
3mE - Transport Engineering & Logistics

July 15, 2017

ME2130 Research Project
Transport Engineering and Logistics
2017.TEL.8106

Strain gauge data analysis

Florian Hutten 4087585

Re
se

ar
ch

Re
po

rt

Delft University of
Technology

FACULTY OF MECHANICAL, MARITIME
AND MATERIALS ENGINEERING
Department of Marine and Transport Technology

Mekelweg 2
2628 CD Delft
the Netherlands
Phone +31 (0)15-2782889
Fax +31 (0)15-2781397
www.mtt.tudelft.nl

Student: F.M. Hutten Assignment type: Research/Computer
Supervisor: Dr. X. Jiang Report number: 2017.TEL.8106
Specialization: TEL Confidential: No
Creditpoints (EC): 15 Theme: 2

Subject: Development of data processing model for traffic specification of bridges.

A lot of bridges in the Netherlands were built in the 1970-1980’s and are suffering from fatigue

and fracture issues. Therefore, it is essential to accurately predict the fatigue lifetime of those

bridges in order to facilitate maintenance strategy planning and minimize the risk of

catastrophic consequences. Although FEM models of bridge structures are well –established

for application, the load cycles in FEM calculations is based on a generic assumed traffic pattern

for all bridges, and thus do not represent actual traffic properly, so FEM model based

calculation may not give an accurate prediction. To date, strain gauges have been widely

deployed to measure the actual traffic loads on the bridge, however, a data processing model

to retrieve useful information from abundant strain gauge data and transfer it into reliable

traffic statistics is not yet well-established .

This research assignment aims to develop such a model to convert available strain gauge data

of a bridge to a reliable output of traffic statistics. The development of such a model will make

it possible to predict the fatigue life of bridge structures in a better and realistic way.

The scope of the research includes:

1) Set up the correlation between stain gauge data and available vehicle types.

2) Gain knowledge on MATLAB filtering and signal processing

3) Write MATLAB program which can identify correlations between strain gauge

measurements and traffic specification

4) Validate the program using case studies.

This report should be arranged in such a way that all data is structurally presented in graphs,

tables, and lists with belonging descriptions and explanations in text. The report should comply

with the guidelines of the section. Details can be found on the website.

iii Delft University of TechnologyResearch Assignment

1 Summary
Fatigue crack propagation is a modern day problem for bridges which endure high traffic intensity.
Especially on lanes which are designated for heavy vehicles. Cracks have been observed in these
lanes years before such problems were expected to be happening. These observations have been
made in bridges with orthotropic steel decks. One such bridge is the ’Van Brienennoordbrug’ in
The Netherlands, which has already undergone heavy maintenance due to unanticipated fatigue
cracks. An array of strain gauge sensors were installed as to analyze the stress response to traffic.
An initial analysis of these sensors was carried out by P. Kallitsas[3]. The results showed that
analysis of certain parameters was possible, such as axle count, axle spacing and vehicle speed.
Other parameters were however, highly uncertain, such as vehicle position, wheel count and
vehicle weight calculation. These calculations were found to be time consuming and therefore
inefficient to be carried out by hand. So in order to make large scale analysis possible, an
algorithm would need to be designed which could analyze the data. This could enable the use
of large strain gauge data sets to be used in determining the impact of traffic on the bridge.
The supplied strain gauge data has quite some noise, therefore a low-pass filter was used to filter
out irrelevant data. The sensors were analyzed in two groups based on location on the bridge,
due to the fact that different locations of the sensors provided different reactions to traffic input.
The final step in tuning the data was normalization, so that different sensors could be properly
compared to each other. Inspection of the strain gauge data pointed to the fact that peaks in the
data, corresponded to vehicle axles crossing the sensor location. A peak detection algorithm with
set boundary conditions was used to find peaks which belonged to axle crossings. To consolidate
all the detected peaks, a handshake algorithm was used. It grouped peaks based on time-spacing
between peaks, whereafter it decides the final point in time where the peak is located. The
confirmed peaks are then again grouped based on which vehicle they belong to. This way an
axle count of each vehicle can be established, as well as the point in time when it first crossed the
sensors. With the point in time known for each vehicle, the speed of each vehicle is calculated
by using the registered peaks from the sensors along the longitudinal direction of the road. With
the individual speed of each vehicle known, the final calculation takes place to determine the axle
spacing in meters. With all this available information the trucks are then classified according to
the amount of axles and the spacing between them. A visualization of this gathered information
can be seen in figure 1.1.

0 5 10 15 20

Time [Hours]

0

5

10

15

20

25

30

35

40

45

50

T
ru

c
k
s
 p

e
r

5
 m

in

Class 3

Class 6

Class 7

Class 8

Class 9

Class 10

Class 11

Class 12

Figure 1.1: Visualization of general traffic statistics during 3 August 2015

iv Delft University of TechnologyResearch Assignment

In conclusion, the represented output by the algorithm shows promise in automatically analyzing
large strain gauge data quantities. The data seems to represent the reality of the traffic class
representation rather well. However this was not verified in the scope of this report. Therefore
it is recommended to evaluate the reliability of the extracted data. Also analysis of further
parameters is proposed, this could enable the use of the raw data to help understand the impact
of traffic on fatigue life.

v Delft University of TechnologyResearch Assignment

Table of Contents

1 Summary iii

2 Introduction 1
2.1 Research question . 1
2.2 Structure of report . 2

3 General information 3
3.1 Bridge construction . 3
3.2 Sensor setup . 4
3.3 Heavy vehicles . 5

4 Data inspection 6
4.1 Stiffener sensors . 8
4.2 Deck sensors . 9

5 Approach and strategy 10
5.1 Peak detection . 10
5.2 Vehicle identification . 12
5.3 Speed and axle identification . 14

6 Case Study 16
6.1 Vehicle type distribution . 16
6.2 Traffic intensity . 18

7 Discussion 21
7.1 Conclusion . 21
7.2 Recommendations . 22

Bibliography a

Appendix A Sensor layout b

Appendix B Peak detection c

Appendix C Speed estimation d

Appendix D Grouping peaks e

Appendix E Vehicle identification f

Appendix F Speed and axle spacing g

Appendix G Truck corrections h

Appendix H Raw data i

vi Delft University of TechnologyResearch Assignment

List of Tables

5.1 Vehicle speed with corresponding time-spacing 13
5.2 Example of trucks matrix . 15

A.1 Detailed sensor coordinates on the bridge . b

H.1 Raw data example from 3 August 2015 . i

vii Delft University of TechnologyResearch Assignment

List of Figures

1.1 Visualization of general traffic statistics during 3 August 2015 iii

3.1 Orthotropic steel deck example [1] . 3
3.2 Cross-section of the Van Brienennoordbrug . 3
3.3 Crack locations on OSD [1] . 4
3.4 Location of all the strain gauge sensors . 4
3.5 Classification for vehicle types [7] . 5

4.1 Overview of raw sensor data for sg4 . 6
4.2 Spectrogram for sg4 . 7
4.3 Comparison of filtered vs unfiltered data from sg4 7
4.4 All strain gauges at the same longitudinal line . 8
4.5 Filtered data for sg1, sg2, sg3, sg4, sg5 and sg6 8
4.6 Filtered and normalized data for sg1, sg2, sg3, sg4, sg5 and sg6 9
4.7 Filtered and normalized data for sg7, sg8, sg9, sg10, sg25 and sg31 9

5.1 MATLAB flowchart . 10
5.2 sg4 readings over 100 seconds . 10
5.3 Peak prominence [6] . 11
5.4 Finding peaks in the dataset . 11
5.5 Confirmed peaks plotted against sensor data . 12
5.6 Visualization of time-spacing between 2 vehicles 13
5.7 Visualization of time-spacing between 2 vehicles 14

6.1 Axle count for 3 August 2015 . 16
6.2 Axle count for 4 January 2016 . 17
6.3 Axle count for 3 August 2015 . 17
6.4 Axle count for 4 January 2016 . 18
6.5 Visualization of peak detection error . 18
6.6 Visualization general traffic statistics during 3 August 2015 19
6.7 Visualization general traffic statistics during 4 January 2016 19
6.8 Vehicle types per 5 minutes on

3 August 2015 . 20
6.9 Vehicle types per 5 minutes on

4 January 2016 . 20

1 Delft University of TechnologyResearch Assignment

2 Introduction
Reliably predicting infrastructure design lifetime is a hard and time intensive process. Such
predictions are made with complex FEM models with a high amount of detail. These models
require a large amount of information which is not always fully available, such as load cases and
Material-Material interactions across time and with different temperatures. This can result in
inaccurate predictions about the structural integrity over time and thus influence the safety and
durability of the structure.
To guarantee the safety of the structure, structural health monitoring is a crucial step to identify
weaknesses and plan for necessary maintenance intervention. The key to maintaining these large
and numerous infrastructure projects would be a process that is reliable enough to provide the
necessary data as well as be smart enough to handle multiple types of these structures. This
together should be able to conclude what the best maintenance strategy would be to increase
safety as well as lifetime of the infrastructure.
The reliability of infrastructure is important for several types of infrastructure, such as railroads,
bridges and tunnels. This project will be purely focused on bridges, to be more precise, the
’Van Brienenoordbrug’ in The Netherlands. This is a choice made based on available data from
TNO as well as a previous Thesis written by P. Kallitsas [3].The data made available by TNO
consists of strain gauge measurements over the course of roughly two years. They were installed
as a demo project for Rijkswaterstaat to investigate and improve decision making based on non-
destructive testing techniques. The Thesis by Kallitsas in an in depth look into what type of
information can be extracted from raw strain gauge data. He states that when analyzing strain
gauge data it is possible to extract information such as speed, location and possibly the weight
of large vehicles.

2.1 Research question

Valuable information can be extracted from the raw strain gauge data, such as axle count of
vehicles, speed of vehicles and the location of vehicles on the road. However this information is
extracted using manual calculations of several time intervals. This would be inefficient to apply
to the multiple years of data that is available. As such an approach needs to be found which
enables the processing of large sets of strain gauge data. This would then enable insight into the
possibilities that lie within raw data.

How can available bridge strain gauge data be automatically analyzed to identify
heavy vehicle traffic statistics.

To further the clarification of the main question, several sub-questions are proposed as a baseline
to approach answering the main question.

• what steps need to be taken to be able to automatically compare all different available
strain gauges?

• How can individual vehicles be identified from the dataset?

• What parameters can be reliably extracted from the dataset?

This analysis and automation will be done in the MATLAB, which is a numerical computing
environment. This is used with the implementation of the signal processing toolbox, as to better
analyze the large quantities of data.

2 Delft University of TechnologyResearch Assignment

2.2 Structure of report

The report will firstly discuss the background information, followed by the immediate observa-
tions which can be made from the available data. It will then continue to discuss the approach
on how to analyze the data. This is done by describing fragmented parts of the algorithm used
to find the relevant statistics. These statistics will then be visualized and discussed in the next
chapter in the form of a case study. The report will then finish with its final chapter, which
holds the conclusion, discussion and further recommendations.

3 Delft University of TechnologyResearch Assignment

3 General information
This chapter is dedicated to help interpret the available data. This will include the effects of
different types of traffic on bridges as well as information on how the bridge itself is constructed.

3.1 Bridge construction

To understand the different types of impact that traffic has on the bridge, it is important to
understand what type of bridge is being analyzed. The Van Brienennoordbrug is a bridge with
an Orthotropic steel deck (OSD), an example of such a structure can be found in figure 3.1.

Figure 3.1: Orthotropic steel deck example [1]

The Van Brienennoordbrug is a bridge located in Rotterdam across the Nieuwe Maas. The bridge
hosts room for 12 different lanes of traffic for the A16 highway. The bridge has a total length of
1320 meters, with the longest single span being 300 m. The bridge has a separate drawbridge
part, which spans around 60 m. Figure 3.2 shows the cross-section of the main deck of the
bridge. The traffic intensity across the bridge is one of the highest in the Netherlands. When the
bridge started to show signs of fatigue damage in the drawbridge, the whole drawbridge needed
to be replaced. This replacement was a highly cost intensive action, but had to be done because
appropriate targeted fatigue renovation techniques were not known.

Figure 3.2: Cross-section of the Van Brienennoordbrug

The reason for researching the effect of traffic on the structural integrity of the bridge, is because
multiple bridges have shown signs of fatigue damage before such damage was anticipated. With
the highest rate of occurrence being in the heavy vehicle lanes. The fact that these cracks started
to occur in the Van Brienennoordbrug after only 7 years of service is the most perplexing [5].
Thus the interest arose to specifically collect data on heavy vehicle lanes to help understand the

4 Delft University of TechnologyResearch Assignment

cause of these fatigue cracks. Figure 3.3 shows the locations on the deck where fatigue cracks
occur. They mostly occurred at the intersection with the crossbeam, which coincidentally is also
the most dangerous location regarding safety of the structure.

Figure 3.3: Crack locations on OSD [1]

3.2 Sensor setup

Based on all the information available a setup was chosen for the sensors that were to be imple-
mented in the bridge. They would have to be located in such a way that as much valuable data
as possible could be extracted. Figure 3.4 shows the complete layout of all implemented strain
gauges. The figure shows one lane in the middle of the bridge, which is the lane designated for
heavy vehicle traffic. The location of the sensors are centered around the area where the wheels
of the vehicles have contact with the asphalt, as to have the best readouts. Some sensors are
located directly underneath the deck of the road, while others are located at the bottomside
of the stiffeners below the deck. The detailed coordinates of all the sensors can be found in
Appendix A.

Figure 3.4: Location of all the strain gauge sensors

5 Delft University of TechnologyResearch Assignment

3.3 Heavy vehicles

For this research only heavy vehicles will be examined based on the available sensor data. This
was already pre-established because of the high amount of structural damage that was found
on especially the heavy vehicle lanes. The vehicles traversing this heavy vehicle lane can be
put into several classification as to identity different vehicle types. A classification of such a
kind can be found in figure 3.5. In this research class 1, 2 and 3 shall not be looked into to,
as mentioned before. Also vehicle class 4 will not be differentiated from class 6, due to the fact
that both vehicles types have the same footprint. The main vehicle types that can be found are
semi-trailers, buses and construction vehicles. The difference between most listed trucks is based
on whether they are one rigid construction or have a separate semi-trailer connected to a tractor
unit as well as the total amount of axles that support the vehicle and trailer.
The complete vehicle is logically carried by its axles. The wheels on the axles are logically the
only contact point between the load of the vehicle and the deck of the bridge. Therefore they
will determine the load distribution of the truck on the bridge. As can be seen in figure 3.5,
there is a high variance in axle configurations. It is therefore important to determine which type
of vehicles have a high occurrence, as to create a reliable traffic profile.

Figure 3.5: Classification for vehicle types [7]

6 Delft University of TechnologyResearch Assignment

4 Data inspection
Now that the scene has been set and the objective is known. It is important to learn and identify
how the different strain gauges react to traffic on the bridge. The strain gauges installed by TNO
have a sampling frequency of 1200 Hz and record data for all 24 hours during a day. The data
sets are split up into fragments of 5 minutes, as to make file size manageable. All sensor and
temperature data in these 5 minutes is written in single data files. Figure 4.1 shows an example
plot of a single unprocessed data set of a strain gauge over the course of 30 seconds. In this
case it is strain gauge 4, based on the overview in figure 3.4. From now on strain gauges will be
denoted as ’sg#’. The plot and all following plots are made using MATLAB.

5 10 15 20 25

Time [s]

-60

-40

-20

0

20

40

60

M
ic

ro
s
tr

a
in

 [
m

/m
]

Figure 4.1: Overview of raw sensor data for sg4

From the very first observation it can be seen that there is quite some noise in the data set.
The noise can be identified in figure 4.1 by looking at the data between the peaks. In an ideal
scenario one would expect this to be a straight line and not a waveform. To reliably analyze the
data it will first need to be filtered. To analyze the noise frequencies in the signal, spectrogram
plots were made for all the sensors. This way an optimal filter strategy can be formed. Such a
spectrogram plot can be found in figure 4.2, this is the spectrogram plot over 2.5 minutes from
sg4.
From this figure it can be deduced that all valuable data is present below the 100 Hz. An ideal
filter to remove the noise from the signal would be a low-pass filter. The cutoff frequency is then
established at 100 Hz to remove the amplified noise which can be seen in the spectrogram. In
figure 4.3 the result is shown of the filtered data compared to the original raw data as seen in
figure 4.1. An immediate difference can be seen in the reduced noise between the peaks. This
process is then repeated for all different sensors in the bridge.
Now that the data is filtered, it opens up the possibility to compare the data of different sensors.
To be able to do that, a baseline is needed on how certain sensors respond to input. It is expected
that not all sensors give the same type of readouts due to the fact that they are located on different
parts of the bridge structure (below the deck or below the stiffeners). Also, not all sensors are
located at the same longitudinal position on the bridge. Meaning that between some readouts a
time-shift is expected because of the distance between the sensors. Figure 4.4 shows a data plot
of all the sensors at the same longitudinal location on the bridge. Two major observations can
be made from this plot. First of all it can be seen that the data needs to be normalized, so that
all readouts will have a zero mean. Secondly there is a clear distinction between positive and
negative readouts. A further analysis reveals that sensors located at the bottom of the stiffeners
will give negative peaks, while strain gauges located at the deck will have positive peaks. This
can be explained by the fact that one type of sensor is under compression forces, while the other

7 Delft University of TechnologyResearch Assignment

0 100 200 300 400 500

Frequency (Hz)

0.5

1

1.5

2

2.5

T
im

e
 (

m
in

s
)

-80

-60

-40

-20

0

20

P
o

w
e

r/
fr

e
q

u
e

n
c
y
 (

d
B

/H
z
)

Figure 4.2: Spectrogram for sg4

5 10 15 20 25

Time [s]

-60

-40

-20

0

20

40

60

M
ic

ro
s
tr

a
in

 [
m

/m
]

sg4 unfiltered

sg4 filtered

Figure 4.3: Comparison of filtered vs unfiltered data from sg4

is under tension. Now that it has been established that there is a separation between the type
of readouts that the sensors give, the decision is made to process the sensors separately as well.

8 Delft University of TechnologyResearch Assignment

3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Time [s]

-80

-60

-40

-20

0

20

40

M
ic

ro
s
tr

a
in

 [
m

/m
]

sg1

sg2

sg3

sg4

sg5

sg6

sg7

sg8

sg9

sg10

sg25

sg31

Figure 4.4: All strain gauges at the same longitudinal line

4.1 Stiffener sensors

For this comparison we will be looking into sensors: sg1, sg2, sg3, sg4, sg5 and sg6. The reason
these sensors are in this selection is because they are all located at the bottom of the stiffeners
of steel deck, as well as on the same longitudinal location. The plot of all the sensor readouts
can be found in figure 4.5.

Figure 4.5: Filtered data for sg1, sg2, sg3, sg4, sg5 and sg6

As mentioned before, the high peaks show overlap between the different sensors. Though it
can be observed that the sensor data is not normalized with a zero mean. So in order to fairly
compare the different sensors, the data was normalized using formula 4.1. Where x is the mean
of the signal over 5 minutes. Figure 4.6 shows the the data of the same sensors, but then with
normalized values. With the normalization and filtering done, it is now possible to compare the
data and try and analyse what data is relevant and what is not.

x = x−x (4.1)

9 Delft University of TechnologyResearch Assignment

Figure 4.6: Filtered and normalized data for sg1, sg2, sg3, sg4, sg5 and sg6

4.2 Deck sensors

The sensors located at the deck of the bridge are: sg7, sg8, sg9, sg10, sg25 and sg31, as can
be seen in figure 4.4. The data for these sensors also needs to be normalized. This is again
done using formula 4.1. The results of all these filtered sensors can be seen in 4.7. Comparing
this figure to figure 4.6, confirms that it was a good idea to separate the two types of sensors
locations. It can be clearly seen that these sensors have a very high positive readout, as well
as a noticeable negative readout. This should be taken into account with the creation of the
algorithm, as to avoid misinterpreting data due to the generalization of all sensors.

Figure 4.7: Filtered and normalized data for sg7, sg8, sg9, sg10, sg25 and sg31

10 Delft University of TechnologyResearch Assignment

5 Approach and strategy
With the filtered and normalized data, an approach can be formulated. It is important to
determine what type of relevant information can be extracted from the raw data. At a first
glance it can be observed that the peaks represent traffic crossing the sensors. This chapter will
discuss the chosen relevant data to be extracted, as well as the techniques used to achieve them.
As this research is dedicated to set up a baseline which can be used for further analysis, the choice
was made to try and extract the most fundamental information. This includes the identification
of vehicles, discerning what type of vehicles they are, the speed of the vehicles as well as their
axle count with the spacing in between the axles. Figure 5.2 shows a segment of sensor data,
the figure shows a distinction between light and heavy vehicles. This is important because this
research focuses on heavy vehicles as mentioned in Chapter 2. Which makes these readouts very
suitable for this analysis.
Before any analysis can be carried out by the program, it first needs to be initialized, thereafter
the analysis of the files is possible. Figure 5.1 shows a schematic overview of the structure of the
MATLAB program.

Figure 5.1: MATLAB flowchart

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-150

-100

-50

0

50

100

M
ic

ro
s
tr

a
in

 [
m

/m
]

sg4

Heavy traffic

light traffic

Figure 5.2: sg4 readings over 100 seconds

5.1 Peak detection

The first step in extracting relevant information from the data is identifying the individual peaks
from the heavy vehicles. These individual peaks represent the load peaks from the crossing of

11 Delft University of TechnologyResearch Assignment

axles of the vehicles. However what can already be seen in figure 4.4, is that the sensors are
highly sensitive to location. Meaning it is not guaranteed that a sensor will read a peak when a
vehicle crosses its path. It is therefore imperative to collect peak data from as much sensors as
possible to form a reliable conclusion. The code used to execute this task is found in Appendix
B.
As can be seen in the code, certain boundary conditions are applied to find the peaks. The
first condition is the minimum peak height, this represents the minimum microstrain required to
be accepted as a peak. This term is introduced to exclude all the small vehicle traffic, such as
cars and small vans. These type of vehicles are not to be included in this research. The second
condition is the minimum peak prominence, the peaks prominence is best displayed using figure
5.3.

Figure 5.3: Peak prominence [6]

The figure shows the peak prominence of each
peak using colored areas. The prominence is
determined by horizontal lines from the peak
top until it intersects with another line or the
end of the graph. Then find the minimum on
each side of the peak, then the prominence
is defined as the height from this minimum
to the peak height. This condition is used to
identify how unique a peak is given its sur-
rounding peaks. This prevents the program
from identifying multiple peaks within a short
span due to vibration. However the constraint
cannot be set too tight, as that would cause
problems with triple axle setups. Such a triple
axle setup will have three rather similar peaks
which should all be identified. The third con-
straint used in the ’findpeaks’ formula is the
minimum peak distance. This constraints ensures that two following peaks should be at least
some seconds apart, again this is to prevent the identification of multiple peaks where only one
is relevant. The output of the algorithm in Appendix B contains several data points, these are
the height, location and prominence of the found peaks. These data points are then stored in
cell structures with the variable name corresponding to the sensor number. Figure 5.4 shows a
visualization of the found peaks of the six sensors on the stiffeners. The found peaks are visu-
alized by the stars in the graph. As can be seen only three sensors show relevant data in this
case.

3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5

Time [s]

-100

-80

-60

-40

-20

0

20

M
ir
c
o

s
tr

a
in

 [
m

/m
]

sg1

sg2

sg3

sg4

sg5

sg6

Figure 5.4: Finding peaks in the dataset

12 Delft University of TechnologyResearch Assignment

Several peaks have now been found, however this is not the type of result that is directly useful.
The information that is wanted is just the time point of the axles crossing the sensors. Though
as can be seen in figure 5.4, not all maxima are located at the same point in time. This could be
the result of how the deck reacts to loads. The elastic deformation of material at the location of
the sensors is not always equally timed due to sensor location or because of misaligned sensors
on the bridge. So it is expected that the first peak in a series is closest to the load location and
point in time, whereas lagging peaks are expected to belong to sensors that were further away
from the peak load.
Therefore a consensus has to take place in order to determine the timing of the peak. This is
also a useful tool to eliminate false-positives, by requiring that several different sensors detect a
peak at a certain point in time. The grouping of found peaks can be achieved by creating small
search intervals with a width of ∆T . This search interval needs to be dynamic, as slow moving
traffic could result in a larger variance between the locations of the peaks. Therefore an estimate
needs to be made on the speed of the traffic as to determine these search intervals. Appendix C
shows the code used to determine the average vehicle speed over 5 minutes.
With the vehicle speed known, the search interval can be used to group the peaks from different
sensors. For this search interval it is estimated that the minimum axle spacing is at least 1 meter
[2]. With the use of formula 5.1 the interval is calculated.

∆T = 1
speed

(5.1)

Using this dynamically adjusting interval, it is possible to group the detected peaks from different
sensors together. This is done using the code Appendix D. It sorts all the peak data from the
different sensors in one matrix. It then follows a loop which detects how many peaks fall into
the established ∆T interval. It then takes the most prominent peak from the set and saves that
as a confirmed peak. If only one sensor detects a peak within the interval, the peak is ignored.
This action was taken after inspection, because it was seen that all peaks with only one sensor
confirmation were not relevant and were assumed to be measuring errors.
After the execution of this code, one matrix remains with confirmed peaks. This matrix contains
the location, height and the amount of peaks grouped together. Figure 5.5 shows the final result
of code to find the peaks, the data of the six sensors is plotted against the confirmed peaks.

3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

Time [s]

-100

-80

-60

-40

-20

0

20

M
ic

ro
s
tr

a
in

 [
m

/m
]

sg1

sg2

sg3

sg4

sg5

sg6

Peaks

Figure 5.5: Confirmed peaks plotted against sensor data

5.2 Vehicle identification

The next step in the analysis is to identify the individual vehicles in the data. With the aforemen-
tioned peak detection, individual peaks are known, however it is not known which peaks belong

13 Delft University of TechnologyResearch Assignment

to which vehicle. Therefore an algorithm needs to be made that groups certain peaks together
which are deemed to belong to one vehicle. The best way to identify where a vehicle ends and
where another starts would be to analyze the time difference between the peaks. There is a road
law in The Netherlands which states that vehicles should always have 2 seconds of time-spacing
between vehicles. However this would be a very optimistic minimum time-spacing, because not
everybody abides by this law. Therefore a lower time-spacing would need to be determined. Such
a minimum can be made using the maximum axle spacing used in vehicles, with the knowledge
of the speed of the vehicle the time-spacing could be determined. The maximum axle spacing
allowed is assumed as 12 meters based on data from the RDW [8]. Then the time-spacing for 12
meters with different speeds is calculated and a trade-off is made with the law citing 2 seconds.
The time-spacings are not equal to the 12 meter timing to prevent measuring errors or speed
variations from impacting the results. A summarized reference of values can be found in table
5.1. The table is used as a baseline, which is then interpolated in the code. This is done as
to create a higher density of data points, to increase the accuracy of chosen time-spacing. It
was chosen that higher speeds would allow for smaller time-spacing between vehicles. This is
due to the fact that 12 meters is covered faster at higher speeds. Therefore the accuracy can be
increased by allowing for smaller time-spacings between vehicles. The reverse is true for vehicles
at lower speeds.

Table 5.1: Vehicle speed with corresponding time-spacing

Speed [km/h] 0 20 40 60 80 100 120 140 160
Time-spacing [s] 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8

Figure 5.6 visualizes what the program needs to find. It should detect which axle is the last axle
of a vehicle.

33 34 35 36 37 38

Time [s]

-140

-120

-100

-80

-60

-40

-20

0

20

M
ic

ro
s
tr

a
in

m

/m

sg1

sg2

sg3

sg4

sg5

sg6

Peaks

Time spacing between 2 vehicles

Figure 5.6: Visualization of time-spacing between 2 vehicles

To identify the vehicles, the code from algorithm E is used. It calculates the difference time-
spacings between peaks and interprets whether the peaks belong to the same vehicle or not.
It then saves the data in a cell structure with the name ’trucks’. The matrices within the cell
contain the axle count per vehicle as well as the time the first axle crossed the sensor. This is
done as to identify ’where’ the vehicle is located within the data. This can then be used to more
accurately determine the speed per vehicle instead of the speed over the whole of 5 minutes.
This can also be used to log what type of vehicle is traveling at what time during the day or
even season. It is therefore important to log when a vehicles passes the sensors. This cell will
later be used to store additional information.

14 Delft University of TechnologyResearch Assignment

5.3 Speed and axle identification

With the added knowledge of when a vehicle passes the sensor, it is now possible to determine the
speed of every single vehicle passing the sensors. In order to get accurate results for the speed of
each vehicles, multiple sensors need to be used. In figure 3.4 all the available sensors can be seen.
After inspecting all sensors, it was determined that not all sensors contained enough relevant
data. A lot of sensors were not able to detect peaks which were detected by other sensors.
Therefore the choice was made to use a select group of sensors which showed high responsiveness
to loads of vehicles. These sensors were sg27, sg28 and sg29.
Figure 5.7 shows a plot of a limited time-slot for sg2 as well as the above mentioned sensors. It
can be clearly seen that there is a time-shift between the different sensors. In order to calculate
the speed, the time-shift between the sensors needs to be determined. With the knowledge of
the different distances between the sensors it would then be possible to determine the speed.
With the previous code all peaks are already confirmed for all the sensors which share the lateral
location of sg2. With the additional knowledge where the first peak for each vehicle resides, it is
possible to scan the other sensors for peaks which happen before the first peak of each vehicle.
With the knowledge that we know a peak should reside within a certain time frame, a relaxation
of the formula to find peaks is used for sg27, sg28 and sg29. Which allows for a smaller minimum
peak height as well as a lower minimum peak prominence. This ensures that there is a lower
chance that a peak is missed while it should have been found.

93.8 93.9 94 94.1 94.2 94.3 94.4 94.5

Time [s]

-100

-80

-60

-40

-20

0

20

40

M
ic

ro
s
tr

a
in

m

/m

sg2

sg27

sg28

sg29

Figure 5.7: Visualization of time-spacing between 2 vehicles

The code for calculating the speed per vehicle can be found in Appendix F. The first action is to
subtract the vector with locations of the peaks from the location of the first peak of a truck in
the form of a scalar. The results is a vector containing the time-spacing between a truck and all
the peaks from sensors 27, 28 or 29. It then checks whether the vector contains positive values, if
so it takes the smallest positive value as the time-spacing between the two relevant peaks. Then
the distance between the sensors is divided by the time-spacing to calculate the speed. This is
done for all three sensors. It could happen that a necessary peak is not found, which results in a
very low speed due to the fact that then a peak would be detected which is farther away. When
this occurs it is filtered out by checking if the value is smaller then half the highest speed. The
highest speed is used as a reference point because that has the highest probability of being the
correct speed. This is the case because higher speeds are the cause of a close proximity of peaks,
which means two peaks are probably a pair. While low speeds indicate a higher time-spacing
which can be the result of a closer peak not being detected. The remaining speed results are
then averaged and stored in the matrix ’trucks’, which contains all relevant information about
each truck.

15 Delft University of TechnologyResearch Assignment

The second part of the code in Appendix F, contains the code to calculate the axle spacing of
each truck. It looks up the first peak of each truck in the vector which contains the validated
peaks. Then with the use of the axle count, it finds the other peaks belonging to the vehicle.
The time-spacing between each peak is then multiplied by the speed to find the axle-spacing in
meters. The axle spacing is then stored in the ’trucks’ matrix, an example of this matrix can be
found in table 5.2.

Table 5.2: Example of trucks matrix

Axle count [-] First peak location [s] Speed [m/s] Axle spacing [m]
Axle 1-2 Axle 2-3 Axle 3-4 Axle 4-5

3 4.10 27.46 7.65 1.46 0 0
2 14.21 36.62 4.40 0 0 0
4 32.72 23.26 3.57 7.10 1.24 0
5 36.84 23.28 2.68 1.51 7.35 1.90
2 44.24 25.11 6.79 0 0 0

After analysis of the output data provided by the combination of the above mentioned code. It
can be found that sometimes errors are made regarding the grouping of multiple vehicles. This
can happen because of the lenient time-gap that is accepted as the spacing between vehicles.
However, now that a good estimate can be made about the inter-axle spacing, it is possible to
separate vehicles due to inter-axle spacing which is too high. Appendix G shows the code used
to achieve this. It first finds all axle spacing’s in the trucks matrix which are higher then 12
meters, then the location of this axle in the matrix is stored. It detects whether a whole new
truck drives after this gap, or whether it is a single standalone peak. When a standalone peak
is detected, the unrealistic data is removed. If more peaks are present after the large gap, a
new row is formed to state the information about the new trucks. All necessary data is found
(speed,location,axle count) and stored in this new row. An exception is made to check whether
multiple exceeding values are found in a single row.

16 Delft University of TechnologyResearch Assignment

6 Case Study
This chapter will show a visualization of the data extracted using the algorithm to analyze the
sensor data. The results will be based on all the data from 3 August 2015 and 4 January 2016.
An explanation will be given about the data using visualizations in the form of bar charts and
graphs. An example of the used raw data can be found in Appendix H. The appendix shows the
first 0.014 seconds of the data for the first few sensors on 3 August 2015.

6.1 Vehicle type distribution

Different types of vehicles cross the bridge during the day. This can first of all be defined by
counting the axles. This gives an initial overview of which type of vehicles cross the bridge.
Figure 6.1 and figure 6.2 show an overview of the axle count of the vehicles during a single day.
Of course 2 axle vehicles are not over-represented due to the fact that smaller vehicles are not
registered, unless they have a significant load on board.

Figure 6.1: Axle count for 3 August 2015

17 Delft University of TechnologyResearch Assignment

Figure 6.2: Axle count for 4 January 2016

The second way to describe what type of vehicles cross the bridge, is by using the class distribution
shown in figure 3.5. A small algorithm places every single truck into a category according to its
attributes, based on axle count and axle spacing. The result of this can be found in figure 6.3
and figure 6.4. It can be easily seen that the most prominent truck is in class 8, which represents
the four or less axle single-trailer. The close runner-up would be class 3 and 9, these are the four
tire single unit and the 5-axle tractor semi-trailer respectively. Class 3 consist mostly of heavy
van’s, buses and campers. Class 9 consists of the somewhat larger trucks. The high amount
of class 12 vehicles was not expected, and is way higher then would be deemed logical. One
would expect a downward trend regarding the size of the vehicles, not upward. After inspection
it was seen that some class 12 vehicles were classified that way because of faulty peak detection.
The algorithm would detect peaks which are notably smaller then the peaks which supposedly
represent the axles.

Figure 6.3: Axle count for 3 August 2015

Figure 6.5 shown a visualization of the error that sometimes occurs. One can see that visually it
is highly unlikely that the second detected peak belongs to an axle. This reasoning is based on
the fact that the peak is only a fraction of the height compared to the other surrounding peaks.
The reason that the peak is still detected is because it has a height that marginally transcends
the minimum peak height constraint. The problem with such errors, is that they are hard to
detect. In this case study the data was only visually inspected, which is time consuming and not

18 Delft University of TechnologyResearch Assignment

Figure 6.4: Axle count for 4 January 2016

suitable for detecting error trends. The result of this error is that a certain percentage of vehicles
is placed in a different category of vehicles which it does not belong to. After inspection of the
busiest 5 minutes of a day, it appeared that 7 occurrences of misinterpreted peaks occurred out
of the 172 registered peaks which belonged to 41 trucks. In this inspection it was noticed that
errors were occurring mostly during highly volatile strain measurements of suspected larger or
heavier vehicles. As a solution one could propose to increase the constraints for peak detection.
This could however cause relevant peaks to not be detected, one could also include a constraint
that a detected peak cannot be a significant amount lower then the other peaks.

246 246.1 246.2 246.3 246.4 246.5 246.6 246.7 246.8 246.9 247

Time [s]

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

M
ic

ro
s
tr

a
in

 [
m

/m
]

sg1

sg2

sg3

sg4

sg5

sg6

Peaks

Figure 6.5: Visualization of peak detection error

6.2 Traffic intensity

Next to specific classification of vehicles, general statistics about heavy vehicles can also be
plotted. Figure 6.6 shows an overview of all heavy traffic during 3 August. It consists of small
bars which display the vehicle count during 5 minutes. As expected there is a small amount of
traffic during the night hours, while traffic really picks up from around 6 o’clock. An interesting
thing to note is that during rush hour around 8 o’clock there is a small dip in heavy traffic. This
might be the transport sector trying to avoid driving in rush hour. Figure 6.7 shows another

19 Delft University of TechnologyResearch Assignment

example of such a bar chart, but now with the data from 4 January. One can see a somewhat
lower traffic intensity on the 4th of January, this could be due to the fact that there were weather
alarms during this period of time because of frosted roads [4]. There is also a moment where
supposedly no heavy vehicles passed in the middle of the day. After inspection it was seen that
the data was probably corrupted in this time-frame, possibly due to the freezing temperature
outside.

0 5 10 15 20

Time [Hours]

0

5

10

15

20

25

30

35

40

T
ru

c
k
s
 p

e
r

5
 m

in

Figure 6.6: Visualization general traffic statistics during 3 August 2015

0 5 10 15 20

Time [Hours]

0

5

10

15

20

25

30

35

40

45

50

T
ru

c
k
s
 p

e
r

5
 m

in

Figure 6.7: Visualization general traffic statistics during 4 January 2016

When combining the visualization of the previous histogram and bar chart, we can create an
overview of which types of vehicle types traverse the bridge at which point in the day. This is
shown in figure 6.8 and figure 6.9. They show the same chart from figure 6.6 and figure 6.7, but
then colored with the different type of vehicles.

20 Delft University of TechnologyResearch Assignment

0
5

1
0

1
5

2
0

T
im

e
 [H

o
u

rs
]

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Trucks per 5 min

C
la

s
s
 3

C
la

s
s
 6

C
la

s
s
 7

C
la

s
s
 8

C
la

s
s
 9

C
la

s
s
 1

0

C
la

s
s
 1

1

C
la

s
s
 1

2

Figure 6.8: Vehicle types per 5 minutes on
3 August 2015

0
5

1
0

1
5

2
0

T
im

e
 [H

o
u

rs
]

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Trucks per 5 min

C
la

s
s
 3

C
la

s
s
 6

C
la

s
s
 7

C
la

s
s
 8

C
la

s
s
 9

C
la

s
s
 1

0

C
la

s
s
 1

1

C
la

s
s
 1

2

Figure 6.9: Vehicle types per 5 minutes on
4 January 2016

21 Delft University of TechnologyResearch Assignment

7 Discussion
This report analyzes the possibilities regarding the automation of interpretation of strain gauge
sensor data. This is done in the context of a bridge with a orthotropic steel deck, namely the
’Van Brienennoordbrug’. The reason to collect all the strain gauge data was pre-established by
Rijkswaterstaat and TNO. A research report was already written as to explore the possibilities
of the data. The research proposed several ways to manually extract useful data from the
raw dataset. This report builds on that existing knowledge to enable the automation of the
strain gauge data analysis. This was seen as a possibility to make a first step to further research
regarding the use of raw data for top level maintenance decision making. This research was based
on the premise that the data could be automatically analyzed using the software MATLAB. An
algorithm was formulated that imported, organized, analyzed and presented the data. The final
result of this algorithm, is a matrix which contains all calculated parameters for each truck that
crossed the bridge in a selected day. The visualization was presented in the report in the form
of a case study. In this case study two days were selected and analyzed to test the algorithm.
Traffic statistics from these days were presented in the form of bar charts and histograms.
The information gathered during this research accumulates to the fact that there are possibilities
in automating the interpretation of strain gauge sensor data. During this research it was found
that there was a high degree of variance in the data which was to be interpreted. This resulted
in a lot of iterations of the code, as to reach a version of the program that could handle this high
degree of variance. However it is to be noted that some unanticipated errors are still present in
the results. Most of these unanticipated errors are the result of the static boundary conditions
that are used to find peaks within the data. Some of them are resolved by the processing of the
peaks, for example by requiring more than one sensor to detect a peak before excepting it as
valid. However, this is not a foolproof way of preventing irrelevant peaks from being accepted
as relevant data.
A large uncertainty factor remains in the output data, due to the fact that none of the output data
could be verified. Therefore it is unknown whether the program interprets the raw data correctly.
This is the case for example, with the interpretation of the peaks in data. The prominent peaks
are assumed to be the result of wheels crossing the location of the sensors. Logic dictates that it
is highly probable that this is true, however the results were not verified. Also some time-spacing
was observed between the measuring of peaks from different sensors on the same longitudinal
location. This could be the result of the sensors not being perfectly aligned. Both these issues
require local inspection in order to investigate the reliability of the model.

7.1 Conclusion

The steps needed to compare the different strain gauges were found to be diverse. First, all data
was filtered with a low-pass filter, whereafter all data needed to be normalized with a zero mean.
Then based on the location of the sensors, the data was separated and processed separately due
to different responses to the same input. After the analysis, the data was combined with a virtual
handshake to confirm what data was accepted as relevant.
Using the law set by the government as well as vehicle size regulations, a baseline was identified
which could track vehicle spacing based on the speed of the traffic. Several exceptions were
introduced to the algorithm that could correct possible misinterpreted vehicle separations. This
was necessary because the maximum axle spacing is quite close to the minimum vehicle spacing.
Which could result in the merger of two vehicles within the program, interpreting the spacing
between two vehicles as the space between two axles.
The parameters that were automatically extracted from the complete dataset were:

• Identification of individual vehicle timing

• Speed per vehicle

22 Delft University of TechnologyResearch Assignment

• Axle count per vehicle

• Axle spacing per vehicle

• Classification of vehicles

All the above mentioned parameters are also tracked in time, which means that the location
of each type of detected vehicle can be traced back to the second when it crossed the sensors
on the bridge. With the successful extraction of the above-mentioned parameters, it has been
shown that the automation of vehicle statistic gathering from raw strain gauge data, is possible.
Opening up the possibility to further the research of using raw strain gauge data in a maintenance
decision making context.

7.2 Recommendations

A very first recommendation would be to start a verification process which could check whether
the extracted results closely resemble reality. This could for example be done with the use of
visual inspection from camera’s which are present at the bridge. Then it could be established
what the error rate of the program is, and what the cause of these errors are.
It would also be meaningful to look into the reaction of the strain gauges to temperature. Severe
temperature changes could effect the data which could result in misinterpretation by the algo-
rithm. An example would be a lower peak altitude due to lower temperature, which could lead
to missing relevant peaks.
Another factor which has not yet been looked into, is very low speed of vehicles due to for
example a traffic jam. Although the algorithm contains several parts which adjust for varying
speeds, it has not been tested in very slow speed traffic.
Another step which could be taken is the addition of extra output parameters. These could
include; location of the vehicle on the road, wheel count and estimated vehicle weight. The
calculation of these parameters was already explored by Kallitsas, but contained high variance
and uncertainty.
An additional action which could be taken to increase the accuracy of the program, would be to
include extra sensors. Most importantly extra sensors on the lateral location where only three
sensors exist currently. This could help increase the accuracy of the speed calculation of the
vehicles.
A final recommendation would be to further investigate the remaining noise within the data. It
can be seen that there are higher frequency signals still present after filtering. This is probably
a dynamic response due to moving vehicles across the bridge. It might even be possible to use
this to extract even more valuable data.

a Delft University of TechnologyResearch Assignment

Bibliography
[1] Foppe Bouk Peter de JONG. Renovation techniques for fatigue cracked orthotropic steel

bridge decks. PhD thesis, The school of the thesis, 2007.

[2] Road Safety Authority Ireland. Guidelines on maximum weights and dimensions of mechan-
ically propelled vehicles and trailers, including manoeuvrability criteria. 2015.

[3] Panagiotis Kallitsas. Fatigue loads identification on orthotropic steel decks learning from
strain measurements in practice. Master’s thesis, TU Delft, 2016.

[4] KNMI. Ijzel begin januari 2016. 2016.

[5] Dooren van F. & Kolstein M. H. Maljaars, J. Fatigue assessment for deck plates in orthotropic
bridge decks. Steel Construction - Design and Research, 5(2):93–100, 2012.

[6] Mathworks. findpeaks: Find local maxima, 2017. https://nl.mathworks.com/help/signal/ref/findpeaks.html.

[7] U.S. Department of Transportation. Traffic monitoring guide. 2016.

[8] Dienst Wegverkeer. Overzicht maten en gewichten in nederland. 2012.

b Delft University of TechnologyResearch Assignment

A Sensor layout

Table A.1: Detailed sensor coordinates on the bridge

sensor x [mm] y [mm] z [mm]
sg1 -4508 -1200 -331
sg2 -4508 -1800 -331
sg3 -4508 -2400 -331
sg4 -4508 -3600 -331
sg5 -4508 -4200 -331
sg6 -4508 -4800 -331
sg7 -4508 -1383 -6
sg8 -4508 -1617 -6
sg9 -4508 -1983 -6
sg10 -4508 -2217 -6
sg11 -1800 -1500 -6
sg12 -1800 -1383 -6
sg13 -1800 -1617 -6
sg14 -1800 -1800 -331
sg15 -1800 -1983 -6
sg16 -1800 -2217 -6
sg17 -1800 -2100 -6
sg18 -560 -1500 -6
sg19 -560 -1800 -331
sg20 -560 -1617 -6
sg21 -560 -1500 -6
sg22 -560 -1983 -6
sg23 -560 -2217 -6
sg24 -560 -2100 -6
sg25 -4508 -1500 -6
sg26 -3025 -1500 -6
sg27 -3775 -1800 -331
sg28 -3025 -1800 -331
sg29 -2225 -1800 -331
sg30 -1375 -1800 -331
sg31 -4508 -2100 -6
sg32 -3025 -2100 -6

c Delft University of TechnologyResearch Assignment

B Peak detection

Algorithm B.1: MATLAB code to find peaks
1 %eF is a cell that contains all filtered normalized sensor signals.
2 %Findpeaks is executed to find and store all peaks with certain boundary

conditions.
3 for i = 1:length(eF{j}(1,:))
4 [height{i},locs{i},~,p{i}] = findpeaks(−eF{j}(:,i),t{j},'minpeakheight',25,'

MinPeakProminence',10,'MinPeakDistance',0.05);
5 end

d Delft University of TechnologyResearch Assignment

C Speed estimation

Algorithm C.1: MATLAB code to estimate speed over 5 minutes
1 %determine estimated speed over 5 minutes
2 tmp_peak = (sensor2{j}(:,2) > 80).*sensor2{j}; %detect most prevalent peaks
3 tmp_peak(~any(tmp_peak,2),:) = []; %remove empty rows
4 tmp_peak2 = (sensor27{j}(:,2) > 80).*sensor27{j};
5 tmp_peak2(~any(tmp_peak2,2),:) = [];
6 if isempty(tmp_peak) || isempty(tmp_peak2)
7 %if no high peak is detected, assume speed as 80 km/h
8 speed(j) = 80/3.6;
9 else
10 %detect which peaks belong to each other, then calculate what the
11 %time between them is.
12 inter = tmp_peak(:,1) − tmp_peak2(:,1)';
13 %negative values are not relevant
14 inter(inter<0) = inf;
15 %find closest positive peak pairs
16 for i=1:length(inter(1,:))
17 inter2(i) = min(inter(:,i));
18 end
19 inter = inter2;
20 inter(inter==0) = [];
21 %convert time between peaks to m/s with distance between sensors
22 inter(1,:) = 0.734./inter(1,:);
23 speed(j) = sum(inter)/length(inter); %take average of speed over 5 mins
24 end

e Delft University of TechnologyResearch Assignment

D Grouping peaks

Algorithm D.1: MATLAB code group peaks
1 %merge all the sensor data in one matrix, sort this matrix based on
2 %time of located peak.
3 merged = vertcat([sensor1{j}],[sensor2{j}],[sensor3{j}],[sensor4{j}],[sensor5{j

}],[sensor6{j}],[sensor25{j}],[sensor31{j}],[sensor7{j}],[sensor8{j}],[sensor9
{j}],[sensor10{j}]);

4 sorted = sortrows(merged);
5
6 peaks = 1;
7 i = 1;
8 while i < length(sorted(:,1))
9 %find all rows after row i that fall within the interval 1/speed,
10 [row,~] = find(sorted(:,1) >= sorted(i,1) & sorted(:,1) <= (sorted(i,1) + 1/

speed(j)));
11 overlapping_peaks = length(row);
12 if overlapping_peaks == 1
13 i = i + overlapping_peaks; %if only 1 sensor detects a peak, ignore it
14 continue
15 end
16 %merge all detected peaks into the most prominent peak and store
17 %that in a confirmed peak matrix
18 [confirmed_peaks(peaks,2), indx] = max(sorted(i:(i+overlapping_peaks−1),2));
19 confirmed_peaks(peaks,1) = sorted(i+indx−1,1);
20 confirmed_peaks(peaks,3) = overlapping_peaks;
21
22 %If after initially confirming the peaks there is difference
23 %between 2 peaks of less then 1/speed, merge the peaks.
24 if peaks > 1
25 if (confirmed_peaks(peaks,1) − confirmed_peaks(peaks − 1,1)) < 1/speed(j)
26 if (confirmed_peaks(peaks,1) − confirmed_peaks(peaks − 1,1)) < 0
27 peaks = peaks − 1;
28 else
29 confirmed_peaks(peaks − 1,:) = confirmed_peaks(peaks,:);
30 confirmed_peaks(peaks,:) = [];
31 peaks = peaks −1;
32 end
33 end
34 end
35 peaks = peaks + 1;
36 i = i + overlapping_peaks;
37 end
38 %check if any confirmed peaks are found, if so store them in cell array
39 if exist('confirmed_peaks')
40 validated_peaks{j} = confirmed_peaks;
41 else
42 validated_peaks{j} = [];
43 end

f Delft University of TechnologyResearch Assignment

E Vehicle identification

Algorithm E.1: MATLAB code for identifying vehicles
1 counter = 0;
2 axle = 0;
3 %determine which peaks belong to which vehicle
4 if isempty(validated_peaks{j})
5 %there are no trucks in this timeslot
6 else
7 if length(validated_peaks{j}(:,1)) > 1
8 for k = 2:length(validated_peaks{j}(:,1))
9 temp = validated_peaks{j}(k,1) − validated_peaks{j}(k−1,1);
10 %compare time between peaks with allowed time between
11 %vq is the abovementioned table
12 if (temp > vq(round(3.6*speed(j)))) || (k == length(validated_peaks{j

}(:,1)))
13 counter = counter + 1;
14 trucks{j}(counter,2) = validated_peaks{j}(k−axle,1);
15 if k == length(validated_peaks{j}(:,1))
16 %Take the last iteration into account in each dataset
17 if axle == 0
18 axle = axle + 2;
19 trucks{j}(counter,2) = validated_peaks{j}(k+1−axle,1);
20 else
21 axle = axle + 1;
22 end
23 end
24 trucks{j}(counter,1) = axle;
25 axle = 1;
26 else
27 axle = axle + 1;
28 end
29 end
30 end
31 end

g Delft University of TechnologyResearch Assignment

F Speed and axle spacing

Algorithm F.1: MATLAB code for calculating speed and axle spacing
1 for i=1:length(trucks{j}(:,1))
2 if trucks{j}(i,1) > 1
3 temp = trucks{j}(i,2) − sensor27{j}(:,1);
4 temp1 = trucks{j}(i,2) − sensor28{j}(:,1);
5 temp2 = trucks{j}(i,2) − sensor29{j}(:,1);
6 if all(temp <= 0) == 1
7 %velocity(1) = [];
8 else
9 velocity(1) = 0.734./min(temp(temp > 0));
10 end
11 if all(temp1 <= 0) == 1
12 %velocity(2) = [];
13 else
14 velocity(2) = 1.484./min(temp1(temp1 > 0));
15 end
16 if all(temp2 <= 0) == 1
17 else
18 velocity(3) = 2.284./min(temp2(temp2 > 0));
19 end
20 if exist('velocity')
21 velocity = velocity(velocity > max(velocity)/2); %filter out wrong

peak correlations
22 trucks{j}(i,3) = mean(velocity);
23 else
24 trucks{j}(i,3) = 0;
25 end
26
27 clear temp temp1 temp2
28 temp = zeros(1,trucks{j}(i,1));
29 %find all peaks that belong to each truck
30 [loca, locb] = ismember(trucks{j}(i,2),validated_peaks{j});
31 for k=0:(trucks{j}(i,1)−1)
32 temp(1,k+1) = validated_peaks{j}(locb+k,1);
33 end
34
35 %calculate the distance between each axle and store them
36 for k=1:(length(temp)−1)
37 trucks{j}(i,3+k) = (temp(k+1)−temp(k))*trucks{j}(i,3);
38 end
39
40 end
41 end

h Delft University of TechnologyResearch Assignment

G Truck corrections

Algorithm G.1: MATLAB code for splitting wrongfully merged axles
1 [row, col] = find(trucks{j}(:,4:end)>10);
2 if not(isempty(col))
3 col = col + 3;
4 temp = horzcat(row,col);
5 temp = sortrows(temp,−1);
6 row = temp(:,1);
7 col = temp(:,2);
8 for k = 1:length(row)
9 if trucks{j}(row(k),col(k)) == trucks{j}(row(k),3−1+trucks{j}(row(k),1))
10 %no new vehicle, just 1 separate peak
11 trucks{j}(row(k),col(k)) = 0;
12 trucks{j}(row(k),1) = trucks{j}(row(k),1) − 1;
13 else
14 trucks{j} = [trucks{j}(1:row(k),:);zeros(1,length(trucks{j}(i,:)));

trucks{j}(row(k)+1:end,:)];
15 trucks{j}(row(k)+1,4:3+length(trucks{j}(row(k),col(k)+1:end))) =

trucks{j}(row(k),col(k)+1:end);
16 trucks{j}(row(k)+1,1) = (3+trucks{j}(row(k),1)−1) − col(k) + 1; %axle

count new vehicle
17 trucks{j}(row(k),1) = (col(k)−4+1); %correct first vehicle axle

count
18 trucks{j}(row(k),col(k):end) = 0; %remove axles from first

vehicles
19 trucks{j}(row(k)+1,3) = trucks{j}(row(k),3); %set speed new vehicle
20 [loca, locb] = ismember(trucks{j}(row(k),2),validated_peaks{j});
21 trucks{j}(row(k)+1,2) = validated_peaks{j}(locb+col(k)−3,1); %find

where vehicle starts in time
22 if k < length(row)
23 if row(k) == row(k+1)
24 %if 2 errors in one row, search again in new matrix
25 row(k+1) = row(k+1) + 1;
26 col(k+1) = col(k+1) − col(k) + 3;
27 end
28 end
29 end
30 end
31 end

i Delft University of TechnologyResearch Assignment

H Raw data

Table H.1: Raw data example from 3 August 2015
T
im

e
1

-
default
sam

ple
rate

C
H
=
1

tem
p

C
H
=
10

hum
idity

C
H
=
11

T
1

w
egdek

C
H
=
12

T
2

brugdek
C
H
=
13

strain1
C
H
=
20

strain2
C
H
=
21

strain3
C
H
=
22

strain4
C
H
=
23

strain5
C
H
=
24

0
26.07

63.61
19.38

19.94
10.06

13.36
18.26

25.54
28.33

0.00083
26.07

63.61
19.38

19.94
9.843

13.28
18.07

23.24
26.44

0.00167
26.07

63.61
19.38

19.94
8.538

10.97
16.78

23.24
25.62

0.00250
26.07

63.61
19.38

19.94
9.120

10.82
16.40

22.96
26.49

0.00333
26.07

63.61
19.38

19.94
9.277

13.48
17.59

22.15
26.08

0.00417
26.07

63.61
19.38

19.94
5.629

8.774
14.08

20.77
24.12

0.00500
26.07

63.61
19.38

19.94
8.223

9.725
15.94

22.86
25.96

0.00583
26.07

63.61
19.38

19.94
7.233

10.79
15.60

21.57
25.56

0.00667
26.07

63.61
19.38

19.94
7.476

10.97
16.95

22.98
25.64

0.00750
26.07

63.61
19.38

19.94
7.162

9.017
15.12

21.45
25.31

0.00833
26.07

63.61
19.38

19.94
6.069

9.033
14.48

20.49
22.71

0.00917
26.07

63.61
19.38

19.94
7.469

8.373
13.36

19.95
24.28

0.01000
26.07

63.61
19.38

19.94
3.947

9.332
15.05

19.76
24.48

0.01083
26.07

63.61
19.38

19.94
7.052

8.255
14.27

22.00
23.48

0.01167
26.07

63.61
19.39

19.94
7.052

9.851
16.33

21.45
26.20

0.01250
26.07

63.61
19.39

19.94
7.343

9.222
14.65

22.33
24.61

0.01333
26.07

63.61
19.39

19.94
5.464

11.53
15.35

21.31
25.23

0.01417
26.07

63.61
19.39

19.94
10.74

9.458
18.06

24.03
26.65

	Summary
	Introduction
	Research question
	Structure of report

	General information
	Bridge construction
	Sensor setup
	Heavy vehicles

	Data inspection
	Stiffener sensors
	Deck sensors

	Approach and strategy
	Peak detection
	Vehicle identification
	Speed and axle identification

	Case Study
	Vehicle type distribution
	Traffic intensity

	Discussion
	Conclusion
	Recommendations

	Bibliography
	Appendix Sensor layout
	Appendix Peak detection
	Appendix Speed estimation
	Appendix Grouping peaks
	Appendix Vehicle identification
	Appendix Speed and axle spacing
	Appendix Truck corrections
	Appendix Raw data

