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Summary

The thesis describes the development of a design methodology for obtaining the
optimal solution of multi-point aerodynamic design problems of a single airfoil in
two-dimensional flow. The design method treats the problem as a (constrained)
optimization problem. This is formulated in terms of aerodynamic objective
functionals to be minimized, subject to aerodynamic and/or geometric constraint
function(al)s which have to be satisfied.

The flow models used in the development and application examples of the de-
sign methodology are the incompressible potential flow governed by the Laplace
equation, inviscid compressible flow governed by the Euler equations, and vis-
cous compressible flow governed by the Reynolds-averaged Navier-Stokes (RANS)
equations. Advantage is taken of existing flow solvers for the analysis computa-
tion of airfoils in the abovementioned flow models.

The design method makes use of a gradient-based optimization algorithm
for obtaining the optimal solution through employing an existing optimization
routine. The gradient of an aerodynamic functional is computed in an efficient
manner by means of the variational method. This implies that for each aerody-
namic functional, a distinct adjoint problem is to be formulated. The solution
of the adjoint problem provides the so-called (vector of) Lagrange multipliers,
which are used for evaluating the gradient formula.

The formulation of the adjoint problem, the construction of an adjoint solver
for obtaining the Lagrange multipliers and the gradient, and the integration of
the adjoint solver with an existing flow solver and optimization routine form the
main subject of this thesis.

Inverse problems are considered for aerodynamic design using the Laplace
equation. A methodology is discussed for obtaining well-posedness by introduc-
ing free target velocity parameters. The well-posedness is defined in terms of
the Lighthill constraints. The objective of the investigation is to construct an
appropriate automatic procedure for modifying an unrealistic target velocity dis-
tribution such that a useable airfoil geometry can be found.

The feasibility of the optimization methodology is also investigated for aero-
dynamic design based on the Euler equations. A reconstruction type of inverse
problem is addressed as a means to check the accuracy of the computed gradients.
To demonstrate the capability of the methodology for solving practical aerody-
namic problems, single-point test cases for (wave) drag reduction problems under
aerodynamic and geometric constraints are considered. The constraints consid-
ered are:
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¢ An equality constraint representing a specified (design) lift coefficient.

o Constraints with lower-bound on pitching moment, cross-sectional area,
trailing edge included angle, and leading edge radius.

The feasibility of the optimization methodology is finally investigated for aerody-
namic design based on the Reynolds-Averaged Navier-Stokes (RANS) equations.
The investigation addresses the same test cases as that defined for design studies
using the Euler equations. The results, obtained from design using the Euler and
the RANS equations, are compared.

Based on the knowledge gained from the single-design-point studies using
the Euler and the RANS Equations, a multi-point aerodynamic design method
is developed. The suitability of two multi-objective optimization strategies is
investigated, namely: (i) the method of the sum of weighted objectives, and (i)
the method of fuzzy optimization. The multi-point design test cases are defined
by combining single-point test cases, with the same type of aerodynamic and
geometric constraints.

From the results obtained in the investigation it is concluded that the opti-
mization methodology described in this thesis is suitable for solving practical
single-point and multi-point aerodynamic design problems of a single airfoil in
two-dimensional flow. The importance of the methodology for practical design
purposes is particularly due to the possibility of directly incorporating both
aerodynamic and geometric constraints, and due to the possibility to search for
compromises and to perform trade-offs for resolving design conflicts. Since the
methodology itself is not restriced to two-dimensional flow, as a result of the
investigation it is recommended to extend the methodology to three-dimensional
flow.




Samenvatting in het Nederlands

Dit proefschrift beschrijft de ontwikkeling van een methode voor de bepaling van
de optimale oplossing van meer-punts aerodynamische ontwerpproblemen voor
een enkelvoudige profiel in twee-dimensionale stroming. Met de term meer-punts
wordt bedoeld dat de ontwerpdoelen voor meerdere stromingscondities tegelijker-
tijd in beschouwing genomen worden. Het ontwerpprobleem wordt geformuleerd
als een optimalisatie-probleem, waarbij een aerodynamische objectfunctie gemini-
maliseerd moet worden, rekening houdend met aerodynamische en geometrische
restricties.

De stromingsmodellen, die worden gebruikt als basis voor het ontwerp, zijn de
onsamendrukbare potentiaalstroming waarvoor de Laplace vergelijking geldt, de
niet-viskeuze samendrukbare stroming waarvoor de Euler vergelijkingen gelden
en de viskeuze samendrukbare stroming die wordt beschreven met behulp van de
Reynolds-gemiddelde Navier-Stokes (RANS) vergelijkingen.

Bij de ontwikkeling van de ontwerpmethode is gebruik gemaakt van bestaande
computer-programma’s gebaseerd op de bovengenoemde stromingsmodellen voor
de berekening van stromingen om een enkelvoudig profiel. De ontwerpmethode
maakt bovendien gebruik van een beschikbare subroutine gebaseerd op een opti-
malisatie-algorithme, dat uitgaat van het bekend zijn van de gradient van de te
minimaliseren objectfunctie. ‘

De gradient van een aerodynamische objectfunctie wordt op efficiente wijze
berekend met behulp van een methode waarin gebruik gemaakt wordt van vari-
atierekening. Dit houdt in dat, voor iedere aerodynamische objectfunctie, een
zogenaamd toegevoegd probleem moet worden geformuleerd. De oplossing van
het toegevoegde probleem wordt gevormd door de vector van Lagrange multipli-
catoren met behulp waarvan de gradient kan worden berekend.

De formulering van het toegevoegde probleem, de constructie van een op-
lossingsmethode voor het toegevoegde probleem ter bepaling van de Lagrange
multiplicatoren en de gradient, alsmede de integratie van de oplossingsmethode
voor het toegevoegde probleem met een bestaande stromingsberekeningsmethode
en de bovengenoemde optimalisatiesubroutine, vormen het hoofdonderwerp van
dit proefschrift.

Bij de ontwikkeling van de ontwerpmethode gebaseerd op de Laplace ver-
gelijking, is uitgegaan van het zogenaamde inverse ontwerpprobleem, waarbij
de ontwerpdoelen geformuleerd worden in de vorm van voorgeschreven snel-
heidsverdelingen. Om er zorg voor te dragen dat op deze wijze een goed gesteld
probleem wordt verkregen. is een methode gevolgd waarbij door middel van het
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toevoegen van vrije variabelen in de definitie van de gewenste snelheidsverdeling
zodanige vrijheidsgraden in het probleem zijn geintroduceerd, dat aan de zoge-
naamde Lighthill-restricties kan worden voldaan. Door de op deze wijze verkregen
modificatie wordt de voorgeschreven snelheidsverdeling realizeerbaar gemaakt.

De haalbaarheid van de optimalisatie methodologie wordt onderzocht voor
het aerodynamisch ontwerp gebaseerd op de Euler vergelijkingen. Teneinde de
nauwkeurigheid van de berekende gradient te evalueren, wordt een invers ont-
werpprobleem beschouwd, waarbij door middel van het voorschrijven van een
bekende drukverdeling een gegeven profiel gereconstrueerd wordt. De toepas-
baarheid van de ontwerpmethode voor het oplossen van practische aerodynamisch
problemen wordt gedemonstreerd door middel van testgevallen van één-punts
(golf)weerstand reductie met aerodynamische en geometrische restricties. Deze
restricties bestaan uit

» een voorgeschreven draagkrachtcoeflicient,

e een voorgeschreven ondergrens voor het aerodynamisch duikmoment, voor
het ingesloten oppervlak ,voor de staarthoek, en voor de neusstraal van het
profiel.

Dezelfde testgevallen worden beschouwd voor de ontwerpmethode gebaseerd op
de RANS vergelijkingen. De resultaten, die door middel van beide methoden zijn
verkregen, worden met elkaar vergeleken.

Op basis van de kennis opgebouwd in het onderzoek met de Euler en de RANS
vergelijkingen,is een meer-punts ontwerpmethode ontwikkeld. Hierbij wordt ge-
bruik gemaakt van twee verschillende strategieén voor optimalisatieproblemen
met meerdere objectfuncties, namelijk: (i) de methode van de som van gewogen
objectfuncties, en (ii) de methode van "fuzzy” optimalisatie. De testgevallen
worden gedefineerd als een combinatie van één-punts gevallen, met hetzelfde type
aerodynamische en geometrische restricties.

Op grond van de resultaten van het onderzoek wordt de conclusie getrokken
dat de beschreven optimalisatie methodologie geschikt is voor het oplossen van
practische één-punts en meer-punts aerodynamische ontwerpproblemen voor
enkelvoudige profielen in tweedimensionale stromingen. Het belang van de metho-
dologie voor practische doeleinden ligt vooral in de mogelijkheid om zowel aero-
dynamische als geometrische restricties aan te brengen én in de mogelijkheid
te zoeken naar compromissen en uitwisselingsmogelijkheden bij conflictuerende
ontwerpeisen. Daar de methodologie zelf niet beperkt is tot tweedimensionale
stromingen, wordt op grond van de bereikte resultaten aanbevolen de metho-
dologie uit te breiden naar driedimensionale stromingen.
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Nomenclature

C1,Cs,C3  Lighthill constraints

Cq  drag coefficient
lift coefficient
pitching moment coefficient
pressure coefficient
skin-friction coefficient
total energy per unit mass
Mach number
Prandt] number
Reynolds number
airfoil surface
Far-field boundaries
absolute temperature
magnitude of the velocity vector V
normal velocity component
tangential velocity component
speed of sound
specific heat at constant pressure
specific heat at constant volume
internal energy per unit mass
pressure
surface arc length
time variable

z-component of the velocity vector V
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y-component of the velocity vector V

v,  normal velocity component

w  weight factor

A vector of aerodynamic constraint functionals
G vector of geometric constraint functions

Q  vector of flow variables
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Bp

residuals of the flow equations

vector of the search direction

generalized flow equations

vector of free parameters of the target velocity

vector of heat flux

airfoil coordinates

vector of the design point parameters

general objective functional

Lagrangian

aerodynamic objective functional

velocity vector

unit normal vector

unit tangential vector

deformation velocity vector

angle of attack

deviation, variation

thermal conductivity coefficient

kinematic viscosity

density

elements of the viscous stress tensor

vector of geometric parameters

vector of the Lagrange multipliers for the flow equation
vector of the Lagrange multipliers for the flow boundary condition
control curve coordinates (in Chapter 3),

coordinates of the computational domain (in Chapters 4 and 5)
total velocity potential

perturbation velocity potential

(vector of) source strength

(vector of) doublet strength (in Chapter 3),

(vector of ) membership function (in Chapter 6)
viscosity (in Chapter 5)

perturbation velocity potential due to a source of unit strength

flow domain
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Chapter 1

Introduction

The process of aircraft design can be divided into three phases. The first phase
is that of conceptual design. This phase ends with the decision on the aircraft
configuration, e.g. narrow- or wide-body, jet or propeller propulsion, etc. The
second phase is that of preliminary design. This results in the determination of
the aircraft global parameters, e.g. wing span and area, engine size, etc. The third
phase, which is commonly known as the detailed design phase, is concerned with
the detailed development of aircraft components where each component must be
considered as an integrated part of the aircraft. During this phase, the task of
an aerodynamic designer is to define the detailed aerodynamic shape of aircraft
components conforming to the design criteria and constraints specified in the
previous design phases. To fulfill the task, three approaches can be distinguished:
(i) experimental, (ii) computational analysis, and (iii) computational design.

The ezperimental approach involves measurement of a model of an aircraft
(or an aircraft component) in a wind tunnel. The model is configured so as to
get close similarities between the flow around the model and the flow around
the full-scale aircraft in real flight. If the wind tunnel test data are considered
unsatisfactory with regard to the design criteria, one has to modify the model
shape and a new wind tunnel entry is necessary. The process has the form of a
design-loop. The number of design cycles to be performed for meeting the design
requirements depends to a large extent on the knowledge and skill of the designer.
The number of design cycles that can be performed within a given time or within
a given budget is determined primarily by the time and cost of model design and
manufacturing.

The computational analysis approach aims at a reduction of the time and the
cost of the design cycle by replacing the wind tunnel experiment by a numerical
flow simulation. The rapid developments in mathematical flow modeling and
numerical algorithms, enabled by the rapid advances in computer technology,
have led to a wide variety of flow analysis computer codes. Such codes provide
the numerical simulation of the flow around an aircraft (or an aircraft component)
with approximate discrete representation of mathematical models of the physics
involved. The designer evaluates the data that, if unsatisfactory, may necessitate
a shape modification which in turn would entail another computation for the new
shape. Because of the limited validity of the mathematical models, experimental
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2 Introduction

verification, in the wind tunnel, is, at some stage, inevitable.

In both the experimental and the computational analysis approach, the role
of the designer, as man-in-the-loop, is a crucial one. One has to decide if and
what shape modification is needed.

The computational design approach addresses the aerodynamic design problem
more directly. A design code is characterized by the ability to assist the designer
by creating a shape which produces flows that conform in some approximate sense
to the design criteria. The aim is to reduce the man-in-the-loop effort in a typical
design loop. This offers benefits like

e Taking the burden of repetitious shape modifications away from the de-
signer. This means that the designer can avoid dealing with the non-linear
relationship between the aerodynamic characteristics and the geometry of
the shape. Therefore, more attention can be given to the interpretation and
the formulation of the design criteria.

¢ Reducing personal and historical biases in a design environment that may
hinder innovations.

The starting point of any detailed aerodynamic design of an aircraft is the
specification of the design criteria in relation to the mission that the aircraft has
to fulfill. The task of the designer is not only to meet the specification with
a minimum or at least acceptable risk, but also to provide an adequate level of
competitiveness in the quality of his design product relative to any potential rival
in the aircraft industry.

The mission is usually specified as a profile along which the aircraft has to
operate (Figure 1.1). The flight condition is changing continuously along the
profile. Taking simultaneously the whole mission profile into consideration in
the design process can be a formidable task. Therefore, it is common practice
to divide the mission profile into segments which are decisive for the overall
quality of the design. Then, for each individual segment a design-point and the
corresponding design criteria are identified, and the associated flight condition is
characterized by physical parameters, such as Reynolds and Mach numbers.

An aircraft has, in general, quite a complex geometry and it is practically im-
possible to handle this as a single entity in the detailed design phase. Thus, it is
common practice to decompose an aircraft into several components (Figure 1.2).
Each component is then designed separately subject to the design criteria and
subject to constraints associated with design integration that have been formu-
lated in the preliminary design phase.

The above simplification permits one to deal with what is called the single-
point design problem of an aircraft component. However, when putting it all
together at the end of the design process, one must cope with interference between
components and conflicting multi-point design criteria. This may then lead to a
laborious trial-and-error design process.

One way of dealing with the interference problem is to take more components
into account simultaneously. Following this school of thought, a number of multi-
component and three-dimensional computational design methods have emerged.
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Take-off  Climb Cruise Descent Landing

Figure 1.1: Typical mission profile and design points

: INTERFERENTCE

VARV AR /o [ I
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Figure 1.2: Break-down of aircraft components

By contrast, there seems to have been relatively little attention on how to cope
with the conflicting multi-point design criteria. It is probably fair to state that
multi-point design is a less-developed discipline in computational aerodynamics.
Because of its potential for improving the efficiency of the design process and the
quality of the design product, developments towards the establishment of multi-
point aerodynamic design procedures, in the author’s opinion, are desirable, if
not essential.

The present thesis addresses multi-point aerodynamic design problems of
a single airfoil in two-dimensional flow and proposes a computational design
methodology for such problems. The development of the methodology is di-
rected towards effectively resolving the multi-point design problem in an efficient
manner. It is realized that accomplishment of this task requires an efficient
and robust computational analysis method. However, bearing in mind that the
rate of advancement in computational aerodynamic analysis methods is high, the
dependency on the existing analysis methods should be kept low. This consider-
ation is taken into account in the present development. It is also realized that,
in a real design environment, an aerodynamic designer must inevitably interact
with designers from other disciplines. The present development anticipates such



4 Introduction

interaction by taking geometric constraints into consideration.

This thesis is organized as follows. Chapter 2 provides an overview of the
current status of computational aerodynamic design. The chapter groups existing
methods into different classes. The characteristics, possibilities, and limitations
of each class of methods are assessed. The outcome of the assessment leads to
general guidelines which direct the investigations described in the subsequent
chapters in order to develop a multi-point aerodynamic design methodology.

Chapter 3 investigates the viability of utilizing the variational method in
computing the gradient for aerodynamic optimization in inviscid incompressible
flow. The flow model to be considered is the Laplace equation which is formulated
as a boundary integral equation. The addressed optimization problem is the
inverse problem of airfoils. This concerns the construction of an airfoil shape
for a prescribed target surface velocity distribution. The technique for obtaining
the well-posedness of the inverse problem is explained in terms of the Lighthill
constraints.

Chapter 4 describes a general formulation of the optimization scheme for
airfoils in inviscid compressible flow, governed by the Euler equations, utilizing
the variational method for computing the gradient. This chapter addresses the
(constrained) minimization of aerodynamic functionals taking such forms as sur-
face integrations of the pressure and geometrical variables. The applicability for
solving (reconstruction) inverse problems and a geometrically constrained drag
reduction problem is demonstrated.

Chapter 5 presents an investigation of the feasibility of applying the varia-
tional method for (constrained) aerodynamic optimization using the Reynolds-
averaged Navier Stokes equations. This chapter addresses the same design cases
as in Chapter 4.

Chapter 6 describes the formulation of a multi-objective optimization scheme
for solving multi-point aerodynamic design problems. It is assumed that an aero-
dynamic objective corresponds to a particular design point such that in multiple
design points one has to deal with multiple objectives. The investigation concen-
trates on methods for incorporating compromises which may have to be imposed
by the designer. To this end, two methods, the method based on the fuzzy set
theory and the method of summing the objectives with weighting factors, are
studied for their practicability. The techniques developed in Chapters 4 and 5
are adopted as elements of the scheme.

Finally, conclusions are drawn and presented in Chapter 7.



Chapter 2

Computational Aerodynamic
Design Methods: characteristics,
possibilities and limitations

2.1 Introduction

This chapter presents an assessment of currently existing aerodynamic design
methods. The methods are grouped into a number of classes. Detailed descrip-
tions of the methods will not be given, as these can be found in the literature.
Also, the methods to be discussed are limited to those relevant for the present
investigation. The list of cited references is not meant to be exhaustive, but
is considered as representative for the methods discussed. References [51], [14],
[38] should be consulted for a more complete picture of the current status of
computational aerodynamic design methodology.

The assessment is meant to identify the strengths and the weaknesses of each
class of method. This should then provide a basis for the conceptual requirements
of a new design methodology capable of solving multi-point design problems. For
the present assessment, the following classification has been chosen

(a) Direct optimization methods. Methods of this category attempt to directly
achieve the design criteria in terms of the global aerodynamic parameters,
e.g. Cp, Cp, etc. The designer is assumed to be able to formulate the design
problem as an optimization problem. The design problem becomes a mini-
mization (or a maximization) problem of an objective functional subject to
a number of design constraints. Aerodynamic constraints, e.g. Chs is not
to exceed a certain value, or geometric constraints, e.g. the airfoil thickness
should be greater than a specified value, can be incorporated directly in the
formulation of the optimization problem.

(b) Inverse methods. Methods of this type assist the designer by construct-
ing an aerodynamic shape which generates a prescribed target velocity (or
pressure) distribution on the surface of the shape. The designer is as-
sumed to be able to prescribe the target velocity distribution in such a way

5



6 Computational Aerodynamic Design Methods: characteristics, possibilities and limitations

that it reflects required aerodynamic characteristics like lift, drag, pitching
moment, and boundary-layer properties which determine the aerodynamic
performance.

Flow optimization methods. In contrast with the previous methods where
the aerodynamic shape is the design variable, flow optimization methods
use flow characteristics (e.g. the velocity distribution on the surface) as
the design variable(s), the optimal value of which is determined by means
of an optimization algorithm. The objective functional to be minimized
and the design constraints (of aerodynamic nature) are expressed in terms
of aerodynamic performance quantities like Cz, Cp, etc. However, since
the shape is the sought output of any aerodynamic design, methods in this
category must be complemented with a shape-generating method.

The Assessment of characteristics, possibilities, and limitations of each class of
methods must address the following aspects:

1.

Applicability of flow model. This concerns the application range of the
flow model(s) utilized in the design methodology. This is of importance,
because the specified design points in a multi-point design problem may fall
in a wide range of flow regimes which all should be adequately represented
by the flow model.

. Completeness of problem representation. This concerns the type of design

objectives and constraints that can be incorporated in a design problem
formulation. This aspect is relevant because in multi-point design different
types of design objectives and constraints may be required for different
design points.

. Suitability for multi-point design. This aspect concerns the suitability of

(extending) a design methodology for treating multi-point design problems.

. Computational cost. This concerns the CPU time and the storage require-

ments of a design method when applied to a typical design problem.

. Code development effort. This concerns the level of utilization of the avail-

able flow solvers. This aspect is addressed because higher utilization usually
correlates with less effort (c.q. cost) for building a design code.

. Man-in-the-loop interaction. This concerns the level of automation of the

design process. That is, it has to be established where man-in-the-loop
interaction is required and can be incorporated and where it can be and

should be avoided.

2.2 Direct Optimization Methods

Aerodynamic design problems can be posed as an optimization problem, that

is a minimization (or a maximization) problem for an (aerodynamic) objective



2.2 Direct Optimization Methods 7

functional subject to aerodynamic and geometric constraints. The problem is
solved by coupling an optimization algorithm with a flow solver with parameters
describing the geometry of the shape as design variables. The work by Hicks et
al. [24] may be regarded as pioneering this approach. Although this approach
has a number of attractive features, especially with regard to the possibilities for
implementing constraints, it had often been criticized for being too consumptive
in terms of computational resources incurred by the computation of the objective
gradients.

Another approach within the category of direct optimization methods is based
on optimal control theory, which was investigated by Pironneau [46]. The poten-
tial of optimal control theory for treating practical aerodynamic design problems
was recognized by Jameson [28], and has been demonstrated with computer re-
sults in subsequent works (Refs. [29], [47], [30], [32], [31]). Jameson’s approach
offers efficiency in the calculation of the objective gradients without sacrificing
the attractive features of Hicks’ approach.

The direct optimization problem is typically stated as follows,

Minimize P(Q,8,z), (2.1)
Subject to:
A(Q,9,z) < 0,
G(6) < 0,

where P is an aerodynamic objective functional, @Q is the vector of flow variables,
0 is the vector of design variables describing the aerodynamic shape, and z is the
vector of design point parameters (e.g., Mach number, Reynolds number, etc.). A
is a vector of aerodynamic constraint functionals, and G is a vector of geometric
inequality constraints. The flow variables Q are implicitly dependent on 8 via
a flow equation representing the flow model at the steady-state, the solution of
which can be written asf

£(Q,0,z) = 0. (2.2)

The term direct optimization refers to the aerodynamic objective and constraint
functionals being expressed directly in terms of the global aerodynamic parame-
ters: Cr, Cu, and Cp. These parameters are usually the (only) ones that appear
in a design criteria specification. Geometric constraints are incorporated also in
a direct manner into the problem formulation. Therefore, direct optimization
methods offer attractive features with regard to the completeness of problem rep-
resentation. However, in these methods, there is no direct control over the surface
flow. Yet, the velocity distribution and the associated boundary-layer properties
determine the values of the global aerodynamic parameters to a very large ex-
tent. Hence, it would seem desirable to exercise some control over the surface flow
simultaneously with finding the optimal solution. A possible way of doing this
would be to quantify a desirable pressure distribution and boundary-layer prop-
erties and to incorporate these into the optimization problem statement. This,
however, is outside the context of the direct optimization methodology.

TThe boundary conditions are supposed to be included in the notation of f.
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In direct optimization methods, there is virtually no restriction regarding the
applicability of flow models. In principle, any flow analysis code can be coupled
with an optimization routine in order to obtain a code with a design capability.
Indeed, the simplest implementation of the methodology would be to consider
both the flow analysis code and the optimization routine as a black box.

Optimization routines based on various optimization algorithms (e.g.,Ref. [63])
are available on a commercial as well as public domain basis. In general, they
can be classified into:

e Zeroth-order methods (e.g., Powell method). These methods require only
the function values (of objective and constraints).

o First-order methods (e.g., Steepest Descents method). These methods re-
quire the function values and gradient with respect to the design variables.

o Second-order methods (e.g., Newton method). These methods require the
function values, gradients, and Hessian matrices, assuming the existence of
the second derivatives with respect to the design variables.

o Quasi second-order methods (e.g., Davidson-Fletcher-Powell method). These
methods require the function values and gradients. In the course of opti-
mization, the Hessian matrices are approximated sequentially based on the
available information on the gradients. These methods also assume the
existence of the second derivatives.

Zeroth-order methods are easy to implement, but convergence to the optimal
solution is usually rather slow implying many function evaluations. Provided the
gradient can be calculated, first-order methods offer significant improvement in
convergence to the optimal solution. Convergence can be improved further by
using a second-order method (if the Hessian matrix does exist). However, the
computation of the Hessian matrix can be a formidable task. Nowadays, quasi
second-order methods seem to be the most popular, because the approximation
of the Hessian matrix does not incur high computational cost, while convergence
is, in general, better than that of first-order methods. Accordingly, the following
discussion assumes the use of a gradient based optimization method.

Algorithm 1 (Figure 2.1) outlines the design procedure of the direct opti-
mization method. Gradients are required for determining the search direction
vector 8 in order to achieve the optimality condition C. For example, for uncon-
strained problems, the steepest descents method defines § = —dP/d@, whereas
the optimality condition C is expressed as ||[dP/d#]| = 0. Thus, optimization al-
gorithms require the gradient of P, A, and G with respect to the design variables
0 at a current value of 8 (i.e., at § = 8*).

Computing the gradients of the aerodynamic objective and constraint func-
tionals (P and A) is not at all trivial because of the implicit dependency of the
flow variables Q on the design variables 6 in the flow equation (2.2). Three meth-
ods. for calculating the gradients can be distinguished. The description is given
for the functional P, but it applies also to the constraint functionals A. For the
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(1) Let k =0, and select initial design variables 6*.
(2) Solve the flow equation £(QF, Bk,z) = 0 to obtain QF.

(3) Evaluate the objective P(Q¥, 8,z), and the constraints
A(QF, 6*,2) and G(8").

(4) Evaluate an optimality condition C. If it is satisfied then
stop the procedure, otherwise proceed to the next step.

(5) Calculate a search direction S along which the design
variables can be updated:

0k+1 — ok + ﬂS,

where 3 is a scalar representing the optimal distance in
the direction S along which 8 is moved in the design
space.

(6) Let k =k + 1, and return to step (2).

Figure 2.1: Algorithm I: Direct Optimization Method

sake of brevity the vector of design point parameters z has been dropped’. Now,
a gradient operator of P with respect to the design variables 8 is defined as

dP _9QoP 9P

6~ 309Q 90 (23)

where Q/080 is the Jacobian matrix of Q with respect to @ as implied by the
flow equation (2.2). The three methods for computing the gradients are described
as follows:

(a) Difference method. Each component of the vector of design variables is
perturbed in order to provide a perturbed value of the functional, and
subsequently, the associated component of the gradient is calculated by a
divided difference (Refs. [25], [34], [20]). The vector of design variables 0 is

TThe gradient with respect to 8 is required for a fixed set of design point parameters z.
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perturbed in the following way:

0, 0
iy o|
0; + € = 017
Oy
0. 0

then, the flow equation (2.2),
£(Q,8:) =0,

is solved for the perturbed flow variables Q. The perturbed functional value
can be obtained as P(Q, 8;). Then, the i-th component of the gradient is

determined as L
(_dz) _ P(Q,6:) —P(Q,8)
da,' - € ’
The most important disadvantage of this approach is that it requires at
least (n+1) flow analyses for obtaining the gradient vector of dimension n.

(b) Variational method. In this method an analytical expression for the gradient
is obtained by means of so-called Lagrange multipliers. The vector of La-
grange multipliers is the solution of a so-called adjoint problem, the nature
of which is dictated by the functional and the flow equation (Refs. [28], [19],
[50]). The method can be outlined as follows. A Lagrangian L is defined as

£(Q,0,2) =P(Q,8)+ X-1(Q,0), (24)

where A is the vector of Lagrange multipliers. The dimension of A equals the
dimension of f and, accordingly, the dimension of Q. Indeed, A is commonly
referred to as the adjoint variables of the (discretized) state variables Q and
is defined in the same domain as Q. The variation £ of £ which is due to
the variations 60, §Q, and é\ can be written as

P [of\T ap [ of\T
§L={— — 1 A} .60 — = . -8A. (2.
L (80+<80) ) +(6Q+<6Q) ,\) SQ+f-8A (2.5)
In the formulations (2.4) and (2.5), Q, @, and A are in principle independent
variables.

From Equation (2.5) it follows that the optimality condition §£ = 0 is

satisfied when
.
P (®) 5 < o

06 06
ap  [of\'
7+ (28) » = o

I
@

£(Q,9)
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Two observations can now be made:

(i) For a given 8, the contribution of 6 to 4L (i.e. the third term in the
right hand side of Equation (2.5)) vanishes when the flow equation

f(Q,0) =0, (2.6)
is satisfied. This provides the values of Q and, by the definition (2.4)
of £, implies that
L="7.
(if) As @ and Q are available from (i), the contribution of §Q to 6L (i.e.

the second term in the the right hand side of Equation (2.5)) can be
eliminated by solving the so-called adjoint equation:

ap  [of\"
g+ (£> A =0. (2.7)

This provides the values of A and implies that

oP  [of\"
“=57"(a—o+<%) A)-ae.

This gives directly the gradient of P with respect to :

-
dpP . 6L OP (Bf) A

66 ~— 99 " \6

49 T 95,00 ~ o0 28)

It should be noted that for unconstrained problems, the flow equation (2.6),
the adjoint equation {2.7), and the condition that ||dP/d8|| = 0 constitute
the optimality condition for the Lagrangian £ and, equivalently, that for
the functional P.

Equation (2.4) is written in terms of generalized forms of the functional
P and flow equation (2.6), which applies to both continuous and discrete
forms:

o In the continuous formulation, P usually takes the form of an integral
over (part of) the domain boundary,

P= fs¢(Q,e) ds.

while the flow equation (2.6) is applied in each point x € Q, where
is the flow domain, while Q and X are distributed over the domain.
This implies that in eq.(2.4) the dot product appears as an integral
over the domain. The expression for £ then takes the form

£(Q.8,%) = [ v(Q.0)dS+ [ x-1(Q,8) 0.

Q(x) }, er.‘

where

Q
A

Ax)
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e In a discrete formulation, the flow equation is defined in each point
of a computational grid, and so are the vectors Q and A. In a two-
dimensional domain, £ would typically appear in the form

C(Q? 67 A) = E ’I/J(Qiyov 9) + ZZA%J * f(Qi,j’a)‘

The partial derivatives of the discrete quantities in the expressions for
the adjoint equation (2.7) and gradient (2.8) are obtained by direct
differentiation.

The adjoint equation (2.7) is linear in A irrespective of whether the flow
equation is linear or non-linear. The effort of solving the adjoint equation
is generally comparable to that of solving the flow equation. The effort
of evaluating the gradient (2.8) is generally comparable to the effort for
the post-processing of a flow analysis. Thus, it can be expected that, in
variational methods, the computational cost of obtaining the gradient is
roughly equal to twice that of obtaining a single flow solution. It must also
be noted that each functional (of the objective or constraints) is related
to a distinct adjoint problem. Therefore, the number of (aerodynamic)
functionals involved in the optimization problem is an important factor in
determining the overall computational cost.

Sensitivity method. The flow equation
f(Q,6) =0
implies that
AoQ o _
0Q a0 06
This can be interpreted as that for any change in @ there will be a corre-

sponding change in Q such that the combination (Q, #) always lies on the
(hyper)plane defined by the flow equation f(Q,8) = 0. Letting

0.

of
4= 53
_ 9
B = 22,
of

¢ = 25

and assuming that Q and @ have dimension m and n, respectively; the
matrix A of dimension (m x m) is the Jacobian of the flow equation with
respect to the flow variables; the matrix B of dimension (m x n) is the
Jacobian of the flow variables with respect to the design variables; and
C of dimension (m X n} is the Jacobian matrix of the flow equation with
respect to the design variables. Rearranging the equation yields

A.B=-C.
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Given current values of Q and 8, which determine A and C, the above
equation is solved for the elements of the unknown matrix B. Each column
of B is obtained by solving a linear system of equations with the corre-
sponding column of C' as the right hand side. Thus, obtaining B requires
the effort of solving a linear system of m equations with n different right-
hand sides. The term ”sensitivity” refers to the fact that the matrix B
represents the sensitivity of the flow variables Q to a small change of 8.
As B is available, the gradient of P with respect to 8 can be determined
from equation (2.3). The partial derivatives appearing in the maftrices A
and C and in equation (2.3) are computed by means of direct analytical
differentiation.

One should be aware that, in sensitivity methods, the number of design
variables is an important factor in determining the computational cost im-
plied by the computation of B. Compared with the variational method,
for which the number of functionals is the important factor, the sensitivity
method may be advantageous in terms of computational cost if the opti-
mization problem involves many functionals.

In direct optimization methods the code development effort and the compu-
tational cost are strongly interrelated aspects. If the difference method is chosen
for obtaining the gradient, the code development effort will be minimal at the
expense of a high computational cost. On the other hand, both variational and
sensitivity methods offer remarkably lower computational costs at the expense of
a larger effort in developing the design code.

There are variants of direct optimization methods that do not strictly fol-
low Algorithm [ (Fig. 2.1), such as the ”"simulteneous” approaches described in
Refs. [48], [58], and [26]. A distinct feature of these approaches is that the com-
putation of the search direction vector S (for updating the design variables @) is
computed based on the last available estimate of the flow variables. Thus, in the
search for the optimal solution no ”converged” flow solution is required, at any
stage. At the end of the design procedure, the optimal solution for € is simulta-
neously obtained with the converged flow solution Q, satisfying the flow equation
f(Q,0) = 0. Such approaches offer a potential for a significant reduction in the
computational cost, but seem to require a large code development effort because
the flow solver and the optimizer have to be closely integrated in the design code.

An all-at-once approach, which may also be considered to be within the cate-
gory of direct optimization methods, is proposed in Ref. [15]. The distinct feature
of this approach is that the flow equation is directly incorporated in the opti-
mization problem formulation as an equality constraint. Thus, the optimization
problem (2.1) is reformulated as

Minimize  P(Q,8,z),

Subject to:
A(Q,8,z) < 0,
G(8) < 0,
f(Q,6,z) = 0.
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Here, the vector of design variables consist of both 8 and Q, and the objective and
constraints are treated as ordinary functions of 8 and Q. This approach is also a
simultaneous approach in the sense that the flow solution will not be satisfied until
the optimal (8, Q) is achieved at the end of the optimization procedure. Although
this method seems to offer certain benefits in terms of computational cost, it is
rather ambitious since the optimization algorithm has now not only the task of
locating the optimal solution (in terms of the usual objective and constraints)
but also of solving the flow equation. Hence, a very large-scale optimization
problem is implied—after discretization, Q has the dimension proportional to
the number of mesh points of the flow domain—, while optimization algorithms
tend to perform worse when the number of design variables increases.

Adopting a gradient-based optimization algorithm requires the pre-assumpt-
ion that objectives and constraints are smooth. In addition to that, it has the
consequence that the global optimum (i.e. the "best” possible design solution)
may not be found for a given initial estimate. This situation will not occur if
an algorithm commonly referred to as a ”global optimizer” is used. Such an
algorithm, capable of locating the global optimum, does not assume knowledge
of the topology of the design space, and therefore gradient information is not
required. The algorithm only needs the function(al) values in the search of the
global optimum. An example is a design method based on the genetic algorithm
(e.g., Ref. [44]. This method simulates the process of natural selection based on
the principle of survival of the fittest. In this terminology, an objective function
represents the fitness level. An individual, representing an aerodynamic shape,
is evaluated based on its level of fitness. The global optimum corresponds to the
individual with the highest level of fitness.

The suitability of direct optimization methods for multi-point design can be de-
scribed as follows. Multi-point design problems can be posed as a multi-objective
optimization problem. Then, one has to deal with a vector of objective function-

als:
Pl (Qa 97 Zl)
Minimize : (2.9)

Pl(Q, 0, 2)

where m is the number of design points. Pj is associated with the objective on
the k-th design point specified by the vector of design point parameters z;. Px,
k = 1,..,m constitute a vector of objectives. It should be noted that there is
also a distinct vector of aerodynamic constraints A; associated with the design
points.

If the level of importance of one design point relative to others can be defined,
then the vector of objectives can be scalarized by transforming the multi-objective
optimization problem into the usual single-objective optimization problem:

Minimize P(Py, .., Pm), (2.10)

where P is the scalar objective which incorporates all multi-point design criteria
contained in Py, k = 1,..,m. A typical method of scalarization is to form the
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P,

PFeasible region

Figure 2.2: Pareto optimal solutions

sum of weighted objectives

,ﬁ = Zwkpk)
k

which has been applied in Ref. [59], [12], and [39]. This assumes that the weight-
ing factors wy, are known a priori. Unfortunately, such an assumption may not al-
ways apply in practical situations. The nature of the multi-objective optimization
problem is illustrated in Figure 2.2. Two objectives are assumed, namely P; and
P>. The design space is drawn in the Py —P; plane. Point C represents an "ideal”
solution. It is the point that corresponds to the minimum values of P; and P, if
these were minimized individually. Point A represents the minimum of Pif P, is
completely ignored (w, = 0). Similarly, Point B represents the minimum of P if
Py is ignored (w; = 0). Feasible optimal solutions, which are commonly known
as the Pareto optimal solutions (Ref. [56]), lie on the segment between A and B
of the boundary of the feasible domain. Point D represents one of the Pareto
optimal solutions, which is located at the point where the line with the slope of
—wy /w; is tangent to the segment A-B. A "balanced” optimal solution is repre-
sented by E, which corresponds to the minimum distance between Point C' and
the segment A-B. This also illustrates that the balanced optimal solution, for
which P; and P, are assumed to be "equally” compromised, does not necessarily
correspond to the solution that results from specifying wy = ws.

The multi-objective optimization approach seems to offer ample flexibility in
solving multi-point design problems. It allows the designer to formulate compro-
mises in a formal way. Indeed, compromise and trade-off are in the nature of
multi-point design problems.

The discussion above could give the impression that direct optimization meth-
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ods imply a high level of design automation with minor man-in-the-loop interac-
tion. The interaction with the designer comes down to properly translating the
design criteria into an optimization problem. Although this may seem simple in
certain design cases, it is, in general, far from trivial. If it is not done properly,
an ill-posed optimization problem can result. For example, the problem can be
over-determined in the sense that there are toco many constraints such that the
feasible design space is null. On the other hand it can also be under-determined,
implying multiple design solutions which might be of equal quality (in the sense
of objectives and constraints) but are not (all) practically useful. Reformulation
of the optimization problem is inevitable in order to obtain well-posedness. In
the former situation, this can be done by relaxing the constraints, while in the
latter situation, new constraints should be introduced.

The success of optimization depends also on whether the problem is well-
scaled or not (Ref.[63]). This is determined by

e the nature of the optimization problem, and
e the way in which the aerodynamic shape is represented by the vector 8.

For example, the nature of the optimization problem might be such that a partic-
ular constraint "dominates” the objective which makes it difficult to locate the
minimum. Also, unfortunate (relative) scaling of functional values and design
variables may create deep and narrow “valleys” in the design space, in which
case optimization algorithms would have to take many steps before arriving at
the bottom of the valley.

In general, man-in-the-loop interaction must be anticipated in the form of
reformulating the optimization problem, such that it is well-posed and well-scaled,
and also in the form of feeding-in a number of different initial estimates so as to
provide higher confidence that the best design solution is found.

From the preceding discussion it follows that a practical multi-point direct
optimization methodology should contain the following features:

(a) A multi-objective optimization scheme for solving multi-point design prob-
lems.

(b) A scheme for relaxing the constraints in such a way that the adapted design
problem will not differ too much from the one originally formulated by the
designer.

2.3 Inverse methods

An aerodynamic design problem is often posed as an inverse problem. The term
inverse refers to the construction of an aerodynamic shape generating a prescribed
or "target” pressure (or velocity) distribution over the surface of the aerodynamic
shape. The target pressure distribution implies lift, drag, pitching moment, and
boundary-layer properties which determine the aerodynamic performance.
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The development of inverse methods can be traced back to the works of
Betz [5], Mangler [43], and Lighthill [41]. Utilizing conformal transformation
principles, they showed that for a given condition of the onset flow, a target
velocity distribution can be realized by an airfoil shape only when the veloc-
ity distribution satisfies three compatibility constraints. One constraint dictates
compatibility between the target velocity and the onset flow. The other two con-
straints express compatibility with the closure condition of the airfoil contour.
Although these constraints were derived for two-dimensional incompressible po-
tential flows, it is generally accepted that for more general flow models such
constraints exist as well. The notion of well-posedness of an inverse problem is
usually connected to the fulfillment of the compatibility constraints. In spite of
the fact that many existing inverse methods do not consider all the compatibility
conditions, advancements in inverse methods have reached a level where problems
in three-dimensional compressible flow are being addressed.

Prescribing a target pressure distribution over the surface of a body has the
consequence that the surface boundary condition of the boundary value problem
for solving the flow equation becomes non-linear. From the manner in which this
non-linearity is treated, two approaches in solving the inverse problem can be
distinguished:

(a) Indirect approach. This refers to methods in which an iterative sequence
of boundary-value problems with linearized boundary condition is solved
in such a way that it converges to the solution(s) of the one with the non-
linear boundary condition. Within this indirect approach, three classes of
method can be distinguished:

(i) Neumann-type methods (Refs. [9], [53], [18]). These are frequently also
referred to as the residual-correction methods. Imposing the Neumann
boundary condition of zero normal velocity on the surface, the solution
of the flow equation provides the surface pressure distribution. The
deviation of the latter from the target pressure distribution is used as
a driver for a shape modification. The shape modification algorithm
("design rule”) is usually based on some relatively simple, linearized,
relation between the shape modification and resulting change of the
pressure distribution. It is essential that this linear approximate rela-
tion contains a representation of the main physical mechanisms of the
flow. Algorithm II (Figure 2.3) illustrates the process.

(i) Dririchlet-type methods (Refs. [60], [66], [23]). This type of methods
is applicable for potential flow models. In these methods, the target
pressure distribution (which can be translated into a tangential ve-
locity distribution) is imposed as a Dirichlet boundary condition to
the flow equation. The solution of the Dirichlet problem exhibits in
general a finite non-zero normal velocity at the surface. Shape mod-
ifications are applied to correct this physically meaningless solution.
The extent of the modification is determined by the magnitude of the
resulting surface normal velocity. Algorithm III (Figure 2.4) illustrates
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(1) Let k = 0, and select an initial shape described by *.
(2) Solve the flow equation f(QF,8%,2z) = 0 to obtain Q*.

(3) Calculate the deviation of the (actual) pressure distribu-
tion p* = p*(Q*) from the target pressure distribution

Pl X
§p=p° — pt.

(4) Evaluate a design rule Gy to obtain the shape modifica-
tion §0:
86 = Gn(6p).

(5) For a small positive number ¢, if |ép| < ¢ then stop the
procedure, otherwise proceed to the next step.

(6) Update 6 by
oFt1 = g% 4 rgg.

where 7 is a relaxation factor.

(7) Let k =k + 1, and return to step (2).

Figure 2.3: Algorithm II: Neumann-type indirect inverse method

the process.

(i11) Inverse-by-optimization methods (Refs. [36], [58]). Here, the inverse
problem is posed as an optimization problem. The problem involves
the search for an aerodynamic shape which gives a pressure distribu-
tion —the "actual” one that results from the flow equation—with a
minimum deviation from a prescribed target pressure distribution. A
common way of formulating this optimization problem takes the form

. . . 1 2
Minimize P = 5/5(1) — pe)ds, (2.11)

where P is an aerodynamic functional that represents the deviation of
| the actual pressure distribution p = p(Q) from the prescribed target

pressure p; S is the surface of the shape to be (re-)designed. The
‘ algorithm and techniques described in Section 2.2 can be used to solve

this problem. Algorithm IV (Figure 2.5), which is derived from the

more general Algorithm I, illustrates the process. It should be noted

that, although it is not indicated in the above algorithm, geometric

constraints can be incorporated easily in the optimization problem
| formulation in the same manner as described in the case of direct
optimization methods (cf.Section 2.2).
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(1) Let k = 0, and select an initial shape described by 6.

(2) Obtain QF from the flow equation f(QF,0%,z) = 0
where the target pressure distribution (or its corre-
sponding tangential velocity distribution) is imposed as
a Dirichlet boundary condition, i.e. p* = p; where
»* = pH(QF).

(3) The resulting normal velocity distribution v, = v,(QF)
is used to determine the shape modification following a
design rule Gp:

66 = Gn(buy,).

(5) For a small positive number ¢, if |v,| < € stop the pro-
cedure, otherwise proceed to the next step.

(6) Update 0 by
okt = 6% 1 réo.

where 7 is a relaxation factor.

(7) Let k =k + 1, and return to step (2).

Figure 2.4: Algorithm III: Dirichlet-type indirect inverse method

(b) Direct approach. This refers to methods which directly address the bound-
ary value problem with the non-linear boundary condition. This approach
involves a non-linear system of equations that must be solved for a set of
dependent variables consisting of both flow and geometric variables. New-
ton’s method can be used for solving the non-linear system of equations,
in which case Algorithm V (Figure 2.6) illustrates the process. Within the
direct approach, two classes of method can be distinguished:

() Methods based on transformation of the flow equations (Refs. [11], [13],
[4]). In these methods, the flow equation is transformed into a spe-
cial form based on the (initially unknown) streamline positions. Most
methods within this category take advantage, in one way or another,
of the fact that the velocity vector is tangent to the streamlines such
that in the resulting system of non-linear equations the total number
of dependent variables is reduced remarkably. The target pressure dis-
tribution is specified along an initial estimate of the streamline that

- corresponds to the surface to be (re-)designed. The solution of the
transformed flow equation then provides both the flow variables and
the actual position of all the streamlines, including the streamline that
determines the aerodynamic shape.

(ii) Least-squares-type methods (Refs. [37], [7]). In these methods, the in-
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(1) Let & = 0, and select an initial set of design variables 8*
representing a geometrical shape.

(2) Solve the flow equation f(QF,8*,z) = 0 to obtain QF.

(3) For the resulting pressure p = p(QF) evaluate
1
P=;5 [@-poids
s

{(4) Evaluate an optimality condition C representing the de-
viation |p — p;). If it is satisfied then stop the procedure,
otherwise proceed to the next step.

(5) Calculate a search direction S by which the design vari-
ables can be updated:

0k+l — ok + ,BS,

where (3 is a scalar representing the optimal distance in
which @ is moved in the design space in the direction S.

(6) Let £ = k + 1, and return to step (2).

Figure 2.5: Algorithm IV:Inverse-by-optimization method

verse problem is formulated as a minimization problem of a quadratic
functional representing the deviation of the actual pressure distribu-
tion from the target pressure distribution. Then, the stationary condi-
tion for this minimization problem is derived in a least-squares sense.
This leads to a system of non-linear equations which is solved for both
the flow and the geometric variables.

Regarding the aspect of the applicability of the flow model, the indirect ap-
proach, in particular the residual-correction method, seems to be the most flexible
as it can make use of virtually all available types of flow solver. By contrast, the
direct approach is somewhat restricted in this respect; not because of fundamen-
tal reasons, but rather due to practical limitations, as applications based on a
complex flow model can easily result in a prohibitively large non-linear system of
equations.

Considering the completeness of problem representation aspect it appears that
inverse methods can be very effective as far as aerodynamics is concerned. Al-
though there is no mechanism in the inverse procedure that directly controls all
the aerodynamic properties, the possibility for the designer to prescribe a target
pressure distribution is very valuable. The designer has control, though indirectly,
over the global aerodynamic parameters of interest (Cy, etc.) and also over the
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(1) Let k = 0, and select an initial shape 8% and an initial
estimate of the flow variables Q.

(2) Calculate the residual of the system of non-linear equa-
tions:

R = R(6*,Q"(p.), 2).

This notation means that the pressure p = p(QF), cor-
responding to a streamline described by 8, is set to the
value of the target pressure distribution p;.

(3) For a small positive number ¢, if |R|| < € stop the
procedure, otherwise proceed to the next step.

(4) For 8% and Q* calculate the Jacobians 9R/36 and
OR/8Q, to obtain §0 and 6Q:

(8)--[% e
Q) loe 4Ql™”

where 0R/00 and OR/0Q are the Jacobians of the

residual.
(5) ) Obtain new estimates of @ and Q:

(0k+l> [ 6+ ré0 )
Q) T \QF+riQ
where 7 is a relaxation factor.

(5) Let k= k + 1, and return to step (2).

Figure 2.6: Algorithm V: Direct inverse method

surface flow which determines the boundary-layer properties. However, there is
a fundamental difficulty in applying inverse methods, at least those which aim at
exactly satisfying a specified target pressure distribution (”pure” inverse meth-
ods). This is related to the fact that there is little knowledge-—with the exception
of the compatibility constraints addressed by Lighthill [41] for 2-D airfoils—on
what compatibility constraints there are in a more general 3-D case and on how
to specify a target pressure distribution that conforms to such conditions. The
situation becomes more complicated when practical geometric constraints, such
as those related to structural requirements, must be taken into account also.

Indeed, it is very likely that the inverse problem (actually imposed by the
designer) in general is ill-posed in the sense that the target pressure distribution is
not completely realizable or the geometry is over-constrained. As a consequence,



22 Computational Aerodynamic Design Methods: characteristics, possibilities and limitations

convergence (in terms of vanishing |6p|, |v,|, P and ||RJ| in Algorithms U-V) may
not be realized. Although for certain ill-posed cases (pure) inverse codes may, at
a certain stage, still give a useful output (in the sense that the actual pressure
distribution ”is close to” the target}, one should anticipate that the ill-posedness
can be so severe as to cause total failure of the inverse computation.

Three possibilities may be distinguished as a means to obtain well-posedness:

o Relazation of the geometric constraints. By relaxing the constraints, it
would be possible to find a geometry, which may possibly still be near the
boundary of the region of feasible geometries (e.g., in a least-squares sense),
and generates the target pressure distribution.

o Relazation or parameterization of the target pressure distridution. By in-
troducing free parameters into the prescribed target pressure distribution,
the prescribed target pressure distribution can be adapted until a realizable
one is found for which there exists a corresponding (constrained) geometry.

o Relazation of the design point parameters. By adapting the design point
parameters, it would be possible to fulfill the compatibility conditions such
that a geometry can be found that generates the target pressure distri-
bution. However, since the design point parameters are usually fixed as a
result of the preliminary design phase, relaxing their values is not attractive
from a practical point of view.

The strategy of relaxing both the target pressure distribution and the geometric
constraints can be recognized in the method by Fray et al.(Refs. [16] and [17]).
This method involves a weighted least-squares formulation which compromises
between the geometric constraints with the aerodynamic requirements as implied
by the target pressure distribution. In this method, the dependent variables are
the strengths of the singularity distributions (sources, doublets, and vortices)
of a linearized potential flow model which governs the shape modifications. It
should be noted that this method does not guarantee the achievement of well-
posedness in the strict sense of convergence with vanishing ép, etc. However,
the least-squares formulation should be appreciated for its capability in avoiding
undesirable geometries while maintaining a pressure distribution which is close
to the "target”; thus preventing failure of the computation and producing useful
results.

The methods described in Refs. [57], [11], and [66] use the strategy of adapting
the target pressure distribution and/or the design point parameters. Obviously,
it is desirable to keep the adaptation within a minimal extent. The method
by Strand [57] for two-dimensional potential flow takes this into consideration
by formulating a minimization problem for the deviation between a prescribed
target pressure distribution (the original one) and the adapted target for which
the Lighthill constraints are imposed explicitly. The adapted target is then fed
into an inverse procedure for obtaining the shape. Such an approach can be
applied only if closed-form compatibility conditions (in this case, the Lighthill
constraints) are available. Unfortunately, as indicated earlier, knowledge on such
conditions for more general flow situations is not available.
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For practical use, it is desirable that possibilities for obtaining well-posedness
are implemented in an automated scheme. The consequence of not doing so may
be an intensive man-in-the-loop interaction, i.e. the designer must go through
a, possibly, cumbersome process trying several possibilities in order to obtain a
useful result (or even a result at all).

Regarding the code development effort, the residual-correction approach seems
to require the least effort. That is, by simply attaching a (consistent) shape
modification procedure to an existing flow analysis code, one can readily obtain
an inverse code. The Dirichlet-type indirect approach needs more effort. This is
associated with the necessary replacement of the Neumann boundary condition
in an analysis code by the Dirichlet boundary condition. The implementation of
an inverse method based on the direct approach is rather laborious. Although use
of an existing flow analysis code might still be made, for example with regard to
the discretization scheme, the construction of the system of non-linear equations
usually demands considerable effort.

The trade-off between code development effort and computational cost ob-
served when discussing direct optimization methods (Section 2.2) also applies to
inverse methods. The direct approach, in which the flow variables and the shape
may be considered to be obtained ”simultaneously”, generally require relatively
modest CPU time compared to indirect approaches. In the direct approach, the
overall computational cost for solving an inverse problem is in general of the
same order of magnitude as that of a single flow analysis computation, but at
the expense of a large code development effort. Regarding the storage require-
ments, the indirect approach seems to be the best choice. For the direct approach,
the storage requirement can be prohibitively high if a large system non-linear of
equations has to be dealt with.

With respect to the suitability for multi-point design two approaches are re-
ported in the literature, namely:

o The surface segmentation approach.
e The inverse-by-optimization approach with weighted sum of objectives.

In the surface segmentation approach (Refs. [49], {36]), the body surface is di-
vided into a number of segments. For each design point a specific body segment
is designated on which a local target pressure distribution is imposed. This as-
sumes the existence of a unique relation between the design point and the body
segment. It also assumes that the designer is able to identify such a relation.
Both assumptions are highly questionable, from a physical as well as a practical
point of view. As a matter of fact, by strict multi-point terminology, the sur-
face segmentation approach cannot be regarded as a multi-point design approach.
The reason is that, given an inverse problem formulated in such manner, one can
also arrive at the same solution by performing inverse calculations for each design
point, where in each calculation the segment which is not of interest is kept fixed.
This, as a whole, is identical with the process of solving a number of single-point
inverse problems individually.
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In the inverse-by-optimization approach (Ref. [39]), the multi-point inverse
problem is formulated as a multi-objective optimization problem (cf. Section 2.2).
For each design point an objective functional of the type (2.11) is defined. This
results in a vector of objective functionals:

1
Py = 5/5(101 —Ptl)zds
Minimize :
_ 1 _ 2
Prn=3 /S(pm Pt ) dS

where the subscript refers to the design point. The above multi-objective opti-
mization problem is transformed into

Minimize Z wiPk.
k=1
As py,, for £ = 1..m, is the target pressure distribution that represents the
aerodynamic requirement in design point k, the inverse-by-optimization approach
is suitable for a multi-point design. From the computational results presented
in Ref. [39] one can learn that even in the situation in which p;, fulfills the
compatibility conditions in each individual design point k, the well-posedness of
the whole multi-point inverse problem is not guaranteed.

The multi-point inverse problem is, in essence, a problem of constructing a
single shape that generates, as closely as possible, two or more target pressure
distributions, each of which is prescribed for a different design point. In order
to understand the nature of the problem, a "one-dimensional” model equation is
considered which is written as

f(p,z,2) =0, (2.12)

where f, p, x and z are assumed to represent the flow equation, the pressure, the
shape, and the design point parameter, respectively. Although this may seem
oversimplified, it facilitates understanding the concept. The contour f = 0 is
illustrated in Figure 2.7 for different values of z. The shape is assumed to be
constrained by

1 Lz < 2y

The feasible region is indicated in the figure. In the analysis problem, a feasible
z is given on a specified 2. The corresponding p can then be obtained for the
specific z and z.

In the single-point inverse problem, a target p is specified for a given z, and «
is to be determined. If the inverse problem is to be well-posed then p should be
specified such that the point (p, z) falls within the feasible region, in which case
the shape z can be determined immediately. For an ill-posed problem where the
specified point is located outside the feasible region, adapting the target pres-
sure and/or relaxing the geometric constraint (allowing ”leeway”) is necessary,
as described earlier. In addition to that, one can also adapt z such that the
combination (p,z, z) falls within the (expanded) feasible region.
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f(p.x2) =0
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Figure 2.7: Domain of a model inverse problem

The multi-point inverse problem can be considered as a generalization of the
single-point inverse problem in the sense that, instead of one pair of (p,z), two
or more pairs are specified, e.g. (p1,21) and (ps, 22), for which one value of z is
to be determined. It is obvious that an exact solution exists only if (p1,21) and
(pa, z2) are located along a single line = = constant in fig. 2.7. Since this is not
the case in general, adaption of p and/or in z and/or leeways in the geometric
constraints is inevitable. In Figure 2.7 point M illustrates a multi-point inverse
solution that could be obtained in this manner, where the dotted line indicate
the "leeway” that has been accepted.

Recalling the three possibilities for obtaining well-posedness of inverse prob-
lems, it is now clear that a practical multi-point inverse design methodology
should contain the following features:

(a) a scheme for relaxing to the geometric constraints.

(b) a scheme for relaxing or adapting the prescribed target pressure distribu-
tions.

(c) a scheme for relaxing or adapting the design point parameters.

(d) a scheme for minimizing the extent of the adaptations/relaxations indicated

in (a)—(c).

In essence, this means that the different requirements for specific design points
are relaxed (in terms of the geometric constraints, the target velocities and the
design point parameters) so as to become compatible with each other. It implies
that some degrees of freedom have to be introduced into the problem with (d)
serving to avoid multiple solutions due to the increased degrees of freedom.
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2.4 Flow Optimization Methods

Flow optimization methods deal with the problem of determining flow characteris-
tics that in some optimal sense satisfy specified design criteria. The optimization
problem is usually posed as a minimization (or a maximization) problem of an
aerodynamic objective functional subject to some aerodynamic constraints. The
geometric shape is not involved as a variable in this problem. Instead, the ob-
jective and the constraint functionals are expressed solely in terms of the flow
variables associated with some assumed geometric shape. Thus, in this approach,
the design variables, of which the optimal value has to be determined, are pa-
rameters describing the flow variables. Usually, the flow variables of interest are
those associated with the surface of the aerodynamic shape because of the direct
relationship with forces, (pitching) moments, and the boundary-layer properties.
A common choice for the design variables is a set of parameters describing the
surface velocity (or pressure) distribution (Refs. [27], [40], [45], [61]).

Obviously, this methodology needs some form of surface flow or boundary-
layer analysis, assuming that this is applicable (e.g. without excessive flow sep-
aration). The boundary-layer equations can be written in a symbolic form, such
as

h(d,b,z) =0, (2.13)
where d and b denote the vectors of the dependent and independent variables,
respectively. The vector b refers to a set of parameters describing the driving flow
variables (i.e. the design variables), while d refers to the driven flow variables. It
is important to note that in attached flows, allowing direct boundary-layer anal-
ysis, the driving variable is the velocity distribution at the edge of the boundary-
layer, while the driven variables are the boundary-layer parameters such as the
skin friction, displacement thickness, etc. For separated flows, requiring inverse
boundary-layer analysis (Ref. [64]), the opposite applies.

A typical way of stating the optimization problem is given below,

Minimize ~ P(d, b, z), (2.14)
Subject to:  A(d,b,2z) <0 (2.15)

The objective P and the vector of constraints A represent such global aerody-
namic parameters as Cr,, Car, and Cp. It should be noted that the values of Cy,
Cys, and Cp can only be approximate since at this stage the precise shape re-
quired for satisfying the aerodynamic objective is not involved or known. P and
A can also represent aerodynamic requirements related to the boundary-layer
properties such as the transition point location, velocity (pressure) gradient, and
alike.

From the completeness of problem representation point of view, flow opti-
mization methods have the distinct feature that they are capable of controlling
the surface flow. However, the design problem is not fully addressed since the
geometric shape is not a design variable.

Flow optimization methods require only modest computational cost in terms
of CPU time, because a boundary-layer analysis can be performed rather quickly,
at least for two-dimensional cases.
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Since the aerodynamic shape is, eventually, the sought output of any aerody-
namic design, flow optimization methods must be complemented with a shape-
generating design method (e.g. an inverse method). At this point, man-in-the-
loop interaction is expected to be necessary or desirable, because of all aspects
discussed in the preceding section.

The algorithms and techniques (such as for the gradient calculation, multi-
objective approach, etc.) described in Section 2.2 and the assessment related
to these, are also relevant for the flow optimization methods. Thus, a multi-
objective strategy can be adopted in order to deal with multi-point design prob-
lems, bearing in mind that in principle the compatibility of solutions in all design
points must also be satisfied. The means described in Section 2.2 for coping
with ill-posedness of the optimization problem related to the over-constrained or
under-constrained situations can also be used here.

2.5 Requirement Specification for a Multi-Point
Aerodynamic Design Methodology and
Scope of the Thesis

The assessment presented in the previous sections shows that there is no single
existing design methodology which is equally favorable in all aspects. When the
development of a (new) multi-point aerodynamic design methodology is the ob-
jective, it is convenient to, first, specify the requirements, in terms of the aspects
addressed in the preceding sections, that must be fulfilled by the methodology.
These requirements can be divided into primary and secondary ones. Primary
requirements are those considered as compulsory in the sense that not fulfilling
them would imply that a useful design solution cannot be obtained. Secondary
requirements are less strict in the sense that, even if these are not fulfilled, a
design solution can still be obtained, but, depending on the design environment
one is working in, some unfavorable consequences (e.g. high computational cost,
etc.) may be implied. The primary requirements can be specified as follows:

1. With regard to the applicability of flow model, the design methodology
should be based on flow models adequately covering the regimes of interest
within which an aircraft must operate. This implies that, at least for trans-
port aircraft, the flow models to be adopted should model compressibility
effects and viscous phenomena related to the boundary-layer flow. This
would mean that, as a minimum, a combination of an inviscid flow solver
based on the potential low model or the Euler equations and a compress-
ible boundary-layer solver should suffice. However, it is obvious that use
of a flow solver based on the (Reynolds-averaged) Navier-Stokes (RANS)
equations to be preferred, in view of the wider class of flows modeled by
RANS and the type of design points to be considered.

The discussion of the preceding sections indicates that direct optimization
methods and "indirect”-type of inverse methods do not impose restrictions



28 Computational Aerodynamic Design Methods: characteristics, possibilities and limitations

regarding the flow models and are therefore to be preferred.

It is expected that one may wish to employ different flow solvers, depending
on the nature of the design problem, the physics involved, and the design
environment (e.g. computer resources). Therefore, investigations with dif-
ferent types of flow models are useful.

2. With regard to the completeness of problem representation, the design
methodology should incorporate possibilities for dealing with design crite-
ria comprising aerodynamic requirements (objectives and constraints) and
geometric constraints. The geometric constraints are considered to be the
result of interactions with other disciplines. The preceding discussions sug-
gest that constraints are most easily incorporated within an optimization
methodology. As discussed in Section 2.4 flow optimization methods do
not address the complete design problem. Therefore, investigations in this
thesis focus on direct optimization and inverse-by-optimization methods.

3. With regard to the suitability for multi-point design, the design methodol-
ogy should provide a facility to search for compromises and perform trade-
offs in a flexible way in order to resolve conflicts in the design criteria that
may occur in a multi-point design problem. This implies that use of a multi-
objective optimization algorithm should be explored. The incorporation of
compromises and trade-offs should not be limited to a sum-of-weighted-
objectives type of approach (cf. Section 2.2) because such an approach is
capable of incorporating compromises in terms of objectives only and not,
in principle, in terms of (acceptable) relaxation of constraints. Accordingly,
this thesis also anticipates cases in which some of the constraints may have
to be violated to a certain acceptable degree. For such cases, leeways can
be introduced, but with the condition that they should be minimal in the
optimal solution.

The secondary requirements are the followings:

1. With regard to the computational cost, it is desirable for practical reasons,
that an optimal design solution, or at least a solution representing a sig-
nificant improvement over an existing design, can be obtained in a quick
turn-around time. In this respect, a gradient-based (quasi second-order)
optimization algorithm seems to be most suitable and therefore is adopted.
For computing the gradients, the difference method must be avoided. An-
ticipating a moderate number of (aerodynamic) functionals involved in the
optimization problem, the variational method should be preferred over the
sensitivity method. A large part of this thesis will therefore concern the
formulation of adjoint equations and gradient formulae.

2. With regard to the code development effort, utilization of existing flow anal-
ysis codes and numerical subroutine libraries should be pursued. The design
code should support easy maintenance and future extensions. This implies
that a modular approach has to be employed in developing the code, with
existing analysis codes and optimization routines treated as black boxes.
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3. With regard to the man-in-the-loop interaction, the design code should,
obviously, provide the designer with user-friendly man-machine interfaces
such that necessary (or desirable) interactions can be performed efficiently.
This implies, amongst others, that an optimal default status (or set of
parameters), with the highest probability of giving useful solutions, has to
be defined. At the same time, users should be allowed to alter the status
or parameter set in order to explore other possible design solutions.

In summary, this thesis will concentrate on direct optimization and inverse-by-
optimization methods, utilizing gradient based (quasi second-order) optimization
algorithms with the gradients determined through the variational method. Meth-
ods of this kind will be investigated for incompressible potential flows (based
on the Laplace equation), inviscid compressible flows (governed by the Euler
equations) and viscous compressible flows (governed by the Reynolds-Averaged
Navier-Stokes equations).

In view of time and effort limitations the investigations address airfoil design
problems in two-dimensional steady flow only. However, the methodology chosen
is expected to be applicable also in three-dimensional flow problems.
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Chapter 3

Aerodynamic Optimization
using the Laplace Equation

3.1 Introduction

The contents of this chapter is based on Ref. [55].

For the aerodynamic design of airfoils in incompressible potential flow, inverse
methods seem to represent the only useful design problem formulation. Formu-
lations in terms of the drag coefficient Cy are not possible due to the d’Alembert
paradox!.

In inverse design problems one has to deal with the construction of an air-
foil geometry that produces a prescribed target velocity distribution along its
arc lengthtt. The prescribed target velocity distribution usually satisfies criteria
regarding the airfoil performance. Lift, drag, pitching moment, and terms as-
sociated with boundary-layer properties (e.g. laminar flow, transition location)
that determine the aerodynamic performance are reflected within the velocity
distribution.

The design process usually begins with a designer defining a target velocity
distribution for a specified design point which serves as input to an inverse design
code. In doing so, he may be assisted by a routine specially developed for such
task (see for example van den Dam [61]). The inverse design code has the role
of searching for the corresponding airfoil geometry. The effectiveness of many
inverse codes depends on whether or not the target falls within (or close to) a
class of realizable velocity distributions. When it is far from being realizable, some
codes totally fail, while others may still yield a geometry albeit with a velocity
distribution which differs appreciably from the target. Normally at this point,
the designer must redefine the target velocity distribution, sometimes in a rather
speculative manner, and feed it back into the code. Such procedure may have to
be repeated several times, depending on the expertise of the designer. This seems

tAirfoils do not exhibit a drag force in two-dimensional incompressible potential flow.

tTWithout loss of generality, the inverse problems in this chapter are assumed to be stated
in terms of velocltles instead of pressure, as the two quantities are related by the Bernoulli
equation p + 2pV? = constant.

31
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to be a reason why inverse codes are mainly used for redesign purposes. Although
this has proved to be very useful in practice, ignoring the starting-from-scratch
approach may inhibit innovations.

The development of inverse methods can be traced back to the works by
Betz [5], Mangler [43], and Lighthill [41]. Based on conformal transformation
principles, they have shown that, for a given free stream condition, realizable
target velocity distributions must satisfy three compatibility constraints. One
constraint dictates the compatibility between the target velocity and the free
stream. The other two express the condition that the airfoil contour must be
closed. Nowadays, there are a considerable number of inverse methods that have
been developed from many different approaches. A survey by Slooff [51] and
Labrujére & Slooff [38] can be consulted for details.

One way of taking the constraints into account is to introduce free param-
eters in the velocity distribution. These parameters have the role of modifying
a prescribed target velocity distribution in an appropriate way such that it be-
comes well-posed in terms of the constraints. This is the approach taken by
Volpe & Melnik [66], and later also by Drela [11]. Of particular significance is
the numerical observation performed by Volpe [65]. Volpe demonstrated that the
parameters connected with the location of the forward stagnation point and the
onew with the pressure loading along the airfoil surface can effectively influence
the constraints. In this chapter, investigations are carried out in which a similar
approach is adopted, but it differs from Volpe’s because an optimization technique
is employed for driving the velocity parameters in order to obtain well-posedness
in terms of the compatibility constraints. The significance of the velocity pa-
rameters will be investigated for cases in which the (initially prescribed) target
velocity distribution is far from being realizable.

The inverse problem discussed hereafter is posed as an optimization problem
where an objective functional is minimized. The objective functional expresses
the deviation between the target velocity and the actual velocity distribution.
An optimization algorithm provides a sequence of intermediate airfoil shapes
with (actual) velocity distributions that reduce the objective functional until the
deviation vanishes. This is what is referred to as the inverse-by-optimization
method in Chapter 2.

In the current approach the airfoil shape is represented by a number of geo-
metric parameters which are treated as the design variables. In order to assure
well-posedness in terms of the compatibility constraints, a set of target velocity
parameters is introduced, allowing modification of the target velocity distribu-
tion. The parameters are defined such that they can effectively alter the state of
the constraints, and are treated as additional design variables. The optimization
procedure updates the geometric and velocity parameters simultaneously while
minimizing the objective functional. At the optimal solution, the obtained airfoil
should produce a velocity distribution that matches the parameterized target ve-
locity distribution, with a minimal deviation from the original target distribution.

The optimization algorithm used in this investigation requires information on
the gradient of the objective functional with respect to the design variables. The
objective functional is expressed in terms of the velocity distribution that in turn
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is implicitly dependent on the geometric parameters through the governing flow
equation. In order to obtain the gradient, the implicit dependency is treated by
means of the variational method. The present study considers an incompressible
potential flow. A boundary-integral equation expresses the flow equation. In
order to satisfy the external Neumann boundary condition, which defines the
zero normal component of the velocity, an internal Dirichlet boundary condition
is imposed. A low-order panel method is employed to solve the discretized integral
equation.

This chapter is organized in the following order. Firstly, the inverse problem
is formulated. Secondly, the formulation of the adjoint and gradient equations
are described. Finally, results of computations are presented and discussed, and
conclusions are drawn.

3.2 Statement of the Inverse Problem

The inverse problem being addressed is that of the construction of the airfoil
shape, defined by the coordinates x*(s), which produces a prescribed target ve-
locity distribution V,(s) along its arc length s. The arc length is to be measured
from the lower trailing edge clockwise up to the upper trailing edge. It is nor-
malized such that s € [0,1]. The sign convention for the velocity is such that it is
negative on the lower surface and positive on the upper surface. Lower and upper
refers to the arc sector before and after the stagnation point, respectively. The
contour of the airfoil is required to be closed. The airfoil is immersed in an incom-
pressible steady potential flow where the onset flow speed has been normalized
such that Vo, = L.

The inverse problem is subject to the equation that governs the incompressible
potential flow with a unit onset flow speed, expressed here, in a generalized form
asf

fx*(s), Vo(s)) = 0. (3.1)

Because the airfoil contour is required to be closed and the onset flow is of unit
speed, V., =1, a realizable target velocity distribution must satisfy the three
compatibility constraints formulated by Lighthill [41], expressed here symbolically
as

Ci(Vi(s) = 0, | (3:2)

Ca(Vo(s)) = 0, (33)
Cs(Vo(s)) = 0. (34)

If the prescribed target velocity distribution V,(s) does not satisfy the con-
straints (3.2)-(3.4) then it has to be modified. This can be accomplished by
introducing free parameters, represented by a vector p, into the definition of
V,(s). Since there are three equations to be satisfied, in order to have a de-
termined system of equations, p must be a vector with three elements. The

tThe boundary condition is assumed to be included in the notation.
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notation V,(s, p) is introduced for the parameterized target velocity distribution.
For reconstruction type of inverse problems, i.e. cases in which one tries to re-
construct an existing airfoil, V,(s) already satisfies the constraints. In such cases,
the solution will be p = p* = p, with V,(s,p,) = V,(s).

The solution of the inverse problem satisfies

J(x'(s), Vals,p)) = 0, (3-5)
Ci(Vo(s,p)) = 0, (3.6)
Ca(Vo(s,p)) = 0, (3.7)
Cs(Vo(s,p)) = 0 (3.8)

In order to solve equations (3.5)-(3.8), the inverse problem is posed as an opti-
mization problem with the objective functional to be minimized taking the form

F=3 [ (V(s) = Vi(s,p))* ds (39)
2o * » %P ’ '
where V() is the velocity distribution obtained by solving the flow equation

f(x(s),V(s)) =0,

for an intermediate closed contour airfoil shape, x(s). The coordinates of the
airfoil shape are a function of a vector of geometric parameters 8 (to be described
in the next section):

x = x(8).
The optimal solution sought for is

8 = 07,

p = p*a

such that F = 0. Since by definition V(s) satisfies the Lighthill constraints, the
condition F = 0 implies that V,(s, p*) satisfies the Lighthill constraints.

The optimization problem is solved by a gradient-based optimization algo-
rithm requiring the computation of the gradient of F with respect to # and p.

3.3 Parametric Representation of the Airfoil
Shape

Consistent treatment of the inverse problem requires a geometric parameteriza-
tion that guarantees closure of the trailing edge. Figure 3.1 shows a control curve
defined by the coordinates (£(7),{(r)), where 7 € [0,1]. The horizontal and ver-
tical gaps between the end-points of the curve can be expressed as, respectively,

ae=e-0) = [ Egr (3.10)

ac=cm-¢o) = [ %l (3.11)

or

it
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---------- control curve

~—— airfoil shape

E@L@) a3

Ne(s)y»

Figure 3.1: Control curve and airfoil shape

The coordinates of an airfoil shape with a closed trailing edge can then be ex-
pressed as

o(r)=vrp+ 3 / (86(7 Ag) (3.12)

v =vee s [ (52 - ac) . (3.3

The scaling factor S is introduced to assure s € [0,1],
1/2

s=_ ((35(” A{)Z (ag() A()Z) dr. (3.14)

The trailing edge is fixed as follows,

(z,9)rE = (1,0). (3.15)

The reason for choosing a unit total arc length (s € [0,1]) and a fixed trailing
coordinate is to simplify the treatment of the problem. A local arc segment of
the airfoil and that of the control curve are related by

ds(r) = S(<8§(T)—Ag>2 (‘?C() AC)Z)I/sz. (3.16)

The arc length s on the airfoil at a parameter value 7 can be determined from

s(r) = ir ds(7). (3.17)

S T=0
The parameters 9é()/07 and d((r)/dr determine the airfoil shape. These can
be comprised into one parameter, representing the slope of the control curve,

which is defined by

9¢(r)
#(7) = arctan () (3.18)
For each distinct value of T € [0,1], the slope (7) can be considered as repre-
senting a ”component” of the vector #. Since (7) is continuously defined over
the control curve, 8 is a vector of infinite dimensionst.

tThis will be reduced to a finite dimension by a discretization described in Section 3.6.
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3.4 Parametric Representation of the Target
Velocity Distribution

To enable an effective control over the compatibility constraints, the three velocity
parameters contained in p should influence V, in the following sense (Ref. [66]):

(a) The overall surface velocity level relative to the onset flow speed.
(b) The difference between the upper and lower surface velocity levels.

{c) The stagnation point location.

An essential feature of the target velocity parameterization must be that, even
for a wide variation of p, there is a close resemblance between V,(p) and V,, in
order that the (supposedly) important features of V, are preserved best. It is
further required that the presence of p does not introduce any discontinuity in
the target velocity distribution as a function of the arc length s. Following these
requirements, the parameterization of the target velocity distribution is expressed
in a general form as

Vo(s,P) = Vo(s,p1,p2,03) = fi(s, 1) (fals,p2, Vo(f3(s,3))) + Vao(fa(s,p3))),
(3.19)

where
fl = D, fOrOSSSlg
2 Vo(f3(s,p3)) = Vo(s1)
V,(0) — V,(51)
fr = 0, for 81 + p3 < s < sy + pa,

p Vo(s2) — Vo(fs(s, p3))
2 %(32) - Va(l) ’

, for 0 <s <51+ ps,

for s2 +p3 < s <1,

! s, for 0 <5 < 51 4 ps,
81+ p3
fi = s — pa, for 514 p3 < s < 59+ p3,
1 —
1_323_2])3(5—52—]33)—{—52, for ss+ps<s<1.

The parameters s; and s; are obtained from the conditions

OVo(s1)
Os
v,
—~(Szl = 0, 8715 on the upper surface.
Os
It can easily be verified that V,(s,p) = V,(s) when p=p,=(1 0 0)7.
It should be noted that V, as a function of s is usually given in a tabular form.
In this case, V,(s) is constructed by means of a piecewise cubic spline.

0, sy is on the lower surface
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Figure 3.2: Domain definition for the incompressible potential flow

3.5 Flow Equation

Figure 3.2 provides the nomenclature. Incompressible potential flows are gov-
erned by the Laplace equation:

V=0 in(, (3.20)
where ¢ is a velocity potential deﬁnéd by
Vé=V. (3.21)
A perturbation velocity potential ¢ is introduced, such that

where

¢oo = Voo-'z- (3.23)
This implicitly states that the free stream is parallel to the z-axis. The Laplace
equation can also be written in terms of ¢:

Vi = 0. (3.24)

Equation (3.20) is subject to the Neumann (solid-wall) boundary condition on

the airfoil surface': .
Vé-i=0 onS,. (3.25)

The slit S, is introduced to model the circulation, T, for lifting cases. Additional
conditions associated with the presence of the slit follow from the conservation

tThe boundary-layer is not included so that the normal component of the surface velocity
is zero.
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of mass and momentum jump conditions across S,:

Ve il = o, (3.26)
fele = constant. (3.27)

The Kutta condition, representing the requirement for a finite and continuous
velocity at the trailing edge, fixes the circulation:

I'=[¢]. (3.28)
This has the consequence that on the far-field boundaries,
® = doo + Yoo 0D Seo, (3.29)
where
Poo = (%sign(yoo — y71E) + %arctan (%:—:—E)) T. (3.30)

The perturbation velocity at S, is zero, such that

-

Ve-i=0 on S.. (3.31)

In order to obtain the solution of the Laplace equation (3.24), a boundary inte-
gral equation representing a source and a doublet distribution along the surface
is considered (Ref. {52]). In order to satisfy the external Neumann boundary
condition (3.25), which defines the zero normal component of the velocity, an
internal Dirichlet boundary condition is imposed, i.e.

=0 onPefl

The domain ) is defined as the domain outside 2, which includes the domain
inside the airfoil. The boundary integral equation to be solved takes the form

/S(gt%-ﬁ—w“'g-ﬁ)ds*:o onPed, (3.32)

where g and Vg 7t have the physical interpretation as the perturbation velocity
potentials in P induced by, respectively, a source and a doublet density of unit
strength, situated in a point Q € S, where the point @ is moving along with the
integral variable. The expressions for ¢ and Vg - 77 are known to be (Ref. [2]):

1
o = gln”f'”,
- 177
Vot = —— o’
e 2r 72

The first term in the integral of equation (3.32) represents a source distribution
with the strength per unit length:

o= Vyp-n. (3.33)
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The second term represents a doublet distribution with the strength per unit
length:

p=—p. (3.34)
On §,, the Neumann boundary condition (3.25) and the definition of ¢ in Equa-
tion (3.22) fix the value of o:

c=Vy i=-Vée 7 on S, (3.35)

On S,, the jump condition (3.26) implies that there is no source distribution,
i.e. o = 0, whereas the condition (3.27) dictates a constant doublet distribution
with the strength p. = —[¢]. per unit length. The Kutta condition is formulated
as the relation g, = prz. For points on the airfoil, the contribution from the
integration over S., vanishes due to the large distance. The integral equation
then becomes

[S(ag+uﬁg.ﬁ)ds+pTE[g6g-ﬁd5=o. onPed, (3.36)

From Equation (3.35), it follows that the airfoil shape also explicitly defines
a. Hence, for a given airfoil, 4 and prz are the unknowns to be determined
from Equation (3.36). Recalling Equations (3.34), (3.25), (3.22), and (3.21), the
velocity V' on the airfoil surface can be obtained from

-

V=V¢ 5=V 5+Vp 5=V 5—Vu-3 (3.37)

with §the unit tangential vector along the airfoil. 6(7500 -8 is explicitly dependent
on the airfoil shape. The objective functional (3.9) can now be written in the
following form,

1 . .
=5/ (Véoo - §+ Vip - 5— Vy(s,p))° dS. (3.33)

3.6 Discretization

The control curve in Figure 3.1 is discretized into N straight segments, implying
an N-dimensional vector 6:

6= (0, 0y5).

The vector component 6; is the slope of the i-th segment of the control curve.
The parameter vector 8 controls the shape of the airfoil consisting of N planar
panels. A collocation point is defined at the center of each panel. The airfoil
coordinates are given by

1 i-1

z; = zrE+ -5 Z ATj(COS 03' — Af), (339)
j=1
1 i—1

vi = yre+ g > Ar(sin6; — AQ), (3.40)

7=1
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where @; and Ar; are the slope and the width of the j-th segment of the control
curve, respectively, and:

N
Al = Z Ar;cos 8,
=1

N
AC = ZAT]' sin ﬂj.

7=1

The length of the ¢—th panel is

As; = l((cos 0; — AE)? + (sinf; — AC)Z)I/ZM,

S
and its slope, §;, can be determined from
6; — A
cosf; = c__As__*i
sinfi = sin@; — AC.

AS{
The parameter S is defined by

S = % ((cos g; — A§)2 4 (sin6; — AO;) 1/2A7',~.
=1

On each panel, the source and doublet distributions are approximated to be
constant. The doublet strength over the slit S, is approximated as

Hre = UN — H1. (3.41)

The integration over S, in Equation (3.36) is approximated by a summation of
integrals over each panel. Taking the collocation points for the points P € S,,
then the discrete form of the flow equation is obtained as

Ao+ Bu =0, (3.42)

where o and p are N-dimensional vectors of the source and doublet strengths,
respectively. The i-th component of these vectors is associated with the i-th
panel. A and B are N x N matrices of aerodynamic influence coefficients due to
the source and doublet distribution, respectively. A, B, and & are functions of
the vector of design variables 8.

Solving equation (3.42) provides the doublet strengths p. The perturbation
velocity ﬁcp - § at each collocation point is calculated by finite differencing,

= Pit1 — Pi-1 Hitr — fia1
Vo .8)i=|—"—|=—-—"————
(Ve - 5 ( Siy1 — Si-1 ) <3i+1 = Si-1 ) ’
where s; denotes the arc length of the i-th collocation point on the airfoil:

1 i—1
8§; = §Asi + ZASJ"

J=1
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Finally, equation (3.37) gives the total velocity:
Vi = (Voo - )i + (Voo - 3.

The objective functional (3.9) is discretized in the form

F= %Z ((6@” . 5)5 + (650 . :9')1 — V,,(si, p))2 As;. (343)

=1

3.7 Formulation of the Adjoint and Gradient
Equations

Employing a gradient-based optimization algorithm for minjmizing the func-
tional (3.43) requires the computation of the gradient of F with respect to the
design variables 8 and p. The gradient of F with respect to p can be obtained
by direct analytical differentiation.

The gradient of F with respect to € is obtained by the variational method.
This means that an adjoint problem must be formulated in order to obtain the
gradient. A Lagrangian is defined as

L=F+X (Ao + Bp), (3.44)

where X is the vector of Lagrange multipliers, each component of which is asso-
ciated with a panel. Explicit dependencies in the above equation are indicated
as follows!

L = L(Anp,0),
F = Fp0),
A = A®@),

B = B(),

o = o(8),

The partial derivatives are obtained by direct analytical differentiation. The
variation of £ is expressed as

_ ?f T oF T
0L = (Ao + Bp) - 6A + (3u+B /\> -5u+<50—+J0A)~60,

where Jg is the Jacobian of the flow equation with respect to 8:

0
Jg = a—e(Ad'+ BF!)
Flow equation (3.42) cancels the contribution in §£ due to éA. The adjoint
equation is obtained by setting the contribution of ép to zero, i.e.
o0F
—+B"A=0. .
o+ BA=0 (3.49)

tFor brevity the vector p is dropped.
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which yields the column vector A. With both the flow and adjoint equations
satisfied, the gradient of F with respect to the design variables 8 is obtained as
ar _9F
e — 08

The partial derivatives in the right-hand of equation (3.46) side are obtained by
direct analytical differentiation.

+JgA (3.46)

3.8 Optimization Routine

The present investigation employs the optimization routine EO4UCF of the NAG
numerical libraries availabe on NLR’s computer system. This routine is based on
the Sequential Quadratic Programming (SQP) algorithm which is widely known
to be the most cost-effective method for non-linear optimization. For each itera-
tion, the algorithm requires the information on the function value of the objective
and its gradient for determining a new iterate in order to reduce the value of the
objective. A detailed description of the algorithm is given in Ref. [1].

3.9 Results and Discussion

Three cases are considered, namely:

1. Case L-1: Exact reconstruction problem. The prescribed target velocity
distribution is taken from the panel method calculation of a NACA 4418
airfoil at zero angle of attack. The prescribed target is fully produceable.

2. Case L-2: Redesign problem. The prescribed target velocity distribution
is the result of a wviscous analysis calculation defined in [62]. Since the
inverse methodology described in this paper is based on the inviscid flow
model for closed airfoil contours, the prescribed target is only close to being
produceable.

3. Case L-3: Total design problem. The prescribed target velocity distribution
is defined by a B-spline control polygon. The prescribed target has a very
low degree of produceability.

For all cases, a NACA 0012 airfoil is taken as the initial airfoil geometry. The
design space consists of 64 geometric parameters (components of 8) and 3 velocity
parameters (components of p).

The convergence history of the three cases is given in Figure 3.3. Each function
call requires one flow analysis. Observing the slope of the curves, the rate of
convergence for the three cases are in general of the same order of magnitude.

For a reconstruction problem in subcritical flow, the residual-correction in-
verse method of Fray et al. [17] requires about 3 iterations to reach a deviation
in C, of about 1072. Recalling that in incompressible flow,

C,=1-V?
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if V is of order one, i.e V = O(1), one obtains
AC, ~ 2AV

where A denotes a small deviation. This implies that AC, = 10~% is roughly
comparable to F =~ 1.25 x 107%. To reach this, the present method needs 21
iterations, which is rather high compared to the method of Fray. This could
partly be attributed to an unfavorable design space topology implied by the
chosen set of design variables!. However, the present method has the advantage
of the possibility of obtaining well-posedness in a consistent way by means of the
three free parameters of the velocity distribution.

Figure 3.4 shows the result of case L-1 in terms of velocity distribution. The
corresponding pressure coefficient and airfoil shape are given in Figure 3.5. The
prescribed target, the parameterized target and the actual velocity distributions
are coincident at all locations. This confirms that the velocity parameters are not
significant for cases in which the compatibility constraints are already satisfied.
As can be seen, the NACA 4418 airfoil geometry has been closely reconstructed.

The results of case L-2 are shown in Figure 3.6 and 3.7. There are slight
differences between the prescribed and the parameterized targets. However, the
parameterized target is matched by the actual velocity distribution. The corre-
sponding pressure coeflicient and airfoil shape are shown in Figure 3.7.

The prescribed target velocity distribution of case L-3 can be seen in Fig-
ure 3.8. An inverse code without target velocity parameterization based on the
residual-correction method developed at the NLR, which works fine for recon-
struction cases, completely failed for case L-3. The present method, on the other
hand, is still able to give an acceptable result as shown in Figure 3.8. Although
there is a significant deviation from the prescribed target, the actual velocity
matches the parameterized target. One should also observe the strong resem-
blance between the prescribed and the parameterized targets, especially on the
upper surface. The corresponding pressure coefficient and airfoil shape are pre-
sented in Figure 3.9.

Admittedly, case L-3 is rather unrealistic from the viewpoint of an experienced
designer. The stagnation point location and the low velocity level on the lower
surface are really uncommon. Figure 3.10 shows the original and modified target
C) distribution drawn as a function of z/c on the initial airfoil (NACA 0012). It is
unlikely that an experienced designer would conceive such a target C, distribution
(the original nor the (realizable) modified one) for redesigning the initial airfoil.
Nevertheless, such prescribed target suits the purpose of examining the robustness
of the present method.

Confronted with the result of case L-3 where a prescribed target velocity
distribution was modified considerably, one might suspect that the inverse pro-
cedure has ignorantly varied the velocity parameters to find whatever geometry
in an easy way. Essential, in this respect, is the precise form of the parameter-
ization (Equation (3.19) of the target velocity distribution. To investigate this,

fLe., different (geometric and target velocity distribution) parameterization schemes may
give different rates of convergence.
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a non-linear constrained minimization problem is formulated where the Lighthill
constraints are imposed explicitly. The constraints are expressed in the form
formulated by Strand [57]. The problem is stated below:

Minimize llp — poll®
subject to:
2m
C = / 10|V, (w,p)| dw = 0,
L= b p) .
C, = / In |V, (w,p)| cosw dw + 27 sin® @ = 0,
0
27
Cy = / In |V, (w, p)| sinw dw — 7 sin 2a = 0,
0

where « is the angle of attack and w is the polar angle on the circle plane.
The problem is, essentially, to satisfy the Lighthill constraints with the smallest
possible modification to the prescribed target velocity distribution. The design
variable is p, which is initially set equal to p,. The airfoil geometry is not involved
here. In the constraints Cy, Cy, and Cj, the parameterized velocity distribution
V, is expressed in terms of w instead of the arc length s as given. Hence, a
relationship between s and w must be determined first. Figure 3.11 shows a
circle plane and its conformally mapped airfoil plane. For consistency with the
orientation of w, an arc length variable n € [0,1] on the airfoil is introduced, such
that
n= - 37

and accordingly, the velocity along the airfoil in terms of 7 is
Va(n,p) = =Vo(1 = s,p).
The velocity along the circle, V,(w), is known to be:
V(w) = —=2(sin(w — a) + sin a), (3.48)
For a conformal transformation between the two planes, the following applies:
Va(n,p) dn = Vi(w)R duw, (3.49)

where R is the circle radius. This defines a general relationship between 5 and w:
n w
/0 Va(n,p) dn = / Ve(w)R dw = —2R(cos o — cos(w — @) + wsina). (3.50)
0

Two quantities, namely R and «, have still to be determined. Using Equa-
tion (3.48), and applying Equation (3.50) for n = 1 and w = 27 yield the circu-
lation:

r

Il

- /o Vi) dn
—/027r Vo(w)R dw (3.51)

47 Rsin o
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Similarly, for the forward stagnation point, where = 79 and w = 7 + 2

1o

- fo Va(n) dn
- /Oﬁ-m Ve(w)R dw

K

il

il

—2R(2cos a + (7 + 2a) sin @).

Eliminating R by combining the last two equations results in

K+ (2cos @+ (7 +2a)sina) = 0. (3.52)

27 sin &
Solving this equation provides . Substituting ¢ into Equation (3.51) yields R.
As a and R are available, for a specified n—or equivalently, s—the corresponding
w can be determined by solving Equation (3.50). In the numerical implementa-
tion, a piecewise linear representation is used for both V,(s, p) and V,(w, p). This
circumvents singularities at the stagnation point associated with the natural log-
arithm terms of the constraints. Equations (3.52) and (3.50) are solved by means
of the Newton-Raphson method.
The prescribed target velocity distribution of case L-3 is fed into the mini-
mization problem (3.47). The initial state is

P =p=(1 007,

C:y = —9.890 x 1071,
C; = —8.136 %1071,
Cs = —6.150 x 107L.

E04UCF NAG routine is also used to solve this problem. The required partial
derivatives of the constraints with respect to p are calculated by finite differences.
At the optimal solution:

p = (0.964 0.560 0.005)",
Cy —1.054 x 1077,

Ce 5.346 x 1078,

Cs = 9.564 x 1078,

Il

i

The resulting velocity distribution is shown in Figure 3.12, where it is compared
with the result of case L-3. Reasonable agreement is shown. Ideally, the three
curves should be coincident. However, since the numerical modeling in the in-
verse procedure and in solving problem (3.47) are completely different, the small
discrepancies do not undermine the significance of the result: the modification of
the prescribed target velocity distribution that has taken place in the case L-3
is minimal in the sense of problem (3.47), confirming that the target velocity
parameterization is a suitable one.
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3.10 Conclusion

An optimization type method has been formulated for solving the inverse problem
of aerodynamics for incompressible potential flow. Well-posedness of the inverse
problem is guaranteed through the introduction of free velocity parameters.

The gradient of the objective functional required by the optimization method
is computed by means of the variational method. The adjoint and gradient
equations are formulated based on the discretized flow equation. With the low-
order panel method used for the discretization of the flow equation, the adjoint
and gradient equations can be formulated in a rather simple manner.

The computational results have demonstrated the robustness of the present
methodology in dealing with general inverse airfoil problems. The introduction of
free target velocity parameters as design variables, in addition to the geometric
parameters, in the optimization formulation has shown to be a viable way for
obtaining well-posedness of the inverse problem. However, in comparison with
other inverse methods, the method does not seem to be very efficient for cases
in which the specified target velocity distribution is (close to) a feasible one in
terms of well-posedness.

The present method has a unique feature in the sense that the designer is not
required to have experience in specifying feasible target velocity distributions.
From computational results, the designer will learn whether his input is a proper
one. In this way, expertise is gained instead of being required.

The approach of formulating the inverse problem as an optimization problem
and of introducing velocity parameters in obtaining well-posedness offers several
advantages:

(a) Extendability with regard to the flow model. The Lighthill constraints are
indirectly taken into account in the optimization formulation through the
introduction of the free velocity parameters. Extending the approach to
more complex flow models —where closed-form expressions of such con-
straints are not (yet) available—is relatively straightforward.

(b) Ertendability with regard to the type of constraint. The Lighthill constraints
requiring closure of the trailing edge are special cases of geometric con-
straints. If other types of geometric constraints are imposed (e.g. thickness
constraints, volume constraints), additional velocity parameters may be in-
troduced. Of course, the additional parameterization must be defined in
such a way that the state of the constraints can be effectively be altered.
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Figure 3.7: C, distributions and airfoil geometry (o = 8.62°) of Case L-2
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Chapter 4

Aerodynamic Optimization
using the Euler Equations

4.1 Introduction

This chapter describes experiences obtained with applications of the variational
method to aerodynamic design problems employing the Euler equations for invis-
cid compressible flow as the mathematical flow model. The main motive for this
is, that it represents a logical intermediate step towards the further goal of aero-
dynamic design based on the (Navier-Stokes) equations for viscous compressible
flow. The logic being that the numerical treatment of the Euler equations and
those of the Navier-Stokes equations are closely connected. Apart from this, the
compressible inviscid flow model can be useful in dealing with many aerodynamic
design problems. For example, in transonic cruise design points, the performance
of airfoils can be improved by reducing the drag due to shock waves. In prac-
tice, designing for reduced wave drag with an inviscid flow model can lead to
significant improvements for the real viscous flow situation.

This chapter concerns transonic airfoil design problems. The design problems
are posed as optimization problems involving aerodynamic functionals represent-
ing the lift (C)), drag (Cy), and pitching moment (Cy,) coeflicients. These are
defined in terms of the pressure coeflicient C, obtained from the flow variables Q
which satisfy the Euler equations.

The design variables consist of geometric parameters 8 (defining the airfoil
geometry) and an angle of attack o (defining the orientation of the free stream
with respect to the airfoil geometry). The optimal values of 8 and « are obtained
by means of a gradient-based optimization algorithm. The gradients of the aero-
dynamic functionals with respect to the design variables 8 and « are computed
by means of the variational method.

The methodology presented in this chapter takes advantage of the availability
of a flow solver (Ref. [6]) and optimization routine (Ref. [69]). The main task
to be done is then to develop an adjoint solver and a gradient evaluator, and
to integrate these with the existing flow solver and optimization routine into a
design code.
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This chapter is organized as follows. A statement of the design problem is
given in Section 4.2. A brief description of the flow model based on the Eu-
ler equations is given in Section 4.3. The adjoint and gradient equations are
formulated in Section 4.4. Sections 4.5 and 4.6 are related to the airfoil shape
parameterization. A description of the numerical implementation of the adjoint
and gradient equations is given in Section 4.7. The optimization routine used
in the investigation is briefly described in Section 4.8. Test cases and computa-
tional results are discussed in Section 4.9. Finally, some conclusions are drawn
in Section 4.10.

4.2 Statement of the Design Problem

The optimization problem being addressed can be written as follows?,

Minimize P(Q,8,a), (4.1)
Subject to:
A(Q,0,0) < 0,
G < o,

where P and A represent such aerodynamic functionals as lift, drag and pitching
moment coefficients, while the vector G represents geometric constraints. The
geometric parameters @ and the angle of attack o are treated as the design
variables, of which the optimal values are to be determined.

Problem (4.1) is subject to the Euler equations for a given (fixed) value of the
Mach number. The Euler equations impose an implicit dependency of the flow
variables Q upon 8 and «.

Problem (4.1) is to be solved by means of a gradient-based optimization al-
gorithm. The gradient of G can be obtained rather easily by direct analytical
differentiation, whereas the gradients of the aerodynamic functionals P and A
will be computed by means of the variational method. This implies that an ad-
joint problem must be formulated, the solution of which is used for evaluating
the gradients.

4.3 The Euler Equations

Figure (4.1) illustrates the nomenclature. Assuming adiabatic flow and no ex-
ternal forces, the time-dependent Euler equations in the conservative form are
written as

%%+v-13=0, in 9, (4.2)

tFor the sake of brevity, the Mach number does not appear because this is fixed.
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Figure 4.1: Domain definition for the compressible inviscid flow

where Q is the vector of conservative flow variables:

p

—| P
Q= o | (4.3)
pE

which have been non-dimensionalized with respect to the free stream values of
the flow variables. At the steady-state, equation (4.2) becomes

V-F=0 (4.4)

The convective flux vector F is defined as

F= (f) (4.5)

g
where
pu , pv
_ puu+p _ puv
f-"‘ PU'U b g - PU'U"’p . (46)
(PE + p)u (pE + pyv

The total energy E per unit mass is defined as
Loa, 2
E=e+ E(u +v%),

where e is the internal energy per unit mass. The system of equations is closed
by the calorically perfect gas relation,

p=(y~ 1)(oF — 5p(u + 7)) (4.7
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On the airfoil surface, S,, the zero normal-velocity boundary condition holds!.
This is expressed as

pV -7 =ng pu+ny pv =0. (4.8)
The boundary conditions on S, are formulated based on the characteristic vari-
ables (Riemann invariants) of the one-dimensional Euler equation (taken in the
direction normal to S ). The Riemann invariants can be obtained as

W, = § (49)

W, = V-3 (4.10)
— 2a

= -7 d

Wo = Vit —— (4.11)
- 2a

= - 4.12

W, Vv PO (4.12)

where S is the entropy and a is the speed of sound. For subsonic inflow, the
incoming Riemann invariants, W, and the outgoing ones, W_, can be identified

Wi
We=|W, |, W =W =W,

W,

whereas for subsonic outflow:

Wi
W+ = W+ = W4, W_ = W2

Ws

The incoming Riemnann invariants follow from the specification of the free stream
conditions, while the outgoing Riemann invariants are obtained from inside the
domain by an extrapolation procedure. As the Riemann invariants are available,
the flow variables on S, are determined by solving equations (4.9)-(4.12) for Q.

4.4 Formulation of The Adjoint and Gradient
Equations

For the design cases to be considered, a general form of aerodynamic functionals
1s assumed as follows

F= /S b(p,8,0) dS, (4.13)

'The boundary-layer is not included so that the normal component of the surface velocity
is zero.
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where 1 is a function of the pressure p, the design variables 8, and the angle of
attack a. The notation F applies to both P and A of the problem statement (4.1).

It should be noted that global aerodynamic properties, such as wave drag, can
be formulated as domain integrals and/or far-field surface integrals (Ref. [67]).
The reason for choosing the formulation of pressure integrals over the airfoil
surface, equation (4.13), is that the available flow solver does not have provisions
for the other formulations.

Employing the variational method means that the adjoint equation must be
formulated, the solution of which provides the Lagrange multipliers. These in
turn are used in evaluating the gradient of the functional with respect to the
design variables # and «a.

As p is obtained from Q which satisfies the steady-state Euler equations, the
functional F is independent of the transient state. Therefore, it is sufficient to
consider the steady-state Euler equations (4.4) and boundary condition (4.8) in
the definition of a Lagrangian £ as follows,

L:/Sa@/)dS—i-/ﬂA-(\?-f‘)dﬂ-i-/s“T(pV'-ﬁ)dS, (4.14)

where A and T are the Lagrange multipliers. A is a vector with four components
defined in £, each component of which may be considered as corresponding to a
component of the conservative flow variables Q. The Lagrange multiplier 7" is a
scalar function defined on S,.

In order to derive the adjoint and gradient equations, one must evaluate the
variation of £, denoted as §£, due to the independent variables A, 7', Q, @ and
o

SL=08Lx+6Ly+6Lg + 6Ly +6L,.

The notation £, refers to the variation of §£ implied by the variation of A while
the other variables are kept fixed, and similarly for 6Ly, etc. The variations 6L,
8Ly, and §Lg are evaluated with 8 and & kept fixed. Keeping 8 fixed implies
a fixed domain §2. For the variation of A, 7, and Q with a fixed domain an
accent notation is introduced as X/, 77, and Q', respectively. The variation A’
contributes to 6L with

§Ly= | X (V.F)dQ. .
L= [ X (¥-Fydo (4.15)
Satisfying the Euler equations (4.4) implies

Ly =0. (4.16)
The variation 17 contributes with

Ly = / T'(oV - i) dS. (4.17)

a

Satisfying the zero normal-velocity boundary condition (4.8) implies

§Lr =0. (4.18)
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4.4.1 The Adjoint Equation

As the Euler equations (4.4) and zero normal-velocity boundary condition (4.8)
are satisfied, giving equations (4.16) and (4.18), the variation of £ becomes

6L =6Lq +6Lq + 6La.

The variation 6Ly can be expressed as

oY ! vaRk i N2
5£Q_/ (a¢ag)-QdS+/ﬂA-(V-F)dQ+/SaT(pV)-ndS. (4.19)

Introducing A as the Jacobian of the flux vector F with respect to the conservative
flow variables Q,

- OF
A= %,
C as the Jacobian of the normal flux defined on the boundaries
OF -7y . .
= =A.
C 7q n

and integrating the domain integral in equation(4.19) by parts gives
_ (WJ ap T ' AU
iy = f ((a ag = CA) Q+T(VY i) ds
- /S CTA-Q'dS — /ﬂ (AT -¥A)-Q dn. (4.20)

The adjoint equation and boundary condition follow from the condition
6Ly = 0.

This can be satisfied by setting the integrals equal to zero.
The adjoint equation is obtained by setting the domain integral equal to zero,
which is

AT-VA=0 inQ. (4.21)

The surface integral over S, can be made equal to zero as follows. The
time-dependent Euler equations are considered in the quasi-linear form as

6Q TELAVQ= (4.22)

The characterlstlc wave propagation on Sy, is determined by the eigenvalues of
the matrix C = 4 - 7. Diagonalization of C provides

C=XAX", (4.23)
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where the matrix X and its inverse, X !, consist of the right and left eigenvectors
of C, respectively {cf. Appendix A), while A is a diagonal matrix consisting of
the eigenvalues of C,

Vea 0 0 0

a=| 0 Vom0 0 (4.24)
0 0 V.ita 0
0 0 0 V-i-a

The variation Q' and the variation of the characteristic variables, W', are related
by
Q = XW'. (4.25)

It is important to note that, on the boundary, positive eigenvalues correspond to
incoming characteristics, for which the associated characteristic variables, W,
are fized. Accordingly, negative eigenvalues correspond to outgoing character-
istics, where the associated characteristic variables, W_, may vary depending
on the state inside the domain. Assuming that N is the dimension of Wy, for
the flow problem there are N analytical boundary conditions fixing the values
of W,.. Whereas, for obtaining W_, (4 — V) additional equations must be for-
mulated based upon the state inside the domain. The fact that Wy is fixed
implies

Wi =0. (4.26)

Taking this into account, one obtains
Q=X W, (4.27)

where X_ (cf. Appendix A) is a matrix of dimension (4 x (4 — N)) consisting of
the elements of X that multiply W_ in equation (4.25). The integral over S, in
equation (4.20) can now be expressed in terms of W as follows,

/ C™A-QdS = / (CX_)TA- W dS. (4.28)
SOO Soo
This becomes zero if the following condition is satisfied,

(CX_)"™x=0. (4.29)

Equation (4.29) takes the role of the boundary condition on S of the adjoint
problem. Since the matrix product (C'X_) is of dimension (4 x (4~ N)), the above
condition provides only (4 — N) equations, and N additional equations must be
formulated (to be described in Section 4.7.2). This is a situation opposite to one
that occurs in the problem of solving the flow equation itself where the boundary
condition provides N equations.

Setting the surface integral over S, equal to zero gives

(%28

T ’ TN =Y
3,56~ C A)~Q +T((pV) - /) = 0.
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This can be worked out to give

0
Ny /\2 + Ny /\3 = 5;/;, (430)

and

24,2 2
T:,\1+u/\g+v)\3+(u v, e >A4, (4.31)
2 v-1

where @ is the speed of sound. Equation (4.30) takes the role of the boundary
condition on S, for the adjoint problem. It can be observed that if A; and
A; are interpreted as the Cartesian components of an adjoint velocity vector A,
equation (4.30) can be interpreted as a transpiration boundary condition, i.e. as
a complement of the zero normal-velocity boundary condition {(4.8).

The adjoint problem can be summarized as follows. The adjoint equation (4.21)
is solved for A, subject to the boundary conditions (4.30) on S, and (4.29) on S..
As X is available, the Lagrange multiplier 7" is determined from equation (4.31).

4.4.2 The Gradient Equation

After solving the Euler and the adjoint equations, providing the values of Q, A
and 7, the variation of £ becomes

8L =6Ls+ 8L, (4.32)

The variation 6L 1s dealt with as follows. Since 8 is a parameter that describes
the shape of S,, which is part of the flow domain boundary, the variation 68
implies also a variation of the flow domain Q. As a result of this, and recognizing
that

Q = Qx), xe,
A = A(x), x€Q,
Y = T(X), XESa,

the variation of Q also implies a variation of Q, A, and 7 in the form of, respec-
tively,

0Q (ox

5QQ = —“ax (67 . 69) , X S Q, (4.33)
oM (ox
or (x

5TQ = &‘ (55 . 56) , X € Sa. (435)

This leads to the introduction of the notion of the deformation velocity &, defined
as (cf. Appendix G)
LI)‘(X) = i : 501
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where
Oz
-_(xXz\_1 30
=)~
X, ay
v 00
The Cartesian components of & can expressed as
wy, = X900,
wy, = x,-%6.

Accordingly, the normal and tangential components of & on the boundary S, can
be written as

Wn = Xn'607
Ws = Xs'697

)= 20 G)

Expressions (4.33)-(4.35) can now be written in the form

0Q [ox
29 (55 .50)

where

‘7Q[‘31 XEQ,

o [ Ox -
a—x(%-ae) - VA3, xe0,

oY (ox v
—a?(' (55 . 60) = (—a—s) ws, XE Sa.

They represent the so-called convective variation of Q, A and T, respectively.
The term convective refers to the variation implied by the domain variation,
where the domain variation is interpreted as a deformation with the speed &.
As a complement to the convective variation, the notion local variation can be
introduced for the variations Q', X', and 7’. The local and convective variations
constitute the total variation represented by a material derivative!, defined as

Q = ¥+VQ 4,
A= N+VA-3,

, ov
T + (z) Ws,

where the first and second terms in the right-hand sides are the local and con-
vective variations, respectively.

v

Il

PThis is also commonly referred to as the substantial derivative.
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The convective variations of Q, A and 1" contribute to §Lg as 6L, defined as
§C, = /(VA 3)- (V- F) d9+/ ( )ws(pV ) dS

67,[) 8}) = - SR 7o 4
+]sa (%6_6~CT,\) ~(VQ-w)dS+/ Y(V(pV) @) -#dS

—]SmCTA-(\?Q 5)dS — /(AT )-(¥Q-3) d2

This has the same form as 6L, + 6Ly + 6Ly, implied by the local variations, with
8L, given by equation (4.15), 6Ly by (4.17) and 6L¢ by (4.20). Hence, 6L, also
vanishes if 6L, 6Ly, and 6Lg are set equal to zero as in the preceding sections.
It can be concluded that the solution of the flow and adjoint problems eliminate
the contribution from the total variations of A, T, and Q. The variation 6L is
thus solely due to the (total) geometric variation of the boundary .5,.

Two approaches can be distinguished for obtaining the gradients of F with
respect to @ and a. These are described as follows:

(i) Material derivative approach. The variation of the relevant geometric prop-
erties are given as the material derivative formulae, equations (G.10)~
(G.15), in Appendix G. The variation §£y can be written as

§L4 = / (Z‘g 80 +1(pV -7 ) S+ f (47 (pV 7)) dS + / A-(V-F)deL.

Substituting the Euler equations and zero normal-velocity boundary con-
dition yields

a
8Ly = / (a‘g 56+ 7(pV - n)) ds+/ b ds.

Substituting equations (G.10)-(G.15) gives

i = [ (3‘1) 58 + (e + Hun) — T(pV’-sf)(wn,mLst)) as

00
9y .
/ (ag +¢(XS5+HXTL) (pV‘;)(Xn,s“'Hxs)) d5'50,
(4.36)

where H is the surface curvature, and the subscripts s, s and n, s refer to the
tangential derivative of the tangential and normal component, respectively,
of w and x. The gradient of the general functional F with respect to 8 is
given by

dF . 6L

T

with (%) obtained directly from equation (4.36), such that
ar

0 =/s,, (aw + (X + Hx) = T(pV - é')(xm+Hxs)) ds. (4.37)
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(i)

The gradient of F with respect to o can be obtained in a similar manner.
Noting that

_ O )T oW,
6[10,_(& o S - / (CX)TA- 2 dS) o, (4.38)

one obtains the gradient of F with respect to « as follows,

dF . 8L, o Ty OWy
Y o fim 222 = / S dS - / (CX)TA-Skds. (4.39)

doe sa—0 Sox

Discrete approach. In this approach, it is used that the discretization of
certain expressions of F (such as those for C; and Cy) must satisfy the static
condition. This means that, for a constant surface pressure distribution over
a closed-contoured airfoil, F is invariant (i.e., the airfoil does not experience
a force). Provided the airfoil contour remains closed for any variation of 8,
the static condition can be stated as

0F

e =0. (4.40)

p=constant

Functionals requiring the static condition usually take the form
F= [ pnggr(e) +nathale)) dS,

which in 2-D can be worked out to give
F= gbl(a)/sapdm ~¢2(a)/;apdy.

The discretized form of F, denoted by F, can be written as

n—l

F=ty() }: (P1+1 + pi) (i1 — 7:) — Pal@) i %(Pm + ) (¥inr — ¥i)s

1"1

where
J;i:xi(g) Yi :yi(g) i1=1,.,n,

n is the number of grid points, while ¢ = 1 and n — 1 corresponds with
the lower and upper trailing edge, respectively. The partial derivative of F
with respect to 8 is obtained by direct analytical differentiation of the above
discrete expression. It can easily be verified that the static condition (4.40)
is always satisfied by F as long as the airfoil contour remains closed. In
contrast, in the alternative approach with the material derivative formulae,
the numerical evaluation of the partial derivatives of F with respect to 6
do not, in general, imply the static condition. This is partly due to the
truncation error in the approximation of the tangential derivative and the
surface curvature occuring in the material derivative formulae.
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Hence, in the discrete approach, after solving the flow and adjoint problems,
providing the values of Q, A and 7, the surface integration over S, of the
Lagrangian (4.14),

L= /S (¥ +T(pV - 7)) dS,

is discretized into
R R n-1 1 n~1 1
Lo=F— Z §(Ii+1 + L) (yir ~ ) + Z §(Ji+1 + Ji)(@iy1 ~ 2i),
=1 1=1

where

I=T(pu), J=T(pv).
The gradient of F with respect to 8 is obtained as

dF L.
iy (4.41)
The gradient with respect to « is given by
dF 0L, Ty OW
=5 / (CX)TA- St ds. (4.42)

The choice between the material derivative and discrete approach will be made
based on numerical experiments, which are to be described in Section 4.7.4.
A fixed (design) lift coefficient can be considered as an equality constraint,

which means that
dC; dCy _

This implies that one variable out of the set of the components of @ and o can
be chosen to be dependent. A convenient choice is to take o as the dependent

variable, giving
dc\ 7! (dC;

The variation of the Lagrangian can be expressed as

0L = 6Lg+ 6L,
dF dF

Substitution of equation (4.43) gives

_(9F\ o (9F) (dC\ 7 (dCi
M”(de) 56 (da) (EE) (7{? 96,
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Hence, for a fixed C; the gradient of F with respect to the design variables 8 can

be obtained as
dF dF  [dF\ [dC)\ 7 [dC
bl — = — — 44
(de)cl a0 (m)(m) (do>’ (4.44)

d
with (%) given by equation (4.37), or (4.41), and (—j:) by equation (4.39),

da
C(lj_CI ) and (éﬁ) are obtained by substituting
81

or (4.42). The expressions for ( 70

C; into F, where
Ci =/ 2(p — peo)( Ny sina — ny cosa) dS,
Sa
giving the function v as

¥ = 2(p = Poo)( 1z sin — 7y cosa).

4.4.3 Remarks related to Jameson’s approach for formu-
lating the adjoint equations and boundary condi-
tions

This section discusses the principal differences between the approach used by
Jameson (Refs. [28], [29], [47], {32}, [30], {31]) and the approach described in the
preceding section.

In Jameson’s approach, the adjoint equations and boundary conditions are
formulated on the basis of the flow equations which are transformed into a com-
putational domain. This implies that the variational analysis is done on a fixed
domain. Because the domain is fixed, a boundary movement analysis (such as
that described in Appendix G) is not needed in obtaining the expression for the
gradient with respect to the geometric design variables (i.e. ). The gradient ex-
pression consists of contour and domain integrals taken along the boundary and
over the volume of the computational domain, respectively. In these integrals the
variation of the design variables (i.e. §8) is involved through the variation of the
Jacobian of the coordinate transformation.

In Jameson’s approach, the design problem is mapped to a fixed domain on
which the flow and adjoint solutions are computed with a finite mesh. The con-
tribution from the mesh variations, both on the airfoil surface and in the flow
field, is taken into account in the computation of the gradient. This allows an ac-
curate definition of the gradient and implies a consistent treatment of the design
problem throughout the optimization process, provided that the sensitivity of the
transformation Jacobian (i.e. the metrics) with respect to the design variables
can be determined accurately. Unfortunately, computing the sensitivity of the
transformation Jacobian is not easy and can be quite costly, unless a simple ana-
lytic or algebraic grid generation procedure with an explicit relationship between
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the mesh and the design variables is employed. Therefore, in general, one can-
not take advantage of existing grid generation procedures, especially those based
on partial differential equations. Furthermore, the expression for the gradient
is not readily suitable for unstructured mesh. Indeed, this is the main reason
that Jameson’s approach has not been adopted in this thesis; the author of this
thesis had at his disposal a flow solver with a grid generation and a grid adaption
procedure based on partial differential equations.

In the present approach, the adjoint equations and boundary conditions are
formulated based on the flow equations described in the physical domain. This
leads to a general expression for the gradient, which is independent of the type of
discretization, but requires a boundary movement analysis. The main disadvan-
tage of the present approach is probably that the mesh variations are not taken
into account in the computation of the gradient. In other words, one must accept
the assumption that the discrete flow and adjoint solutions are independent of
the mesh, which is only true in the case of infinitely fine mesh.

4.5 Shape Parameterization and Deformation
Velocity

The shape parameterization gives the relation between the airfoil coordinates
x| x € S, and the design variables 8. This also implies the specification of the
deformation velocity.

A shape parameterization should satisfy the following requirements,

(i) In principle there should be no restriction on the possible number of design
variables. This is desirable in order not to restrict the design space to a
certain family of airfoil shapes.

(i1) The surface curvature must be continuous to ensure smoothness of the
airfoil surface. This is desirable so as to avoid numerical irregularities that
could be implied by surface discontinuities.

(iii) The design variables should preferably have (in an approximate sense) a
linear relationship with the surface curvature. This would allow scaling of
the design variables (to be described in Section 4.6). Also, this is expected
to have an effect of reducing the non-linearity of the optimization problem,
considering that, for local subsonic flow, a local variation of the surface
curvature is proportional (in an approximate sense) with the local variation
of pressure (Refs.[9], [54]), while the aerodynamic functionals of interest are
defined in terms of pressure. This consideration can be expected also to be
relevant for transonic conditions because the flow is locally subsonic over a
large part of the airfoil surface.

There are a number of parameterization schemes known in the literature (e.g.,
Ref. [59]) which satisfy the first two requirements. However, since it is not easy to
examine whether these schemes also satisfy the third requirement, it was preferred
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to develop a custom parameterization scheme. This is described in the following
paragraphs.
A parametric curve with the coordinates (r,§(7)) is introduced, where

0<7< L

This has a one-to-one correspondence with the airfoil arc length measured clock-
wise from the lower trailing edge (7 = 0) to the upper trailing edge (7 = 1). The
leading edge corresponds to 7 = 7,5 = 0.5. The coordinates (z,y) of an airfoil
are defined by

z(r) = (2r—-17% 0<r<U, (4.45)
/ gldT—”T—fla 0<7 <10,
y(r) = (4.46)
T~ TLe
/ yudT— ‘u,7 TLESTS]W
1—-7.5
where
TLE
€& = / Y dTy
0
1
€, = / Jy dT,
TLE

§io= T+ /0 i dr,
:‘ju = Tga‘*’/ ﬁ/'dT
TL

where the accent denotes the derivative with respect to 7. The terms with ¢
and ¢, ensure that the trailing and leading edges are fixed at (0,0) and (1,0),
respectively. The parameter g, is introduced as a means to satisfy the continuity
of the curvature at the leading edge. This is given as

. 1 TLE T o TLE 1 1 L
yo=2[———/ </yd'r) d'r—/ 9" dr — / (/ yd’r) dr}.
Trg JO 0 0 1 =715 Jrp g

The function §” = §”(r), which is the second derivative of § with respect to 7,

takes the role as the design variables 8. Because §”(7) is continuously distributed
over 0 < 7 < 1, the parameterization scheme represents, in principle, an infinite
dimensional design space, i.e. the vector @ consists of the components §(1) =
7

§"(r).

The surface curvature can be expressed as

2"y — x’y”
H - _(_;Tyl)—?)/_i' (4.47)

The variation 6H due to the variation §§” can be evaluated as follows. Equa-
tion (4.45) implies that z' and 2" are invariant with respect to ", i.e.

§z' = 62" = 0.
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The Taylor series expansions of " and y’ around 7 = 7, give

y'(1) = y"(r)+y"(r)AT + ...
y'(r) = y'(r) +y"(r)AT + ...

Since the analysis concerns only the local variation of curvature at 7 = 7, + A7,
the parameters ¢, €,, and §, can be assumed to be invariant with §”. Then,
equation (4.46) implies

&y"(r) = &5"(,),
sy'(r) = &§"(r,)Ar.

As 7 — 7,, one has éy’(t) — 0, and accordingly the variation of the surface
curvature can be written as

§H ~ ¢ 84",
which implies
H s c0(7), (4.43)
where ,
z
- (' + EEN

Equation (4.48) shows an approximate linear dependency between the curvature
and the design variables, thus satisfying the third requirement stated above.

For computer implementation, the infinite dimensional design space described
by equation (4.46) must inevitably be reduced to a finite one. This is done by
representing §” with N piecewise linear functions of 7, with continuities in the
values of " (Co-continuous). The airfoil shape itself is then C3-continuous. Thus,
an N-dimensional design space is constructed by an N-dimensional vector of
design variables 8 as follows,

0=(0 -+ O8)" =(@"(n) - P, (4.49)

with §"(7) varying linearly in a segment bounded by 7, and 7441, &k = 1,.., N — 1.
Equation (4.46) is evaluated on this basis and the resulting expression is differ-
entiated analytically with respect to 8. The deformation velocity at a grid point
¢ due to a component ¢, can then be obtained as

i

Xy ()x 80,

3y(‘ri) _
(—aék— 60y, k=1,.,N

wy(1)x

It should be noted that 7; refers to the value that corresponds to a surface grid
point, while 7, refers to the value for which §” is specified on the parametric
curve.
The validity of equation (4.48) can be examined by comparing the exact
partial derivative given by
OH (t)
86,

H(Tk)k =
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Figure 4.2: Comparison of the exact and approximate partial derivatives of the
curvature.

with the approximate expression derived from equation (4.48)

SNSRI 7.
e =~y + vy

Figure 4.2 shows that these two expressions agree reasonably well for the shape-
fitting of the RAE 2822 airfoil.

1t should be noted that the airfoil arc length s increases monotonously with
r. This implies that if §”(r) is monotonous with 7 then, from equation (4.48),
the curvature is also monotonous with 7 and accordingly with s. Because of the
linear representation of §"(7), this also means that the curvature is monotone on
each segment between 7, and 741, k = 1,.., N — 1. Hence, the number of design
variables, IV, determines the wave-length of "wiggles” in the airfoil surface.

The shape parameterization has been tested by fitting the airfoils RAE 2822,
NACA 4418, and Liebeck LA203A. The coordinates of these airfoils are given in
a tabular form of 101 points. The shape-fitting is performed in the least-square
sense with increasing numbers of design variables:

N =11,21,31,41,51,61

Figure 4.3 shows the Ly-norm taken over the y-values, i.e.

Lo [zﬁil(y -yﬁfﬁ]?
N



T4 Aerodynamic Oplimization using the Euler Equations

-2

10
0——o0 RAE 2822
w——x NACA 4418
<—— Liebeck LA203A
-3
107 4 3
»
S 107 4 3
5
107 4 3
107°
0 10 20 30 4 0 6 70 8
N

Figure 4.3: Ly-norms of the shape-fitting.

As can be seen, 11 to 21 variables are usually sufficient for obtaining a reasonable
fit with an Le-norm of about 10~ to 1073,

4.6 Aerodynamic Scaling of the Design Vari-
ables

The success of an optimization depends to a large extent on whether the problem
formulation is well-scaled or not. Vanderplaats [63] presented a clear illustration
of the advantage of a well-scaled optimization problem (in terms of the number
of objective function evaluations), and suggested a method for determining the
scaling factors.

In this method the scaling factors, comprised in a vector d, consist of the
diagonal elements of the Hessian matrix H!. The vector of scaled design variables
8 is defined as

6=4d7e.

The optimization proceeds in the scaled design space. The function and gradients
of P in the scaled design space are determined as follows,

P@) = P9),

The Hessian matrix consists of the second partial derivatives of the objective/constraint
functional with respect to the design variables.
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LA O
i )

where d~! is a vector the components of which are the reciprocals of the corre-
sponding components of d.

In order to study the suitability of scaling for aerodynamic optimization, a
model aerodynamic functional is considered of the form!

1
P= /S (C, — Cpo)? dS. (4.50)

The procedure of scaling requires the computation of the Hessian matrix of P.
This can be approximated by making use of an ”inverse aerodynamic formula”
that relates changes in C,, to changes in the curvature H (Ref. [54]) in the form

§H ~ 5Cp(1 + H2)D.25’
This is rearranged to give
§Cy ~ §H(1 + H?)™%,

It is assumed that the term (14 H?) is invariant with 8. The variation of P with
respect to the variation of f; € 8 can be obtained as follows,

&P

(€= CoisC, ds

I

/S (1+ HY)™B(C, — C,)6H dS

oH
21-0.25 _
/S (14 H?)™°3(C, — C,,) ( 5 0k> 50, dS,

which gives the partial derivative

ﬁfp___ 72y-0.25 ?ﬂ
agk,_/S(HH) (€= Cod) | 55, ) 45

In case of a linear relationship between H and 8, one obtains

2,8 2y—0.2s [ OH
5(%) /S(1+H) - ) 6C»dS

k

oH\’
2n-05 [ 98
]5(1+H) (aak> 66, dS,

The k-th diagonal element of the Hessian matrix is defined as

P

Hir = —60—§’

tThis represents a functional used to describe inverse problems (cf. Section 4.9).
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which can be approximated as

_/ o 2dS
ke = s+/1+ H? \ 00 ’

The scaling factors can finally be determined as

1 1
vHu Huw
The possibility of applying the design variable scaling in this manner emphasizes

the advantage of using a shape parameterization scheme that satisfies such linear
condition as equation (4.48).

)T (4.51)

d=(

4.7 Numerical Implementation

Since the adjoint equation exhibits a strong similarity with the Euler equations,
the numerical implementation should also be similar to the largest possible extent.
This is directly related with the choice of the flow solver that will be used in the
design procedure. The investigation carried out in this chapter makes use of the
inviscid {Euler) mode of HI-TASK code of the National Aerospace Laboratory
NLR (Refs. [6] and [21]). The discretization of the adjoint equation and the
computer implementation have been chosen such that maximum advantage is
taken of the existing features of HI-TASK. The philosophy is to treat the flow
solver as a black box.

4.7.1 Discretization of the Adjoint Equations

HI-TASK, which stands for Highly-Integrated Turbulent Airflow Simulation
Kernel, is basically a 2-D flow solver for single-element airfoil applications based
on the Reynolds-averaged Navier-Stokes (RANS) equations. The Euler mode is
obtained by dropping the viscous fluxes. The discretization is based on a cell-
vertex finite volume scheme equivalent with a central difference scheme. For each
grid point, a primary cell consisting of 9 vertices shown in Figure 4.4 is used as
the control volume. The discretized time-dependent Euler equations takes the
form

d .
A d?+/SV‘F-ﬁdS’+D,~‘j=0, (4.52)

where AS);; is the volume of the primary cell associated with a grid point i, j.
D consists of a 4-th and 2-nd order artificial dissipation term:

) L) )2 (29) o

where €; and ¢; are adaptable parameters depending on the local flow condition,
with the subscripts ¢ and j indicating the direction parallel to ¢ and 7, respec-
tively. £ and 7 refer to the coordinates in the computational domain. The 4-th
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Figure 4.4: Finite Volume Stencil

order term is required for the stability of the central-difference scheme. The 2-nd
order term is added for capturing shock waves, formulated based on the work of
Jameson et al. [33].

Equation (4.52) is a system of ordinary differential equations which is inte-
grated in time towards the steady-state in order to obtain the flow variables Q.
The time integration employs a five-stage Runge-Kutta scheme with a V-cycle
multigrid procedure. The spatial discretization is on the basis of a C-type grid.
In HI-TASK, a grid adaption module is integrated (Ref. [21]) and can optionally
be activated.

In order to take advantage of the numerical schemes of the flow solver, the
adjoint equation to be considered should also be time-dependent. Referring back
to the situation on the domain boundary reflected by equation (4.29), it is noted
that the number of conditions that can be provided analytically for the adjoint
problem is complementary with that for the flow problem itself. This implies
that the characteristic propagations of the adjoint problem are opposite to that
of the flow problem. This means that the sign of the eigenvalues of the matrix
coeflicients of the flow problem ( /_f) and those of the adjoint problem (ZT) should
be opposite. Hence, the time-dependent adjoint equation should be formulated
as

)\ AT oA 70X

o Mgy Mgy =0 (4.54)

which, subject to appropriate boundary condition, is to be integrated in time
towards the steady-state to obtain the adjoint variables A.

Equation (4.54) is not in divergence form. In order to adopt the finite volume
scheme employed by HI-TASK for solving the adjoint equation, a divergence form
is needed. For this purpose, the Jacobians A, and A, are taken constant within
a control volume associated with a grid point ¢, 7 where the flow variables are
defined. This approximation requires that the control volumes do not overlap
so as to avoid multiple definitions of A, and A,. Because the primary control
volumes overlap, the secondary control volume shown in Figure 4.4 is used for
discretizing the adjoint equations.
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The divergence form for a secondary control volume can be obtained as follows,

T T o
»A;g—’\-A;g_"z_é_‘;;—’\—a/;;)‘ =-V- A"
T Y

This implies that one may introduce an adjoint flux 2, with its Cartesian com-
ponents defined as

Z,=—AlX,
Z, = —AJ A
The adjoint flux formulas are given in Appendix E. The adjoint equation (4.54)
is discretized into ™
A= + /S Z-7dS+Di;=0 (4.55)

The term D;; also consists of a 4-th and a 2-nd order artificial dissipations.
These are formulated in the same way as in the flow solver, i.e. X replace Q in
equation (4.53):

a2 (LN, (A 0 FA) o oA
“ o \"0E) Ton \Man) T e \“oes) T o \ Yo )
The parameters €; and ¢4 are identical with those used in the flow solver. Equa-

tion (4.55) is integrated in time towards the steady state with the same scheme
as employed by the flow solver.

4.7.2 Implementation of the Adjoint Boundary Condi-
tions

The values of A on the far-field boundary S, are obtained as follows. The
boundary condition (4.29) provides (4 — N) equations, where N is the number
of outgoing characteristics of the adjoint problem. N additional equations are
required in order to determine A. These are formulated based on the characteristic
relations of equation (4.54). The nature of this equation is determined by the
eigenvalues of a matrix C defined as

C=-A"-7
Since C = —C T, it has real eigenvalues which are of the same magnitude, but of

the opposite sign, as the eigenvalues of the matrix C defined by equation (4.23).
One may then write

C=XTAXT,
where A = —A. The characteristic variables of the adjoint equation are identified
as
R=X"\ (4.56)

One should notice that the above equation is not in the variational form because
C is not a function of X and the flow variables are assumed constant along the
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normal direction of S,,. Now, the components of R are distinguished into the
incoming omnes,

Ry = XT X,

and the outgoing ones,
Ro=X] (4.57)

According to the theory of Kreiss [35], the incoming characteristics Ry which is
of dimension (4 — N) imply that (4 — N) conditions may be analytically specified.
These are provided in the form of (4 — N) equations given by condition (4.29).
The remaining equations are obtained by extrapolating (towards the boundary)
the values of R_ from inside the domain. The values of XA on S, can then be
determined by solving the following equations,

o For subsonic inflow, condition (4.29) provides one equation:
(CX_)a =0, (4.58)

while the extrapolation of the outgoing characteristic variables,

Ry
R— = RZ ’
Ry

provides the additional three equations:

Xil /\1 = R], (459)
Xie M = Ry, (4.60)
Xuh = R (4.61)

In the above equations summations are taken overz =1, ..,4.

o For subsonic outflow, condition (4.29) provides three equations:

(CX_)a X =0, (4.62)
(CX_ )iz hi =0, (4.63)
(CX )iz A =0, (4.64)

while the extrapolation of the outgoing characteristic variable,
R = Ry,
provides the additional equation
Xia A; = Ry. (4.65)

Also, in the above expressions summations are taken over : = 1, ..,4.
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The related formulae are given in Appendix B.

The boundary condition (4.30) on the airfoil surface 5, is implemented to-
gether with the characteristic relations that correspond to the non-positive eigen-
values of the matrix A -7 on S,. This leads to a linear system of equations to be

solved for A on S,,

Xak = Ry, (4.66)
XAy = Ry (4.67)
Xz A = Ry, (4.68)
9
Ny Ag + Ty /\3 = -6;, (469)

where 7 = 1...4. The characteristic variables R;, R;, and R3 are obtained by
extrapolation from inside the domain towards the boundary S,.

4.7.3 Treatment (of the Correction) of Flow Far-Field
Boundary Conditions

In order to gain accuracy in the finite-flow domain, HI-TASK employs a correc-
tion for the circulation around the airfoil in the far-field boundary condition of
the Euler equations. The correction scheme is formulated in terms of the charac-
teristic variables, and affects only the incoming characteristic variables containing
the velocity components and the speed of sound.

The Riemann invariants of the one-dimensional Euler equations across So
are given in equations (4.9)-(4.12). For subsonic inflow, the corrected Riemann
invariants, W%, are identified as

Wy Vi - &
*—— —
Wi= - T 2%
WZ oo'n-—,y_l

The superscript "+’ indicates the corrected values. For subsonic outflow, there is
only one incoming Riemann invariant, which is Wy, such that in this situation:
~ 2a

A=Wy =V:.n— —2

+ 4 o y— 1
The correction is based on the circulation produced by a vortex located at the
quarter chord point of the airfoil. This is formulated in terms of the lift coefficient,
C). The variation of W7 due to the variation of C; can be expressed as

o (oW
+ = (—aali) 601. (4.70)

The correction formulas and the related partial derivatives are described in Ap-
pendix C. Equation (4.70) replaces equation (4.26). Hence, equation (4.27) must
be modified into

Q= (X W) + (X5 W), (&11)
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where X7 is a matrix consisting of the elements of X that multiply Wi in
equation (4.25) (cf. Appendix A). Consequently, the integral over Se, in equa-
tion (4.19) becomes

fs CTA-Qds= /S (exoTa WLy (CX)TA-WY) S,  (472)

The variation 6C; can be expressed as

§C, :/S 2(n, sina — ny cos ) ( ) -Q' dS. (4.73)

Op

9Q

Substituting this into equation (4.70) and, subsequently, into (4.72) gives
/ CTA-QdS = /S (CX_)™A- W' dS

+Cm/5 (ny sina — ny cosa) <@) - Q' dS,

Q
(4.74)

where

IJW?
Co=2[ (CX7)A- (G5 45
[exoma (55
It can be verified that incorporating expression (4.74) into the variation 6Lq (4.20)
has the consequence that the boundary condition (4.30) on S, has to be corrected
into
dp .
Ny Ay + Ny As = i o Nz sina — n, cosa). (4.75)
P
The correction procedure given above can be interpreted as follows. For the flow
problem, the boundary condition on S, is corrected based on the (flow) state on
S,, while on the other hand, for the adjoint problem, the boundary condition on
S, is corrected based on the (adjoint) state on Se.

4.7.4 Verification of the Gradient Equations

The suitability of the two approaches (cf. Section 4.4.2) for determining the gradi-
ents has been assessed as follows. Because no data is available which can be used
as a reference, gradient computations for different types of objective functions
have also been performed by central differencing flow solver results for perturbed
geometries, and these have been compared with the gradient computed by the
variational method described in the preceding sections. In doing so one should
keep in mind that the gradient obtained by central difference is not necessarily
the more accurate one.
The results, for 11 design variables, are given below

o The gradient of a functional representing the deviation between an actual
and a prescribed target C, distribution. This concerns the objective func-
tional of Case E-1 to be described in Section 4.9. The design example
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results in Figure 4.5 demonstrate close agreement between the three ap-
proaches, in particular between the results of the material derivative and
discrete approaches.

o The gradient of the lift coefficient C). The gradient is computed for a
fixed . The results are presented in Figure 4.6. Reasonable agreement is
shown between the gradients computed by the central difference method
and the discrete approach. The result of the material derivative approach
differs significantly, but it still follows the same trend which means that it
generally gives the same descent direction.

o The gradient of the drag coefficient Cy. This concerns the objective func-
tional of Case E-2 described in Section 4.9. Again, reasonable agreement
is shown (Figure 4.7) between the gradients computed by the central dif-
ference method and the discrete approach, while the material derivative
approach only shares the same trend.

o Gradient of the pitching moment coefficient C,,. This concerns the con-
straint functional of Case E-3 described in Section 4.9. The results are
shown in Figure 4.8. Close agreement is shown between the results of the
three approaches.

The discrete approach seems to produce the most consistent result. Therefore,
this will be employed for solving all of the design cases discussed hereafter.

It should be mentioned that the central-difference method required a total of
23 flow analyses for each gradient shown in Figures 4.5-4.8. This illustrates the
advantage of the variational method, which required the computational effort of
only about 2 flow analyses for each gradient. There is also the difficulty with
the central-difference method in choosing the magnitude of the design variable
perturbation. In the present study, this has been determined by a trial-and-error
procedure.

4.8 Optimization Routine

The present investigation employs the optimization routine FSQP, which stands
for Feasible Sequential Quadratic Programming. This routine is based on a mod-
ified Sequential Quadratic Programming (SQP) algorithm capable of generating
feasible iterates. The detailed description of the algorithm used in FSQP is given
in Ref. ([69]). For each iterate, of which the function values and the gradient of
the objective/constraint are known, the algorithm determines a trajectory along
which the vector of design variables is updated so as to reduce the objective while
satisfying the constraints. In a generalized form, the update procedure can be
expressed as
9t — 97 4 8S

where S represents the direction of the trajectory, and A is a scalar that deter-
mines the distance along § which moves the current 8’ towards #7+*. The process
of determining f is referred to as the line search.
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Apart from the consideration that SQP is generally known to be the most cost-
effective method for non-linear constrained optimization, the reasons for selecting

FSQP are the followings,

(i) FSQP generates feasible iterates with respect to constraints. This has a
practical advantage that,—if the optimization process should be stopped
at an intermediate stage—, the last iterate would still be useful in the sense
that it would represent an improvement over the initial design while the
constraints are satisfied. The situations in which an optimization process
should be stopped are:

e The last iterates correspond to small variations of the airfoil shape
giving only marginal improvement in the objective. Stopping the pro-
cess would not degrade the quality of the result, but obviously would
avoid unnecessary additional expensive flow analyses.

o In unfavorable cases’, the line search might imply many flow analyses
in order to find a new iterate.

o The number of flow analyses exceeds a maximum number allowed (for
example, limited by the available computational resources).

(i1) If the initial design provided by the designer is infeasible for some inequality
constraints, FSQP first generates a feasible iterate before minimizing the
objective. This offers convenience if the designer is primarily concerned
about the constraints. In this case, with no objective being specified, given
an infeasible design the routine can provide the designer with a feasible one.

(1) FSQP has the capability of solving multi-objective optimization problems in
a min-maz sense. This is suitable for dealing with multi-point aerodynamic
design to be described in Chapter 6.

4.9 Test Cases for Single-Point Design

Four test cases are considered designated as Case E-1, E-2, E-3, and E-4. The
following conditions are common to all cases:

o The airfoil is defined by the parameterization scheme described in Sec-
tion 4.5 with 11 design variables.

e The Euler computations have been performed by the inviscid mode of
HI-TASK (Ref. [6]) on a 128 x 32 grid with the grid adaption procedure
(Ref. [21]) activated. Figure 4.9 shows a typical grid produced by HI-TASK.

o The gradient is computed based on the discrete formulation of the varia-
tion of geometric properties (i.e., the discrete approach described in Sec-
tion 4.4.2).

tFor instance, the optimization process has reached a point in the design space where there
are strong non-linearities.
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A remark must be made with respect to accuracy. It is to be expected that for
the grid mentioned above the numerical accuracy of the flow solver results will
be quite modest in particular for the pressure drag; probably of the order of 0.01
in C, and of the order of 0.001 to 0.01 in Cy.

4.9.1 Description and Results for Case E-1

Case E-1 is a reconstruction type inverse problem. The design point is specified
as follows,

M=072, C=1

The target C, is obtained from a flow analysis of a best-fit of the RAE 2822
airfoil. The target C, distribution is defined on the airfoil chord with proper
distinction between the lower and upper surface of the airfoil. The NACA 0012
airfoil is used as the starting airfoil geometry.

The objective functional to be minimized has the form

11 1
P=z [(C-Ctds+s [(C-Crilida,

where z is coincident with the airfoil chord, and C,; is the target value. The
subscripts [ and u refer to the lower and upper surface, respectively. P can also
be expressed in the form

1
P=s5/ (Cy = Cp'Im | S,

In terms of the definition of the general functional (4.13), the function ¥ in this
case takes the form

1
b= 5(Cy = CpPlm.

Recalling that
Cp = 2(p — Peo)s

with p, po non-dimensionalized by p., V2, one has
7,
& =20y~ Crlin.
This is substituted into the adjoint boundary condition (4.75). Then, the adjoint
equation (4.21) is solved for A, and » is obtained from (4.31). The gradient is
obtained by substituting P into F in equation (4.44).

One purpose of selecting this test case is to investigate the accuracy level of the
computed gradient, because the optimal solution (i.e., the target airfoil) is known
beforehand. The computed gradient is considered to be of sufficient accuracy if
the optimal solution can be obtained. The optimal solution is assumed to be
obtained if P < 10~%. This means that the difference between the actual and
target C;, distributions is roughly within 0.01 (engineering accuracy).

Figure 4.10 shows the design iteration history. An empty circle, referred to
as "Evaluated”, represents one geometry and one flow analysis. A cross, referred
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to as ”New iterate”, indicates that the corresponding geometry and flow analysis
are used by the optimization algorithm as a basis for finding the next iterate. The
gradient needs to be computed only for the crossed circles. The process from one
crossed circle to another represents a line search (cf. Section 4.8).

As can be seen, engineering accuracy has been achieved in the 24th iteration.
One may thus conclude that the adjoint formulation and gradient evaluations
are correct!. The corresponding C, distribution and airfoil geometry are shown
in Figures 4.11, which demonstrate that the best-fit of the RAE 2822 has been
closely recovered.

The results have been obtained with the design variables scaled by the pro-
cedure described in Section 4.6. In order to study the effect of the scaling, the
same case was run again with (i) the unscaled design variables and (ii) the de-
sign variables scaled by a constant (d = 0.1). The latter implies larger shape
modifications than the former. Figure 4.12 gives a comparison in terms of the
number of aerodynamic analyses. This clearly demonstrates the effectiveness of
the aerodynamic scaling.

It should be noted that the convergence in the case with aerodynamic scaling
can be accelerated by multiplying the scaling factor d by a positive constant
number r < 1. This may be considered as an over-relaxation factor which gives
larger shape modifications in each iteration. It has been found that with r = 0.75,
the engineering accuracy for the same case can be reached in about 19 iterations
(Figure 4.12).

As a final remark, a comparison with a residual-correction inverse method of
Fray et al. [17] is made. It was concluded by Fray et al. that for transonic flow
cases the residual-correction type inverse method can reach engineering accuracy
in 10-15 iterations. The present method requires a slightly larger computational
effort. However, it offers much more flexibility in the choice of objective func-
tionals and in dealing with (geometric) constraints.

4.9.2 Description and Results for Case E-2

Case E-2 concerns a wave drag reduction problem with geometric constraints for
M=072, (=1

The optimization starts with an initial airfoil specified as a best-fit of the RAE 2822
airfoil. Geometric constraints are imposed on the trailing edge included angle
and on the cross-sectional area. These are limited to be not less than their ini-
tial values (given by the initial airfoil). Thus, the optimization begins with all
constraints active.

The objective functional to be minimized represents the pressure drag coeffi-
cient Cy,

P=Cy= _/5 Cp(ng cosa+ ny sina)dS,

tIn particular, this also confirms that the far-field boundary condition for A has been
formulated correctly, recalling that equation (4.39) contains an integral taken over the far-field
boundary S .
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which, in inviscid, transonic flow is equal to the (shock) wave drag. In terms of
the definition of the general functional (4.13), the function 1 in this case takes
the form
= —Cp( ny cosa+ ny sina),

giving

o

dp
This is substituted into the adjoint boundary condition (4.75). Subsequently,
the adjoint equation (4.21) is solved for A, and v is obtained from (4.31). The
gradient is determined by substituting P into F in equation (4.44).

The same aerodynamic scaling as in the previous case is applied. Although the
scaling was formulated for the functional (4.50), numerical experiments showed
that it is also effective for drag reduction problems.

The final iterate corresponds to the 19th flow analysis. The optimization
process was stopped after the line search spent 5 flow analyses (the 20th to 24th)
without finding a new (improved) iterate.

Figure 4.13 shows how the drag is reduced as the optimization proceeds, with
a final drag reduction of about 0.0140 (140 ”counts”). In order to determine the
significant amount of the drag reduction that results from the optimization, grid
refinement studies need to be performed. This gives an estimate of the numerical
error-bandwidth of the computation of drag. A drag reduction which is larger
than the error-bandwidth can be considered to be significant.

The grid refinement studies are described as follows. A flow analysis is done
for both the initial and the final airfoil on a (256 x 64)- and (512 x 128)-grid. If
the grid-point density of 512 x 128 corresponds to a mesh-size of %, the grid-point
density of 256 x 64 and 128 x 32 corresponds to the mesh size of 2k and 4h,
respectively. The computed drag value as a function of the squared value of the
mesh size is shown in Figure (4.14). The straight-looking curves shown in the
figure demonstrate that the numerical scheme is of second-order accuracy.

The drag value corresponding to the mesh-size of zero is obtained through
extrapolation based on a linear-fit of the curve (see Table 4.1) . Substracting this
from the drag value obtained from the (128 x 32)-grid, used for the optimization,
yields the absolute error of the computed drag. The difference between the abso-
lute error of the initial airfoil and that of the final airfoil gives an estimate of the
numerical error-bandwidth of the drag computation occuring in the optimization,
which is 18 counts. Thus, of the 140 counts of drag reduction resulting from the
optimization, only 122 counts should be considered as significant.

A qualitative assessment of the optimization result can also be done by means
of the contour-plot of the value of the Mach number and the total pressure in the
flow field. These are shown in Figure 4.15 and 4.16, respectively. These figures
illustrate that the shock wave has been eliminated around the final airfoil.

The states of geometric constraints corresponding to each iterate are shown in
Figure 4.19. The trailing edge included angle constraint was not active during the
optimization. In contrast, the cross-sectional area constraint was always active,
meaning that the optimization proceeded along this constraint boundary.

—2(n; cosa+ n, sina).
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The resulting C, distribution and airfoil geometry are shown in Figure 4.17.
As can be seen, the shock wave has practically been removed from the surface
pressure distribution. However, the drag as indicated in Figure 4.13 is still quite
high and indeed very high for a shockless flow. This is probably to be attributed
to the numerical errors in the flow solution. Indeed, for a typical subsonic flow
analysis for which the drag should be zero, the flow solver appears to yield about
the same level of drag counts. The error could of course be reduced by increasing
the grid resolution. A more principal aspect demonstrated by the result is that
the method is capable of removing the shock wave from the C, distribution.

Interesting phenomena occurred between the 10th and 12th analysis. Small
geometric modifications from the 8th to the 10th analysis were followed by a
rather drastic change in the geometry from the 10th to the 12th analysis as
shown in Figure 4.18. The optimization moved the solution from a conventionally
looking family of C,, distributions (or airfoils) up to the 10th analysis to a rather
peculiar one given by the supposedly optimal solution at the 19th analysis. This
is accompanied by a steep decrease in the pitching moment coefficient (stronger
nose-down moment). The phenomena also suggest that the optimization has
proceeded from a well-behaved part of the design space to a highly non-linear
one.

One can not exclude the possibility that both families of C, distributions
represent two physically shockless solutions. In other words, subtracting the
numerical errors from the computed drag could possibly yield zero drag in both
cases. If that is the case, the optimal solution would not be unique and additional
constrains, e.g. on pitching moment, would be needed for obtaining uniqueness.
This suggests that each family of C, distributions could belong to a distinct local
minimum which happens also to be a global minimum, because drag cannot be
less than zero.

4.9.3 Description and Results for Case E-3

Case E-3 is a drag reduction problem with geometric as well as aerodynamic
constraints. The case specification is the same as Case E-2, except that

e A constraint on the pitching moment coeflicient is introduced.

e A leading edge radius constraint is added into the set of geometric con-
straints.

These constraints must not be less than their initial values. Hence, like in the
previous case, the optimization starts with all constraints active.
The constraint functional C,, is formulated as

Crm ='_/Sacp(nzy- ny (z —0.25)) dS.

which can be substituted into F in order to obtain the gradient. The function %
for C,, takes the form

Y =—Ch{nyy— nyv (z —0.25)),
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giving

%—ﬁ = —-2(ny,y — ny (z —0.25)).

The optimization process was stopped after the maximum number of 25 flow
analyses was exceeded. The drag reduction history is shown in Figure 4.20. The
final iterate corresponds to the 26th flow analysis with a drag reduction of about
112 counts. Grid refinement studies for this case, like those applied to Case E-2,
have been performed and summarized in Figure 4.21 and Table 4.2. The error-
bandwidth is 3 counts. This means that the whole drag reduction of 112 resulting
from the optimization can practically be considered to be significant.

The resulting C, distribution and airfoil geometry are shown in Figure 4.22.
As can be seen, the shock wave has been weakened significantly.

The pitching moment constraint (Figure 4.20) is active in all optimization
stages. On the other hand, the geometric constraints are not active at most
stages of optimization (Figure 4.23) including the final stage. Hence, the pitching
moment may be considered as the determining factor.

4.9.4 Description and Results for Case E-4

The specification of this case is the same as Case E-3, except for the flow condi-
tions

M=078, C'=05

The reason for specifying this case is to provide a basis of comparison with the
multi-point aerodynamic design to be described in Chapter 6.

The optimization process was stopped after the line search spent 5 flow anal-
yses (the 11th to 15th) without finding a new (improved) iterate.The drag reduc-
tion history is shown in Figure 4.24. The final iterate corresponds to the 10th
flow analysis and a drag reduction of 101 counts. Grid refinement studies for
this case, like those applied to Case E-2, have been performed and summarized
in Figure 4.25 and Table 4.3. The error-bandwidth is 1 count. This means that
the whole drag reduction of 101 resulting from the optimization can practically
be considered to be significant.

The resulting C,, distribution and airfoil geometry are shown in Figure 4.26.
As can be seen, the shock wave has, again, practically been removed. The cross-
sectional area constraint is the only active constraint.

4.10 Concluding Remarks

The results given above indicate that the present method represents a viable
approach for solving constrained single-point transonic aerodynamic design (drag
reduction) problems, based on the compressible inviscid flow model described by
the Euler equations. The possibility for incorporating both aerodynamic and
geometric constraints is of great practical value, since in real design practice one
is always confronted with such design constraints.
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Compared with direct finite difference type of optimization methods, the vari-
ational method has proved to be a very cheap method for computing the gradient.
The computation of the gradient has been validated by comparison with alterna-
tive methods in Section 4.7.4 and the reconstruction of an ”optimal” solution in
Section 4.9. It suggests that the computed gradient is of sufficient accuracy to
be used for general aerodynamic optimization problems.

The shape parameterization formulated in Section 4.5 was found to be able to
describe a large variation of airfoil shapes. That the curvature is approximately
linear with the design variables opens the possibility of acrodynamic scaling. The
aerodynamic scaling has proved to be effective in reducing the number of function
evaluations in the case of inverse as well as drag reduction problems.
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No. | Mesh size Initial Final | Initial - Final
(h) (counts) | (counts) (counts)
1 4 211 71 140
2 2 163 37 126
3 1 151 28 123
4 0 147 25 122
| [Emor: )-()] 64 T 46 | 18

Table 4.1: Grid Refinement Studies for Drag of Case E-2

No. Mesh size Initial Final | Initial — Final
(b) (counts) | (counts) (counts)
1 4 211 99 112
2 2 163 49 114
3 1 151 36 115
4 0 147 32 115
| [Error: (1)-(4) [ 64 [ 67 [ —3 ]

Table 4.2: Grid Refinement Studies for Drag of Case E-3

No. Mesh size Initial Final | Initial - Final
(h) {counts) | (counts) (counts)
1 4 164 63 101
2 2 134 31 103
3 1 124 22 102
4 0 122 20 102
| Error: (1)-(4) 42 43 | -1

Table 4.3: Grid Refinement Studies for Drag of Case E-4
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Figure 4.23: State of geometric constraints for Case E-3.
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Chapter 5

Aerodynamic Optimization
using the Reynolds-Averaged
Navier-Stokes Equations

5.1 Introduction

Although aerodynamic optimization based on the Euler equations can be of prac-
tical significance, it is of course desirable to be able to perform design studies on
the basis of a more complete model of the flow physics such as the Reynolds-
Averaged Navier-Stokes (RANS) equations. Relatively few efforts have been re-
ported in the literature (e.g., [20], [42], [8]). Reasons might be: (i) the relatively
high amount of computational resources required, (ii) the complexity in con-
structing a design process with a consistent treatment of the viscous phenomena
and, possibly, (iii) lack of suitability of the flow solver.

In the present chapter, The same transonic airfoil design problems as in Chap-
ter 4 are addressed, but now with viscous effects included. This permits a com-
parative study between the "inviscid” and ”viscous” design solutions. The design
problems are posed as optimization problems involving aerodynamic functionals
representing the lift, drag, and pitching moment coefficients. These are defined
in terms of the pressure coefficient C), obtained from the flow variables Q, where
Q is the solution of the RANS equations.

As in Chapter 4, the design variables are geometric parameters 8 which define
the airfoil geometry and the angle of attack e. The optimal values of 8 and o
are to be obtained by means of a gradient-based optimization algorithm. The
gradient of the aerodynamic functionals with respect to the design variables 8
and « are computed by means of the variational method.

This chapter is organized as follows. A statement of the design problem is
given in Section 5.2. A brief description of the Navier-Stokes equations is pre-
sented in Section 5.3. The adjoint and gradient equations are formulated in Sec-
tion 5.4, followed by a description of the numerical implementation in Section 5.5.
Test cases and computational results are discussed in Section 5.6. Finally, some
conclusions are drawn in Section 5.7.
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5.2 Statement of the Design Problem

The optimization problem being addressed can be written as follows,

Minimize P(Q,6,), (5.1)
Subject to:
‘A’(Q70’a) S 07
G(8) < 0,

where P and A represent such aerodynamic functionals as lift, drag and pitching
moment coefficients, while the vector G represents geometric constraints. The
geometric parameters § and the angle of attack a are treated as the design
variables, of which the optimal values are to be determined.

Problem (5.1) is subject to the RANS equations for a given value of Mach
number and Reynolds number. The RANS equations impose an implicit depen-
dency of the flow variables Q upon & and a.

Since, as in Chapter 4, problem (3.1) is to be solved by means of a gradient-
based optimization algorithm, the gradient of P, A, and G with respect to the
design variables @ must be computed. The gradient of G can be obtained rather
easily by direct analytical differentiation. The gradient of the aerodynamic func-
tionals P and A4 will be computed by means of the variational method. This
means that an adjoint problem must be formulated, the solution of which is used
for. evaluating the gradient.

The methodology presented in this chapter takes advantage of the availability
of the HI-TASK flow solver and the optimization routine already introduced in
Chapter 4. The main task to be done is to develop an adjoint solver and gradient
evaluator, and to integrate these with the existing flow solver and optimization
routine into a design code.

5.3 The Reynolds-Averaged Navier-Stokes
Equations
Figure (4.1) in Chapter 4 gives the nomenclature. Assuming adiabatic flow and

no external forces, the time-dependent RANS equations in the conservative form
are written as

d
Q +V-F=0, (5.2)
where Q is the vector of conservatlve time-averaged flow variables:
P :
_ | pu
Q= |7, (53)
pE

which have been non-dimensionalized with respect to the free stream. At the
steady-state, equation (5.2) becomes

-

V.-F=0. (5.4)
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The flux F consists of the convective, F., and viscous, F,, flux vectors,
F=F, -F, (5.5)

The convective flux vector is the same as that given in equation (4.6). The viscous
flux vector is defined as

FU-:(;:), (5.6)
where f, and g, are the Cartesian components given by
0 0
- Tzz _ Tey
J.= Tzy ’ 9o = Tyy ' (5-7)
Togt + Toy¥ — ¢ Ty + TV — Gy

Assuming that air behaves like a Newtonian fluid, the elements 7,4, 7.y, and 7,
of the viscous stress tensor are expressed as

o o 0 -
roe = W(V-V)+ 2z — U, (5.8)
VR T v —
Ty = W(V-V)+ 2;1,45; — pv', (5.9)
/] ]
Tey = Md (5:—: + a—Z) - pu'v’, (5.10)

where py is the dynamic viscosity. The last term on the right-hand side of equa-
tions (5.8)-(5.10) are the Reynolds stresses. The Stokes hypothesis provides
2
la= —gﬂd-
The heat flux vector q consists of a laminar part and a turbulent part, the
components of which are defined by

o |~y

9z = —K/(Tj;‘}’phu, (5.11)
or ——

q = —ﬁé—gﬁ-ph’v’, (5.12)

where the thermal conductivity coefficient & is related to the Prandtl number by
Pr= iﬁfi (5.13)

¢, is the specific heat at constant pressure, T is the absolute temperature and h
is the mass specific enthalpy. The Prandtl number is assumed to have a constant
value, Pr = 0.72, throughout the flow.

The total energy E per unit mass is defined as

E=e+ %(u2+v2),
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where e is the internal energy per unit mass. The RANS equations are closed by
the equation of state of a calorically perfect gas, given as follows

p = (v = D(E — 3ol +07), (5.14)

T = —(E~- %(u2 +v?)), (5.15)

1
c
where 7 = ¢,/c,, with ¢, the specific heat at constant volume. The dynamic
viscosity is obtained from the Sutherland’s law,

ﬁ_(l)a’/sz+110
oo T/ T+110°

The turbulent terms occurring in equations (5.8)-(5.10) and (5.11)-(5.12) are
modeled by the concept of "eddy viscosity”. The Reynolds stress terms are
assumed to satisfy the same expression as the laminar parts, except that pg is
replaced by a turbulent or eddy viscosity, p;. The same applies for the heat flux,
where a turbulent conductivity ; can be introduced. y; and &, are related by a
turbulent Prandtl number Pr;, i.e.

(5.16)

Prt = Cp[,tt/fig.

which is also assumed constant, Pr, = 0.9.
With the definition of the turbulent viscosity, equations (5.8)-(5.10) can be
expressed as follows,

- o
%x:qvm+m£, (5.17)
= o v
Ty = {V-V)+ 2/1@, (5.18)
dv  Ou
Toy = M (5; + 53;) ; , (5.19)
where
2
U= 3kt m)
Bo= pd+ e
Using equations (5.13) and (5.15), the heat fluxes can be written as
' u Oe
u Oe
¥ = gy (5.21)

where
(b
7Pr =7 (Pr + Prt) )
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The eddy viscosity y: is obtained by means of a turbulence model. In the flow
solver HI-TASK, the Baldwin-Lomax turbulence model is imnplemented. This is
formulated in terms of the kinematic viscosity,

e
vVt = —,

based on a two-layer model,

vy, formn < n.
W=
Vo, form > n.

where n is the normal distance to the wall and n. is the smallest value of n
where the values from the inner and outer formulations are identical. A detailed
descriptions of the turbulence model for determining v is given in Ref. [3].

On the airfoil surface, S,, the no-slip and adiabatic boundary conditions are
applied. The no-slip boundary condition can be expressed as

-

pv -
PV -

= 0, (5.22)
= 0. (5.23)

wy St

The adiabatic wall boundary condition is expressed as
VT -7 =0, (5.24)
which, in terms of the internal energy, is equivalent to

Ve i = 0. (5.25)

The boundary conditions can be combined into a vector B:

oV it 0
B=|,7.51=]0] (5.26)
Ve -l 0

The boundary conditions on the far-field boundaries S, are formulated in the
same way as in the case of the Euler equations! (cf. Section 4.3).

5.4 Formulation of the Adjoint and Gradient
Equations

For the design cases to be considered, a general form of the aerodynamic func-
tional is assumed as follows,

F= /S b(p, 7, 6,) dS. (5.27)

tThe viscous terms are neglected in the far-field.
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where ¢ is a function of the pressure p, the wall shear stress 7,, and the design
variables (@ and the angle of attack o). The notation F applies to both P and
A in the problem statement (5.1).

Employing the variational method implies that the adjoint equation must be
formulated the solution of which provides the Lagrange multipliers. These in turn
are used in evaluating the gradient of the functional with respect to the design
variables @ and .

As p and 7, are obtained from Q, which satisfies the steady-state RANS
equations and the boundary conditions (5.26), the functional F is independent
of the transient state. Therefore, it is sufficient to consider the steady-state
RANS equations (5.4) and the boundary conditions (5.26) in the definition of a
Lagrangian £ as follows,

ﬁ=/So¢ds+/n)\-(ﬁ-ﬁ)dﬂ+/§ur-5ds, (5.28)

where XA and Y are the vectors of Lagrange multipliers. A has four components
considered as corresponding to the components of Q. The Lagrange multiplier
Y has three components defined over S,.

The variation of £ is due to independent variations of X, T, 7, Q,  and o

SL=8L+ 6Ly +68C, + 5CQ 4+ 6Ly + 6L,

Although the wall shear stress 7, is dependent upon Q in the form of a partial
derivative,

av;

Tw:uan’

its variation, 7/, cannot be expressed in terms of Q’, but in term of the normal

PRy )

derivative of the tangential velocity. Hence, 7, is treated as an independent
variable in the definition of the Lagrangian.

5.4.1 The Adjoint Equation

Like in the Euler case, it can be shown that 6£, and 6Ly vanish if the RANS
equations (5.4) and boundary conditions (5.26) are satisfied. The variation of £

then becomes
L =68L, + 5£Q + 6Ly + 6L,,.

The adjoint equation and its boundary conditions follow from the condition
6Ly = 0,
8L, = 0.

In order to evaluate 6L, the terms associated with the inviscid, F., and viscous,
F,, fluxes are treated separately, giving

oy dp oY
5 — PO oYY
Lo ./s (8p aq ¥ aTwTW) 45

A (Y. _ v 4 B
+/n (V- F)do A,\ Y F,J)dQJr/SaT B’ dS.
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At this stage it is convenient to introduce convective and viscous variations, 67

and 67, defined as
57 = /A- (V- F) de,
57 / A (V- F) do.

The inviscid term 67 is treated in a similar way as in the Euler case. This gives

§T = —/Sa('y—l)(nx Az + ny Aa)(pE) dS

- (/\1 +
Sa

T A = '
_/Soo (C™A) - Qf ds_/Q(AT-V,\)-Q da.

l/\4)p(n1u + nyv')dS

In obtaining the viscous term 6.7, the variation of the viscosity, ¢’, due to the
variation of the flow variables, Q’, is assumed negligible. This assumption is also
driven by practical reasons, because otherwise one would have to deal with com-
plicated mathematical expressions in formulating the adjoint equations. The
viscous fluxes on the far-field boundary are also assumed negligible. This as-
sumption is in agreement with the treatment of the far-field boundary conditions
for the RANS equations, where use is made of the characteristic relations of the
Euler equations.

The procedure for obtaining 67 is described in detail in Appendix D. The
final result, equation (D.25), is rewritten here for convenience,

J = _/& [(X.;)r;+A4 (Tw(v'-g')w%(ﬁe'-a))

_(1(6 %) On
9

) (7
(an + 5o - HA “)) (V'8 ~7- (VA4 n)e}

+/YTK.Q'dn.
Q

The variation 6Lq + 6£, can now be obtained as

Lo+ 6L, = /S (%%(fy —1)(pE) + g—f—r{”) dS+8T-6J

L. (G- 1my + $241) as
- /S a(X-fi)(fy——l)(pE)' ds - /S (Al + A4> (pV'-7) dS

G4 (rul P 3+ (9 7))

Il

2
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- (191 + 252 =) (7-5)

M O ,
(G + B2 - B3 9) (79 -2 )] s
T ¢ AT & T ’
~/Sw(c A)-Q dS—/Q(A YA+ YTK) - QO
+ /S (V' - 7) + ooV - §) + To(Ve' - 7)) dS, (5.29)

where X denotes an adjoint velocity vector with the Cartesian components A and

Az given by
o (A
t=(3):

A =
A =

and

»L S

>~ >

The matrix A is the Jacobian of the convective flux vector F. with respect to the
conservative flow variables Q. C is the Jacobian of the normal component of the
convective flux. Y is the Jacobian of the primitive flow variables U = (p,u,v,p)"
with respect to the conservative flow variables Q, so that

U=YQ.
The vector K is defined in equation (D.24) as

‘az(ﬁ . ,uﬁz\‘;)l

(y—1Pr »
Oy Oy, Ay Mg OV, IV,
5r "y e oy T ar Ty
oT,, T, A My OV, 8,
oz + dy —T”ax —Tyyb—;_{— Oz + Jy
aX(V - pVAy) 1

(y=1)Pr p

The parameters Iz, I'yy, and Iy are given by equations (D.13), (D.15), and (D.14)
as follows,

Tow = lv.X+2ﬂ?ﬁ,
oz
r,, = zv-X+2#%,
dy
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which may be considered as corresponding to the elements of the stress tensor
Tezy Toyy a0d Ty of equations (5.8), (5.9), and (5.10). The parameters Wo,, Wy,
and ¥, are defined in equations (D.17), (D.18), and (D.19) as

00Xy OAq
Ve = ([4+2p)u e + lv— By
B O O
\I’yy = (l+2 >v—5y_+lu8 N
ALY
Yoy = H(u8y+v6w)

Setting the domain integral in equation (5.29) to zero leads to the adjoint equa-
tion:

AT-VA+Y'K=0 in. (5.30)

Three adjoint boundary conditions to be applied on S, are obtained by setting
equal to zero the coefficients of (pE)’, 7, and €’, which gives

Tao

At = 3p’ (5.31)

v - — 811b

A8 = o (5.32)
V-7 = 0. (5.33)

Equations (5.31) and (5.32) may be considered as corresponding to the no-slip
boundary conditions (5.22) and (5.23), while equation (5.33) corresponds to the
adiabatic wall boundary condition (5.25).

The Lagrange multipliers T follow from the elimination of the terms contain-
ing (V' - #), (V' - §) and (Ve - 1), i.e.

Y = </\1 + 7‘12 3 A4) ( X+ 2y%—A—) (5.34)
7 = --;- ()ww —u (%%* —H(Y.- 5'))) , (5.35)
Ty = A (»%) . (5:30)

The surface integral over S, is dealt with in the same way as in the Euler case.
Thus, equation (4.29) is also used as the boundary condition for the adjoint
equation (5.30).

The adjoint problem can be summarized as follows. The adjoint equation (5.30)
is solved for A, subject to the boundary conditions (5.31)—(5.33) on S, and (4.29)
on S... As A is available, the Lagrange multipliers T are determined from equa-
tions (5.34)-(5.36).
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5.4.2 The Gradient Equation

As the flow and adjoint equations are satisfied, the variation of £ becomes
8L = 6Ly +6L,.

As in the Euler case, two approaches can be distinguished for obtaining the
gradient: (i) the material derivative approach, and (ii) the discrete approach.
However, as it will turn out that physical considerations are needed in obtaining
suitable expressions of the gradients, it is more convenient to give the explanation
in terms of the material derivatives.

Following the same procedure as in the Euler case, one obtains

_ [ :
§Ly = [gagg-60d5+/Sa¢dS
+fs (19 st + 12y ©) + Tap( oy 4 — 7g 0)] dS
+ [ (Fe-di)ds,

Taking the no-slip boundary condition into account; i.e.

gives
6Ls = ?—f-sods+/ ¢d$’+/ T3(Ve- 1) dS,
5. 08 54 Sa

with the material derivative formulae given in Appendix G. However, it turns out
that this procedure does not lead to a correct expression for the gradient!. Also,

the resulting expression does not approach that of the Euler case for Re — oo.
In order to obtain a suitable expression for the gradient, it is helpful to con-
sider some aspects of the physics of viscous flow. The structure of viscous flow at
high Reynolds number with a thin boundary-layer along the solid surface implies
an indirect control mechanism between the airfoil shape and the (inviscid) exter-
nal flow. If the streamlines across the boundary-layer (from the airfoil surface up
to the edge of boundary-layer) are assumed to be parallel with the airfoil surface,
one may write ’
BpV ) _
op
where 7 is normal to the surface, while n, and 5 refer to the airfoil surface and
boundary-layer edge, respectively. Two subdomains €; and Q; are introduced as

follows,
0= f [

Q = Q-0

0, 7 <1 < Mooy (5'37)

tThis conclusion is based on numerical observations suggesting that the steepest descent
direction was not obtained.
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Referring to the Lagrangian (5.28), the term associated with the Navier-Stokes
equations can be written as:

Lo = /n,\-(ﬁ-ﬁ)dn

/nm,\.(ﬁ-f)da
/S/n A (V-F da;dSJr//\ (¥ - F) .

For evaluating the variation 6Ly of £ due to the variation of the airfoil shape,
only the integral over (), is considered. The integrand (V - F) can be expressed
in terms of partial derivatives with respect to n and s. There appear terms which
are identical with the left-hand side of equation (5.37). Numerical observations
indicate that this term is the only one which has a significant variation with
respect to 8. Dropping the other terms, the variation 6Ly can be obtained as

o 8(pV - i)
6= [ 35 50d5+/ / U(n) (-Tn—— dn dS,

Il

where

2 2 2
U(W)Z()\1+u)\2+v/\3+(u ;U + a ))\4)

Substitution of equation (G.10) for @ gives

_ [
6Lo = [ 5g60dS
Too 8(p‘7-,§')
- V-3 ;
.. /n Uln) ((xn,s+Hxs) i ) 86 dn ds,
so that
ar _ L AoV - 3)
a9 - /S (@0 /n U)X, + Hx.) =5 —dn | dS. (5.38)

In the limit of Re — oo the boundary-layer becomes infinitesimally thin, so that
the Navier-Stokes equations approach the Euler equations, which implies that
the gradient equation (5.38) approaches equation (4.37). This is confirmed by
the fact that, for an infinitesimally thin boundary-layer,

Tloo =70 a f} . -
L U(n)(Xn,s + HXS)'—(EE)—S—') d’? - T(pV : g'))(Xn,s + Hx.s)7

where T is given by equation (4.31). The expression for the gradient with respect
to the angle of attack is the same as that of the Euler case, i.e.

F _ tim e s PRRALLITS

= ds — / (CX2)TA- Z2E

dor  das0 b 5. Ba (4.39)
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Also, for a fixed C; the same procedure as in the Euler case can be followed, and
equation (4.44) is also relevant for the Navier-Stokes case, i.e.

@ -%-@E) G e

5.5 Numerical Implementation

As already indicated, the investigation carried out in this chapter also makes
use of the HI-TASK code of the National Aerospace Laboratory NLR. The main
features of this code have already been described in Section 4.7.

5.5.1 Discretization of the Adjoint Equations

In order to take advantage of the numerical schemes of the HI-TASK flow solver,
the adjoint equation (5.30) should be considered as the steady-state of a time-
dependent system. The time-dependent adjoint equation is formulated as

N rON ATaA

T —
5~ Aig, A, Y K=0 (5.39)

In order to adopt the finite-volume scheme employed by HI-TASK for solving
the adjoint equation, a divergence form of equation (5.39) is needed. This is
obtained with the same procedure as described for the Euler case. The adjoint
solver employs the secondary control volume indicated in Figure 4.4, in which
the Jacobian A the viscosity u, and the elements of the stress tensor (74, 7yy,
Tyy) aTe assumed constant. This leads to the definition of the adjoint convective
and viscous fluxes as given in Appendices E and F.

The adjoint equation (5.39) is discretized into

AQ,Jdt +f Z-7dS+D;; =0, (5.40)

where 7 is the adjoint flux and the term ﬁi’j represents a 4-th and 2-nd order
artificial dissipation term. These are formulated in the same way as in the flow
solver. Equation (5.40) is integrated in time towards the steady- state with the
same scheme as employed by the flow solver.

5.5.2 Implementation of the Adjoint Boundary Condi-
tions

The boundary conditions on the far-field boundary S, are implemented in the
same way as in the Euler case.
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The boundary conditions on the airfoil surface S, are implemented as follows.
Equations (5.31)-(5.32) fix the value of A; and A;. With the no-slip boundary
conditions applied, the fourth adjoint equation on S, reduces to

8)\4 8)\2 0)\3 8 CLZ/,L 8)\4 8 (CL ,U(?Aq) -
2 0D (Fﬁ‘a;) 'a-z(;ﬁ‘a? ~ 3 pray ) =0 G4

With the adjoint boundary condition (5.33) applied, equation (5.41) can be inte-
grated in time for each grid point on S,T.

A relation between A\; and Xy on S, is obtained as follows. With the no-slip
boundary conditions applied, and approaching S, from within the domain the
continuity equation reduces to

oV,

F 5.42
V- 172 P =0, (5.42)
while the energy equation gives
- = a® 9V, iV, =
. — Z2 V-7l =0. 5.
V-Fy — <p7~1 6n) (Tw o \Y q) 0 (5.43)
Combining the above equations gives on .S,
v,
i 0, (5.44)
v, =
w -d = 0. 4
o -V-q 0 (5.45)

For these equations two Lagrange multipliers are needed, introduced as 4; and
by. Recalling that A; and Ay are the Lagrange multipliers for the continuity and
energy equations, respectively, one obtains

by = Aq,

because these multiply the same term in equations (5.45) and (5.43). Similarly,
it also follows that

bl = p)\l =p )\4,
v

because these multiply the same term in equations (5.44), (5.42) and (5.43).
Hence, the relation between Ay and A4 can be obtained as

As. (5.46)

THowever, numerical observations suggest that the viscous terms in equation (5.41) do not
imply any significant effect on the computed gradient, such that it may be dropped.
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5.5.3 Discretization of the Gradient Equations

Equation (5.38) is evaluated based on the discrete approach described in Sec-
tion (4.4.2).

The integration in the s- and n-directions are performed using the trapezoidal
rule. The factor 5, corresponds to the grid point index by j = (3/8)/mas, With
7 =0 and j = . being the airfoil surface and outer boundary, respectively.
Numerical experiments suggest that taking j > (3/8)jms does not imply any
significant difference in the computed gradients.

5.6 Test Cases for Single-Point Design

In order to make a comparative study, the specification of the test cases follows
that given in Section 4.9. Four test cases are considered designated as Case N-1,
N-2, N-3, and N-4. The following conditions are common in all cases:

e The airfoil is defined by the parameterization scheme described in Sec-
tion 4.5 with 11 design variables.

¢ The aerodynamic scaling of the design variables described in Section 4.6 is
applied.

e The Navier-Stokes (N-S) computations are performed by HI-TASK on a
256 x 64 grid. Figure 5.1 shows a typical grid produced by HI-TASK.

o The optimization procedure employs the FSQP routine.

e The gradients are computed based on the discrete formulation of the vari-
ations of geometric properties (i.e., the discrete approach described in Sec-
tion 4.4.2).

5.6.1 Description and Results of Case N-1

Case N-1 is a reconstruction type inverse problem. The design point is specified
by
M =072, C; =05 Re=6.5x10°

The target C,, is obtained from an N-S flow analysis of a best-fit of the RAE 2822
airfoil. The target C, distribution is defined on the airfoil chord with proper
distinction between the lower and upper surface of the airfoil. The NACA 0012
airfoil is used as the initial airfoil geometry. The reason for selecting C; = 0.5,
instead of C; = 1 like in the Euler case E-1, is that for C; = 1 there is a strong
flow separation over the initial geometry which causes failure of the flow solver.
The objective functional is formulated in the same way as in Case E-1, which
gives

o

ap = Q(OP—CP,f)Inyla
O

o =
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These are substituted into the adjoint boundary conditions (5.31) and (5.32).
Then, the adjoint equation (5.30) is solved for A, and the gradient is obtained as
described in Section 5.4.

Like in the Euler case, the main purpose of selecting this test case is to have
an (indirect) check on the accuracy level of the computed gradient, because the
optimal solution is known beforehand. The engineering accuracy corresponds to
P <1074

Figure 5.2 shows the design iteration history. An empty circle, referred to as
”Evaluated”, represents one flow analysis. A crossed circle, referred to as "New
iterate”, indicates that the corresponding geometry and flow analysis are used by
the optimization algorithm as a basis for finding the next iterate. The process
from one crossed circle to another represents a line search.

As can be seen, the engineering accuracy has been achieved at the 16th itera-
tion. This indicates that the adjoint formulation and gradients are correct. The
corresponding C,, distributions and airfoil geometries are shown in Figures 5.3,
which demonstrate that the target geometry has been reconstructed. The rate
of convergence is faster than that of the Euler case E-1. This is probably due to
the shockless target C, distribution of the N-S case.

5.6.2 Description and Results of Case N-2

The specification of case N-2 is the same as the Euler case E-2. This concerns a
(pressure) drag reduction problem with geometric constraints for

M=0.72, C =1, Re=6.5x10°

The optimization starts with an initial airfoil specified as a best-fit of the RAE 2822
airfoil. Geometric constraints are imposed on the trailing edge included angle
and cross-sectional area. These are limited to be not less than their initial values
(given by the initial airfoil). The optimization begins with all constraints active.

Initially, Case N-2 was defined as a minimization of the total drag (pressure
drag + skin friction drag):

Cy= —/s Cp(ny cosa + ny sina) dS+/S Tw(ny cOsa@ — n, sina) dS.

a

This gives
%—% = —2(n; cosa+ ny sina),
o .
. = 2(ny cosa — n, sina),

which are substituted into the adjoint boundary conditions (5.31) and (5.32) in
order to solve the adjoint equation (5.30) for A. Figure 5.4 shows the total drag
reduction history. The high (off-line) values in the figure (corresponding to the
iterations 8, 11, 16, 21, and 25) indicates failure of the grid generation (grid
folding, etc.), while the flow solver failed at the iterations 20 and 24.
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Case N-2 has also been investigated for the minimization of pressure drag. In
this case, the objective functional to be minimized represents the pressure drag
coeflicient Cy,

Cy, = -/S Cp(ng cosa+ ny sina) dS.

This is formulated in the same way as in the Euler case E-2, which gives

— = —2(ny, cosa+ ny sina),

X _

These are again substituted into the adjoint boundary conditions (5.31) and (5.32).

Figure 5.5 shows the pressure drag reduction history. The figure also shows the
corresponding reduction of the total drag, which is slightly less than the reduction
in pressure drag due to a slight increase in the skin friction drag (the difference
between the two lines shown in the figure). Figire 5.4 shows that the total
drag minimization (with the skin-friction drag included) could not achieve the
total drag level given by the pressure drag minimization indicated in Figure 5.5.
This is an unexpected result, which suggests that the gradient of the total drag
functional is not fully correct. Further research is needed for investigating this
problem.

The final iterate corresponds to the 6th flow analysis. The optimization pro-
cess was stopped after the line search spent 5 flow analyses (the Tth to 11th)
without finding a new (improved) iterate. Grid refinement studies for this case,
like those applied to the Euler case, have been performed and summarized in
Figure 5.6 and Table 5.1. The error-bandwidth is 5 counts. This means that
the drag reduction of (153 — 5) = 148 counts can practically be considered to be
significant. :

The resulting C, distribution and airfoil geometry are shown in Figure 5.7.
As can be seen, the shock wave has been weakened significantly. The skin friction
coefficient distribution is shown in Figure 5.8 with the convention that the tan-
gential velocity follows the arc length measured clockwise from the lower trailing
edge.

The states of geometric constraints corresponding to each iterate are shown
in Figure 5.9. Both constraints were active up to the 5th analysis, after which
the cross-sectional area moved away from its limiting boundary.

The airfoil shape resulting from case E-2 has also been analyzed using the
Navier-Stokes solver. The viscous flow solution is compared with the result of
case N-2 in Figure 5.10 and 5.11. The N-S design (from case N-2) appears to
give a weaker shock wave (corresponding to 0.0138 of total Cy) than the one in
the Euler design (corresponding to 0.0161 of total Cy), when both designs (i.e.
airfoils) are analyzed in the viscous flow using the Navier-Stokes solver.
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5.6.3 Description and Results of Case N-3

Case N-3 is a pressure drag reduction problem with aerodynamic and geometric
constraints. The case specification is the same as Case N-2, except that

e A constraint on the pitching moment coefficient is introduced.

o A leading edge radius constraint is added into the set of geometric con-
straints.

These constraints must also not be less than their initial values. Again, the
optimization starts with all constraints active.

The pressure drag reduction history is shown in Figure 5.12. The final iterate
corresponds to the 9th flow analysis. The optimization process was stopped
after the line search failed to find a new (improved) iterate with 5 flow analyses.
Grid refinement studies for this case have been performed and summarized in
Figure 5.13 and Table 5.2. The error-bandwidth is 7 counts. This means that
the drag reduction of (59 — 7) = 52 counts can practically be considered to be
significant.

The resulting C, distribution and airfoil geometry are shown in Figure 5.14.
As can be seen, the shock wave has again been weakened significantly.

The pitching moment constraint (Figure 5.12) is active during the whole iter-
ation process. The states of geometric constraints are shown in Figure 5.16. The
trailing edge included angle and cross-sectional area constraints are active with
most iterates.

The airfoil shape resulting from case E-3 has also been analyzed using the
Navier-Stokes solver. The C, and C; distributions of the viscous flow solutions
of the airfoil of case E-3 are compared with the result of case N-3 in Figure 5.17
and 5.18, respectively. Surprisingly, the Euler design gives a lower total drag
(0.0205) than that given by the N-S design (0.0232), but the C, distribution of
the Euler design indicates a stronger shock wave. Both Euler and N-S are feasible
solutions, but the pitching moment constraint is not active for the Euler design
(Con = —0.0796).

The main difference between the two airfoils is in the trailing edge angle
and leading edge radius (Figure 5.17). The N-S design has a smaller trailing edge
angle and larger leading edge radius. Without knowing the topology of the design
space, it is quite difficult to explain these differences. Nevertheless, one may try
to find an explanation as follows,

¢ In the Navier-Stokes case, the optimization algorithm seems to avoid airfoils
with a large trailing edge angle and a small leading edge radius. It is
recognized that the boundary-layer tends to separate as the trailing edge
angle gets larger (and/or the leading edge radius gets smaller for a finite
angle of attack). The flow separation would increase the pressure drag.
Because the flow separation is not recognized by the inviscid flow model,
the Euler design would be less restricted in this respect. This is in agreement
with the non-active constraints shown in Figures 4.23, and with the fact
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that there is a larger flow separation with the Euler design when computed
with the Navier-Stokes solver, as indicated in Figure 5.18.

¢ Both designs start with the same airfoil and share the same geometric con-
straint boundaries, but the aerodynamic constraint boundary and objective
contours are different because of the different flow models. Considering this,
in the Navier-Stokes design space, the Euler design may belong to a local
minimum which does not happen to be the same local minimum as for the
Navier-Stokes design.

5.6.4 Description and Results of Case N-4

The specification of this case is the same as Case N-3, but for
M =078, C; =05 Re=86.5x10°

The reason for specifying this case is to provide a basis for comparison with the
results of multi-point aerodynamic design to be described in Chapter 6.

The pressure drag reduction is shown in Figure 5.19. The final iterate corre-
sponds to the 24th flow analysis. The pitching moiment constraint is active for
most iterates including the final iterate. Grid refinement studies for this case
have been performed and summarized in Figure 5.20 and Table 5.3. The error-
bandwidth is 7 counts. This means that the drag reduction of (80 — 9) = 71
counts can practically be considered to be significant.

The resulting C, distribution and airfoil geometry are shown in Figure 5.21.
As can be seen, the shock wave has practically been eliminated from the flow
solution.

Figure 5.23 shows the states of geometric constraints. The cross-sectional
area is active with all iterates, the trailing edge angle is close to its bound, and
the leading edge radius is totally non-active.

The result of this case is also compared with the viscous analysis of the Euler
design obtained from case E-4 in Figure 5.24 and 5.25. The total drags of the
Euler and Navier-Stokes design are 0.0112 and 0.0119, respectively. Both are
feasible solutions, but again the pitching moment constraint is not active for the

Euler design (C,, = —0.0974).

5.7 Concluding Remarks

The results presented in the preceding sections indicate that the present method
represents a viable approach for solving single-point transonic aerodynamic design
problems based on the compressible viscous flow model governed by the Reynolds-
Averaged Navier-Stokes (RANS) equations.

Application of the present method to a reconstruction type inverse prob-
lem suggests that the adjoint and gradient formulation are correct and that the
computed gradient is of sufficient accuracy to be used for general aerodynamic
optimization problems.
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A significant problem is identified during the investigation: the method failed
to give a useful result in the case of total drag reduction. Also, the assumption
used in formulating the gradient, that the streamlines across the boundary-layer
are parallel to the airfoil surface, is obviously not valid for cases with extensive
flow separations. Further investigation for the case of total drag reduction is
desirable.
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Computational results

No. | Mesh size Initial Final | Initial - Final
(h) (counts) | (counts) (counts)
1 4 301 174 127
2 2 291 138 153
3 1 283 126 157
4 0 282 124 158
[ | Error: (2)-(9) ] 9 14 | -5 |

Table 5.1: Grid Refinement Studies for Drag of Case N-2

No. Mesh size Initial Final - | Initial — Final
(h) (counts) | (counts) (counts)
1 4 301 284 17
2 2 291 232 59
3 1 283 220 63
4 0 282 216 68
[ [Eror: 2-(4)] 9 6 [ -1 ]

Table 5.2: Grid Refinement Studies for Drag of Case N-3

No. Mesh size Initial Final | Initial — Final
(h) (counts) | (counts) (counts)
1 4 212 153 59
2 2 199 119 80
3 1 197 110 87
4 0 196 107 89
| [Ermor: @) 3 12 [ -9 ]

Table 5.3: Grid Refinement Studies for Drag of Case N-4
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Chapter 6

Multi-Point Aerodynamic
Design

6.1 Introduction

The preceding chapters deal with single-point aerodynamic design by means of
optimization. However, as already discussed in Section 2.2, the optimization
method can also be applied in multi-point design problems. This is done by for-
mulating a multi-point design problem as a multi-objective optimization problem.
The resulting vector of objectives can be scalarized into a single-objective. In this
way, the multi-objective problem is transformed into a single-objective problem.
The latter is then solved by the method described in the previous chapters.

In this chapter, two methods of scalarization are discussed, namely: (i) scalar-
ization by summing the objectives using weight factors, and (ii) scalarization uti-
lizing fuzzy-set theory. This chapter is organized as follows. First, in Section 6.2
a general statement of the multi-point design problem is given. This appears
basically as a (constrained) multi-objective optimization problem formulation.
The first method of scalarization is explained in Section 6.3. Fuzzy-set theory
and its application to optimization is described in Section 6.4. To investigate the
applicability of both approaches, test cases are discussed in Section 6.5. Finally,
concluding remarks are given in Section 6.6.

6.2 General Statement of the Multi-objective
Optimization Problem

It is assumed that there are m design points to be considered. A design point & is
identified by the vector of design point parameters z;, (e.g., Mach numbers, design
lift coeflicients, etc.). With each k = 1,...,m, an aerodynamic objective, Py, and
an aerodynamic constraint Ay is associated!. A vector of geometric constraints
G is also supposed to be imposed. The multi-objective optimization problem is

TFor brevity, it is' assumed that there is only one aerodynamic constraint in each design
point. However, multiple constraints are equally possible.

159
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stated as follows,

For k=1...m:
Minimize  Pi(Qx, 8, g, zi) (6.1)
subject to:
Ae(Qr, 8, 0,2x) <0,
) <

G(o

where Q is the vector of flow variables associated with a design point &, and 8
and o are the vector of design variables. The optimal values of € and oy are to
be determined, which corresponds to an optimal geometry of the airfoil shape.

7

6.3 Scalarization by the Sum of Weighted Ob-
Jjectives

In this approach the objectives are added together to form a single-objective by
means of the weighting factors wg, k = 1,..,m. In this way, the multi-objective
problem (6.1) is transformed into

. m
Minimize Z wiPr

subject to:
Ak
G

IAN A

This approach might seem to be simple to apply, but it has the disadvantage that
it may not be known a priori what combination of weight factors is appropriate
for the design problem at hand. For instance, as already indicated in Section 2.2,
equal weight factors do not necessarily lead to with a "balanced” design solution.
A trial-and-error process is likely needed in specifying the weight factors.

6.4 Scalarization by means of Fuzzy Set The-
ory

Fuzzy set theory was initially proposed by Zadeh [68] who defined it as follows,

Definition 1 Let X be a space of points (objects), with a generic element of X
denoted by z. Thus, X = z. A fuzzy set (class) A in X is characterized by a
membership (characteristic) function pa(z) which associates with each point in
X a real number in the interval [0,1), with the value of ua(z) at x representing
the "grade of membership” of x in A.

For example, a fuzzy set of real numbers greater than 5 can be characterized by
a membership function as shown in Figure 6.1a. Another example (Figure 6.1b)
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(@

()

Figure 6.1: Examples of Fuzzy Sets

illustrates a membership function that characterizes a fuzzy set of real numbers
close to 10. Since a membership function can take a value in the interval [0, 1], it
may be regarded as a generalization of the so-called table of truth, i.e., the table
of truth can only take the value of either 0 (false) or 1 (true). The application
of fuzzy set theory to optimization problems (commonly referred to as fuzzy
optimization) needs a characterization of each of the objectives and constraints
in terms of a membership function. Of importance in fuzzy optimization is the
concept of the intersection of two or more fuzzy sets which is defined in Ref. [68]
as follows:

Definition 2 The intersection of two fuzzy sets A and B with respective mem-
bership functions pa(z) and pp(z) is a fuzzy set C, written as C = AN B, whose
membership function is related to those of A and B by

ﬂc(ﬂ)) = min[/‘A(x)a”B(z)L z € X,
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or, in abbreviated form
po = pa A g,

As an example, the following simple (fuzzy) optimization problem from Ref. {70]
can be considered:

Objective: ¢ should be substantially larger than 10
Constraint: z should be in the vicinity of 11

The objective is characterized by the membership function:

(z) = 0, z<10,
= (14 (2 —10)2)1, 2> 10,

while the constraint is characterized by:

pe(2) = ((1+ (z = 11)")7".

These are depicted in Figure 6.2. The (fuzzy) optimal solution, x4, lies on a curve
that belongs to u; defined by

pa(e) = pp(@) A pe(z)
= min(us(z), p(z)).

z4 takes a value that corresponds to the maximum of the intersection of the
membership functions:

Ld = max(min(ﬂf(x), ﬂ'r:(x))’

or, equivalently, if one prefers formulating it as a minimization problem:

24 = min(maz(~u/(c), —pu(z)))-

This shows that a fuzzy optimization problem is equivalent with a min-max prob-
lem of the membership functions. The characterization by membership functions
has the implication that the objectives and constraints become of the same na-
ture. It implies also that there is no longer any difference in the treatment of a
single-objective and a multi-objective optimization problem.

Extending the concept to general constrained multi-objective multivariate
optimization problems is straightforward. This requires a "fuzzification” of the
optimization problem statement. An objective, F, to be minimized, can be fuzzi-
fied by associating with it a monotonously descending membership function like
those shown in Figure 6.3a, whereas a general constraint, C, with its respective
lower and upper bounds, ¢; and ¢, can be fuzzified by a membership function
like that in Figure 6.3b. The thresholds, Fyun and Fp,., and the leeway §c, are
reasonably specified values which, however, may be problem dependent.

The steeper part of the curves indicates more tendency towards/against the
membership, or in other words, the flatter part indicates indifference regarding
the grade of membership. In multi-objective optimization problems, this means
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Figure 6.3: Fuzzification of Objectives (a) and Constraints (b)
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that an objective value which corresponds to a higher membership function value
can be compromised with respect to the other objectives.

Returning to the multi-objective optimization problem (6.1), a number of m
membership functions must be defined for the objectives Py, ¥ = 1,..,m. In
addition to that, a number of m + n membership functions need to be defined
for the constraints Ay and G. Here, n is the dimension of G. This results in N
membership functions, where

N =2m+n.

Since in fuzzy optimization, the optimal solution corresponds to the maximum
of the intersection of the membership functions, the equivalent fuzzy form of the
optimization problem of (6.1) is stated as

Minimize — maz(—g1, ..., —pn)- (6.2)

Problem (6.2) can be solved be means of an optimization algorithm like FSQP (cf.
Section 4.8). The required gradients of the membership functions with respect
to the design variables @ are obtained by the chain rule of differentiation. For
example, the gradient of the i¢-th membership function y; associated with the
k-th objective is obtained as

dpi _ Op; dPy
d9 ~ 0P d8’
dPy . - i . .
where 2@ can be obtained by the variational method discussed in the preceding
chapters.

The above discussion assumes that some degree of constraint violation is al-
lowed, as indicated by the leeway in the membership functions. If the constraints
must be satisfied strictly, then one should not characterize the constraints by
the membership functions. Instead, they should be directly incorporated in the
optimization. For example, in case of strict geometric constraints, only the ob-
jectives need to be characterized by the membership functions, and the fuzzy
optimization problem should be formulated as follows,

Minimize — maz(—gq, ..., —fizm)
subject to: G <0.

It should be noticed that the maz operator is now taken over 2m instead of N
membership functions.

6.5 Test Cases for Multi-Point Design

Four test cases have been considered for constrained pressure drag reduction in
two design points based on the Euler and Navier-Stokes equations. The design
points are taken as a combination of the Mach numbers and design lift coefficients
defined in case E-3 (case N-3) and case E-4 (case N-4) in Chapter 4 (Chapter 5).
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o Design Point 1 (DP-1): C; = 1., My, =0.72, Re = 6.5 x 10°.
e Design point 2 (DP-2): C; = 0.5, M, = 0.78. Re = 6.5 x 10°.

The Reynolds number Re is not applicable in the Euler case. The objective is to
reduce the pressure drag while satisfying the pitching moment constraint in both
design points. The same geometric constraints are imposed, i.e. the leading-edge
radius, the trailing-edge angle, and the cross-sectional area of the airfoil. The
optimization starts with an initial airfoil specified as a best-fit of the RAE 2822
airfoil. The constraints are formulated in the same way as in the single-point
design cases. The optimization begins with all constraints active.

The test cases are identified as Case ME-1, ME-2, MN-1, and MN-2. The
letters E and N stand for Euler and Navier-Stokes, respectively. The digit 1 refers
to the method of sum of weighted objectives, with the weight factors specified as

W = Wy = 0.5.

The digit 2 refers to the fuzzy optimization method, where the geometric con-
straints are assumed to be strict, while the pressure drag objectives and pitching
moment constraints are characterized by a membership function of the type de-
picted in Figure 6.3. A suitable form is

_ Fmaz (o 1
= arctan(r /2)

Pmaz 18 @ scaling factor (not to be confused with d in Section 4.6) which has the
effect of reducing the magnitude of the gradient of 4 and, thus, avoiding too large
shape modifications. The factor h determines the type of membership function:

arctan (a.rctan(2hf*))) .

b= —1, u descends monotonously with f,
- 1, u ascends monotonously with f.

A descending form of p 1s applied to an objective to be minimized or an inequality
constraint with an upper-bound. An ascending form of g is applied to an objective
to be maximized or an inequality constraint with a lower-bound. Figure (6.4)
shows a typical membership function ¢ which descends monotonously. The factor
f* is defined as

f* — f_‘ %(fu +fl)

%(f u fl ) ’

with f the current value of objective or constraint. The upper, f,, and lower, fi,
values of f are defined in terms of the percentage (or fraction) of the initial value

of f.

The following choices apply in all cases:

e Scaling factor g, = 0.1.

o For the objective Cy to be minimized (applied to both design points):
h = -1,
fi = 0.25Cynitial,
fu = Cynitia.
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Figure 6.4: Monotonously descending membership function

e For a C,, constraint with a lower-bound (applied to both design points):
ho= 1,
fi = Chrjnitiat — 0.1|Crn initiat],
fu = Cujnitia-

This means that a 75% reduction of drag is considered desirable while allowing
a 10% violation of the pitching moment constraints. It should be noted that
the initial values of C,, correspond to a high value of the membership function,
while the initial values of C; correspond a low value of p. This means that at the
initial stage a compromise in (), may readily be taken in favor of a reduction in
Cq. Tt should also be noted that the membership functions of C; in both design
points are initially equal, which means that the two drag values are considered
as equally "bad”.
It is further noted that in all cases:

e The airfoil is defined by the parameterization scheme described in Sec-
tion 4.5 with 11 design variables.

o The aerodynamic scaling of the design variables described in Section 4.6 is _
applied.

¢ The Euler computations (for ME cases) are performed by the inviscid mode
of HI-TASK(Ref. [6]) on a 128 x 32 grid with the grid adaption procedure
(Ref. [21]) activated. The Navier-Stokes computations (for MN cases) are
performed by the viscous mode of HI-TASK on a 256 x 64 grid without grid
adaption.

» The optimization procedure employs the FSQP routine.




6.5 Test Cases for Multi-Point Design 167

6.5.1 Results of Case ME-1 (Sum of Equally Weighted
Objectives)

The pressure drag and pitching moment results are shown in Figures 6.5 and 6.6.
The obtained airfoil geometry and the sum of the weighted pressure drag coef-
ficients are shown in Figure 6.7. The optimization process was stopped after a
maximum number of 20 flow analyses in a design point was reached!.

As.can be seen, the drag has been reduced in both design points, with the
pitching moment constraints active. There is much more reduction of drag in
the second design point (= 45%) than in the first design point (= 12%). This
suggests that the requirement in the first design point is a much more difficult
one. This also illustrates that choosing equal weight factors does not necessarily
imply a well-balanced solution.

The pressure distributions are shown in Figure 6.8. As can be seen, the shock
waves have been weakened in both design points, although, in agreement with the
difference in drag reduction, this is more pronounced in the second design point.
The state of the geometric constraints are shown in Figure 6.9. The trailing edge
angle and leading edge radius constraints are not active, while the cross sectional
area constraint is active in most iterates.

6.5.2 Results of Case ME-2 (Fuzzy Optimization)

The drag and pitching moment coefficients are shown in Figure 6.10 and 6.11.
The obtained airfoil geometry and the membership functions are shown in Fig-
ure 6.12. The optimization process was stopped after a maximum number of 20
flow analyses in a design point was exceeded.

Figure 6.12 shows the history of the membership functions which have been
rescaled to the range {0,1]. In fuzzy optimization, the minimum amongst the
membership function values corresponds to the most important criterion. The
figure indicates that the membership function value of the pitching moment con-
straints is not the minimum for most iterates. Hence, for most iterates, the
pitching moment constraints are not considered as important by the method.
This can be interpreted as that the 10% ”leeway” provides ample room for the
reduction of drag. The figure also indicates that, in the early stages of opti-
mization, the drag in DP-2 was considered more important than in the other
design point. This role is switched at the fifth iteration, where the first design
point became more important.

Figure 6.12 also demonstrates that taking one criterion (objective or con-
straint) as the most important one, does not necessarily mean that the other
criteria must be compromised {e.g., from the 3rd to the 4th iteration all criteria
are improved). As a matfer of fact, the change in membership function from
one iteration to another gives an indication of the ”sensitivity” of the associated
criterion with respect to the most important one.

In the final result a balanced reduction of drag is obtained, i.e. about 25%

TThe terms ”Evaluated” and ”New iterate” are explained in Section 4.9.1.
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and 28% reduction in the first and the second design point, respectively. This is
accompanied by about 3% and 5% violation of the pitching moment constraints
in the respective design points. The balanced reduction of drag is an expected
result, because the drag values in the two design points are initially considered as
equally bad, while it is desired to obtain an equal amount of improvement (75%
reduction of drag).

The pressure distributions are shown in Figure 6.13. As can be seen, the shock
waves are indeed weaker in the final iterate. The states of geometric constraints
are shown in Figure 6.14.

6.5.3 Results of Case MN-1 (Sum of Equally Weighted
Objectives)

The optimization method failed in this case. The line search in the first iterate
could not find any improvement. During the line search, Cy; was indeed de-
creased but this was accompanied by an increase in Cy,, with the overall effect
of increasing the sum of the weighted objectives.

In order to find the culprit in this situation, case MN-1 was modified by
specifying w, = 0, thus ignoring the second objective. It is noted that the
modified case is still a two-point design case, because the C,, constraint is still
considered in the second design point (which distinguishes it from case N-3). The
computer run for the modified case failed too.

There are two possible explanations for the failure of the optimization in both
the original and the modified case:

¢ The search vector is a null vector or, in other words, the initial point is
a stationary point. However, this is not recognized by the optimization
algorithm. This is probable because the gradients could not reach the ac-
curacy level assumed in the stationary point criteria (internally defined in
the optimization routine).

o The initial point is not a stationary point, but the feasible space is too
narrow for the accuracy level of the computed gradients.

Whatever has caused the failure, it seems inevitable to accept some constraint
violations in order to reduce the drag.

6.5.4 Results of Case MN-2 (Fuzzy Optimization)

The drag and pitching moment coefficients are shown in Figure 6.15 and 6.16.
The membership functions and airfoil geometries are given in Figure 6.17. The
optimization process was stopped after the line search failed to find a new iterate
after 5 flow analyses.

Figure 6.17 shows the history of the membership functions which have been
rescaled to be within the range [0, 1]. Like in the Euler case, a balanced reduction
of drag values has again been obtained, but with a smaller amount than for the
inviscid case. About 12% and 10% drag reduction in the first and the second
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design point is achieved, respectively. This is accompanied by about 7% and 7.5%
violation of the pitching moment constraints in the respective design points.

The C, distributions are presented in Figure 6.18. In agreement with the drag
reduction, the shock waves appear to be slightly weaker in the flow solution of
the final iterate. The corresponding C distribution is shown in Figure 6.18. The
states of geometric constraints are given in Figure 6.20.

6.6 Concluding Remarks

The results presented above seem to indicate that the present method represents
a viable approach for dealing with transonic multi-point design problems based
on either the Euler or Navier-Stokes equations.

The computational results indicate that (both aerodynamic and geometric)
constraints tend to be more stringent in case of the viscous (RANS) flow model.
This, of course, is to be expected, since in the Euler case there are no restrictions
on the local pressure gradient while in the RANS case these are limited by the
ability of the boundary-layer to cope with them without (significant) separation.

The complexity of multi-point design problems is not only incurred by con-
flicting aerodynamic objectives, but also by restrictions imposed by aerodynamic
constraints. The fuzzy optimization method appears to be effective in alleviat-
ing the level of problem complexity, because the objectives and constraints are
treated in the same way as the set of criteria which have to be achieved. This
is measured in terms of membership functions. The results demonstrate that al-
lowing relatively small constraint violations can lead to significant improvements
in the objectives.
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Figure 6.5: Wave drag and pitching moment coefficients in DP-1 of Case ME-1
(Two-point transonic constrained wave drag reduction by sum of weighted objec-
tives. Flow model: Euler. Weight factor: wy = 0.5. Design point: M; = 0.72,
Ci, = 1. Initial airfoil: RAE2822. Constraints: pitching moments, leading edge

radius, trailing edge included angle, and cross sectional area).
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Figure 6.6: Wave drag and pitching moment coefficients in DP-2 of Case ME-1
(Two-point transonic constrained wave drag reduction by sum of weighted objec-
tives. Flow model: Euler. Weight factor: wy = 0.5. Design point: M, = 0.78,
C, = 0.5. Indtial airfoil: RAE2822. Constraints: pitching moments, leading

edge radius, trailing edge included angle, and cross sectional area).
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Figure 6.7: Sum of weighted objectives and airfoil geometries of Case ME-1 ( Two-
point transonic constrained wave drag reduction by sum of weighted objectives.
Flow model: Euler. Weight factors: wy = 0.5, wg = 0.5. Design points: M; =
0.72, ¢, = 1, M, = 0.78, C, = 0.5. Initial airfoil: RAE2822. Constraints:
pitching moments, leading edge radius, trailing edge included angle, and cross
sectional area).




Compulational results 173

Cp,
L
0.8 [ Initial (RAE 2822X) -
12 ——— 18th analysis (design point 1) |
16 . . . — .
-0.1 0.1 0.3 0.5 0.7 0.9 1.1
x/c
-2.0 j
-1.6 1 r
-1.2 1 F
-0.8 F
!
—0.4 -
Cp,
0.0 1 F
041 i
081 | |----- Initial (RAE 2822X)
12 —— 19th analysis (design point 2) i
1.6 T T v : ~

01 0l 0.3 0.5 0.7 0.9 1.1
x/c

Figure 6.8: C, distributions of Case ME-1 ( Two-point transonic constrained wave
drag reduction by sum of weighted objectives. Flow model: Euler. Weight factors:
wy = 0.5, wy = 0.5. Design points: M; = 0.72, C, =1, My = 0.78, C;, = 0.5.
Initial airfoil: RAE2822. Constraints: pitching moments, leading edge radius,

trailing edge included angle, and cross sectional area).
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Figure 6.9: State of geometric constraints of Case ME-1.
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Figure 6.10: Wave drag and pitching moment coefficients in DP-1 of Case ME-
2 (Two-point transonic constrained wave drag reduction by fuzzy optimization.
Fuzzy objectives /constraints: Wave drag and pitching moment. Flow model: Eu-
ler. Design point: My = 0.72, C;, = 1. Initial airfoil: RAE2822. Constraints:

leading edge radius, trailing edge included angle, and cross sectional area).
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Figure 6.11: Wave drag and pitching moment coefficients in DP-2 of Case ME-
2 (Two-point transonic constrained wave drag reduction by fuzzy optimization.
Fuzzy objectives/constraints: Wave drag and pitching moment. Flow model: Eu-
ler. Design point: M, = 0.78, C}, = 0.5. Initial airfoil: RAE2822. Constraints:

leading edge radius, trailing edge included angle, and cross sectional area).
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Figure 6.12:  Membership functions and airfoil geometries of Case ME-2
(Two-point transonic constrained wave drag reduction by fuzzy optimization.
Fuzzy objectives /constraints: Wave drag and pitching moment. Flow model: Eu-
ler. Design points: My = 0.72, C;, = 1, M, = 0.78, Ci, = 0.5. Initial airfoil:
RAE2822. Constraints: leading edge radius, trailing edge included angle, and
cross sectional area).
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Figure 6.13: (, distributions of Case ME-2 (Two-point transonic constrained
wave drag reduction by fuzzy optimization. Fuzzy objectives/constraints: Wave
drag and pitching moment. Flow model: Fuler. Design points: M; = 0.72,
Cy =1, Mz =0.78, C, = 0.5. Initial airfoil: RAE2822. Constraints: leading

edge radius, trailing edge included angle, and cross sectional area).
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Figure 6.14: State of geometric constraints of Case ME-2.
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Figure 6.15: Pressure drag and pitching moment coeflicients in DP-1 of Case MN-
2 (Two-point transonic constrained pressure drag reduction by fuzzy optimization.
Fuzzy objectives/constraints: Pressure drag and pitching moment. Flow model:
Navier-Stokes. Design point: My = 0.72, C}, = 1, Re; = 6.5x10%. Initial airfoil:
RAFE2822. Constraints: leading edge radius, trailing edge included angle, and
cross sectional area).
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Figure 6.16: Pressure drag and pitching moment coefficients in DP-2 of Case MN-
2 ( Two-point transonic constrained pressure drag reduction by fuzzy optimization.
Fuzzy objectives /constraints: Pressure drag and pitching moment. Flow model:
Navier-Stokes.  Design _points: M, = 0.78, C;, = 0.5, Re; = 6.5 x 10°.
Initial airfoil: RAE2822. Constraints: leading edge radius, trailing edge included

angle, and cross sectional area).
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Figare 6.17: Membership functions and airfoil geometries of Case MN-2
(Two-point transonic constrained pressure drag reduction by fuzzy optimization.
Puzzy objectives/constraints: Pressure drag and pitching moment. Flow model:
Navier-Stokes. Design points: M; = 0.72, C;, = 1, My = 0.78, Ci, = 0.5,
Rey = Re; = 6.5 x 108, Initial airfoil: RAE2822. Constraints: leading edge

radius, trailing edge included angle, and airfoil volume).
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Figure 6.18: (), distributions of Case MN-2 (Two-point transonic constrained
pressure drag reduction by fuzzy optimization. Fuzzy objectives/ constraints:
Pressure drag and pitching moment. Flow model: Navier-Stokes. Design points:
My, =0.72, C, =1, M, = 0.78, C;, = 0.5, Re: = Rey = 6.5 x 10°. Initial airfoil:
RAE2822. Constraints: leading edge radius, trailing edge included angle, and
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Chapter 7

Conclusions and
Recommendations

7.1 Direct Aerodynamic Optimization Method-
ology

The objective of the investigation presented in this thesis is to construct an aero-
dynamic design optimization methodology that is capable of dealing with general
constrained multi-point aerodynamic design problems in two-dimensional invis-
cid and viscous flow. It has been argued that for this purpose the methodology
should satisfy the following requirements:

e The methodology should offer the possibility to choose between different
flow models. The feasibility of applying the present methodology for the
flow models described by the Laplace, Euler and Reynolds-Averaged Navier
Stokes equations has been demonstrated.

e The method should be capable of handling aerodynamic design problems
defined in terms of global aerodynamic coefficients with aerodynamic and
geometric constraints. This is realized by adopting the direct optimization
methodology.

e The method should be capable of dealing with multi-point design problems.
This is realized by incorporating a multi-objective optimization strategy. It
has been demonstrated that the method is effective in resolving problems
resulting from conflicting design criteria.

¢ The computational cost associated with application of the method should
be at least an order of magnitude lower than those of aerodynamic design
methods based on numerical optimization. This is realized by the com-
bination of a quasi-second-order feasible optimization algorithm with the
variational method for computing the gradient. This allows useful results to
be obtained at a computational cost that is comparable to that of obtaining
18 to 50 flow solutions. This is to be compared to the many hundreds of flow
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solutions required in the direct numerical optimization approach employing
alternative methods for obtaining the gradient.

e In order to limit the code development effort, the design code has been set
up modularly, consisting of an existing flow solver, an adjoint solver based
on the flow solver, a gradient evaluator, and existing optimization routine.

7.2 Optimization with the Laplace Equation

The Laplace equation describes an incompressible potential flow model. Because
drag is not represented in this model, it is most appropriate to formulate an
aerodynamic design problem as an inverse problem. This requires expertise in
prescribing a realizable target velocity (or pressure) distribution, related to the
question of the well-posedness of the inverse problem.

It is known that the velocity distribution over a closed contoured airfoil im-
mersed in an incompressible potential flow must satisfy three compatibility con-
ditions. For this purpose free parameters have been introduced in the target
velocity distribution. A prescribed (not realizable) target velocity distribution
is automatically modified in such a way that an airfoil geometry can be found
which corresponds to the modified distribution. Incorporating this idea into an
optimization methodology has resulted in a robust inverse code.

For a typical reconstruction type of inverse problem, the method requires
about 15-20 flow analyses before obtaining the optimal airfoil shape. This rela-
tively high computational cost can be reduced, e.g. by using a better represen-
tation of the airfoil geometry.

7.3 Optimization with the Euler Equations

The Euler equations describe an inviscid compressible flow model. As compress-
ibility effects like shock waves are represented, the Euler equations permit a direct
treatment of transonic (wave) drag reduction problems.

The method has been applied successfully to a number of transonic wave drag
reduction problems with geometric and aerodynamic constraints. This demon-
strated its capability of reducing the shock strength or, in certain cases, removing
the shock wave completely. Through grid refinement studies, it can concluded
that the drag reduction resulting from the optimization can be considered signif-
icant for practical situations.

7.4 Optimization with the Reynolds-Averaged
Navier-Stokes Equations

The Reynolds-averaged Navier-Stokes equations describe a viscous compressible
flow model. As compressibility and viscous effects are incorporated, the Navier-
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Stokes equations permit in principle a complete direct treatment of a wide class
of aerodynamic design problems.

The method has been applied to a number of transonic pressure drag reduction
problems with geometric and aerodynamic constraints. This has shown to be able
to produce airfoils with significantly lower drag values, where in certain cases the
shock waves are practically removed. For a good assessment of the resulting drag
reduction, the error level of the computed drag values should be known, e.g. by
grid refinement studies.

A significant problem identified during the investigation is the problem of
total drag reduction. It is not yet clear how the skin-friction term can have a
major effect on the optimization process.

7.5 Multi-point Aerodynamic Design

The present method treats a multi-point aerodynamic design problem as a multi-
objective optimization problem. The method has been applied successfully to a
two-point aerodynamic design problem with aerodynamic as well as geometric
constraints.

Two approaches for obtaining the solution have been investigated, namely:

(i) The method of sum of weighted objectives. An investigation has been
carried out for equal weight factors. The method is capable of reducing the
drag values for both design points simultaneously by strictly satisfying the
constraints.

(ii) The method of fuzzy optimization. This method has shown to be suitable
for resolving problems resulting from conflicting design criteria (in terms
of objectives and constraints). It has been demonstrated that allowing a
small violation of the (aerodynamic) constraints can lead to a significant
improvement in the final value of the objectives.

7.6 Recommendations for Future Research

In the test cases considered in the present investigation, the design space was
defined by 11 design variables. The sensitivity of the solutions to the number of
design variables has not been investigated. In the search for a better design, the
number of design variables should be increased in order to cover a larger design
space. In addition to that, different initial airfoil shapes should be tried in order
to investigate the sensitivity (if any) of the final result for the starting solution.

The multi-point design problems addressed in this thesis are two-point pres-
sure drag reduction problems of single-element airfoils at transonic flow condi-
tions. The design points have a different lift coefficient and Mach number. It
would be desirable to investigate the suitability of the method for multi-point
design problems involving other types of aerodynamic functionals, e.g. maxi-
mization of C; with the purpose of improving the buffet boundary of an airfoil,
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or minimization of Cy obtained from integration along the far-field boundaries.
Also, for a complete treatment of the multi-point design problem, it is desirable
to consider subsonic flow conditions.

The present methodology is not limited to two-dimensional single airfoil prob-
lems, but can be extended in order to deal with multi-component airfoils and
three-dimensional design problems. This would imply a drastic increase in the
number of design variables. Then, there might be a need for an optimization
routine dedicated to large-scale optimization problems.
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Appendix A

Matrices of the Right and Left
Eigenvectors of the Normal Flux
Jacobian

The right eigenvectors of the matrix C = A -7 can be obtained as

- p p -
1 £ =
0 2a 2a
4
U nyp 2—a—(u + nga) —%(u —nga)
X= p
v —ngp —2—(;(1) + nya) —%(U — nya)
v: o o va  pV? pa 72 pVE pa
.z A P A
| 2 pros T3 +4a +2('y—1) 2 da  2(y-1) |
where V2 = u? 4+ v%. The left eigenvectors is the inverse of the right eigenvectors,
that is
[ _(=DvE (v = 1)u (y—1v  1-=4]
2a? a? a? a?
V.5 —ng
3 ny n, 0
X = p p p
('y——l)Vz-—Qaf}-fi (1-7yju+tna (1—-7)w+na y—1
2pa pa pa pa
(1——7)V’—2a17-ﬁ (v—Du+na (y—lv+nae 1—v
L 2pa pa pa pa |

The definitions of the matrices X_, X, and X depend on whether an inflow or
an outflow occurs:
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o For subsonic inflow,

X13 X11 X12 X14 X12 X14

X23 X21 X22 X24 X22 X24
X_ = s X+ = N X_T_ =

X33 XBI X32 X34 X32 X34

X43 X41 X42 X44 X42 X44

Xu X2 X X4

X1 Xoo Xoa Xo4
X = . Xy =X =

Xz1 X3z Xas X34

Xa X Xz Xua




Appendix B

Far-Field Boundary Conditions
of the Adjoint Equations

For subsonic inflow, the boundary values of A are obtained as follows:

2 _ [ — 2 7.7 - 2 _ 9,V .7
N = 2a (272 nv R1~V 332_(7 1)V?—24V - R
a 2 2pa

R4a

1
yo= Ut gy
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A = TR -1" 2R,

a? PG

Similarly, for subsonic outflow,

(y—1)V%—2aV -7

M o= —
1 2pa R47
= -1
N = Mot =Du o
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N = nya+ (y — v R.,
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1
/\4 = _’Y Rg.
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In the above equations, R;, R, and R4 are computed from the characteristic
relations, such that

2
R, = )\Ql+u)\92+v/\g3+—2—/\94,

R, = p(ny/\ﬂz_nfr)‘ﬂg)'{_(pf/"g)AQy

P p p
R4 = —% /\Q1 — 2—;(11 — nxa) AQ2 - '27('0 - nya) )‘937
pV? pV -7 pa
ol e — 1 A
( da 5 t3n—Dn)

where Ag are obtained by extrapolating the values of A from inside the domain
towards the far-field boundaries.




Appendix C

Formulas Related to the
Correction of the Far-Field
Boundary Condition

In HITASK, the corrected free-stream velocity components are determined ac-
cording to

o Uoo + fsin b,

4
Il

VY = Ve — fcosb,

where  is the angle between the free stream direction and the line connecting
the far-field boundary point, (z,y), with the quarter chord point, (0.25,0.),

- 0.2
cosf = ? 5,
rO
sinf = 1/_,
TO

assuming a unit chord. The factor r, is defined as

r, = 1/(z — 0.25)% + y2.

_ CZVOOIB
T 4y (1 — M2 sin’(6 — @)’

The factor f is defined as

f

with 8 = /1 — M2,. The speed of sound is corrected according to

1
iy = Ha = 2 402,
where the enthalpy H, is defined as

Yo , 1, 2 2
Hy=-"—+~= .
7o et ok)
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From the above formulas, one can derive

Oouy, sin 0V, 8

AC  dmr,(1 — M2 sin(6 — a))’
oy, —cos OV, B

9C,  4mry(l — M2 sin?(d — @)’
Oay, =1 Vo pB(ul, sinf — v} cosf)
aC, — 2az dmr,(1 — M2 sin?(0 — o))’

so that the partial derivatives of the corrected Riemann invariants with respect
to C; can be obtained,

owy _  Ouy, . Ov
ac, ~ ™%Bc, " ™o
ow; ou, v, 2 Qaz,

a6~ ™ac, T™Mae T -1 o0

The matrix product (C'X7}) needed for evaluating C in is obtained as follows.
Distinction must be made between inflow or outflow:

e For subsonic inflow, (CX7}) is a matrix of dimension (4 x 2), of which the
elements are

(CXn = 0,

(CXPm = p(naV-3—v),

(CX)a = —pn,V -1,

(CXn = png(uV -§— oV i) + puv,
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e For subsonic outflow, (CX}) is a matrix of dimension (4 x 1), of which the
elements are

cx = ~AVE=9)

(CXL)n = _plu— nza2)‘(117 ita)

(CXL)s = ooV 7 "”avz'j’ a2v — "ya)),
(CXP)a _pagzy-ii;)a) _ Pvz‘z -7 4 pnﬁ(u;— v?)

+p(u2 + 3v? + dngnyuv)
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Appendix D

Variation of the Viscous Term

The variations considered here are due only to the variation Q. The assumptions
used are

o The variation of g with respect to the variation of Q is neglected.
o The viscous terms on the far-field boundary are dropped.

The viscous term is written as
szﬂ)\-(v'?.ﬁv)dn.
The variation of J due to Q' can be expressed as
w:/Q,\-(ﬁ-ﬁ;)dn.
Integration by parts yields
6J=-[Sa)\-(f;ﬁ)dS—/Qf;-\?AdQ. (D.1)

It is noted that the unit normal vector points toward the flow domain. Recalling
equation (5.7) and introducing 671, 672, 673, and 87} as follows,

60 = [ (ameriat myrl) 4 dslmerly + my 7)) dS, (D)
57, = / As (nz (Tagth + Toy0 + Toott + Toyv' — ¢7)
+ 1y (7,4 + Ty ¥+ Toyt’ + TV + q’z)> s, (D.3)
8,\2 6)\2 3)\3 BAS
. ' i ! e 12 _ 2 ! il
5T = /S;[Tm e + 75, By + 7., 5 + 7,y By dQ, (D.4)

OAy
8T, = fﬂ [(T;z“ + Tagtt + To,0 + Toyv' — q'x)gq—:—

o\
dy

! ! ' / '
F(Toyu + Toyu’ + T v + Ty — q;)

} de. (D.5)
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equation (D.1) can be written as
8T = ~601 — 6T — 6Ts — 6Ja. (D.6)
Now, the continuity equation is considered:
V- pV =0.

Taking the no-slip boundary condition on S, into account, the continuity equation

can be expressed as

6-17:8—%--——0 on S,
an

Substituting this into the definition for 754, 74y, and 7, of equation (5.8), (5.10),
and (5.9), gives the following relations

Tos = 2TNg Ny Tu, (D.7)

Tyy =2 Ng Ny T,y
2

Ty = (0~ nl)m,.

D.9)

SR

Firstly, the variation §J; can be worked out by substituting equations (D.7)-
(D.9) into (D.2), giving
5T = / (ny Az — ng Xo)7. dS

a

/S (X- 3’ ds, (D.10)

where X is an adjoint velocity vector with the Cartesian components A; and As:

T A2
A= (/\3> |
Secondly, the variation 6.7, is worked out by substituting the no-slip bound-

ary conditions (5.22)-(5.23), equations (5.20)—(5.21), and equations (D.7)~(D.9)
into (D.3) , giving

552=/S A (Tw(V"s‘)ﬂ}—fﬁe’-ﬁ) ds. (D.11)

Next, the variation of 675 is obtained as follows. Equations (5.8)-(5.9) are
substituted into equation (D.4) which yields

~ M ) e
87 = A[(%+E>J(V-V)

o' 8)\2 o’ 6)\3 6)\2 6)\3 o' o’
o 2222 U7 bR AACR B BTl
+#[ (&v oz T oy 8y)+(<9y i 5»@) (335 * 5y>” a“@-
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Rearranging the coefficients of p gives

§Js = fn [(%ZZ ‘?3) (v -7

(3/\2 ou' O 511,) + (3/\3 o' + @3_(9_1):)

Oz Oz ay Oy 0z 0x Oy Oy

(axzau a_A_s@_qi) (%@Jraxaav)]dﬂ
8z 0z Oz By dz 0z Oy By '

This can be written in a compact form as

§J5 = /Q [(vxw.vf)

(w V' + Vs - vu+‘aE Vu' +ZA 6')] das.

Using the following vector identities,

V-V V) = V-((V-X)V) = VUV X))V
[1/6/\2 Vi = V pu'ﬁx\z—u(v uVAs)
/Lﬁ)\g-@v' = v wv'Vag —v'(V - uVas),

M =, - 08 (s X
™ Vu =V ;Lu—az—u (V u%),
N - X - aX
vA - A By e
"oy Vv Mg v( ”ay)’

one obtains
= [@ U DT 4T e+ T s

,0X X
+V- ,uua—-i-V /wg—:l df

_/[( (- *>+<7.m2+v,¢§g)uf

AIV-X) & = = OX)
+(_‘aT+V PV + ,Lay)vJ . (D.12)

The terms having the divergence form, which are collected under the first integral,
are worked out using the Gauss theorem (with the integral over S, neglected):

-

Qﬁ-(l(v-x)v')dﬂ = -/ V- X)(V'-7)dS,
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/ﬂ Vo'V d0 = — /5 a @', -7 dS,

/n Vo'V dl = — /S NCAZILLY

/ﬂﬁ.uu'gédn = - Sa;tu%-fidé',

/ﬂﬁ-,w’g;dn = [ m g;\-ﬁdS.

The following notations are introduced!

Too = IV- A+2,u%)—\3 (D.13)
T, = IV. )\+2u% (D.14)
Toy = 1 (%\73 + %) . (D.15)

After some manipulations, equation (D.12) can be written as

8T = —/ ((z(v X +2p%i) (V- )

+u(%*—+%A~—H( g))(v'-s)) s

_/ [(arm arxy> vt (arw N 3ryy) U,] a0,
oz dy
where H is the surface curvature.
Next, the variation §J; (D.5) is worked out using equations (5.8)-(5.12). This

gives

vop (w0800 OVI0N tu o Ou) [ 0h D
F\“8z 8z " "By oy oz "oy ) \"ozr "%y
A ) A or
+( a“+mya4)u+(rmya +ryy3“)
Je’ 0Xy  Be’ OXy
+7Pr (ax e +%_3?)] L.

After some manipulations, one obtains

§7, = /Q [(V-v?mz(vv')

?These may be considered as elements of an adjoint stress tensor because of the close
resemblance with 7., 7oy, and 7yy.
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DUON | OUON) (000N 0V O
Ox ax dy Oy dz 0r Oy Oy

e a 3y ) ey "oz TV ay
A A A I
+( a"+ zya“) ’+(5ya“+fwa4>

e’ Ny Oe' Oy
ﬁ%%a*@wﬂm'

A compact form can be written as follows,

—

67 = [(17 AT - T
+puV g - Vi + poVig - Vo'
Ne s L.
+,LL?——4V V' + y%—/\iv - Vo'
Y

dz
o) e\ A )
+(sz‘a4+ zy84)“+(zya4+ yya4>
——— ’t
i (Ve vx4)] dn. (D.16)

The following vector identities are considered,

V-V -V = V-(U(V-VA)V) = V- TUV - V),

VIV = Ve opun'Vag— vV - guVAy),
Vg Vo' = V-poo'Vag— '0'(6’ . ,uvﬁ’/\‘;)
8/\4 =, 3 3)\4 e ~ 8>\4
(9/\4 - - 8/\4 8/\4
VoS = V. i s

ﬂ@y V-p 3y V'V (V ua 174

75;(66'-%4) = Pl(v pe' Vg — €(V - 4V ),

for obtaining

67, = [ [x‘7 LUV AN 4V - pu Vs + T - por' A

+V - u%’\“ UV 4+ V- -‘?8—41)'1/+—v ,ue'V)\4] Fie)

P
M, 00
+, [(T 2z Ty o

- =

V-V
WWV_.%J
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9z T "oy By
—V - uoV — V- #%A—"V)

+ (rzya'\“ +7 oM _ 0 —(IV - V)

-1 ;LV/\4)e] dn

Applying the Gauss theorem and the no-slip boundary condition for the first
integral, and introducing ¥, ¥,,, and ¥,, as
5)\4 0)\4

O, = (I+2 )ua—A—“Hu%ﬁ (D.18)
X
)Y
v, = u( By +va£) (D.19)
gives
5T, = —/ TEe(VAy - )e’ dS
Oh . 0N OV, 0L,
+/[(Tma oy T or ay)
. ., A
+(T’”a Yy T s T oy
-1 Nma] 4o (D.20)
Recalling that
p=(7—1)pe,

and the speed of sound

one may write

2/ S 1] '
Lo e = (LYY (P
Pr(V ;/,V/\4)e—-( (v—1)Pr p p)

Substituting this into {D.20) gives
6T = — yf’,i(w‘m - 7)e' dS

. / 8)\4 N VR:) PO P
()

V-4V (P 4
+ (—__(7_ TP ) (p p)] do. (D.21)
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Substitution of equations (D.10), (D.11), (D.16), and (D.21) into (D.6) yields

57 = —/Sa [(X- A+ A <Tw(17' .8) +«,F’%ﬁe'.ﬁ>
- (1(6&) +2#?:) (V- @)
_ <% + ‘?S" _HQ 5)) (7 3) = 7 (A ﬁ')e’] ds
(G e e+ B )
(arw N OTy, oW g | Oy OV, ) o

9z T oy ™oz oy | oz | oy
(V- uV) (p' p’)
[ EVeVA) Y (7 A g, D.22
( (y = 1)Pr p P (b-22)

The domain integral can be expressed in terms of the conservative flow variables
by using the transformation

U = YQ/';
where Y is the Jacobian of the primitive flow variables, U = (p u v p)T,
with respect to Q,

[ 1 0 0 0
Y = ﬁ g 1 . (D.23)
p
— 1) (u? +0?
(”——)—(;————) =D (=1 -1 |

The coefficients of U’ in equation (D.22) can be collected into a vector K defined
as
(V- uV\) 1
(v=1Pr »p
My | 0oy ; 2V , Oy N oV, 0V,
Oz Oy “oxr "oy oz Oy

K= ey Ol O O Oy OW, | (D-24)

dc T 9y Y8z "oy " oz | oy
a*(V - pVAg 1
C(y=DPr p
Finally, equation (D.22) is written as

= - 5. . LAV
57 = /S [(A 4 A (Tw(v 9+ 7L n)
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- An =
- (19 %+ 2u52) 77
YR VU Boay
(G e B0 9) (79 -] as
T WalY
+/ﬂy K-Q do. (D.25)




Appendix E

Adjoint Convective Fluxes

The inviscid adjoint fluxes follow from the product of ATA. The z-component of
the fluxes are obtained as

r _ 2 _ 2 2 -
<(_7_._1_)_V_ —_ u2> }\2 —'U/U>\3 + ((7 2)V _ a ) U,)\4
2 2 y—1

24,2 2
/\1—(7‘3)u/\2+v)\3+(3u 2+v +7a_1 —’7“2))\4

(1 — ’)’)U/\z + U/\g - (’}’ — 1)7,“.)/\4

L (v = 1Az + yuls ]

while the y-component is
r —1 V2 -2 2 2 b
—uvAg + -—————(7 ) —v? ) Az + =2V - VAy
2 2 v—1
vAg — (7 — Duds — (y — Duvky

2 32 2
/\1+u/\2——(7—3)v/\3+(u -; hd +7a_1 —'yvz)/\4

L (v = 1)As + vy
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Appendix F

Adjoint Viscous Fluxes

The z-component of the adjoint viscous fluxes can be derived by collecting the
terms under the operator 8/8z from the product of YK in Appendix D. This
gives

C 1 a’y (y=1V2 1\ oA\ T
o) + - (O ) O
1 a’pu 0Ny
7T WPt oo

7, = P p

1 a®pv Oy
~d,, — I
0 pPr Oz

L pPr Oz ]

where
bp = oo — Texha + ¥au
oy = Doy — Ty + sy
Oy, = Ty — Tyyra + Uy

The y-component is obtained as follows,

1 a*u ((7- Hv? 1) Oy ]
—~(udyy + v®,,) + s
1 alpu Oy
p Y pPr dy

Z, =

l a2/w B)\4
p " pPr dy

L pPr Oy ]

215



216 Adjoint Viscous Fluzes




Appendix G

Variations in Distributed
Parameter Systems

This appendix is based on Refs. [22] and [10], which should be consulted for the
detailed descriptions as these are not presented here. Figure G.1 shows a domain
Q which is mapped onto £, following a transformation 7'(x,¢) defined by ([22]):

T:x—x(x), X€Q,
such that

x, = T(x,1), (G.1)
Q, = T(,1). (G.2)

The mapping can be considered as a scheme for modifying the shape of the
boundary S to one of S; due to the deformation of {2 following a certain path in
time ¢. The parameter ¢ is thus conceived as taking the role of time with which
the notion of deformation velocity & at a point X; can be defined:

Blxy 1) = Bt OTO01)

dt ot (G-3)

Figure G.1: Transformation of Domain Q
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The Taylor series expansion for T' around ¢ = 0 can be written as

T(x,t) = T(x,0) + t%:;-(x, 0) + .,

which, after neglecting the higher order terms, becomes
T(x,t) = x + td(x,0). (G.4)
Substituting this into equation (G.1) yields
X = X + t d(x, 0).

Now, it is supposed that a vector variable @, which varies with time, controls the
deformation of the domain, such that at a time ¢:

Xy = xt(Gt).
If the change of @ per unit time is defined as 66, then
6, =6+166.

Combining the last three equations gives

5(X)=—g%'63, at t =0.

This can be expressed in the form of

where
Ox
x = =
Xy Oy
00
Thus, the Cartesian components of & are defined as
Wy = X, 00, (G.5)
wy = X, 66, (G.6)

while the normal and tangential components on the boundary S are determined
by

Wn = X80, (G.7)
ws = X, 08, (G.8)

)= 20 G)

where
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Tor a scalar field u defined in {2, the material derivative is defined as
u=u'+Vu-a. (G.9)

The material derivative 0 represents the total variation of u which consists of
the local variation u/, where Q is assumed fixed, and the convective variation
(6u -@) due to the deformation of £ with the speed &. Accordingly, the material
derivative of a function f of u defined in Q can be written as

f:%-(u’—kﬁu-nb’).

The material derivative also applies for geometric properties. Letting the Jaco-
bian matrix of the deformation velocity be J,

Ow; Ow,
dr Jy
J = = J(69)
Oy Oy
Joz Oy

the following material derivative formulas can be derived:

e The material derivative of a unit normal vector 7 on the boundary is defined
as

n=F-JT 7| -JT R,
which can be elaborated to yield
i = —(wns + Hw,)5, (G.10)

where H is the surface curvature, § is the unit tangential, and w, ; denotes
the tangential derivative of wy:

_ Ox,
wns = =5 0. (G.11)

¢ The material derivative of a unit tangential vector 5 on the boundary can
be obtained from equation (G.10):

i= ( Tty ) = (wne + Huw, ). (G.12)

—Tig
e The material derivative of a surface element ds is defined as
dS=(V -3 -7-J7-7)dS,

which can be worked out to give

dS = (ws, + Hw,) dS, (G.13)
where w; ; denotes the tangential derivative of w;:
wss = s 50, (G.14)

s
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e The material derivative of a volume:element df? is defined as
a0 = (V- 3)d. (G.15)

Applying these, the material derivative of a domain functional defined as an
integral of f over Q, i.e.

&, = / FdQ,
Q
can be obtained as

&,

fﬂf'dmrfgfdﬂ
/Q(f+f(6-a))dn

/ﬂ(f’+6f-¢3+f(ﬁ-5))d9
/(f’+ﬁ-f::)d:9,
Q

I

which, by the divergence theorem, becomes
&, = /ﬂ Fld0— ]S Fuwn dS. (G.16)
Also, the variation of a functional defined as an integral of f over S, i.e.
@ = [ fds
2 < f ’

can be written as ) . . .
<I>2=/de+/de’,
s s

which can be expanded as

bo= [[(£'+ 7@+ f(wns + Hen)) 45, (G.17)
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