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ABSTRACT

A crosslinked polymer based solid electrolyte prototype material –poly(propylene glycol) diacrylate–
is studied using the reactive molecular dynamics force field ReaxFF. The focus of the study is the evalua-
tion of the effects of equilibration and added plasticizer (ethylene carbonate) or anion (PF−

6 ) components
on Li ion transport properties in the solid electrolyte. The study includes initial evaluation of the force
field, including bond dissociation characteristics, relevant for material failure, and elastic properties at
room temperature, relevant for the structural application purpose.

All considered systems indicate enhancement of Li ion diffusivity with respect to the 1 atm equili-
brated system without additives/anions. Based on Li-O radial distribution function and integral radial
distribution function comparisons, this is attributed to differences in Li solvation structure and related
plastification, complexation and solvent exchange mechanisms.

1 INTRODUCTION

Following recent [1–5] technological developments, structural batteries have attracted attention as a
potential multifunctional composite material [6]. As a further development, a three-dimensional battery
architecture for structural applications, based on earlier generic concepts [7, 8], has been proposed [3].
The architecture consists in the integration of both electrode materials into an interpenetrating mono-
lith structure using a thin solid electrolyte layer as the separator. The latter element offers a distinct
advantage over conventional laminate structural battery prototypes due to significant reduction of ionic
transport distance in the solid electrolyte, which is known to have low ionic conductivity, as compared
to liquid electrolytes in conventional Li ion batteries [4]. Accordingly, a need has arisen for computa-
tionally analyzing and improving the properties of potential battery component materials and composite
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structures made thereof. As a result, a number of studies have focused on polymer electrolytes [9–18],
considering Li ion transport mechanisms and effects of plasticizers among others. In this paper, the
results of a molecular dynamics (MD) analysis of a prototype solid electrolyte derived material [19]
–poly(propylene glycol) diacrylate (PPGDA)– will be presented. This study aims to gain an atomistic
level insight of the macroscopic mechanical end electrical properties of the material and the correlations
between them.

2 METHOD

2.1 Structures

Crosslinked and noncrosslinked PPGDA polymer structures (Figure 1a) were created using Molden
[20], Packmol [21] and LAMMPS [22, 23]. An orthogonal unit cell of 520 atoms with minimum av-
erage dimensions of 17.2 Å and 17.7 Å (at 1 atm), respectively, was used. Lithium atoms at a ratio of
Li:(PO + A) = 1:18.7 (PO = propylene oxide groups, A = acrylate groups) were added during a constant
volume MD simulation at a frequency of 0.004 fs−1 after equilibration at constant pressure (1 atm). The
unit cell was expanded 2×2×2 times (size effects considered in Section 3.2). The structures consisted
of a mixture of periodic poly(propylene glycol) (PPG) and single PPG unit PPGDA monomers. For
crosslinking, the carbon atoms of the methyl group branches of PPG were bonded with the terminal
double-bonded carbon atoms of the PPGDA oligomer acrylate groups. The latter crosslink formation
energy had been found to be lower than that of an alternative, backbone carbon bonded, crosslinking
(Table 1). Thereby, a periodic crosslinking level of 50% with respect to the total number of double bonds
in the system was obtained (Figure 1b).

For the evaluation of plasticizer and supporting electrolyte effects on Li ion diffusivity, crosslinked
systems with ethylene carbonate (EC) molecules, ratio Li:EC=1:4 (corresponding to 24 wt %), and LiPF6
salt anions, ratio Li:P=1:1, respectively, were studied along with a lithiated structure without additives
or anions.

2.2 Simulation settings

MD simulations were performed with LAMMPS [22, 23]. The empirical reactive force field ReaxFF
[24] with a parameter set for the elements C, O, H, F, Li, S [25] was used. By employing this force
field, LiPF6 diffusivities in EC solvent in good agreement with density functional theory (DFT) MD

(a) (b)

Figure 1: PPGDA oligomer structure (a) and crosslinked PPGDA polymer 520-atom unit cell
(C=red, H=blue, O=yellow) (b).
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results [26] have been obtained.

The structures were initially energy minimized using a conjugate gradient method (max. force con-
vergence criterion of 1e-6 kcal/mol/Å) combined with quadratic linesearch (max. displacement of 1e-2 Å
per outer iteration) [27]. Minimization was stopped if linesearch α = 0 was reached. For finite temper-
ature equilibration at 300K and 1 atm, the Nose-Hoover thermo/barostat was coupled with five chain
thermostats [27, 28] (LAMMPS equivalent temperature damping constant of 100 fs and pressure damp-
ing constants of 250 fs and 25 fs for crosslinked and noncrosslinked structures, respectively, were used)
to simulate the isothermal/isobaric (NPT) ensemble. Anisotropic pressure equilibration was applied. For
the subsequent diffusivity calculation simulations, the Nose-Hoover thermostat was applied to simulate
the canonical (NVT) ensemble. All MD simulations were performed using Verlet type time integra-
tion [29] with a 0.25 fs time step.

For validation against DFT results, ionic relaxation calculations were performed using the VASP sim-
ulation package [30,31]. For the calculations, the plane augmented wave (PAW) [32,33] implementation
was used with the generalized gradient approximation (GGA) PBE exchange-correlation functional [34],
DFT D3 van der Waals interaction correction method with Becke-Jonson damping [35] (for condensed
phase structures), 1e-4 eV convergence criterion for combined Davidson block iteration [36] / residual
minimization method direct inversion in the iterative subspace [37] electronic minimization, and a con-
jugate gradient energy convergence criterion of 1e-4 eV for the ionic relaxation [38]. For band-structure
energy calculations, the linear tetrahedron method with Bloechel corrections [39] and Gauss-like func-
tions [40] with the parameter σ = 0.05 [38] were used for multiple and less-than-five k-point grids,
respectively. For k-point grid definitions, the Monkhorst-Pack scheme [41] was used. 400/520 eV plane
wave basis set cutoffs were used for constant/variable cell volume calculations, respectively.

2.3 Analysis methods

The Li ion and P atom self-diffusivities, where P atoms represent PF−
6 ions, were calculated according

to the Einstein relation [42] using a least squares curve fit approach after constant volume equilibration. A
sliding window algorithm using 1000 sample trajectories from 25 fs simulations was adapted from [42].

The Young’s modulus of PPGDA at 0K was estimated according to the Reuss and Voigt theories [43],
based on compliance and elasticity constant values, respectively. The solvation characteristics of the
obtained structures were compared by calculating the Li-O and Li-P radial distribution functions (RDF)
g(r) and radial integrals of RDFs (IRDF) Int(g(r)), using a sampling bin size of 0.1 Å, averaged over
14 ps from 25 ps trajectories.

3 RESULTS AND DISCUSSION

3.1 Force field validation

The ReaxFF force field was evaluated by comparing the reaction energy for the assumed crosslink-
ing reaction energies (Table 1) and dissociation path energies of PPGDA monomers and PPG polymers
against DFT calculations (Figure 2). Macroscopic physical properties, including density and Young’s
modulus at room temperature were compared against experimental values (Table 2). Distinct differences
in dissociation barrier and reaction energies suggest that a weaker overall material response beyond elas-
ticity range (inelastic material response) could be predicted than expected according to the DFT results.
In contrast, a reasonable agreement was found for the oligomer weight extrapolation based Young’s mod-
ulus estimate. This was supported by the observed agreement with DFT dissociation energy curves within
the elastic response range (Figure 3a). Overestimation of material density, especially for noncrosslinked
polymer, was partially attributed to stronger nonbonded interaction predictions (Figure 3b).
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Figure 2: Comparison of DFT (a) and ReaxFF (b) PPGDA/PPG monomer/polymer
dissociation path energies.
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Figure 3: Comparison of DFT and ReaxFF dissociation path energies for two PPG units at dilute limit
density in strand direction (a) and at condensed phase density in strand normal direction (b).

structure ReaxFF DFT
branch crosslink 0.63 0.98
backbone crosslink 0.22 0.95/0.72a

a local minimum

Table 1: PPGDA crosslinking energies [eV].
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ReaxFF experiment
mass density [g/cm3]e 1.13-1.15a 1.01-1.03b [44]

1.065c [45]
glass transition temperature [◦C] −13 −43 [46]
Young’s modulus [MPa]e 90 99d [47]
a crosslinked/noncrosslinked
b noncrosslinked
c crosslinked
d exponential extrapolation of oligomer molecular weight
e room temperature

Table 2: PPGDA physical properties.
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Figure 4: PPGDA bulk modulus (K) (a) and Young’s modulus (E) (b) vs volume expansion
(V0 = 4912 Å3) at 0K.

3.2 Size and strain rate effects

Size effects were estimated by comparing the elastic material response at three expansion levels with
respect to the unit cell at 0K and at room temperature (300K). The 0K Young’s modulus estimate, cal-
culated as the mean of moduli that corresponded to 1e3 and 1e4 strain increments, indicates that size
convergence is reached at around two-three expansion levels (Figure 4). Size effects at room temperature
were evaluated only for the crosslinked system since the noncrosslinked system possessed no observ-
able elastic strength at the considered loading rates. Referring to the distribution of line fit residuals of
the Young’s modulus calculation for the crosslinked systems (Figure 5), it was observed that larger sys-
tems tend to yield higher minimum stiffness and reduced residuals, hence the largest minimum stiffness
was considered as the most accurate. Based on these, convergence was assumed to occur at three-four
expansion levels. For further study, the 2×2×2 expanded crosslinked system was used.

Strain rate effects were evaluated for the 2×2×2 expanded system by applying tensile deformation
rates of 30/3/0.3 Å/fs with respect to the system’s dimension parallel to the deformation direction –
these values correspond to the range of rates that were computationally feasible. The results indicate
no significant dependence on strain rates (Figure 6), which is considered as sufficient for validating the
obtained Young’s modulus comparison with experimental data (Table 2). The latter result is also in
agreement with predictions of dynamic moduli according to experimental results from dynamic bending
loading at high loading frequency limit [45].
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Figure 5: PPGDA Young’s modulus (E) and normalized line fit residual (Res) vs calculation reference
strain (engineering strain ε) for different unit cell expansions (V0 = 4912 Å3) at 300K.

3.3 Equilibration effects

The equilibration effects were estimated by comparing the crosslinked lithiated structures with and
without NPT equilibration after lithiation. The latter structure was uniformly scaled to the 1 atm equiv-
alent density (1.11 g/cm3); in application terms, this would approximate the system state during rapid
lithiation or high strain rate deformation. An order of magnitude difference in Li ion diffusivites was
observed (Table 3). Furthermore, it was observed that the first two coordination shells (designated by
the IRDF plateaus at 2.5 Å and 3.3 Å) for both structures are loosely similar (Figure 7). However, sig-
nificantly less transition states were observed for the NPT equilibrated structure, due to the close-to-zero
RDF value at approximately 3.3 Å, which is seen as indicative of more stable local solvation structure.
This is assumed to inhibit Li ion diffusion by migration along polymers and by solvent exchange, the
latter being considered significant for Li ion mobility in similar polymers without plasticizers [9, 10].
The structural differences may also explain the difference in potential energies of both structures, that of
the NPT equilibrated structure being approximately 3% lower.

3.4 Plasticizer and anion effects

The results in Table 3 indicate that for the system with EC plasticizer the Li ion diffusivity value
was significantly higher than for the same system without plasticizer. The difference is attributed to the
formation of higher coordinated first coordination shell (designated by the IRDF plateau at 2.5 Å) with
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Figure 6: Bezier interpolated PPGDA tensile stress (σ ) vs engineering strain (ε) for different strain
rates (1×= 30 Å/fs).
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Figure 7: Li-O RDFs and IRDFs for Li/PPGDA at 1.11 g/cm3 (1 atm –NPT equilibrated system,
scaled –NVT equilibrated scaled system).

solvent/additive/anion ρ [g/cm3] D [cm2/s]
PPGDA/-/- 1.11 6.89e-07a/ 5.30e-06b

PPGDA/-/PF−
6 1.16 7.95e-07

PPGDA/EC/- 1.16 3.37e-06
a 1 atm equilibrated system
b NVT equilibrated scaled system

Table 3: Li ion diffusivity comparison for different solvent systems.

a higher minimum Li-O distance (Figure 8). This was found to be in line with the findings that EC can
form stable solvation structures for Li in pure EC [26]. The latter, in combination with the preserved
low RDF value delimiting the second coordination shell at approximately 3.3 Å, suggests a reduction
of the probability of ion transport through solvent exchange [12, 13]. Subsequently, it was concluded
that the enhancement of diffusivity is achieved through reduced Li interaction with PPGDA O atoms and
complexation with EC molecules, in analogy with TFSI−/EC complexation studied in a poly(ethylene
oxide) (PEO) based electrolyte [14]. The latter assumption is supported by the similar value of carbonyl
oxygen based estimate of EC diffusivity (2.49e-06 cm2/s).

For the system with PF−
6 anions, we observe that the first coordination shell (designated by the IRDF

plateau at 2.5 Å) indicates a lower coordination than for the system without anions (Figure 9). Moreover,
both bonded and non-bonded Li-P coordinations are observed, which suggests that the observed small
increase in Li ion diffusivity (Table 3) is linked to interactions with PF−

6 ions and subsequent Li-O
coordination weakening, the low RDF value at 3.3 Å, which delimits the second coordination shell,
being preserved. Furthermore, both Li-P RDF based equilibrium distances were found to be similar to
the DFT MD results for LiPF6/EC liquid solutions [26]. Since the PF6− diffusivity (2.93e-07 cm2/s)
was found to be lower than that of Li (Table 3), the main Li ion transport mechanism was linked to PF−

6
facilitated solvent exchange.

4 CONCLUSIONS

The force field evaluation indicates good agreement with reference data for elastic properties of
PPGDA both at dilute limit and condensed phase densities. The differences that were found for bond
energies and dissociation barriers indicate potential improvement areas for the force field applications in
inelastic deformation simulations.

The study has provided insights into the role of equilibration and plasticizer or anion components
on Li ion transport properties in a solid electrolyte prototype material. As expected, the system with
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plasticizer additive, as well as the system under dynamic loading conditions, indicates a significant en-
hancement of Li ion diffusivity, whereas the system with anions indicates no significant change Li ion
diffusivity. The latter conclusions were made considering the expected ∼ 50% uncertainty in predicted
ion diffusivity values due to the simulation timescales of organic liquid electrolyte systems [26].

Based on Li-O RDF and IRDF comparison, the distinctions in diffusivity are attributed to differences
in Li solvation structure, complexation and additive facilitated or inhibited Li ion transport mechanisms,
including solvent exchange and diffusion along polymer chains.
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