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The dynamics of Cooper pairs and vortices in a Josephson-junction array is investigated. For this pur-
pose, a Hamiltonian is constructed in terms of vortex charges. Josephson-type equations for vortices are
derived. A comparison with the Cooper-pair Hamiltonian shows that the roles of the magnetic field and
induced charge density are reversed. The vortex and Cooper-pair Hamiltonians are approximately self-
dual when Ec /E;=7*/2 (Ec=e?/2C), which results in an array resistivity close to 4 /4e>.

Two-dimensional arrays of superconducting islands
coupled to their nearest neighbors by both Josephson
junctions as well as capacitors are model systems, which
are interesting from both experimental and theoretical
points of view.! An interesting feature is that the two-
dimensionality introduces the possibility of topological
excitations. When the Josephson coupling dominates,
these topological excitations are vortices.? In the oppo-
site regime, when the Coulomb interaction dominates,
the array can be described in terms of 2e charges (Cooper
pairs).>*

The duality between a description in terms of these
Cooper pairs (CP’s) or vortices has recently gained
much attention,” in particular, in relation to the

(a)
0y A, 0

(b)
L]

Q
o, 24y T

At o P DA&T lA?z[]
0. 2 \d0

Gi37
9i=0;1 215t 4

FIG. 1. (a) illustrates a vortex, which is defined by the phases
¢; of the superconducting islands. The vector potentials 4;; are
associated with the flux ® through the plaquette. (b) illustrates
a CP, which is represented as a vortex in the ¢ phases which are
defined on the plaquettes. (c) shows that the charge vector po-
tentials A,-jQ are related to the induced charges g;, on the capaci-
tors between the plaquettes, e.g., 4% =g;,. Different choices of
gauge correspond with different distributions of the charges
over the capacitors.
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superconductor-insulator transition in thin films.®~% A
two-dimensional (2D) array is a very suitable system for
studying this duality, since its dynamics is determined by
the junction parameters (capacitance, critical current),
which are reasonably well known in experimental sys-
tems.’

I study a system which consists of a square array of
N XN =M islands, each coupled to its four nearest
neighbors with capacitors C, and Josephson junctions
with a critical current I,, and a coupling constant
E;=*#I_/2e. The normal-state resistance of the junctions
is assumed to be much larger than 4 /4e?, so that dissipa-
tion can be neglected. Note that this model implies that
the capacitances between non-nearest neighbors can be
neglected!® compared to C. Periodic boundary condi-
tions are used. These boundary conditions, which corre-
spond to a torus geometry, imply that all sites in the ar-
ray are equivalent. Magnetic fluxes ®; can be applied
through each of the plaquettes formed by four islands'!
(see Fig. 1). The islands are also coupled to voltage
sources V; by means of capacitors C,. When Cy<<C,

the screening length for the charge® A,=1/C/C, is
much larger than the array size. The induced charges on
the islands are then fixed by the voltage sources V; and

given by q; =C,V;. The Hamiltonian of the system now
reads

ql —1 q]
H, 4Ec% lN,——zz (M™%); |N; e
2e
— > Ejcos |¢; ¢j+—ﬁ—AU
(i,j)
. _[rJ
with 4;= ['A-dl . (1)
The first term describes the Coulomb energy

(E,=e?/2C), N; is the number of Cooper pairs on the ith
island, and M~ !=CC ™!, with C~! the inverse capaci-
tance matrix. The charges interact logarithmically® when
theicr  separation  r; <A, [this  implies  that
(M ~1);~In(ry;) for r;<A.]. Note that, for fabricated
arrays, A, was estimated to be about 20. The second
term in (1) describes the Josephson coupling between
nearest neighbors, which is a function of the gauge-
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invariant combination of the phases ¢; and a line integral
of the magnetic vector potential, 4;;. The commutation
relation between N; and ¢; reads [N;,¢;]=i. The eigen-
functions of (1) are determined by both sets of induced
charges ¢g; and the fluxes ®;. The invariance of ¢; under
the transformation ¢;—¢;+27 imposes the boundary

conditions on the wave function

V(.. b )=V .2, ).

The eigenfunctions can then be written as '2

V(d, by - - s04) = ¢y explik-¢)
k

with ¢=($1,¢,, . . . sdpr) and k=(k; Ky, . . . ,kpy)

(2)

The coefficients ¢, can now be obtained by diagonaliz-
ing the matrix with diagonal elements given by the
Coulomb energy associated with a distribution
k=(ky,k,, ... ,ky) of CP’s, and off-diagonal elements
E; /2 between states which are coupled by the tunneling
of a CP from one island to an adjacent one.

First I study the dynamics of a single CP, which can be
introduced in the array by applying a uniform charge
g;=—2e/M on the islands. When E;=0, the ground
state of the system is M-fold degenerate, since the
Coulomb energy is minimized when one CP is present on
one of the M islands. The excited states with the lowest
energy have an additional pair of 2e or —2e charges on
nearest-neighbor islands and have an energy of about
2E above the ground state. One can therefore construct
the eigenfunctions in the presence of weak Josephson
coupling (E; <<2E_) from the states |x,y) which de-
scribe the presence of a single CP on the ith island, with
coordinates x and y. The Hamiltonian (1) now reduces to
a tight-binding Hamiltonian:

H,=3 E,lx,y){x,|
X,y

lx,y )

E,; 2e
+ —exp |i— 4
o 2 # oY

X({x+1,p|+{x —1,y|
+{(x,y +1|+{x,y —1]). (3)

In the absence of a magnetic field the solutions are given
by13

W(k,,k, )= explik,x +ik,y)|x,y ) 4)
%,y
with eigenvalues E(ky,k,)=E;[2—cos(k,x)

—cos(k,y)]. Note that due to the periodic boundary
conditions, the values of k, and k, are restricted to mul-
tiples of *27/N. In a large array the discreteness of k,
and k, can be neglected, and E (k)=#%%k2/(2m,) for
E << E,, with m,=#?/E;. This shows that the dynamics
of a CP can be described by that of a particle with a mass
m,, determined by the Josephson coupling E;. An alter-
native way to understand this kinetic energy is that a
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(Josephson) current I =2ev flows through the junction
which is being crossed by a CP which moves with a ve-
locity v. The energy can then be written as

E;[1—cos(A¢)|=~E,[1—(1—1%/1})'"?],

which reduces to 1m v? for I <<I,. When the Josephson
coupling between the islands is weak and m,, is large, the
CP motion can be described classically. When E; is in-
creased, quantum effects will become prominent (such as
tunneling through electrostatic potential barriers). The
motion of the CP in a uniform magnetic field can be ob-
tained by the substitution Zik—p—+2e A, which yields

2
=" 2’2:"‘) with VX A=B (5)

c

with p the canonical momentum of the CP. The validity
of (5) was checked by a calculation of the energy spec-
trum of (3) for a 6 X6 array. For low energies, E << E;
and fluxes ®; << ®,, the obtained eigenvalues correspond
closely' with Landau level energies E,=(n +1)fio,,
with w,=2eB /m . Equation (5) shows that, in the classi-
cal limit, the CP experiences a Lorentz force F=2ev XB,
even though no magnetic field acts on the CP (the mag-
netic field is screened from the superconductor).'®

When E; is increased and becomes of the order of 2E,
the description of the array dynamics in terms of single
CP’s fails. However, when the opposite limit E; >>E is
reached, it is known that the array dynamics can again be
described in terms of particles, which, in this case, are
vortices.'® In this limit one can also start from (1) and (2)
to calculate the dynamics of the array. However, this re-
quires large computational effort since many charge
states |k; k,, ...,k ) have to be included.!” Therefore,
it is worthwhile constructing a Hamiltonian which is
defined in terms of vortices instead of CP charges. Such
a Hamiltonian will be particularly useful to describe the
quantum-mechanical behavior of vortices.

First the wave function W(¢,,¢,, . . . ,¢,,) is expressed
as a wave function W(NY,N3,...,Ny) of the vortex
charges N/ on each of the plaquettes. Note that the re-
placement of the phase variables by discrete variables N/
is not exact, since, in general, a phase configuration can-
not be exactly represented by a set of vortex charges.!®
Because both Josephson and Coulomb interactions take
place exclusively between nearest neighbors, it is possible
to express the Josephson energy which is associated with
a distribution of vortices in a similar way as the Coulomb
energy of a distribution of CP charges [this is the first
term in (6)]. In the absence of capacitive coupling,
the eigenstates of (6) are given' by distributions
(Nj,N35,...,N3) of vortex charges. The presence of
capacitors will couple states by the transfer of a vortex
from a plaquette to one of its four nearest-neighbor pla-
quettes, in a similar way as Josephson coupling couples
states by a transfer of a CP to a nearest-neighbor island.
When one describes the vortices as bosons, the conjugat-
ed variables of the vortex charges N/ are phases ¢; with
the commutation relation!® [N?,&;]=i. The phase &,
can be regarded as the phase of the macroscopic wave
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function of the vortices, in a similar way as the phase ¢;
of the superconducting islands describes the macroscopic
wave function of the CP’s.

In Ref. 20 the dynamics of a single vortex in a ring-
shaped (Corbino) array was studied. For the description
of the response of the vortex to the induced charge Q, on
the center island, a charge vector potential A€ was intro-
duced, which was defined by the line integral

A2.dl =Q,. In a discrete lattice, the vector poten-
tials, A4 ,-JQ between plaquettes are defined by the sum
around an island A,-jQ=q,- (see Fig. 1). The coupling
between adjacent plaquettes i and j is now expressed as a
function of the  gauge-invariant combination
19,~—19j+277'/(2e)A,-jQ, which yields the following Hamil-
tonian:

2e _ 2e
HU:21T2E12 NIU—'_h"(I), ](M I)IJ va_7q>]]
ij
2 21
——E cos |3, —F,+S— A48 (6)
) C(?j) i 7 e T

The cosine in the second term of (6) implies that the cou-
pling between adjacent plaquettes can be described by the
transfer of single vortices. The prefactor of this term is
obtained from a comparison with a single low capacity
junction which is driven by an external induced charge
Qp, which acts as a vector potential AC=Q,. For
A,-JQ- <<2e, the second term in (6) can then be written as
%Q(Z)/ C, which is equal to the Coulomb energy of the
junction. I emphasize that (6) is not exact.?!"?> Probably
the most important disparity between (1) and (6) is due to
the fact that the vortex charge on a plaquette is limited to
values —1, 0, and 1, whereas (1) correctly describes the
Coulomb interaction for an arbitrary number of CP’s on
the islands. This may mean that a description of the ar-
ray dynamics with (6) fails when E; >>E;.

A comparison of (1) and (6) shows that the magnetic
field, which enters (1) as a vector potential, is included in
(6) in the potential-energy term of the vortices. On the
other hand, the induced charge density g; is included in
the CP Hamiltonian in the potential-energy term, but is
present in (6) as a vector potential. A comparison be-
tween the properties of Cooper pairs and vortices is given
in Table I.

From (6) one can derive two Josephson-type equations
for vortices:

dd; 1 8H

— __2772 -1 ,)_27T v
—’*——*ﬁ—Ejz(M )ij—ZV,», (7)
J

where V; is the vortex potential of the ith plaquette.

1
Similarly, one obtains

21
&=+ 5 Af

®

Alternatively, the vortex current [ i';- which flows between
the plaquettes i and j can be expressed as
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TABLE 1. Comparison between the properties of vortices
and Cooper pairs. F, denotes the force on vortex, F, denotes
the force on CP, j. denotes the CP current density, j, denotes
the vortex current density, v denotes the velocity, B denotes the
magnetic field, and g denotes the induced charge density.

Vortex CP
h
Charge — 2e
127% # #
Mass 2 E E,
c J
Force Fv=-ih;jc><n F.=2ej,Xn
“Lorentz” force F; =(h/2e)qvXn F;, =2evXB
oH 2 . 21
b= ="FEcsin |§;,—;+ A48 ©
Y E)AUQ me € ETT T e U )

One can now use (6) as a starting point for the study of
the dynamics of a single vortex, which can be introduced
in the array by applying a magnetic flux ®; =®,/M per
plaquette. By using the duality between vortices and
CP’s, the results for the vortex can now be obtained from
the CP results by the appropriate substitutions. In par-
ticular, when E; <<E; the continuum Hamiltonian of a
single vortex reads?
(p+®,A%)?
H =————— with VX A%=¢gn (10)
2m,

with p the canonical momentum of the vortex, n the unit
vector normal to the array, g the induced charge density,
and the vortex mass m,=7*#/(2Ec). A vortex which
moves with a velocity v generates a voltage across the
junctions which it traverses given by

V=*%/2ed (Ad)/dt =h /2ev .
This results in a Coulomb energy
E=1C(h/2e)v?*=1m?.

A striking implication of (10) is that the motion of a vor-
tex in a uniform induced charge density ¢ is similar to
that of a CP in a uniform magnetic field B. Therefore,
(10) predicts that the vortex experiences a Lorentz-type
force, perpendicular to its direction of motion, which is
given by 2 F, =(h /2e)gv Xn.

The duality between vortices and CP’s is important for
the phase transitions in the array. When E;>>E., a
Kosterlitz-Thouless phase transition takes place at
T,=mw/(2e,)E; (with g, slightly larger than 1), when
pairs of vortices and antivortices unbind.? The array is
superconducting for T < T,. It was also proposed ** that
a similar phase transition should occur in the opposite re-
gime E->>E; at a temperature 7, =1/(mwe.)Ec, which,
in this case, is driven by the unbinding of charge 2e /—2e
pairs. Below this temperature the system is an insulator.
A comparison of (1) and (6) shows that vortices and CP’s
play equal roles, and the system is self-dual, when
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E-=(7*/2)E,. Therefore one expects that, for this ratio
of E¢ and Ej, the system will neither become an insulator
nor a superconductor at low temperatures.

The vortex and CP currents can be written as
j,=0H /3A9 and j.=3H /3 A, respectively. The self-
duality of the array implies that these expressions should
give identical results when they are expressed in dimen-
sionless units. Therefore, the array resistivity

Prx =(h/4e)j, /j.=h /4e? .

A similar result can be obtained when uniform fluxes
O, =cd, are applied. Note that, in this case, the system
is self-dual only when charges q; =c2e are induced simul-
taneously. In this case the relation

Prx TPz, =h’/(4e?)

is obtained.’

It was already mentioned that Eq. (6) is not exact. I
now briefly discuss the possible consequences of this for
the self-duality. It can be argued®* that the fact that the
vortex charge on a plaquette is restricted to —1, 0, or 1
does not significantly affect the self-duality between
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Cooper pairs and vortices at E¢ /E; =7*/2. Equation (6)
does not describe the spin waves of the phases ¢. On the
other hand, Eq. (6) has solutions which correspond to
spin waves of the phase ©3. These, however, are not there
in the actual system, described by Eq. (1). The presence
of this asymmetry means that the critical resistivity may
shift away from h /4e%. This is also discussed by Fazio
and Schon.?® They also discuss the effect of quasiparticle
dissipation on the phase-transitions in the array, in the
regime where the normal-state resistance of the array is
comparable to, or smaller than, 4 /4e>.

In real systems the induced charges will be distributed
randomly between O and 2e. In this case the duality may
still occur, provided that the fluxes ®; are also randomly
distributed between O and 4 /2e. Such a system may be
fabricated by an array in a uniform magnetic field, but
with random area of the plaquettes, such that the fluctua-
tion of the flux @, is larger than @,
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