

 𝐶(𝜃) = 𝐵𝑆𝑜(𝜃, 𝐴𝐶) − 𝐵𝑆𝑚(𝜃, 𝑀𝑧 , 𝑤2, 𝜎2) (1) 

This is the basis model considered to estimate the calibration curve. As a function of angular 

range, a high-order polynomial is employed  

 𝐶(𝜃) = 𝑎0 + 𝑎1𝜃 + 𝑎2𝜃2 + ⋯ + 𝑎𝑝𝜃𝑝 (2) 

Choosing an appropriate value for 𝑝 is a challenging problem. Too small values can lead to 

under-parameterization and hence not capturing all variations along the angular range. Too 

large values can lead to the problem of instability and high oscillations of the approximating 

function, known as Runge's phenomenon [8]. The use of spline functions can resolve the 

above two problems. 

The polynomial coefficients 𝑎0, … , 𝑎𝑝 in Eq. (2) are unknown. To estimate them, one 

requires the backscatter data at the entire angular range, say 𝜃𝑗 = −65, … ,65 (𝑗 = 1, … , m), 

with m the number of beam angles at which the backscatter data are observed. This will then 

make a linear model 𝑦 = 𝐴𝑥 + 𝑒, where 𝑦 is an m-vector of observations, 𝐴 is the m × (n =
p + 1) design matrix, and 𝑒 is an m-vector of observation errors. At a specific incident angle, 

𝜃𝑗 , the j
th

 entry of 𝑦 is 𝑦𝑗 = 𝐵𝑆𝑜(𝜃𝑗 , 𝐴𝐶) − 𝐵𝑆𝑚(𝜃𝑗 , 𝑀𝑧 , 𝑤2, 𝜎2), and its corresponding row of 

the design matrix is 𝐴𝑗 = [1, 𝜃𝑗 , 𝜃𝑗
2, … , 𝜃𝑗

𝑝]. In principle, when the number of observations m 

is larger than the number of unknown parameters n (i.e., m > n, having redundancy in the 

linear model), one can use the least squares method to estimate the coefficients of the 

polynomial. There are however two complications regarding the implementation of the above 

problem. The details are as follows:  

(1) The observed 𝐵𝑆𝑜 is directly available, while the modeled 𝐵𝑆𝑚 is a function of the 

unknowns 𝑀𝑧 , 𝑤2 and 𝜎2. One way out of this dilemma is to use the backscatter data at grab 

sample positions at which 𝑀𝑧 (and thereby 𝑤2 and 𝜎2) are known (see [9]). We however 

propose to estimate the three geoacoustic parameters along with the polynomial coefficients 

in an optimization method—differential evolution (DE) algorithm for example [10].  

(2) So far we assumed, the observation vector 𝑦 consists of one backscatter curve relating to 

one acoustic class: 𝐵𝑆𝑜(𝜃, 𝐴𝐶). This is however not sufficient because 1D data (even with 

http://inimino.org/wiki/Runge%27s_phenomenon


arbitrary values for 𝑀𝑧 , 𝑤2 and 𝜎2) can be captured with a high-order polynomial. This 

indicates that the estimated calibration curve cannot be stable, when dealing with only one 

acoustic class. To ensure the stability of the results, backscatter curves for more than one 

acoustic class are required. The number of acoustic classes can thus ensure the redundancy 

and hence stability of the estimation of the calibration curve. Therefore the observation vector 

𝑦 should take into consideration the backscatter curve of all identified acoustic classes, i.e.  

𝐵𝑆𝑜(𝜃𝑗 , 𝐴𝐶𝑖), 𝑖 = 1, … , 𝐼, where 𝐼 is the number of ACs [6]. This accordingly allows the 

geoacoustic parameters 𝑀𝑧
𝑖 ,  𝑤2

𝑖  and 𝜎2
𝑖 , 𝑖 = 1, … , 𝐼 to vary among different acoustic classes. 

After estimating the calibration curve, the method proposed by Ref. [9] is used to estimate 

the three geoacoustic parameters for the entire area. 

2.2 Results 

The Brown Bank, located in the North Sea, was surveyed using the Kongsberg EM 302 

MBES system. The survey was conducted by the Royal Netherlands Institute for Sea 

Research (NIOZ) vessel, the Pelagia, from Oct. 27 to Nov. 03, 2017. The settings of the 

MBES were as follows: Central frequency of 30 kHz, Beam opening angles of 2° and 1° in 

the across and along track directions, respectively, Pulse length of 750 µs. The beam coverage 

of 432 beams was set to equidistant. A swath opening angle of 130° was used, with port and 

starboard coverage both being 65°.  

The proposed algorithm was implemented to estimate the calibration curve. Prior to the 

optimization process, we implemented the Bayesian method, Ref. [6], to identify number of 

acoustic classes. Four acoustic classes were identified. Figure 1 shows the Bayesian acoustic 

classification results of the survey area, with some grab samples as ground truth. Lower 

acoustic class number (e.g. class no. 1) corresponds to lower backscatter value, whereas 

higher class (e.g. class no. 4) corresponds to higher backscatter value. The four classes make 

in general four backscatter curves, each having three unknown geoacoustic parameters (in 

total 12), but only one set of common coefficients for the calibration curve in Eq. (2) for 

which we set 𝑝 = 10. This optimization process is implemented using the differential 

evolution (DE) method, see Ref. [10]. The search is performed to simultaneously estimate the 

12 geoacoustic parameters along with the coefficients of the 10-degree polynomial in the 

optimization method.  

The optimization process of estimating the calibration curve was repeated over 100 

independent runs. Each run will then give the polynomial coefficients in Eq. (2). The results 

are presented in Fig. 2. There are some variations, among the 100 runs, when estimating the 

calibration curves. These variations could be associated to various sources of uncertainty 

among which sampling bias is the main contributor. Such a bias is averaged out through 

averaging over the 100 independent runs. The mean curve over all 100 runs is thus used as the 

backscatter curve correction of the sonar system for the subsequent inversion process using 

the DE optimization method.   

After estimating the calibration curve, the observed backscatter curves of the entire area 

were used to perform the inversion. Three geoacoustic parameters 𝑀𝑧 , 𝑤2 and 𝜎2 were 

searched for using the DE optimization method. The parameters were constrained as −1 ≤
𝑀𝑧 ≤ 9, 0 ≤ 𝑤2 ≤ 0.02 and 0.00001 ≤ 𝜎2 ≤ 0.02. Figure 3 shows the inverted values of 𝑤2 

and 𝜎2 versus those inverted for 𝑀𝑧. As a function of 𝑀𝑧, the range of variations of 𝑤2 and 𝜎2 

differs from the empirical model predictions proposed by APL-UW model [7]. The reported 

relations with 𝑀𝑧 are known to be rather weak as there is a considerable range of variations in 

these two parameters and hence they are not much correlated with 𝑀𝑧 [7]. This further 

confirms that the optimization is to be performed by at least the three parameters 𝑀𝑧, 𝑤2 and 

𝜎2. The parameters 𝑤2 and 𝜎2 can provide further insight into seafloor structure and sediment 

composition, respectively. This is the subject of further research in the future.  

 



 

Fig. 1. Bayesian classification map along with grab samples based on Folk scheme. Four acoustic 

classes ranging from lowest backscatters (green) to highest values (red), figure from Koop et al. 

(2019). 

 

 
Fig. 2. Calibration curve expressed as 10-degree polynomial in Eq. (2) obtained for 100 independent 

runs (green solid lines) along with their average curve (blue dashed line). 

3. OPPORTUNITIES AND CHALLENGES  

The use of the proposed method can have a few potential benefits of which we point out two 

major issues. Seafloor characterization using MBES backscatter data usually requires grab 

samples to estimate the calibration curve. This can be avoided if the proposed algorithm is 

applied to MBES data for seafloor characterization. The huge amount of MBES backscatter 

currently available in many hydrographic organizations can directly be used for seafloor 

characterization. Further, the performance of the proposed algorithm can be improved if 

multiple-frequency MBES data are available. This can open new research areas in this field. 

In Refs. [7] and [11], empirical representations of geoacoustical parameters in terms of the 

mean grain size 𝑀𝑧 have been offered. They empirically relate 𝑀𝑧 to the geoacoustical 

characteristics of the upper few centimetres of the sediments. There are specific empirical 

polynomial models that relate ratio of sediment mass density to water mass density (𝜌), ratio 

of sediment sound speed to water sound speed (𝜈), sediment sound speed attenuation 

coefficient as a contributor to loss parameter 𝛿 (i.e. 𝛼2/𝑓). Although the expressions for these 

parameters are continuous over the entire mean grain size ranging from 𝑀𝑧 = −1 to 𝑀𝑧 = 9, 

their derivative are not continuous in the entire domain of definition. 



A differentiable function is the one whose derivative exists at each point in its domain of 

definition 𝑀𝑧 ∈ [−1, 9]. The graph of the empirical representation of the geoacoustical 

parameters shows sharp corners (see later Fig. 4), indicating that they are not differentiable in 

their entire domain. Having a smooth and differentiable function makes the subsequent 

optimization methods more stable and efficient when implementing geoacoustic inversion 

algorithms. Some of the optimization methods, based on iterative algorithms, require not only 

evaluation of the function values but also their higher-order derivatives. This study makes the 

bridge for implementing new optimization methods.    

To further highlight the importance of a smooth function in the optimization process, we 

further investigate some of the inverted parameters 𝑤2 and 𝜎2 versus estimated 𝑀𝑧 (Fig. 3). It 

is observed that a kind of discontinuity exists in the estimated values for both parameters 𝑤2 

and 𝜎2 at 𝑀𝑧 = 1. A similar observation has been also reported by Ref. [9] at 𝑀𝑧 = 5.3 for 

MBES data at higher frequency, i.e. f = 300 kHz. These kinds of discontinuities or bias in the 

estimates of the inverted parameters are due to the empirical relations expressing ρ and ν as a 

function of 𝑀𝑧. We observe that both ρ and ν have sharp corners, indicating a sudden change 

in their rates both at 𝑀𝑧 = 1 and 𝑀𝑧 = 5.3 (see Fig. 4). An approximating function using the 

cubic spline theory handles this problem. 

We now present our proposal to make the above empirical formulas differentiable up to 

and including the second order. This is achieved based on an approximation of the above 

empirical representations using the cubic spline theory. Such splines consist of a series of 

piecewise third-order polynomial connected to each other at some intermediate points, known 

as knots. The consecutive pieces are joined together at the knots such that the first and second 

derivatives of the fitted curves are also continuous at these points. The method used is based 

on the least squares cubic spline approximation [12]. 

For each of the above parameters (i.e. 𝜌, 𝜈, 𝛼2/𝑓 and 𝑤2) a separate spline function is used. 

Each spline consists of a few cubic polynomials of the form 𝑓𝑖(𝑀𝑧 ) = 𝑎0𝑖 + 𝑎1𝑖𝑀𝑧 +
𝑎2𝑖𝑀𝑧

2 + 𝑎3𝑖𝑀𝑧
3, connected to each other. The coefficients 𝑎𝑗𝑖 , 𝑗 = 0,1,2,3 of these third-order 

polynomials are presented in Table 1. The final spline function, consisting of all polynomials 

connected to each other, is presented in Fig. 4, for each of the above parameters. They closely 

follow their original representations, but now having continuous first and second order 

derivatives in their domain of definition 𝑀𝑧 ∈ [−1, 9]. 

 
Fig. 3. Inverted spectral strength 𝑤2 (top) and volume scattering parameter 𝜎2 (bottom) versus 

estimated mean grain size 𝑀𝑧 



Table 1. Polynomial coefficients of spline function for four geoacoustic parameters 𝜌, 𝜈, 𝛼2/𝑓 and 𝑤2: 

𝑓𝑖(𝑀𝑧 ) = 𝑎0𝑖 + 𝑎1𝑖𝑀𝑧 + 𝑎2𝑖𝑀𝑧
2 + 𝑎3𝑖𝑀𝑧

3, connected to each other at some intermediate points  

Parameter i 𝑴𝒛 range 𝒂𝟎𝒊 𝒂𝟏𝒊 𝒂𝟐𝒊 𝒂𝟑𝒊 

𝝆 

1 [-1, 1] 2.363149906 -0.201790117 -0.056492156 0.016180867 
2 [1, 2.5] 1.794316816 1.110551799 -0.974676718 0.190856603 
3 [2.5, 5.3] 1.995533627 -0.224930836 -0.002874679 0.002935133 
4 [5.3, 9] 1.234233881 -0.020216334 0.001181053 -4.29060E-06 

𝝂 

1 [-1, 1] 1.285222133 -0.057546455 -0.005178733 0.000628855 
2 [1, 2.5] 1.244269004 0.038686795 -0.074785846 0.014955847 
3 [2.5, 5.3] 1.196631647 -0.001627891 -0.019668166 0.002407916 
4 [5.3, 9] 1.051173569 -0.013612915 0.000389345 2.71798E-05 

𝜶𝟐/𝒇 

1 [-1, 0] 0.455599999 2.07592E-09 1.43323E-08 1.26182E-08 
2 [0, 2.6] 0.455599999 2.07593E-09 0.012262365 -0.000966864 
3 [2.6, 4.3] 2.786522897 -2.265631606 0.720622671 -0.070880176 
4 [4.3, 6] -27.66322511 17.3075376 -3.442709462 0.221737223 
5 [6, 9] 0.834517646 -0.174873566 0.00994903 -1.73210E-05 

𝒘𝟐 
1 [-1, 2] 0.008933068 -0.003704703 0.000364354 6.46530E-05 
2 [2, 5] 0.006238244 -0.001091583 -0.000227648 4.42271E-05 
3 [5, 9] 0.001050034 -0.000123598 7.74266E-06 -6.48982E-08 

 

 

Fig. 4. Empirical representations of four geoacoustical parameters, Ref. [6], along with their best 

approximation using spline functions; ratio 𝜌 of sediment mass density to water mass density (top-

left), ratio 𝜈 of sediment sound speed to water sound speed (top-right), sediment sound speed 

attenuation coefficient 𝛼2/𝑓 (bottom-left), and spectral strength (bottom-right). 

 

  

CONCLUSIONS  

Model-based methods were employed to estimate seafloor geoacoustic parameters in an 

inversion algorithm using an optimization method. The model-based methods usually suffer 

from a shortcoming associated to uncalibrated sonars. Grab samples at reference areas are 

usually required to estimate the calibration curve. This study presented an algorithm to 



estimate the calibration curve without grab sampling. Knowing that the calibration curve is an 

unknown function of incident angle, in principle, one can approximate it using the available 

estimation and optimization theories. The method was successfully applied to the MBES 

backscatter data collected at the North Sea. The potential benefit of the proposed method is 

twofold. A large amount of MBES backscatter currently available in many hydrographic 

organizations can directly be used for seafloor characterization. The available multiple-

frequency MBESs can further improve the performance of the inversion process. We also 

highlighted a few challenges. The calibration curve estimation is an unstable process when 

there are no grab samples or reference areas. Also, the available empirical physical models are 

not usually well-behaved functions, possibly due to their discontinuities or discontinuity of 

their derivatives. We addressed this issue by approximating them using cubic spline functions. 
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