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Abstract

The scientific analysis of historical paintings has been traditionally restricted
to the analysis of paint cross-section samples. This invasive method provides
extensive information but is inherently limited in scope due to the extreme
heterogeneity of paintings. In the last decade, non-invasive spot analyses
and spectral imaging methods have become increasingly widespread in cul-
tural heritage science. Two of these methods are macroscopic X-ray fluores-
cence imaging spectroscopy (MA-XRF) and reflectance imaging spectroscopy
(RIS). These methods allow for 2D-scanning the entire surface of a painting
and provide complementary information on elemental and molecular compo-
sition and distribution of the paint. However, these methods are often used
only for qualitative analysis of the paint based on relative distribution maps,
revealing only limited information about the paint layer stratigraphy. This
thesis is an exploration of a combined approach for quantitative analysis of
paint composition and layer stratigraphy using MA-XRF and RIS.

The research used a set of specially prepared paint samples of mixtures
and multiple layer applications based on historically relevant pigments which
were scanned using MA-XRF and RIS in the visible and Near IR range (400-
2500 nm). The spectral data acquired were processed and analyzed in a vari-
ety of ways, including Non-negative Matrix Factorization, Non-Linear Least
Square Fitting, among other methods; in an attempt to gather quantitative
compositional and stratigraphic data.

In these trials, using characteristic reflectance features in the visible range
together with a comparison of highly and lightly absorbed X-ray fluorescence
lines allowed for the identification and quantification of surface specific com-
pounds related to the top paint layer. Further comparison of fluorescence
lines and absorption features in the Near IR range provided a potential av-
enue for quantification of subsurface paint layers. The results confirm that
the combination of these methods allows to reveal the paint stratigraphy.
The project provides samples and data sets which may serve as the basis for
the development of a robust algorithm to address this issue in the future.
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Chapter 1

Introduction

1.1 What is a painting?

Paintings are complex things. As pictorial recordings they use symbolism,
composition, color and other means to represent ideas, places, people, crea-
tures, objects and events, real and imaginary alike. As cultural heritage ob-
jects they represent socio-cultural forces which help shape our understand-
ing of history.1 However, the complexity of paintings is not limited to the
aesthetic nor the cultural. As physical objects, paintings tend to be com-
plicated structures comprised of many different paints using many different
pigments with different chemical composition and different physical proper-
ties combined in different ratios, all distributed heterogeneously throughout
the surface and arranged in different layers applied in different orders and
of different thicknesses.2 This latter type of physical complexity is what this
thesis is focused on.

To address this complexity, it is important to first define the terminology
used to describe the structure of a painting. What follows is a summary of the
structure of a painting based on the description of Taft and Mayer.2 Figure
1.1 shows a cross sectional view of the structure of an average painting. First
comes the support, which is the structural component on which the paint is
applied. Painters have used a wide variety of supports throughout the ages,
ranging from the more conventional wooden panels, canvases, and walls, all
the way to turtle shells3 and ivory panels.4 The type of support used is one of
the main characteristics used to classify paintings.5 The type of support also
greatly affects the structure of a painting and how it can be analyzed. The
most common supports are the aforementioned wooden panels and canvases,
which are the most common examples of what are known as easel paintings,
which are the focus of this research.

1
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Figure 1.1: Cross-sectional view of the average structure of an easel painting.6

A wooden panel or a canvas are usually not very good to paint directly
onto, hence a sizing layer is applied. The main purpose of this sizing layer is to
prevent the absorption of subsequent ground or paint layers into the support,
which would both weaken the painting and possibly have undesirable effects
on the support. After the sizing, one or more ground layers are applied, which
further protects the support, but most importantly provides a layer even in
both color and topography upon which the painting can be made. The kind
of ground used varies significantly depending on the artist, the geographical
location and the support used.2

It is after the ground that the painting really starts to take shape. The
artist would often prepare an underdrawing or painted sketch, as an initial
description of the composition. What this sketch is made with depends on
the kind of ground used. After the sketch was finished, all the different paint
layers would be applied. Paint in its most simple form is a mixture of a
pigment, which provides the color, and a binder, which joins the pigments
together and to the support. At this point there is another major character-
istic which is used to differentiate paintings, which is the type of binder used.
From the 15th to the early 20th century, linseed oil was the most prominently
used binder and is, therefore, the focus of this research.2

The way paint layers are distributed is inherently heterogeneous and is,
ultimately, what defines the artwork. Paint can be applied in single thin
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layers or in stacks of layers of differing thicknesses and opacities, depending on
what the artist wishes to show. There can also be overpaint layers applied by
later owners or conservators attempting to modify or conserve the painting.
On top of the paint layers there can be a thin semi-transparent layer, referred
to as a glaze, used to modify the appearance of an underlying paint layer
without completely covering it. After all paint and glaze layers are finished,
a clear varnish layer is often applied throughout the whole painting. This
varnish both protects the paint layers, saturates the colors and gives the
painting a uniformly glossy finish.2

1.2 Scientific Analysis of Paintings

This very heterogeneous structure makes the analysis of paintings an ex-
tremely complicated task. Historically, the study of paint layer stratigraphy
would be done by taking small cross-section samples.7 Figure 1.2 shows such
a cross-section sample. Cross-section sampling is useful and can provide
unparalleled insight into the stratigraphy and composition of paint layers.
However, this method has significant drawbacks. Firstly, the information
provided by such a sample is extremely localized at the micro-scale to where
the sample was taken from. But most importantly, the method is invasive
and thus cannot be done in large quantities without affecting the painting.
Generally, this method provides invaluable information for conservators and
researchers and leaves only microscopic damage, and thus is still a very com-
monly used method.

But as non-invasive spot analyses and imaging spectroscopy techniques
have advanced and become more versatile, there has been strides at applying
these non-invasive methods to the analysis of easel paintings.8 Although these
methods have become more common, they have not replaced cross-section
sampling. Instead, they have helped identify areas of interest to take samples
from, increasing the usefulness of any sample taken.9 A description of some of
these methods will be covered in chapter 2, but an important thing to point
out is that these methods tend to provide different kinds of information
and are, therefore, complementary techniques which can and are used in
conjunction. However, when these methods are used in conjunction, the level
of interaction between them tends to be limited to qualitative analysis based
on processed data, as is exemplified by the recent analysis conducted on the
pigment distribution of Johannes Vermeer’s Girl with a Pearl Earring.10
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Figure 1.2: Example of a paint cross-section sample. a-c are different paint
layers and d is the ground. Thanks to Dr. Victor Gonzalez from the
Rijksmuseum for providing the image.

1.3 Research Goals

The goal of this thesis is to experimentally evaluate the viability of using a
combined data analysis approach to gather semi-quantitative information on
the stratigraphy and composition of paint layers using two of the most well
developed techniques, macroscopic X-Ray fluorescence imaging spectroscopy
(MA-XRF) and reflectance imaging spectroscopy (RIS). These methods are
described in more detail in chapter 3, but in short, MA-XRF and RIS are
surface scanning techniques which provide elemental and molecular informa-
tion, respectively. The main challenge for quantitative analysis using these
techniques is that the resulting data are 2D-projections of a 3D object. For
painting analysis, this means that the contribution of each of the different
layers cannot be easily distinguished. This research looks for possible meth-
ods of quantifying the layer contributions based on two important factors,
layer composition and layer stratigraphy. As the contributions of these fac-
tors are expected to be rather complex, they were studied seperately using
specially prepared layered paint systems and paint mixture samples. These
samples were scanned using MA-XRF and RIS, and several quantification
approaches were tested using the acquired measurement data.
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This research followed roughly 5 stages and this text is therefore divided
into that many chapters, plus an introduction and a conclusion. Chapter
2 is an overview of the most prevalent methods for non-destructive analysis
of paintings, including their fundamental concepts and how they are useful
for analysis. Chapter 3 is an in-depth description of the MA-XRF and RIS
methods used in this research, describing the equipment used, the data they
output and how it is normally processed. Chapter 4 is a description of the ex-
periments used for this research and the reason these experiments were used.
It describes the the preparation and scanning of the test samples. Chapter 5
focuses on the different attempts to produce semi-quantitative results from
the acquired data. Chapter 6 provides a review of the acquired results and
discusses the practical applicability of the developed data processing meth-
ods.
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Chapter 2

Methods for Non-invasive
Painting Analysis

Throughout the last century, art historians, conservators and scientists have
applied many newly developed analytical techniques to the study of paint-
ings. A thorough review of the most significant imaging methods used in the
analysis of paintings has been conducted by Alfeld and Broekaert.6 This chap-
ter provides a summary of a selection of non-invasive methods for paintinig
analysis which can provide information on layer stratigraphy and composi-
tion. These methods can roughly be divided into three main groups: tradi-
tional methods, spot analysis methods and spectral imaging methods. All
the methods discussed here use electromagnetic radiation but differ in which
part of the spectrum is used and what kind of interaction is recorded. Fig-
ure 2.1 provides a summary of the spectral ranges and the methods used in
each. These methods also differ in their measurement geometries and their
dimensionality, the different kinds of which are detailed in Figure 2.2.

2.1 Traditional Methods

X-ray radiography (XRR) is the oldest and most widely used painting anal-
ysis technique.6 It is a transmission measurement based on the absorption of
X-rays by the painting. An X-ray source emits the radiation onto the paint-
ing and a sensor or film records how much of the radiation manages to get
through. Since the X-ray absorption of a paint layer depends on not only its
composition but also its thickness, it is not possible to differentiate between
a thin layer of a more absorbing element and a thick layer of a less absorb-
ing element. This means XRR does not give quantitative data on the paint
composition or layer thickness, but it can give some qualitative information

7
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Figure 2.1: The range of the electromagnetic spectrum used for cultural
heritage science and where the discussed methods fall within it.

on what pigments may be present and how they are distributed. This can
be used to identify hidden paint layers and areas of restoration. Given its
transmission geometry, the support of the painting contributes to the mea-
surement and thus the measurement can provide useful information about
the support.11 If this contribution is not desired, there are variations of the
method, such as strati-radiography and stereo-radiography, which reduce the
influence of the support on the measurement.6

Nowadays, advancements in sensors and data processing have provided
new applications for XRR which can provide other kind of information. Com-
paring XRR images acquired at different energies can be used to provide
information not only on the number of photons transmitted through the
sample, but also their energy. An example of this is a method known as
dichromography, where two images acquired at different energies, generally
above and below the absorption edge of a certain electron shell of a specific
element, are compared to one another to understand the distribution of the
element.12 The resulting measurement is usually an elemental distribution
map, useful for identifying pigments and studying their distribution. How-
ever, the elements visible with this method depend strongly on the sample.
The prevalence of lead white in historical paintings makes the analysis of
lighter elements impossible due to the strong X-ray absorption of Pb.12 This
method is only one of a larger group known as energy resolved radiography
(ERR).

By capturing a number of XRR images whilst rotating the object, it is
possible to create a virtual 3D reconstruction of said object. This method
is known as computed tomography (CT). However, CT normally does not
work well with planar objects due to the low transmission of X-rays along
the object plane. To avoid this issue, a variation of this method called com-
puted laminography (CL), which rotates the sample around an axis which
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Figure 2.2: a)Different measurement dimensionalities, ranging from 1D
depth profiles to full 3D data sets. b)Different measurement geometries
and data acquisition procedures. Some analyitcal methods are restricted to
a specific geometry and data acquisition procedure, whilst others can be used
in multiple configurations.6

is not orthogonal to the beam direction, is used for the study of planar ob-
jects.13 The resulting 3D measurement can provide valuable insight into the
paint layer stratigraphy and stability problems.14 However, the measurement
has practical limitations as to the size of the objects studied and was until
recently limited to synchrotron sources.13
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Beyond XRR there are other methods which are used. Electron emission
radiography (EER) is a reflective measurement method based on the emis-
sion of photoelectrons by surface paint layers when they are energetically
excited.15 The method uses a high energy X-Ray source to excite the surface
elements, with a filter to absorb the lower energy part of the spectrum. The
recording film is placed directly on the surface of the painting and is of a
material that does not react to the high energy X-rays but does darken in
reaction to the emitted photoelectrons. Since electrons are readily absorbed
by paint layers, most of the electrons that react with the film are emitted
from the surface paint layers. This allows the study of surface paint lay-
ers without considering the effects of underlying paint layers or the support.
This method allows for the analysis paintings done on highly X-ray absorbing
supports like copper plates, which is not possible with XRR.16 The result-
ing measurements are similar to XRR, in that they provide only qualitative
information on possible pigment distribution.

Infrared photography (IR-photography) is a method similar to analogue
photography, but which uses a film sensitive to radiation in the infrared re-
gion (specifically 700-900 nm) rather than radiation in the visible region.
This method can often provide insight into previous restorations, as paint
mixtures made to match the colour of the painting often have different re-
flectance in IR.6 Nowadays, IR-photography has been mostly replaced by its
digital analogue, infrared reflectography (IRR), which expanded its spectral
ranges, first further into the near-IR (NIR, 900-1100 nm) and later into the
shortwave IR (SWIR, 1000-2400 nm), which offers the best results for anal-
ysis of underdrawings, as most paints tend to have high transparency in this
range whilst the carbon-based black pigments often used for underdrawings
are highly absorbing.17

UV-induced fluorescence photography (UVIFL) is another widespread an-
alytical method applied to the study of paintings. It is based on the visible
fluorescence emitted by certain materials when exposed to UV light.18 This
method allows for the study of materials which exhibit UV fluorescence, such
as varnishes and certain kinds of paints.19 This method is useful for deter-
mining areas of restoration and studying any present varnish layers which
are invisible for the other described methods.20

2.2 Spot Analysis Methods
The development of non-invasive spot analyses allowed to perform actual
chemical analysis on a painting without having to take cross-section samples.
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X-ray fluorescence spectroscopy (XRF) is the spot analysis most relevant for
this research. It is based on the emission of characteristic X-Rays when the
sample is exposed to an X-ray beam. These emissions can be measured and
used to identify the elements present.21 There is a variant of this method,
called confocal X-ray fluorescence spectroscopy (CXRF), which allows for
depth discrimination during the measurement.22 The measurement provides
insight into paint layer stratigraphy and elemental composition. However,
CXRF measurements normally take very long (about 1 hour per point),23

which restricts its practical applications.

XRF is not the only X-ray based spot analysis method. X-ray diffrac-
tion (XRD) is a measurement method based on the diffraction of incoming
X-Rays due to the crystal structure of the sample. The resulting diffrac-
tion patterns are unique to specific crystals and can be used to identify
pigments.24 Traditionally, XRD was restricted to the analysis of small sam-
ples using non-mobile diffractometers, but now portable varaints (p-XRD)
are available. The measurement can be done in transmission or reflection
geometry, but most portable equipment use a reflection geometry.25 This
method is restricted to the analysis of crystalline materials, and is therefore
not suitable for all pigments.

Beyond X-rays, other sections of the electromagnetic spectrum are also
used. The Near-UV, visible and Near-IR ranges are used in Raman spec-
troscopy. This is a method based on the Raman (inelastic) scattering of
photons by the sample. The measurement uses a laser with a wavelength
which is not absorbed by the sample to study its vibrational modes. These
vibrational modes can function as molecular markers for different pigments
and binders.26 The most common issue encountered when using this method
is sample fluorescence, which can block any of the actual Raman signal.
There are variations such as subtracted shifted Raman spectroscopy (SSRS)
and Fourier-transform Raman (FT-Raman) which can account for this.26

Fiber Optics Reflectance Spectroscopy (FORS) measures the reflectance
spectra of a sample across a specific spectral range, which can go anywhere
from Ultraviolet (UV) to Mid Infrared (MIR). The resulting spectra can
be used to identify molecules based on characteristic absorption features.27

Fourier-transform infrared spectroscopy (FTIR) is a similar concept, but uses
a different acquisition method for the spectra. It gets it name from the
fact that a Fourier-transform is necessary to interpret the acquired data.28

The most significant challenge for these methods is the presence of both
specular and diffuse reflection in the resulting spectra. The features used
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for characterisation come from the diffuse reflection, but strong specular
reflection can overshadow them.28

Terahertz (THz) spectroscopy is an umbrella term used to refer to a few
methods based on the THz range of the electromagnetic spectrum (0.03-3
mm).29 In the context of cultural heritage, the most common of these methods
is THz Time Domain Spectroscopy (THz-TDS).30 THz measurements can
be used for pigment identification, study of paint layer stratigraphy and
detection of defects.31

2.3 Spectral Imaging Methods
Spectral Imaging methods are based on forming an image in which every
pixel has a full measurement spectrum. This image provides information not
only on what elements and molecules are present, but also their distribution
across the scanned surface. This allows for the identification of pigments,
changes in composition and areas of restoration.32,33,34 The nature of this
spectrum varies from method to method. Several of these methods are ba-
sically just applications of the previously discussed spot analysis methods in
scanning geometries. Macroscopic X-ray fluorescence imaging spectroscopy
(MAXRF),35 macroscopic X-ray powder diffraction (MA-XRPD)36 and THz
Imaging30 are examples of this for XRF, XRD and THz spectroscopy, respec-
tively. Other methods are unique for imaging applications.

Reflectance imaging spectroscopy (RIS)(sometimes referred to as hyper-
spectral imaging) consists of recording a full reflectance spectrum for every
pixel in the acquired image. These spectra are similar to those acquired
in FORS and FTIR, and include similar molecular information. However,
RIS is a classification based on the resulting data, not a specific acquisi-
tion method. The acquisition of the spectra can be done using FTIR and
FORS in scanning geometry,37 but it can also be done using specific spec-
trometers commonly referd to as hyperspectral cameras.38 This method is
one of the more recent additions to paintings analysis, having been originally
developed for remote sensing in geological applications,39 and has therefore
only recently become more widespread. The resulting measurements contain
molecular information on the pigments present and their distribution. De-
pending on the spectral range covered in the measurement, the scans can
also be used to identify changes in composition and restorations, as well as
to analyze underdrawings.

A uniquely imaging method is optical coherence tomography (OCT),
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which is a method based on the interference between electromagnetic waves.
The most common configuration for this is based on a Michelson interferom-
eter, where a single incoming beam is separated into a reference beam and
a sample beam. The sample beam is reflected off the sample and then re-
combined with the reference beam, resulting in an interference signal.40 The
measurement results in a digital cross-section, where the interfaces between
layers are visible. Several cross sections can then combined to form a 3D
tomogram,41 which includes information into the thickness and opacity of
layers throughout the scanned surface. Given the low transparency of paint
layers, this method is most often used to analyze superficial secondary layers
(like varnish).41 However, there are ongoing attempts to use different light
wavelengths to make the method useful for studying paint layer stratigra-
phy.42
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Chapter 3

MA-XRF and RIS

3.1 MA-XRF

As mentioned in section 2.2, XRF is based on the fact that when a sam-
ple is exposed to an X-ray beam, the atoms of the sample become excited
and emit characteristic fluorescence radiation that provides quantitative and
qualitative information on the elements present.21 Therefore, an XRF de-
vice consists of three main parts: The X-ray source, which creates the X-ray
beam used to excite the atoms of the sample; the beam defining optic, which
guides the X-ray beam onto the sample; and the detector, which measures
the fluorescence radiation emitted from the sample.43

MA-XRF consists of making many equidistant XRF measurements across
the surface of an object to make elemental distribution maps. A MA-XRF
device consists of the same three main parts as a normal XRF device, all
integrated into a measurement head, but with the addition of a positioning
system, which moves the sample relative to the measurement head.35 Figure
3.1 shows a simplified diagram of the MA-XRF scanner used in this research.

In the context of this research, the scanning is performed using a custom
Bruker M6 JETSTREAMMA-XRF scanner owned by the Rijksmuseum, pic-
tured in figure 3.2. The scanner consists of a MCBM 50-0,6B metal ceramic
X-ray tube with a Rhodium target and a 0.1 mm Be window as an X-ray
source; a polycapillary lens with a minimum spot size of 100 µm as a beam
defining optic; and two VH-Par-SDD as detectors positioned at 60° on either
side of the X-ray beam.44 The device uses a cartesian coordinate robot as
a positioning system which moves the measurement head whilst the sample
remains static. During scanning, the measurement head is moved along the x
and y axes, whilst the z-axis remains static. The maximum scan dimensions
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Figure 3.1: Simplified diagram of the MA-XRF measurement setup used in
this research.

are 780x580 mm. For samples larger than these dimensions, it is possible
to take multiple scans and stitch them together. The z-axis is only used
to set the distance between the measurement head and the sample, which
describes the actual X-ray beam spot size. In the instruction manual, the
optimal distance between the measurement head and the sample is said to
be of 9 mm , at which the beam spot size is of 100 µm.44 Existing research
using the device has found the minimum spot size to be around 40 µm, at
a sample distance of 6 mm.35 Whilst scanning objects at the museum, the
sample distance is 10 mm to avoid possible damage to the sample. At this
distance, the beam spot size is around 300 µm.35

The scanning is conducted as a raster, and there is an individual XRF
measurement per pixel. However, the measurement head does not stop on
each pixel, but is instead moved along the x-axis at a fixed speed, and a
timer determines when the measurement for a certain pixel begins and ends.
The speed at which the devices moves is a function of the scan step size (size
of an individual pixel) and measurement dwell time. Once the scanning of
a line is finished, the measurement head is moved back to the start of the
line, moved one step along the y-axis and a new scan line is started. The y-
distance between two scan lines is equal to the desired step size. This process
is repeated until the defined surface is scanned in its entirety.

The resulting measurement data is a 2D projection of the scanned surface
where each pixel has a full XRF spectrum. In the context of this research,
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Figure 3.2: Bruker M6 JETSTREAM MA-XRF scanner with main compo-
nents marked (A)Measurement Head (B)Positioning System (C)Sample.45

each XRF spectrum consists of 4096 channels. Figure 3.3 shows a comparison
of different measurement spectra of the same sample pixel using different
measurement dwell times. The longer the pixel dwell time, the better the
quality of the resulting measurement, but the longer the scan takes.

3.1.1 MA-XRF Data Processing

To extract elemental distribution maps from these spectra it is necessary to
separate the contribution of the characteristic fluorescence lines of each ele-
ment from each other and from the background radiation, which is normally
done via spectral deconvolution. However, given that a MA-XRF dataset
can consist of upwards of a million spectra, analysis via standard spectral
deconvolution strategies is often considered prohibitively long. To account
for this, alternate strategies, as the one described by Alfeld and Janssens,46

have been developed. However, for particularly complex spectra, analysis via
standard spectral deconvolution strategies can still be done. In the context
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Figure 3.3: Comparison of XRF spectra acquired at different dwell times.
These are single pixel measurements of the same point on a 17th Century
painting. All spectra were acquired using the same settings (200 µm Tube
Current, 50 kV Tube Voltage). Longer dwell times result in more accurate
spectra with more pronounced elemental fluorescence peaks.

of this research, analysis of the data set is done using the software package
Datamuncher47 for the bulk of the analysis and PyMCA48 to create the initial
fit files.

This analysis outputs the signal intensity of each considered fluorescence
line for each pixel. From these signal intensities, relative elemental distri-
bution maps can be produced. Figure 3.4 shows some examples of these
elemental distribution maps. The resulting maps are monochromatic repre-
sentations of the elemental concentration per pixel. The brighter a pixel, the
more intense the signal of the measured fluorescence line, and therefore the
higher the concentration of the element in question.

3.1.2 Applications and Limitations of MA-XRF

MA-XRF has become fairly widespread since its introduction in 2008,49 with
many museums and research institutions using self-constructed scanners37

or commercially available scanners.35,49 For paintings analysis, this method
can provide qualitative information regarding the pigments present in the
painting and their distribution, which can provide insight into the painting’s
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Figure 3.4: Examples of MA-XRF maps acquired at different step sizes, dwell
times and tube currents. The maps show a figure of a boy painted using lead
white on an Fe-including ground. Brighter areas denote a stronger elemental
fluorescence signal. Increasing the dwell time or the tube current reduces
the LODs, improving the maps in areas with low elemental concentration, as
can be seen in the hand of the boy in the Pb-L maps, but it can also lead to
sensor saturation, as can be seen in the boys shirt in the Pb-L maps. The
lead white used to paint the boy blocks the signal of the Fe-including ground.

provenance, the artist’s process, changes in composition, previous restoration
campaigns, amongst others.33 The method’s great penetration depth makes
it optimal for identification of hidden paint layers. However, the method has
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Figure 3.5: LOD of the M6 Jetstream based on K fluorescence lines at 50
kV and 600 µA. This denotes the minimum required mass concentration of
the element for the system to reliably identify it in an XRF spectra. Lower
LODs mean improved spectral accuracy of the measurement.35

some important limitations. Depending on the device used, the method can
only accurately measure certain elements. The application of XRF to cul-
tural heritage objects is considered to be practically limited to elements with
atomic numbers above 11 (Na).50 Given the low acquisition times, MA-XRF
is often considered to be limited to elements with atomic numbers between 20
and 82 (Ca-Pb), although the limits of detection of all the elements are not
equal.43 The limits of detection (LOD) of the M6 Jetstream were researched
by Alfeld et al.,35 and are summarized in figure 3.5.

The method’s high penetration depth also presents an issue for data
processing and result interpretation. The resulting measurement data has
contributions of many different layers, and since the method does not have
depth discrimination, distinguishing each of these contributions is very diffi-
cult. Strategies for correcting for uneven background contributions, like that
caused by the presence of stretchers in canvas paintings, have been devel-
oped.46 However, algorithms for distinguishing the contributions of different
paint layers have not been published so far. A significant challenge for the
development of such algorithms are the complex matrix effects resulting from
the very in-homogeneous paint composition and layering, which have a sig-
nificant effect on the XRF signal. These effects and their implications are
discussed in further detail in section 5.1.
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However, the main practical limitation of this method is the slow data
acquisition time. Single MA-XRF scans are most often several-hour-long
endeavors, with the precise duration depending on the size of the scanned
surface, the desired step size, and the pixel dwell time. Scans of larger objects,
which require multiple smaller scans, can take several days or weeks.51 Most
often, the step size and pixel dwell time are determined on a case-by-case
basis depending on what is the goal of the analysis and how much time there
is available for a specific scan, as there is no widespread standard.

Ultimately, these scan settings determine the quality of a MA-XRF mea-
surement, both with regards to the level of spatial detail present in the result-
ing maps and their spectral accuracy. Step size determines the level of detail
of the acquired images and therefore the minimum size of features which
can be visibly resolved. The smaller the step size, the smaller a feature can
be whilst still being visibly resolved. Pixel dwell time, on the other hand,
determines the spectral accuracy of the measurements. The longer the pixel
dwell time, the lower the LODs of each element and therefore the higher
the accuracy of the resulting measurement, specially for low intensity sig-
nals like those from Pb-M or K-K. In most practical cases, time constraints
mean there is a trade-off between step size and dwell time. The X-ray tube
current and voltage also play an important role in the spectral accuracy, as
increasing either will increase the intensity of the X-ray beam and therefore
increase the fluorescence of the sample. This will generally lower the LODs,
but limitations of the detector mean that that is not always the case. In-
creasing the tube current and voltage also means the sample is exposed to a
higher amount of radiation, which is generally not desired as it can induce
changes in the sample.

3.2 RIS
As mentioned in section 2.3, this method is based on scanning a sample to
acquire a reflectance spectrum for every pixel in the image, which can be used
to identify present pigments and map their distribution. Figure 3.6 shows a
simplified diagram of the RIS setup used in this research.

RIS can be conducted in different spectral ranges depending on the device
used. In this research, two hyperspectral cameras were used, one over the
visible and near infrared range (VNIR, 400-1000 nm) and another over the
shortwave infrared range (SWIR, 900-2500 nm). The scanning process also
differs depending on the exact device used. Some devices allow for full-
field acquisition (also known as snapshot), in which the whole spectral data
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Figure 3.6: Simplified diagram of the RIS measurement setup used in this
research.

cube is acquired instantaneously, whilst others incorporate different types of
scanning procedures, like push-broom or whisk-broom.8 In the context of this
research, the used hyperspectral cameras are both operated in push-broom
scanning, where the camera continuously outputs a full slit spectrum whilst
the sample is moved at a set speed in front of the camera. The combination of
push-broom scanning and low acquisition time makes RIS a relatively quick
process when compared to MA-XRF.

The two hyperspectral cameras used for this research are the Surface
Optics SOC710-E for the VNIR range (260 channels)52 and the Headwall
Micro-Hyperspec SWIR 640 for the SWIR range (267 channels).53 The posi-
tioning system is a motorized easel custom-built by LG Motion UK. Figure
3.7 shows the scanning setup as used for this research.

3.2.1 RIS Data Processing

The resulting measurement data is a stack of images, one per spectral chan-
nel, referred to as a “datacube”. The first thing to be done is to flat-field
correct the datacubes, which is done using two calibration datacubes, one of
a highly reflective white PTFE panel taken under the exact same lighting
condition to correct for uneven illumination and camera response, and one
of a dark frame to correct for detector dark current.39,54 Each pixel then has
a fully corrected apparent reflectance spectra, samples of which can be seen
in figure 3.8. Given the limited vertical field of view of the cameras, it is
often necessary to do several scans which are then stitched together to form
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Figure 3.7: The VNIR-RIS scanning setup used in this research with
main components marked (A)Hyperspectral Camera (B)Light Sources
(C)Positioning System (D)Sample. The SWIR-RIS scanning setup is ex-
tremely similar, but uses a different camera and light sources. Thanks to Dr.
Francesca Gabrieli from the Rijksmuseum for providing the image.

a datacube of the entire surface of the painting.

The analysis of the spectra is somewhat more complicated than for XRF.
The spectra are a combination of the spectra of the present species but, un-
like XRF, where the contribution of each fluorescence line is assumed to be
a nearly-gaussian shaped peak,55 the contribution of each species depends
not only on the chemical composition of the pigment, but also the parti-
cle size, concentration and type of binding medium.56 In the VNIR range,
Kubelka-Munk theory57 is often used to spectrally deconvolute the measure-
ment spectra. In the SWIR range, Kubelka-Munk still can be used, but the
assumption that the scattering coefficient is constant is not as applicable as it
does vary slowly with wavelength.58 Because of these complications, analysis
of RIS measurements is often done in a more qualitative manner, based on
extraction of endmembers from the dataset via either an automated process,
like principal component analysis (PCA), or manually selecting specific pixel
spectra. The endmembers can then be used to produce distribution maps
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Figure 3.8: Example of RIS Spectra, as acquired by the VNIR and SWIR
hyperspectral cameras used in this research.

using spectral angle mapping (SAM) and be compared to spectral databases
for pigment identification.54

3.2.2 Applications and Limitations of RIS

RIS for paintings analysis has many applications including pigment identi-
fication and mapping,38,59 binder identification and mapping,37,60,61 colour
rendering and condition monitoring.56 The method is often used alongside
MA-XRF, as they complement each other and result in a more reliable pig-
ment identification.9,10 The main limitations of the method mainly come
down to the very labour-intensive data processing procedures. Scans must
be flat-field corrected, stitched and then analyzed, and all these steps cur-
rently require significant user input. Another limitation in the analysis of
reflectance spectra is the lack of a comprehensive, publicly-available database
of reflectance spectra for pigments and dyes for spectral unmixing.62

Specific spectral ranges can also present specific challenges. For VNIR-
RIS, the scanning of dark areas is difficult, as the signal-to-noise ratio be-
comes poor. This can be accounted for using different data processing mea-
sures, but this can be very labour-intensive.10 For SWIR-RIS, the greater
penetration depth creates a similar issue to that described previously for
XRF, in that the contributions of individual layers are difficult to distin-
guish. The penetration depth is not as high as that of XRF, for which the
contribution of an uneven background, like a stretcher for a canvas painting,
is not as significant and easily identifiable.



Chapter 4

Experimental Methods

To better understand and differentiate the effects of paint mixing and paint
layering on the MA-XRF and RIS measurements, a series of experiments were
conducted. These formed the main body of this project. The experiments
consisted of scanning well-defined painted objects using the museum’s MA-
XRF scanner and two hyperspectral cameras (SWIR and VNIR). Given that
the ultimate objective of this research was to achieve semi-quantitative results
on paint layer composition and stratigraphy, the objects scanned would have
to be objects where this information is already available. Given that there is
no painting in the Rijksmuseum collection which is fully defined in this way
and can thus serve as a ground truth, it was decided that samples would be
created specifically for this purpose. The preparation and scanning of the
samples are discussed in this chapter.

4.1 Sample Preparation

The preparation of the experimental samples involved a lot of decision-
making that would ultimately decide the applicability of the results. For
simplicity, these decisions are divided into two main categories: what paint
is used and how the paint is used. What follows is a description of the
decision-making process of each category.

4.1.1 Paint Selection

As explained in section 1.1, a paint is a combination of a pigment and a
binder. As previously stated, from the 15th to the early 20th century, linseed
oil was the most common binder used in paintings and is therefore the binder
chosen for the paint samples. The choice of binder is not expected to have a
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significant effect on the MA-XRF and VNIR-RIS measurements, but it will
have an effect on the SWIR-RIS measurement.37 This effect must be kept in
consideration during the analysis of the samples.

The selection of the pigments is a bit more complicated. There are hun-
dreds of different pigments, each with their unique chemical footprints and
usage history. The first choice was to limit the number of pigments used to
three. It is believed that three pigments would provide a large enough se-
lection to create a large number of unique samples without becoming overly
complex. To aid in the selection, a few criteria were set out:

1. The pigments must be historically relevant. This is to ensure that
the results acquired are applicable to as many paintings in the museum’s
collection as possible and still leaves a very wide range of pigments. Special
consideration is given to pigments used in 17th century Dutch painting, as
this time-period is one of the specialties of the Rijksmuseum.

2. The pigments must each have unique elemental footprints when com-
pared to one another and their fluorescence lines should cover as broad an
energy range as possible. This is not to mean that there cannot be any el-
emental overlap, but that there must be at least one measurable principal
element which is unique to that pigment. This element would function as a
marker for this pigment in the MA-XRF results.

3. The pigments must each have unique reflectance features in the vis-
ible and NIR spectrum when compared to one another. In contrast to the
previous criterion, overlap in these reflectance features should be avoided if
possible, as it significantly complicates the analysis of the data. These fea-
tures would serve as markers for the related pigment in the RIS results.

Criterion 1 is the most limiting, as it removes the vast number of pig-
ments created since the 18th century. Criterion 2 eliminates the possibility
of using many organic pigments that do not have any elements that are mea-
surable with MA-XRF. Besides that, criteria 2 and 3 do not really remove
any pigments from the selection pool but they significantly limit the possible
combinations to be considered. However, that still leaves too many combi-
nations to consider, so it was decided to choose the pigments sequentially.

The first pigment selected was lead white, due to it being the ubiqui-
tous white pigment in European art from roman times up until the 19th
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century.63 Pb also has both low energy fluorescence lines (Pb-M) and high
energy fluorescence lines (Pb-L), which makes it particularly useful for the
study of layering and matrix effects on MA-XRF signals, as the two lines
would be affected to differing degrees. The primary components of lead
white are lead carbonate hydroxide (2PbCO3·Pb(OH)2) (hereafter referred
to as hydrocerussite, the name of its natural mineral form) and lead car-
bonate (PbCO3) (hereafter referred to as cerussite, the name of its natural
mineral form). Hydrocerussite has a hydroxyl stretching overtone feature at
1447 nm and a weak band in the region of the carbonate overtone (3v3) and
hydroxyl combination bands at {2300 nm, which are used as identifiers for
the pigment in NIR RIS.64,65

The visible spectrum part of criterion 3 requires all the pigments to have
very distinguishable colors. Black pigments do not have any significant fea-
tures in the visible spectrum which would aid in their identification and
therefore it was decided to take two non-black pigments. To further aid in
their differentiation, it was decided to take one pigment in the lower part of
the visible spectrum (Red-Orange-Yellow) and one in the higher part (Green-
Blue-Violet).

Based on criteria 1 and 2, it was decided that the second pigment would
be an ochre pigment due to their near universal use throughout history and
the presence of Fe as an elemental marker.66 There are a wide variety of ochre
pigments based on different iron oxides and hydroxides. An ochre based on
goethite (α-FeO(OH)) was selected due to its features in the visible spectrum,
namely reflectance peaks at {600 and {750 nm and a transition edge at 555
nm,54 which give it an orange color. Goethite lacks any significant reflectance
features in the NIR, but as a mineral pigment from a natural source, it tends
to be mixed with other minerals that may have identifiable features.

For the third pigment, it was decided to use azurite, a blue Cu-based
pigment. The main compound of the pigment is a form of basic copper
carbonate (Cu3(CO3)2(OH)2). It is easily identifiable in RIS since it has a
reflectance peak at 467 nm followed by a broad absorbance feature centered
around 700 nm. It also has a hydroxyl stretching overtone feture at 1498
nm, and a strong doublet at 2245 and 2351 nm corresponding to the carbon-
ate overtone (3v3) and carbonate and hydroxyl combination features.64 For
clarity, azurite is the name given to both the base mineral and the pigment
derived from it, and for simplicity, this paper will also refer to the main
compound basic copper carbonate as azurite.

Having chosen what type of pigments would be used, it was still neces-
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sary to decide from where to source the pigments. Different suppliers can
have different manufacturing processes for synthetic pigments and different
sources for natural pigments, which can affect the chemical composition of
the pigment. To find the correct source, one candidate for each pigment type
was acquired and analyzed to determine if it would work for this project. If
a candidate were found to not be suitable, an alternative would be acquired
and tested, repeating the process until a suitable candidate was found for
each type of pigment. The tests used to analyze the products were XRF,
XRD and FORS. The author would like to thank Dr. Richard Huizenga and
Mr. Ruud Hendrikx from the Department of Materials Science and Engi-
neering of Delft University of Technology for conducting the XRF and XRD
analysis. For the XRF analysis, the measurements were performed using
a Panalytical Axios Max WD-XRF spectrometer and the data evaluation
was done using the SuperQ5.0i/Omnian software. For the XRD analysis,
the measurements were performed using a Bruker D8 Advance diffractome-
ter and the data evaluation was done using the Bruker DiffracSuite.EVA vs
5.1, Profex-BGMN software. For the FORS analysis, the measurements were
performed using a Malvern Panalytical ASD FieldSpec 3 and the data was
processed using its included data acquisition and visualization software. Fol-
lowing are the results of the pigment selection analysis, separated by type of
pigment.

Lead White

The first lead white candidate to be tested was from an unknown manu-
facturer and available in the Rijksmuseum labs. The results of the XRD
and FORS analysis can be seen in figure 4.1. The XRF analysis showed the
sample was mostly Pb but also included a significant amount of Ca. The
presence of Ca was concerning but not terribly unexpected as lead white
is often adulterated with chalk, a Ca-based white pigment.66 However, the
presence of chalk could not be verified by either FORS or XRD. Instead,
the XRD spectra verified the presence of hydrocerussite and cerussite, which
are expected in traditionally produced lead white, as well as plumbonacrite
(Pb5O(OH)2(CO3)3), which can be used as a marker for modern lead white
production methods,67 but which can appear in traditional lead white sam-
ples as well.68 However, the spectra also matched the theoretical diffraction
spectra of calcium lead (CaPb), which would account for the presence of Ca,
but which to the authors best knowledge has not been found in lead white
samples before. The FORS spectra presented a large reflectance peak at
{2150 nm which does not match any expected peak. From these unexpected
results it was decided that this pigment was unsuitable for this project.
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Figure 4.1: a)Results of the FORS analysis of the first lead white candi-
date (unknown source) b)Results of the XRD analysis of the first lead white
candidate.

The second lead white candidate to be tested was Rublev Colours Stack
Flake White. This product is advertised as being produced using the tra-
ditional Dutch method,69 which would make it particularly useful for this
project. The results of the analysis can be seen in figure 4.2 and table 4.1.

Table 4.1: Quantitative XRD results for the second lead white candidate
(Rublev Colours Stack Flake White).

Compound Formula Weight Percentage (%)
Hydrocerussite 2PbCO3·Pb(OH)2 98 ± 1
Cerussite PbCO3 2 ± 1
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Figure 4.2: a)Results of the FORS analysis of the second lead white candidate
(Rublev Colours Stack Flake White) b)Results of the XRD analysis of the
second lead candidate.

The XRF found almost entirely Pb along some trace elements (Si, Mg, Cu
and Al) and the XRD confirmed that the pigment was exclusively hydrocerus-
site and cerussite, as expected from a traditionally produced lead white.67

The FORS spectra featured the two previously mentioned features at {1450
and {2300 nm. All this led to the decision that this would be the lead white
pigment used for the samples.
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Figure 4.3: a)Results of the FORS analysis of the first yellow ochre candidate
(Verfmolen "De Kat" Ochre Orange) b)Results of the XRD analysis of the
first yellow ochre candidate.

Yellow Ochre

The first yellow ochre candidate tested was Ochre Orange from Verfmolen
“De Kat”. The XRD and FORS results can be seen in figure 4.3. The XRF
matched what would be expected from a natural ochre, with Fe alongside
smaller amounts of a variety of other elements, like Ca, Ti and Mn. The XRD
found that the pigment was a combination of goethite, chalk (calcite, CaCO3)
and gypsum (CaSO4·2H2O). The FORS results confirmed the presence of
gypsum through the presence of its characteristic three hydroxyl features
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between 1445 and 1535 nm. The presence of gypsum is problematic because
of the overlap between the first hydroxyl feature of gypsum with the hydroxyl
feature of hydrocerussite, which, although a common scenario in the RIS
analysis of paintings,65 could complicate the quantitative RIS analysis. As
this is only exploratory research into the possibility of quantitative analysis it
was decided to avoid such complicated scenarios and therefore the candidate
was found to not be suitable.

The second yellow ochre candidate to be tested was Yellow Ochre Dark
from Rublev Colours. The results of the FORS analysis are presented in
figure 4.4. The results of the XRD analysis are presented in table 4.2. The
XRF results show significant differences to those of the previous candidate.
Si and Al are present in considerable amounts whilst Ca is relegated to a
minor element. The XRD identifies that quartz (SiO2) and kaolinite-1A
(Al2(OH)4Si2O5) are major components alongside goethite. However, it is
also seen that the goethite present is not pure goethite, but instead an Al-
substituted form of goethite, refered to as goethite aluminian. This form of
goethite is very common in red soils,70 specially when found with other Al-
containing minerals, like kaolinite. This particular goethite aluminian seems
to be 10 mol% Al (Fe0.9Al0.1O(OH)). The FORS results show that having this
form of goethite does not significantly affect its reflectance spectra and also
confirms the presence of kaolinite with its double hydroxyl overtone feature at
{1400nm.71 The combination of goethite and kaolinite is particularly useful
as it provides markers in both the VNIR and SWIR ranges. Thus, it was
decided this was to be the yellow ochre pigment used for the samples.

Blue Verditer

The first blue verditer candidate to be tested was Rublev Colours Blue
Verditer. Blue verditer is the name given to the synthetic alternative to
azurite. Blue verditer is considered to have a paler color than azurite, but
it is chemically identical,66 which could make it a cheaper and more chem-
ically uniform alternative. The results of the FORS and XRD analysis can

Table 4.2: Quantitative XRD results for the second yellow ochre candidate
(Rublev Colours Yellow Ochre Dark).

Compound Formula Weight Percentage (%)
Quartz SiO2 37 ± 2
Goethite Aluminian Fe0.9Al0.1O(OH) 33 ± 2
Kaolinite-1A Al2(OH)4Si2O5 30 ± 2
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Figure 4.4: a)Results of the FORS analysis of the second yellow ochre can-
didate (Rublev Colours Yellow Ochre Dark) b)Results of the XRD analysis
of the second yellow ochre candidate.

be seen in figure 4.5. The XRF found it to be almost purely Cu alongside
minor amounts of Ca, Si, Al, P, K and Cl. The XRD found it to be pure
azurite. The FORS results further reinforced that conclusion, showing all
the reflectance features expected from azurite. The product was therefore
chosen as the blue verditer pigment used for the samples. However, only a
small amount was available and a new batch of it had to be ordered. Given
that the initial sample was more than a decade old, it was decided to re-do
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Figure 4.5: a)Results of the FORS analysis of the first blue verditer candidate
(Rublev Colours Blue Verditer) b)Results of the XRD analysis of the first
blue verditer candidate.

the analysis with the new batch, which was found to be identical to the orig-
inal sample. The quantitative results of XRD analysis of the new batch can
be found in table 4.3.

Table 4.3: Quantitative XRD results for the first blue verditer candidate
(Rublev Colours Blue Verditer).

Compound Formula Weight Percentage (%)
Azurite Cu3(CO3)2(OH)2 100
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4.1.2 Paint Mixing

Having selected the source for each pigment, it was necessary to determine
an appropriate paint mixing procedure as well as the appropriate pigment-
to-binder ratios. The binder used was Kremer Raw Linseed Oil. The blue
verditer and yellow ochre pigments came pre-ground, but the lead white
came in a dry cake and had to be ground before mixing. To avoid any
inconsistencies in the particle size distribution of the pigment, the entire
amount of lead white pigment needed was ground in one process using a
ceramic mortar and pestle. Characterization of the particle size distribution
of the pigment in the paints was planned, but it was not possible to conduct
due to logistical issues related to the 2020 COVID-19 pandemic.

The paint was mixed using a glass paint muller and it was decided to mix
the paint in batches of 1-2g of pigment. The pigment was dispersed in the
oil using the glass muller for about 5 minutes, after which the paint would
be collected using a palette knife, and then dispersed again with the glass
muller. This process would be repeated 3 times, at which point the paint
was considered to be homogeneously mixed. For applications in which one
of these batches would not provide enough paint, several batches would be
prepared and then combined using a palette knife.

The pigment supplier provided a recommended pigment-to-binder ratio
for each pigment. To verify whether this recommended ratio was appropriate,
a test was conducted with the yellow ochre pigment. The recommended
pigment-to-binder ratio for yellow ochre is 71:29 by weight (hereafter referred
to as percentage of total paint weight, thus 29%). Paints using 25, 29, 35 and
40% were mixed and applied using a metal film applicator. The recommended
ratio was found to have the best combination of handling and coverage when
applied. It was therefore decided to use the recommended ratios for all the
paints. However, the recommended ratio of 19% for blue verditer was found
to be too dry requiring further testing. Ultimately, 22% was found to be
a good ratio. The exact mixture ratios of the different paint batches are
detailed in table 4.4. For paints which included more than one pigment, the
corresponding pigments were first mixed into separate single-pigment paints
using the method described earlier, and afterwards the separate paints were
mixed together using a palette knife.

The paints are hereafter refered to by their constituent pigments using
the abbreviations LW, YO and BV, for lead white, yellow ochre and blue
verditer, respectively. Multi-pigment paints are refered to using the same
pigment abbreviations separated by a slash (e.g. BV/YO).
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4.1.3 Paint Application

As this research focuses on the effect of paint layering and composition on
XRF and RIS spectra, it was decided to study these two aspects separately
by creating one set of samples for each one. The two sets are referred to as
the layer samples and the mixture samples. The design and preparation of
each set of samples is now described.

The mixture samples consist of single-layer samples of different paint
combinations at different ratios. To limit the number of samples, it was
decided to test only combinations of two paints. Having three base paints
to work with, 3 combination pairings are possible. 5 different mass ratios
were chosen for each possible combination: 5%, 20%, 50%, 80% and 95%. It
was decided to not do a uniform distribution, since that would provide little
information on the edge cases, in which only a very small amount of one paint

Table 4.4: Paint Mixture ratios. The paints related to mixture samples
were mixed in small batches in differing ratios and therefore an overall oil
percentage is not applicable.

Application Pigment
type

Pigment
(g)

Oil
(g)

Oil
Percentage

(%)

Overall Oil
Percentage

(%)

Layer Samples
(Underlying
Layer)

YO 1.0 0.408 0.290 0.2911.2 0.493 0.291

BV 1.0 0.299 0.230 0.2911.4 0.395 0.220

LW 1.0 0.163 0.114 0.1491.8 0.326 0.153

Layer Samples
(Overlying
Layer)

YO 1.5 0.608 0.288 0.2881.0 0.403 0.287

BV 1.5 0.422 0.220 0.2201.0 0.285 0.222

LW 1.5 0.245 0.140 0.1421.0 0.170 0.145
Mixture Samples
YO/BV

YO 1.7 0.703 0.293 n/aBV 1.7 0.472 0.217
Mixture Samples
YO/LW

YO 1.7 0.702 0.292 n/aLW 1.7 0.290 0.146
Mixture Samples
BV/LW

BV 1.8 0.508 0.220 n/aLW 2.0 0.346 0.147
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Figure 4.6: a)The equipment used for the paint mixing and application
b)Detail views of the paint applicator.72

is mixed with a large amount of the other. For each mixture, 3 different paint
layer thicknesses were applied: 50 µm, 100 µm and 150 µm. This resulted in
a total of 45 discrete samples of varying thickness and composition.

All samples were produced using the same equipment, pictured in figure
4.6. To reduce the effect of the support on the XRF signal, a 50 µm Melinex
film was used as support. The film was carefully cut into strips, ensuring
as flat a surface as possible to avoid local variations in paint layer thickness.
Each strip would be used for the three paint layer thickness samples for
a specific paint mixture. The strips were attached to a white cardboard
sheet for stability during application of the paint layers. The paint was
applied using a metal 4-sided Bird-type film applicator with a fixed nominal
film thickness on each side (50/100/150/200 µm). It is important to state
that oil paint tends to shrink during drying, but how much the layer shrink
depends on the composition of the paint. Therefore, for simplicity it was
decided to refer to each sample using only the nominal thicknesses of the
applicator used to apply the sample. Each sample is roughly 2x3 cm2 in
size. Once the paint was dry, the strips were detached from the cardboard
sheet and cut to size. The strips were then attached to a 3 mm plexiglass
sheet using photographic tape at both ends of the strip. The plexiglass sheet
was expected to provide rigidity to the samples without greatly affecting the
XRF results. The finished sample set can be seen in figure 4.7, together with
a legend.
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Figure 4.7: Visible light photograph of the mixture sample set. The samples
are organized by their mixture and their thickness.

The layer samples consist of single-layer and double-layer samples of the
base paints. The single layer samples are to provide a reference to compare
the rest of the samples to. Three different layering arrangements were made:
50 µm over 50 µm, 50 µm over 100 µm and 100 µm over 50 µm. Since the
order in which the paints are applied does matter, 3 base paints allow for 6
possible combination pairings. The layers were applied in two steps. First,
the bottom layer was applied in the center and left to dry for a week. Second,
at each end of the applied bottom layer, a top layer was applied, extending
further than the edge of the bottom layer. The same film applicator used for
the mixture samples was used. Given that the thickness of the applied film
is measured with regards to the support, when applying the top layer it is
necessary to consider the thickness of the already applied bottom layer. For
example, when applying a 50 µm layer over a 50 µm layer, the applicator
thickness used must be 100 µm (the sum of both layer thicknesses). The
whole construct of the bottom layer and two top layers is referred to as a
sample strip, a diagram of which can be seen in figure 4.8. Each sample strip
has 5 samples, three single-layer samples and two double layer-samples. Each
sample is roughly 2x2.5 cm2 in size.

Since each sample strip includes two possible paint combination pairings,
only one sample strip is required per layer arrangement per paint. However,
as the two-step application process was more prone to failure, it was decided
to prepare more sample strips than were strictly required, in case the ap-
plication of the second layer did not work as expected. This was ultimately
unnecessary as all layers were applied successfully, but it nevertheless proved
useful at it provided more samples to verify the acquired data. Beyond the
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Figure 4.8: Diagram detailing the structure of the layer sample strips. Each
sample strip has 3 single layer (SL) sampling areas and 2 double layer (DL)
sampling areas.

two-step process, the samples were prepared using the same equipment and
methods described for the mixture samples. The samples were organized by
what paint was used for the bottom layer and for each paint there are two
50 µm over 50 µm samples, two 50 µm over 100 µm samples and one 100
µm over 50 µm sample. The finished sample set can be seen in figure 4.9,
together with a legend. In total there are 75 samples, comprised of 27 differ-
ent configurations. Because of how the samples were created, some sample
configurations occur only once whilst others are repeated up to 6 times.

For part of the analysis, it was desired to know the areal density of both
the pigments and the target elements present in the sample. This calculation
was based on the concentration measurements from the XRD analysis, the
recorded mixture ratios during the paint preparation and the nominal layer
thicknesses. The pigment areal density of a sample ρA,C is calculated using
equation 4.1:

ρA,C =
H∑
l=L

wC,P,l ∗ ρP,l ∗ dl (4.1)

Where the target paint component C (in this case the pigment) is com-
posed of a number H of layers L of paint P , each with a target component
concentration wC,P,L density ρP,L and a thickness dL. The paint density ρP,L
is calculated using equation 4.2:
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Figure 4.9: Visible light photograph of the layer sample set. The samples are
organized by their underlayer and their layering configuration. (L1) denotes
50 µm over 100 µm, (L2) 100 µm over 50 µm and (L3) 50 µm over 50 µm.

ρP,L =
G∑

k=C

ρk ∗ wk,P,L (4.2)

Where the paint P is composed of a number G of unique components
C, each with a density ρC and concentration wC,P,L. The paint component
density ρC is calculated using equation 4.3:

ρC =
F∑

j=M

ρj ∗ wj (4.3)

Where the paint component C is composed of a number F of unique
moleculesM , each with a density ρM and a concentration wM . The values of
ρM were taken from relevant databases.73,74 For the areal density of a target
element ρA,Z , equation 4.4 is used instead:

ρA,Z =
H∑
l=L

wZ,P,l ∗ ρP,l ∗ dl (4.4)

Where the target element Z is present in a sample which is composed of
a number H of layers L of paint P , each with a target element concentration
wZ,P,L, density ρP,L and a thickness dL. The concentration wZ,P,L is calculated
using equation 4.5:
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wZ,P,L =
G∑

k=C

wZ,k ∗ wk (4.5)

Where the paint is composed of a number G of unique components C,
each with a target element concentration wZ,C , which is calculated using
equation 4.6:

wZ,C =
F∑

j=M

wZ,j ∗ wj (4.6)

Where the paint component is composed of a number F of unique molecules
M , each with a target element concentration wZ,M , which is calculated using
equation 4.7:

wZ,M =
NZ ∗mZ∑E
i=X Ni ∗mi

(4.7)

Where the molecule M is composed of a number E of unique elements
X, each present in an amount NX and with an atomic mass mX .

A sample of the calculated values can be seen in table 4.5, and the full
results are availabe in Appendix A.

4.2 Scanning of Samples
The scan settings for the MA-XRF scans can be found in table 4.6. These
settings were based on the settings chosen for the scanning campaign of Rem-
brandt van Rijn’s The Night Watch currently ongoing at the Rijksmuseum.51

The only difference was the pixel dwell time which was increased. This was
done to provide the best possible statistics. These measurements could also
be used to simulate lower dwell time measurements if it became necessary,
but this was not the case. Initially, the samples were scanned in a horizontal
position to avoid possible deformation of the samples due to gravity. The
samples were placed on top of a stack of 6 plexiglass sheets (total thickness
12 mm) on a table. It was expected that the white coating on the table
would include a white pigment, which would likely contain an element which
would contribute to the XRF signal. It was therefore decided to include the
stack of plexiglass sheets which were meant to separate the samples from
the table and therefore reduce the possible contribution of the table on the
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XRF signal. Although the plexiglass sheets were successful at reducing any
elemental signal from the table, they also reflected a greater amount of the
incident X-rays. A comparison of the XRF signal of a single plexiglass sheet
and the stack of plexiglass sheets can be seen in figure 4.10.

One issue that arose during the scanning of the layer sample set was that
the plexiglass sheets being used as a background were not large enough to
support the entire sample set, meaning that there would not be a uniform
effect on the background signal across the entire set. Although these differ-
ences in background signal would most likely be corrected by the SNIP filter
during the fitting of the data, it was ultimately decided to play it safe and
scan the sample sets vertically on an easel, which avoids this issue altogether.

Table 4.5: Calculated Pigment and Element Areal densities for the different
paint mixtures. The single layer 100 µm samples have two possible values,
depending on wether the layer was applied as an underlying layer or an
overlying layer.

Areal Density (g/cm2)
Sample Thickness

(µm) YO BV LW Fe Cu Pb

Single
Layer YO

50 0.0094 0 0 0.0018 0 0

100 0.0188 0 0 0.0036 0 0
0.0189 0 0 0.0036 0 0

150 0.0282 0 0 0.0055 0 0

Single
Layer LW

50 0 0 0.0255 0 0 0.0204

100 0 0 0.0509 0 0 0.0408
0 0 0.0516 0 0 0.0413

150 0 0 0.0768 0 0 0.0620
Underlayer
YO

50 0.0094 0 0 0.0018 0 0
100 0.0188 0 0 0.00362 0 0

Overlayer
BV

50 0 0.0126 0 0 0.0070 0
100 0 0.0252 0 0 0.0139 0

95% YO,
5% BV

50 0.0090 0.0005 0 0.0017 0.0003 0
100 0.0180 0.0010 0 0.0035 0.0006 0
150 0.0269 0.0016 0 0.0052 0.0009 0

80% YO,
20% BV

50 0.0078 0.0022 0 0.0015 0.0012 0
100 0.0156 0.0043 0 0.0030 0.0024 0
150 0.0234 0.0065 0 0.0045 0.0036 0

20% BV,
80% LW

50 0 0.0042 0.0185 0 0.0023 0.0149
100 0 0.0085 0.0371 0 0.0047 0.0297
150 0 0.0127 0.0556 0 0.0070 0.0446
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Figure 4.10: Comparison of the XRF signal of a single plexiglass sheet and
a stack of plexiglass sheets. The 6 stack slightly increases the amount of
reflected X-rays.

The deformation of the samples due to gravity is still a possibility, but it is
considered to be unlikely enough that the benefits of vertical scanning out-
weigh such a risk. Particular care was taken during the data processing to
account for possible deformations.

The scan setting for the RIS measurements can be found in table 4.7.

Table 4.6: MA-XRF Scan Settings. Values marked with * are default values
Settings Value

Tube Current (µA) 200
Tube Voltage (kV) 50
Step Size (µm) 500
Dwell Time (ms) 400
Detector Range (keV) 40*
Optimal Countrate (kcps) 130*
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Figure 4.11: FORS measurement of the black cardboard used as a back-
ground for both sample sets.

These settings are the standard settings used for RIS analysis of paintings
at the Rijksmuseum. The sample sets were scanned vertically using the
automated easel. Because of the SWIR camera’s vertical field of view being
smaller than the height of the sample sets, the SWIR measurements required
two scans per sample set. These two scans had a 20% vertical overlap to
allow for stitching them into a single data set. The VNIR measurements did
not have this problem and therefore required only one scan per sample set.
Given that the melinex and plexiglass on which the samples are mounted are
clear, a black cardboard was attached to the rear during the RIS scans to
produce a consistent background. The black cardboard was analyzed with
FORS to test its effect on the RIS signal before attaching and was found to
have minimal signal in the VNIR and SWIR range. The resulting spectra
is visible in figure 4.11. Even with the black cardboard, the melinex and
plexiglass are expected to have an effect on the RIS signal, especially in the
SWIR range, which must be considered during the analysis.

Table 4.7: RIS Scan Settings.
Setting VNIR SWIR

Camera Integration Time (ms) 200 120
Easel Integration Time (ms) 250 150
Easel Speed (mm/s) 0.72 1.12
Spatial Resolution (µm) 168 168
Light Intensity (lux) 1100 700



Chapter 5

Data Processing

This section covers the different data processing steps performed for the
analysis of the MA-XRF and RIS data. After acquiring the data sets, the
first thing to do was to align them, so that a direct comparison could be
done between the different spectra. This was done using DataHandlerP’s75

OpenCV (Open Computer Vision library76) interface, which uses alignment
features to perform the necessary transformations to align one data set onto
another.77 Given that the two acquired RIS data sets had a higher resolution
than the MA-XRF data sets, it was decided to align the RIS data onto
the MA-XRF data. This would decrease the size of the files significantly,
making them much easier to use. The decrease in resolution also causes
the averaging of the spectra of several pixels, which reduces the effect of
measurement artifacts in single pixels.

The automatic feature detection of OpenCV did not provide enough
unique features to properly align the data sets, for which some manual feature
description was necessary. Around 30 alignment features were used to per-
form the transformations. The alignment of the data sets was not perfect and
there were some deviations in the edges of the samples, but it was accurate
enough to take the average spectra of each sample, given their homogeneity.

This alignment step was also used to stitch together the two SWIR mea-
surements of each sample set. The two measurements of each sample set were
aligned onto the corresponding MA-XRF datacube and these now aligned
measurements were stitched together into a single datacube for each sam-
ple set. Since the measurements were now aligned onto a shared coordinate
system, the stitching could be done using a very simple code which would
find what pixels were empty in the first measurement and replace them with
the corresponding pixel of the second measurement. This was done because
it was believed that using a method like averaging the signal between the

45
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Figure 5.1: Diagram of SWIR dataset stitching method as applied to the
scan of the mixture samples. The red and blue areas denote the two datasets
and the green is their overlap. In the area of overlap, the values of the blue
data set are disregarded and only the values of the red data set are used.

two measurements in the area of overlap could affect the amount of noise
in the spectra in a manner which would make it inconsistent with the other
areas of the datacube. Figure 5.1 shows a diagram exemplifying the stitching
procedure.

Using the stitched RIS data sets it was possible to determine the re-
flectance spectra of the background. This is a combination of the Melinex,
Plexiglass and black cardboard. These spectra are shown in figure 5.2. In
the VNIR range, the background has almost no reflectance, with only around
0.05 normalized apparent reflectance throught the entire range. In the SWIR
range, the background has a much more uneven reflectance, but it is still rel-
atively low, staying below 0.2 normalized apparent reflectance, baring the
high value at around 900 nm, This high value is an artifact and is present
throughout the data set.

The MA-XRF data was processed as described in section 3.1.1. Given
that the manual preparation of the samples left room for slight variations
in the thickness of the applied paint layers, it was decided to define certain
“sampling areas” which would provide relatively consistent paint areas for
the analysis. These sampling areas were described using the processed MA-
XRF maps, as they provided very clearly quantifiable comparison values.
An initial estimation of these sampling areas was done manually, after which
concentration maps were created for all the relevant elements for each sam-
pling area and statistical data was collected. If an area was found to have
clearly localized deviations, it would be slightly modified to remove them.
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Figure 5.2: RIS measurement in VNIR and SWIR of the sample background
(Melinex, Plexiglass and black cardboard).

A comparison between an initial area map and its modified version can be
seen in figure 5.3. The final sampling areas can be seen in figure 5.4. Having
these sampling areas defined, it was then possible to begin with the actual
analysis of the results.

The data from the three methods are analyzed separately, in order to
determine possible quantification procedures for each method.

Figure 5.3: Example of sampling area selection procedure. First an initial
area was manually defined. The area would then be modified based on the
XRF maps to avoid sample irregularities.
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Figure 5.4: Map of the different sampling areas for layer and mixture samples.

5.1 MA-XRF
During the fitting of the data, 13 elements were identified in the spectra. For
the analysis, only 3 elements will be taken into consideration, Fe, Cu and
Pb, which are the marker elements for each pigment. Figure 5.5 includes
the relevant elemental maps of the mixture samples, which show that the
intensity of the XRF signal tends to be proportional to the areal density of
each element (values of which are available in Appendix A). An exception to
this is the Pb-M map which shows little change in intensity with increasing
paint layer thickness and is instead only proportional to the elemental density
of Pb in the paint.

The relation between elemental density in the paint can be more clearly
seen in figure 5.6, which plots some paint mixture’s XRF signal as a function
of paint layer thickness. The behavior seen in these graphs is divided into
two sections: the curved region, where the intensity of the signal is strongly
related to the paint layer thickness, and the plateau region, where the in-
tensity of the signal is not related to the paint layer thickness. These two
sections are related to the self-absorption effect within the paint layers.

In the curved region, the entire depth of the paint layer contributes to the
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Figure 5.5: Most relevant MA-XRF maps of the mixture samples alongside
a visible photograph for reference.
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Figure 5.6: MA-XRF signal intensity of Cu-Kα for YO/BV samples.

signal. As the paint layer thickness increases, part of the characteristic X-rays
emitted by the bottom parts of the paint layer begin to be absorbed by the
top part of the paint layer. The thicker the paint layer, the more pronounced
this absorption effect becomes, producing the curvature of this region. This
continues until the point in which the characteristic X-rays emitted by the
bottom part of the paint layer are fully absorbed by the top part of the paint
layer. After this point, the plateau region is entered and an increase in paint
layer thickness no longer directly affects the signal intensity. There are ways
in which there can still be an indirect effect, but these will be covered later
in this chapter. The width of the curved region and the height of the plateau
region are characteristics dependent on certain fundamental factors related
to the absorption and emission of X-rays by the elements present in the paint.

The first step in gathering quantitative values from the MA-XRF data
was an attempt to model the behavior of the data using some of the known
experimental variables and determine if it is possible to determine the re-
maining experimental variables using said model. The first attempt was
based on a theoretical model for XRF signal intensity used by Alfeld for
analysis of MA-XRF maps,43 in which the signal intensity Nijk (number of
photons recorded) of a certain fluorescence line jk (transition k to a vacancy
in shell j) of a certain element i in a paint layer can be described using
equation 5.1:
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Nijk = t ∗mi ∗ Yijk ∗ Aijk (5.1)

Where t is the measurement time, mi is the irradiated mass, Yijk is the
sensitivity and Aijk is a term related to the self-absorption effect mentioned
previously. mi can be described using equation 5.2:

mi = wi ∗
(
b

2

)2

∗ π ∗ dρ

sinα
(5.2)

Where wi is the weight fraction of the element, b is the beam spot diame-
ter, d is the layer thickness, ρ is the density of the paint and α is the incidence
angle of the primary beam on the paint surface. Yijk can be described using
equation 5.3:

Yijk =
Ω

4π
∗ ε (Eijk) ∗ ωijk ∗ pijk ∗

∫ Emax

EEdge
ij

I0 (E) ∗ τij (E) dE (5.3)

Where Ω is the solid angle at which the radiation is recorded by the
detector, Eijk is the energy of the fluorescence line, ε (Eijk) is the detector
efficiency for Eijk, ωijk and pijk are the fluorescence yield and radiation rate
of the measured transition, respectively. Emax is the maximum energy of a
photon emitted by the source and EEdge

ij is the energy of the elements ab-
sorption edge for the specific shell. I0 (E) is the intensity of the primary
beam and τij (E) is the energy dependent elemental photoelectric cross sec-
tion. The integral in the equation is a function of the emission profile of the
X-ray source. Given that an emission profile for the X-ray source used was
not available, equation 5.3 is simplified, and Yijk is instead described using
equation 5.4:

Yijk =
Ω

4π
∗ ε (Eijk) ∗ ωijk ∗ pijk ∗ I0 (E0) ∗ τij (E0) (5.4)

Where E0 is an assumed representative value for the energy of the primary
beam. For this analysis, E0 is taken as two times EEdge

ij , which would ensure
the assumed energy value is always able to trigger the transition and also
provides somewhat of an average between lower energy X-rays, which are
more strongly absorbed by the paint layers, and the higher energy X-rays,
which are more weakly absorbed by the paint layers. ε (Eijk) depends on
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the kind of detector used. For the SDD detector used in these experiments
(described in section 3.1), ε (Eijk) can be described using equation 5.5:

ε (Eijk) = TBe (Eijk) ∗ TDeadLayer (Eijk) ∗ (1− Tvolume (Eijk)) (5.5)

T (Eijk) is the energy dependent transmission of the three layers of the
detector (TBe (Eijk) for the Be window, TDeadLayer (Eijk) for the dead layer
on the sensitive volume of the detector and Tvolume (Eijk) for the sensitive
volume of the detector) and is described using equation 5.6:

T (E) = e−µ(E)ρd (5.6)

Where µ is the energy dependent mass absorption coefficient. Informa-
tion on the thickness of the detector layers was unavailable and therefore
assumed values were taken based on similar detectors and recommendations
from scientists from the field. The thicknesses taken were 30 µm, 450 µm and
0.05 µm for the Be window, sensitive volume of the detector and the dead
layer, respectively.

Aijk, like Yijk, is also a function of the emission profile of the X-ray source,
and therefore the same simplification was done, which results in equation 5.7:

Aijk =
1− e−χ(E0,Eijk)ρd

χ (E0, Eijk) ρd
(5.7)

Where χ is a factor for the geometrically corrected mass absorption co-
efficients for primary and fluorescence radiation, described using equation
5.8:

χ (E0, Eijk) = µ (E0)
1

sin (α)
+ µ (Eijk)

1

sin (β)
(5.8)

Where β is the angle between the paint surface and the detector. When
calculating χ, the initial assumption of E0 can have a significant effect on
the accuracy of the calculated values, as the mass absorption coefficient of
the paint can vary significantly between different energies.

Out of all the factors used in the calculation, most are known values or
reasonable assumptions as to their value can be taken. The only two values
where this is not the case are I0 (E0) and Ω. All other values are related
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either to the sample, the measured fluorescence line or to the measurement
settings. With that in mind, and given that writing the full formula would
be cumbersome, for this research equation 5.1 is instead written as equation
5.9:

Nijk = A ∗KM ∗Kijk ∗ wi ∗
1− e−χ(E0,Eijk)ρd

χ (E0, Eijk)
(5.9)

with

KM = t ∗
(
b

2

)2

∗ 1

sinα
∗ 1

4
(5.10)

Kijk = ε (Eijk) ∗ τij (E0) ∗ ωijk ∗ pijk (5.11)

A ∝ I0 (E0) ∗ Ω (5.12)

KM is a factor related to the test settings and is a constant throughout
all measurements in this research. Kijk is a factor related to the emission and
detection measured fluorescence line and is a constant for each fluorescence
line. A is an empirical factor which allows to fit the model to the acquired
data and to correct for the unknown values I0 (E0) and Ω. The remaining
terms in equation 5.9 are related to the specific sample. It is important
to note that µ, and therefore χ, is a function of wi. In the calculations
for this research, the value of µ for each of the tested paint compositions is
calculated using the library XRAYLIB,78 the processes of which are described
by Schoonjans et al.79

A code was written to determine the appropriate values for A. This code
used a data set consisting of the average XRF signals of one fluorescence line
for one group of the mixture samples (YO/BV, BV/LW or YO/LW) to find
an appropriate value for A, which was initially assumed to be constant for
each of these data sets. An example of these results can be seen in figure
5.7. It can be seen that the model lines have roughly the correct shape
described earlier, but they fail to fit well with the data points used, either in
the curvature or plateau region. Given that A should only have an effect on
the overall height of the plateau region and not on the curvature of the curved
region, it is believed that there was something wrong in the determination
of χ. Several attempts were made to address these issues, but none were
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Figure 5.7: MA-XRF signal intensity of Cu-Kα for BV/LW samples and the
initial model.

successful. It was assumed that this discrepancy is a result of the initial
simplifications of the theoretical model and the assumptions made about
the value of E0. Because of this, it was decided to instead to use a further
simplified version of the model which is only a function of d, fit it to the
data using empirical factors, and determine if it is possible to extract certain
known experimental values from these factors. The model is described by
equation 5.13:

N = A ∗
(
1− e−B∗d

)
(5.13)

A and B are empirical factors which are calculated for each individual
paint mixture. As can be seen in figure 5.8, the described system fits the data
set more closely. Based on the relation between equation 5.9 and equation
5.13, the value of A should, in theory, be directly proportional to wi and
inversely proportional to χ. To verify this, the relation between the different
A values was studied using equation 5.14:

wi,Th =

Ax

χx,Th

A95%

χ95%,Th

(5.14)

Where wi,Th is the theoretical calculated weight fraction for the measured
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Figure 5.8: MA-XRF signal intensity of Cu-Kα and Pb-M for BV/LW sam-
ples and the improved model.

element, Ax is the A value for a given paint mixture in which the paint related
to the measurement is at concentration x, χx,Th is the calculated χ value for
the same paint, A95% is the A value for the paint mixture of the corresponding
group with a paint concentration of 95% and χ95%,Th is the calculated χ value
for that paint. In order to make the results easier to read, the wi,Th values
calculated are turned into paint concentration percentages by multiplying
them by 0.95. Part of results can be seen in table 5.1. The full results can



56 CHAPTER 5. DATA PROCESSING

be found in appendix B.

As can be seen, for certain elemental lines in certain paint combinations,
like Fe-Kα in YO/BV or Pb-Lα in BV/LW, the results are relatively accurate,
being only 7% off in the worst case. In some other cases, like Cu-Kα in
YO/BV, the calculated values are not accurate, but they roughly follow the
same increasing pattern of the real values. However, in other cases, like
Cu-Kβ in BV/LW, the calculated values in no way relate to the real values.

A line which is of particular interest is Pb-M. The low energy (0.58-3.74
keV) of this line means that it is highly absorbed by a paint layer, which
leads to the curvature region being very narrow. The results of the model,
pictured in figure 5.8, show such a behavior. However, it is possible to see
the model does not fit the measurement that well. In the measurement, the
intensity of the Pb-M signal decreases with increasing layer thickness for all 5
paint mixtures. This behavior is not what is expected from any XRF signals
and, as can be seen in figure 5.8, the used model does not allow for a decrease
in signal. The reason behind this behavior is believed to be related to sensor
dead time, which is the time in which the sensor is unable to record an event
because it is busy recording a simultaneous event. In Pb containing paints,
the increase in layer thickness leads to a dramatic increase in signal intensity
for the Pb-L lines, which could be saturating the sensor. However, as can be
seen in table 5.1, the calculated concentrations match the actual values fairly
well, with the largest error being of <5%. This would imply that either the
effect of dead time is close to linear within the tested mixture groups or the
fitting method used is not affected by it.

The dead time is most often expressed as the percentage of time in which
the sensor is unresponsive and is a function of the input rate and their relation
is non-linear.43 Because of this, it is fairly unexpected for the dead time
to have such a uniform effect across the different paint mixtures, as the
different paints are expected to have significant differences in X-ray emission.
Therefore, it would be safe to assume that dead time has a non-uniform effect
across the measurement that affects the signal of all fluorescence lines in
different ways. However, looking at figure 5.8, it can be seen that, at least for
Pb-M, even though the intensity of the effect varies with the concentration,
it seems to have a nearly linear relation with paint layer thickness.

Given the limited information on the X-ray source, it is not possible to
accurately determine the exact effect of sensor dead time. However, during
the later stages of this research, a new version of DataMuncher was released
which included a function to correct for dead time. The data was processed
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Table 5.1: Results of the concentration calculations based on the MA-XRF
model.
Fluorescence

Line Mixture Theoretical
Composition (%)

Calculated
Composition (%)

Error
(%)

Fe-Kα

YO/LW

95 95.00 0.00
80 99.66 19.66
50 49.96 0.04
20 16.57 3.43
05 04.28 0.72

YO/BV

95 95.00 0.00
80 79.29 0.71
50 53.83 3.83
20 21.48 1.48
05 05.59 0.59

Cu-Kα

BV/LW

95 95.00 0.00
80 159.17 79.17
50 162.09 112.09
20 83.28 63.28
05 25.32 20.32

YO/BV

95 95.00 0.00
80 89.50 9.50
50 69.54 19.54
20 34.37 14.37
05 11.43 6.43

Cu-Kβ

BV/LW

95 95.00 0.00
80 167.92 87.92
50 181.80 130.80
20 98.35 78.35
05 32.59 27.59

YO/BV

95 95.00 0.00
80 89.76 9.76
50 70.92 20.92
20 33.51 13.51
05 10.12 5.12

Pb-Lα

YO/LW

95 95.00 0.00
80 96.07 16.07
50 69.04 19.04
20 26.08 6.08
05 10.97 5.97

BV/LW

95 95.00 0.00
80 79.43 0.57
50 45.72 4.28
20 13.03 6.97
05 01.83 3.17
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Figure 5.9: MA-XRF dead time corrected signal intensity for Pb-M in
BV/LW samples and the improved model.

again using this dead time correction and the same analysis was conducted.
Part results of this analysis are presented on table 5.2. The full results are
available in appendix C. This correction helps increase the accuracy of some
of the measurements, like Cu-Kα in YO/BV, but also decreases the accuracy
in others, like Fe-Kα in YO/BV. The results which did not relate to the real
values in any significant way were not greatly affected by this correction.
Figure 5.9 shows the fitted lines for Pb-M in BV/LW, which makes it easy to
see that the dead time correction does indeed make the values more closely
resemble what would be expected of these signals, with the values either
remaining stable or slightly increasing with an increase in thickness from
0.005 cm to 0.01 cm. However, the Pb-M signal still experiences a drop at
0.015 cm throughout all measurements, which means the dead time correction
is not working quite as well as would be desired.

During the analysis of the single layer samples, the non-linear relation
between the areal density of the elements and the intensity of the XRF signal
was further proven. Figure 5.10 shows this relation for a few of the lines.
Figure 5.10.a shows that it is not possible to determine areal density from
the XRF signal intensity of a single element alone. It is also possible to see
that the plotted results could be divided into groups related to the different
paint layer thicknesses (most visible in the Pb-M signal). To better show
the relation between the two factors, figure 5.10.b shows only the results
for one paint layer thickness for the specific fluorescence lines. In all cases,



5.1. MA-XRF 59

Table 5.2: Results of the concentration calculations based on the MA-XRF
model using the dead time corrected data.
Fluorescence

Line Mixture Theoretical
Composition (%)

Calculated
Composition (%)

Error
(%)

Fe-Kα

YO/LW

95 95.00 0.00
80 91.80 11.80
50 47.09 2.91
20 16.32 3.68
05 04.19 0.81

YO/BV

95 95.00 0.00
80 87.92 7.92
50 83.04 33.04
20 39.91 19.91
05 11.41 6.41

Cu-Kα

BV/LW

95 95.00 0.00
80 168.94 88.94
50 117.15 67.15
20 52.93 32.93
05 15.33 10.33

YO/BV

95 95.00 0.00
80 80.76 0.76
50 52.83 2.83
20 18.76 1.24
05 05.64 0.64

Pb-Lα

YO/LW

95 95.00 0.00
80 98.75 18.75
50 68.52 18.52
20 24.99 4.99
05 12.46 7.46

BV/LW

95 95.00 0.00
80 83.55 3.55
50 54.30 4.30
20 20.28 0.28
05 02.97 2.03

Pb-M

YO/LW

95 95.00 0.00
80 80.17 0.17
50 48.21 1.79
20 16.18 3.82
05 05.56 0.56

BV/LW

95 95.00 0.00
80 81.27 1.27
50 53.55 3.55
20 21.25 1.25
05 05.55 0.55
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Figure 5.10: Relation between areal density and XRF signal intensity for a)
all single-layer samples and b) 150 µm single layer samples.

the measurements follow a curve between the origin (0,0) and the signal of
the single-pigment paint. The shape of the curve is determined by the mass
absorption coefficients of the mixed paints. If the paint related to the element
being measured is mixed with a paint with a lower mass absorption coefficient
than its own, the curve is downward facing (concave downward or concave).
If instead, it is mixed with a paint with a higher mass absorption coefficient,
the curve is upward facing (concave upward or convex). How pronounced
the curvature is depends on how high the absolute value of the difference of
the mass absorption coefficients of the two paints are. In some cases, like
YO/BV mixture, the effect on the signal intensity of the Cu-Kα line from a
reduction of the mass absorption coefficient of the paint is more significant
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than the effect from reducing the elemental density, leading to the highest
signal intensity being related to a sample with a lower amount of Cu.

The MA-XRF maps of the layer samples, seen in figure 5.11, clearly show
the effect of layering on the signal intensity. The presence of thick single-
pigment paint layers provides a useful reference from which it is easily seen
that the presence of an overlying layer reduces the signal intensity of the
underlying layer and sometimes completely blocks it. The exact effect de-
pends on the overlying layer’s mass absorption coefficient and thickness. The
results confirm that, as expected, increasing the thickness of the overlying
layer or its mass absorption coefficient decreases the signal intensity of the
underlying layer. However, the lack of a good reference point when analyzing
a painting makes drawing such conclusions much more complicated.

Equation 5.15, a modified version of equation 5.1, allows for the consid-
eration of the effect of overlying paint layers on the XRF signal intensity:43

Nijk = t ∗mi ∗ Yijk ∗ Aijk ∗ A′ijk (5.15)

With A′ijk a term related to the absorption of the overlying layers defined
by equation 5.16:

A′ijk = e−χ
′(E0,Eijk)ρ′d′ (5.16)

Where χ′, ρ′ and d′ are the geometrically corrected mass absorption, the
density and the thickness of the overlying layer, respectively. χ′ is calculated
using equation 5.8 but using the µ values of the overlying layer (µ′).

From the previous attempt to model single layers, it was known that too
many variables were unknown to be able to accurately describe the XRF
signal behavior. Based on that fact and also the limited number of samples
available, it was decided to not attempt to model this behavior as the results
would, at best, be similar to those described for the single-layer samples.
However, comparing the signal of the samples available does provide some
valuable insight. Figure 5.12 shows a comparison between different samples
containing 50 µm layers of the paint related to each elemental fluorescence
line. Signals coming from underlying layers are less intense than those coming
from surface layers and the degree by which the signal is blocked depends
on the mass absorption coefficient of the overlying layer, which matches the
theoretical model described earlier. The behavior of surface layers is slightly
more complicated.
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Figure 5.11: Most relevant MA-XRF maps of the layer samples alongside a
visible photograph for reference.
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Figure 5.12: MA-XRF signal intensity for samples including 50 µm single-
pigment layers.

Based on the issues previously noted with dead time, it is expected that
the measurements from a single 50 µm layer would be different than those
from a 50 µm overlying layer. However, if dead time were the only contribut-
ing factor, its effect would be expected to be a decrease in the signal intensity,
as the overlying layer would emit a similar amount of photons, but the sensor
would detect less of them due to the increased number of photons coming
from the underlying layer. As can be seen in table 5.3, this is not quite the
case. The average signal intensity of overlying layers is in some cases higher
than that of single layers. It is believed that this effect is primarily due to a
combination of two factors which have not been considered so far: reduction
in layer thickness of paint layers during drying and secondary fluorescence.

Secondary fluorescence is the effect by which characteristic fluorescence
is emited as a result of electrons being excited to higher energy states not
by the radiation from the primary beam, but by the fluorescence radiation
emitted by the atoms in the sample. For this to happen, the edge energy
related to the fluorescence line being measured must be lower than the energy
of the fluorescence radiation of another element in the sample (p.e. Fe-K
fluorescence radiation can result from secondary excitation from Cu-K or
Pb-L radiation, but not from Pb-M radiation). Given that the intensity of
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fluorescence radiation is significantly lower than that of the primary beam,
the effect of secondary fluorescence on the total signal intensity would be very
low, but it is something which the model described in equation 5.15 does not
account for. The effects of self-absorption and secondary fluorescence in the
sample are jointly known as matrix effects, and are a common source of errors
in quantitative XRF analysis.80

Reduction in layer thickness happens because, when oil paint dries, it

Table 5.3: Average signal intensities for samples including 50 µm single-
pigment layers.
Fluorescence Line Sample Layering Average Signal Intensity (cps)

Fe-Kα

Single Layer 22456.040
Over 50 µm BV 20761.574
Over 100 µm BV 21399.473
Over 50 µm LW 22677.082
Over 100 µm LW 26306.800
Under 50 µm BV 5366.441
Under 50 µm LW 123.491

Cu-Kα

Single Layer 61640.970
Over 50 µm BV 59385.875
Over 100 µm BV 63773.023
Over 50 µm LW 61441.900
Over 100 µm LW 66817.730
Under 50 µm BV 39010.830
Under 50 µm LW 3736.820

Pb-Lα

Single Layer 35030.929
Over 50 µm YO 37067.359
Over 100 µm YO 37697.848
Over 50 µm BV 35881.065
Over 100 µm BV 37956.537
Under 50 µm YO 24232.932
Under 50 µm BV 6603.679

Pb-M

Single Layer 1788.405
Over 50 µm YO 1817.866
Over 100 µm YO 1808.883
Over 50 µm BV 1813.048
Over 100 µm BV 1797.864
Under 50 µm YO 12.441
Under 50 µm BV 9.640
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Figure 5.13: Cross-section view of a double layer sample including thickness
measurements at two points.

experiences a reduction in volume and an increase in mass.81 For the paint
layer samples considered in this research, this leads to a reduction in the
layer thickness. As far as XRF measurements are concerned, this shrinkage
has little effect on the signal intensity, since the areal density of the pigments
does not change. However, the shrinkage can have a significant effect during
the sample preparation process for the double layer samples. Since it was
necessary to wait for the underlying layers to dry before applying the over-
lying layers, the underlying layers would shrink. Given that the application
thickness of the overlying layer was measured relative to the support rather
than the top of the underlying layer, the actual thickness of the overlying
layer would be directly dependent on the thickness of the dry underlying
layer. Because of this, the actual thickness of the overlying layer might be
higher than what was initially expected. It was originally planned to take
cross sections of the different samples to determine the actual thickness of
the constituent paint layers, but this was not possible due to the 2020 Covid-
19 pandemic. A selection of 5 cross section samples were analyzed using a
digital microscope as a trial right before the quarantine was put in place. An
example of this analysis can be seen in figure 5.13 and the overall results can
be seen in table 5.4. As can be seen, the results vary significantly, and the
number of samples is far too limited to draw any strong conclusions. Existing
research has found that linseed oil has a decrease in volume of around 8%,
but which changed significantly between different types of oil,81 and is very
different from the measurements acquired during this research. Given that
the oil ratio changes depending on the paint, the effect of shrinkage would
be different for each paint. However, comparing the thickness measurements
of a 100 µm single layer to a 100 µm overlying layer, it does seem to be that
the overlying layer is thicker, implying that the shrinkage of the underlying
layer did affect the final thickness of the overlying layer.

The unreliable layer thickness should have a much higher effect on the
XRF signal intensity than secondary excitation, but without a comprehensive
study of the paint layer thicknesses it is not possible to determine the exact
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Table 5.4: Layer thickness measurements from optical microscopy.
Sample Layer Measurement (µm) Average Shrinkage (%)

50 µm LW under
100 µm YO

LW
26.6

33.637.1
35.9

YO
85.1

25.266.0
73.2

50 µm LW under
100 µm BV

LW

72.4

-24.373.0
64.9
38.3

BV

104.6

-5.0132.0
129.8
53.5

Mixture 5%BV,
95%YO

50 µm
30.0

44.724.5
28.5

100 µm

68.5

45.544.8
46.8
58.0

150 µm
113.4

22.5116.9
118.3

magnitude of the two effects, which makes quantitative analysis impossible.
However, a semi-quantitative determination of the stratigraphy could still be
possible.

The first step in determining the stratigraphy would be to identify what
elements are present in the surface of the samples. For some elements it is
fairly simple to determine their presence on a paint surface as they have a
low energy fluorescence line which is highly absorbed by any covering paint
layer, like the M-lines for Pb and Hg. Setting a simple threshold already
allows for identifying when the element is present on the surface. Figures
5.14 and 5.15 shows the results of this technique for identifying surface Pb
in the mixture and layer samples. Several threshold values were tested but
50 counts was the highest one which would reliably identify the presence of
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Pb, even the small amounts present in the small paint remains between the
mixture samples.

For elements without such a fluorescence line it becomes slightly more
difficult. Only setting a threshold would not work as a signal with low in-
tensity could come either from a low amount of the element at the surface
or from an underlying layer. A possible alternative would be to use the ratio
between the signal intensities of two fluorescence lines of the same element
to determine if a signal is being blocked by an overlying layer or not. The
ratio between emitted intensities of fluorescence lines from a single element
is a constant, but the measured intensity ratio depends on what lies between
the sample and the detector. This phenomenon has already been used suc-
cesfully to account for the effect of a non-uniform overlying Pb layer on a
Zn distribution map using the measured intensity ratio between the Zn-Kα
and Zn-Kβ lines.43 Using the deviation from the expected ratio to determine
the effect of the overlying layer implies that the lack of a deviation could be
used to determine the lack of an overlying layer. By mapping the deviation
from the ratio, it is possible to determine the likelihood that the element is
present at the surface.

This method would work for Fe and Cu, with their Kα and Kβ lines. It
could also work with Pb using its Lα and Lβ lines, but given that it has
already been proven to be possible to determine its surface presence using
M-lines, it will not be considered. For Fe and Cu, the Kα/Kβ ratios are
7.443 and 7.472, respectively. For simplicity, both values are approximated
to 7.5 for these calculations. For mapping, first a minimum signal threshold
was applied to remove any pixels in which the signal was not intense enough
to imply any presence of the element on the surface. Several values were
tested based on the signal intensities from table 5.3. Ultimately, 100 counts
was found to provide the most reliable results. Secondly, thresholds were
applied to the line ratio limiting them to only values between 1 and 14,
which eliminates unreasonable measurement values in case they were not
removed by the signal threshold. Then the deviation of the line ratio from
the expected value was scaled to half the range considered (6.5) and inverted
using equation 5.17:

LRdev = 1− |LR− 7.5|
6.5

(5.17)

Where LRdev is the scaled line ratio deviation and LR is the line ratio.
Figures 5.14 and 5.15 show the results of this calculation for Fe and Cu in
mixture and layer samples. For clarity, the normalized deviation results have



68 CHAPTER 5. DATA PROCESSING

Figure 5.14: MA-XRF based surface maps of mixture samples. The brighter
the area the more likely the respective elements presence at the surface.
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Figure 5.15: MA-XRF based surface maps of layer samples. The brighter
the area the more likely the respective elements presence at the surface.

been grouped into ranges (0-0.5,0.5-0.7,0.7-0.9 and 0.9-1). It can be seen that
this method works well at identifying surface presence of an element when the
element is present in large amounts, but somewhat struggles with recognizing
when the element is present at the surface only in low amounts or when it
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is present in relatively thin layers. From figure 5.14 it is also possible to see
that matrix effects have an effect on the accuracy of this method, as when Fe
or Cu are mixed with the more strongly absorbing Pb, the accuracy decreases
compared to when Fe and Cu are mixed together. When the element is in an
underlying layer, the algorithm’s ability to identify it as an underlying layer
seems to depend on how absorbing the overlying layer is, with mixed success
in the considered samples. However, all the areas in which a high likelihood
of surface presence is found do match with areas in the sample where there
is surface presence, so there are no false positives.

5.2 RIS - VNIR

The RIS data recorded in the VNIR range was initially handled using the
more familiar methods, namely PCA and SAM, depending on the data set.
The mixture samples were analyzed using PCA, the results of which can be
seen in figure 5.16. It can be seen that it is possible to map most of the
different paints correctly. However, it is shown that such a method struggles
with LW in particular, as <20% LW when mixed in with either BV or YO
does not result in individual clusters for the different mixtures. It is believed
this is because LW has a lesser effect on the VNIR spectra than YO or BV.
Given that VNIR reflection is strongly surface related, paint layer thickness
does not affect the reflectance spectra and the samples are therefore clustered
by the paint mixture. It is well known that it is possible to determine the
ratio of the constituent pigments of a paint using the Kubelka-Munk theory
of reflectance57 if the constituent pigments are known. Rohani et al. recently
applied an algorithm based on a neural network to perform non-linear unmix-
ing of reflectance spectra, removing the requirement for previous knowledge
of the constituent pigments.62 Because of this previous success, quantitative
compositional analysis based on VNIR was not attempted.

The same method was attempted with the layer samples, which, as can
be seen in figure 5.17, resulted in clusters related to each surface paint. The
cluster related to LW is significantly broader than the other two, which im-
plies a greater variety in the spectra and led to the belief that it would be
possible to differentiate between the single layer and double layer samples.
However, there was no clear way of dividing the cluster to map the different
areas. Because of this, a manual endmember selection and spectral angle
mapping was attempted, the results of which can be seen in figure 5.18. It
was found that it was somewhat possible to map double layer samples in
which the overlying layer was LW. It is possible to see that the spectra for
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Figure 5.16: Results of the PCA analysis of the VNIR scan of the mix-
ture samples a)Visible photograph b)Cluster maps c)PCA scatter plot from
which clusters were defined. The missing column is clustered together with
the background near the origin of the scatter plot d)Spectra of YO/BV clus-
ters. Cluster 5 (C5) relates to 95% BV, 5% YO and later clusters increase
YO amount e)Spectra of YO/LW clusters. C9 relates to 95% YO, 5% LW
and later clusters increase LW amount f)Spectra of BV/LW clusters. C1
relates to 95% LW, 5% BV and later clusters increase BV amount.
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Figure 5.17: Results of the PCA analysis of the VNIR scan of the layer sam-
ples a)Visible photograph b)Cluster maps c)PCA scatter plot from which
clusters were defined d)Spectra of the clusters. Each cluster relates to a
pigment, C1 to LW, C2 to YO and C3 to BV.

these samples are very close to that of LW but also has minor reflectance
features from the underlying layer as well, namely a maximum reflectance
around 460 nm for the BV/LW samples and a minor peak around 750 nm
for the YO/LW samples. However, the mapping of these samples has limited
accuracy as the differences between the three spectra related to LW are very
small and the manual selection of the spectra does not lead to the optimal
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Figure 5.18: Results of the endmember analysis of the VNIR scan of the
layer samples a)Visible photograph b)Spectral angle map c)The 9 manually
selected spectral endmembers d-f)Detail view of the endmembers, divided by
the surface layer. LW is the only pigment which shows identifiable features
from underlying layers.
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selection for the mapping. Attempting the same for samples with overlying
BV or YO layers provided similarly mixed results, but the resulting spectra
lack any characteristic features which could be used to identify the underlying
paint layer.

5.3 RIS - SWIR
For the RIS data recorded in the SWIR range, the mixture samples were
analyzed using PCA, the results of which can be seen in figure 5.19. The
scatter plot shows small clusters grouped into larger streaks. The streaks
relate to the different paint mixtures and the clusters relate to individual
samples. In some cases, the thicker samples of a single paint mixture cluster
together. The YO/BV mixtures are clustered too close together to accurately
separate them, but it is still possible to recognize the same streaks that are
formed for the other samples. The spectra shown in figure 5.19.d-f show the
effect of paint composition and layer thickness for selected samples.

For the study of the layer samples, it is important to consider that SWIR
has a greater penetration depth than VNIR and therefore has greater poten-
tial to provide more information about layer stratigraphy. However, this also
means that the background could have a greater effect on the reflectance
signal. Both the background and the binder present absorption features
in the spectral region from 1500 to 2500 nm which overlap with the com-
bination bands of the present pigments. Thus it was decided to focus on
the spectral range between 1333 and 1584 nm, where the three considered
pigments present OH stretching overtone features, whilst the linseed oil and
background have limited contribution.60 The same procedure using PCA was
used and the results are detailed in figure 5.20. The resulting scatter plot did
not present as clear clustering as the mixture samples, but still some clus-
ters could be defined. The clusters were mostly related to different layering
configurations, but they were not completely reliable and could not be used
to accurately map different layer thicknesses.

It was hoped the depth of the features would provide information as to
the areal density of the pigment. For the analysis, the spectra were cut to
the desired spectral range and normalized to the highest value of the data
set. In order to determine the depth of the features, several methods were
tested.

First, a numerical integration for each feature was attempted. A specific
channel range was defined for each feature and a simple trapezoidal inte-
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Figure 5.19: Results of the PCA analysis of the SWIR scan of the mix-
ture samples a)Visible photograph b)Cluster maps c)PCA scatter plot from
which clusters were defined d)Spectra of clusters related to the three 50%
BV/LW samples. C7 relates to 50 µm and later clusters increase the layer
thickness e)Spectra of clusters related to 50 µm samples of BV/LW mix-
tures. C1 relates to 95% LW, 5% BV and later clusters increase BV amount.
f)Spectra of clusters related to 150 µm samples of BV/LW mixtures. C3
relates to 95% LW, 5% BV and later clusters increase BV amount.
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Figure 5.20: Results of the PCA analysis of the SWIR scan of the layer
samples on the range 1333 and 1584 nm a)Visible photograph b)Cluster
maps c)PCA scatter plot from which clusters were defined. A full legend
for the spectra is committed as clusters were not well defined and did not
always relate to a specific layer configuration d)Spectra of clusters related to
LW-including samples. e)Spectra of clusters related to YO-including samples
f)Spectra of clusters related BV-including samples.
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Figure 5.21: Results of the integral analysis of the SWIR data of single-layer
LW samples.

gration was conducted. The integration ranges were: 1381-1447 nm for YO,
1405-1489 nm for LW and 1471-1519 nm for BV. This method did not present
any reliable results, but some aspects, like Pb in single-layer samples, showed
roughly the expected behavior, as seen in figure 5.21, with increasing feature
depth for increasing areal density. The limited effectiveness of this method
is believed to be related to the defined integration ranges. The integration
ranges were defined to include the entire width of the features, which meant
some were were slightly overlapping. However, the procedure would not dis-
tinguish between the contribution of the different features within the overlap
areas and therefore any samples which included pigments with overlapping
features would have inherently inaccurate results.

The next attempt was based on Non-negative least square (NNLS) fitting.
A sample spectrum which would be used for the fitting was taken for each
of the pigments from the acquired data set. The 150 µm single-layer single-
pigment samples were expected to have the clearest representation of the
reflectance features and were therefore selected as the fitting spectra. The
fitting spectra can be seen in figure 5.22. The NNLS fitting was done using
the Batch generator function of datahandlerp. The results of this showed a
better correlation with the areal density, as can be seen in figure 5.23. The
areal density of BV and LW in the mixture samples seems to have a roughly
linear relation with the feature depth, whilst the depth of the feature for YO
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Figure 5.22: Fitting spectra for the NNLS analysis.

Figure 5.23: Results of the NNLS analysis of the SWIR data and their rela-
tion to pigment areal density.
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Figure 5.24: Results of the NNLS analysis of the SWIR data for samples
including 50 µm single pigment layers.

seems to be proportional to the areal density but not linearly so. To verify
this, the depth of the reflectance feature was normalized against the 95%
sample in the same way as was done with the XRF signal intensity, the results
of which are detailed in table 5.5. The calculated pigment concentrations for
the 150 µm samples fell within 7% for the YO in YO/BV mix and 5% for
the LW in LW/BV but was not particularly accurate for the other cases.

For single-layer single-pigment samples, the areal density of BV and LW
in the mixture samples seem to be proportional to the feature depth, similarly
to the mixture samples, but for YO these two factors do not seem to have
any significant relation.

To study the effect of layering, figure 5.24 shows the feature depth for
all samples including 50 µm layers of each corresponding paint. Underlying
layers have a lowered feature depth, but overlying layers have mixed results,
with some pigment combinations increasing feature depth (like BV in BV
over LW) whilst others decrease it (like YO in YO over BV). Based on a
manual analysis of the average spectra of the samples, these patterns do not
quite match the real behavior. Whilst the BV feature depth is intensified
by the presence of an underlying LW layer, the YO feature also becomes
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Table 5.5: Quantification results of SWIR NNLS analysis.

Pigment Mixture Theoretical
Composition (%)

Calculated
Composition (%)

Error
(%)

YO

YO/LW

95 95.00 0.00
80 98.72 18.72
50 91.18 41.18
20 36.72 16.72
05 00.00 5.00

YO/BV

95 95.00 0.00
80 84.43 4.43
50 56.67 6.67
20 22.83 2.83
05 01.54 3.46

BV

BV/LW

95 95.00 0.00
80 110.19 30.19
50 78.65 28.65
20 40.59 20.59
05 12.26 7.26

YO/BV

95 95.00 0.00
80 70.92 9.08
50 36.43 13.57
20 12.81 7.19
05 02.65 2.35

LW

YO/LW

95 95.00 0.00
80 56.35 23.65
50 18.34 31.66
20 00.00 20.00
05 00.00 5.00

BV/LW

95 95.00 0.00
80 75.49 4.51
50 46.13 3.87
20 16.00 4.00
05 04.54 0.46
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slightly deeper with an underlying BV layer. However, the average spectra
vary somewhat between different samples of the same configuration, and the
pixel spectra vary rather significantly within each sample, thus it is avoided
to draw a conclusion as to how accurate these patterns actually are.

The next attempt was based on Non-negative matrix factorization (NMF),
a method which has been used successfully for XRF analysis.82 Unlike NNLS,
NMF does not require the selection of fitting spectra but instead generates
a feature matrix during the analysis. Another difference in this attempt was
that instead of using the usual reflectance spectra, the spectra was mirrored
vertically, such that the reflectance features were peaks rather than valleys.
However, the term "depth" is still used to describe what would now techni-
cally be the hight of the features, for consistency. The NMF was conducted
using the Batch generator function of datahandlerp with the settings de-
tailed in table 5.6. Since the mixture samples and layer samples data sets
were handled separately, the generated feature matrices were different for
each data set. The features for each dataset are shown in figure 5.25.a. It is
possible to see the resulting features are fairly different for the two data sets,
but in both sets a single feature can be found that relates to each pigment,
one feature relates to the background and the remaining one seems to be
some combination, either constructive or destructive, of the other features.
Because of the different feature matrices, the results of the two data sets are
not comparable to each other and must be considered separately.

The results obtained were similar to previous ones, with some samples
and pigments having better results as can be seen in figure 5.25.b. The areal

Table 5.6: Settings for the SWIR NMF analysis.
Setting Value

N_components 5
init nndsvd
solver cd
beta_loss frobenius
tol 0.0010
max_iter 2000
random_state 0
alpha 0.00
l1_ratio 0.00
verbose Yes
shuffle No
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Figure 5.25: a)NMF fitting spectra for the two data sets b)Results of the
NMF analysis of the SWIR data and their relation to pigment areal density.
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Figure 5.26: Results of the NMF analysis of the SWIR data for samples
including 50 µm single pigment layers.

density of YO and LW in the mixture samples had a clearer correlation to
the feature depth than those achieved using NNLS, but BV had worse. YO
single-layer samples have a greater spread in their results, but BV and LW
single-layer samples show a very strong correlation. It is believed the better
correlation of the results has to do with the use of a “background” feature,
which NNLS did not use. For comparison, the same quantification method
used with the NNLS results was done with these results, having the depth
of the reflectance feature normalized against the 95% sample, but the results
are less accurate, as can be seen in table 5.7. The decrease in accuracy is
believed to be due to the extra “combination” feature affecting the relation
between the other features.

To observe if similar patterns arise regarding the effect of layering, the
same was done as was done earlier for the NNLS results, comparing the
results of all samples which included a 50 µm layer of the corresponding
paint. The result of this can be seen in figure 5.26. Again, underlying layers
have a lower feature depth and overlying layers do not have any consistent
pattern, and those identified in the NNLS analysis are no longer present.

To attempt to improve the results, another NMF analysis was conducted
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Table 5.7: Quantification results of SWIR NMF analysis.

Pigment Mixture Theoretical
Composition (%)

Calculated
Composition (%)

Error
(%)

YO

YO/LW

95 95.00 0.00
80 86.46 6.46
50 83.10 33.10
20 47.55 27.55
05 39.59 34.59

YO/BV

95 95.00 0.00
80 88.92 8.92
50 72.09 22.09
20 51.16 31.16
05 34.99 29.99

BV

BV/LW

95 95.00 0.00
80 126.66 46.66
50 107.72 57.72
20 86.04 66.04
05 66.64 61.64

YO/BV

95 95.00 0.00
80 84.84 4.84
50 74.41 24.41
20 65.06 45.06
05 62.17 57.17

LW

YO/LW

95 95.00 0.00
80 56.51 23.49
50 45.23 4.77
20 29.12 9.12
05 28.49 23.49

BV/LW

95 95.00 0.00
80 77.24 2.76
50 49.56 0.44
20 27.19 7.19
05 18.58 13.58
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Figure 5.27: Feature matrix for a 4 component NMF analysis of the layer
samples.

using 4 components instead of 5, hoping that this would remove the com-
bination feature. However, this was not the case, as can be seen in figure
5.27. Instead of removing the combination feature, it kept it and somewhat
combined the YO feature with the background feature.

Based on the improved results of the NMF, it was decided to attempt the
NNLS a second time, but this time using the modified spectra used in the
NMF trial rather than the reflectance spectra and a different selection proce-
dure for the fitting spectra. Instead of having only three fitting spectra, one
for each pigment, four spectra were used as to also include a possible back-
ground contribution. The selected fitting spectra can be seen in figure 5.28.
The background contribution was taken as a constant across the considered
bands for simplicity. The pigment spectra were normalized as to remove
the differences in base reflectance which were very noticeable in the previous
NNLS attempt, but which should now be accounted for by the background
spectra.

The results of the procedure are visible in figure 5.29. The relation be-
tween feature depth and areal density is slightly improved for mixture and
single-layer samples, except for unmixed YO single-layer samples which con-
tinue to lack any strong relation. The same quantification method was again
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Figure 5.28: Fitting spectra for the second NNLS analysis.

attempted with these results, but the calculated values are less accurate than
those achieved in the first NNLS attempt, as can be seen in table 5.8. The
results from the double-layer samples, which can be seen in figure 5.30, did
not exhibit a significant change in the pattern previously observed.
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Figure 5.29: Results of the second NNLS analysis of the SWIR data and
their relation to pigment areal density.

Figure 5.30: Results of the second NNLS analysis of the SWIR data for
samples including 50 µm single pigment layers.
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Table 5.8: Quantification results of the second SWIR NNLS analysis.

Pigment Mixture Theoretical
Composition (%)

Calculated
Composition (%)

Error
(%)

YO

YO/LW

95 95.00 0.00
80 89.18 9.18
50 81.03 31.03
20 42.92 22.92
05 25.25 20.25

YO/BV

95 95.00 0.00
80 85.79 5.79
50 63.26 13.26
20 33.14 13.14
05 11.32 6.32

BV

BV/LW

95 95.00 0.00
80 111.62 31.62
50 82.17 32.17
20 47.95 27.95
05 22.14 17.14

YO/BV

95 95.00 0.00
80 70.95 9.05
50 37.52 12.48
20 14.41 5.59
05 04.47 0.53

LW

YO/LW

95 95.00 0.00
80 47.52 32.48
50 19.50 30.50
20 00.82 19.18
05 00.00 5.00

BV/LW

95 95.00 0.00
80 74.81 5.19
50 41.30 8.70
20 13.42 6.58
05 00.00 5.00
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Discussion

This research aimed to provide quantitative data regarding two factors of
paint layers: paint composition and paint stratigraphy. These two factors
are inherently tied and affect one another, but for the sake of simplicity, they
will first be considered separately for the evaluation of the efficacy of the
tested quantification methods.

6.1 Paint Composition
The methods tested for quantifying paint composition had mixed results.
Both the methods through RIS and through MA-XRF had some successes
but were not completely reliable.

It is well known that a single XRF measurement can deliver concentration
information of analyzed samples.80,83 The results acquired in this research
seem to imply that a collection of XRF measurements conducted under the
same circumstances can provide relative concentration information as well.
It is believed that the lack of information regarding the radiation source sig-
nificantly hindered the quantification methods based on XRF measurements
attempted in this research and that accurate quantitative analysis of paint
composition is unlikely to be successful without it. However, it is clear that
there are other factors, like dead time, which further complicate the quan-
tification due to their uneven effect across the measured samples.

VNIR-RIS, particularly in the visible range (400-750 nm), has long been
proven to be able to provide information on the composition of surface paint
layers. However, without any previous information on pigments present,
quantitative analysis based spectral unmixing is considered too computation-
ally intensive for practical use.62 AI-driven methods have proven successful

89
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at addressing these issues. However, these methods have thus far only been
used for identifying pigments present in considerable amounts but have not
been tested for pigments present in small amounts (<10%).

SWIR-RIS, being a much more recent addition to the painting’s analy-
sis toolbox, still requires a lot more work on the data analysis procedures
before it can be practically useful in quantitative analysis. Even though
this technique suffers from the same setbacks as its VNIR counterpart, re-
quiring previous information on pigments present, the tests prove that it is
possible to gather some quantitative information from the acquired spectra.
However, the tested quantification methods require the analyzed pigments
to have specific reflectance features, which somewhat limits their applica-
bility. The effect of the binder could also further limit the applicability of
these methods, as its reflectance features could overlap those of the present
pigments.

Given the specific strengths of each technique, it is strongly believed that
a mixed MA-XRF/RIS approach would provide more accurate quantitative
data, as XRF results could be used to verify the results from quantitative
RIS analysis or vice versa.

6.2 Paint Stratigraphy
A full quantitative determination of paint layer stratigraphy was not possible
with the tested methods, but it was possible to distinguish between surface
and subsurface paint layers using XRF and VNIR-RIS but not SWIR-RIS.

In most cases, XRF measurements will not allow distinguishing between
an element being present in large amounts in a subsurface layer or in small
amounts in a surface layer from the intensity of a single fluorescence line.
There are some elements, like Pb and Hg, which have very surface specific
fluorescence lines, that allow for identifying their presence in a surface layer.
For elements that do not have these kinds of fluorescence lines, using the
relative intensity of different lines from that element in combination with the
absolute intensity of the lines, it becomes possible to determine the likeli-
hood of that element being present at the surface. If knowledge of the paint
composition is available, a description of the paint layer thickness is also
possible.

VNIR-RIS is the most reliable method for identifying surface layers, but
it does not provide any further information. However, if the pigments on



6.3. OVERALL 91

the surface layer are not strongly blocking, like LW, some features from
underlying layers might be slightly visible in the spectra, obfuscating the
results.

SWIR-RIS proved useful to distinguish areas with different paint layer
stratigraphy, but the results acquired were not entirely accurate and it was
not possible to gather further quantitative information on the stratigraphy
using the tested methods. The greater penetration depth of the method
makes it suffer from a similar issues as MA-XRF, as it is difficult to distin-
guish if a feature is coming from a pigment being present in large amounts
in a subsurface layer or in small amounts in a surface layer. A comparison
of magnitudes of different features of the same pigment, similar to what is
proposed for MA-XRF, would be extremely complicated for RIS analysis and
is not currently considered a practical solution. However, if the VNIR and
SWIR spectra are combined and analysed as a unit, it should be possible to
distinguish surface layer contributions from that of subsurface layers.

In combination, the results of RIS and MA-XRF can be used to dif-
ferentiate between pigments present in the surface and pigments present in
subsurface layers. None of the tested methods provide information as for
further quantification of the paint layer stratigraphy.

6.3 Overall

Based on the results achieved, it is believed that a combined MA-XRF/RIS
approach would be a useful tool for paint layer stratigraphy and composi-
tion analysis. VNIR-RIS allows for pigment identification and composition
analysis on surface layers. Having this information, if subsurface pigments
are distinct enough from those in the surface layer, MA-XRF or SWIR-RIS
could be used for determination of the surface layer thickness. If there is only
one subsurface layer to analyze, MA-XRF could be used for quantification of
its paint composition and thickness.

If there is more than one subsurface layer or a single subsurface layer with
elemental or molecular overlap with the surface layer, differentiating between
them becomes more difficult. Comparing signal intensity for different fluo-
rescence lines of the same element, similarly to what is proposed for surface
pigment identification with MA-XRF, could be useful for distinguishing sub-
surface layers. However, this would only work if an accurate description of
the surface layer and its mass absorption coefficient is possible.
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Given that most of the challenges identified during the research come from
a lack of context for the data, it is believed that integrating into the pro-
cess any other paint layer stratigraphy and composition data would greatly
increase the accuracy of the results. Data from cross section samples or
from depth discriminating methods like CXRF or THz Imaging, would be
particularly useful for this purpose. Setting this information as a prior to a
specific pixel in the acquired data set and working outwards from that pixel
would increase the chances of successfully identifying the composition and
stratigraphy.

It is also important to note that the results acquired in this research
represent a best-case scenario for both MA-XRF and RIS analysis, as the
samples are based on three pigments which are easily differentiable with
all three considered methods. For pigments which have overlaps in either
their elemental profile or their absorption features, or for pigments which
lack any characteristic absorbance feature in the measured range or element
measurable by MA-XRF, analysis with these methods would be significantly
more difficult.
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Conclusion

Regarding the primary goal of this research, the results acquired strongly
support the effectiveness of a combined approach between MA-XRF and RIS
for the semi-quantitative analysis of easel paintings. Each of the considered
methods allows for varying kinds of analysis and quantification and comple-
ment each other well, within the context of the tested samples.

The samples created for this research provided significant insight into the
challenges of each method as well as difficulties that must be considered when
creating such samples. Paint layer shrinkage during drying, contribution of
support material and pigment particle size distribution are all things that
must be considered. Given that the samples could not be fully characterized
using cross-section samples, the full accuracy of the quantitative results could
not be confirmed. However, even though absolute results were not possible,
the relative results still support the effectiveness of the methods.

MA-XRF again proved to be a very useful tool for elemental analysis
of easel paintings. The signal intensity for the different fluorescence lines
is considered the main avenue for acquiring quantitative results. Regarding
paint layer stratigraphy, it was possible to determine the likelihood of a
pigment being present at the surface using either the intensity of surface
specific fluorescence lines or the ratio between two different fluorescence lines
of the same element. Gathering further information on subsurface layers
is possible but requires prior information. For single layer samples, it was
possible to determine the relative concentration of a specific pigment by
comparing it to a known sample of the same thickness. For paint layers of
a known composition, determining the layer thickness is possible. If both
the paint layer composition and thickness are unknown, determining either
becomes more complicated, and it is believed in such situations a combined
approach with RIS would prove greatly beneficial.
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VNIR-RIS is different from the other methods in that the penetration
depth is very low, particularly in the visible range. This makes it particularly
useful for differentiating surface layer compounds. Previous research has
proved it is possible to determine paint composition based on unmixing of
visible spectra. The results achieved in this thesis show that it is possible
to differentiate between different paint compositions via PCA. The results
of that analysis showed that the paint layer thickness does not have a very
significant effect on the signal. However, using SAM it was possible to see
that in some cases, features from underlying layers could also have slight
contributions to the measured spectra, which could affect the accuracy of a
quantitative values of paint composition.

SWIR-RIS has already proven its usefulness for pigment identification,
but the results acquired also show its potential for quantitative analysis.
Thanks to its higher penetration depth, this method allowed distinguishing
not only between different paint compositions, but also different paint layer
thicknesses and stratigraphies, albeit with limited accuracy. Using NNLS and
NMF provided some quantification avenues for paint composition and layer
thickness for single-layer samples. The results of these methods also proved
that paint layering does have an effect on the magnitude of the reflectance
features which, if further researched, could provide an avenue for quantitative
analysis.

Several challenges were identified during the research which make quan-
titative analysis with these methods difficult. Limited information regarding
the radiation source used for the MA-XRF measurements and the model
simplifications made because of it are considered the main obstacle which
thwarted the attempted quantification methods. The uneven effect of sensor
dead time during MA-XRF scanning was also identified as a possible obstacle,
but this is expected to only have a limited effect when compared to the pre-
viously mentioned issues. The dependence of reflectance on pigment particle
size distribution and packing density makes absolute quantitative analysis
with RIS difficult, but the relative results could still be used to verify results
based on MA-XRF readings. The greater penetration depths of SWIR-RIS
and MA-XRF make it difficult to distinguish between different subsurface
layers, but it is believed that providing more context from other sources, like
cross-section sampling or selective analysis with depth-discriminating meth-
ods like CXRF, would help address this.

More research is required before any practical quantitative analysis al-
gorithms become available. Further research is recommended to focus on
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a broader selection of pigments and more complex sample compositions and
stratigraphies. Given that so far most research into quantitative RIS analysis
has focused on the VNIR range, it is recommended to focus future research
on an extended range which includes both the VNIR and SWIR ranges or to
conduct research specifically on the SWIR range.

The success of neural networks in quantification of VNIR-RIS results
gives good reason to believe that applying similar methods to MA-XRF and
SWIR-RIS would also prove successful. A very similar method to that used
by Rohani et al.62 for VNIR-RIS could be applied to MA-XRF, as a theoret-
ical model describing the XRF signal is available. However, the lack of an
accurate model for definition of SWIR reflectance means that the databases
required for training such a network would have to be mostly based physical
mock-ups, which would be very time consuming, but very likely worth the
effort.

Expanding such efforts to include other machine learning and spectral
imaging methods is also believed to be a very promising avenue for quantita-
tive analysis of paint layer composition and stratigraphy. For example, the
use of Bayesian Networks with RIS and XRF could provide a useful tool for
pigment identification and probabilistic layer composition and stratigraphy
determinations. THz imaging is considered to have the most potential for
determination of paint stratigraphy and using it in combination with RIS
and XRF has the potential to significantly increase the accuracy of paint
layer composition and stratigraphy determinations.
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Appendix A

Areal Density Table

Areal Density (g/cm2)
Sample Thickness

(µm) YO BV LW Fe Cu Pb

Single
Layer YO

50 0.0094 0 0 0.0018 0 0

100 0.0188 0 0 0.0036 0 0
0.0189 0 0 0.0036 0 0

150 0.0282 0 0 0.0055 0 0

Single
Layer BV

50 0 0.0125 0 0 0.0069 0

100 0 0.0250 0 0 0.0138 0
0 0.0252 0 0 0.0139 0

150 0 0.0376 0 0 0.0209 0

Single
Layer LW

50 0 0 0.0255 0 0 0.0204

100 0 0 0.0509 0 0 0.0408
0 0 0.0516 0 0 0.0413

150 0 0 0.0768 0 0 0.0620
Underlayer
YO

50 0.0094 0 0 0.0018 0 0
100 0.0188 0 0 0.00362 0 0

Underlayer
BV

50 0 0.0125 0 0 0.0069 0
100 0 0.0250 0 0 0.0138 0

Underlayer
LW

50 0 0 0.0255 0 0 0.0204
100 0 0 0.0509 0 0 0.0408

Overlayer
YO

50 0.0094 0 0 0.0018 0 0
100 0.0189 0 0 0.0036 0 0

Overlayer
BV

50 0 0.0126 0 0 0.0070 0
100 0 0.0252 0 0 0.0139 0

Overlayer
LW

50 0 0 0.0258 0 0 0.0207
100 0 0 0.0516 0 0 0.0413
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Areal Density (g/cm2)
Sample Thickness

(µm) YO BV LW Fe Cu Pb

95% YO,
5% BV

50 0.0090 0.0005 0 0.0017 0.0003 0
100 0.0180 0.0010 0 0.0035 0.0006 0
150 0.0269 0.0016 0 0.0052 0.0009 0

80% YO,
20% BV

50 0.0078 0.0022 0 0.0015 0.0012 0
100 0.0156 0.0043 0 0.0030 0.0024 0
150 0.0234 0.0065 0 0.0045 0.0036 0

50% YO,
50% BV

50 0.0052 0.0058 0 0.0010 0.0032 0
100 0.0104 0.0115 0 0.0020 0.0064 0
150 0.0156 0.0173 0 0.0030 0.0095 0

20% YO,
80% BV

50 0.0022 0.0098 0 0.0004 0.0054 0
100 0.0044 0.0195 0 0.0009 0.0108 0
150 0.0066 0.0293 0 0.0013 0.0162 0

5% YO,
95% BV

50 0.0006 0.0119 0 0.0001 0.0066 0
100 0.0011 0.0239 0 0.0002 0.0132 0
150 0.0017 0.0358 0 0.0003 0.0198 0

95% YO,
5% LW

50 0.0094 0 0.0006 0.0018 0 0.0005
100 0.0189 0 0.0012 0.0036 0 0.0010
150 0.0283 0 0.0018 0.0055 0 0.0014

80% YO,
20% LW

50 0.0094 0 0.0028 0.0018 0 0.0023
100 0.0188 0 0.0057 0.0036 0 0.0045
150 0.0281 0 0.0085 0.0054 0 0.0068

50% YO,
50% LW

50 0.0076 0 0.0092 0.0015 0 0.0074
100 0.0153 0 0.0185 0.0029 0 0.0148
150 0.0229 0 0.0277 0.0044 0 0.0222

20% YO,
80% LW

50 0.0038 0 0.0182 0.0007 0 0.0146
100 0.0075 0 0.0364 0.0015 0 0.0292
150 0.0113 0 0.0546 0.0022 0 0.0437

5% YO,
95% LW

50 0.0010 0 0.0237 0.0002 0 0.0189
100 0.0021 0 0.0473 0.0004 0 0.0379
150 0.0031 0 0.0710 0.0006 0 0.0568

95% BV,
5% LW

50 0 0.0125 0.0007 0 0.0069 0.0006
100 0 0.0250 0.0014 0 0.0138 0.0011
150 0 0.0375 0.0022 0 0.0207 0.0017

80% BV,
20% LW

50 0 0.0118 0.0032 0 0.0065 0.0026
100 0 0.0236 0.0065 0 0.0131 0.0052
150 0 0.0354 0.0097 0 0.0196 0.0078

50% BV,
50% LW

50 0 0.0090 0.0098 0 0.0050 0.0079
100 0 0.0180 0.0197 0 0.0099 0.0157
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Areal Density (g/cm2)
Sample Thickness

(µm) YO BV LW Fe Cu Pb
50% BV,
50% LW 150 0 0.0270 0.0295 0 0.0149 0.0236

20% BV,
80% LW

50 0 0.0042 0.0185 0 0.0023 0.0149
100 0 0.0085 0.0371 0 0.0047 0.0297
150 0 0.0127 0.0556 0 0.0070 0.0446

5% BV,
95% LW

50 0 0.0011 0.0237 0 0.0006 0.0190
100 0 0.0023 0.0474 0 0.0013 0.0379
150 0 0.0034 0.0710 0 0.0019 0.0569



108 APPENDIX A. AREAL DENSITY TABLE



Appendix B

XRF Quantification Results

Fluorescence
Line Mixture Theoretical

Composition (%)
Calculated

Composition (%)
Error
(%)

Fe-Kα

YO/LW

95 95.00 0.00
80 99.66 19.66
50 49.96 0.04
20 16.57 3.43
05 04.28 0.72

YO/BV

95 95.00 0.00
80 79.29 0.71
50 53.83 3.83
20 21.48 1.48
05 05.59 0.59

Fe-Kβ

YO/LW

95 95.00 0.00
80 88.16 8.16
50 45.95 4.05
20 20.16 0.16
05 07.05 2.05

YO/BV

95 95.00 0.00
80 77.87 2.13
50 56.30 6.30
20 22.64 2.64
05 07.73 2.73

Cu-Kα BV/LW

95 95.00 0.00
80 159.17 79.17
50 162.09 112.09
20 83.28 63.28
05 25.32 20.32
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Fluorescence
Line Mixture Theoretical

Composition (%)
Calculated

Composition (%)
Error
(%)

Cu-Kα YO/BV

95 95.00 0.00
80 89.50 9.50
50 69.54 19.54
20 34.37 14.37
05 11.43 6.43

Cu-Kβ

BV/LW

95 95.00 0.00
80 167.92 87.92
50 181.80 130.80
20 98.35 78.35
05 32.59 27.59

YO/BV

95 95.00 0.00
80 89.76 9.76
50 70.92 20.92
20 33.51 13.51
05 10.12 5.12

Pb-Lα

YO/LW

95 95.00 0.00
80 96.07 16.07
50 69.04 19.04
20 26.08 6.08
05 10.97 5.97

BV/LW

95 95.00 0.00
80 79.43 0.57
50 45.72 4.28
20 13.03 6.97
05 01.83 3.17

Pb-Lβ

YO/LW

95 95.00 0.00
80 99.57 19.57
50 69.10 19.10
20 23.98 3.98
05 09.51 4.51

BV/LW

95 95.00 0.00
80 81.29 1.29
50 46.50 3.50
20 13.05 6.95
05 01.90 3.10

Pb-Lγ YO/LW
95 95.00 0.00
80 93.98 13.98
50 68.75 18.75
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Fluorescence
Line Mixture Theoretical

Composition (%)
Calculated

Composition (%)
Error
(%)

Pb-Lγ

YO/LW 20 25.33 5.33
05 06.47 1.47

BV/LW

95 95.00 0.00
80 80.85 0.85
50 45.84 4.16
20 12.10 7.90
05 02.59 2.41

Pb-M

YO/LW

95 95.00 0.00
80 81.56 1.56
50 50.76 0.76
20 17.63 2.37
05 06.03 1.03

BV/LW

95 95.00 0.00
80 79.12 0.88
50 47.84 2.16
20 15.60 4.40
05 03.68 1.32
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Appendix C

Dead Time Corrected XRF
Quantification Results

Fluorescence
Line Mixture Theoretical

Composition (%)
Calculated

Composition (%)
Error
(%)

Fe-Kα

YO/LW

95 95.00 0.00
80 91.80 11.80
50 47.09 2.91
20 16.32 3.68
05 04.19 0.81

YO/BV

95 95.00 0.00
80 87.92 7.92
50 83.04 33.04
20 39.91 19.91
05 11.41 6.41

Fe-Kβ

YO/LW

95 95.00 0.00
80 77.64 2.36
50 41.66 8.34
20 19.79 0.21
05 06.63 1.63

YO/BV

95 95.00 0.00
80 86.27 6.27
50 91.86 41.86
20 44.76 24.76
05 15.61 10.11

Cu-Kα BV/LW
95 95.00 0.00
80 168.94 88.94
50 117.15 67.15
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Fluorescence
Line Mixture Theoretical

Composition (%)
Calculated

Composition (%)
Error
(%)

Cu-Kα

BV/LW 20 52.93 32.93
05 15.33 10.33

YO/BV

95 95.00 0.00
80 80.76 0.76
50 52.83 2.83
20 18.76 1.24
05 05.64 0.64

Cu-Kβ

BV/LW

95 95.00 0.00
80 170.99 90.99
50 132.72 72.72
20 62.74 42.74
05 19.73 14.73

YO/BV

95 95.00 0.00
80 81.51 1.51
50 55.91 5.91
20 18.13 1.87
05 04.97 0.03

Pb-Lα

YO/LW

95 95.00 0.00
80 98.75 18.75
50 68.52 18.52
20 24.99 4.99
05 12.46 7.46

BV/LW

95 95.00 0.00
80 83.55 3.55
50 54.30 4.30
20 20.28 0.28
05 02.97 2.03

Pb-Lβ

YO/LW

95 95.00 0.00
80 103.46 23.46
50 69.30 19.30
20 22.97 2.97
05 10.59 5.59

BV/LW

95 95.00 0.00
80 85.85 5.85
50 56.02 6.02
20 20.79 0.79
05 02.91 2.09

Pb-Lγ YO/LW 95 95.00 0.00
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Fluorescence
Line Mixture Theoretical

Composition (%)
Calculated

Composition (%)
Error
(%)

Pb-Lγ

YO/LW

80 95.99 15.99
50 67.61 17.61
20 23.86 3.86
05 06.26 1.26

BV/LW

95 95.00 0.00
80 85.04 5.04
50 54.52 4.52
20 17.45 2.55
05 03.65 1.35

Pb-M

YO/LW

95 95.00 0.00
80 80.17 0.17
50 48.21 1.79
20 16.18 3.82
05 05.56 0.56

BV/LW

95 95.00 0.00
80 81.27 1.27
50 53.55 3.55
20 21.25 1.25
05 05.55 0.55
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