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SUMMARY

Quantum computation encodes and operates on data in a radically dif-
ferent way than classical logic. This difference allows researchers in
nearly all applied sciences to explore how quantum-accelerated comput-
ing could enhance the efficiency of their most computationally demand-
ing tasks.

This thesis studies the introduction of quantum-accellerated computing
in structural mechanics, a field that traditionally leverages computational
techniques at both industrial and research scales. The scope is limited
to practical and mostly near-term quantum computing. Therefore, the
algorithms analyzed or proposed are evaluated for their runtime as end-
to-end routines and for their ability to run on near-term quantum devices.

Given the vastness of the application domain, the research was de-
veloped in three separate threads. The first is a review of quantum al-
gorithms applicable to partial differential equations (PDEs) in structural
mechanics. The second is an application of a variational quantum algo-
rithm for linear systems of equations to the discrete Poisson equation,
while the last studies how quantum machine learning, specifically quan-
tum kernel methods, discriminates damage-inducing loading states in a
composite plate with a cutout.

Each of the three parts reveals the potentials and limitations of practi-
cal quantum-accelerated computing. The PDE review questions the end-
to-end advantage of fault-tolerant quantum algorithms and highlights
the need to specialize near-term alternatives to problems in mechanics.
The work on the variational quantum linear solver emphasizes the ma-
trix decomposition bottleneck and proposes a method to factorize the
discrete Poisson equation matrix. Finally, the work on kernel methods
for damage identification shows how heuristically selected and trained
quantum kernels reach scores comparable to classical best-practice ker-
nels, but also hints at the fact that potential quantum advantage requires
more systematic kernel optimization and retaining performance when
scaling quantum systems beyond classical simulation.






SAMENVATTING

Quantumcomputing codeert en werkt met data op een radicaal andere
manier dan klassieke logica. Dit verschil stelt onderzoekers in bijna alle
toegepaste wetenschappen in staat om te onderzoeken hoe quantum-
accelerated computing de efficiéntie van hun meest computationeel veel-
eisende taken kan verbeteren.

Dit proefschrift bestudeert de introductie van quantum-accelerated com-
puting in structurele mechanica, een vakgebied dat traditioneel com-
putationele technieken op zowel industriéle als onderzoeksschaal benut.
De reikwijdte is beperkt tot praktische en voornamelijk op korte termijn
quantumcomputing. Daarom worden de geanalyseerde of voorgestelde
algoritmen geévalueerd op hun runtime als end-to-end routines en op
hun vermogen om op korte termijn quantumapparaten te draaien.

Gezien de omvang van het toepassingsgebied werd het onderzoek ont-
wikkeld in drie afzonderlijke threads. De eerste is een review van quantu-
malgoritmen die van toepassing zijn op partiéle differentiaalvergelijkin-
gen (PDE’s) in structurele mechanica. De tweede is een toepassing van
een variationeel kwantumalgoritme voor lineaire vergelijkingssystemen
op de discrete Poisson-vergelijking, terwijl de laatste onderzoekt hoe
kwantummachinelearning, met name kwantumkernelmethoden, schade-
inducerende laadtoestanden in een samengestelde plaat met een uitspa-
ring onderscheidt.

Elk van de drie onderwerpen onthult het potentieel en de beperkingen
van praktisch kwantumversneld computergebruik. De PDE-review stelt
het end-to-endvoordeel van fouttolerante kwantumalgoritmen ter dis-
cussie en benadrukt de noodzaak om alternatieven op korte termijn voor
problemen in de mechanica te specialiseren. Het werk aan de Variatio-
nal Quantum Linear Solver benadrukt de knelpunten van matrixontleding
en stelt een methode voor om de discrete Poisson-vergelijkingsmatrix te
factoriseren. Ten slotte laat het werk aan kernels voor schade-identificatie
zien hoe heuristisch geselecteerde en getrainde kwantumkernels scores
bereiken die vergelijkbaar zijn met klassieke best-practice kernels, maar
hint ook naar het feit dat potentieel kwantumvoordeel meer systemati-
sche kerneloptimalisatie en behoud van prestaties vereist bij het schalen
van kwantumsystemen voorbij klassieke simulatie.

Xi
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INTRODUCTION
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uantum computing promises to disrupt many scientific fields by
Qsolving problems in useful times that would be intractable with
today’s largest supercomputers. From the initial vision of simulating
molecules with controllable quantum systems [1], the applications
of quantum computing proliferated over the last three decades and
included data encryption, optimization, machine learning, and other
domains. In general, the idea of quantum-accellerated computing
came to be, for which computational sub-problems that are classically
challenging can be outsourced to a quantum computer that can solve
them efficiently.

Structural engineers have long been using accelerators to alleviate the
bottlenecks of their numerical pipelines. The most obvious example is
perhaps parallel computing, which splits the workload of nonsequential
tasks between multiple processors and speeds up tasks with relatively
low data transfer overhead. For example, many finite element codes
incorporate parallel linear solvers into their linear algebra libraries [2]
and with the recent introduction of neural networks for material and
structural modeling, graphics processing units (GPUs) also become
relevant to computational mechanics.

Therefore, it is not surprising that researchers in the field started look-
ing at quantum computers as a new and potentially better-performing
accellerator. The strongest appeal lies in those algorithms that can
exponentially improve the runtime of their classical counterparts. For
example, by solving large linear systems of an wing optimization
problem using the HHL algorithm [3], which is exponentially faster
than classical linear solvers, one might wish to speed up the overall
optimization process exponentially.

Regrettably, yet intriguingly, the situation is not as straightforward as
simply integrating a textbook quantum solver with existing industrial
software. In reality, there are caveats all the way down the computational
line. Even if a quantum algorithm offers a theoretical speed-up on
best practice classical solvers, is it also possible to prepare quantum
states and read out results also as efficiently? And if using hybrid
algorithms, more suitable for the technology readiness level (TRL) of
current near-term intermediate scale quantum (NISQ) devices [4], is the
advantage retained and to what extent? Finally, does hardware noise
completely pollute the computation when running the compiled program
on an actual quantum processing unit (QPU)?

These are fundamental questions that are under the spotlight of the
applied quantum computing community. The research reported here did
not aim to answer them in general or in any specific field. What this
research did was to critically explore some of the possible applications
of quantum computing to computational structural mechanics, while
keeping the above practical matters in mind.

The rest of this Introduction offers more details on what this research



1.1. Scientific background of the thesis 3

involves and looks into its objectives, significance, and limitations.
Section 1.1 gives concise background on the main concepts of the
remaining chapters. Section 1.2 summarizes the research problem and
Section 1.3 specifies the objectives and research questions. Section 1.4
explains the significance of this PhD work and Section 1.5 its limitations.
Finally, Section 1.6 outlines the structure of the rest of the dissertation.

Figure 1.1.: The technology-readiness level (TRL) of current quantum
computers is currently comparable to that of early starge
classical computers. As in the 1950s the units of
computations could be mechanical relays, vacuum tubes
and transistors, nowadays quantum computation happens
with (a) neutral atoms [5], (b) superconducting qubits [6],
(c) photons [7], (d) trapped ions [8] and more. There is
not a clear winner yet and whether only one or multiple
technologies will survive the race will be decided by matters
like scalability, noise level, and error correction options.

1.1. SCIENTIfiCc BACKGROUND OF THE THESIS

The main body of this manuscript describes the three main research
areas of this work. They are a review of quantum algorithms for partial
differential equations (PDEs) in structural mechanics, an algorithm to
solve the discretized Poisson equation using the variational quantum
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linear solver (VQLS) and an ultimate failure classification algorithm
based on classical and quantum kernels.

1.1.1. QUANTUM ALGORITHMS FOR PDES IN STRUCTURAL
MECHANICS

The mechanical deformation of solids and structures can be described
by means of partial differential equations. Some notorious linear models
are presented in every introductory course in structural mechanics.
For example, the linear elasticity equation describes the behaviour
of generic three dimensional solids undergoing small deformations.
Also, structural elements can be represented by differential equations,
such as the Euler-Bernoulli and Timoschenko models for thin and thick
beans and the Kirchhoff model and Reissner-Mindlin equations for plates
[9]. Nonlinear differential equations also describe many fundamental
phenomena in material and structural mechanics. Examples of this
are large deformation, hyperplasticity, plasticity, damage and contact
mechanics [10].

Because exact solutions only exist for a few textbook problems,
engineers mostly resort to techniques that deliver reliable approximate
solutions. Numerical methods such as finite elements, finite differences,
and finite volumes, originated decades ago. They have known
several algorithmic improvements and cleverly developed around new
technologies such as parallel processing. However, the need has always
existed to cut the computational costs of the solvers, in line with the
increasing modeling demands.

Many quantum algorithms seem to offer a breakthrough, since their
complexity can be exponentially lower than even current state-of-the-art
classical techniques. For example, inverting the stiffness matrix of a
finite element model with millions of degrees of freedom would require
either long execution times or high computing power for classical
machines, but would be almost instantaneous for a quantum computer
[3]. However, matrix inversion is only one part of the computation
and one should not think of solving a PDE end-to-end with a quantum
algorithm, but rather of having a quantum primitive in an otherwise
classical process. The total cost must then be computed from the point
of preparing the quantum states to that of measuring the quantities of
interest.

Even without considering the theoretical barriers, quantum computers
are not currently fault-tolerant machines and cannot yet implement
complexity-superior algorithms. However, as will be discussed in
Chapter 2, there are ways to solve PDEs with NISQ devices via hybrid
quantum-classical routines, which may still offer an advantage for
specific instances. Interesting strategies leverage circuit learning [11]
and quantum annealing [12], which is a form of analog quantum
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computing and provides the ability to solve different linear and nonlinear
equations. However, yet to be fully developed is the adaptation of these
near-term routines to specific application domains.

11.2. SOLVING THE POISSON 1D PROBLEM WITH A VARIATIONAL
QUANTUM LINEAR SOLVER

Numerical approximations of PDEs often result in one or multiple linear
systems of equations. In many interesting cases, these linear systems
are sparse, meaning that only a few degrees of freedom are coupled,
allowing for efficient classical and quantum methods. A prototypical
example is the Poisson equation, which is discretized to a matrix with
only one band of nonzero elements and to a tri-diagonal linear system
in one dimension.

Because quantum hardware immaturity does not allow one to suc-
cessfully run the logarithmic-time quantum linear solvers, a hybrid
quantum-classical solution was developed to better match the techno-
logical readiness of NISQ machines. The Variational Quantum Linear
Solver (VQLS) [13] maps the problem of solving the linear system into
that of finding the ground state of a Hamiltonian, which corresponds, up
to the solution vector’'s norm, to the original linear system’s solution.

VQLS was demonstrated on fabricated examples, where the linear
system’s matrix is built from a polynomial number of unitary operators.
Our intention was instead to deal with a mechanical problem (the 1D
Poisson problem) that was not built a priori for VQLS and deal with its
decomposition in unitary terms.

The main challenge with arbitrary matrices is to decompose them
into just a few operators. A straightforward decomposition uses what
is known as Pauli operators. However, it will be shown that the
Poisson equation decomposes in a number of Pauli operators that scales
exponentially in the number of qubits. Therefore, a major challenge of
applying VQLS to practical problems is to reduce as much as possible
the number of terms in the decomposition of the linear system’s matrix.

1.1.3. CLASSIFYING FAILURE STATES OF OPEN-HOLE COMPOSITE
PANELS USING CLASSICAL- AND QUANTUM-KERNEL BASED
SUPPORT VECTOR MACHINES

Machine learning is believed to be one of the disciplines that can
demonstrate quantum advantage in the NISQ era [14]. In fact, systems
with relatively few qubits can be a highly expressive map of classical
data [15] and achieve superior learning in tasks such as regression or
classification.

In addition to mapping data, quantum computers can also natively
calculate similarities or inner products between these mapped states
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[16]. The combination of these two features transforms even small
quantum circuits into effective kernels [17], and enables a form of
quantum machine learning (QML) that is potentially advantageous and
amenable to quantum hardware.

The last part of this research identifies a nontrivial binary classification
problem and compared classical and quantum kernel-based machine
learning models to solve it. More specifically, the task is to classify intact
and failed open hole composite specimens subject to two-dimensional
planar loading. Traditional approaches to solving this problem use either
semi-empirical formulas or finite-element models. The first ones are
generally used to predict quantities of interest, such as the stresses for
first ply failure. They are analytical predictors, but they make strong
assumptions on the failure modes involved and may need expensive
experimental campaigns to determine certain parameters. On the other
hand, finite-element models can capture all sort of damage modes and
the interaction between them, but at the cost of large computational
times.

In our approach, we rely on a dataset extracted from finite element
analyses, but only on an offline training phase. The labelled loading
states obtained are input into a Support Vector Machine (SVM) [18]
algorithm and kernel functions to determine the separating boundary
between different classes. The resulting surrogate classifier is then a
fast evaluator of loading states on an open-hole composite plate.

1.2. RESEARCH PROBLEM

Throughout the duration of this thesis, quantum computing received
increasing attention from different applied sciences communities. For
instance in fluid mechanics, both fault-tolerant and near-term quantum
algorithms were applied to prototypical examples in the field [19].
However, the literature at the intersection of quantum computation and
structural mechanics is more sporadic. Thus, this thesis aims to be one
of the first exploratory works of quantum computational mechanics.
Because differential equations are ubiquitous in mechanics, they are
a natural starting point for testing quantum computing methods. The
literature on PDE solving is consolidated in both quantum algorithms and
computational solid mechanics, but there is almost a void in between.
Therefore, there is a need to review solvers on one side and problems on
the other and critically assess the possibility, advantage, and limitations
of quantum-accellerated PDE solvers for solid mechanics applications.
A common ground to both mechanics and quantum computing
research is linear algebra and, in particular, solving linear systems
of equations. While there is no shortage of fault-tolerant quantum
linear solvers, near-term options are mostly limited to one variational
approach. The variational quantum linear solver cleverly reformulates
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the linear system problem into finding the ground state of a related
Hamiltonian. However, the decomposition of this Hamiltonian is non-
trivial. Even when dealing with the didascalic case of the discretized
1D Poisson equation, the scaling of the decomposition can become a
bottleneck. This makes it critical to find efficient decompositions to
PDE-derived linear systems, else any hope of computational advantage
of the variational linear solver is compromised.

Beyond differential equations and linear systems, quantum machine
learning (QML) is another gateway for short-term applications in
structural mechanics. There is already a consistent literature on
material modeling with data-based function approximators, but this is
mainly focused on neural networks [20]. On the other hand, quantum
computers are native kernel approximators [17], suggesting that QML
is easily integrated with kernel-based methods such as support vector
machines.

But how do we apply quantum machine learning to computational solid
mechanics? First, we evaluate the interest of a problem or see if it can
be expressed in a form that is amenable for kernel methods. Then there
is the issue of limited resources. High-dimensional inputs, such as image
data without compression cannot fit the quantum registers available
today, so the input must be either low-dimensional or compressed in
some way. Finally, there is no consensus on a default kernel function
that has good performance over a range of problems, contrary to
what happens with the Radial Basis Functions (RBF) kernel in classical
machine learning. Thus, many different embeddings must be explored
get the required expressivity compared to classical kernels with respect
to different classification metrics.

1.3. RESEACH AIM AND RESEARCH QUESTIONS

The overarching aim of this research is to identify and show potential
applications of quantum computing to structural mechanics and critically
evaluate them for advantage and near-term feasibility. The novelty
of the subject suggests against a more restricted aim and in favor of
exploratory rather than exploitative research.

That being said, based on the discussion in Section 1.1, we can
introduce the three main research questions of this thesis.

Which fault-tolerant and near-term quantum algorithms can
solve (parts of) which PDEs in structural mechanics? What can
be said about their speedup with respect to classical solvers?

Are decompositions of the one-dimensional Poisson matrix
that scales polynomially in the number of qubits?

Up to what accuracy can quantum-kernel based support vector
machines classify failed open-hole composite specimens,
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when trained on numerical simulations data? How does that
performance compare to state-of-the-art classical kernels?

1.4. SIGNIfiCANCE OF THE RESEARCH

This thesis helps practicioners and future researchers of applied
mechanics to determine the interest and applicability of quantum
algorithms in their domains.

On the one hand, it says something about the expectations that
mechanical engineering should have about both fully mature and
near-term quantum technology. By reading the review in the next
chapter, those approaching quantum computing from the computational
mechanics side get an idea of whether fault-tolerant quantum advantage
is in fact end-to-end for their problem or if it only speeds up the quantum
primitive. In the same way, the review helps formulating PDE-related
problems that are amenable for quantum computation, for instance by
favoring sparse input arrays rather than dense ones and by suggesting
against use cases that need to read out the full solution vector.

The bulk of the thesis concerns however near-term quantum compu-
tation, which is more tangible, but does not have guarantees about
runtimes and scaling with the problem’s dimension. The review
helps identifying the different hybrid solutions to PDE solving and
offers insights on their generality and possible pittfalls. One of the
approaches, the 1D Poisson equation solver via the VQLS algorithm
has a dedicated chapter, since it is illustrative of how a variational
quantum algorithm finds a lowerbound in its runtime when applied to
a simple classical problem. The same work suggests a solution and
talks about an even better approach proposed in literature [21]. The
utility of these workarounds is not just related to the specific case of the
1D Poisson equation, but to how to decompose non-trivial Hamiltonian
terms efficiently for implementation on quantum software programs and
potentially hardware.

This thesis also touches upon applied quantum machine learning.
Thanks to the fact that Hamiltonian encoding-based quantum em-
beddings are universal function approximators [17], QML allows to
experiment with hybrid quantum computing not just for toy problems,
but for interesting applications. Specifically, we solve the problem of
simulating the failure envelope of open-hole composite laminates given
the strain loads applied. The novelty of this approach is not only relative
to quantum computing; rather, it is probably the inaugural instance of
a surrogate (i.e., data-driven) failure criterion. Perhaps it will inspire
future work, that can even use data of mixed sources, experimental and
numerical to define failure envelopes of substructures or new materials.
From the perspective of applied quantum algorithms, it shows how to
integrate quantum kernels in a learning pipeline for material mechanics
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classification problems. There are not many other cases in the literature
that bring QML so close to real-world applications'. It can also be
added that failure envelope characterization may be a good candidate
for near-term implementation in quantum hardware. In fact, the input
feature vector is low-dimensional (at most nine components of the strain
tensor), which means that no feature reduction is needed and that
more quantum resources can be devoted to increase the feature map
expressivity [24].

1.5. LIMITATIONS OF THE RESEARCH

This research did not aim to make any general statement about whether
quantum computers are or ever will be advantageous to structural
mechanics. Nonetheless, this theme has consistently served as the
foundation of the work.

Critically reviewing PDE algorithms allowed us to translate known
limitations of near-term and fault-tolerant methods into a perspective
on structural mechanics. No definitive conclusions can be drawn about
the effectiveness of quantum PDE solvers universally, since research in
this area is still in its very early stages. Furthermore, there might have
been advances in the field since the review was conducted, which are
therefore not included in the analysis.

In solving the 1D Poisson problem with the VQLS method, we found a
new technique to decompose the Hamiltonian in less than half the terms
required by the Pauli basis. Although this new decomposition holds
for any number of points in the spatial grid, it does not extend to the
generic Poisson equation of N. A similar work conducted shortly after
our own discovered a more general decomposition with only logarithmic
scaling [21]. Furthermore, we provided numerical examples of solving
the 1D Poisson equation with VQLS and our new decomposition, but we
did not study the training part of the algorithm. Experimental evidence
of trainability, scaling with register size and depth of the ansatz circuit
is left for future work.

About the composite failure identification project, the numerical
findings do not claim any generality. They hold for the specific
specimen, input type, finite element analysis settings, sampling and
labeling criterion used. Some of the methods however are novel and
can be applied more generally. In particular, the idea of treating failure
identification as a binary classification problem can be used in other
data-based failure envelope characterization cases. Furthermore, the
radial sampling strategy we propose to sample the input space with
incremental-iterative analyses can also be applied to other tasks where
data is drawn from finite element simulations.

1Even though exceptions exist such as [22] and [23]
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1.6. THESIS OUTLINE

The remaining of the manuscript presents the three main works
of this thesis and the concluding remarks. Chapter 2 presents
the review of quantum algorithms for PDEs in structural mechanics.
Chapter 3 discusses how to solve the 1D Poisson problem via the
variational quantum linear solvers, while Chapter 4 deals with open hole
composite failure classification with classical and quantum kernel-based
support vector machines. Chapter 5 offers the final conclusions and
recommendations for future work.
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REVIEW OF QUANTUM
ALGORITHMS FOR PARTIAL
DIFFERENTIAL EQUATIONSIN
STRUCTURAL MECHANICS

Structural mechanics is commonly modeled by (systems of) partial
differential equations (PDEs). Except for very simple cases where
analytical solutions exist, the use of numerical methods is required to
find approximate solutions. However, for many problems of practical
interest, the computational cost of classical numerical solvers running on
classical, that is, silicon-based computer hardware, becomes prohibitive.

Quantum computing, though still in its infancy, holds the promise of
enabling a new generation of algorithms that can execute the most
cost-demanding parts of PDE solvers up to exponentially faster than
classical methods, at least theoretically. Also, increasing research
and availability of quantum computing hardware spurs the hope of
scientists and engineers to start using quantum computers for solving
PDE problems much faster than classically possible.

This work reviews the contributions that deal with the application of
quantum algorithms to solve PDEs in structural mechanics. The aim is
not only to discuss the theoretical possibility and extent of advantage
for a given PDE, boundary conditions and input/output to the solver, but
also to examine the hardware requirements of the methods proposed in
literature.

Parts of this chapter have been published in Frontiers in Mechanical Engineering 8,
914241 (2022) [1].
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tructural mechanics is often modeled by means of partial differential

equations (PDEs). However, it is only for a small set of simple
problems, domains and boundary condition that an analytical solution is
known. In all other cases, engineers must rely on numerical techniques
to obtain an approximate solution.

Given the importance of PDEs, research on convergence and accuracy
of numerical solvers has dominated in the past decades. Nevertheless,
the computational demand is still high whenever the domain is large
with respect to the physics’ scale or when nonlinearities require a high
level of detail of the numerical solution.

Potentially, quantum computing can revolutionize the field of numerical
computational mechanics, thanks to its promise of unprecedented
theoretical speed-up. For instance, the Harrow, Hassidim, Lloyd (HHL)
algorithm [2] can solve sparse linear systems exponentially faster than
any classical method. At a first glance, it may seem that HHL could
be applied to the discretized Poisson equation and exponentially reduce
the runtime to obtain the displacement field of a loaded structure.

As tantalizing as they sound, almost all promises of quantum
advantage are currently bound to theory and simulations and likely
will be for the next few decades. What has yet to catch up with the
algorithms is the hardware, which is still far from the technological
requirements for practical quantum advantage.

This limitation prompted a separate branch of research, which
abandoned the idea of proving quantum speed-up, but focused on
algorithms that take into account the limitations of current hardware.
These are mostly hybrid methods, that use a classical computer in
combination with a quantum one, assigned to solve classically hard
tasks. As with the theoretical speed-up algorithms, these hybrid
methods also found application in the field of numerical PDE solving.

Given the importance and richness of the field, this review wants to
be the first work to present and compare different quantum PDE solvers.
Specifically, this work is aimed at the applied mechanics community
and thus limits its focus to equations in structural mechanics. However,
it must be pointed out that the field of quantum algorithms for PDEs
spans many other branches of science, such as fluid mechanics [3-9],
finance [10], model discovery [11] and cosmology [12], which may also
benefit from specialized reviews.

This Chapter is structured as follows. Section 2.1 presents some
standard concepts of quantum computing and explains the quantum
algorithms at the root of PDE-solving. Section 2.3 reviews the literature
on quantum algorithms for linear PDEs, while Section 2.4 is devoted to
nonlinear PDEs. Finally, Section 2.5 provides concluding remarks and
discusses the possible future prospects of quantum computation applied
to structural problems.
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2.1. MAIN CONCEPTS OF QUANTUM PDE SOLVING

At the time of writing, almost no quantum algorithm applies to
all possible combinations of partial differential equations, boundary
conditions, discretizations, etc. However, one can trace out a generic
PDE-solving workflow, as in Figure 2.1. Here, it is important to notice
that quantum computation takes place only in the so-called quantum
primitive, i.e. an algorithm that acts on quantum states by means of
quantum operators. Also, the quantum primitive does not solve the PDE
alone, but rather its discrete form, which generally is the computational
bottleneck in classical logic.

Furthermore, in contrast to a classical algorithm, a quantum primitive
does not operate in the same environment in which the data is stored
and read-out. In other words, there is a state-preparation step prior to
quantum computation, where classical data is encoded as a quantum
state, as well as a measurement step afterwards, that provides output
in classical form.

A similar workflow was previously proposed [13], where the author
points out that a discretized PDE can be mapped either to a Schrddinger
equation or to one or more linear system(s). In the first case, one may
use Hamiltonian simulation to obtain the solution as a quantum state,
while linear systems could be solved by the HHL algorithm or other
quantum linear solvers. However, this classification concerns only linear
PDEs and does not consider algorithms that are not fully quantum (i.e.
all computations from quantum-form data to quantum-form solution are
done on a quantum computer) or quantum annealing.

This section gives the necessary background on the ‘quantum-block’
of PDE solving, that concerns the last three steps in Figure 2.1.

2.11. QUANTUM STATE PREPARATION

The problem of quantum state preparation arises every time classical
data need to be encoded as a quantum state, and it is by no means
restricted to quantum PDE solvers. Consider the task of encoding an
initial condition ug(x) in a quantum register. First, space-discretization
transforms ug(x) into a discrete array of gridpoint values ug of N entries.
Then, this vector is normalized to turn it into the suitable quantum state

Uo

[luoll2

|uo) = (2.1)

The vector on the left-hand side of Equation (2.1) is called ket vector,
according to the so-called braket notation [14].

Furthermore, |ugp) can be written as a vector of N complex amplitudes
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/ PDE, BCs, ICs /

Discretization

State preparation

Quantum primitive

Measurement

/ Output /

Figure 2.1.: Workflow of the process of solving partial differential
equations with a quantum primitive. The input is given, in
the general case, by the PDE together with its boundary (BCs)
and initial (ICs) conditions. After the differential problem has
been discretized with schemes such as finite elements or
finite differences, the input data is encoded into a quantum
state (state preparation step). The quantum primitive then
produces the solution to the discrete problem as a quantum
state. However, the information in this state cannot be
accessed, as this is generally in quantum superposition.
The quantum PDE solver also needs to measure the state
after the quantum primitives as many times as required
by the user-defined solution precision. Depending of the
application, such measurement are postprocessed to provide
the final output.
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defined with respect to a chosen basis, i.e.
N—1
luo) = > uo|by).
j=0

where ug; € C are the amplitudes and |b;) are the basis states. Since
many quantum computer models work with binary physical systems

(qubits), the basis {{bj)}j'\lz_ol is defined as the set of all possible states

of n= [Iogz (N)] such systems (log, will be subsituted by log in the
following, for simplicity of notation). By labeling the states of a qubit as
0 and 1, the basis states are written as

100...00), [00...01), [00...10),...,|11...11),

which constitute the so-called computational basis. This is an
orthonormal basis, since, given two basis vectors b; and b;

<b,‘|bj>=5ij, i,je{0,1,...N—13},

where §; is the Dirac delta.

One should keep in mind that the computational basis is just one of
the infinitely many possible bases in the CV space and that any other
binary orthonormal set of vectors form an equally valid basis for the
same space.

Furthermore, the braket notation implies a unit norm vector, that is

Dugi=1 (2.2)

Equivalently, Equation (2.2) states that the squared amplitudes of a ket
vector can be seen as probability amplitudes, modelling the fact that
a n-qubits system will collapse to one of the N basis states |bs,) with
probability u?  upon measurement.

Having access to the amplitues, the problem of state preparation
becomes to evolve an initial state up to the state |up). This can be
expressed in formulas,

luo) = U0)®",

where U is a unitary operator representing the quantum state evolution
and |0)®" is a conventional initial state where all qubits are in state |0).
From now on, the initial state |0)®"” will mostly be represented simply as
|0), except when the number of qubits is not immediately evident from
the context.

Clearly, the cost of implementing U influences the overall cost of
solving the differential problem. In fact, preparing a generic quantum
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state over n qubits requires O(N) quantum gates [14], where the ‘big
O’ notation represents the asymptotic upper bound on the amount of
computational resources. Therefore, even if the quantum primitive
runs in O(log(N)) time, the task of numerically evolving the initial
condition on a quantum comptuer might still take O (N) time overall.
Fortunately, several probability distributions can be prepared efficiently
(i.e. in logarithmic time). Interesting cases for numerical analysis are
polynomials defined over a regular grid or locally supported functions in
the case of the finite element method (FEM) [15].

2.1.2. HAMILTONIAN SIMULATION

One of the initial motivations for quantum computers was to simulate
quantum systems that are difficult to simulate classically [16]. Generally
speaking, one aims at obtaining the evolution of a quantum state |¢),
which is described by the Schrédinger equation

d .
510 =—iH19). (2.3)

where H is the system’s Hamiltionian, i.e. a Hermitian matrix.
For the sake of explanation, the Hamiltonian is considered here as
time-invariant.

Hamiltonian simulation consists of evolving an initial quantum state
|¢o) according to Equation (2.3) on a quantum computer. Interestingly,
certain partial differential equations can be rewritten as Schrédinger
equations after a semi-discretization in space [13, 17, 18]. For this
reason, quantum algorithms for Hamiltonian simulation can be used as
quantum primitives to solve PDEs.

Equation (2.3) has the exact solution

ly) = et yo), (2.4)

where e~Ht js a unitary operator, due to the fact that H is Hermitian.
Therefore, e~ Mt is a valid quantum operation that could be applied to
|¢o). However, the exponential of an arbitrary Hamiltonian does not
correspond, in general, to any known quantum circuit. In other words,
the Hamiltonian H is difficult to simulate directly.

However, one can see H as a sum of Hermitian matrices that are
efficient to simulate. In that case

H=> cHi (2.5)
i

and |y) = e~iZi¢Hit|yg).  The number of terms in Equation (2.5)
determines the complexity of the Hamiltonian simulation. In fact,
the generic Hamiltonian decomposes in a number of known evolution
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operators that scales exponentially with the dimensions of the physical
systems. Equation (2.5) cannot always be rewritten as a product of
exponentials, as the H; generally do not commute, i.e.

[Hi, Hj]=HiHj—HjH; # 0,

for some i and j. Anyway, by dividing the evolution time in r subsequent
time intervals At = t/r, the single H; Hamiltonians can be evolved
separately over At. This evolution over the sub-interval is then repeated
r times. In the end, the overall operator is an approximation of the
actual evolution of the total Hamiltonian H over t as stated by the
Trotter's formula [19]:

e Ht = (l—[ e‘iCiHit/r) +0((an)?), (2.6)

The importance of H and H; being easy to simulate is clear from
the Hamiltonian simulation runtime using product formulas. This is
O(f(n)t/e) [14], where n is the number of qubits and ¢ is the desired
Hamiltonian simulation error. While f(n) = poly(n) for simulatable
Hamiltonians, f(n) = exp(n) in the general case, making for an
exponential difference in the runtime.

In quantum physics, many natural systems are described by the
so-called local Hamiltonians, which are operators that act non-trivially
on a few qubits and are known to be efficient to simulate, [14].
However and most importantly for PDEs, it was shown that also sparse
Hamiltonians can be simulated in O (poly(n)) time, [20].

Finally, we remark that recent work exponentially reduced the
dependency on precision [21, 22] and also achieved an optimal
dependency on the sparsity [22]. Most recently, an approach based on
qubitization achieved an additive lower bound with respect to t and 1/¢
[23].

2.1.3. QUANTUM LINEAR SOLVERS

Many PDE discretization techniques result in one or more linear systems
of equations and the runtime required to solve them drives the runtime
of the whole PDE algorithm.

After appropriate discretization, the PDE assumes the familiar form
Ax = b, which is a linear system in the N-dimensional space, where
N is the number of unknowns, which can correspond to the number
of gridpoints, particles, or harmonic basis functions, depending on the
method of discretization used.

If A is positive definite, the fastest general-purpose classical linear
system solver is the conjugate gradient method [24]. This algorithm has
asymptotic time complexity

O (Ns+vklog(1/¢)), (2.7)
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where s is the matrix sparsity, K is the conditioning humber and ¢ is the
desired error for a certain precision metric.

What motivates the study of linear solvers beyond classical compu-
tation is the conjecture, due to complexity arguments, that classical
algorithms cannot invert A in time O (log (N)), [2]. Harrow, Hassidim and
Lloyd were the first ones to prove that, instead, a quantum algorithm
based on the O(log(N)) sparse Hamiltonian simulation and phase
estimation could solve linear systems exponentially faster in N, [2]. In
particular the time complexity of the HHL algorithm is

0(s?k%log(N)/e). (2.8)

However, the HHL algorithm and subsequent quantum linear solvers,
do not solve Ax = b, but rather

Alx) =|b), (2.9)

known as quantum linear system problem (QLSP). Furthermore, HHL and
other quantum linear system algorithms (QLSAs) prepare the solution
Ix) = A1 |b) assuming that |b) has already been prepared and that |x)
or an observable of it can be measured efficiently. However, the cost of
these operations can (and generally does) trump that of solving for |x).

The complexity of solving the QLSP was improved by later contri-
butions. In terms of conditioning number, Ambainis et al. reduced
the dependency from O(k2?) to O(k) using variable time amplitude
amplification (VTAA) for post-selecting the solution, [25]. Also concern-
ing the conditioning number, Clader et al. showed how to include
a preconditioner in quantum linear solvers to deal with ill-conditioned
matrices, [26]. Later, an approach based on linear combination of
unitaries was proposed to replace the phase estimation step, reducing
the dependence on precision to O(polylog(1/¢)), [27]. Furthermore,
an approach inspired by the adiabatic principle was also developed,
achieving similar complexity compared to Ambainis’ work on VTAA, [28,
29].

Finally, several authors recently proposed to solve the QLSP with
variational quantum algorithms (VQAs), [29-33], which will be discussed
later. These algorithms are appealing since they are suitable for
implementation on near-term devices and require only shallow quantum
circuits. However, VQAs are heuristics, which means that the number of
iterations to convergence is a-priori unknown.

2.1.4. AMPLITUDE AMPLIfICATION AND AMPLITUDE ESTIMATION

Amplitude amplification is an algorithm based on Grover’'s database
search, [34, 35] that iteratively promotes the probability of one or more
amplitudes of a quantum state. The problem of database searching
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consists in finding a target bitsring m in a database of N = 2" entries,
each of which is a n-bit string, such as

X =X0X1...Xn, x;€ {0,1}.
A function f marks the target bitstring m as follows

1 ifx=m
109 = {O otherwise '

Classical search methods require one to check the bitstring individually
and therefore require in general O(N) queris, N—1 of them in the
worst-case scenario. On the other hand, Grover’s algorithm works with
all of the database entries in superposition and progressively promotes
the amplitude of the target state |m). A popular starting state is the
unbiased uniform superposition

1 N—1 .
"”"):TN,.:ZO i),

where each j represents one of the N bitstrings.
In the quantum search algorithm, one applies the Grover’s operator

G=—(1-2¢oN¢ol) (@ —2|m)m]) (2.10)

k times, where |¢){(¢| is the projector onto the state |¢). k = O(m)
iterations are needed to prepare |m) with high probability [14],
making the quantum search algorithm quadratically faster than classical
searches. This quadratic speed-up can be understood intuitively by
thinking that each time Grover’s operator changes the amplitudes of the
superposition, the probabilities change quadratically as much.

Of course, the target state |m) is generally unkwnown, and G must
implement an oracle for f,

X)) if x=m
O X} 10) = {Ix) |0)  otherwise’

where the notation implies a tensor product between neighbouring ket
vectors.

The specifics of the oracle depend on the different problems and
go beyond the scope of this discussion. It suffices to say that they
generally entail a unitary contolled by a n =[logN] register, such that
the unitary gets applied only when such register is in state |[m) (or is in
a superposition with nonzero probability of measuring |m)).

Grover’'s algorithm was extended to multiple target states with
quantum amplitude amplification (QAA), [36]. The Hilbert space
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spanned by the database is divided here into a ‘good’ subspace,
containing the target states and a complementary ‘bad’ subspace.
Therefore, the Grover’s operator becomes

G=—(1—2l¢o)wol)(1—2Pg), (2.11)

where Py is the projector onto the ‘good’ subspace. Thanks to Grover’s
search, a state in the ‘good’ subspace can be prepared quadratically
faster than by using any classical search routine.

QAA can be used in those quantum algorithms that require post-
selection. This is a procedure used as the last step of a quantum
computation, where a quantum register contains the solution state with
finite probability and it is entangled to an ancilla qubit. Measuring the
ancilla in one of its two states will collapse the register to the solution
state. Therefore post-selecting requires to repeat the entire quantum
routine until the correct measurement of the ancilla is obtained. Taking
quantum linear solvers as an example, the state before post-selection is

[trash) |0) + |x) |1},

where |x) is the solution of the QLSP and |trash) represents the rest of
the Hilbert space. In this case QAA amplifies the probabilities of the
states that have the ancilla register equal to 1.

Also related to Grover’s search is quantum amplitude estimation
(QAE), which consists in performing quantum phase estimation on the
Grover’s operator. Because the action of G on a state |¢) is a rotation of
an angle 20 in the plane defined by the components of |¢) in the ‘good’
and ‘bad’ subspaces (see Figure 2.2),

cos26 —sin26 '
Gz[sinze cosze]zelyze' (2.12)

where Y is the Pauli-Y operator,

0 —i
Y=[i o]'

applying quantum phase estimation on G gives an approximation of the
inner product of |¢) with the ‘good’ subspace. i.e.

|‘/’9|2 = (good|y) = sin? 6.

Quantum amplitude estimation can be useful to estimate the integral
of a PDE solution over a certain region S, i.e. fsu(x)d,x [37]. As it
will be clear in the following section, scalar quantitites of this type are
generally the output of quantum routines for PDEs.
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lgood)
Glv)

30 [4)

[bad)

Figure 2.2.: Effect of one Grover iteration used in quantum amplitude
amplification. The axes represent the components of |¢g)
in the ‘good’ subspace and in the complementary ‘bad’
subspace.
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Working principle of variational quantum algorithms. The
inputs are the hyperparameters, such as ansatz, optimizer
and type of cost function and the initial value of the ansatz
parameter. The cost is shown here as a linear combination of
expectation values of unitaries, although other expressions
are possible. In the quantum-classical optimization loop, the
classical computer is in charge of updating the parameters
0@ according to the optimization logic, while the quantum
computer evaluates the cost function terms. At the end of
the optimization, the optimal parameter set 8,pt can be used
to reconstruct the approximate solution as a wavefunction
(lu(@)) = U(O)|0)®") or in a larger circuit to obtain a scalar
function of the solution g(u).
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2.1.5. VARIATIONAL QUANTUM ALGORITHMS

Variational quantum algorithms (VQAs) are the main class of methods
conceived to run on NISQ devices. Thanks to low quantum hardware
requirements, variational quantum computing can work with noisy
physical qubits, as opposed to fault-tolerant quantum computing (FTQC)
which require fully error-corrected logical qubits.

Besides being suitable for near-term applications, VQAs are thought
to be candidates for quantum advantage, in areas such as quantum
chemistry, nuclear physics, but also optimization and machine learning,
[38].

The small circuit depth is achieved via a hybrid strategy internal to an
optimization process. At every iteration, a cost function is evaluated by
the quantum computer and fed to the classical one, which updates the
trainable parameters according to an optimization algorithm. Figure 2.3
shows schematically the working principle of VQAs.

VQAs have been reviewed in a dedicated work [38], illustrating their
main concepts, applications and future prospects. What follows provides
a succinct overview of the main elements of these algorithms.

ANSATZ

An ansatz is a parametrized unitary U(0) that encodes the tentative
solution of the problem. The parameters 0@ are trained with an
optimization routine, such that U(@¢pt) prepares the approximate
solution of the original problem.

Though many families of ansatze exist, a first important distinction
is between problem-inspired ansatze, which incorporate information
of the problem, and the problem-agnostic ansatze. The prototypical
problem agnostic ansatz is the hardware-efficient ansatz, [39], which
optimizes the use and distribution of gates according to the hardware
specifications. On the other hand, examples of problem-inspired ansatze
are the Unitary Coupled Clustered ansatz, [40] and the Quantum
Alternating Operator Ansatz, [41, 42].

COST FUNCTION

The cost function C(0) is a metric of how far the tentative solution at
the current iteration is from the actual solution of the problem. In VQAs,
the cost function is computed by measuring different observables of the
ansatz state U(0)|0). The type and number of observables can be either
an algorithm design choice or depend on the problem.

Some of the requirements for a good cost function apply to quantum
as well as classical methods. For example, the minimum of C(6) must
coincide with the solution of the problem and decreasing values of
the cost function should correspond to better approximations of the
solution. However, a good cost function for VQAs also needs to be
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hard to evaluate classically, in order to retain the possibility of quantum
advantage, [38].

COST FUNTION GRADIENT

Because of finite sampling and noise in the hardware and measurements,
approximating the cost function’s derivative with finite differences can
lead to imprecise descent trajectories or even divergence of the
optimization process. Luckily, the so-called parameter-shit rule (PSR)
allows to compute gradients analytically using two cost function
evaluations, similar to what happens in finite differences. PSR computes
the derivative of the cost C with respect to the parameter 6,

oC
96, " 2sina

(cet)—c(e)), (2.13)

where 8* = 6 + ae;, e is the vector with 1 in the (t" entry and 0 in all
others and a is the magnitude of the shift.

Although Equation (2.13) looks similar to the finite difference formula,
the two differ by the term 2silna' When the shift is a = /2, the difference
in statistical error between finite differences and PSR is maximum, [43]

OPTIMIZER

As mentioned, cost functions of VQAs are often complex due their noisy
nature or due to flat regions known barren plateaus, [44, 45].

A main classification of VQA optimizers is between gradient-based
and gradient-free algorithms. In principle, any classical optimizer can
be used in VQAs, but the noisy character of the cost function makes
some choices better than others in avoiding stability and convergence
issues. Popular gradient-based techniques are stochastic gradient
descent (SGD) variants, such as Adam, [46] or natural gradient descent,
[47]. On the other hand, the simultaneous perturbation stochastic
approximation (SPSA) method is probably the most popular gradient-free
technique, [48].

QUANTUM ANNEALING

Quantum annealing (QA) is an algorithmic approach utilized for
addressing combinatorial optimization (CO) problems. These problems
require the exploration of a finite set of variables or choices with the
objective of identifying the 'optimal’ solution based on a specified metric
of merit. Notably, a significant number of combinatorial optimization
problems are classified as NP-hard. Due to their inherent complexity,
CO problems are typically approached with approximate solutions, and
the primary challenge lies in generating accurate approximations within
a short (polynomial) timeframe.
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QA transforms the combinatorial optimization problem to that of
finding the ground state of the Ising Hamiltonian [49]

n
Hising = ZHiCh' + Z]ijch'qj, (2.14)
{ (@)
where q;, g represent the binary values associated to the qubits, for
instance, the different spins of the quantum particles. Also, H; e R is the
local field at site i and J;j € R is the interaction strength between qubits i
and j.

In order to reach to the ground state of Hising, the quantum annealing
process starts from an initial Hamiltonian Hg, whose ground state is
known and easy to prepare. A common choice is the transverse
magnetic field

n
Ho =_Zx,-, (2.15)
i
Xi being the Pauli-X operator acting on the it" qubit, where
01
*=[1 of

From here, the system Hamiltonian is slowly changed according to an
evolution law, such that

H(t) = (1 —f(t))Ho + f(t)Hising for te[0,T]. (2.16)

Here, T is the total evolution time, f(t) € [0,1] and f(0) =0, f(T) = 1.
If H(t), known as the total Hamiltonian, is changed slowly enough, then
the adiabatic principle ensures that the system’s configuration is at the
ground state of H(t) at all times, [50]. At the end of adiabatic evolution,
the system will therefore be in the ground state of the Ising Hamiltonian,
which corresponds to the approximate solution of the combinatorial
optimization problem.

However, quantum annealers operate with spin systems, where each
spin s; is a binary variable equal to 1. Thus, QA programmers
need to transform the CO problem to a binary optimization one. In
D-Wave machines, which are the state-of-the-art quantum annealers,
the problem is given as input in the Quadratic Unconstrained Binary
Optimization (QUBO) form, that is

minimize q'Qq

2.17
with g€ {0,1}", (2:17)

where Q € R™". The QUBO problem in Equation (2.17) can be turned
into the Ising Hamiltonian ground state problem by using the mapping
si=2q;i— 1.
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2.1.6. MEASUREMENT

At the end of the quantum primitive the problem’s solution is encoded
as a quantum state, which is a unit vector |u) € CN, whose information
must be accessed through measurement. However, measuring the
entire state vector requires O(N) measurements, breaking any speed-up
given by the quantum primitive.

0) H I H A

|u> 7 M

Figure 2.4.: Hadamard Test circuit for computing {u|M|u). In contrast to
standard observable measurements, M needs to be unitary.

A scenario where measurement might be performed in polynomial
time is when to obtain a scalar function g(u) of the solution. This
function is often taken as the expectation value of an observable M, i.e.

g(u) « (M) := (uM|u).

A popular way to compute expectation values is the Hadamard Test,
[51], which assumes that M is a unitary operator. As shown in Figure 2.4,
M is controlled by an ancilla qubit in uniform superposition, which is
later measured in the Pauli-X basis. By solving the circuit in Figure 2.4,
one obtains

1
Re{(M)} = > (Pr(0)—Pr(1)), (2.18)

where Pr(0) and Pr(1) are the probabilities of the ancilla qubit collapsing
to |0) and |1) respectively.

Also computable in polynomial time is the overlap of the solution state
|u) with a reference state |uref). This can be accomplished using the
SWAP Test, [52], which is a Hadamard test where M is equal to the
SWAP gate. If |¢1) and |¢2) are the states of two qubits, the SWAP gate
acts between them as

SWAP (1) ¢2) = |¢2) [¢1).

In the SWAP Test, the SWAP operator is actually generalized between
the quantum registers containing |u) and |uref). The overlap between
the two states is given by the probabilities of the ancilla qubit as

1
Re{(uluref)} = E(Pr(o)_Pr(l))- (2.19)
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In practice, all expectation values are determined statistically as
averages. The number of samples N, required to approximate (M) up
to precision ¢ is given by the Chernoff-Hoeffding inequality, for which

pr(|i— ()| 2 €) < 26720, (2.20)

where M = 1/Nm2f’="iMi is the average of the measurements and

M; € {0,1}. Therefore, O(1/€2) measurements are necessary to
esimtate (M) up to precision ¢.

2.2. FUNDAMENTAL PDES IN STRUCTURAL MECHANICS

To frame the following discussion, we present here the equations of
mechanical and thermal equilibrium of a generic three-dimensional solid.
Even though such an abstract model is rarely used in practice, it allows
us to derive the equilibrium of actual materials and structural elements.
Throughout the rest of the chapter, we will show how the PDEs reviewed
relate to the generic equilibrium of a solid, in order to understand the
level of modeling complexity that current quantum methods deal with.

For the remainder of the section, we will consider the equilibrium of a
generic three-dimensional solid of volume Q and surface 9Q. Although
not specifically treated, all the following PDEs should be complemented
by an appropriate set of boundary conditions in order to completely
define the differential problem.

2.2.1. MECHANICAL LINEAR EQUILIBRIUM

Under the assumption of small deformations, the generic three-
dimensional solid is in static equilibrium if

VxT—b=0, x € Q CR3, (2.21)

where V- is the divergence operator and x are the coordinates of
the deformed configuration of the solid. For small deformations, the
deformed configuration coincides with the reference one. Furthermore,
b are the body forces acting on the solid, while T is the second-order
Cauchy stress tensor, which relates to the strain tensor € via the
consitutive law of the material,

T=C(x)e. (2.22)

The fourth-order constitutive tensor C(x) can be a function of the space
coordinates for inhomogeneous materials. Finally, the kinematics of
small deformations relate the strain tensor € to the displacement field
u(x) as

e==(Vxu+V u). (2.23)

N| -
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Equation (2.21) describe the static equilibrium of a solid. By
introducing the accelleration of the body, we obtain the linear dynamic
equilibrium equations,

a2u 3
p(x)F+V-xT—b=O, xXeQCR’, (2.24)

where p (x) is the density of the material.

2.2.2. MECHANICAL NONLINEAR EQUILIBRIUM

In presence of large deformations, the reference configuration X and the
deformed configuration x do not coincide. One way to relate the two
quantities is through the deformation gradient,

ax au
=— =I+—.
X X

The deformation gradient also relates the tensor of stresses in the
reference configuration P, or 15t Piola-Kirchhoff stress tensor, to the
Cauchy stress tensor T,

F (2.25)

P=det(F)TF . (2.26)

Thanks to these quantities, one can write the balance of a solid
undergoing large deformations in its reference configuration and finally
obtain the following (dynamic) equilibrium equation,

a%u
PX) 5 +VxP=bo=0, X € Qo C R, (2.27)

where bg = det(F) b is the vector of body forces written in the reference
configuration. The nonlinearity of Equation (2.27) in the displacement
u is given by the expression of the 15t Piola-Kirchhoff stress tensor in
Equation (2.26).

Alternatively to large deformations, nonlinear mechanical behaviour
can also be due to material nonlinearities. In theses cases, which
include hyperelasticity, plasticity and damage, the consititutive tensor C
in Equation (2.22) depends, in some fashion, on the displacement u.

2.2.3. THERMAL EQUILIBRIUM

Similarly to the balance of mechanical energy, one can write the balance
of thermal energy of a solid and obtain the following PDE,

o7 V2T —Q(x, t)=0 (2.28)
C——K — X, =U. .
p ot x

The thermal equilibrium equation describes how the temperature T
of the solid evolves in the presence of conductive heat exchange and
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possible internal heat sources Q(x, t). The material quantities p, ¢ and
k are respectively the density, specific heat and coefficient of thermal
conductivity of the material and can be in general a function of x and t.

Equation (2.28) can become nonlinear if one of the material properties
depends on the temeprature T or with a nonlinear Q(x, t) term. Common
cases are those where the thermal conductivity depends on T, such as
changes of phase or degradation of the surface.

2.3. QUANTUM ALGORITHMS FOR LINEAR PDES

The bulk of the literature that we gathered on quantum solvers for linear
PDEs focuses on the Poisson, heat and wave equations. The different
techniques are analyzed in the following sections.

2.3.1. POISSON EQUATION

Let u(x) € R be the unknown solution function, where x € Q € RY, d is
the number of spatial dimensions and f(x) € R is a known source term.
Then the Poisson equation in Cartesian coordinates reads

aZu a2u 5 -
=ttt = -V u = f(x), X=[X1,...,Xq] €Q. (2.29)
axy x5

Equation (2.29) must be complemented with Dirichlet, Neumann or
Robin conditions on the boundary 6Q in order to find a unique solution.

In mechanics, the Poisson equation describes the static deformations
of thin elements such as rods and membranes over their axis or plane.
In fact, for d < 3 and purely volumetric deformations, that is, when the
consitutive tensor C in Equation (2.22) reduces to a constant, the linear
elastic equilibrium Equation (2.21) takes the form of Equation (2.29).

Assuming a hypercubic domain, the standard technique to solve
Equation (2.29) numerically is to discretize the domain in N grid points in
each of the d spatial dimensions and either approximate the Laplacian
with a central finite difference (FD) scheme or employ a finite element
(FE) approximation. Both approaches lead to a discrete equation, or
Discrete Poisson Equation, that is a linear systems of (N — 2)d x (N — 2)d
equations of the form

Au=f, (2.30)

where u; = u(x) is the solution at grid point x(0 and f; = f(x() for finite
differences or f = fo(x)(p,-(x) for finite elements with basis functions
@i(x). Equation (2.30) can be solved classically using direct or iterative
solvers. However, all classical linear solvers have a cost upper bound
by a polynomial in N (O(poly(N)) complexity). Even the fastest iterative
solvers such as conjugate gradient, [24] or multigrid techniques, [53]
require O(N) iterations.
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HHL AND PRECONDITIONING

QLSAs such as HHL (cfr Section 2.1) seem natural candidates to solve the
discrete Poisson problem exponentially faster than classical methods.
Several authors worked on this concept. Clader et al. were among
the first to apply an improved version of HHL to a finite difference
discretization of the stationary Maxwell equations, [26]. These form
a system of PDEs that are not of the Poisson type but still elliptical
and can be reduced to a linear system such as Equation (2.30) upon
discretization.

As mentioned, Clader et al. did not use the standard HHL, but
a modified version of it. Most importantly, they noticed that the
O(k?) in the cost of HHL nullifies the exponential speed-up in N, if
kK = O(N), which is the case for matrices induced by a finite element
discretization of second-order elliptical boundary value problems, for
which k = O(N%9), [54]. Therefore, Clader et al. proposed a quantum
algorithm to reproduce the Sparse Preconditioner Approximate Inverse
(SPAI), [55] operator. This technique uses a matrix P to achieve nearly
optimal preconditioning, i.e. PA =1, where I is the identity matrix. At
the same time, P is such that PA preserves the sparsity of A. If s is
the sparsity of A in Equation (2.30) and the preconditioner P has similar
sparsity, then applying the P such that

PAu = Pf, (2.31)

can be done in O(s2) queries to an oracle accessing PA and O(s3)
runtime, [26]. Then, if the SPAI procedure is applied succesfully, the
conditioning will be independent of N or O(log(N)), eliminating the
polynomial scaling, that would still be present even in improved QLSAs
such as [25]. If s and 1/¢ are also constant or logarithmic in N, the
complexity of Clader’'s method would be O(polylog(N)), which is a true
exponential speed-up. Unfortunately, in most if not all discretization
schemes, 1/ = O(N), as will be discussed later in this section.

Further than conditioning, Clader et al. discussed two other caveats
of HHL, [56], namely the state preparation and the measurement
problems. For state prepatation, they proposed to use an oracle able to
return fj € R and ¢; € R as superposition states, such that

N—1
If) = > fie1j). (2.32)
j=0

However, even though one would query this oracle a constant number
of times to produce |f), it could be that the same oracle would compile
to an exponential number of native gates, effectively only rephrasing
the state preparation problem.

About measurements, [26] provide examples of classical quantities
that can be extracted once |x) has been prepared with the HHL
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algorithm. In particular they show how to compute (r|x), for an arbitrary
state |r) and {j|x), i.e. the j-th component of |x).

As mentioned, [26] also describe how the preconditioned HHL can be
applied to Maxwell’s equations, and, if a scalar solution (r|x), such as the
scattering cross section, is required, then the speed-up is exponential
in N. However, Clader’'s method is problem-agnostic and the Maxwell
discrete problem is seen more as a linear system for benchmarking their
solver, rather than a discretized PDE. Moreover, all speed-up results
are based on the existence and the efficiency of oracles, which are
black-box gates. In the particular case of Maxwell’'s equations, the
authors only mention that an oracle implementing A and f would be
‘efficient’, but do not elaborate on the number of submodules, gates,
etc [26]. Furthermore, the complexity analysis in [26] is incomplete, as
later noticed by Montanaro and Pallister, [15]. In fact the preconditioned
HHL still retains a O(poly (1/¢)) factor and since for local FE schemes
N = 0((1/¢)*), with o € (0, 1) , this primitive still does not achieve an
exponential speed-up for elliptical problems.

DIAGONALIZATION WITH QUANTUM FOURIER TRANSFORM

While still using a QLSA, Cao et al. focused on the problem rather than
the solver, [57]. In their work, they treated the d-dimensional Poisson
equation (Equation (2.30)) and noticed that every classical linear solver

requires at least
1\ 1
O(ﬁ(—) log (—)) (2.33)
€ €

time, therefore suffering from the curse of dimensionality. Using the
HHL algorithm, Cao et al. resolved the exponential dependency on d, by
preparing the solution |x) (as a quantum state) with

) N

quantum operations. Noticeably, both Equations (2.33) and (2.34)
are completely expressed in terms of 1/¢ and d, thus not hiding any
dependencies between complexity terms. In addition, the authors
described the quantum circuits used from submodules to gates.
Comparing Equation (2.34) that of the HHL (Equation (2.8)), one
notices that the O(1/¢) term in the cost of Cao’s algorithm is replaced
by a logarithmic dependency. The exponential reduction does not
derive from modifications to the linear solver, but from the specific
structure of the Poisson matrix. This can be understood starting from
the 1-dimensional case, defining A,l, as the 1D Poisson matrix. This
is an instance of the class of Toeplitz matrices, all of which can be
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diagonalized by the sine transform S, [58], as

AL =SAST, (2.35)

where A = diag(Ay), A= 4 sin? (%) and S; = \/%sin(%) are the
components of the discrete sine transform. Cao et al. proved that
estimating the eigenvalues of Equation (2.35) up to precision € requires
O(Iog(l/e))3 quantum operations. Moving to multiple dimensions, the
d-dimensional Poisson matrix Ag can be written as

Al=Alele---@l+I8Al®l8 - -®I+ ---+I®---8I®AL  (2.36)
and its Hamiltonian simulation is
oAbt — oilbt g ... @ oiABt, (2.37)

Therefore, simulating Ag requires time O(dlog3(1/s)), that is exponen-
tially better than vanilla HHL in the solution precision.

Equation (2.34) should not mislead the reader in thinking that the
cost of Cao’s method is independent of the conditioning number. The
runtime refers to a single run of the quantum circuit. O(k?) runs are
still required to post-select the solution state based on measurements
of the ancilla qubit. If Kk = O(N%?2), the exponential advantage is lost,
but Clader’s preconditioning technique, [26], may be used to achieve
constant or logarithmic dependency of the conditioning with respect to
N.

Wang et al. further built on Cao’s work, [59]. In particular, they
presented a fully modular circuit of this algorithm, defining every module
in its components, down to known quantum operations (such as addition
and subtraction) and gates. They noticed that several steps in Cao’s
algorithm could be reduced to the evaluation of trascendental function.
For this sake, they developed the so-called quantum function-value
binary expansion (qFBE) algorithm, [60], which allows to replace more
expensive power operations with arithmetic ones.

Moreover, [59] showed how to reduce the complexity of the controlled
rotation operation in Cao’s method. In the latter, after the quantum
phase estimation step is performed, the eigenvalue register |)\j) is
used to compute the reciprocal state |1/)\,-> using a quantum version of
Newton’s method. Then, the controlled rotation C—R(6;) step is used to
encode amplitude 1/A;, if the rotation angle is taken as 6; = arcsin(1/A)).
Cao et al. used a quantum implementation of the bisection method,
to iteratively evaluate the arc sine function, requiring O(log*(1/¢))
operations for a small-dimension, high-precision (d < log(1/¢)) problem.
However, Wang et al. bypassed the computation of the reciprocal state
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completely and noticed that the angles for the controlled rotation could
be estimated with minimum error through the following relation

arccot(A))

0 =wim;, wj~ (2.38)

T
Also, the arc-cotangent function could be estimated through the qFBE
algorithm in O(Iog3(1/£)) operations.

Overall, Wang’s Poisson solver produces the solution state |x) in
O(Kdlog3(1/s)) operations, where the usual consideration about the
conditioning number applies. Comparing this scaling with that of Cao’s
algorithm (cfr Equation (2.34)), Wang’'s method is polynomially more
efficient for low dimensional and high precision problems, which are
usually the most interesting ones in structural analysis.

ADAPTIVE ORDER SCHEME AND SPECTRAL METHOD

Cao [57] and Wang [59] approximated the Laplacian in Equation (2.29)
three points centered finite differences for all grid sizes. However,
Childs et al. recently remarked that fixed finite difference, finite
element and finite volume schemes require O(poly(1/¢)) time to bring
the approximate solution |{), e-close to the actual solution on the grid
[61]. In fact, fixed schemes produce matrices with k = O(poly(1/¢))
and all quantum linear solvers have polynomial time in the conditioning
number.

Childs et al. accounted for this issue, by solving Poisson and general
second order elliptical boundary value problems with two different
numerical approximations, namely an adaptive order FD approximation
and a spectral method, [61]. The adaptive FD approach is used to solve
the d-dimensional Poisson problem with periodic boundary conditions.

The authors showed that the conditioning number « of the order-k
Laplacian with periodic boundary conditions is O(N?) if k < (6/112)1/3 N?/3,
Then, by assuming that the error due to the finite difference discretization
and due to the quantum linear system algorithm are of the same order
of magnitude, a relationship can be established between N, k, d and 1/¢.

Choosing k = (6/12)"> N?/3 is found to be optimal in terms of runtime,
[61] and N is then automatically determined to ensure the total error is

upper bound as O(¢):
N=G)(d3/zlog3/2( /s)). (2.39)

By substituting Equation (2.39) into the runtime of the complexity-
optimal QLSA solver of [27], the solution of the second order elliptical
problem with periodic BCs is found in

0(d*?poly (log(d), log(1/¢))) (2.40)

2k+1u

ax2k+1
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runtime, meant as number of gate operations, which is polynomial in d
(i.e. no curse of dimensionality) and has optimal dependency in 1/¢.

Furthermore, the authors show that the same runtime holds for
Dirichlet or Neumann homogeneous boundary conditions. To achieve
this, they use the method of images to extend the domain and
symmetrize the solution u according to the BCs, [61].

The second algorithm proposed in [61] uses the spectral method.
In this case, the solution is approximated globally and the discretized
Laplacian is non-sparse. To obviate to this problem, two variations of
the quantum Fourier transform, namely the quantum shifted Fourier
transform (QSFT) and the quantum cosine transform (QCT) are used to
induce sparsity. The algorithm makes use of an oracle that is queried

d?poly (log (1/¢)) (2.41)

times for second-order elliptic problems with non-homogeneous Dirichlet
boundary conditions and

dpoly (log(d), log(1/¢)) (2.42)

times for the Poisson problem with homogeneous Dirichlet BCs.

FULL COMPLEXITY ANALYSIS

All previous techniques are based on quantum linear system algorithms
and demonstrate times that are exponentially better than classical
solvers. Yet it is important to understand what output is prepared in
such time and what input provides the starting point. To begin with, all
algorithms for solving linear systems Ax = b require that the right hand
side vector is given as an input in normalized form, i.e. |b). In classical
computation, keeping the input in the computer’'s main memory is
common practice, since random access memories (RAMs) can store
arrays of double-precision values over a long time and enable repeated
readout. In terms of output, classical linear solvers produce the entire
solution vector x and therefore the full discrete solution.

In quantum computers, information is encoded and processed as
quantum states. Therefore, any computation must prepare the input
states before the quantum primitive and measure the quantum register
after the primitive. For example, the HHL algorithm requires the
right-hand side vector b to be provided as a quantum state |b). If this
state had been previously stored in a quantum RAM (QRAM), then the
cost of state preparation would not fall on the algorithm. However,
even though QRAM models exist and can theoretically create quantum
superposition states in O(log(N)) time, [62, 63], it is uncertain whether
they can be physically built and if they actually offer an advantage if
a parallel computer with the same amount of resources is available,
[64]. On the other hand, |b) may be prepared through a sequence of
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unitary operations. Nonetheless, the task of preparing a generic state is
an O(N) problem, [14], which would eliminate any possible exponential
savings.

The full complexity of a QLSA for differential problems, from input
encoding to output readout was discussed by Montanaro and Pallister,
[15]. Specifically, they considered discretized elliptical PDEs using the
finite element method, using piecewise polynomial basis functions.

Montanaro and Pallister assumed the final output to be the inner
product (rlu). The state |r) is the quantum state representation of a
known function r(x) defined over the domain Q

1 N
Ir) = =T (@ilr) 10), (2.43)
Z[=1 ((pi|r)2 =1

where ¢; are the finite element basis functions and the vectors |i) form
a basis for CN.

The main findings of [15] are summarized in Table 2.1. The classical
linear solver used is the conjugate gradient method, while the quantum
solver is that in [27], which has logarithmic dependency on 1/e. The
basis functions used for the results in Table 2.1 are the linear ‘hat’
functions

F(x—xi1) if x€[xi1, xi]

9ix) = { #(xix1—x) if x€[x; xis1l, (2.44)
0 elsewhere
defined over a uniform grid x; € [xo, X1, ..., Xny—1] with equidistant

spacing h. The paper also presents the complexities for discertizations
with polynomial shape function of order p. The complexity analysis was
performed both without preconditioning and with optimal preconditioning
(i.e. PA =1I), where a realistic preconditioning case lies between these
two extremes.

The most important result in Table 2.1 is that, for fixed dimension
d, no exponential quantum speed-up can be achieved, regardless of
preconditioning. The reason is that to compute (r|x) up to precision ¢
requires O(1/v€) repetitions of the QLSA operator while doing quantum
amplitude amplification, [15].

It may seem that, if d was allowed to vary, the quantum solver would
be exponentially faster (no curse of dimensionality). However, the
authors warn that the O notation hides terms that are independent of
1/¢ but can vary with d, making it hard to say what kind of speed-up is
achievable for variable dimensions.

The runtimes in Table 2.1 scale with 1/¢, |u|; |lull;, where the last
two quantities are respectively the Sobolev [-seminorm and [-norm of
the analytical solution u, that depend on the derivatives of u up to
the [-th order. Therefore for high PDE dimensions d, there can be a
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Table 2.1.: Complexity results in [15]. The problem is a second order
elliptical PDE, discretized with the finite element method,
using piece-wise linear shape functions.

Algorithm No preconditioning Optimal preconditioning
classical = [ ulp \(d+1)/2 ([ lulp \9/2
(conjugate gradient) O((T) ) O((T) )
~ 2 ~
quantum [27] o(||u||";‘#+||u||1';‘#) o (14 )

consistent polynomial speed-up for high precision problems and large
second derivatives of the solution u(x). These considerations extend
to higher-order finite elements, with the difference that higher-order
Sobolev seminorms appear in the runtime. In classical mechanics,
however, elliptical problems reach at most d = 3, limiting the achievable
polynomial speed-up.

To understand why, even considering a log(1l/¢)-scaling algorithm,
Montanaro and Pallister found that quantum linear solvers cannot
provide exponential speed-up, one can answer the questions identified
by Aaronson in his ‘fine print’ for quantum linear algebra, [56].

1. Can |b) be prepared in time O(log(1l/g)), starting from b? In
general, this is a hard problem, but if f(x) in Equation (2.29) is a
polynomial or a function supported only on a few elements, the
state |b) can indeed be prepared in time O(log(1/¢€)), [15].

2. Is there an algorithm for accessing the elements of A in time
O(log(1/€))? Yes. Quantum linear solvers require a sparse matrix
and a sparse access to the matrix. The second point means that
having an algorithm that, given a row index r and another index |,
returns the column index and value of the { -th nonzero element in
A. Finite element matrices satisfy both these requirements, since
they are sparse and, if the mesh is regular, sparse access can be
obtained by knowledge of the element’s degrees of freedom and
by the connectivity matrix.

3. Is is possible to apply efficient pre-conditioning to A? Yes. One way
is the quantum-SPAI technique proposed by Clader et al., [26].

4. Is it possible to measure the output in time O(log(1/€))? Not in
general. Especially, it is not the case for estimating properties
such as (r|u), where distinguishing between two quantum states
that are e-close to each other require O(1/4€) queries to the QLSA
operator, [15].
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Therefore, measurement generally is the computational bottleneck in
the pipeline, even though particular properties, such as periodicity, can
be verified in logarithmic complexity, [15].

NISQ SOLVERS

The algorithms discussed previously require fault-tolerant hardware. For
instance, Wang could demonstrate his algorithm only to solve a minimal
problem of a 4 x 4 Poisson matrix, [59], on the Sunway TaihuLight
supercomputer, acting as a quantum simulator, [65]. Interestingly, the
authors also provide qubit and gate counts for this implementation,
declaring 38 qubits and 800 gates, among which TOFFOLIs and
SWAPs, that must be further compiled and mapped to actual hardware
connectivity. Therefore, circuits of this size require quantum volumes
beyond near-term capabilities by orders of magnitude. Consequently,
other authors recently looked at the possibility to solve the Poisson
equation with near-term techniques.

Wang et al. also proposed a way to solve the one-dimensional Poisson
problem in NISQ, using circuits of O(polylog(1l/€)) operations, [66].
Their main idea was that Hamiltonian simulation can be bypassed if one
is able to directly encode the inverse eigenvalues of the matrix A in the
quantum state amplitudes.

The Poisson problem with homogeneous Dirichlet boundary conditions
results in a matrix whose eigenvalues have an analytical expression, i.e.

Tt
Aj = 4N? sin? (é—N) (2.45)

where j ranges from 1 to N-2.

Wang et al. noticed that this Poisson matrix is a Cartan matrix.
The eigenvalues of Cartan matrices are also sines and they follow the
following product relation, [67]

2n+l_2 2=1 .2 jT[ n

2 ]_[ sin (m)ﬂ , (2.46)
Jj=1

where n =log(N).

Therefore, the sine terms in the product are equal to the eigenvalues
in Equation (2.45) up to a constant term. Consequently, 1/A; can be
written as a product of all other eigenvalues Ay, for k #j.

However, implementing Equation (2.46) requires O(N) qubits, since
every inverse eigenvalue depends on 2”7 —1 others. The authors anyway
show that the periodicity of the discrete sines and some trigonometric
relations allow to compute 1/A; from Equation (2.46) as product of
only n— 2 sine terms. This allows the algorithm to be implemented
in 3n qubits. In terms of implementation, the sine expressions in
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Equation (2.46) can be performed straightforwardly as controlled Ry
rotations.

Wang et al. also shows the circuit that implements their algorithm,
which requires %n?’ one and two qubit gates. They also mention that
parallelization of the controlled Ry, operations can further reduce the
gate count to 10n2, by adding n— 2 ancillary qubits. For a few (n < 10)
qubit problems the required number of gates may fit the specifications
of NISQ devices.

Despite proposing a polynomial-time primitive with low gates count,
[66] does not elaborate on state preparation and measurement. Another
shortcoming of the method is that it is limited to the one-dimensional
Poisson problem with homogeneous Dirichlet boundary conditions. The
associated tridiagonal matrix can be inverted analytically, eliminating
the need for such a specialized numerical technique [68]. Unfortunately,
the authors do not present extensions of their method to higher
dimensions or different boundary conditions.

Another approach amenable to NISQ devices is to use variational
quantum algorithms to invert the 1D Poisson linear system, [69]. In
this case, a variational state |x) = U(0)|0) is prepared by an ansatz
U(0) (see Section 2.1.5) and the loss functions needs to be zero when
Ix) = A~1|b). A possible choice for such a loss function is

£(8) = (x(8)|ATA|x(8)) — | (b|A|x(8)) |°. (2.47)

In the Poisson case the matrix A is symmetric, therefore ATA = A2 and
Equation (2.47) becomes

£(6) = (x(8)IA%|x(8)) — | {bIA|x(6)) |*. (2.48)

A necessary condition for advantage is that the terms in Equation (2.48)
can be efficiently evaluated on a quantum computer and are hard to
evaluate classically. It was proved that the latter requirement is
satisfied for loss functions such as Equation (2.47), [30]. On the other
hand, efficient quantum evaluation is possible only if the following two
necessary conditions are met

1. A and A2 can be decomposed in O(poly log(N)) operators Ok

2. These operators are observables and have a simple tensor-product
form.

Notice that we will talk here about observables as Hermitian operators,
whose eigenvectors form an orthonormal basis for measurement.

Liu et al. show that A and A2 for the 1-dimensional Poisson matrix
meet both requirements, [69]. The matrix A has the following block

structure A D
n—1 n—1
Ap= |:D;—1 An—1:|' (2.49)
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where A, is the Poisson matrix for n qubits and
o ... 0
Dpo1=| : : (2.50)
! 0
-1 0 ... 0

For example, the 1 and 2 qubit cases are

Ay = _21 _21]=21—o+—o_;
"2 -1 0 0
-1 2 -1 0
A2=|po9 _—1 2 -1
0 0 -1 2

=I®A1—U+®U_—U_®U+,

where o4 =|0){1] and o— = |1){0|. By applying repeated tensor products
of Ap—1 with the identity and adding the center off-diagonal terms for
the nth case, A, can be written as a sum of 2m + 1 terms.

The matrix A2 can instead be split into the following two submatrices

5 —4 1 0 7
—4 6 -4 1
1
2 _
Al =
. . . 1
1 —4 6 —4
L O 1 -4 5]

6 —4 1 071 1 1 (2.51)
—4 6 —4 1 0
B! _ .

S | 0
1 -4 6 -4
L 0 1 -4 6] L
=Bn_Cn.

The matrix B, is decomposed in the same fashion as Ap, while Cp, is the
sum of just two terms

Ch=040_-®---®04,0_-+0_-0,®---®0_04 (2.52)

n n

Overall, A,27 can be decomposed in 4n+1 terms. Since both A and
A2 are decomposed in O(log(N)) operators, the first requirement for
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advantage is satisfied. This holds also for the d-dimensional case. In fact,
Equation (2.36) states that the d-dimensional Poisson equation is the
sum of tensor products of the identity tensor with the one-dimensional
matrix. Therefore, the d-dimensional Poisson problem with Dirichlet
boundary conditions can be handled with the same operators as in the
d =1 case and specifically with d(2n+ 1) of them for A and (d(2n + 1))?2
for A2. In a similar fashion, the authors show that the Neumann, Robin,
and mixed boundary conditions cases with d = 1 also have efficient
decompositions.

To fullfill the second necessary condition for an efficient protocol, the
operators A, and B, need to be mapped to Hermitian operators. Liu et
al. achieve this by mapping them in the higher dimensional space of
Bell states. For instance, in the case of a 2 x 2 linear system, one can

build
0 o4+

On = [ojr 0 } = )‘lerqu’Jlrl) - |(p11><(p;1
0 _
O12 = [UI Ci) } = Iz><"’1r2 - |‘P12><¢Iz

where |p7;) = %2000) +[11)), |o7,) = %2(|01) +]10)) are Bell states. By
also defining |0, 1) and |0, i1) as the following 1-qubit states

7

(2.53)

’

1
10,1) = Tj(lo)"' 1)),

1 (2.54)
10, i1) = E(I0)+ill)),

it is possible to evaluate the terms appearing in Equation (2.48), such as

(x(0)]0+1x(8)) = (0, 1] {x(0)| 01110, 1) [x(8)) — {0, i1] (x(®)| O1110, i1} x(O)),
(x(6)|o-1x(@)) = (0, 1| (x(6)| 0120, 1) |x(8)) — i(0, i1]| {x(8)| 0120, i(12) IX()O)) -
.55

For higher matrix dimensions, measuring the expectation values of
Am and Bp, requires operators similar to those in Equation (2.53), but
whose eigenvalues are entangled states in more than two qubits.

Figure 2.5 shows that the measurement circuit in [69] is shallow and
made by only one and two qubits gates. However, this circuit assumes
full qubits connectivity, which is generally not available in current
hardware.

A final remark refers to the ansatz U(@) chosen by Liu et al. for their
simulations. This is the quantum alternating operator ansatz (QAOA),
[41, 42], which consists of a layered circuit, each layer having only
two parameters, corresponding to the evolution times of the mixer and
driver Hamiltonians. The two Hamiltonians were chosen so that their
gate depth grows only linearly with the number of qubits. Furthermore,
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0.1) o

fan)
A\

fan)
A\

Figure 2.5.: Circuit for measuring the state |0, 1) |[x (8)) in the Bell basis
[69].

the results obtained on a quantum simulator show that the number of
QAOA layers only needs to increase linearly with the number of qubits
for fixed solution fidelity, resulting in a circuit that is overall suitable for
NISQ hardware.

QUANTUM ANNEALING

Srivastava and Sundararaghavan demonstrated the use of a quantum
annealer to solve differential equations, [70]. The motivation behind
their work was that the functional minimization form of the differential
problem can be written in terms of the discrete solution and solved
as a combinatorial optimization problem. More precisely, the problem
becomes a binary graph-coloring problem, which is NP-hard, [71].

As seen in Section 2.1.5, a quantum annealer finds the ground state
of the Ising Hamiltonian, hereby reported for clarity

H(q) = D Hiqi+ Y Jjqiq;.

=1 @y

The spin variables g; encode the values of the discrete problem
variables, while H; and J; depend on the problem data and boundary
conditions.

For instance, consider the 1D Laplace problem with Dirichlet boundary
conditions

d?u _
az =0
u(0) = uo, (2.56)

u(l)y=u,
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where L is the length of the domain. The associated energy potential is

TT(u) = = du)zd (2.57)
(U)—fo E(& X. .

One can replace u(x) with the discrete solution

N
u(x) = > pix)ay, (2.58)
i=1

where @;(x) can be taken as the linear finite element shape functions
in Equation (2.44). In particular, finite element approximations are
local, which fits well the fact that quantum annealers have limited local
connectivity.

Considering only two elements (3 nodes) on the unit domain and
substituting Equation (2.58) in (2.57) leads to the discrete functional

M(ao, a1, az) = 0151 + agsz, (2.59)

where 5 ;
ai =[ag, aj, apa, Ao, a1l

s1=s,=[1,1,-2,0,0]"

(a) (b)

qi jl? a3

Figure 2.6.: Generic node graph (a) and element graph (b) for the one
dimensional Laplace equation in [70] with the corresponding
weigths of the Ising Hamiltonian.

A central idea in [70] is to associate every element with a local graph,
repeat it throughout the annealer graph, and form global connections
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according to the connectivity of finite elements. Every node i( is
associated with 3 qubits q]‘., which in turn are assigned to 3 different

values Vj; that the nodal solution can assume. Since qj‘: ==1,

3 q’+1
a;i= ZV‘/

In this way, a; can, in prlnuple, assume 9 possible values. However,
some of these values lead to invalid solutions and need to be penalized
when writing the discrete potential.

The image on the left of Figure 2.6 shows the node graph used in
[70]. This has associated H; and Jix weights, which contibute to the Ising
Hamiltonian. The aim of the nodal weights is to promote the boundary
conditions as well as feasible values of the solution of the nodes. In
case the PDE was not homogeneous, H; and Ji would also account for
the right hand side.

The right image shows instead the element graph for a single element,
characterized by the matrix J,. In the case of a 1D domain, the
connection is between two adjacent nodes, each characterized by 3
qubits, therefore the element weight matrix j7 is characterized by 9
linear equations

(2.60)

Z ZUn)ququ[ an(a;, aj) Sn, (2.61)
=1l=1
where i and j are the nodes connected by element n.

Once H;, Jik and (J")k are defined for every node and element, the
weights in the transverse Ising Hamiltonian are defined and the quantum
annealer can search for its ground state.

However, if a higher precision is required while spanning the same
range of possible values, then more than 3 qubits would be required per
node. In a realistic FE model with thousands of nodes this would require
a high number of qubits and a high degree of connectivity, which may be
beyond hardware capacity. Therefore Srivastava and Sundararaghavan
proposed the so-called ‘box algorithm’. The main idea is to have the
values Vj; centered around a value ul.c with distance r, thus

v;j=ul.c+r(j—2) (2.62)

In this way, the nodal values are spaced around uf with radius r
and for N nodes, all possible admissible values will be distributed on
the surface of a N-dimensional box. The procedure consists in doing
subsequent annealings until the desired precision r is met. After every
annealing, u.C and r are allowed to vary according to the following logic

f u + r for a certain i has lower potential than uC then the center
is moved to that point
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2. If uf is the point of minimum in the box, then r is reduced.

The procedure continues until r is below a threshold defined by the
user-defined precision of the solution. It can be shown that this is a
convergent process [70].

The graph-coloring and box algorithm was benchmarked against two
truss problems, described by the equation

d (EAdu) —0 (2.63)
I ax +f(x)=0, :

where E(x) and A(x) are respectively the distributed Young’'s modulus
and area, while f(x) is the distributed load over the truss. The first
example is a truss with a discontinous cross section at half length, while
the second is a tapered truss with distributed load. Both examples
converge to the numerical FE solution using up to 6 elements. The
authors also mention that a finer discretization would likely require a
two-point version of the box technique to better exploit the connectivity
of the annealer.

2.3.2. HEAT EQUATION

The heat equation is another widely applied mathematical model in solid
mechanics, which can be used to predict temperature profiles and heat
concentrations.

Let the spatial domain be Q € RY, and the temporal domain be I C R.
The solution u(x, t) satisfies the equation, in Cartesian coordinates,

2

ou 92u 9%u
a 2
ax? ax?

Py —+-~-+—)=aV2u, Xx=[x1,....xq]"€Q, te[0,T],

(2.64)
where a is the thermal diffusivity of the material. As usual, the
differential problem is well posed once complemented with boundary
and initial conditions.

For d < 3, the heat equation can be derived from Equation (2.28),
when no internal reaction terms Q(x, t) are present. In that case,

K
a=—. (2.65)
pc

COMPARISON OF CLASSICAL AND GATE-BASED QUANTUM METHODS

A comprehensive study on quantum solvers for the heat equation was
conducted by Linden et al., [37]. Specifically, the authors compared 5
classical and 5 quantum methods in terms of their theoretical runtimes
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to approximate the temperature integrated over a region S C Q, up to
precision € with 99% success probability of the algorithm, i.e.

'H—f u(x, t)dx| < e (2.66)
s

where H is the approximated temperature integral.

The discretization in time consists in first-order forward finite
differences, while second-order centered finite differences are used for
the space grid. This scheme is also called forward time centered space
or FTCS, for short. Therefore ?? becomes the finite difference equation

G(x, t+ At)— a(x, t)

At
a 4
=—— > 0(x1,...,Xi+Mxj, ..., Xq, t 2.67
(AX)ZE ( 1 i i d ) ( )
—20(X1, ..., Xiy oo, Xd, £)
+ a(x1,...,xXi—Mxi, ..., Xq, 0),

where At =T/M, M being the number of time intervals, while Ax =L/N,
assuming equal length L for each dimension and division in N intervals.
Furthermore, G is the approximation of u due to the finite difference
discretization.

By grouping the values of  at the same time step, Equation (2.67)
can be rewritten as

2daAt
(x, t+ At) = (1 — —) G(x, t)

(Ax)?
ait &, (2.68)
—ZZU(XL...,X[+AX,',...,Xd, t)
(Ax)* =
+ a(x1,...,Xi—DX;, ..., X4, t).

Also, by defining G; as the solution at time step tx, k = {1,... M},
Equation (2.68) can be written in vector form as

Uiyl = L0, (2.69)

where L is the linear operator on the right-hand side of Equation (2.68).
The classical solvers studied by Linden for this problem are the
following.

1. Single linear system approach with conjugate gradient. Equa-
tion (2.69) can be seen as a unique linear system, for the solution at
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subsequent times. In fact, if u=[uy,...uy]”, f=[Luo,O,...,0]7
and ug is the initial condition in discrete space, then

Au="f, (2.70)
where
I 0
—L 1
A= ) | (2.71)
A |

The conjugate gradient method is assumed in [37] to solve the
sparse linear system in Equation (2.70) in linear time, even
though variations of this method such as the biconjugate gradient
stabilized method (BiCGSTAB), [72], would be more efficient, while
accounting for the asymmetry of A.

. Time-stepping from initial condition. This is a matrix-vector

multiplication problem. In fact, Equation (2.69) can be expanded
up to ug as
ik = LXup. (2.72)

Then, the approximate solution at time tx = kAt is obtained by k
successive multiplications of £ to ug.

. Time-stepping using the Fast Fourier Transform (FFT). For the FTCS

scheme, the matrix £ in d dimensions has the expression [37]

alt
=12+ ——

d
e(-1) ®(d—j)
v a2 S eHe Iy, (2.73)

=1

where Iy is the identity matrix of dimension N. Also,

-2 1 1
1 -2 1
H= 1 , (2.74)
1 1 -2

which is a circulant matrix and can therefore be diagonalized by
the Discrete Fourier Transform F. Since the circulant matrices
operate on different dimensions, the matrix £ is diagonalized
by the tensor product of F, i.e. F®4. Furthermore, H has

eigenvalues Aj = —4sin? (’N") which can be used in combination

with Equation (2.73) to compute the eigenvalues of L. Therefore,

£ =(Fo9) " AFed, (2.75)
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where A is the diagonal matrix with the eigenvalues of £ on the
diagonal. Therefore the time stepping equation Equation (2.72)
becomes

i = (F®9) 1 AKF®u, (2.76)
Numerically, this consists in doing the Fast Fourier Transform (FFT)
of ug, multiplying the resulting vector by the k-th powers of the
eigenvalues of £ and finally performing an inverse FFT.

4. Random walk. Equation (2.68) can be seen in terms of stochastic
quantities. In fact, introducing s = 9Bt this equation can be

(Bx)%”
rewritten as y ;
a(x, t+ At) =(1—2ds)a(x, t)

d
+Zs&(x1,...,x,-+Axi,...,xd,t) (2.77)
i=1
+sl(xy,...,xi—Ax;, ..., Xxq, t).

If s <1/(2d), Equation (2.77) can be thought of as a stochastic
process. In fact, the temperature i at each time is determined by
those at the preceding time step on the surrounding d-dimensional
lattice with probabilities determined by s. In this sense the FTCS
equation is a random walk, where the position is the approximate
temperature 4.

5. Fast random walk. The standard random walk samples for all m
time steps, each sample requiring O(d log(N)) time, for a total time
of O(Mdlog(N)). A speed-up can be achieved with respect to this
standard technique. First, sample from the intial distribution in
O(dlog(N)) time and then compute the number of steps in each
dimension d and the number of positive/negative increments in
every dimension, by sampling two binomial distributions in time
O(log(M)), [37]. The improved runtime is O(d(log(M) + log(N))).

For their comparison, Linden et al. discussed how quantum subroutines
can speed-up the classical numerical algorithms for the heat equation. In

the case of quantum algorithms, the final solution state ’L:l> approximates
|&), that is the quantum state representation of u of the FTCS equation.
Starting from )lj> the approximate integrated temperature H in region
S € Q can be calculated up to precision € using numerical quadrature,

.. ;

where G is the d-dimensional grid in the domain Q, mz is the
numerically estimated norm of & and w(x) are weights that depend on
the specific numerical quadrature scheme.

<g, (2.78)

f u(x, t)dx — (Ax)d Z mzw(x) <x, t
S

xeGNnS
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The 5 quantum algorithms considered in [37] the following.

1. Quantum linear solver. A quantum algorithm for linear systems
can be used to solve Au =r, with the matrix A defined in
n Equation (2.71). Linden et al. utilized the algorithm in [73],
which is logarithmically dependent on precision. Even though this
method requires the matrix to be Hermitian, it can be applied to
the FTCS-discretized heat equation by solving for

ERHEH

2. Fast forwarded quantum walk method. Quantum walks are a form
of random walks that can be performed with unitary operations on
quantum states, [74]. The first results in quantum walks showed
how these could simulate random walks quadratically faster in
the limit of the number of time steps. Later, it was proved
that quantum walks can still retain quadratic speed-up even at
intermediate times, thanks to fast forwarding [75].

3. Coherent diagonalization. The operator £X in Equation (2.72) can
be diagonalized exponentially faster using QFT instead of FFT.
Ahead of measuring, one wants to reproduce the state

luk) = £X |uo), (2.79)

where it is assumed that |ug) can be prepared [37]. If & is the
Quantum Fourier Transform (QFT) operator, then

luk) = TAK® |up), (2.80)
where A is the diagonal matrix of the eigenvalues. Therefore |uk)
can be prepared following these steps

a) Prepare |ug).

b) Apply QFT.

c) Apply the Ak operator. This is not unitary in general, but it can
be implemented by using an ancilla qubit, applying a rotation
controlled on the ®|up) state, measuring and post-selecting,
[37].

d) Apply the inverse QFT.
4. Random walk with amplitude estimation. The random walk

technique can be accelerated quadratically, thanks to amplitude
estimation. In general, approximating fs u(x)dx requires O(1/€2)
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repetitions of the classical random walk due to the Chernoff bound.
However, if a boolean function f(s) exists such that

0 ifx¢s
f(s)= {1 fxcS (2.81)

and if f can be encoded as an oracle, then quantum amplitude
estimation can estimate Pr(f(s) =1) in O(1/¢) time. This can be
used, in turn, to compute [ u(x)dx.

5. Fast random walk with amplitude estimation. In the same way as
in standard random walks, amplitude estimation can be applied to
the fast random walk technique (see classical methods).

Table 2.2 shows the time complexities of all the classical and quantum
methods analyzed in [37]. In general, the classical FFT diagonalization
technique scores the best complexity for the one-dimensional heat
equation, while fast random walks with quantum amplitude estimation
have the lowest runtime for d < 2. However, both of these techniques
work only for hyper-rectangular domains, for which the heat equation
has an analytical solution in terms of Fourier components, [76]. Still, the
amplitudes of these modes are integrals, often computed numerically.
Depending on the initial condition ug and its Fourier decomposition, one
may need to estimate a high number of integrals, in which case the
methods for rectangular regions may still be meaningful.

On the other hand, quantum algorithms can still be faster even
on generic domains. In fact, except for d =1 where the classical
time-stepping technique has lowest runtime, standard random walks
with quantum amplitude estimation are as fast (d = 2) or slightly faster
(d=3).

However, Table 2.2 also shows that no quantum exponential speed-up
is possible. This happens even when some of the underlying quantum
subroutines are ‘exponentially faster’ than their classical counterparts,
as in the case of linear solvers. However, as showed by Montanaro
for elliptical problems discretized by FEM, obtaining a scalar quantity
requires O(poly(1/¢)) samples of the final quantum state, [15].

Finally, Table 2.2 shows that methods using a quantum algorithms
for linear system are never faster than the best classical algorithm for
d < 5, be it for rectangular or generic domains. Thus, one should be
aware of this limitation, if aiming for a speed-up to solve the heat
equation in a 3- or lower-dimensional space.

QUANTUM ANNEALING

Pollachini et al. proposed using quantum annealing in a quantum-
classical routine, in order to solve the heat equation, [77].
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Table 2.2.: Runtime comparison of classical and quantum methods for solving the FTCS heat equation, [37].
All runtimes are expressed in terms of terms of spatial dimensions d and error € on the estimated

temperature integral. The O notation hides polylogarithmic factors in the complexity. Adapted

from [37].
Method Domain d=1 d=2 d=3 d=>4

Classical Single linear system General O(e2) O(e2%) 0O(e3) O(e¥+13)
Time stepping General  O(e71°) O(e2?) O(e%°) O(e¥? 1)

Time stepping + FFT ~ Hypercube O(e7%%) O(et) O(e1?)  O(e79?)

Random walk General O0(e3) O(e3) 0O(e3) 0(e73)

Fast random walk Hypercube O(e72) O(e2) 0O(e?) 0(e7?)
Quantum  Single linear system General  O(e723) O(e72%) 0(e727%) O(e942)
FFWD Quantum walk General O(e717%) O(e72) O(e7223) O(e¥4-15)
Coherent diagonalisation Hypercube O(e712%) O(e71°) O(e17%) O(e94-1)

Random walk + AE General 0(e2) O(e?) 0(e?) 0(e7?)

Fast random walk + AE  Hypercube O(e7!) O(el) O(e™?) O(e1)
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The equation considered is

9%u  d%u
k —2+—2 +f(X1,X2)=O, (282)
ax?  ax’

which describes the steady state of the temperature distribution on a
2D domain with forcing term f(xi1,x2). Equation (2.82) is actually the
Poisson equation rather than the heat equation, where u(xi, x2) is the
equilibrium temperature and f(x1, x2) is a distributed heat flux. Dirichlet
conditions were used at the boundary.

Equation (2.82) is discretized using centered finite differences in the
usual way and the problem reduces to solving a linear system Au = f,

where f; =f(x(1'),x2)) Vie G, where G is the space grid.
The following quadratic Hamiltonian can be written,

H(u) = (Au—f)T(Au—f) (2.83)

whose ground state corresponding to the solution of the linear system.
Also, u; can be restricted to the range [—d;, 2¢; — d;) using the following

mapping
-1
u=—di+c y.q\/2, (2.84)

where d; and c¢; are user-defined real numbers and qﬂ are binary digits.

In this way, u; is associated to the binary string qﬁ and the precision can
be tuned by choosing d; and c;.
Substituting Equation (2.84) in Equation (2.83), results in an Ising

Hamiltonian
—1N—1 -1 N—1

H(q) = Z Z Hig! + Z Z/;fsq a, (2.85)

r=0 i= r,s=0,j=0

where N is the number of nodes in the grid. After annealing the system,
the inverse of the mapping in Equation (2.84) allows to reconstruct the
solution.

Pollachini et al. also provided a strategy to keep their algorithm
hardware-feasible even for large problem dimensions. They proposed to
use the iterative block Gauss-Seidel method, which consists in iteratively
solving D blocks of dimension N/D instead of one N-dimensional linear
system. For instance, taking D =2

[2;1 25][3;] = [2] (2.86)

Equation (2.86) can be solved iteratively, by making an initial guess for
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u; as u(20). Then, at time step k+ 1,

k+1 k
Anult? =f—Apul?
& - (2.87)

A22u2 = fz—Azlul

The quantum annealer takes care of solving each lower-dimensional
linear systems in Equation (2.87) and Gauss-Seidel iterations are
repeated until convergence.

Pollachini et al. ran their algorithm on both DWave 2000Q and
DWave Advantage quantum annealers, [78]. The source term f(x1, x2)
was taken randomly and Equation (2.82) was discretized on a 11 x 11
grid, corresponding to 9 internal points and a linear system with 81
unknowns, which was at the time one of the largest linear systems
solved (at least partially) on quantum hardware.

One of the issues that arises in the computations is a flattening of
the error curve for increasing iterations of the block Gauss-Seidel solver.
This was attributed to saturating the floating-point precision achievable
by a fixed number of qubits R. Indeed the authors fixed this issue
by progressively shrinking the d; range in Equation (2.84), matching
the same convergence curve as the classical Gauss-Seidel algorithm.
However, increasing the number of qubits R per interval did not benefit
the solution’s precision, likely due to increasing hardware noise.

Despite the approach of Pollachini et al. being hardware-ready and
verified, it is unclear whether it may provide an advantage. Furthermore,
their method can only be applied to the steady-state problem. However,
an alternative to solve the time-dependent within quantum annealing
might be to semi-discretize in space and then use the algorithm for
systems of linear ODEs proposed in [79].

2.3.3. WAVE EQUATION

A third classical PDE is the wave equation, which describes the
propagation of a perturbation through a medium. In Cartesian
coordinates, the wave equation reads

The wave equation is written, in Cartesian coordinates, as

a2u d 32y
_ 2 — T

7 =¢ ;ax?, x=[x1,...,xq]T€Q, te[0,T], (2.88)
where c is the wave propagation speed in the medium. Additionally, two
boundary and two initial conditions fully specify the problem.

If the Poisson equation describes the volumetric deformations of
rods, membranes and solids, the wave equation models the isotropic
propagation of waves, at constant speed, in the same elements.

Assuming d < 3, the wave equation can be derived from Equation (2.24)
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by assuming volumetric deformations and the absence of body forces.
In that case, given k the axial or membranal or volumetric stiffness,
then

c?=—. (2.89)

Except for a few instances, where an analytical solution can be found
through separation of variables or using the method of characteristics,
the FDM and FEM are generally used to find an approximate solution of
the wave equation. For instance, in the case of FDM, the Laplacian on
the right hand side of Equation (2.88) is discretized with centered finite
differences and then a Runge-Kutta scheme allows to find the solution
at subsequent time steps, starting from the initial conditions

u(x,0) =uo(x) 5 90
W =000 (2:99)

t=0

The exact runtimes of these classical methods depend on the order
of discretization r of the Laplacian, the choice of the time-stepping
technique, etc. However, their asymptotic behavior is bounded from
below as Q[Tpoly(l/s)d], showing the curse of dimensionality already
seen for the Poisson and heat equations.

Nevertheless, replacing classical linear algebra subroutines with
quantum algorithms can remove the exponential dependency on d also
when solving the wave equation. This was proved by Costa et al., [17],
who showed how to turn Equation (2.88) into a Schrédinger equation
and solve it using Hamiltonian simulation.

For the sake of explanation, let the wave equation be one dimensional
and take ¢ = 1. As usual, the domain can be reduced to a grid of spacing
Ax on which the Laplacian on the right hand side of Equation (2.88) can
be approximated. The number of gridpoints used for the finite difference
approximation determines the order r of the discrete Laplacian L() and

the discretization error ||ﬁLfr)—V2(x("))ll, which scales as O ((Ax)").

For instance, the standard centered difference scheme uses r = 2, such
that

(i+1) +y_ 0 (i~1)
1 L(z)u(x(i)) _ u(x , ) —2u(xY, t) + u(x , t).
(Ax)? (Ax)?
Furthermore, if one sees the grid that discretizes Q as a graph Gax of
|V| vertices x() and |E| edges x(*1) —x(, the discrete Laplacian can be

thought of as a matrix L(7(Gax) defined on this graph.
Keeping r =2, Equation (2.88) becomes

(2.91)

3%u 1

- (2)
3 (AX)ZL u, (2.92)
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where u=[uzy, uz,...,uy] and N is the number of vertices.
Assume that a matrix B exists such that BBT = L. One can then write

druy ([0 Blruy

&[UE]__E[BT 0:|[UE]' (2.93)
where uy = u and ug are additional variables associated to the edges
of the graph G. We notice that Equation (2.93) is equivalent to the
mixed formulation of the finite element method, where momentum and

position figure as the unknowns.
Deriving Equation (2.93) with respect to time, one obtains

e A )

which shows that, if BBf =L, then uy both evolves according to the
Schrédinger equation (Equation (2.93)) and it is the solution of the
original wave equation.

For an order 2 Laplacian, the B matrix is the graph signed incidence
matrix. If one assigns random orientations to the edges of graph Gax,
then

JW;  if edge j self-loops in vertex i
B — VWi if vertex i is a source of edge j
Y7 ) —/Wy if vertex i is a sink of edge j
0 otherwise

(2.95)

where Wj are weights assigned to the edges of the graph. For
instance, in case of the second order Laplacian, the graph is unweigthed
(Wi =1Vij).

If the Laplacian has order r > 2, the graph theoretical interpretation
of B is not as straightforward. Yet, [17] discusses a general algebraic
procedure to determine the incidence matrices for these higher order
Laplacians and provides the entries for B and L(") up to order 10.

In order to solve Equation (2.93), the Hamiltonian simulation can be
performed from an initial state, in order to determine uy at time t. The
authors employ the algorithm in [80] for sparse Hamiltonian simulation,
that is optimal with respect sparsity, error and simulation time.

It is shown that Hamiltonian simulation for time t = T requires a number

of gates that is é(sz (T/s)l/r) and that the initial state can be prepared

in time é((r/2+1)d5/zl(T/£)1/r), where [ is a characteristic domain
dimension. Most importantly, these runtimes show no exponential
dependency on the dimension d, even though they do not include the
time required to sample the output. Still, unless the full Hilbert space
needs to be sampled, the measurement step would not reintroduce the
curse of dimensionality, but just a O(1/¢) factor.
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Thus, as seen for the Poisson and heat equations, the speed-up
with respect to classical numerical solvers is exponential for variable
dimensions, but at most polynomial if the dimension is fixed. However, it
is interesting to that the homogeneous wave equation can be interpreted
as a Schrodinger equation and solved via Hamiltonian simulation. The
same authors of [17] notice that if Equation (2.88) was treated as a
second-order ODE, rather than a Schrodinger equation on an extended
Hilbert space, it could be solved using the algorithm of [81], but that
would result in a quadratic slowdown.

The work of Costa had an important follow-up in Suau et al., [18],
where the authors studied the implementation, number of gates and
actual runtime of Costa’s wave equation solver. As a benchmark
problem, they took the simplest case of a 1-dimensional wave equation
with homogeneous Dirichlet boundary conditions on the end points.
However, this implementation slightly deviates from the original wave
equation solver, since the authors replaced the optimal-complexity
Hamiltonian simulation algorithm in [80] with the more common
Lie-Trotter-Suzuki (LTS) product formula, [82, 83].

The number of gates and runtimes required for implementing the
wave equation algorithm was counted according to the following gate
set

{U1(A), U2(A, 9), Us(A, @,6),CNOT }, (2.96)
where
: cos(%) —e"‘sin(%)
U3(A,¢,9)— ei¢5in(g) e[)\_'_(pcos(g) (297)
T
Uz(A, ) = Us (A, %, 5) (2.98)
U1(A)=Us3(A,0,0) (2.99)
1 0 0O
01 0O
CNOT = 00 0 1 (2.100)
0 01 O

The runtime is obtained by converting the Hamiltonian simulation
circuit to the gates in Equation (2.96) and using the gate execution times
provided by the manufacturer, [84]. The first interesting point is that
the circuit in [18] represents one of the few instances of a quantum PDE
algorithm specified in terms of gates that can be efficiently compiled
into hardware.

The gate counts of Suau’s algorithm match the asymptotic (big-O)
behavior of the wave equation solver for variable error, simulation time
and number of gridpoints. Most interesting however, are the constants
hidden in the big-O scaling, that vary between10® and 108. This results
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in extremely high gate counts even just for solving the simplest possible
instance of the wave equation. For example, given a moderately
interesting grid size of 10® nodes, the quantum wave equation solver
requires 1017 gates. The total runtime estimated for such a problem
size is almost 1000 calendar years, [18]. In terms of number of qubits,
the solver requires roughly 70 logical qubits, each consisting of 1000
to 10000 physical qubits, thus vastly overshooting the NISQ hardware
specifications.

2.4. QUANTUM ALGORITHMS FOR NONLINEAR PDES

Solvers for nonlinear problems require high computational resources.
The non linearities in the PDEs may be due material properties, such
as hysteresis, plasticity or damage, but also arise in case of large
displacements or in the presence of contact. Whatever the cause,
classical numerical methods are generally iterative and require to solve
large linear system of equations in possibly many iterations.

Quantum algorithms for nonlinear PDEs are scarce up to present date,
and no work focuses specifically on structural mechanics. However,
techniques to solve generic (or quasi-generic) nonlinear PDEs were
proposed, [85, 86]. Both approaches consist in variationally training
a parametrized circuit and on using a hybrid stratregy, whereby the
quantum computer estimates the cost function terms and the classical
one implements the optimization update. Nevertheless, the two
methodologies significantly differ in their approaches to encoding the
nonlinearities and computing the cost function.

The quantum circuit in [85] is represented in Figure 2.7. The encoding
of nonlinear terms happens via a quantum nonlinear processing unit
(QNPU), which is a circuit meant to compute nonlinear functions of
polynomial form that appear in the cost function. These can be written
as

,
u®” TToju®, (2.101)
=1

where the terms u(® are copies of the solution function and u(®)”
represents the complex conjugate of u(}), The terms O, are different
linear operators that are applied on different copies.

By normalizing u®) as |u?), the solution can be prepared by a
parametrized ansatz, i.e. |u®)=U(8)|0). The ansatz at a given
optimization step can be used as many times as the number of solution
copies required by Equation (2.101) and the QNPU circuit applies the
operators O; and performs point-by-point multiplication depending on
the specific nonlinear terms in the PDE.

The introduction of repeated input and the QNPU increases the depth
of the quantum circuit with respect to VQAs for linear problems. The
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0) —{ #] H

\0>®”+|U1<0> —

0y®" [0,0) | -
QNPU

0)°" (v, —

Figure 2.7.: Scheme of the variational circuit in [85]. The quantum
nonlinear processing unit (QNPU) takes as input r copies of
the solution vector, generated by the ansatz U(@). Then,
the QNPU applies the operators O; in Equation (2.101) as
quantum operators. The circuit’'s output comes from the
measurements of the ancilla qubit and corresponds to the
required cost function term.

authors solve this problem by encoding the quantum ansatz and the
operators O; as matrix product states (MPS) of the bond dimension Y,
resulting in an overall depth of O(poly(x, n)). In this way, the number
of ansatz parameters is also polynomial in n and x [85], preventing any
curse of dimensionality.

The integration of multiple inputs with a QNPU provides an effective
approach for replicating nonlinearities. Nonetheless, the implementation
of the QNPU block is inherently contingent upon the specific problem
and may prove challenging for complex nonlinear expressions.

Another work leveraged the ideas of quantum feature mapping and
exact differentiation of quantum circuits [87, 88] to variationally solve
generic nonlinear differential problems [86], i.e.

dMup
FH } ,{un(x)},,,x}=0, (2.102)

dxm

The concept of feature map originates from the machine learning
literature and consists of embedding the data into the model as
parameters. In terms of quantum circuits, this means that x can
be mapped to a 2"-dimensional space with a unitary operator Ug(x)
parametrized through a nonlinear function &(x). A straightforward
instance of quantum feature map is

Ue(x) = Q) Ry,i (§(x)), (2.103)

i=1
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where Ry (¢) = e~2Yt and Y; is the Pauli Y gate applied to qubit i.
A common choice is §(x) = arcsin(x), which means that x will be
encoded in quantum amplitudes that are polynomials up to order 2" in

{1.x vV1-x2}, [86].

An ansatz is Ug used to confine the search of the PDE solution to
a feasible subspace. Overall, the parametrized quantum state whose
amplitudes embed the tentative solution is

|ug,0(x)) = Ue(x) Ug |0). (2.104)

In order to map between ‘Ug,e(x)> and u(x), one needs also to specify
an observable €, such that

ux) = (ug,6(x)|C|ug,o(x)). (2.105)

Once the parameters @ have been optimized, the approximate solution
at any point x can be reconstruced by simply measuring the expectation
value of € under the state |u5,9(x)>. This has the obvious advantage of
not having to sample the entire 2"-dimensional Hilbert space, as it is
necessary with quantum algorithms based on amplitude encoding

Training Ug requires to minimize a loss function Lg = Le(d =, U, x) with
respect to the parameters 0 Slnce the feature map is parametrized on

X, the analytical derivative 4 dx o can be calculated by applying parameter
shifting m times [43, 89]. Form=1

dx _Z E/e’C‘ 519 <£10

where ‘+’ and ‘-* symbolically represent the positive/negative x-shift
and the sum is among all the parametrized gates composing the feature
map. Suitable choices for Lg can be the residual in Equation (2.102) or
the mean squared difference with respect to the exact solution, if this is
available.

¢

Uz o)) (2.106)

2.5. DISCUSSION

The previous sections reviewed the literature of partial differential
equations pertinent to structural mechanics. The analysis was divided
into linear and nonlinear PDEs, which is a standard classification for
differential problems. The first group includes the works related to
Poisson, heat and wave equations, while the second one deals with the
methods to solve general nonlinear problems.

Linear problems can be solved using all different quantum paradigms,
i.e. full gate-based, hybrid quantum computing and quantum annealing.
In terms of the full-quantum gate-based primitives, such as quantum
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linear solvers, quantum Hamiltonian simulation etc, the Poisson, heat
and wave equations can be solved with these quantum algorithms
and inherit their complexities. However, the different character of
the equations and the specific discretization determine which quantum
routines are applicable and the extent of the advantage. For instance,
quantum linear solvers are applicable to every linear PDE, both
stationary and time-dependent, if the latter are written as a single
linear system spanning multiple time steps. Nevertheless, the Poisson
equation (on rectangular domains) with periodic boundary conditions is a
favourite candidate for QLSAs, since the finite difference approximation
of the Laplacian results in a circulant matrix that is diagonalized by
the QFT, [57, 59, 61, 66]. This allows to do Hamiltonian simulation in
the QLSA solving the Poisson equation exponentially faster than with
non-circulant matrices.

On the other hand, heat and wave equations benefit more from
different quantum subroutines. One hint to this is the evolutionary
character of both equations, which means that linear system dimensions
scale multiplicatively with respect to time grid size. Also, the time
dependency seems to suggest the approach of semi-discretizing in space
and then solving systems of ODEs with some Hamiltonian simulation
algorithm. Indeed, this approach is ideal for the wave equation where
Hamiltonian simulation solves the related graph problem in the higher
dimensional space, [17]. On the other hand, the heat equation does not
benefit as much from quantum ODE solvers and the useful analysis of
[37] proves that minimum runtimes are achieved when accelerating a
classical method (classical random walks) with amplitude amplification.

Of course, all previous considerations hold for quantum subroutines
that require error-corrected hardware. Near-term quantum techniques
for linear PDEs exist as quantum annealing and variational quantum
algorithms, even though the efforts in this sense are in their infancy. For
PDEs in structural mechanics, only two quantum annealing algorithms
have been proposed, for elliptical FE problems [70] and for the stationary
heat equation [77]. A first gap in this branch of literature are quantum
annealing algorithms for evolutionary problems, such as heat and wave
equations.

Also VQAs have just recently been applied to linear PDEs. The general
literature on variational quantum computing is vast, but their use in
PDEs has been limited to generic nonlinear problems, [85, 86]. In
particular, there is still a lack of works for specific PDEs, even though
such specialization is critical. For instance, [69] showed the relevance of
the Poisson matrix in the context of VQAs. In fact, the discrete Poisson
matrix can be decomposed in a poly-logarithmic number of observables,
which is a necessary condition for advantage of variational PDE solvers.

The matter of choosing a quantum primitiv for nonlinear problems
is not straightforward because all quantum operations are ultimately
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linear. The ways forward seem ultimately to linearize the equation
and apply existing quantum techniques or solve the PDE variationally.
Although there is research on linearization of nonlinear ODEs and use of
QLSAs at each step [90], all works on nonlinear PDEs so far have relied
only on variational quantum computing. As seems likely, this paradigm
together with quantum annealing will likely be the only quantum
alternative viable in the near term to solve PDEs, linear and non-linear
alike. However, there is currently a literature gap on fault-tolerant
quantum computing for nonlinear PDEs.

A final remark concerns the extent of the overlap between quantum
PDE and structural mechanics literature. To the best of our knowledge,
only a single work has been published on the subject, [70]. In fact, the
vast majority of literature either focuses on textbook PDEs (Poisson, heat
and wave) on hypercubic domains and standard boundary conditions or
provides a framework for generic nonlinear problems, that ultimately
leaves the choice of critical hyperparameters to the user, [85, 86]. Of
course, both sides of the spectrum project onto structural mechanics,
but quantum computation still has to be tested against more complex
problems in the field. It should be noted that other disciplines that are
not traditional targets of quantum avantage, such as fluid mechanics,
[91] and finance, [92], have explored several quantum algorithms
to solve problems in their domain. The hope is that the structural
mechanics community will also increase efforts in this direction.
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A VARIATIONAL QUANTUM
LINEAR SOLVERFOR THE 1D
POISSON PROBLEM

Different hybrid quantum-classical algorithms have been proposed to
solve linear systems of equations on near-term quantum devices. These
methods map the linear system problem to a Hamiltonian evolution
one, where the ground state is proportional to the linear system’s
solution. The free parameters of a tryout or ansatz quantum circuit are
updated classically, while state preparation and measurement occur on
a quantum device. To retain a potential advantage, variational linear
solvers assume that the coefficient matrix can be decomposed into a
logarithmic number of efficiently measurable operators with respect to
the linear system size. However, the standard decomposition in Pauli
operators for generic matrices shows a linear scaling. In this work, we
show how to solve a specific instance, namely the Poisson 1D matrix
with Dirichlet boundary conditions with a variational quantum linear
solver (VQLS) and we find a nontrivial decomposition based on both Pauli
strings and multi-controlled gates. The resulting number of operators
is roughly half that obtained by a full Pauli decomposition for large
linear system dimensions. We further discuss the trade-off between the
number of terms and the near-term implementability of the quantum
circuits that the proposed decomposition requires. Finally, we present
the first simulated and real-hardware results obtained by solving the
Poisson 1D problem with VQLS also using our novel decomposition.

71
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urrent quantum computers are a tool in search for applications. Even

though several quantum algorithms have deep practical implications
and offer up to exponential speed-ups, their promises are so far purely
theoretical. Good examples of this are Shor's algorithm for period
finding [1], and Grover’s for database search, [2],.

The reason why no implementations at useful scales exist for this
algorithms is that quantum hardware is still far from its maturity. One of
today’s challenges is to find combinations of problems and algorithms
that can run on NISQ devices with limited error. One way to proceed
is to choose problems that are classically hard but easy for quantum
computers, regardless of the practical interest of the problem itself,
[3]. A second case way is to assess the performance of algorithms
for early quantum hardware in solving a relevant problem. Offloading
part of the computation to a classical processor, variational quantum
algorithms (VQA), [4], have been identified as a one of the prominent
near-term ways to solve problems in different disciplines, such as
quantum chemistry, [5-7] and quantum machine learning, [8].

Certain variants of variational quantum routines were developed
specifically for solving linear systems of equations, [9-13], which are
encountered in many different scientific and engineering disciplines.
Unlike the seminal work of Harrow, Hassiddim and Lloyd on solving
linear systems on an ideal quantum device, [14], these algorithms do
not promise an exponential speed-up, but, due to the lower hardware
requirements, they were used to solve linear systems with up to 1024
equations on a quantum device, [11].

However, previous works focused on problems where the coefficient
matrix is composed of unitaries acting on few qubits, that can be
straightforwardly encoded as quantum circuit. The open question is
whether variational linear solvers can efficiently solve problems that
are closer to real-world applications. In this work, we contribute to
the answer by solving a basic example in numerical analysis, which is
the 1D Poisson problem with Dirichlet boundary conditions, with the
algorithm known as Variational Quantum Linear Solver (VQLS), [11].

More specifically, we discuss the decomposition the 1D Poisson
coefficient matrix, resulting from a uniform grid, finite-difference
discetization of the 1D Possion problem. This decomposition is crucial
to variationally simulate the Hamiltonian of the VQLS problem, whose
ground state corresponds to the linear system’s solution. We show
that the standard decomposition in Pauli operators translates in 27
terms, where n is the number of qubits, and we propose an alternative
decomposition in 271 + n terms, which almost halves the number
of terms for large dimensions. We compare the Pauli and novel
decompositions in terms of hardware fesibility and show results both on
simulator and on quantum hardware.

The rest of the chapter is structured as follows. Section 3.1 briefly



3.1. Background 73

explains the main concepts behind quantum linear systems and VQLS.
Following, Section 3.2 presents the problem and the standard and
proposed decompositions for the coefficient matrix, and compare the
two in terms of number of operators and ease of implementation on
hardware. Section 3.3 shows the results of solving the Poisson 1D linear
system with VQLS on both simulator and IBM quantum hardware. Finally,
Section 3.4 discusses the findings and draws the final conclusions.

3.1. BACKGROUND

Let A be a square complex N x N matrix and b a complex N-dimensional
vector. The aim is to find the complex vector u such that

Au=b. (3.1)

In general, the form in Equation (3.1) is not suitable for quantum
computation, because u and b may not have unit norm and thus are
not valid quantum states. Nevertheless, one can solve the analogous
problem

Alu) =1b), (3.2)

where |u) = u/||u]| and |b) = b/||b]|. Eg. Equation (3.2) is known as the
Quantum Linear System Problem (QLSP).

Following [11], one requirement to solve Equation (3.2) variationally is
to express A as a sum of unitary operators. This means that the matrix
A must be decomposed as

L
A=ZC1A[, (3.3)
=1

where ¢c; € C, A; are unitary N x N complex matrices and L is the total
number of operators. Furthermore, the state |b) needs to be prepared
efficiently.

As explained later in the paper, the problem of reducing the number
of unitary components of A is crucial for the success and the efficiency
of the variational quantum linear solver.

3.1.1. THE VQLS ALGORITHM

The VQLS algorithm, [11], finds an approximate solution |xs) to the
generic QLSP. It works by minimizing a cost function that represents
the distance between the states |¢) = A|u) and |b). The optimization
parameters @ determine the tentative solution |u) at every iteration as

u(@)) =Vv(e)|0), (3.4)

where V(0) is a parametrized quantum circuit known as ansatz.
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VQLS is a hybrid optimization algorithm, where the quantum part
prepares the state |u(@)) and evaluates the cost function, while the
classical routine updates 0 following an optimization logic, for example,
gradient descent.

COST FUNCTION

Solving Equation (3.2) can be seen as finding the ground state of the
Hamiltonian
Hg = AT(1—|b) (b])A. (3.5)

Therefore, the cost function of VQLS can be seen as the expectation of
Hg with respect to trial state |u(0)),

Ce = (u(@)IHg|u(0)). (3.6)

In this form, however, Cg has a minimum not only if A|u) « |b), but also
if the norm of ¢ = A|u) vanishes. Therefore, one can simply normalize

¢ as |¢) = ¢/||¢|l to find
Co=1—1(bly) (3.7)

As Alu) — |b), (b|¢) — 1 and Cs vanishes, making Equation (3.7) a
suitable cost function for the QLSP.

What motivates the use of a quantum computer in VQLS is the
hardness of classically evaluating a cost function such as Equation (3.7).
In particular, evaluating Equation (3.7) to within precision § = 1/poly(n)
is a DQCl-hard' problem, [11], and therefore impossible to solve
efficiently in classical logic, [16, 17].

In order to evaluate Cg, we need to introduce the expansion in
Equation (3.3). Remembering that ¢y = A|u), we can rewrite

(ulAT |b){b| Alu)

2 _
1) = == e

Then, expanding A, we get

S S, (ulA] Ib)blAr|u)
- L L
Siq 2oy (ulA]Av|u)
where we notice that a total of 2L2 expectation values must be

computed to evaluate Cg, where L is the total number of terms in the
decomposition of A (Equation (3.3).

Cg=1 (3.8)

1DQC1 is the Deterministic Quantum Computing with 1 Clean Qubit (DQC1) complexity
class, which consists of probems that can be solved in the 1-clean-qubit model of
computation in polynomial time [15]
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ANSATZ

In principle any |u(@)) can be prepared by any parametrized quantum
circuit. We give here just a high level overview of the possible choices.

In literature, different ansatz types exist, but a main distinction is
between the hardware efficient ansatze (HEA) [18], and the Quantum
Alternating Operator Ansatze (QAOA), [19]. The first ones use only a few
gates that are native or easily implementable on the quantum device,
in order to introduce as little noise as possible. However, these ansatze
are problem-agnostic, because they do not relate to the input of the
problem. On the other hand, the QAOA is inspired by the adiabatic
principle and therefore needs a final Hamiltonian that is aware of the
original problem.

Indicatively, QAOAs can be good choices if some knowledge about the
solution of the problem is available, because this can be encoded in the
final Hamiltonian. However, the register size and circuit depth required
to prepare the ansatz might be unavailable on NISQ hardware, at least
for problem sizes that are not classically simulatable.

OPTIMIZATION ROUTINE

In principle any classical optimizer can minimize Equation (3.8) and
there are no general rules to favor a specific choice. Furthermore,
VQAs can also leverage gradient-based optimizers, because the different
flavours of the parameter shift rule, [20], allow to compute derivatives
of any order.

Here, we do not discuss extensively the benefits of different optimizers
applied to VQAs. Good resources exist that overview the field, [21].
However, two considerations are worth mentioning, that can steer the
optimizer’s choice. Firstly, VQA loss landscapes are in general highly
nonconvex, [22], and simple gradient descent easily falls into local
minima. Gradient-based optmizers with momentum, such as Adam,
[23], or gradient-free methods are more advisable for that reason. Also,
gradients of the VQA loss can vanish for certain choices of ansatz, [24],
loss function, [25], and due to noise [26]. Quantum-information based
optimizers such as the quantum natural gradient descent method, [27],
can help navigating these barren plateaus of the loss landscape, at the
cost of more quantum resources.
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3.2. 1D POISSON PROBLEM AND MATRIX DECOMPOSITIONS
The 1D Poisson problem with Dirichlet boundary conditions is defined as

U0
—— =f(X),

dx? (3.9)
u(xo) = uo,
u(xL)=uy,

where u(x) is the solution function, f(x) is a load vector and ug, u; are
respectively the known values of the solution at the boundary.

The problem can be reduced to a linear system of the form Au=b
by discretizing the domain with a uniform-grid centered finite difference
approximation

d?u  uj1—2ui+ Ui
dx?2 2(Ax)2

where Ax is the resolution of the space discretization, and by sampling
f(x) at the internal points.

The resulting matrix is tridiagonal with constant coefficients a, 8 € R
on the main and off-diagonals, that is

o B -
g o

, (3.10)

A= B a B . (3.11)

ST
i B al

The exact value of a and B does not matter for the present discussion.

3.2.1. PAULI DECOMPOSITION

Generally speaking, every N x N Hermitian matrix can be seen as a
linear combination of N2 Pauli strings, [28], where each Pauli string acts
on n =10g,(N) qubits. Therefore, the Poisson matrix in Equation (3.11)
can be expressed as

N2
A=>"cP, (3.12)
=1

S S S
Pi=0,®0,®---®0 .,

(3.13)

where of € {X, Y, Z, I} are Pauli operators.
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Since all Pauli strings are unitary, Equation (3.12) can be used to
compute the terms of the VQLS cost function.

We show now that tridiagonal matrices do not require all the terms in
the Pauli alphabet of generic Hermitian matrices.

Theorem 1. Tridiagonal matrices such as Equation (3.11) can be
decomposed in 2" Pauli strings, rather than 22",

Heuristic Proof. Without loss of generality, we assume that a =2, 8 =1.
The n =1 case is trivial, since

Ay = [_21 _21] = 2Ip — Xo. (3.14)

For n = 2, we start by taking the tensor product of I with the terms for
n =1, which gives

2 =1 0 0
-1 2 0 0
0 0 2 -1 =Il(2IO_X0),
0 o -1 2

where the Pauli operator I; acts on qubit i and tensor products are
implied between operators acting on different qubits.
To add the missing off-diagonal elements, we first notice that

0 001
010
XiXo=109 1 0 0
1 00O
We can correct the 2 spurious elements by including
0 0 0 -1
0 01 O
Wo=19 1 0 o |
-1 0 0 O
so that, for n =2 we get
1 1
A =I1(2Ig — Xo) — §X1Xo + EYlYo. (3.15)

This mechanism holds more generally for n > 2. Each time, the tensor
product of I with the expansion for n— 1 adds 271 terms. Furthermore,
the term X,—1... Xp fills the main antidiagonal of the matrix and finally,
the spurious 2"~1—1 nonzero couples of terms on the main antidiagonal
are removed by as many Pauli strings that are either Y,—1...Yp or
combinations of X and Y gates on different qubits. O
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3.2.2. DECOMPOSITION WITH MULTI-QUBIT GATES

The set of Pauli strings is not the only option to decompose
Equation (3.11). One class of quantum gates that cannot be replicated
by Pauli strings are multi-qubit gates, like SWAP or controlled gates.
We use these multi-qubit gates to formulate a decomposition that, for
large dimensions, almost halves the number of operators with respect
to using solely the Pauli strings basis.

In particular, we make use of the following unitary operator, which we
name center-switch. This gate 'switches’ the most significant qubit to a
state and all other qubits to the opposite state, that is

CS|01...1) =CS|10...0)

CS[10...0)=CS|01...1) (3.16)

. In matrix form,
M1

CS = (3.17)

1

For n = 2 qubits, the center-switch corresponds to the familiar SWAP
gate. The matrix form shows that the CS gate contains the off-diagonal
elements without any extra spurious ones on the antidiagonal, opposite
than the X,—1...Xo operator in the Pauli decomposition.

Table 3.1 compares both terms and number of terms in the Pauli and
CS-based decompositions up to n = 4. Evidently, compensating for the
extra diagonal elements introduced by the center-switch requires less
additional terms than correcting the full antidiagonal of the Poisson
matrix.

COMPILATION OF THE CENTER-SWITCH GATE

We can show, by using basic permutation theory, that the CS gate
corresponds to a sequence of multicontrolled gates. First, we recall
the concept of transposition, that is simply a permutation between two
variables, i.e.

(a,b): a—b and b-—-a. (3.18)

By introducing a third variable p, (a, b) can be expanded as a product
of three transpositions, thus

(a, b) =(a, p) (p, b) (a, p). (3.19)



79

3.2. 1D Poisson Problem and Matrix Decompositions

u+ N N mE(_qu
I—u u
. . . OATATAEA ‘OXTXTAEL ‘OXTATXEL ‘OATXTXEL
0z Z5ztz WEZEZ PIZEZ OZITTZ oy tizsey OxTYTAEY ‘OATAZXEX ‘OXTXTXEX
~ SO "I Z°Z°1 “Z7°Z7 " e SO0l OXTATAEL ‘“OATXZAE] ‘OATAZYE] ‘OxTx2xE] L ¥
(0—T)gwMSZIET ‘OX T I2E] ‘07T 7€ ‘O TIIE] (O R TAZIE] (0N T ZIE] ‘X 2IE] ‘OFLIerET
OHHNNNSN:NNAOINVWU OXTATA ‘OxTxTL ‘O4TACY ‘OxTIxCy g ¢
OxTrer ‘071721 ‘0111 AoI.Dn_<>>mN~ “OATAC ‘Ox Ty ‘OxTrCr ‘O1Trg
0xTf ‘0zTz ‘OfTp ‘(0—TgymS OATA ‘OxTx ‘OxTf ‘OfTf vz
UD3IMS-121Uad Y3im uonisodwodaq uonisodwodap Ijned N Uu

‘[ pue ) 3gnb usamiaq Jaisibal 8yl uo bBude a1eb yolms-1a3uad e sazedipul (-Ng uoneiou
Ul Xujew QT UOSSIod dYj JO Suollsodwodap YDIMS-I9]uad pue Ijned Usamiaq uosuedwo) 'T'€ a|qeL



80 3. VQLS for Poisson 1D

In particular, considering transpositions between bitsrings, we see
that
CS =(011, 100), (3.20)

where bitstrings are written in little-endian notation. Furthermore,
the transposition in Equation (3.20) can be expanded twice by using
Equation (3.19) and two intermediate bitstrings, e.g., p1 = 001 and
p2 =000, such that

CS=(011, 100)= (011, 001)(001, 100)(011, 001)

= (011, 001)(001, 000)(000, 100)(001, 000)(011, 001), >%)

The gates corresponding to the transposition in the last line of
Equation (3.21) are Toffoli gates, which have two control qubits and one
target. For instance, the (011, 001) term corresponds to a Toffoli gate
whose control qubits are the most and least significant ones and whose
target qubit is the middle one. The middle qubit is flipped when the first
control is in state 0 and the second one is in state 1. Figure 3.1 shows
the circuit implementing Equation (3.21).

When n > 3, the procedure to compile CS is the same, but the gates
implementing the single bitflip permutations are multicontrolled gates,
which can be further compiled in single and 2 qubits gates, following
known recipes, [29].

We notice therefore that the CS gate, once compiled, has a high cost
in terms of hardware resouces. In fact, every CS ultimately results in
a large number of noisy two qubit gates, and it requires almost full
register connectivity. Thus, even though the CS-based decomposition
saves almost half the number of operators for large number of qubits, it
is less ameanable than the Pauli decomposition for implementation on
NISQ devices.

3.3. RESULTS

We used the VQLS algorithm with the CS-based decomposition of the
tridiagonal matrix to solve the following Poisson 1D problem

d?u
—@ = const,
22
u(xo) =0, (3.22)
u(xL) =0,

where the value of the constant load was chosen such that the
normalized discrete load vector can be prepared with a Hadamard
transform, i.e.

®n 1 T
|b) =H |o”)=J—2_n[1...1] . (3.23)
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AEan
P

$
Figure 3.1.: Center-switch gate corresponding to the (011, 100) permu-
tation. Each one of the gates is a Toffoli gate, which has two
control and one target qubits. An empty cirlce at the control

qubit means that the qubit must be in state 0 to activate
the gate and a full circle means that it must be in state 1.

The trial state vector was prepared with an ansatz consisting of a
single Ry(0) gate per qubit, therefore

u(6)) =Ry (60) ®--- ® Ry (6n-1)[0"). (3.24)

The cost function terms in the numerator and denominator of
Equation (3.8) were evaluated using the Hadamard Test circuit, [30].
Also, quantum circuit composition and evaluation was done using the
Qiskit library, [31]. Two different backends were tested. The IBM QASM
simulator, where circuits were sampled 1 x 10% times, and IBM quantum
device ibmg_athens, [32], which only allowed for 8192 shots. Finally,
cost function minimization was done using the COBYLA algorithm, [33].

Figure 3.2 shows the VQLS cost history and fidelity of the solution for
n=1and n=2, thatis, fora 2 x 2 and 4 x 4 linear system respectively.
The fidelity is calculated as

F=|(u(6f)|uo)

where |u(8f)) is the final VQLS solution and |ug) is the solution of the
QLSP calculated via Gaussian elimination.

The n =1 case, shows that the run with the simulator converges to
near-zero cost after 10 iterations. In the hardware runs, 5 in this case,
the cost also decreases and assesses close to a constant value after
a similar number of iterations. However, the final value is negative,
in disagreement with the fact that, analytically, Equation (3.7) ranges
between 0 and 1. This discrepancy is probably related to the limited
amount of shots that could be performed on the quantum device, which
is a source of systematic error. Despite the offset in the final cost,
the hardware runs converge and achieve high fidelity for this simple

, (3.25)
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Figure 3.2.: Cost history and final solution fidelity obtained by solving the
discretized Equation (3.22) with the VQLS on both simulator

and quantum hardware.

(@) n=1 (2 x 2 linear system),

5 VQLS repetitions on quantum hardware (b) n=2 (4 x 4
linear system), 2 VQLS repetitions on quantum hardware.
The fidelity at the end of the quantum runs for n =2 are
annotated next to the corresponding curves.
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example, as demonstrated by the inset of Figure 3.2 (a). Similar noise
resilience has been observed before in variational quantum algorithms,
[34].

The n =2 case is more interesting, since it is the first system size
where the Pauli and CS decompositions differ. We used this time the
nonnormalized version of the cost function, which is Equation (3.8)
without the term in the denominator. Even though there could be
local minima where A|u) ~ 0 in the non-normalized cost landscape, this
loss is more regular than the normalized one, because it avoids the
fractional term. Also in the n =2 case, both simulator and hardware
runs converge, although we still notice the final cost value discrepancy
due to sampling noise. We also observe that, in the simulated case,
the cost does not vanish completely, likely because the ansatz is not
expressive enough to represent the exact solution.

3.4. DISCUSSION

In this chapter, we showed how to solve the 1D Poisson problem with
the variational quantum linear solver taken from [11]. Furthermore,
we proposed a way to decompose the matrix of the discrete problem,
using what we call the "center-switch’ gate. We showed that, with these
gates, roughly half of the terms are needed to decompose the Poisson
1D matrix, compared to a decomposition in the Pauli basis. Finally, we
demonstrated the method for 1 and 2 qubits both on simulator and
hardware and approached in both cases the target solution with high
fidelity.

It is important to clarify that the scalings we demonstrated hold
only for a uniform discretization of Equation (3.9). Nonuniform meshes
would require, in general, one or more correcting terms for each of
the 3N — 2 entries of the 1D Poisson matrix, making both Pauli and
CS-based decompositions polynomially worse than in the uniform mesh
case. Furthermore, nonuniform meshes spread-out the range of the
eigenvalues of the Poisson matrix, and thus increase its conditioning
number. This is expected to translate into roughly a linear reduction in
the convergence rate of the VQLS solver [11].

The methods and results shown here can be improved and extended
in multiple ways. First, we remark that a parallel work, published shortly
after this research took place, demonstrated an efficient decomposition
technique, using only 2log(n)+ 1 terms, [35], that can also be extended
to the general Poisson equation on N dimensions. From the perspective
of efficiency and generalization, this new method is more favorable
than the one we propose. Still, there are other important aspects to
be considered, such as trainability. The method in [35] decomposes
the Hamiltonian Hg into observables, rather than A in unitary terms.
However, having a decomposition for A is more flexible, because it
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happens prior to the choice of a Hamiltonian, and therefore prior to
the definition of the cost function. In particular, if the observables are
global, i.e. the full qubit register is measured, the cost gradients vanish
even with a shallow ansatz, [25]. One could experiment both with our
decomposition and a local cost function and with the global Hamiltonian
decomposition in [35] and monitor the emergence of barren plateaus.

Further research should also consider other linear systems. In
particular, space-time discretization of PDEs always result in sparse
linear systems with a lot of structure for which there could also be
efficient decompositions. Maybe, some decomposition rules could also
be generalized not just to PDEs but to numerical schemes, for instance
Runge-Kutta methods of a given order.

Finally, more attention should be dedicated to the other VQA
components of the algorithm. One improvement would be to introduce
differentiability, with gradient-based oprimizers and paramer shift rules,
[20]. Another one would be to explore different ansatze and figure out
their tradeoff between expressivity and trainability, [24].
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COMPOSITE FAILURE
PREDICTION VIA CLASSICAL AND
QUANTUM KERNEL
CLASSIfiICATION

Modeling open hole failure of composites is a complex task, consisting
in a highly nonlinear response with interacting failure modes. Numerical
modeling of this phenomenon has traditionally been based on the
finite element method, but requires to tradeoff between high fidelity
and computational cost. To mitigate this shortcoming, recent work
has leveraged machine learning to predict the strength of open hole
composite specimens. Here, we also propose using data-based models
but to tackle open hole composite failure from a classification point of
view. More specifically, we show how to train surrogate models to learn
the ultimate failure envelope of an open hole composite plate under
in-plane loading. To achieve this, we solve the classification problem via
support vector machine (SVM) and test different classifiers by changing
the SVM kernel function. The flexibility of kernel-based SVM also allows
us to integrate the recently developed quantum kernels in our algorithm
and compare them with the standard radial basis function (RBF) kernel.
Finally, thanks to kernel-target alignment optimization, we tune the free
parameters of all kernels to best separate safe and failure-inducing
loading states. The results show classification accuracies higher than
90% for RBF, especially after alignment, followed closely by the quantum
kernel classifiers.

Parts of this chapter are available at arXiv:2405.02903 [1] and were sent for
publication to the Computers and Structures journal.
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4.1. INTRODUCTION

Modern aviation industry makes wide use of composite materials, thanks
to their lightweight and favorable mechanical properties. Frequently,
aeronautical structural elements are often not textbook flat composite
panels, but tailored components with complex mechanical responses.
For instance, composite panels often show cutouts in order to allow
fastening or lightening the structure or even for allowing the passage
of wiring or cables. However, the presence of holes in a composite
plate induces stress concentrations that can initiate damage which can
propagate into intricate failure mechanisms involving different modes.

Models for open hole composite failure have developed in different
directions. On the one hand, semi-empirical models were proposed to
predict the allowables of these structures, such as ultimate stength,
and their statistical distribution with respect to hole geometry, loading
conditions, stacking sequence, ply thickness, etc. Early attempts
required experimental properties from testing both the unnotched and
notched laminate, [2], while later models removed the need of directly
testing the open hole laminate, [3, 4] or just required the ply properties,
[5]. Despite being fast to evaluate and suitable for preliminary
design, semi-empirical models can make large errors when extensive
delaminations propagate from the notch, as it happens with ply-scaled
laminates.

Finite Element (FE) simulations allow for improved modeling of open
hole laminates failure. Open hole tension (OHT) has been extensively
studied numerically both for capturing the in-plane, [6] and thickness
size effects, [7-9] on the ultimate strength and for reproducing the
different failure modes and their interactions, [10, 11] with increasing
detail. Furthermore, FE simulations managed to quite accurately predict
open-hole compression (OHC), even though still struggling to predict
the precise kink band formation, [12-14]. However, the accuracy
offered by FE models generally comes at the price of high computational
costs, possibly making them unfeasible when many design iterations
are required.

Therefore, there is a practical need for computationally efficient yet
accurate models that can simulate open hole composite laminates. A
possibility is offerred by machine learning surrogates, which have been
employed in composite design and optimization, [15-17], constitutive
law modeling and multiscale analyses (see [18] for a comprehensive
review) and damage characterisation, [19, 20]. Concerning open-hole
composite failure, Furtado et al. proposed a methodology to define
allowables using four different machine learning models, [21]. Their
methodology was applied to open-hole tensile strength prediction for
different dimensions, layups and material properties. While their
methods are demonstrated on data generated analytically, [5], the
authors suggest using high fidelity finite element analyses for training,
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potentially providing accurate data-based models.

Similarly, in this work we propose a machine learning surrogate for
open hole composites, which is accurate and efficient in inference.
Differently from [21] however, the approach we suggest is not to have a
fast predictor of allowables, but a classifier for ultimate failure of open
hole composite laminates. More precisely, our trained model takes a
loading state as input, such as the far field homogenized plane strain
components and returns a binary valuable (£1) as output, depending on
whether the load applied is lower or higher than the notched laminate
strength. In this sense, the surrogate acts as a data-based generalized
failure criterion which predicts at the structural component level, rather
than at the material level.

This Chapter also aims at comparing classical and quantum computa-
tion for a classification problem in composite mechanics. To do this, we
train the machine learning surrogate using kernel-based support vector
machines (SVMs), [22], where the kernel function can be computed
both in classical and quantum logic. As it will be clear in the next
sections, quantum computation offers a way to encode information into
exponentially large Hilbert spaces and to define an inner product in
this spaces, effectively generating a kernel. This allows to explore the
generalization potential of quantum machine learning, while leaving the
SVM optimization to well-established classical quadratic optimization
algorithms.

The rest of this Chapter is structured as follows. Section 4.2 describes
the machine learning problem, by defining the input, the data sampling
strategy and the labeling criterion. Section 4.3 briefly introduces the
SVM dual problem, the Radial Basis Functions (RBF) kernels and the
quantum kernels. More details about these methods are available in the
appendices. Finally, Section 4.4 presents the classification results for all
kernels and Section 4.5 outlines conclusions and future work.

All data and code used in this chapter are made publicly available
(see [23], [24] respectively).

4.2. MACHINE LEARNING PROBLEM

Our method was applied to predict failure of an open hole composite
specimen similar in geometry and material properties to the one
experimentally tested in [25]. The specimen was modeled and meshed
with the Abaqus finite element code, [26], and it was loaded with
different combinations of axial and shear strains and constrained with
periodic boundary conditions. All the details of the specimen properties
and of the finite element analyses are left to Appendix A.

The input of our surrogate models are homogenized far field strains
£ =[€&11, €22, ylz]T, which derive from enforcing periodic boundary
conditions on opposite faces of the plate. The displacements of the
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Figure 4.1.: Geometry of the open hole composite plate and homogenous
strain loads components.

left/right and top/bottom faces respectively can be linked through some
reference degrees of freedom
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where directions 1 and 2 are the horizontal and vertical directions in
Figure 4.1. The homogenized strains are then obtained as

Ui
£11 = —
11 Dy
U
2y = -2 (4.2)
D>
Us Ugs
= — 4+ —,
Y12 b: ' D,

where Dy and D; are the planar dimensions of the plate.

As mentioned, the input space was sampled through nonlinear
incremental-iterative finite element analyses. Figure 4.2 illustrates
the sampling strategy used in this work in the simplified case of
two-dimensional input. We refer to this technique as radial sampling,
due to the fact that the design of experiments (DoE) does not directly
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Figure 4.2.: (a) Radial strategy for sampling the far-field strain space.
The bigger dots on the edge of the (&11,€&22) volume
represent the final applied load in different nonlinear FE
incremental-iterative analyses. The arrow represents a
loading path with the load increments unevenly distributed.
(b) Load-displacement curve corresponding to the loading
path in (a).

affect all the points in this input space, but only the ones on the
boundary. On the other hand, all the intermediate points are generated
internally by the FE solver and they correspond to the homogenized
strain values at every time increment. The user maintains control of the
inner samples values, by the choice of initial, minimum and maximum
time steps. For this work, we chose the sampling space to be the
hypercube [-10-2, -2]® in R3, meaning that all three components of
the applied strains vector have the same bounds.

We argue that radial sampling is the most efficient sampling choice
when the experiments providing the data are finite element nonlinear
incremental analyses or even lab tests on coupons. In both cases,
the user parameters are the final load applied on the coupon, while
the experiment’s output is a load-displacement curve with intermediate
stress-strain readings. As Figure 4.2 demonstrates, radial sampling
covers the input space extensively by performing experiments only on
the boundary of the input space. More typical techniques, such as Latin
Hypercube Sampling (LHS), would either miss certain regions of the
input space or require experiments over the whole interior.

Each strain sample was assigned a label based on an ultimate failure
criterion. In particular, we defined failure by the loss of stiffness of the
laminate for given a user-defined threshold.

From the results of the FE analyses with periodic boundary conditions,
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one obtains the reaction forces Fi, F, F3 and F4 conjugate to the
degrees of freedom in Equation (4.1). These provide the homogenized
stresses, which can then be derived via the Hill-Mandel principle of
energy balance as

F1
011 = —
11 D,
2 (4.3)
Oyy = — .
22 D,
F3Us + FqUq
Opp=—""""",
Y12tD1D>

where t is the thickness of the plate.
The laminate stiffness in the two axial directions and in shear can thus
be defined at every timestep t as

(t)

® _ %911
Ei'= £
11
(t)
o
[ (4.4)
E(f)
22
(t)
G = 012
12 — E(t) .
12

The stiffness degradation ds is defined as the minimum ratio between
the instantaneous stiffness and the corresponding stiffness measure in
the linear elastic region,

(t) (t) (1)

E E G

d(st) = min { (10), (20), (102)} (4.5)
E1 E2 G12

Therefore, given M the total number of samples, every sample (™
(m=1,...,M) is assinged a label y(™ = —1 if d(™ < ds and y(M = +1
otherwise.

4.3. METHODOLOGY

As already mentioned, we solve the ultimate failure binary classification
problem using the SVM algorithm, [22]. Intuitively, given samples
belonging to two different classes, the SVM algorithm finds the
hyperplane with the highest margin between the classes, in order
to increase the confidence of labeling further unseen samples. In
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Figure 4.3.: The methodology used in this work. The dataset is generated
by nonlinear finite element analyses, then labeled and split
into training and testing sets. The training set is used first to
train the kernel, by optimizing the kernel-target alignment
(KTA), then in a grid search cross-validation to find the best
slack penalty C of the SVM. With all the hyperparameters
fixed, the SVM is trained for increasing dataset sizes and the
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classification accuracy is evaluated on the testing set.
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particular, the SVM translates to a quadratic optimization problem,
which can be written in dual form as

M 1 M
(m_Z— (m),,(m”) 5 (M) (M) (m) 5 (m")
mnga 2z:yyororK(x,x)
m=1 m,m’=1
st. 0<a™M<c, m=1,...,.M (4.6)
M
Z almy(m) = g,
m=1

where x(M = g(M (M) = +1 are the labels, respectively non-failed and
failed and al™ are the Lagrange multipliers. The slack penalty C is a
hyperparameter, which trades off the amount of constraint violations
of the samples and the magnitude of the margin with respect to the
hyperplane. Finally, the kernel function «(:, ) is a similarity metric
between two samples in a higher-dimensional feature space. More
details on the SVM algorithm are left to Appendix B.

The performance of the dual SVM depends on the choice of its
hyperparameters, namely the kernel function k and slack penalty C. To
restrict the search space, the kernel function is generally parametrized
via one or more parameters @ and the standard practice is to perform
a grid-search cross-validation procedure in the (0, C) space. In this
work, we use instead a mixed procedure, where the kernel function is
determined by optimizing the kernel-target alignment (KTA, [27] and
the slack penalty is found by grid search cross-validation. The overall
methodology is illustrated in Figure 4.3, where we refer to the two
steps as kernel training and SVM selection. Once the SVM has been
fully determined, it can be trained by solving Equation (4.6) and its
learning ability can be measured as the accuracy on unseen test data,
for different training dataset sizes.

We compare one classical and two quantum kernels. The classical
kernel is the radial basis function (RBF) kernel, defined as

krar (0™, x(M)) = exp (—vlIx(™ —x™|2). (4.7)

RBF is a powerful kernel which corresponds to a feature map in an
infinite-dimensional feature space, [28]. It induces a Gaussian similarity
function, whose width is controlled by the hyperparameter y.

On the other hand, the quantum kernel is defined via a quan-
tum embedding, which is constructed via data-depending unitary
transformations U (x) that prepare the quantum state

¢ (x)) =U(x)]0). (4.8)

Given two samples x(™ and x(™), the quantum kernel is simply the
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inner product
kq ()™, x(1) = |(¢(x(m)), w(x(’”')))(z.
Figure 4.4 shows the generic quantum embedding and the two specific
ones used in this work, which are the hardware efficient embedding
(HE2), [29] and the instantaneous quantum polynomial (IQP), [30] one.
To have more expressive feature mapping, either the width or the depth
of the quantum embedding can be increased. The first one is the number
of qubits, which can be even higher than the number of features in
the dataset, by cyclically re-encoding the features to generate a highly
nonlinear and potentially better separable feature space. Meanwhile, the
embedding’s depth can be increased by repeating a base data-encoding
block, such as IQP and HE2. Even in this case, re-encoding of the

features may lead to a higher expressivity of the overall feature map,
[31].

(4.9)

(a)

embedding layer

width

e L
ZZ(enen)
Ry(en) Rir(eon) [ Ry (00) H R2(0) )T—
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ZZ(2e11)
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Figure 4.4.: Quantum embeddings. (a) Generic quantum embedding
made of one- and two-qubit gates. The width of the
embedding is the number of qubits, while the depth
is the number of layers, which is a minimal block of
gates. (b) IQP quantum embedding layer, which is
parameter free, but encodes products of features as
ZZ interactions. (c) HE2 quantum embedding layer,
parametrized by [09, 01, ..., 6p_1].
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4.4. RESULTS

We tested our machine learning models on a dataset of 1960 labelled
strain vectors &™), which we obtained by uniformly sampling the
homogeneous strain/stress pairs from the FE simulations of the open-
hole composite specimen. The input homogeneous strains in both
normal and shear directions were varied between —10* and 104
microstrains and a stiffness degradation threshold of 0.9 was used to
discriminate non-failed and failed loading states.

Both classical- and quantum-kernel SVMs were implemented using
different Python libraries. We used PyTorch for training the RBF kernel
and PennylLane for the quantum kernels. These libraries implement
automatic differentiation (AD), which allows to optimize the KTA with
gradient-based methods. We also used JAX together with PennylLane
to just-in-time compile the quantum kernel functions. Concerning the
classification problem, we employed the SVM and grid-search cross
validation routines available from the Scikit-Learn Python package.

0.446

KTA

0.300 4

T T T
0 460 500
epochs

Figure 4.5.: Training history of the RBF kernel’s KTA.

The KTA of both RBF and quantum kernels was maximized the Adam
optimizer, [32]. Figure 4.5 shows the kernel alignment training of the
RBF kernel. Figure 4.6 presents instead the KTAs before and after
training for nine different quantum kernels with HE2 embedding. It
can be seen that increasing width and depth of these kernels generally
improves their KTA. A higher number of qubits means that the strain
features are mapped in a higher dimensional space, which can favor
separability of the classes. On the other hand, increasing the depth
benefits the kernel alignment, since it results in more expressive feature
maps. Also, every additional layer of the HE2 embedding doubles
the number of free parameters, explaining why optimization of deeper
kernels mostly leads to higher gains in KTA. However, the advantage
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= initial KTA — best KTA

0.448 0.446

Figure 4.6.: KTA of quantum kernels before and after training for 9
different quantum embeddings. The basic layer for all
embeddings is the HE2, which has trainable parameters.
The tag WXDY indicates width and depth of the embedding.

of increasing quantum encoding resources does not scale uniformly.
Already with 6 qubits and 3 HE2 layers, the optimization only modestly
improves the KTA, likely due to the vanishing KTA gradients, [33].

To find the hyperparameter C that guarantees the highest off-training
accuracy of the SVM algorithm, we used grid-search cross validation for
the kernels considered. The validation accuracy values are reported
in Figure 4.7 for multiple values of C and y. We observe that kernels
with v < 10 achieve the higest scores, with the highest-KTA ¥ scoring
first for the whole range of C values. Furthermore, the accuracy of
the maximally-aligned RBF kernel increases monotonically with C, which
suggests the usefulness of maximizing the KTA, but also that the class
boundary in this feature space is densely populated and still requires a
tight margin.

The same analysis was performed for all the quantum kernels
considered, where we wanted to take into account the effect on
accuracy of different embeddings and of maximizing the kernel-target
alignment. The results are reported in Figure 4.8, which shows
accuracies roughly between 67% and 87% for all embeddings with
different values of C. Except for IQP case, increasing C leads to higher
accuracies, hinting to the need of a tight bound when mapping with
these embeddings, similar to the RBF kernel. Unfortunately, for high
values of C, the optimization of the dual SVM failed to converge for some
of the quantum kernels, likely due to numerical ill-conditioning. This
presumably prevented the quantum kernel classifiers from even better
separating failed instances, as suggested by the monotonic increasing
test accuracies with C, at least for the HE2 kernels. Furthermore,
Figure 4.8 shows that the scores improve when more embedding
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Figure 4.7.: Grid-search cross validation for the RBF kernel. y=1.065 cor-
responds to the kernel with highest kernel-target alignment.
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Figure 4.8.: Summary of the grid-search cross validation results for
different quantum kernels. The three figures correspond
respectively to the IQP embeddding, the HE2 kernel with
untrained parameter and HE2 with trained parameters.
Different shades of the same color correspond to different
depths and widths. From lighter to darker, the points
correspond to embeddings of increasing widths and of
increasing depth per fixed width.
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resources (number of qubits and layers) are added, especially in the
case of KTA-optimized HE2 kernel.
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Figure 4.9.: Test data classification accuracy of classical and quantum
kernels for increasing training set size. The RBF kernel-SVMs
were trained with both C =107 and C = 104, as the latter is
the highest value of C for which the quantum-kernel SVMs
could still be fitted. Quantum-kernel classifiers were trained
instead with the embedding arhitecture and C value ensuring
highest accuracy during grid-search cross validation.

Classical and quantum kernels are finally compared in Figure 4.9, which
shows how 5 different models classify a test set of strain loading data
when fitted on progressively larger training sets. A similar comparison
on additional classification metrics can be found in Appendix C. The
RBF kernel achieves 80% accuracy with just 10% the total training set
size, and with C = 107 it reaches over 90% with just half the training
points. In comparison, all quantum kernel classifiers are at least 5% less
accurate than the best RBF-kernel SVM. However, especially for HE2
embeddings, the scores are similar to the C = 104 RBF case, suggesting
that RBF and HE2 kernels separate the non-failed and failed classes to
a similar extent. Changing the embedding from HE2 to IQP, there is a
drop in accuracy for small training set sizes, while the performance is
similar when more than half the training set is used. On the other hand,
the effect of training the kernel is less visible at this stage, reflecting the
fact that the accuracies obtained during grid-search cross validation are
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alike for untrained and trained HE2.

4.5. CONCLUSION

In this Chapter, we proposed a methodology to build a binary classifier
from finite element analyses data for the particular case of an open
hole composite specimen. We studied the case of in-plane strain
loading of the specimen where the objective is to correctly label strain
combinations that lead to ultimate failure.

From a design of experiment point of view, we demonstrated a radial
sampling strategy technique, where the choice of which simulations
to make to cover the input space takes into account the incremental-
iterative nature of the nonlinear FE method. We then proposed a
labelling criterion of homoegenized strain-stress pairs based on residual
in-plane stiffness.

For classification of the labelled data, we used the kernel-based
SVMs, which also allowed us to compare the performance of the
recently proposed quantum kernels against the more traditional RBF.
Furthermore, we optimized the kernel-target alignment to improve class
separbility of both RBF and the HE2 embedding kernel.

For all the kernel examined, the corresponding SVMs separate non-
failed and failed loading states with good accuracy. The RBF-based model
classify more accurately than SVM with quantum kernels, although this
likely happens due to numerical ill-conditioning in the current quantum
SVM implementation. These numerical issues can likely be fixed by
studying the dual SVM problem for the problematic instances, which
could be investigated in future work.

Regarding kernel alignment, optimizing the KTA is shown to be
powerful for RBF, since the SVM for the trained kernel outperforms the
other RBF-based models in terms of accuracy. Aligning quantum kernels
for this dataset also helps them to better separate the two classes,
but for simple architectures the improvement is moderate, while more
complex embeddings only reach the scores of the more simple ones
after they have been aligned. Furthermore, one should remember
that optimizing quantum kernels is almost always more computationally
involved than for RBF, as the formers can have highly parametrized
embeddings, while RBF is completely defined by the single parameter 7.

Extensions of this work can go in many directions. From the point
of view of the problem, it would be interesting to increase the number
of degrees of freedom, by allowing the notch radius or the lamination
sequence to also change. The latter could be written in terms of
lamination parameters, [34] to have a continuous representation.

In terms of algorithms, both classical and quantum kernels can be
explored further. RBF is the most popular choice for classical kernels, but
certainly not the only one. Due to Mercer’s condition, any function which
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defines a positive semi-definite kernel matrix is a valid kernel function,
[28]. Obviously, the design space is vast, but automated procedures
help reduce the search for instance by exploring combinations of only a
fixed set of standard kernel functions.

On the other hand, the freedom of designing and parametrizing
quantum embedding circuit also makes the choice of a quantum kernel
nontrivial. Within the limits of classical simulation of quantum circuits,
one could experiment with increasing number of qubits or different
layering strategies, for instance the one proposed in [35] for the
task of satellite image classification. From an optimization point of
view, a recent technique has been proposed to maximize the quantum
kernel alignment KTA and solving the SVM in a single optmization
loop, [36], which would of course greatly reduce the computational
cost. Nevertheless, to truly understand a potential competitiveness of
quantum kernels, it is probably most important to remove layers of
simulation and study the effects of statistical and hardware noise on
SVM convergence and accuracy.
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CONCLUSIONS

his thesis explored the intersection between quantum computing

and computational structural mechanics. It started by reviewing
the literature on quantum techniques for solving partial differential
equations (PDEs) in structural mechanics, where it analized not just
the runtimes of the quantum primitives, but the full time complexity
from data encoding to readout and the hardware feasibility. Then, it
moved to a hybrid quantum classical algorithm, the Variational Quantum
Linear Solver and used it to solve a prototypical PDE in mechanics,
namely the Poisson problem in one dimension. We discussed the linear
scaling of the common Pauli decomposition for the Poisson matrix and
proposed an alternative which is still linear, but with half the number
of terms. Finally, this thesis touched upon quantum machine learning,
specifically, quantum kernel methods. It characterized the binary
classification problem of labelling loading states of composite specimens
and compared state-of-the-art classical kernels and multiple quantum
kernels in their ability to separate the label sets.

The rest of this chapter retrospects on the results achieved and
knowledge gaps filled, it answers the research questions presented
in Chapter 1 and it discusses future lines of research and possible
extensions of this work.

5.1. CONRIBUTIONS TO THE EXISTING LITERATURE

The general contribution of this work has been to bring some of the
methods of quantum computing into structural mechanics. To the best
of the author’s knowledge, this is the first work of considerable extent
that analysed and demonstrated the use of quantum solvers in different
structural mechanics applications. Only maybe a few standalone papers
in literature seem to have so far covered the subject, [1].

We provided a review of quantum methods for linear and nonlinear
PDEs in the domain of structural mechanics. At the time of publishing
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this study, no other review of quantum PDE solvers existed, although
recently a similar overview for fluid dynamics was conducted, [2]. The
analysis we performed was a critical one, especially on the subject of
speedups. In this respect, our work is different compared to the bulk of
quantum algorithms research papers for applications, which state the
runtime of their quantum primitives, but hide the complexity of quantum
data upload and readout.

Applying the VQLS algorithm to the 1D Poisson problem revealed the
decomposition scaling bottleneck. Shortly after the time that our work
took place, other efforts looked at variational approaches to solve the
Poisson problem, even for higher dimensions, [3, 4]. One strategy
proposed a technique to reduce the VQLS cost terms for the Poisson
problem, [3]. The approach of these researchers resulted in logarithmic
reduction, against our more modest halving of the number of terms,
thanks to them focusing on the structure of the problem’s Hamiltonian,
rather than the A matrix. While we know now that the 1D Poisson
global Hamiltonian is more efficiently decomposable than A itself, one
should keep in mind that global (i.e. applied to the full register) VQA
Hamiltonians suffer from barren plateaus, [5]. On the other hand, saving
matrix decomposition terms, as we proposed, leaves the flexibility
of choosing a local Hamiltonian in the VQA recipe, potentially saving
trainability.

The final work we presented is a study on composite failure
identification with classical and quantum kernel methods. This is
probably also one of the first applications of quantum machine learning
to a real-world problem. Some aspects of the specific learning problem
itself are likely new themselves. Our work seems to be the first one to
propose a surrogate failure envelope by solving a binary classification
problem. Also novel is the radial sampling technique we proposed to
avoid repetitions of experiments when sampling the input space with
nonlinear finite element analyses.

5.2. ANSWERS TO THE RESEARCH QUESTIONS

Based on the results of this research, we can answer the research
questions posed in Chapter 1.

The first question treats the subject of speedup of quantum PDE
solvers, compared to classical ones.

Which fault-tolerant and near-term quantum algorithms can
solve (parts of) which PDEs in structural mechanics? What can
be said about their speedup with respect to classical solvers?

Chapter 2 reviewed several quantum and hybrid-quantum PDE
algorithms in order to answer this question.
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Both fault-tolerant and NISQ techniques exist for linear PDEs, in
particular the Poisson, heat and wave equations. For nonlinear PDEs,
the quantum algorithms proposed so far are general and not specialized
to single PDEs.

Fault-tolerant routines have either polynomial or exponential speedups,
but only at the quantum primitive level. Generic state preparation
and/or readout re-introduces the polynomial scaling. However, there
are special input states and measurable quantities that only have
logarithmic complexity. It is still an important open question whether
this narrow ‘goldilocks zone’ of state preparations, quantum primitive
and readouts contains useful use-cases.

On the other hand are NISQ approaches, whose runtime cannot be
determined independently of the specifc application. However, there
can be necessary conditions, as in the case of VQLS, where a logarithmic
runtime is possible only with a logarithmic decomposition of the linear
system’s matrix.

A promising subset of NISQ PDE methods train quantum circuits
to learn the PDE solution [6-9]. These are essentially the quantum
model variant of the famous Physics-Informed Neural Networks [10-12].
The main motivation behind using quantum models is their higher
expressivity compared to, e.qg., classical neural networks with similar
number of parameters. Nevertheless, quantum advantage on practical
use-cases has not yet been proven using these techniques. Even
just establishing that circuit learning achieves quantum advantage in
an application is no easy endeavor, as a final answer will be based
on experimental evidence and will have to motivate matters such as
expressivity, trainability, sensitivity to noise and quantum hardware
overhead, among others.

The second research question targets the Variational Quantum Linear
Solver (VQLS), an algorithm proposed as a quantum routine for solving
PDEs. A necessary condition for advantage of the VQLS is that the input
matrix is decomposable in log(n) terms, n being the number of qubits
representing the normalized solution of the linear system. In Chapter 3
we studied the possibility to logarithmically decompose the discretized
Poisson 1D equation.

Are there log(n) decompositions of the one-dimensional
Poisson matrix?

Our work did not find one such decomposition. Even though we
determined a decomposition using multi-qubit gates, we could only
nearly halve the number of terms resulting from the standard Pauli
decomposition. Furthermore, the multi-qubit gates we introduce are
complex multi-controlled gates, which act on the full register!. Even

1Assuming a register size equal to log(N), where N is the linear system'’s size.
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assuming full-connectivity, which is not yet available in digital quantum
hardware, these gates compile to a large number of noisyt two-qubit
gates, which pollute the loss evaluations.

A legitimate question is whether it is worth to run a hybrid quantum
algorithm to solve the 1D Poisson equation, which is a trivial classical
problem with an analytical solution. Of course, there is no practical
relevance in this task, as an application. However, the aim of this study
has not been to pursue practical quantum advantage, but rather to
assess performance and bottlenecks of a near-term quantum algorithms,
applied to a toy, yet classical problem. Quite intuitively, this work
showed that the simplicity of a problem depends on the logic of the
method that we use to solve it. Specifically to our case, even though
specific matrix structures derived from quantum physics Hamiltonians
might be promising candidates for quantum advantage with a variational
linear solver, there is no physical intuition on why the same algorithm
should outperform even simple classical linear systems.

The final research question delas a more realistic scenario and
concerns the performance of classical and near-term quantum machine
learning to classify safe and failure-inducing loads applied to a open-hole
composite plate.

To what accuracy can quantum-kernel based support vector
machines classify failed open-hole composite specimens,
when trained on numerical simulations data? How does that
performance compare against that of state-of-the-art classical
kernels?

Chapter 4 showed that the quantum-kernel SVMs classify open-hole
composite ultimate failure with performance comparable to classical-
kernel SVMs (radial basis function kernel), with the quantum kernels
slightly under-performing. RBF scored 93% accuracy on a test dataset
and the best quantum kernel got 87% test loading states correctly
classified. We encountered, however, a convergence issue in running
quantum-kernel SVMs, which did not allow to ultimately determine the
performance of these models.

Methodologically, we considered two different circuit architectures for
the quantum kernels, HEA, which has trainable parameters and IQP,
which is non trainable. Both architectures are modular, which easily
allowed to increase the register size and number of basic layers. We
also tuned the hyperparameters of the algorithm, those belonging to the
kernels, using kernel-target alignment optimization and the SVM penalty
strength C via grid-search cross validation. The performance of different
trained and untrained quantum kernels and the RBF were compared on
a set of unseen loading conditions.

Besides classification accuracy, we detected differences between RBF
and quantum models when optimizing the kernel-target alignment. On
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the one hand, RBF clearly benefitted from the higher alignment, as
demonstrated by the higher validation scores of the aligned model
with respect to non-aligned ones. Interepreting trainability for quantum
models was more subtle. Ultimately, the scores on the test set of
untrained and trained HE2 kernels were comparable, regardless of the
size of the dataset used in training. Though this might be due to the
high penalty strength that the final models shared, we noticed in general
an insensitivity of quantum kernels to alignment optimization, at least
for more complex datasets like the open-hole composite failure one.

5.3. RECOMMENDATIONS FOR FUTURE WORK

We end our discussion by presenting some directions for future work for
each of the topics touched on in this thesis.

Quantum computers are still under the radar as PDE solving
accellerators. Being in the noisy era of quantum hardware, near-term
algorithms will likely resort to variational techniques. A promising
instance we identified in Chapter 2 is the differentiable quantum
circuits (DQC) protocol, originally proposed in [6], which is one of the
few quantum algorithms that can be applied to nonlinear differential
equations and that easily implements differentiation. From the time of
writing our review work, this method has been extended to trainable
frequency feature maps, [8], specialized to harmonic functions, [13] and
was successfully applied in fields such as weather modeling, [9].

There is, however, not yet a consensus on which might be the ‘killer’
problem for DQC. This is partly due to the fact that the technique
is still young and has not yet been applied to many domains of
science and engineering, structural mechanics among them. More in
general, there is a lack of knowledge about which characteristics of a
PDE would make it a good fit for DQC and perhaps a better fit than
for classical machine learning models or even established numerical
methods. How to find the right application for DQC advantage? We
argue that this will be a problem whose dynamics can be captured by
a quantum model complex enough to not be classically simulatable
and whose expressivity scales monotonically with increasing resources,
e.g. width and depth of the circuit. From expressivity analysis, we
know that quantum learnable models can be expressed as series of
terms in different bases, for instance Fourier modes, [14], or Chebyshev
polynomials, [6]. The bandwidth of the available modes depends on
the number of encoding operations and the accessible modes, i.e.
those with nonzero coefficient, depends on the variational part (ansatz).
Therefore, problems with propagation of finite-spectrum signals and
having finite-spectrum dynamics, i.e. without discontinuities, might be
a good fit for DQC. For instance, in structural engineering, DQC could
find application in nonlinear structural dynamics.
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Yet, research in quantum PDE solvers should not be confined to
variational routines. Advances in quantum technologies are opening
the next quantum computing era, known as ISQ (intermediate scale
quantum), [15]. Thanks to the implementation of error-correcting codes,
upcoming quantum computers will offer a few, but error-compensated
qubits. Some recent works proposed to solve PDEs in latent space, [7], or
using linearization and a quantum iterative linear system solvers, [16].
In contrast to more standard matrix-inversion or Hamiltonian-simulation
based solvers, these techniques have lower hardware requirements and
may be running on machines with a small register of error-corrected
qubits. Nevertheless, what is still missing is an analysis of end-to-end
complexity from classical data encoding to readout of the solution or
a measure of interest. Future efforts on quantum PDE solving should
perhaps narrow their scope from general primitives for differential
equations to the specific problems and discuss whether end-to-end
advantage exists for those instances.

Keeping the classical step of discretizing a PDE, one can use the VQLS
algorithm to solve the resulting linear system. This strategy was used
in Chapter 3 to solve the 1D Poisson problem. Even though VQLS is
a NISQ algorithm and [17] suggests that the cost function evaluation
is classically hard, it is still unclear if VQLS can ouperform established
classical algorithms in some use-cases. If we exclude the encoding
and readout bottlenecks, the time complexity of VQLS is lower-bound in
general by the number of unitary terms that decompose the matrix A.
For random matrices, this scaling alone is worse than the number of
steps in Gaussian elimination, [18]. Furthermore, even when O(logN)
or O(1) decompositions were found, [3, 4], the resulting Hamiltonian is
global, which means that interesting problem sizes will have a flat loss
landscape and that they will be difficult to optimize.

Therefore, future research on VQLS should focus on this combination
of challenges. On the one hand, one should discover interesting
differential problems whose matrices are efficiently decomposable. Of
course, this would be more valuable if the decomposition accomodated
different boundary conditions, as in [3] and [4]. At the same time
though, novel approaches should be critical about trainability and seek
local problem Hamiltonians, which do not suffer from exponentially
vanishing gradients, [19]. Finally, since VQLS and fault-tolerant methods
alike provide the full solution vector as a wavefunction, future literature
should define solution metrics that are efficiently measurable.

Chapter 4 covered the subject of damage classification with classical
and quantum kernels. The conclusions in Section 4.5 already point
to several future research directions, such as the investigation of the
lower trainability of quantum kernels, the extension of the input space
to, e.g., the lamination sequence of the composite plate and the study
of different quantum kernel structures. We provide some additional
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recommendations here.

A general advice is to extend the quantum kernel selection procedure
so that it is less arbitatry. In Chapter 4 we considered only two layered
architectures (HEA and IQP), but an automated approach such as [20]
can extend the search and potentially find better mappings to separate
loading states based on failure.

However, more important would be aligning certain algorithmic
choices with the specific task of identifying damage. A first adjustment
would be to move from a binary to a continuous damage output of the
machine learning model. For example, damage can be represented by
the decision function of the SVM,

y) = > awyik (xi, x) + b.
ieSv

where y(x) is the signed distance of the state x from the decision
boundary. An even better alternative would be to use Gaussian
processes (GPs) instead of SVMs, since the damage would then be
modeled as a probability distribution and bounded in [0, 1], as it
happens with continuous damage models.

Finally, quantum feature map selection could be made more problem-
aware by including the symmetries of the composite plate and loading
configuration. In our case, we considered a quasi-isotropic plate, whose
response is symmetric with respect to the normal loading direction
and sign of the shear deformation. Building the quantum circuit and
choosing a parametrization based on these invariances will likely provide
a higher class separation for comparable resources, [21, 22].
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KERNELS - OPEN HOLE
SPECIMEN FEATURES AND
fINITE ELEMENT MODEL
DETAILS

A.l. GEOMETRY AND MATERIAL PROPERTIES

Figure A.1.: Finite element mesh of the composite specimen in Chapter 4.

The plate’s hole has a 6 mm diameter and the in-plane dimensions are
both 5 times the hole diameter. The ply material is IM7/8552 prepreg
(carbon fibres and epoxy matrix) and each ply has t =0.125 mm
thickness. We considered the lamination sequence [45/90/—45/0]s for
a total of 8 plies and 1 mm laminate thickness.
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A.2. DETAILS OF THE FE MODELS

All finite element models were produced with the Abaqus finite element
code [1]. In addition, a Python code was used to automatically generate
different FE models for each strain loading combination [2, 3].

The meshed part is illustrated in Figure A.1, which shows that a radial
mesh was obtained by seeding the hole edge 4 times as much as the
outer edges. Since no delaminations were expected due to the absence
of ply blocks, the elements were chosen to be S4 shells elements
of the Abaqus Standard Element Library whose in-plane and bending
behaviour are described by the classical lamination theory (CLT), once
the stacking sequence and ply thicknesses are specified [4].

Damage initiation was modeled with the Hashin criterion, while
damage evolution was represented in a smeared crack fashion. For
this purpose, the cohesive law available in Abaqus was employed to
model the stiffness degradation due to matrix and fiber tensile and
compressive failure [4].
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[2]

[3]

[4]
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KERNELS - SUPPORT VECTOR
MACHINES, KERNEL METHODS
AND KTA

B.l. PRIMAL SVM
The SVM is the linear decision model

y=w'x+b (B.1)
which assigns labels through the sign function
sgn(y) =sgn(w'x+b). (B.2)

In Equations (B.1) and (B.2), w is the vector normal to the decision
hyperplane and b is the intercept.

The optimal hyperplane is found by maximizing the geometric margin
of the dataset, which can be proved to be

1

* - B.3
LT (B.3)

By minimizing the squared norm |w||?2 one obtaines the primal
optimization problem of the SVM,

) 1
min  —(lw]|?
wb 2 (B.4)
st. yMwxM4+p)>1 m=1,..., M,

where m identifies the sample and M is the total number of training
samples.

Equation (B.4) enforces exact separability, which can lead to
overfitting. A way to improve generalization is the so-called soft margin
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SVM, which modifies Equation (B.4) by introducing the constraints slack
variables £(™ and the penalty constant C,

1 M
in — 2 (m)
min —[lwl?+C > g
m=1 (B.5)
st. yM(wTemM4+p)>1-M m=1,..., M

gmM > 0.

B.2. DUAL SVM AND KERNELS

By introducing the Lagrange multipliers a™ and B(™), one can write the
Lagrangian of the SVM optimization problem,

1 M
L(w,b, & a) =§(W’ w) +C Z <t__:(m)

m=1

M M
— 37 ol (y ) (wTx(M 4 p)— 1+ £M)— 37 g,

(B.6)
The dual soft-margin SVM is obtained by setting all the derivatives of
the Lagrangian in Equation (B.6) equal to zero,

M 1 M
max alm_ = (M), (m”) 5 (M) (M”) (3¢(M) 5 (M)
a mz=:1 2 m,%:ly g ( )
st. 0<aM4pM<c, m=1,...,M (B.7)
M
Z almy(m =g,

m=1

Equation (B.7) is still a linear model in the original feature space.
However, by introducing a feature map

¢:x— ¢(x) (B.8)

we can map the features nonlinearly and potentially to a manifold where
they are more easily separable. Furthermore, replacing x with ¢(x) in
Equation (B.7), we see that the mapped features only appear in the
inner product

K (%0, xM) = (9x(™), $(x(™)), (8.9)

which is known as the kernel of the feature map. The advantage of
having only inner product of features (kernel trick) is the possibility of
classifying in nonlinear feature spaces without having to compute the
feature map explicitly.
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The kernels mostly used in machine learning are the polynomial,
Gaussian and sigmoid kernels

(vxTx’ + co)? (polynomial)
K(x, x’) =1 exp(—ylx—x’l?))  (Gaussian) (B.10)
tanh(yx"x’+co)  (sigmoid)

B.3. KERNEL-TARGET ALIGNMENT
The alignment between two kernels is defined as
(KD), K(2)) ¢
VKD, KW (K?), K2)),
(KD, K@),
IKDEIK

A (K(l), K(Z)) =

(B.11)

where K is the kernel matrix, obtained by taking the kernel of all pairs
of features, and
(KD, K@)y = tr(K(l)TK(z)).

The alignment between two kernels is always lesser or equal to 1, where
1 corresponds to perfect alignment.
Assume a kernel kg, parametrized by @ and define the target kernel
matrix as
K*=yy'. (B.12)

The kernel-target alignment (KTA) of kg is the alignment between the
chosen kernel and the target,

(Ko, K*)F

~ |IKellElIK* IF
(Ke, K*)F

"~ M|IKell

A(Ke, K*)
(B.13)

where Kg is the kernel matrix of kg.

The KTA enjoys theoretical properties such as concentration around its
expected value and generalisation [1] and therefore it is indicative of
the ability of a kernel to separate classes of data.
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C. Kernels - Comparison on further classification metrics

Nitrain  Accuracy Jaccard Index Precision Recall Specificity
RBF kernel
156 0.694 0.627 0.784 0.759 0.795
313 0.750 0.708 0.835 0.824 0.838
470 0.788 0.751 0.886 0.832 0.895
627 0.788 0.750 0.893 0.825 0.903
784 0.838 0.813 0.939 0.859 0.944
940 0.824 0.797 0.915 0.861 0.921
1097 0.848 0.827 0.938 0.874 0.943
1254 0.878 0.866 0.943 0.913 0.945
1411 0.873 0.860 0.937 0.912 0.939
1568 0.882 0.869 0.955 0.906 0.958
HE2W6D3 kernel
156 0.699 0.626 0.804 0.739 0.823
313 0.731 0.675 0.835 0.780 0.846
470 0.756 0.708 0.858 0.802 0.869
627 0.779 0.741 0.878 0.826 0.887
784 0.795 0.762 0.892 0.839 0.900
940 0.794 0.757 0.897 0.829 0.907
1097 0.805 0.773 0.902 0.844 0.910
1254 0.797 0.765 0.884 0.849 0.891
1411 0.814 0.785 0.911 0.851 0.917
1568 0.818 0.790 0.912 0.855 0.919
Table C.1.: Comparison of five different classification scores between the

RBF-SVM and the trained HE2W6D3 quantum kernel SVM.
The classifiers were trained with increasing fractions of the
training dataset. Notice that the RBF-SVM problem used
C = 107, while the HE2W6D3 quantum kernel SVM used
C =104, which is the highest C values before the occurrence
of convergence issues.
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