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Abstract
In an era where cyber threats evolve with alarming speed and sophistication, the role of Security Op-
eration Centers (SOCs) has become increasingly pivotal in safeguarding digital infrastructures. SOCs
serve as the frontline defence against malicious entities, where they continuously monitor and analyze
network traffic, as well as the activity of users and systems for potential threats. The rapid growth of
advanced cyber-attacks has amplified the reliance on Intrusion Detection Systems (IDS) to generate
alerts for anomalous activities, and on SOC analysts to analyze those alerts. However, these systems
often yield an overwhelming number of alerts, many of which are false positives, leading to alert fatigue
among analysts. The scarcity of effective visualization tools, coupled with the analysts’ dependence
on manual investigation and correlation of events aggravates this issue, resulting in extended alert
analysis times. Moreover, the number of attack scenarios keeps increasing daily, making it difficult to
understand the possible next actions of an attacker and apply preventive measures.

This thesis introduces an innovative approach to aid SOC analysts in managing the large influx of alerts,
mitigating alert fatigue, and enhancing the efficiency of threat identification and response. We present
an attack prediction tool with alert visualization capabilities that produces real-time attack graphs, sum-
marizing the alerts associated with a specific host. Our method utilizes a Suffix-based Probabilistic
Deterministic Finite Automaton (SPDFA) to predict future attacker actions, promoting a proactive de-
fence strategy, and achieving an accuracy of 33.71 %. We validate the practicality and relevance of
our contributions through interviews with six security experts, confirming the utility of our methods in
a live SOC context. Furthermore, we demonstrate the applicability of our approach by testing it with
three datasets collected in the real world. Our work stands apart by simultaneously addressing alert
correlation, attack visualization, and predictive modelling of attacker behaviour.
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1
Introduction

1.1. Context
In the rapidly evolving landscape of cybersecurity, Security Operation Centers (SOCs) play a pivotal
role in defending organizational networks and systems. Intrusion Detection Systems (IDS) are integral
components of SOCs, constantly monitoring network traffic and system activities to identify potential
threats. Based on the observed behaviour, these systems generate intrusion alerts, which are then
analyzed by SOC analysts in order to identify any potential threats. However, these systems are also
notorious for generating a high volume of alerts, including a substantial proportion of false positives
[1]. This overwhelming influx of alerts can lead to alert fatigue among SOC analysts [2], impairing their
ability to effectively prioritize and respond to genuine threats. The challenge lies not just in the sheer
quantity of alerts but also in the difficulty of quickly discerning the context and significance of individual
alerts. Moreover, despite advances in automation [3], human analysts remain essential in SOCs due
to their irreplaceable skills in complex decision-making and adapting to new threats.

With new software vulnerabilities being discovered daily, attacker scenarios are in a constant state
of evolution. Moreover, the large amount of software applications running in a corporate network ex-
tends the attack surface even further, as each application could potentially serve as an entry point for
attackers. This complexity, combined with the vast number of possible attacks, makes it challenging
for even the most seasoned analyst to understand what type of attack is unfolding in a network. This
further hinders the ability of an analyst to predict the next step of an attacker, which could be valuable
in proactively deploying countermeasures.

The lack of visualization tools is another ongoing challenge for SOC analysts [4]. In most cases,
there is too much data to be able to visualize it properly, while also maintaining the resulting visuals
simple, precise and informative [5]. This challenge also leads to other problems, such as the increased
difficulty of correlating alerts to a particular incident, as the analyst would not have an efficient way to
view the data from multiple alerts.

Attack graphs can be of great help in dealing with this challenge[6]. An attack graph is a repre-
sentation of all the devices in the network together with their vulnerabilities and illustrates the possible
paths that an attacker can exploit during an attack. An attack graph also showcases how the vulnera-
bilities interact with each other and can offer a much higher level view of existing security flaws in the
network. However, building such an attack graph requires apriori knowledge of the network, devices,
and vulnerabilities.

Recently, the notion of an ”alert-driven attack graph” has been introduced. SAGE [7] uses intrusion
alerts to build an attack graph showcasing attacker actions throughout the network. Currently, the attack
graphs are built ”offline”, which is useful for cyber threat intelligence and studying attacker strategies
observed in the data. This however makes it less useful in a real-world scenario, where the threat
landscape might change from one alert to the next, and new attack graphs would need to be generated
in real-time.

1



2 1. Introduction

1.2. Research objectives
This research aims to develop an attack prediction tool with alert visualization capabilities, specifically
designed to assist SOC analysts during alert analysis and consequently reduce the effects of alert fa-
tigue. We aim to develop a way of predicting the potential future attacker actions based on currently
observed behaviour. This predictive capability is crucial for proactive defence, enabling analysts to
anticipate and counteract malicious activities, thereby minimizing the impact of potential future threats
and bolstering the overall security posture. By generating attack graphs in real-time, we can provide
enriched context for each triggered alert, allowing analysts to quickly grasp the overall situation and
understand the relationships between different alerts associated with a single host. This form of alert
correlation is vital for a more streamlined and efficient analysis process. The main research question
that we attempt to answer is:

How can we generate attack graphs in real-time, providing a comprehensive overview of the
triggered intrusion alerts, predicting the subsequent actions of a malicious actor, and assisting
a SOC analyst during the analysis of alerts?

We further decompose this question into three parts: predicting the next attacker action, real-time
attack graph generation, and real-world applicability. First, we want to examine the methods of pre-
dicting what an attacker might do next, given his currently observed actions. SAGE already utilizes
a Suffix-based Probabilistic Deterministic Finite Automaton (SPDFA) to learn and summarize attacker
scenarios. For this sub-question, we are interested in researching the prediction capabilities of the
SPDFA, which has been trained on an intrusion detection alert dataset. In the second part, we want to
re-examine the current SAGE pipeline and modify it to be usable in real-time alert streaming scenarios.
Here we will look into aspects such as when to re-generate the attack graphs and how to incorporate
the next action prediction into this pipeline. Finally, we will evaluate our approach on real-world data,
by collaborating with Northwave Cybersecurity1. To further help us evaluate our method, we will also
conduct interviews with SOC analysts. To summarize, the following research sub-questions have been
formulated:

1. How can the SPDFA be used to predict the next attacker action?

2. How can we generate attack graphs in real-time, which will aid a SOC analyst when handling
alerts?

3. Can attack graphs be generated using data collected in the real world?

1.3. Contributions
In this work, we propose a new method of attack prediction with alert visualization capabilities designed
to enhance the SOC analyst’s ability to analyze alerts. We demonstrate its effectiveness on real-world
data and confirm its capacity to address prevalent challenges in the field by conducting interviews with
security experts. Our main contributions are:

• Prediction of Future Attacker Actions - We have developed a method of predicting the po-
tential future attacker actions based on the observed intrusion alerts using an SPDFA. We have
implemented three SPDFA traversal strategies and compared them with a PDFA-based approach
under different circumstances.

• Real-time generated attack graphs - We have created a tool that aids SOC analysts in inter-
preting and responding to alerts generated by intrusion detection systems. Real-time generated
attack graphs provide a visual overview of the triggered alerts for a host, while also displaying
the possible next action of the attacker. This not only helps in correlating different alerts but also
offers valuable context to each triggered alert, aiding in the more efficient identification of mali-
cious activities. The predictive capability helps in proactively identifying and mitigating threats,
potentially minimizing the impact of harmful activities. SOC analysts can now focus on the most
critical alerts, enhancing their ability to respond to potential threats swiftly.

1https://northwave-cybersecurity.com/

https://northwave-cybersecurity.com/
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• Validation through Expert Interviews - We have conducted interviews with six security ex-
perts to validate our approach, ensuring that our method is aligned with the real-world needs of
SOC analysts. Additionally, the interviews offer valuable perspectives on the existing difficulties
encountered by SOC analysts related to visualization and correlation methods, which could be
beneficial for other studies seeking to assist SOC analysts.

• Application on Real-World Data - We have demonstrated the applicability and effectiveness of
our method in real-world settings, by testing it on three datasets created using real-world industry
data, showcasing its practical utility.

1.4. Outline
The rest of this thesis is structured as follows: In chapter 2 we describe background knowledge about
intrusion detection systems, alerts, finite state automata, and provide a brief explanation of how SAGE
currently creates attack graphs. This chapter also delves into other methods related to data-driven
attack visualization tools, real-time attack correlation, and attack prediction. In chapter 3 we introduce
an algorithm which uses the SPDFA to predict the next attacker action and evaluate its prediction per-
formance in different scenarios. Following this, in chapter 4 we incorporate the prediction algorithm
into the attack graph generation pipeline and adapt it to real-time data streaming. In chapter 5 we gen-
erate attack graphs using real-world data. To better evaluate and validate our approach, we organise
interviews with security experts and report the findings in chapter 6. Finally, chapter 7 presents a dis-
cussion of our main findings and the limitations of our work, while in chapter 8 we conclude and identify
potential areas of future research.





2
Background

In this chapter, we provide background to the concepts which will be used in this thesis. We start by
describing intrusion detection systems and alerts. We then look into finite-state automatons and their
applications. We then provide a summary of SAGE, a tool for generating attack graphs using intrusion
alerts. Afterwards, we provide a brief literature survey, which covers the topics of offline as well as
real-time (or online) data-driven attack visualization methods, attack correlation and attacker action
prediction.

2.1. Intrusion Detection Alerts
Security Operations Centers, or SOCs, are frequently used in corporate environments to monitor the
security state of the company network. It is a centralized unit responsible for monitoring, detecting,
analyzing, and responding to cybersecurity incidents and threats in real-time. A company can either
have its own SOC or hire an external one, depending on its needs. The primary purpose of a SOC is
to protect an organization’s sensitive data, assets, and information systems from various cyber threats,
such as malware, data breaches, unauthorized access, and other cyber attacks. A SOC continuously
monitors an organization’s network, hosts and other digital assets using various security tools and
technologies, such as Intrusion Detection Systems (IDS), firewalls, antivirus software, and Security
Information and Event Management (SIEM) solutions. These tools generate logs and alerts for potential
security incidents.

When an alert is triggered, the SOC analysts investigate it to determine if it is a real threat or a false
positive. They do this by investigating the available log data from the time of the event and verifying
public and private threat intelligence platforms. If the analyst believes that the alert has a chance
of being a real incident, the proper incident response measures will be used, such as deleting the
malware or even isolating the host from the network. SOC analysts also use threat intelligence feeds
and databases to stay updated on the latest cyber threats, hacking techniques, and vulnerabilities.

One example of a network IDS is Suricata1. Suricata works by defining a set of rules which trigger
on known malicious behaviour, making it a signature-based IDS. The rules can specify anything from
the destination IP address of the packet, the protocol, port, to some byte sequence found in the payload.
If a packet is found that matches any rule, an alert will be generated, which will contain the information
about the packet which triggered the alert. Figure 2.1 shows an example of a suspicious user agent
Suricata alert. Multiple useful fields can be seen, such as the timestamp, severity, and signature, which
will offer some insight about the rule and the malicious behaviour.

Microsoft Sentinel is a cloud-native SIEM as well as a Security Orchestration, Automation, and Re-
sponse (SOAR) solution offered by Microsoft. It is designed to provide security analytics and threat
detection for enterprises and organizations. Its most important feature is its data ingestion capabilities.
Microsoft Sentinel can ingest vast amounts of security data from various sources, including Azure ser-
vices, on-premises infrastructure, and third-party security solutions. It collects data from logs, events,
and other sources, enabling organizations to gain a comprehensive view of their security landscape.

1https://suricata.io/
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{"timestamp":"2018-11-03T23:29:59.754160+0000","flow_id":223930225
1270834,"in_iface":"ens4","event_type":"alert","src_ip":"10.0.0.17
6","src_port":60308,"dest_ip":"169.254.169.254","dest_port":80,

"proto":"TCP","tx_id":0,"alert":"action":"allowed","gid":1,"signat
ure_id":2013031,"rev":6,"signature":"ET POLICY Python-urllib/ 
Suspicious User Agent","category":"Attempted Information 
Leak","severity":2}}


Figure 2.1: Suricata alert example

It also uses AI and machine learning to analyze the data and identify potential threats. It can cor-
relate events from different sources to provide a more comprehensive understanding of an attack or
security incident. Its other features include the ability to automate repetitive tasks through automation,
integration with various threat intelligence services, integration with the Microsoft ecosystem and large
scalability and flexibility.

Although IDS and SIEMs are tuned and optimized for each network they are deployed in, they still
face many challenges. As stated in chapter 1, the most common issue is the high volume of alerts.
Usually, a SOC utilizes a combination of signature and anomaly-based detection software, in order
to handle both known and unknown attacks. This however can lead to a high rate of false positives
[8], because the system often classifies normal behavior as malicious one. This in turn leads to the
phenomenon known as alert fatigue, where the large amount of alerts can desensitize the analyst,
making him more likely to miss critical alerts while focusing on the false ones too much.

2.2. Finite State Automatons
A Finite State Automaton (FSA), is an abstract mathematical model used to describe various systems
that exhibit discrete or sequential behaviour. A FSA consists of the following components:

• States: A finite set of states that the automaton can be in. Each state represents a specific
condition or configuration of the system. States are typically represented as circles in diagrams,
and they can be labelled for identification. The state machine can only be in one state at a given
point in time.

• Transitions: A set of rules that define how the automaton can move from one state to another
based on input symbols. These transitions represent the behaviour of the system. Transitions
are typically represented as arrows between states, with each arrow labelled by the input symbol
that triggers the transition.

• Alphabet: A finite set of input symbols, also known as the alphabet, that the automaton can
recognize. These symbols serve as triggers for state transitions.

• Start State: One of the states is designated as the initial state, where the automaton starts its
operation. It represents the starting configuration of the system.

• Accepting States (Final States): A subset of the states that are considered accepting states.
When the automaton reaches an accepting state after processing a sequence of input symbols,
it indicates that the input is accepted by the automaton.

A FSA operates by reading input symbols one by one from the input sequence, and based on the
current state as well as the symbol read, moves to another state using the transitions. This process
continues until all input symbols are processed, after which it is evaluated whether the automaton is in
an accepting state. If yes, the input is accepted, otherwise it is rejected.

There are multiple flavours of an FSA. A deterministic FSA has a unique sequence of states in the
model for every possible input sequence, while a non-deterministic one has multiple paths possible for
the same input. Figure 2.2 shows an example of a DFSA with two states. S0 is the starting state, and
as can be seen, for any possible input, there is a deterministic set of transitions. Figure 2.3 shows an
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S1S0

1 0

1

0

Figure 2.2: Example of DFSA, where every possible input
sequence has a unique sequence of states in the model.

S1S0

1 0

1

1

Figure 2.3: Example of NDFSA, where for the input sequence
”1”, there are multiple possible sequences of states in the

model, S0->S0 and S0->S1

example of a non-deterministic FSA, and it can be seen that S0 has two transitions for the same input
”1”.

A probabilistic automaton has a probability value associated with every transition, which was calcu-
lated using the training data. This means that for a given state and input symbol, there may be multiple
possible next states, each associated with a probability. The choice of the next state is made stochasti-
cally based on these probabilities. These probabilities represent the likelihood of the automaton taking
a particular transition when it reads a specific input symbol in a given state. The probabilities assigned
to all possible transitions from a state must sum up to 1. The introduction of probabilistic transitions
in a PDFA allows it to exhibit non-deterministic behaviour. This means that when presented with the
same input multiple times, a PDFA may produce different outcomes due to the probabilistic nature of its
transitions. PDFA models are particularly useful in situations where there is uncertainty or randomness
involved in the processing of input, such as in natural language processing tasks or machine learning
algorithms that involve probabilistic decision-making.

2.3. Flexfringe: a passive automaton learning package
Flexfringe [9] is a machine learning framework used for learning Finite State Automata from sequential
data, making it a valuable tool in automata learning and pattern recognition tasks. FlexFringe combines
concepts from automata theory and machine learning to infer an automaton model that best represents
the underlying sequential patterns in the input data. The tool uses a state-merging approach to itera-
tively build a compact automaton from the input sequences.

Flexfringe uses a set of traces as its training data. A trace is a sequence of symbols, which de-
scribe some particular behaviour. For example, a trace can be a sequence of Windows event logs.
After initializing the model with some random states, Flexfringe begins the state merging algorithm. It
iteratively merges states of the initial automaton based on statistical measures and similarity metrics
derived from the input data. States that are similar in terms of their observed behaviour are combined
into larger, more abstract states, reducing the overall complexity of the automaton. After each iteration
of state merging, the resulting automaton is evaluated using standard performance metrics, such as
accuracy and generalization to unseen data. The goal is to find the best-fitting automaton that ade-
quately represents the sequential patterns in the training data. The state merging process continues
until certain stopping criteria are met, such as performance on validation data, number of iterations, or
if no more possible state merges are possible. The result is a model which characterizes the input data.
The model will be split between two files, the main model and the sinks. If a sequence was present
enough times in the training data, for the model to ”learn” about it, it will be present in the main model,
whereas if the sequence was infrequent, it will usually be located in the sinks.

2.4. SAGE: intruSion alert-driven Attack Graph Extractor
SAGE, introduced in the paper Alert-Driven Attack Graph Generation Using S-PDFA [7], is an ex-
plainable sequence-learning pipeline that generates attack graphs using intrusion alerts, without prior
knowledge of the network. First, the intrusion alerts generated using Suricata are grouped and trans-
formed into attack episodes, which represent the actions the attacker took within the network. Then, the
episodes are summarized using an SPDFA, which clusters similar attack paths based on temporal and
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behavioural similarity. Finally, the learned SPDFA is used for creating attack graphs on a per-victim,
per-objective basis. SAGE is explainable due to its transparent pipeline, where every step is discrete
and deterministic. Next, we will go into more detail and describe the pipeline.

The first step is the pre-processing of intrusion alerts, which is done by:

1. removing informative alerts, or those with bad data (for example, same source and destination
IP)

2. removing duplicate alerts, which are alerts that detect the same behaviour and occur close to one
another

3. inferring the targeted service using the destination port

4. using signatures to augment alerts with their attack stage, using the Action-Intent Framework [10]

The AIF is a custom attack modelling framework, which aims to describe what the attacker is doing
well as how he did it. To achieve this, Moskaal et al. define macro action-intent states (AIS), which
describe the high-level objectives of an attacker, and micro AIS, which in turn describe what technique
the attacker used to achieve that objective. The signatures of intrusion alerts can then be mapped to a
micro AIS, which describes the attack stage.

To better illustrate the relationship between an attacker and the victim hosts, the intrusion alerts
are clustered into alert sequences, which represent a group of alerts with the same attacker and victim,
occurring within a time window. The alert sequences are further used to create the attacker actions, also
called attack episodes. To create an episode, the frequency of the alerts is examined for a given attack
stage, per time window. An increase in frequency denotes the start of an episode, while a decrease
means the end of an episode. Thus, an attack episode consists of the start and end time, the attack
stage and the most targeted (most frequent) service within that episode. The result of this stage of the
pipeline are episode sequences, which are time-sorted episodes for an attacker-victim combination,
such as a1->v1: [<0,150, infoD, http>, <900, 1200, infoD, http>, <901, 1200,
CnC, http>, <2250, 2550, infoD, http>, <2251, 2550, exfil, http>].

Afterwards, the episode sequences are transformed into traces, which in our case will model the
attacker’s actions. To achieve this, each ES is split into multiple subsequences, whenever a lower
severity episode follows a higher severity one (Medium→Low, High →Medium, etc.). The attack stage
and the most frequent service are extracted from each episode, creating a symbol. Thus, each episode
sub-sequence represents a trace, which in turn consists of multiple sequences of symbols of increasing
severity, in the format of attack stage | most targeted service.

The traces are then used to learn a Suffix-based Probabilistic Deterministic Finite Automaton (SPDFA)
to summarize and model attacker behaviour. It is a probabilistic model due to the fact that the transition
function also defines a probability for each transition in the model, which was calculated based on the
training data. More formally, the SPDFA can be defined as ”a 5-tuple 𝐴 = ⟨𝑄, ∑, Δ, 𝑃, 𝑞0⟩, where:

• Q is a finite set of states

• ∑ is a finite alphabet of symbols

• Δ is a finite set of transitions

• 𝑃 ∶ Δ → [0, 1] is the transition probability function

• 𝑞0 ∈ 𝑄 is the final state (due to suffix model)

A transition 𝛿 ∈ Δ in an S-PDFA is a tuple ⟨𝑞, 𝑞′, 𝑎⟩ where 𝑞, 𝑞′ ∈ 𝑄 are the target and source states,
and 𝑎 ∈ ∑ is a symbol. P is a function such that ∑𝑞,𝑎 𝑃(⟨𝑞, 𝑎′, 𝑎⟩) = 1. Additionally, Δ is such that for
every 𝑞 ∈ 𝑄 and 𝑎 ∈ ∑, there exists at most one ⟨𝑞, 𝑎′, 𝑎⟩ ∈ Δ, making the model (suffix) deterministic”
[7].

As mentioned previously, due to the way the sequences (and consequently traces) are constructed,
the high-severity episodes will be located towards the end of the trace. High-severity episodes are also
less frequent compared to low and medium ones. If a model was to be learned with these traces, it
would contain very few high-severity episodes in the main model, due to the model being unable to
”learn” their context. Thus, most of these episodes would be excluded from the main model and put
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in the sink states, which model infrequently seen behaviour. To combat this issue, and to bring the
less frequent sequences into focus, a suffix-based model is learned instead of a regular one. For this
purpose, each trace is reversed, meaning that the higher severity symbols will now be at the beginning
of the trace. As a consequence of learning a suffix model, the model has a final state instead of a
starting one, and the chronological order of the transitions is inverted.

The SPDFA is learned using the Flexfringe framework. The Alergia algorithm [11] is used for learning
the automata, and other parameters are tweaked manually in order to ensure that only states with
similar pasts are merged, to conserve the context of different high-severity alerts. Moreover, the sink
states are saved, which are states that Flexfringe normally would not include in the final state machine
due to the sequences corresponding to them not occurring enough times in the input traces. Since the
high alerts are infrequent yet important, the high-severity sink states are included in the learned model.

Figure 2.4 shows the SPDFA which was learned using the intrusion alerts generated by team 1 of
the CPTC 2018. The Collegiate Penetration Testing Competition (CPTC) is an annual cybersecurity
competition that challenges college students to demonstrate their skills in performing real-world pen-
etration testing and security assessments. The red circles are the states, state 0 being the exception
because it is the final one. To explain what each annotation means, let us examine the state with
identifier 29 (top right):

0 #110
fin: 

 path: 1:110 , 
110 0

[1,31,1,6,1,6,1,1,1,2,1,8,5,6,1,1,1,3,3,1,1,2,1,1,1,1,1,1,1,18,1,]

2 #64
fin: 1:3 , 

 path: 1:61 , 
61 3

[1,37,6,4,3,9,0,1,]

vulnD|mysql
31 

4 #6
fin: 

 path: 1:6 , 
6 0
[6,]

netDOS|http
6 

6 #6
fin: 

 path: 1:6 , 
6 0

[1,1,1,2,1,]

hostD|http
6 

12 #8
fin: 

 path: 1:8 , 
8 0
[7,1,]

delivery|http
8 

52 #12
fin: 

 path: 1:12 , 
12 0

[8,2,1,1,]

exfil|http
5 

13 #14
fin: 

 path: 1:14 , 
14 0

[2,3,4,1,1,2,1,]

dManip|http
6 

29 #18
fin: 

 path: 1:18 , 
18 0
[18,]

netDOS|ssdp
18 

I

33 #37
fin: 1:5 , 

 path: 1:32 , 
32 5

[27,2,2,1,]

serD|unknown
37 

216 #14
fin: 1:14 , 

 path: 
0 14
[]

serD|dsd
6 

36 #9
fin: 

 path: 1:9 , 
9 0
[9,]

serD|cm
9 

39 #6
fin: 

 path: 1:6 , 
6 0
[6,]

infoD|http
6 

exfil|http
7 

dManip|http
8 

76 #18
fin: 

 path: 1:18 , 
18 0

[1,16,1,]

acctManip|snmp
18 

vulnD|mysql
27 

180 #19
fin: 

 path: 1:19 , 
19 0

[9,8,1,1,]

vulnD|mysql
9 

89 #6
fin: 1:1 , 

 path: 1:5 , 
5 1
[3,2,]

surf|http
6 

133 #16
fin: 

 path: 1:16 , 
16 0
[10,6,]

infoD|xdmcp
16 

vulnD|mysql
10 

249 #15
fin: 1:9 , 

 path: 1:6 , 
6 9
[6,]

hostD|asf-rmcp
6 

serD|dsd
8 

215 #9
fin: 

 path: 1:9 , 
9 0
[9,]

serD|unknown
9 

vulnD|mysql
6 

hostD|asf-rmcp
9 

Figure 2.4: SPDFA learned using team 1 intrusion alerts. The transitions represent the attacker’s actions, while the states
provide context to those actions.
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• the first line contains the state identifier, followed by the number of total occurrences for the given
state, which is also the sum of all incoming transition counts; this number symbolizes the number
of times the incoming symbol appeared in the training traces in the given context

• the second line illustrates how many traces end in this state, in this case, none, meaning that
all of the traces will continue; this means that in the training data, there is no trace starting with
netDOS|ssdp and immediately ending

• the third line tells us how many outgoing transitions this state has, in this case, 18

• the fourth line contains a summary of how many traces continue to other states and how many
end in the current state

• the fifth line contains the count of each individual outgoing transition; in this case, it is only one
transition, and all of the traces belong to it

It is worth pointing out that because the traces are inverted, the ending probabilities of traces can
also be interpreted as starting probabilities. Transitions are annotated with the symbols of the traces
as well as a number, which represents the number of times the sequence occurred in training data.
For example, the transition from state 29 to state 76 has a count of 18, meaning that the training data
contains 18 traces where a trace begins with netDOS|ssdp, and is followed by acctManip|snmp.
Looking at the transitions, it can be seen that higher severity alerts, which happened later in time, such
as exfil|http (data exfiltration over HTTP) are closer to the final state, showcasing the reversed
order.

Finally, to create attack graphs, the episode sequences are augmented with their corresponding
states from the SPDFA, assigning each episode its corresponding state identifier. When constructing
an attack graph, the state identifiers are used to cross-match them to the SPDFA states. Each attack
graph is then generated on a per-victim, per-objective basis, where an objective corresponds to a high-
severity attack stage from the AIF. If the attacker has reached the objective in multiple ways which are
significantly different (occurring in different contexts), there will be one high severity node for every
attempt made, to showcase the different path the attacker took to reach it.

Victim: 10.0.0.24
DATA EXFILTRATION

DATA EXFILTRATION
http | ID: 17

DATA EXFILTRATION
Unknown | ID: 31

VULNERABILTY DISCOVERY
mysql

SERVICE DISCOVERY
cpdlc

 start_next: 03/11/18, 14:36:05
gap: 0sec

end_prev: 03/11/18, 14:36:05
Attacker: 10.0.254.204

SERVICE DISCOVERY
unknown

 start_next: 03/11/18, 18:01:28
gap: -105sec

end_prev: 03/11/18, 18:03:13
Attacker: 10.0.254.202

 start_next: 03/11/18, 13:58:44
gap: -277sec

end_prev: 03/11/18, 14:03:21
Attacker: 10.0.254.202

 start_next: 03/11/18, 14:20:54
gap: -268sec

end_prev: 03/11/18, 14:25:22
Attacker: 10.0.254.202

SERVICE DISCOVERY
dsd

 start_next: 03/11/18, 17:15:04
gap: -24sec

end_prev: 03/11/18, 17:15:28
Attacker: 10.0.254.201

VULNERABILTY DISCOVERY
wap-wsp

start_next: 03/11/18, 19:22:02
gap: 17157sec

end_prev: 03/11/18, 14:36:05

start_next: 03/11/18, 19:22:02
gap: 0sec

end_prev: 03/11/18, 19:22:02

INFO DISCOVERY
wap-wsp

start_next: 03/11/18, 21:09:52
gap: -210sec

end_prev: 03/11/18, 21:13:22

HOST DISCOVERY
http

start_next: 03/11/18, 18:06:33
gap: 14sec

end_prev: 03/11/18, 18:06:19

SERVICE DISCOVERY
ssh

start_next: 03/11/18, 21:04:15
gap: 615sec

end_prev: 03/11/18, 20:54:01

HOST DISCOVERY
wap-wsp

start_next: 03/11/18, 14:07:13
gap: -15sec

end_prev: 03/11/18, 14:07:28

start_next: 03/11/18, 14:28:39
gap: -7sec

end_prev: 03/11/18, 14:28:46

INFO DISCOVERY
ssh

start_next: 03/11/18, 20:39:09
gap: 9154sec

end_prev: 03/11/18, 18:06:36

VULNERABILTY DISCOVERY
http

start_next: 03/11/18, 20:53:37
gap: 801sec

end_prev: 03/11/18, 20:40:17

start_next: 03/11/18, 20:53:38
gap: -2sec

end_prev: 03/11/18, 20:53:41

start_next: 03/11/18, 21:09:49
gap: 334sec

end_prev: 03/11/18, 21:04:15

RESOURCE HIJACKING
http | ID: -1

start_next: 03/11/18, 21:09:57
gap: -189sec

end_prev: 03/11/18, 21:13:06

start_next: 03/11/18, 21:09:58
gap: 1sec

end_prev: 03/11/18, 21:09:57

start_next: 03/11/18, 14:28:39
gap: -8sec

end_prev: 03/11/18, 14:28:48

start_next: 03/11/18, 17:19:21
gap: -3sec

end_prev: 03/11/18, 17:19:24

INFO DISCOVERY
Unknown

start_next: 03/11/18, 14:07:14
gap: -13sec

end_prev: 03/11/18, 14:07:28

start_next: 03/11/18, 14:07:18
gap: 4sec

end_prev: 03/11/18, 14:07:14

start_next: 03/11/18, 17:19:17
gap: -7sec

end_prev: 03/11/18, 17:19:24

Figure 2.5: Attack graph for Data exfiltration objective using team 1 and team 2 intrusion alerts of CPTC-2018 dataset.

Figure 2.5 showcases an attack graph generated using team 1 and team 2 intrusion alerts from
the CPTC 2018 dataset, for the Data exfiltration objective. Vertices represent an aggregation of alerts.
Their labels show the attack stage and targeted service, as well as the ID of the states from the automa-
ton, in case of medium and high severity states. Vertex form denotes the episode severity, low-severity
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- oval, medium - boxes, high - hexagons. Yellow ones represent the first episode in the sequence,
while red ones are the objective. Vertices which correspond to SPDFA sink states are dotted. Edge
labels on the other hand have three important annotations: the time of the first alert in the next episode
(start_next), the end time of the last alert from the previous episode (end_prev) and the time gap be-
tween them. The edge colour showcases the team affiliation of the attacker. The top node is an
artificially added node, which connects all of the other objective nodes.

2.5. Related Work
In this section, we provide an overview of existing literature on the topics of data-driven attack visual-
ization, real-time alert correlation and attacker action prediction.

2.5.1. Data driven attack visualization
Yang et al. [12] propose ASSERT, an informational theoretic unsupervised learning approach for the
extraction and generation of attack models in near real-time. It uses intrusion alerts as input and
does not require any prior expert knowledge neither of attack scenarios nor of the network and device
vulnerabilities. The aim is to summarize intrusion alerts in real-time into a visual representation, to help
SOC analysts get a better idea of the current situation and deal with alert fatigue. To achieve this,
the model processes intrusion alerts in real-time and dynamically creates a set of models representing
attack behaviour and scenarios. The authors define a metric called closeness, used to decide if when
processing more data, a new model will be created or the old one will be updated, all of this done in an
unsupervised manner. To test their method, the authors then deploy their model in a real-world SOC,
to see how well it can identify attacks. An example of attack models generated by ASSERT can be
seen in figure 2.6, where the arrow points to a model that has features of Arbitrary code execution and
Persistent attack over Kerberos. A disadvantage of this approach is the lack of information regarding
individual hosts which are under attack, as well as their relationship with the attacker.

Figure 2.6: Attack models produced by ASSERT [12]

ATLAS [13] uses a combination of causality analysis, natural language processing and machine
learning techniques to build a sequence-based model that can help in identifying attack steps in an
Advanced Persistence Threat attack. During the training stage, ATLAS processes the audit logs to
build a causal dependency graph, which it also uses to create NLP-augmented sequences describ-
ing malicious and benign scenarios. The sequences are undersampled and oversampled in order to
balance the dataset. The text sequences are then transformed into word embeddings and fed to a
deep-learning model consisting of a CNN and an LSTM. During the inference time, a security expert
can feed the model an attack indicator, such as a malicious IP or host, using which ATLAS will extract
the related entities from the causal graph. Using those entities, it will build the NLP sequences and run
them through the trained model, which will predict whether they are part of an APT attack or not. The
sequences which ATLAS found during this process will constitute the attack story, an example of which
can be found in figure 2.7 (C).

Moskal et al. [14] introduce HeAT, which given an Indicator of Compromise such as a critical alert,
generates an ”attack campaign”, which showcases the events leading to the IoC. Their approach con-
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Figure 2.7: Causal graph and attack story generated by ATLAS
[13] Figure 2.8: Example of HEAT attack campaign [14]

sists of first summarizing alerts by creating attack episodes and then presenting a subset of them to
the analyst, who will be asked to rate their degree of relatedness to the IoC, called ”Alert Episode Heat”
(AEH). These episodes will then be used to derive network agnostic features, as well as predict the
AEH for the other episodes using machine learning. Finally, the ”heated” episodes are used to con-
struct the attack campaign, an example of which can be found in figure 2.8. A disadvantage of this
approach is the human factor which is involved. Because the episodes labelled by the analyst will be
used to predict the ”heat” for the other episodes, if the analyst makes a mistake, the attack campaigns
will not be accurate.

Hu et al. [15] argue that true negative alerts and unsuccessful attack paths are useful when recon-
structing the attack scenario. First, the attack graph of the network is generated using MulVAL [16],
which showcases the devices and their vulnerabilities. Afterwards, the intrusion alerts are mapped
to the attack graph, and attack paths are clustered based on sequence similarity. As a last step, the
attack paths are used to identify unreported true negative alerts. An attack scenario reconstructed by
this approach can be seen in figure 2.9, where the first path is unsuccessful, while the second one
succeeds.

Figure 2.9: Attack scenario generated by Hu et al. [15]

2.5.2. Real-time attack correlation
Hofmann et al. [17] present a probabilistic approach to online attack correlation in distributed intrusion
detection systems environments. Their method clusters alerts in real-time using probabilistic models
and generates meta alerts which contain all the information from the summarized alerts within a cluster.
When streaming data, every new alert is examined, and a decision is made whether a new cluster
should be created, or whether the alert should be associated with an existing one. In theory, each
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cluster should represent an attack scenario/objective. In practice, however, they were not able to
achieve this, because for three reasons: the nature of the attack can vary, the long attack duration
and bidirectional communication. However, their method showed an impressive reduction rate of up to
99.96 %, while maintaining a low number of missing meta-alerts.

Werner et al. [18] propose grouping alerts based on their inter-arrival times. Thus, an alert aggre-
gate is defined as a consecutive set of alerts with similar IAT and is constructed using EWMA control
charts. Aggregates whose IAT distributions are statistically similar can further be clustered into con-
cepts, based on the two sample KS-test. So, alerts belonging to different concepts have a bigger
statistical dissimilarity in their IAT. When streaming alerts in real-time, every alert is first added to the
current alert aggregate, and the IAT is calculated. Afterwards, the aggregate is either kept and at-
tributed to a concept or if the IAT is too different, a new aggregate will be started. They then tested
their approach on the CPTC 2018 dataset, showing that concepts can indeed identify different temporal
behaviours of alerts, even for attackers belonging to different teams.

2.5.3. Attack prediction
Holgado et al. [19] study the performance of Hidden Markov Models (HMMs) for predicting the next
attacker action in real-time in the context of DDoS attacks. They represent attacker actions as hidden
processes of the HMM, while the observations are represented by the intrusion alerts from the IDS.
Each state in the HMM is also augmented with the mean number of alerts and the number of alerts in
progress. The alerts are clustered based on keywords in their CVE description and their severity. The
models are then trained using both supervised (counting the transitions and emissions of every state)
and unsupervised (Baum-Welch Algorithm). Afterwards, the Viterbi Algorithm is used for calculating
the best state sequence for a given observation sequence, which is then used to predict the next at-
tack stage as well as the probability of the attacker reaching the objective (the final state), while using
intrusion alerts as input. To test their approach, the authors simulate a DDoS attack in a virtual environ-
ment and collect the generated intrusion alerts. Although they obtained good prediction performance
using the supervised model, a downside is that they only studied DDoS attacks, and each attack type
requires training a separate HMM, questioning the performance of their method on other attack types.

Ramaki et al. [20] propose a method to predict the next attacker actions in real-time using a
Bayesian Graph. The alerts are first pre-processed by verifying them against a vulnerability and topol-
ogy database of the current network. They are then aggregated into meta-alerts based on their fea-
tures, and causal relationships are defined between them, which are then used to create the Bayesian
attack graph, where the nodes are meta-alerts. Finally, using a set of observed meta-alerts as input,
the probability of the meta-alerts most likely to happen can be calculated in real-time using posterior
probabilities. Even though most of the training and creation of the BAG is done offline, a nice part of
their approach is that the BAG can be re-trained online, by recalculating the probabilities based on the
observed meta-alerts.

Fava et al. [21] develop a way to predict the actions of an attacker inside a network using variable-
length Markov models (VLMM). To achieve this, they first introduce the concept of attack tracks, which
are sequences of various fields from intrusion alerts. Thus author chose to construct attack tracks using
three alert fields: the destination IP from the packets, alert category (scanning, vulnerability exploitation
etc.) and alert description. These sequences are then used to train three separate VLMMs, which
combine Markov models of different orders. The models are then used to predict the most likely next
attack category, description or IP address, given a sequence of observed symbols. The authors also
propose a real-time version of their approach, where the models are trained in real-time as more data
becomes available, to further improve their performance against new attacks which were not observed
before in the training data. Although they achieve good prediction results, a limitation of their approach
is that they predict the three alert attributes separately.

Thanthrige et al. [22] introduce a method of alert prediction using Hidden Markov Models (HMMs).
They first create a bag of words model using a training dataset of intrusion alerts. This model would
contain the important information from each alert, such as source and destination IP addresses, alert
category and signature. The vocabulary of the model was then used to create alert clusters using the
k-means Clustering algorithm. A cluster contains both IP information as well as an attack description.
Finally, a HMM was trained using the alert clusters, which can then be used to predict the next cluster
given a sequence of observed clusters.

Sendi et al. [23] propose a method of predicting whether an intrusion is happening in the network
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using HMMs. The paper proposes an Alert Severity Modulating approach that increases alert sever-
ity exponentially through correlation. The Alert Correlation Matrix (ACM) is used to store correlation
strengths between different types of alerts. The enhanced alert severities are then used to train an
HMM, whose hidden states denote the state of the network: Normal, Attempt, Progress, and Com-
promise. For predicting the current status of the network, the model is presented with a sequence of
observations in the format of the enhanced severities of currently observed alerts.
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Prediction of next attacker action

In this chapter, we look into the first research subquestion: How can the SPDFA be used to predict the
next attacker action? We use attack episodes (described in section 2.4) to denote attacker actions,
and we aim to predict the next episode using a sequence of observed episodes. We first discuss the
dataset and describe the methodology of our approach. We then describe other prediction methods to
which we will compare our method, including a PDFA-based one. Finally, dive into the experiments we
have performed in order to evaluate our approach.

3.1. Dataset
The dataset which we will use for this research question consists of traces generated from the CPTC-
2018 intrusion alert dataset. The Collegiate Penetration Testing Competition (CPTC) is an annual
cybersecurity competition that challenges college students to demonstrate their skills in performing
real-world penetration testing and security assessments. An IDS (Suricata) is also deployed in the
competition environment, and the generated intrusion alerts are collected and made publicly avail-
able for research purposes. The dataset which resulted from the 2018 competition contains a total
of 331,554 intrusion alerts generated by 6 teams, over a duration of 10 hours. One downside of this
dataset is the fact that the intrusion alerts which have been triggered are not labelled as true or false
positives. In a real-world SOC, all of the alerts are investigated by an analyst, who ultimately decides if
the alert is a real threat or just benign behaviour which was misclassified as malicious. When creating
the dataset, the participants were not asked whether the observed alerts indeed corresponded to their
performed actions, meaning that it might contain false positives.

Since we are interested in predicting the next attacker action rather than the next alert, we first need
to transform the alerts into episodes. For this purpose, we use the same process described in 2.4 to
generate traces. As a reminder, the intrusion alerts are first filtered by removing duplicates that occur
within a 1-second interval as well as informative alerts, and grouped on an attacker-victim basis. The
alerts are also augmented with the attack stage and the targeted service. They are then aggregated into
attack episodes, using their frequency within a time window, for each given attack stage. Finally, the
episodes are time-sorted and used to create the trace file, where every line corresponds to an episode
sequence from an attacker against a certain victim. A trace consists of multiple symbols, where each
symbol is in the format attack stage|most targeted service, based on the episode from which
it has been created. An example of a trace is vulnD|http rPrivEsc|http remoteexp|http
dManip|http, illustrating that an attacker started with vulnerability discovery, followed by privilege
escalation and remote service exploit, finishing with data manipulation, using services which run over
HTTP. Each trace is written in reverse chronological order because we are interested in learning a
suffix-based model which will bring high-severity actions into focus.

Table 3.1 shows the result of each stage of the pipeline when transforming alerts to traces, which
ultimately results in 555 traces (384 unique traces) and 148 unique symbols. To give some insight
into the dataset, we calculate the frequency distribution of the length of the traces, which can be seen
in figure 3.1. Traces of length 3 to 14 are considerably more frequent compared to others, the most
common lengths being 3 to 6, where 61.9% of the total traces are contained.

15
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Table 3.1: Number of alerts, episodes and traces resulting from the CPTC-2018 dataset

Raw alerts Alerts after pre-processing Episodes Episode Sub-sequences Traces
# 331,554 71,126 5022 739 555
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Figure 3.1: Trace length distribution of traces generated using CPTC-2018 dataset. A considerable part of the traces (344, or
61.9%) are contained within lengths 3 and 6.

The frequency distribution of the severity of the first and last actions of these traces can be seen
in figures 3.2 and 3.3 respectively. It can be seen that the first action in a sequence is almost always
guaranteed to be a low-severity one. On the other hand, in the last action severity distribution, we
can see that most of the actions are also low severity. Previously we assumed that attacker actions
eventually progress to medium and high severity ones, such as data exfiltration. This distribution can
indicate that an attacker can use some hosts as initial devices to establish a foothold in the network,
before moving to others where he can perform more critical actions. Thus, the sequences for some
hosts will only contain low to medium-severity actions.

3.2. Methodology
Given a sequence of observed attacker actions, we want to use the SPDFA to predict the next action,
as the SPDFA contains a summarised version of the past observed attacker behaviour. Having a set of
traces, we use Flexfringe to generate the SPDFA, using the same configuration as described in section
2.4. The states resulting from training on the data can be divided into two: states included in the main
model and the sink states. If during training Flexfringe finds infrequent sequences from which it could
not effectively ”learn” the behaviour, they will be placed in the sinks. However, when predicting the
next action, we are interested in examining all the behaviours found in the training data, even those
which are infrequent. To this extent, we merge all sink states with the main model and use the resulting
SPDFA for prediction. Since all incoming transitions of a state will always have the same symbol (as
can be seen in figure 3.4 left), we augment each state with its corresponding symbol.

Due to the fact that we have reversed the traces and learned a suffix-based model, when traversing
the SPDFA from the starting (root) state towards other states, the visited states will be in reversed
chronological order (top→bottommeans future→past). However, since we are interested in predicting
future events based on events that occurred in the past, we want to traverse the SPDFA in reversed
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Figure 3.2: Severity distribution of first actions of traces
generated using CPTC-2018 dataset. As expected, most are

low severity.
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Figure 3.3: Severity distribution of last actions of traces
generated using CPTC-2018 dataset. Even though the last
action in a chain of symbols is supposed to be of higher

severity, we can see that most of the actions are low severity.

order, from leaf or intermediary states towards the root one. To achieve this, we reverse all of the
transitions, creating a Reversed SDPFA (rSPDFA) (note that a reversed SPDFA does not equal a
PDFA), which has the following properties:

1. There is no single root/starting state, instead, the states which previously did not contain any
outgoing transitions can be considered the new root states

2. The state machine becomes non-deterministic since a state can now have multiple transitions
with the same symbol

3. The transition probabilities are recalculated as per formula 3.1, which will be discussed in more
detail below

An example of an SPDFA pre and post-inversion can be seen in figure 3.4. Each state has a state
ID and total count of traces (first line), followed by the number of traces that continue and the number
of traces that start in this state (second line). The transition labels illustrate the transition symbol, the
transition count and the transition probability. After the inversion, the state machine becomes non-
deterministic, because state 4 now has two outgoing transitions with the same symbol.

For every transition in the SPDFA, with source state 𝑆, destination state 𝐷, and transition symbol
𝑠𝑦𝑚𝑏 the new probability is calculated as:

𝑃𝑡𝑟𝑎𝑛𝑠(𝐷 → 𝑆) =
𝑐𝑜𝑢𝑛𝑡(𝑆 → 𝐷)
𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑢𝑛𝑡(𝐷) (3.1)

where 𝑐𝑜𝑢𝑛𝑡() is the count of the transition from 𝑆 to 𝐷, and 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑢𝑛𝑡() is the number of total oc-
currences of a state 𝐷. For example in figure 3.4, for the transition from state 2 to state 4 with symbol
vulnD|http:

𝑃𝑡𝑟𝑎𝑛𝑠(4 → 2) =
𝑐𝑜𝑢𝑛𝑡(2 → 4)
𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑢𝑛𝑡(4) =

30
42 = 0.71

As mentioned in section 2.2, every state also has a starting probability, which symbolizes the prob-
ability of a sequence starting from this state. When inversing the SPDFA, it is also recalculated as

𝑃𝑠𝑡𝑎𝑟𝑡(𝑆) =
𝑠𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡(𝑆)

𝑡𝑜𝑡𝑎𝑙𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡(𝑠𝑦𝑚𝑏) (3.2)

where 𝑆 is a state, 𝑠𝑦𝑚𝑏 is the symbol corresponding to that state, 𝑠𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡() is the number of traces
that start in that state, and 𝑡𝑜𝑡𝑎𝑙𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡() for a symbol symb is defined as∑𝑠𝑡𝑎𝑡𝑒∈𝑠𝑡𝑎𝑡𝑒𝑠 𝑠𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡(𝑠𝑡𝑎𝑡𝑒),
where 𝑠𝑦𝑚𝑏𝑜𝑙(𝑠𝑡𝑎𝑡𝑒) = 𝑠𝑦𝑚𝑏. For example, in figure 3.4 if we were to calculate it for state 4:

𝑃𝑠𝑡𝑎𝑟𝑡(4) =
𝑠𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡(4)

𝑡𝑜𝑡𝑎𝑙𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑢𝑛𝑡(𝑣𝑢𝑙𝑛𝐷|ℎ𝑡𝑡𝑝) =
42
42 = 1.0
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The starting probability for this state is 1 because this is the only state whose symbol is vulnD|http,
respectively all of the traces in the training data which for which this symbol is the first one in the
sequence will also start from this state.

0 #100
100:0

4 #42
0:42

3 #20
8:12

2 #70
30:40

1 #30
24:6

vulnD | http
12
0.5

serD | http
12
0.5

exfil | http
70
0.7

netDOS | http
30
0.3

vulnD | http
30
1.0

0 #100
100:0

4 #42
0:42

3 #20
8:12

2 #70
30:40

1 #30
24:6

vulnD | http
12

0.29

serD | http
12
0.6

exfil | http
70
1.0

netDOS | http
30
1.0

vulnD | http
30

0.71

serD | http
8

1.0

serD | http
8

0.4

Figure 3.4: An example of a SPDFA before(left) and after(right) inversion. The transition probabilities change after the
inversion, re-calculated using the formula 3.1. The state machine also becomes non-deterministic after the inversion.

3.2.1. Path finding algorithm
In order to predict the next action given a sequence of observed actions, we need to search the rSPDFA
and find all of the sequences of transitions which have the same symbols in the same order as the
observed actions. The same sequence can appear in different contexts, and can result in multiple se-
quences of visited states, thus it is important to examine all of them to calculate an accurate probability
distribution of the next actions. Having found all such sequences of states, we then can look at the
symbol of the outgoing transitions corresponding to the last state in the sequence, and calculate the
probability distribution of the next actions using all such symbols.

This section describes how the rSPDFA is used to find all such sequences of states, which will be
further used for predicting the next action. We use the term path to describe a possible sequence of
states that can be reached by exploring transitions in the rSPDFA given a starting state. Because of
the fact that the SPDFA becomes non-deterministic after the reversal of the transitions, there will be
multiple possible paths for a given input trace. The core idea of the algorithm is to explore all possible
paths non-deterministically, given a starting state and an input sequence. Each symbol from the input
sequence will correspond to one transition in the rSPDFA, thus the algorithm will move from state to
state until either there are no more symbols in the input trace or a state with no outgoing transitions is
reached.

Since the rSPDFA is similar to an acyclic graph, we adopt a depth-first search approach for finding
the paths. As mentioned, we start with a starting state and the first symbol from the input sequence.
We add the current state to the path and examine the symbols of the outgoing transitions, to decide
whether or not to to visit them based on our chosen visiting strategy. We define the following strategies
for visiting the next states based on the transition symbol and the next symbol from the sequence:

1. Strategy 1 - full symbol match - we will visit the next states only if the transition symbol matches
the next symbol of the trace

2. Strategy 2 - attack stagematch - we will visit the next states only if the attack stage of the transition
symbol matches the attack stage of the next symbol of the trace

3. Strategy 3 - any symbol match - we will visit the next states regardless of the next symbol of the
trace

As can be seen, each strategy is less restrictive than the previous one and will result in more visited
paths. The intuition behind this was the nature of the cyberattacks, which are constantly evolving. For
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example, let us assume our training set contained the sequence of actions service discovery,
vulnerability discover, vulnerability exploitation. If the attacker were to perform
these actions in a different order during a cyberattack, or even change the second action to something
else, for example brute force credential gain, the first and second strategies would result in
no prediction, due to not finding any viable paths. On the other hand, strategy 3 can continue exploring
the rSPDFA even in case of input symbol mismatch, and eventually output a prediction.

After deciding on the next states, we visit them one by one and create a new path for each one we
visit horizontally. Once in the next state, we once again examine the transition symbol and the next
symbol from the input trace. We repeat this process until either a state with no outgoing transitions
is reached, or when there are no more symbols in the input sequence. Finally, we return a list of all
possible paths.
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Figure 3.5: An example of a rSPDFA and the resulting paths per strategy for the input trace serD|http vulnD|ssh
netDOS|dns. The red states indicate the states which were visited while using the full symbol match strategy. When using the

attack stage strategy, the red as well as blue states are visited. The any-symbol match strategy has the most relaxed
requirements, thus it visits the states from the previous strategy, as well as the purple ones. The full symbol match strategy
returns the path 6 -> 5 since it cannot explore past state 5 due to the symbol not matching with the input one. The attack

stage match strategy returns the paths 6 -> 5 -> 3 -> 1 and 6 -> 5 -> 4, while the any symbol one returns 6 -> 5 ->
3 -> 1 as well as 6 -> 5 -> 4 -> 2.

Figure 3.5 showcases how the algorithm would run for each different chosen strategy, given an
rSPDFA and an input trace. The first symbol from the input is serD|http, thus we start in state
6 (bottom). Regardless of the strategy used, the first state will always have at least one outgoing
transition with the matching symbol, thus we visit state 5 and create a path containing the sequence 6,
5. We then examine the next transition symbol, which is vulnD|http, as well as the next input one,
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which is vulnD|ssh. We can see that the attack stage matches, while the service does not. When
using strategy 1, we cannot visit any more states, thus we return the previously mentioned path. Now
let us assume we are using Strategy 2 and matching the attack stage, in which case we will visit both
states 3 and 4. We randomly choose 3 as the next state, our path becoming 6, 5, 3. We once
again compare the input symbol with the one from the outgoing transition, and since it matches, we
continue to state 1. Since we have no more symbols in the input, we add the current path 6, 5, 3,
1 to the lists of found paths. Next, we return back and visit state 4. The next symbol from the input
is netDOS|dns, while the one from the transition is dManip|ssh, so neither the attack stage nor the
service match, so we add the path 6, 5, 4 to the list of results and return. In this case, there are no
more states left to explore for the attack stage match strategy. However, if we were using any symbol
match strategy, we could also visit state 2, and return the path 6, 5, 4, 2. These paths can also be
seen in the figure, the red states corresponding to Strategy 1, red + blue to Strategy 2, and red + blue
+ purple to Strategy 3.

To speed up the path-finding process for every subsequent use, we also implement memoization.
We use a dictionary where the key is state identifier, input trace, and the value is the list
of paths corresponding to this combination. Before returning the found paths, we store them in this
dictionary. Thus, on subsequent calls, if the current state has already been visited in the past with
the same input trace, we can return the resulting paths without having to find all of them again. The
complete algorithm for path finding is illustrated in algorithm 1.

Algorithm 1: Find possible paths for a given starting state and a trace
1 findPathsDFS(𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑐𝑒, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑑𝑝)
Data: 𝑝𝑎𝑡ℎ𝑠 = [];
𝑘𝑒𝑦 = (𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑐𝑒);
𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒𝑠 = [];

2 if 𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑐𝑒 is empty :
/* return a list containing only this state */

3 return [𝑠𝑡𝑎𝑡𝑒];
4 if 𝑠𝑡𝑎𝑡𝑒 has no 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 :
5 return [𝑠𝑡𝑎𝑡𝑒];
6 if 𝑘𝑒𝑦 in 𝑑𝑝 :
7 return 𝑑𝑝[𝑘𝑒𝑦];
8 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑦𝑚𝑏𝑜𝑙 = 𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.𝑠𝑦𝑚𝑏𝑜𝑙;
9 𝑖𝑛𝑝𝑢𝑡𝑆𝑦𝑚𝑏𝑜𝑙 = 𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑐𝑒[0];
10 if 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 == FULL_MATCH :
11 if 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑦𝑚𝑏𝑜𝑙 == 𝑖𝑛𝑝𝑢𝑡𝑆𝑦𝑚𝑏𝑜𝑙 :
12 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒𝑠.append(𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.𝑠𝑡𝑎𝑡𝑒𝑠)

13 elif 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 == ATTACK_STAGE_MATCH :
14 if 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑦𝑚𝑏𝑜𝑙.𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑡𝑎𝑔𝑒 == 𝑖𝑛𝑝𝑢𝑡𝑆𝑦𝑚𝑏𝑜𝑙.𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑡𝑎𝑔𝑒 :
15 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒𝑠.append(𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.𝑠𝑡𝑎𝑡𝑒𝑠)

16 else:
17 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒𝑠.append(𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠.𝑠𝑡𝑎𝑡𝑒𝑠)
18 for 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 in 𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒𝑠 do
19 for 𝑓𝑜𝑢𝑛𝑑𝑃𝑎𝑡ℎ in findPathsDFS (𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡𝑇𝑟𝑎𝑐𝑒[1:], 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑑𝑝) do

/* append the current state to the path, and add it to the list
of found paths */

20 𝑝𝑎𝑡ℎ𝑠.append([𝑠𝑡𝑎𝑡𝑒] + 𝑓𝑜𝑢𝑛𝑑𝑃𝑎𝑡ℎ);

21 𝑑𝑝[𝑘𝑒𝑦] = 𝑝𝑎𝑡ℎ𝑠;
Result: 𝑝𝑎𝑡ℎ𝑠
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3.2.2. Prediction algorithm
This section describes the algorithm for predicting the next action in a sequence given a list of found
paths. Given an input trace for which we want to predict the next action, we first select the first symbol
of the trace and find all states where that symbol occurs, which will form the set of starting states.
We can start from intermediary as well as leaf states because our model has Markovian properties,
meaning that given the current states (present), future states only depend upon them, and not on the
past ones.

After using the path-finding algorithm on each starting state and obtaining all possible paths, we
can calculate the probability of each path, which is done by multiplying the transition probabilities of all
states for a given path. This product is also multiplied by the starting probability of the first state, due
to the fact that we are also interested in the probability of a trace starting in a particular state.

For strategies 2 and 3, because we explore paths which contain symbols that are different from the
ones in the input trace, either based on the attack stage or disregarding the input symbol completely,
we would like to give a significantly higher priority to the transitions which match the entire symbol from
the input trace, and a slightly higher priority to those which match the attack stage. The justification
behind this is that when calculating the probabilities of each path, the paths which contain symbols
closest to the input trace should have a higher probability compared to others. For this purpose, we
multiply the transition probability with a chosen factor if it matches the attack stage, and with factor *
2 if it matches the entire symbol. The value of this factor will be further explored in section 3.3.3. The
formula 3.3 illustrates how the probability of a path is calculated.

𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ) = 𝑃𝑝𝑎𝑡ℎ(𝑆1..𝑆𝑁) = 𝑃𝑠𝑡𝑎𝑟𝑡(𝑆1) ∗
𝑁−1

∏
𝑖=1

𝑃𝑡𝑟𝑎𝑛𝑠(𝑆𝑖 → 𝑆𝑖+1) ∗ 𝑔𝑒𝑡𝑃𝑟𝑜𝑏𝐹𝑎𝑐𝑡𝑜𝑟(𝑆𝑖 → 𝑆𝑖+1, 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦)

(3.3)
Since we multiply some of the probabilities with a probability factor based on the strategy, we need

to normalize them before we proceed. To achieve this, we calculate the sum of all path probabilities
and divide each one by that sum. As a result, all of the path probabilities sum up to 1.

The traversal results in both valid paths and invalid paths. Invalid paths are those for which the trace
could not be explored completely, either because a state with no outgoing transitions was reached, or
because of the traversal strategy (when the transitions symbols did not match the input ones). Thus,
we filter them out, calculate the sum of the probabilities of these paths, and redistribute the resulting
probability equally to the remaining valid paths. This can be seen in algorithm 2. We consider the next
action of a path as the symbol of the outgoing transitions of the last state of a given path. We then
calculate the probability mass distribution of all possible next actions,

𝑃𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑠𝑦𝑚𝑏𝑜𝑙) =∑
𝑝∈𝑝𝑎𝑡ℎ𝑠

𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑝)=𝑠𝑦𝑚𝑏𝑜𝑙

𝑃𝑝𝑎𝑡ℎ(𝑝)

Finally, using this distribution we choose the action with the maximum probability, which represents the
prediction result. The entire process can be seen in Algorithm 3.

Algorithm 2: Redistribute probabilities of invalid paths to valid ones
Input: 𝑝𝑎𝑡ℎ𝑠, 𝑝𝑎𝑡ℎ𝑃𝑟𝑜𝑏𝑠

1 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠 = 𝑠𝑝𝑙𝑖𝑡𝑃𝑎𝑡ℎ𝑠(𝑝𝑎ℎ𝑡𝑠, 𝑝𝑎𝑡ℎ𝑃𝑟𝑜𝑏𝑠) ;
2 𝑠 = 𝑠𝑢𝑚(𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠) ;
3 𝑟𝑒𝑑𝑖𝑠𝐴𝑚𝑜𝑢𝑛𝑡 = 𝑠 / 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠) ;
4 for 𝑝𝑟𝑜𝑏 in 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠 do
5 𝑝𝑟𝑜𝑏 += 𝑟𝑒𝑑𝑖𝑠𝐴𝑚𝑜𝑢𝑛𝑡
Result: 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠

Let us exemplify this process using figure 3.5, any symbol match strategy, a probability multiplication
factor of 2 and the same input trace serD|http vulnD|ssh netDOS|dns. The path finding algorithm
returns the two possible paths: (6, 5, 3, 1) (path 1) and (6, 5, 4, 2) (path 2). We first calculate
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Algorithm 3: Find the next attacker action for a given trace
Input: 𝑡𝑟𝑎𝑐𝑒
Data: 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 = getStates(𝑡𝑟𝑎𝑐𝑒[0]) ;
𝑝𝑎𝑡ℎ𝑠 = [];

1 for every 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒 in 𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒𝑠 do
2 𝑝𝑎𝑡ℎ𝑠.append(findPathsDFS (𝑠𝑡𝑎𝑟𝑡𝑁𝑜𝑑𝑒, 𝑡𝑟𝑎𝑐𝑒))
3 𝑝𝑎𝑡ℎ𝑃𝑟𝑜𝑏𝑠 = 𝑔𝑒𝑡𝑃𝑎𝑡ℎ𝑃𝑟𝑜𝑏(𝑝𝑎𝑡ℎ) for 𝑝𝑎𝑡ℎ in 𝑝𝑎𝑡ℎ𝑠 ;
4 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑃𝑟𝑜𝑏𝑠 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝𝑎𝑡ℎ𝑃𝑟𝑜𝑏𝑠) ;
5 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠 = 𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑝𝑎𝑡ℎ𝑠, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑃𝑟𝑜𝑏𝑠) ;
6 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃𝐷 = {} ;
7 for 𝑝𝑎𝑡ℎ, 𝑝𝑎𝑡ℎ𝑃𝑟𝑜𝑏 in (𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠, 𝑣𝑎𝑙𝑖𝑑𝑃𝑎𝑡ℎ𝑠𝑃𝑟𝑜𝑏𝑠) do
8 𝑛𝑎 = 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑝𝑎𝑡ℎ);
9 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃𝐷[𝑛𝑎] += 𝑝𝑎𝑡ℎ𝑃𝑟𝑜𝑏;
Result: 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛 = max(𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠𝑃𝐷)

the path probabilities of each path:

𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ1) = 𝑃𝑠𝑡𝑎𝑟𝑡(6) ∗ 𝑃𝑡𝑟𝑎𝑛𝑠(6 → 5) ∗ 4 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠(5 → 3) ∗ 2 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠(3 → 1) ∗ 4 = 13.76

𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ2) = 𝑃𝑠𝑡𝑎𝑟𝑡(6) ∗ 𝑃𝑡𝑟𝑎𝑛𝑠(6 → 5) ∗ 4 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠(5 → 4) ∗ 2 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠(4 → 2) ∗ 1 = 4.56

It can be seen that the probability was multiplied by 4 where the full transition symbol matched the input
one, and by 2 when the attack stage of the transition matched the attack stage of the input symbol.
Next, we normalize them by calculating their total sum 𝑆 = 13.76+4.56 = 18.32 and dividing each one
by this sum. The new path probabilities are:

𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ1) = 𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ1)/𝑆 = 13.76/18.32 = 0.75

𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ2) = 𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ2)/𝑆 = 4.56/18.32 = 0.25

In this case we have no invalid paths because both of them have the same number of transitions as the
number of symbols in the input trace. Finally, we calculate the probability distribution of the next actions
using the valid paths. The next action of path 1 is resHJ|http (Resource Hijacking over HTTP),

𝑃𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑟𝑒𝑠𝐻𝐽|ℎ𝑡𝑡𝑝) =∑
𝑝∈𝑝𝑎𝑡ℎ𝑠

𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑝)=𝑟𝑒𝑠𝐻𝐽|ℎ𝑡𝑡𝑝

𝑃𝑝𝑎𝑡ℎ(𝑝) = 𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ1) = 0.75

The next action of path 2 is exfil|http (Data Exfiltration over HTTP), so the probability is

𝑃𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑒𝑥𝑓𝑖𝑙|ℎ𝑡𝑡𝑝) =∑
𝑝∈𝑝𝑎𝑡ℎ𝑠

𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑝)=𝑒𝑥𝑓𝑖𝑙|ℎ𝑡𝑡𝑝

𝑃𝑝𝑎𝑡ℎ(𝑝) = 𝑃𝑝𝑎𝑡ℎ(𝑝𝑎𝑡ℎ2) = 0.25

The maximum amongst these two is resHJ|http, thus we return it as the predicted next action.

3.2.3. Baseline prediction methods
Random guess
For evaluation purposes, we also define two baseline prediction methods. The first one is based on
random guessing, and as the name suggests, its accuracy is calculated as if the prediction results were
to be random guesses from the space of possible predictions. So the accuracy for this method can be
defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑟𝑎𝑛𝑑𝑜𝑚𝐺𝑢𝑒𝑠𝑠 =
1

# of distinct symbols
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Frequency-based baseline algorithm
The second baseline method works in a purely probabilistic fashion and is shown in algorithm 4. Using
the training traces, we examine all (symbol, nextSymbol) tuples, and calculate the frequency
of every possible nextSymbol for a particular symbol. When predicting the next attacker action for a
particular trace, we select the last symbol in the trace and using the calculated frequencies, we consider
the next action to be the symbol with the highest rate of occurrence for the last symbol.

Algorithm 4: Baseline Frequency-based algorithm
Input: 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑟𝑎𝑐𝑒𝑠, 𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑐𝑒, 𝑠𝑦𝑚𝑏𝑜𝑙𝐿𝑖𝑠𝑡
Data: 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 = dictionary()

1 for 𝑠𝑦𝑚𝑏𝑜𝑙 in 𝑠𝑦𝑚𝑏𝑜𝑙𝐿𝑖𝑠𝑡 do
2 for 𝑛𝑒𝑥𝑡𝑆𝑦𝑚𝑏𝑜𝑙 in 𝑠𝑦𝑚𝑏𝑜𝑙𝐿𝑖𝑠𝑡 do
3 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠[𝑠𝑦𝑚𝑏𝑜𝑙][𝑛𝑒𝑥𝑡𝑆𝑦𝑚𝑏𝑜𝑙] = 0

4 for 𝑡𝑟𝑎𝑐𝑒 in 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑟𝑎𝑐𝑒𝑠 do
5 for (𝑠𝑦𝑚𝑏𝑜𝑙, 𝑛𝑒𝑥𝑡𝑆𝑦𝑚𝑏𝑜𝑙) in 𝑡𝑟𝑎𝑐𝑒 do
6 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠[𝑠𝑦𝑚𝑏𝑜𝑙][𝑛𝑒𝑥𝑡𝑆𝑦𝑚𝑏𝑜𝑙] += 1

7 𝑙𝑎𝑠𝑡𝑆𝑦𝑚𝑏 = 𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑐𝑒[-1]
8 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛 = max(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠[𝑙𝑎𝑠𝑦𝑆𝑦𝑚𝑏])
Result: 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛

3.2.4. PDFA-based prediction algorithm
Wealso want to compare the performance of the SPDFA-based prediction algorithmwith a PDFA-based
one. For this purpose, we train a PDFA using the same training data (this time however the traces are
not reversed). The resulting PDFA can then directly be used for our purposes, without needing any
further changes. For this purpose, we implement a simple deterministic traversal algorithm for finding
the next symbol using an input trace, which can be seen in algorithm 5. We start in the root state of the
automaton, and while iterating through the symbols of the input trace, we move state by state using the
transitions of each state. The next state is decided based on the current symbol from the input trace.
If the symbol cannot be found in the transitions of a state, we choose the transition with the maximum
count and the state it corresponds to. We do this until the end of the input trace is reached, and we end
up in the final state. We then examine the outgoing transitions of the final state. We pick the symbol
corresponding to the transition with the maximum count and return it as the prediction result, along with
its probability. The probability is calculated as 𝑃 = transition count

sum across all transitions
. If the traversal ever reaches a

state with no outgoing transitions, we return fail and consider this a failed attempt.

Algorithm 5: PDFA-based prediction algorithm
Input: 𝑝𝑑𝑓𝑎, 𝑡𝑟𝑎𝑐𝑒
Data: 𝑠𝑡𝑎𝑡𝑒 = 𝑝𝑑𝑓𝑎[𝑟𝑜𝑜𝑡]

1 for 𝑠𝑦𝑚𝑏𝑜𝑙 in 𝑡𝑟𝑎𝑐𝑒 do
2 if 𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 == [] :
3 return Fail
4 else:
5 if 𝑠𝑦𝑚𝑏𝑜𝑙 in 𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 :
6 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠[𝑠𝑦𝑚𝑏𝑜𝑙]
7 else:
8 𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑆𝑦𝑚𝑏𝑜𝑙 = maxCount(𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
9 𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒.𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠[𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑆𝑦𝑚𝑏𝑜𝑙]

10 𝑓𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒 = 𝑠𝑡𝑎𝑡𝑒
Result: 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛 = maxCount(𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 of 𝑓𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒)
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Figure 3.6: An example of a PDFA and the path the algorithm would take (highlighted in red) for the input trace serD|http
privEsc|ssh, the predicted action being dEncrypt|ssh.

Figure 3.6 shows an example of a PDFA and the path the algorithm would take for the input trace
serD|http privEsc|ssh. We start in the root state and examine the first input symbol serD|http.
Since we could find it in the transitions, we move to state 1 and examine the next input symbol,
privEsc|ssh. Since there is no outgoing transition with this symbol, we pick the one with the maxi-
mum count, which is lateral|ldap, and move to state 4. Now the input trace is finished, so we just
pick transition with the maximum count from the last state in the path, which is dEncrypt|ssh, and
return it as the predicted action, along with the probability of 1.0.

3.3. Experiments and Results
In this section, we describe the experiments we performed in order to evaluate our prediction algorithms,
as well as the results we obtained. For each experiment, we first describe its methodology and what
we aimed to evaluate by performing it, following with the results we obtained and finishing with a small
discussion over those results. The experiments aim to evaluate different aspects of our method, such
as accuracy and execution time, and which factors are they influenced by. We also test our method
with traces which only contain the attack stage, without the service, to find out whether that will improve
accuracy. Finally, we compare our method to a PDFA-based one by testing them in different scenarios
and configurations and summarize our findings.

3.3.1. Experimental setup
When performing initial experiments, we observed that the run-time of strategies 2 and 3 increases
exponentially by the length of the input trace (this is examined in more detail in section 3.3.5). This
made running experiments very time-consuming, as for some inputs, strategy 3 could take tens of
minutes to run. Due to this fact, and because we want to compare all our strategies on the same test
data, we decided to limit the length of testing traces to 6 symbols. Due to the small number of samples,
we also decided to use K-fold cross-validation. This would allow us to get a better overview of the
performance of our methods while excluding the input bias.

Thus, when creating the training and testing datasets, we first remove duplicate traces, as well as
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traces which have a length longer than 6 symbols. From this subset, using K-fold cross-validation,
we select random a subset of traces which will represent the testing dataset. The rest of the traces
from the initial trace set will then become the training set. To be able to compare the accuracy of our
approach, we would need to know the true next symbol of an input trace, in order to compare it to our
predicted symbol. To achieve this, we split each testing trace: the last symbol in the trace will be the
true next action, while the rest of the trace will be used as input to the prediction algorithms.

In terms of metrics, we will use the following:

• accuracy = correct prediction
total predictions

, which reflects whether the predicted next symbol matches the true next
symbol

• top-n accuracy = correct prediction is in top-N candidates
total predictions

, reflects whether the correct prediction is within
top-n predictions; for example, top-1 accuracy is equal to normal accuracy

• attack stage accuracy = correct prediction of the attack stage
total predictions

, that reflects whether the attack stage of the
predicted next symbol matches the attack stage of the actual next symbol

• No path found rate = no path found count
testing set size

. This describes for what percentage of the input traces
the algorithm could not find a single viable path in the SPDFA, which can happen either due to
strategy (e.g. full match strategy and no paths were found in the SPDFA which matched the input
symbols entirely) or when all of the found paths were invalid (e.g. all paths were too short and
did not match the input sequence length).

• execution time - average execution time in seconds of prediction for an input sample

3.3.2. K-fold cross-validation - K selection
This experiment aims to study the impact of K on the accuracy and find the optimal K for K-fold cross-
validation, which we could then use for our future experiments. We run every method with a varying K
from 5 to 15 and check the accuracy. As can be seen in figure 3.7, the accuracy of the best-performing
strategies is not majorly impacted by a higher K value, and there are minor variations in accuracy, the
best accuracy is achieved by K=13. This could be explained by the fact that even a K as low as 5
captures a good overview of the testing set. Therefore a higher K value will not guarantee a better
overview of the performance. Still, based on our results, we choose a K=13 and use it for further
experiments.

3.3.3. Finding the optimal multiplication factor for strategy 2 and 3
Methodology
As mentioned before, in strategies 2 and 3 we are less strict when selecting viable paths because we
also the match attack stage or any symbol, regardless of the input one. We would still like to give higher
priority and thus probability to the paths where more symbols match the original input sequence. For
this purpose, we introduced a multiplication factor, by which the transition probability is multiplied every
time the attack stage matches (prob * factor) or the entire symbol matches (prob * factor * 2).

This experiment aims to find the optimal multiplication factor which would maximize the accuracy of
these strategies. We choose a range of factors from 1 to 95. We then run our method with the varying
factors and calculate the accuracy of each run.

Results
The result can be seen in figure 3.8. We can see that the biggest increase in accuracy happens at
the beginning until the factor reaches a value of 10. Afterwards, a minor increase in accuracy is seen,
which stops altogether at 45 for strategy 2 and 75 for strategy 3. The increase in accuracy obtained by
increasing the factor demonstrates that some paths resulting from these strategies, which contained
symbols not matching the ones from the input trace, had a higher probability, and thus had a higher
impact on the next action prediction. By artificially increasing the probabilities of the transitions with
symbols matching the input trace, we helped prioritize such paths which led to a higher prediction
accuracy. A larger increase in accuracy is seen for strategy 3 compared to strategy 2. This could
indicate that most of the paths obtained by accepting the attack stage of a transition already had a
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Figure 3.7: Accuracy of each strategy for a different K value used for K-fold cross-validation testing. It can be seen that the only
strategy benefiting from higher K values is the baseline random selection. BASELINE_RAND corresponds to the baseline

random guess method, BASELINE_PROB to baseline frequency based, FULL_MATCH to full symbol match, AS_MATCH to attack
stage match and ALL to strategy 3, which is any symbol match.

correct result, and increasing the factor helped in fewer cases compared to strategy 3. Nevertheless,
we choose factor=75 for further experiments, as it is the first factor to obtain the best results for both
strategies.

3.3.4. Evaluation of the proposed SPDFA-based prediction methods
Methodology
This experiment aims to evaluate the prediction performance of our strategies which use the SPDFA
against both the baseline methods. As mentioned in section 3.3.1, we limit the test trace size to 6
symbols, out of which 5 we use as input and the 6th one as the true next action. We use a multiplication
factor of 75 for strategies 2 and 3. We use 13-fold cross-validation to run with different variations of the
test set while comparing the predicted symbol to the true one. If the given method fails to find a single
viable path for an input trace, or if the first symbol cannot be found in the SPDFA, we count that as a
failed attempt and increment the ”no path found” count. We also measure the execution time for each
run on the test set, excluding the baseline methods, because we consider that in that case, it can be
negligible (< 0.001 seconds).

Because our method returns a probability distribution of the next actions, we are interested in study-
ing the number of times when the correct prediction is within the top 3 actions with the highest probability
from this distribution. To verify this, we also calculate the top 2 and top 3 accuracy for each strategy.

Results
The results for all the methods can be seen in table 3.2. The best-performing method in terms of
accuracy is the any symbol match strategy, with an accuracy of 33.71 % and attack stage accuracy
of 42.05 %. This method also has the lowest no-path found rate among the SPDFA-based models,
having not found a path for only 0.48 % of the traces. That being said, strategy 3 is also the worst in
terms of execution time, with an average of 1.5873 seconds per test set. This is explained by the fact
that this strategy explores every path nondeterministically regardless of the transition symbols, thus
the execution time grows exponentially with the length of the input.

We can see that the first strategy, which explores a state only if the full symbol matches the input
one, has the highest no path found rate, at 27.14 %. This indicates that this strategy is indeed too
restrictive, and does not perform well in cases where the test trace was not seen in training data. On
the other hand, strategy 2, which only explores a state if the attack stage matches, is a good middle
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Figure 3.8: Accuracy for different multiplication factors for strategies 2 and 3. Increasing the factor also increases the accuracy,
a more drastic increase being seen at the start, which then plateaus at 45 for strategy 2 and at 75 for strategy 3.

Table 3.2: Results for all strategies using 13-fold cross-validation

Strategy Metric
Accuracy

(%)
AS Accuracy

(%) No path found rate Execution time
(seconds)

Baseline random guess 0.67 4.76 x x
Baseline probability 20.75 29.52 x x
Strategy 1 - Full symbol match 28.16 35.52 0.2714 0.0025
Strategy 2 - Attack stage match 33.22 41.11 0.1049 0.0432
Strategy 3 - Any symbol 33.71 42.05 0.0048 1.5873

ground between accuracy and execution time, as its accuracy is only 0.49 % lower than that of strategy
3, while its execution time still being under one second.

Table 3.3 shows the top 1, top 2 and top 3 accuracies and attack stage accuracies per strategy. It
can be seen that accuracy improves when we take into account the top 2 or top 3 actions, the best one
being obtained by strategy 3, with 54.38 % accuracy and 61.73 % attack stage accuracy. This means
that for 54.38 % of the testing data, the correct prediction could be found within the top 3 predictions,
even though it was not the symbol with themaximum probability in the distribution. This could alsomean
that the method suffers from predictive uncertainty, which can also be related to the non-deterministic
nature of the model, and the fact that there exist multiple paths for the same input sequence. The
probability distribution of the next actions is calculated using the probabilities of the found paths, which
in turn depends on the frequencies of the sequences from the training data. Thus the more times a
sequence is present in the data, the higher probability the resulting path will have, due to the states
which are part of it having a bigger state count. Consequently, the next action of this path will also
have a higher probability. Therefore, it is possible that our method, by choosing the next action with
the maximum probability from the distribution, ignores other paths, which correspond to less frequently
seen sequences in the training data, yet still represent a viable attack strategy.

3.3.5. Runtime evaluation based on SPDFA size and input length
In this section, we evaluate the execution time of our strategies which use the SPDFA, by examining
its dependence on both the size of the training set and the length of the input trace.
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Table 3.3: Top 3 accuracy and attack stage accuracy for all strategies. It can be seen that accuracy improves when taking into
account the top 2 actions, and further improves for the top 3 actions, reaching a maximum of 54.38 % for any symbol match

strategy.

Strategy Accuracy
(%)

AS Accuracy
(%)

Top 1 Top 2 Top 3 Top 1 Top 2 Top 3
Strategy 1 - Full symbol match 26.75 36.87 43.32 33.68 42.84 47.00
Strategy 2 - Attack stage match 31.36 45.19 51.15 39.19 51.16 58.05
Strategy 3 - Any symbol 33.17 45.67 54.38 41.45 53.05 61.73

Methodology
The first experiment aims to examine the impact of the size of the training set on the performance of
the model. We generate the SPDFA using training sets of increasing length, starting with 300 traces
and ending with 500 traces, with a step of 25. We test our methods using a random trace of 5 symbols
while measuring the execution time of finding the next action for that input trace. We also write down
the size of the SPDFA for every trace count, in terms of the number of states and transitions.

With the second experiment, we evaluate the impact of the length of the input on the execution
time. We generate the SPDFA using 500 randomly selected training traces. Subsequently, we execute
each strategy using input traces of varying lengths, from 2 symbols to 7 symbols. We have chosen this
range as we believe it accurately captures the differences in execution time and allows us to make the
necessary conclusions for this experiment.

Results
The results for the first experiment can be seen in figure 3.9, where the execution time increases linearly
to the training set size. This can be explained by the fact that the more traces used for learning the
SPDFA, the bigger the SPDFA will become, thus increasing traversal times. Table 3.4 confirms this,
showing that the more traces are used for training, the more states and transitions the SPDFA will
have. This increase however is very dependent on the training data, as more traces can also mean
more opportunities for the model to merge states with similar contexts.

The results for the second experiment can be seen in figure 3.10. Strategies 2 and 3 are the most
susceptible to the increase in the input size, as they are able to explore more paths compared to
strategy 1. We can also see that the runtime is more dependent on the input length than on the size of
the training set, as the execution time increase per additional input symbol is more significant.

Table 3.4: Number of states and edges in the SPDFA depending on the length of the training set. The number of states as well
as edges in the SPDFA increases linearly with the number of traces used for training.

Training set length 300 325 350 375 400 425 450 475 500
SPDFA States 157 162 166 168 172 178 183 190 194
SPDFA Transitions 526 556 577 601 624 649 677 706 733

3.3.6. Generating traces with attack stage only
Methodology
This experiment aims to examine the prediction performance of an SPDFA which was trained using
traces which contain only the attack stages, without the service. The motivation is based on the fact
that a security analyst might be interested only in the next action the attacker is going to perform, and
not necessarily the targeted service. For this purpose, we create trace files whose symbols contain
only the attack stage and use them for training and validation. As a consequence, this reduces the
total amount of unique symbols to 21, while also reducing the size of the automaton to an average of
63 states and 242 edges (for 500 traces). We then re-run our SPDFA-based methods using the newly
created traces and compare the accuracy, while also removing strategy 2, since now it will be equal to
strategy 1 (a full symbol match would be equal to an attack stage match since the symbol only contains
the attack stage).
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Figure 3.9: Execution time in seconds per different training set
size, while testing with an input trace of 5 symbols long, plotted
on a logarithmic scale. The execution time increases linearly
with the training set length, showcasing the impact of more

states and transitions in the automata.
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Figure 3.10: Execution time in seconds per different input
sizes, while using an SPDFA trained with 500 traces, plotted on
a logarithmic scale. Strategies 2 and 3 are the most affected by
the increase in input size, as their execution time increases

exponentially.

Table 3.5: Results when using traces that contain only the attack stage, thus eliminating the services.

Strategy Metric
Accuracy

(%) No path found rate Execution time
(seconds)

Baseline random guess 12.26 - -
Baseline probability 14.45 - -
Strategy 1 28.02 0.093 0.002
Strategy 3 28.73 0.000 0.160

Results
Table 3.5 shows the results when using traces with only the attack stage. All of the strategies have a
decreased accuracy compared to normal traces, however, the best method is still strategy 3. Execution
time has also decreased, due to the fact that the SPDFA is nowmuch smaller. The decrease in accuracy
might be related to the fact the targeted services offered extra context for the sequences, and the attack
scenarios could be differentiated based on them. Without the services and the extra context, the SPDFA
could see two different attack scenarios as the same one, resulting in a wrong prediction.

3.3.7. Comparison with PDFA
Methodology
In this section, we look into the performance of a PDFA-based approach for predicting the next attacker
action and compare it to our SPDFA-based method. For this purpose, we do not reverse the traces,
thus we train a prefix-based model using Flexfringe. We evaluate the prediction using the algorithm de-
scribed in 3.2.4. We then compute themetrics mentioned in section 3.3.1 using 13-fold cross-validation,
and compare the results with the best-performing SPDFA-based method, which is strategy 3, any sym-
bol match. Since the PDFA prediction has a very short run-time due to it being deterministic, we repeat
the experiment this time removing the input length constraint and write down the results. Moreover, to
further compare the performance of both models in different scenarios, we have devised the following
experiments:

1. Experiment 1 - Accuracy per severity class - In this experiment, we study the performance of the
models when predicting actions of different severity. For this purpose, we evaluate the perfor-
mance of the models on testing sets where the true next actions have the chosen severity.

2. Experiment 2 - Accuracy on unseen traces - This experiment showcases the ability of the models
to generalize and predict the next action for sequences never seen before. We create a testing
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Table 3.6: Comparison of best method using SPDFA against the PDFA.

Strategy Metric
Accuracy

(%)
AS accuracy

(%) No path found rate Execution time
(seconds)

SPDFA - Strategy 3 33.71 42.05 0.004 1.5873
PDFA 31.33 39.12 0.004 9.25e-05
PDFA - any input trace length 31.47 36.70 0.018 17.8e-05

Table 3.7: Accuracy of both models for Experiments 1-3. The SPDFA performs better when predicting low and medium severity
actions, while the PDFA on high severity ones. Accuracy on unseen traces is lower for both models compared to their accuracy
on a mixed set of traces (both seen and unseen). Finally, using a model which does not contain the sinks drastically reduces

the accuracy of both models.

Accuracy (%)
Experiment 1 Experiment 2

Unseen Traces
Experiment 3

Not merging sinksModel Low sev. Medium sev. High sev.
SPDFA - Strategy 3 45.6 13.5 27.2 27.0 18.4
PDFA 37.8 5.4 33.7 26.3 17.4

set which contains traces which were not present in the training data, neither as individual traces,
nor as part of another longer trace, and test both models with it.

3. Experiment 3 - Accuracy when using models without sink states - As mentioned previously, we
merge the sink states with the states from the main model in order for the model to contain all
scenarios seen in the training data. We are interested in studying the impact of these merged
sink states for prediction accuracy. Thus, in this experiment, we do not merge the sink states,
and test the performance on a random set of traces.

Results
As can be seen in table 3.6, the PDFA performs almost as well as the best SPDFA method, achieving
an accuracy of 31.33 %, which is only 2.38 % lower than the one achieved by the SPDFA. On the other
hand, due to this method being deterministic, the execution time is significantly shorter, with an average
of 9.25e-05 seconds per testing set. Furthermore, when testing on traces of any length, we can see a
small drop in the attack stage accuracy, while the normal one remains approximately the same, which
can be also said about the execution time. The decrease in accuracy might be attributed to the fact
that longer sequences are more infrequent (as seen in figure 3.1), and the model has less data to learn
from. Thus, unlike the SPDFA non-deterministic methods, this method can be used on traces of any
length, while still maintaining a good runtime.

Table 3.7 shows the accuracy per severity for each model. We can see that both models perform
best when predicting low-severity actions, which is also the most frequent severity class of the last
actions seen in the data. This is followed by high-severity actions and finally medium ones. Based
on the fact that the ranking of these results is directly proportional to the severity distribution of the
last actions illustrated in figure 3.3, we conclude that it is possible for the training set to impact the
performance of both models. Moreover, it can be observed that the PDFA performs better on High
severity actions, while the SPDFA achieves higher accuracy on Low and Medium severity ones.

Table 3.7 also shows the accuracy of the models on unseen traces. The accuracy decreases by
about 5 % compared to the average one, which means that both models are slightly worse at generaliz-
ing and predicting the next action for new traces. When using a model which does not contain the sinks,
the accuracy is also seen to decrease. This is explained by the fact that the sinks contain valuable in-
formation which is needed for prediction, even if the sequences which they model were infrequent in
the training data.

3.4. Discussion
In this chapter, we have implemented an SPDFA-based approach for predicting the next attacker ac-
tion using an observed sequence of actions as input. Three SPDFA traversal strategies have been
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proposed, whose performance as well as execution time has been evaluated in different scenarios.
We have also implemented a PDFA-based deterministic method for prediction and compared it to the
SPDFA-based one. Given the complexity of the problem at hand, which is a multi-class classification
task encompassing 148 distinct classes (symbols), the performance of our method can be regarded as
commendable and demonstrates promising results in this challenging context.

Nevertheless, the diminished accuracy of the SPDFA could be rooted in various factors. Firstly, the
inherent complexity of our method of finding paths in the rSPDFA, which involves non-deterministically
evaluating numerous paths, might lead to the diffusion of probabilistic predictions across potential ac-
tions, thereby diluting the confidence in any particular forecast. The exploration of multiple paths can
further introduce ambiguities, complicating the resultant probability distribution and possibly mislead-
ing the model. Additionally, the automata’s state representation might not capture enough information
about the past sequences, causing a loss of essential context for accurate predictions. Furthermore,
the performance of the SPDFA is highly dependent on the training dataset from which it has learned
the sequences.

Further expanding upon the dataset, the size of the training dataset might also be insufficient to cap-
ture the full complexity and variety of attacker behaviours. Moreover, the CPTC-2018 dataset contains
all of the alerts which have triggered during the competition, including false positives. False positive
alerts introduce noise into the dataset, which means that the traces created from these alerts may con-
tain actions that weren’t genuinely indicative of an attack progression but were mistakenly flagged. If
the models are trained to predict the next action based on sequences containing false positives, in-
correct examples are essentially being learned from. Unfortunately, we cannot remove those alerts
from the dataset, because only the members of the competition can confirm which intrusion alerts cor-
responded to their actions and which were mistakenly triggered. Since the competition participants
were students, a wide range of skills is likely to be observed in such a scenario. Different attack paths
might be taken, more mistakes might be made, or ineffective strategies might be attempted by novices
compared to more experienced participants. This diversity can cause a wide variety of sequences to
be introduced, some of which may not represent ”typical” attacker behaviours. Various tactics might
be tried by participants in a competition setting just to explore or experiment, even if they don’t intend
to follow through with them. The unpredictability of sequences can be increased by these exploratory
actions. All of these factors contribute to reducing the quality of the dataset. In conclusion, training
on noisy data can mislead the models into learning incorrect patterns or giving undue importance to
irrelevant actions.

When comparing the SPDFA-based approach to the simpler PDFA-based model, there’s no notable
accuracy advantage. While the SPDFA evaluates more paths nondeterministically compared to the
PDFA, this doesn’t necessarily equate to better predictions. As already mentioned, exploring multiple
paths can introduce ambiguities, and influence the resulting probability distribution. This suggests that
the added complexity of using a non-deterministic model and exploring multiple paths in the rSPDFA
might not be justifiable given the almost equivalent performance to the PDFA, especially when consid-
ering its longer runtime. Talking about runtime, the SPDFA’s long runtime on sequences longer than
6 symbols significantly limits its practicality. If the attacker’s action sequences in real-world scenarios
are typically longer than this, the SPDFA model would be impractical for timely predictions. Since both
models have the same performance on unseen sequences, we can conclude that both models are able
to generalize equally. However, the 33 % accuracy suggests there’s room for improvement in capturing
the underlying patterns of attacker actions.

We can compare our method with three works which also study the prediction of the next attacker
action in a sequence, and have been already introduced in section 2.5.3: [20] [21] and [22]. [19] and
[23] were also mentioned, however, these works predict the state of the network (normal, compromised,
etc). rather than the attacker’s action itself. [22] uses a bag-of-words model combined with a hidden
Markov model (HMM) and predicts the next intrusion alert based on a sequence of intrusion alerts.
The authors use the DARPA 2000 dataset which contains several DDOS scenarios. It achieves a high
accuracy (up to 95% for single-step predictions for alert categories). [21] focuses on projecting cyber-
attacks by examining the sequential properties of correlated IDS alerts. The authors use a Variable
Length Markov Model (VLMM) for predictions and a dataset which was created through scripted multi-
stage attacks performed on a VMware network by the authors themselves. Finally, [20] uses Bayesian
networks to extract causal knowledge and predict multi-step attack scenarios in real-time, and also
uses the DARPA 2000 dataset. All of these methods achieve high accuracy of prediction (>90%).
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Firstly, the difference in performance might be attributed to the models used for prediction. The
SPDFA-based methods predict the next attacker action based on observed sequences, so we assume
that the next action is dependent on the current sequence of actions. The other models work differ-
ently. For example, the HMM assumes hidden states that generate observable events, while Bayesian
networks model probabilistic relationships between variables. Moreover, models like Bayesian net-
works offer a lot of flexibility in modelling complex relationships and dependencies between variables.
Therefore, it could be the case that the other models are better suited for this particular task.

Secondly, since we used a different dataset for evaluating our method, it is difficult to objectively
compare the accuracy with the other works. As mentioned, the CPTC-2018 dataset is noisier and con-
tains false positive alerts, as well as a wider variety of attack scenarios, resulting from different teams.
Compared to this, the DARPA dataset only has DDOS-related scenarios, making it very specific. Since
it contains only one type of attack, it is easier to learn the underlying sequences which represent the
data while also narrowing down the possible actions that need to be predicted. [21] simulate a multi-
stage attack in a virtual environment and create the dataset with the resulting alerts, so it is also highly
likely that it is less noisy because the researchers were recreating a real attack without performing un-
necessary actions. Therefore, even though the other methods achieved a higher accuracy, we cannot
affirm whether they are better or worse than our method.

3.5. Conclusions
Summarizing, we can draw the following conclusions:

• Strategy 1 (Full symbol match) should be used in situations where the SPDFA was trained on a
large dataset, as in that case, the SPDFA will contain more attack scenarios. That being said, it
is generally worse at predicting the next action for sequences never seen before in the training
set, compared to the other two strategies.

• Strategy 3 (Any symbol match) has the best performance among the implemented methods, but
also the longest execution time due to the nondeterminism of the model. It should be used in
situations where execution time is not critical, as it can provide better results compared to the
other two, given more time.

• Strategy 2 (Attack stage match) can be used as a middle ground, because it is more ”accepting”
when searching for paths in the SPDFA compared to strategy 1(thus exploring more paths), while
also having a shorter execution time than strategy 3

• Execution time of prediction is impacted less by the size of the SPDFA and more by the length of
the input

• SPDFA performs better when predicting low and medium severity actions, while PDFA performs
better for higher severity ones. In practice, we believe that a better accuracy for high-severity
actions is desired, as those actions usually have more impact and could result in more dangerous
consequences.

• In practical, real-world scenarios the PDFA-based approach is better due to its short runtime and
independence from the length of the input.
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Real-time attack graph generation

In this chapter, we examine the second research subquestion: How can we generate attack graphs
in real-time, which will aid a SOC analyst when handling alerts? We first describe our implementation
for real-time alert streaming and attack graph generation. We use the same procedure as SAGE [7]
for transforming intrusion alerts into attack episode sequences. For alert sequences that do not end
in a high-severity episode (partial paths), we predict the next action using the PDFA and display the
prediction in the resulting attack graph.

4.1. Methodology
In order to be deployed in a real-world scenario such as a SOC, the attack graphs need to be generated
in real time. This would allow analysts to get a summarised view of all of the past actions observed for
a host, which could help them when analyzing alerts.

Figure 4.1 shows a summarised version of the real-time attack graph generation pipeline. For
transforming alerts into episodes, we use the same procedure proposed by SAGE [7], described in
more detail in section 2.4. We kept this process the same, due to its short execution time which we
observed during initial experiments.

4.1.1. Alert ingestion and episode creation
In real-time scenarios, we believe there is no single ”best” option for the alert ingestion time and re-
generation of attack graphs, and it should be configured depending on the alerts generated per minute
rate, so the ”noisiness” of the environment. For a low alert rate, an attack graph can be generated
for every alert, because of the small execution time of the attack graph generation pipeline (which
will be further discussed in section 4.2.3). For a higher alert rate, alerts can be put in a batch, and
the generation of attack graphs can be run every minute. Ultimately this depends on the required
granularity and the needs of the SOC analysts.

When a new batch of alerts is received, it is pre-processed by removing duplicates and then merged
with the current alert pool. The current alert pool can consist of alerts that are triggered the same day,
the last couple of days, or even longer periods of time. This depends on the desired amount of context
that we want to see in the attack graph for a particular alert. For example, if we suspect that there is an
attack campaign happening in the network, it makes sense to increase this window to a longer period,
such as multiple weeks, to look for any suspicious behaviour on the hosts which occurred during that
time period. Having a larger time window will increase the size of the attack graph, but will also allow us
to correlate a larger number of past alerts for a single host. We then aggregate the alerts into episodes
and create the episode subsequences.

4.1.2. Trace creation and SPDFA learning
The episode sub-sequences are then transformed into traces, by extracting the attack stage and service
from each episode. This will result in a set of current traces. Besides them, we also use a set of past
traces, which contains attack scenarios observed in the past. We merge them with the traces that
were generated using the current alert pool and then learn an SPDFA using the resulting trace set.

33
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This design choice is based on the fact that the attacker actions observed in the current alert batch will
be merged with the past attacker actions, and the resulting SPDFA will contain both of them. Thus,
when mapping the current episodes with the states in the SPDFA, if the episodes can be correlated to
a sequence of states located in the main model, it might mean that this is part of an attack which was
observed in the past. If we were not to use the past traces, most of the states could be placed in the
sinks, which contain the states modelling the data which the model could not learn behaviours from,
due to it being too sparse. Thus an analyst would not know whether the currently observed episode
sequence was also observed in the past or not.

New alert batch Episodes
Convert to traces and

merge with past
traces

Learn SPDFA

Predict next action for
partial paths using
pre-trained PDFA

Map episodes to
SPDFA states

Create prediction
based attack graphs

Create high severity
attack graphs

Figure 4.1: Pipeline for real-time attack graph generation and next attacker action prediction.

4.1.3. Prediction of the next actions for partial paths
The set of past traces is also used as a training set for learning a PDFA, which is used by the PDFA-
based prediction algorithm. We have chosen the PDFA method due to its short runtime and accuracy
comparable with the SPDFA methods. We first identify the partial attack paths, which are episode
sequences which do not end in a high-severity episode. Previously these sequences would not be
included in any attack graphs, due to the attack graphs being objective-based, and the objective being
unknown. Thus, for every created episode sequence, we examine the last episode. If it is a non-high
severity episode, we transform the sequence into a trace, by extracting the attack stage and most
frequently targeted service from each episode. The result is a sequence of symbols in the format
<attackStage | service>. We then use the trace as input and save the result if the prediction
algorithm succeeds in making a prediction.

4.1.4. Attack graph creation
Due to the previous steps, we now have sequences of episodes that end in a high-severity action, as
well as predicted actions. We would like to create attack graphs for both cases. For every sequence
where we have predicted the next action, we first examine its severity. Low and medium-severity
predictions are generally less interesting for analysts because the impact of those actions is not as
critical as compared to high-severity actions. Moreover, creating independent attack graphs for every
low-medium severity prediction would result in too many attack graphs, flooding the analyst with infor-
mation. In order to avoid information loss while still displaying the partial paths, we choose to create
attack graphs on a prediction basis, which contain the episodes from all hosts where this prediction
was made. For example, if we have three hosts where the predicted action was vulnerability discovery
over HTTP, we would create only one attack graph, which would include the episodes from the three
hosts. Predicted nodes are orange and dashed, and are connected via a dotted edge with the rest
of the nodes. The edge leading to the prediction nodes also displays the prediction probability. More-
over, since each victim can have a different attacker, every attacker will have a different edge colour
in order to differentiate them more easily. These types of attack graphs are also great for combining
information across multiple hosts, allowing the analyst to get to see the attacker’s actions across the
entire network.
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For high-severity predictions and high-severity actions, we still generate the attack graphs on a per-
victim per-objective basis. For example, if the predicted action is data exfiltration over HTTP and we
already have an attack graph for this action, the partial path and prediction will be included in the same
attack graph. If there is no attack graph, a new one will be created. To be able to separate partial paths
from complete paths within an attack graph, nodes which are part of a partial path will have dashed
edges, and are connected to the orange predicted node via a dotted edge. Examples of both types of
attack graphs are shown in section 4.2.2.

4.2. Experiments and Results
This section describes our approach for evaluating the real-time generated attack graphs. For evalu-
ation purposes, we also needed a way to re-identify episodes in between iterations, in order to verify
if our prediction of the next episode was correct after the actual next episode had been received. In
order to re-identify the newly created episodes with the ones from the previous iteration, we examined
the elements of an episode and chose the ones that would stay consistent over two iterations. Thus
an episode can be re-identified by the (host, start time, attack stage) tuple. The most targeted service
was not chosen because it is subject to change when more alerts are received. The same argument
is valid for the end time of an episode because as more alerts come in, they might be combined into a
previous episode, changing its end time.

4.2.1. Experimental setup
For evaluating our approach, we use the CPTC-2018 dataset, described in more detail in section 3.1.
We use alerts of teams 1, 2, 5 and 7 to create the set of past traces, with a total of 354 entries. As
mentioned previously, these traces are used to learn a PDFA and are merged with the current set of
traces when generating attack graphs. We use the team 8 and team 9 alert datasets for simulating
a real-time scenario and generating attack graphs. Figure 4.2 and 4.3 show the number of alerts
generated over time by team 8 and correspondingly team 9. It can be seen that the alert generation
rate of team 9 is more evenly spread out over the entire period, whereas most of the alerts generated
by team 8 are between 15 and 16 o’clock. This could mean that team 9 tried to reach the objectives
during the entire duration of the competition, while team 8 achieved them near the beginning, hence
the lack of alerts in the period that followed.
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Figure 4.2: Number of alerts generated by team 8 that
triggered over the entire period of the competition, grouped in
intervals of 5 minutes. It can be seen that most of the alerts
were triggered in a short period of time between 15 and 16.
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Figure 4.3: Number of alerts generated by team 9 that triggered
over the entire period of the competition, grouped in intervals of
5 minutes. Compared to team 8, the alerts for this team are
more spread out for the entire period of the competition.

For simulating a real-time scenario, we load all alerts and divide them into batches, each batch
containing alerts from a 5-minute interval. The 5-minute interval was chosen because of the high alert
generation rate per minute of both teams. Table 4.1 shows an overview of the testing datasets and
resulting batches. As can be seen, team 8 generates an average of 69.15 alerts per minute, while team
9 generates 33.52 alerts per minute, thus creating an attack graph for every alert would be unfeasible.
Moreover, such a high number of alerts per minute does not occur in the real world, because it would
be impossible for the analysts to analyze this many alerts.

We then run the pipeline described in figure 4.1, each time adding more batches of alerts to the
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Table 4.1: Overview of team 8 and 9 datasets used for testing

Dataset Total alerts Alerts per minute Number of 5-min batches Avg. alerts per batch
Team 8 15560 69.15 83 187.4
Team 9 12841 33.52 99 129.7

current pool, and generate the attack graphs only from the new episode sequences. We also save the
prediction results for the partial paths, and when the actual next episode is seen, we evaluate whether
the prediction was accurate, by comparing the prediction to the actual observed episode. Based on
this, we define the following metrics:

• Accuracy = correct prediction
total predictions

• Attack stage accuracy = correct prediction of the attack stage
total predictions

• High severity true positive rate = High sev. TP
High sev. TP + High sev. TN

• High severity false positive rate = High sev. FP
High sev. FP + High sev. TN

Accuracy is a standard metric used for evaluating the performance of prediction models. We also
calculate the accuracy of predicting the correct attack stage, because the service may not be an interest
to an analyst, whereas the attack stage can still be a risk indicator. The high-severity true positive and
false positive rates are important because high-severity episodes are the most dangerous ones. Thus,
an analyst would pay more attention to such predictions, and a high-severity false positive prediction
could mean that an analyst prioritized an alert when it should have not been the case. Note that we
divide by the total number of predictions for which we have seen the actual next episode, because
for some partial paths, no new episode followed, and the prediction remained the last episode in the
sequence. We also calculate the execution time of an iteration, by measuring time from the point new
alerts are received, until the point where all attack graphs are created. Note that this time will increase
as more alerts are added to the current pool of alerts.

4.2.2. Real-time attack graphs
Figure 4.4 shows an example of an attack graph for the low-severity predicted action ”Vulnerability
Discovery for mysql”. As mentioned previously, since the action is low severity, it contains the observed
episodes for all hosts for which this was the predicted action. Every attacker IP has a different colour,
so the actions of a particular attacker can be observed by following the edges of a particular colour.

Figures 4.5 and 4.6 show examples where the prediction for a partial path is a high severity action,
resource hijacking and correspondingly data manipulation. The first attack graph contains only the
predicted action, while the second one also has an observed high severity one besides the prediction.
It can be seen that the partial paths are connected via dashed edges, making it easier to separate them
from the complete paths, which are connected via normal edges. Moreover, the predicted nodes are
orange and dashed.

4.2.3. Prediction evaluation
Table 4.2 contains the metrics for the prediction of the next actions when streaming alerts in real-time.
Even though both teams 8 and 9 have a similar number of alerts, team 9 had a higher execution time
per batch. This might be happening because of the fact that the alerts of team 9 were more spread
out throughout the duration of the competition, which was also seen in figure 4.3. Because of this, in
every iteration new alerts were added and new episodes were created, requiring the regeneration of
the attack graphs more frequently, compared to when using the alerts of team 8.

The overall prediction accuracy is also lower compared to the one observed in chapter 3.3.7. This
might be explained because of the different evaluation method used in this approach. Previously we
only had a set of testing traces, where we removed the last symbol and used the rest of the trace as
input. This time, however, we predict the next action for every partial attack path we find, during every
iteration. This means that we continuously predict the next action while the sequence increases in size,
as more data is processed.
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Figure 4.4: Real-time generated attack graph for the predicted action ”Vulnerability Discovery for mysql”. There is one orange
(prediction) node for every host where this was the predicted next action, the rest of the nodes representing the episodes that

lead to it. The edge color is based on the attacker IP.

It can also be seen that for both teams the attack stage accuracy is higher than the normal one,
showing that the model is better at predicting the attack stage than the attack stage and service. Fi-
nally, we can see that the high severity predictions are very infrequent and that our model has trouble
predicting them correctly, as the false positive rate is higher than the true positive one.

Table 4.2: Results for the prediction of the next action during real-time generation of attack graphs using alerts of team 8 and
team 9.

Team 8 Team 9
Total predictions 84 637
Accuracy (%) 6.6 12.7
Attack stage accuracy (%) 11.1 43.5
Total high sev. predictions 10 12
High sev. TPR 0.1 0.0
High sev. FPR 0.5 0.66
Avg. exec. time per batch (s) 2.3 7.6

4.3. Discussion
In this chapter, we have implemented a method of streaming alerts and generating attack graphs in
real-time. The attack graphs contain both the actions of the attacker observed so far, as well as a
predicted action. Due to the low execution time of the pipeline which was observed during testing,
we believe that attack graphs can be generated for every triggered intrusion alert. This would provide
SOC analysts with a means of visualization of the previously observed attacker actions. Moreover, the
prediction could inform the analyst of the potential next steps of the attacker, allowing them to implement
preventive measures.

The low andmedium prediction attack graphs contain the episodes of multiple hosts, which provides
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Figure 4.5: Real-time generated attack graph with a high
severity predicted action ”Resource hijacking over http”. The
nodes with a solid border represent the partial path, while the
predicted one is orange. These nodes are connected with

dashed edges.

Victim: 10.0.0.24
DATA MANIPULATION

http

DATA MANIPULATION
http | ID: 221

PREDICTED EPISODE
DATA MANIPULATION

http

VULNERABILTY DISCOVERY
http

INFO DISCOVERY
http

action no. 1
start_next: 03/11/18, 15:18:19

gap: 0sec
end_prev: 03/11/18, 15:18:19
Attacker: 10.0.254.201

DATA EXFILTRATION
http | ID: 94

action no. 2
start_next: 03/11/18, 15:18:19

gap: -10sec
end_prev: 03/11/18, 15:18:29

NETWORK DoS
http | ID: 74

action no. 1
start_next: 03/11/18, 15:11:34

gap: -1sec
end_prev: 03/11/18, 15:11:35
Attacker: 10.0.254.203

ARBITRARY CODE EXECUTION
http | ID: 501

action no. 3
start_next: 03/11/18, 15:18:19

gap: -10sec
end_prev: 03/11/18, 15:18:29

ROOT PRIVILEGE ESCALATION
http | ID: 366

action no. 4
start_next: 03/11/18, 15:18:20

gap: -10sec
end_prev: 03/11/18, 15:18:29

action no. 5
start_next: 03/11/18, 15:18:20

gap: -3sec
end_prev: 03/11/18, 15:18:24

SURFING
http

action no. 2
start_next: 03/11/18, 15:11:34

gap: 1sec
end_prev: 03/11/18, 15:11:34

Probability
 0.875

Figure 4.6: Real-time generated attack graph with both an
observed and predicted high severity action ”Data manipulation
over http”. The partial paths have dashed edges, while the

complete ones have normal ones.

a more summarised view of the generated alerts. For example, if all of the alerts displayed in figure 4.4
were to be displayed independently, in text form, it would have been very hard for an analyst to manually
correlate them. Such an attack graph could also inform the analyst of the fact that these hosts might
be vulnerable to the predicted next action. That being said, the approach of grouping alerts between
multiple hosts can also prove to be a disadvantage, as the graph can become very dense and cluttered
if it contains many episodes/hosts, making it hard to follow.

The high severity and high severity prediction attack graphs are good for highlighting the alerts
leading to the current alert for a single host. Due to them being smaller in size, an analyst would also
take less time to understand them and react faster. For example, an analyst could see in the attack
graph from figure 4.5 that the host might be vulnerable to data exfiltration. Knowing this, he could
perform additional measures to try and minimize the risk such an action could have, such as isolating
the host from the network, preventing the attacker from causing additional damage and stopping the
attack chain.

When comparing our approach with existing works, we noticed that there are no other methods
which perform both real-time attack visualization and attack prediction. [12] displays attacker be-
haviours observed in the network based on the intrusion alerts in real-time. That being said, it does not
highlight them for each individual host. [17] and [18] are both methods of performing alert correlation
in real-time. Attack correlation is a method of grouping alerts together, which could aid an analyst in
identifying malicious behaviour spread out between multiple hosts and/or alerts.

Our method combines elements of attack visualization, alert correlation, as well as attacker action
prediction. Compared to [12], the visualization is done both on a per-host basis (high severity actions
and predictions), as well as for multiple hosts when predicting low and medium severity actions. Their
approach is good for getting an overview of intrusion alerts for a particular host, but not so much for
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getting a summarized view of what is happening in the monitored network. [17] and [18] can correlate
alerts across multiple hosts, but they do not provide a means to visualize them. Finally, even though the
prediction accuracy achieved by our method is lower than those of other works (which was discussed
in section 3.4), we believe it could still be used by an analyst during the alert analysis process. For
example, if the prediction is about vulnerability exploitation, the analyst could check whether the host
has any vulnerabilities, and consequently patch them. In this case, even if the prediction does not end
up happening, the security of the host would still be improved.

In order to further evaluate our method, and its usefulness if deployed in a real-world SOC, we have
organized interviews with SOC analysts of Northwave Cybersecurity. During these interviews, we have
asked them to identify challenges in their daily operations, as well as evaluate different aspects of our
method. Chapter 6 describes the interview process, results and findings.

4.4. Conclusions
In summary, our main findings from this sub-research question are:

• The attack graph generation is fast and takes a small amount of time to run, even with such a
high influx of alerts as in the performed experiments. In real-world scenarios, we believe the alert
generation rate to be much lower than in our testing scenarios, making the generation even faster.

• Real-time generated attack graphs are a flexible solution for visualization, because they can be
deployed in both noisy and normal environments with the correct parameters

• Attack graphs for high-severity actions provide an overview of the events observed on a single
host, allowing the analyst to focus on the high-severity events

• Attack graphs for low and medium severity predictions combine the alerts observed on all hosts
with the same prediction, providing the analyst with more information

• Compared to existing solutions, our method is the only one which combines alert visualization,
correlation and attacker action prediction





5
Real-world data evaluation

In this chapter, we examine the third research subquestion: Can attack graphs be generated using
data collected in the real world? We have collaborated with Northwave Cyber-security 1, a cyberse-
curity company located in the Netherlands. Three datasets have been created using intrusion alerts
generated by their SOC, which uses Microsoft Sentinel as their SIEM, described in section 2.1. We
have decided to generate offline attack graphs, rather than real-time ones, due to the sparsity of real-
world data and the similarity of the two approaches.

We first discuss the methodology of creating the datasets. We then dive into the challenges we
encountered when adapting the attack graph generation pipeline to the new format of the input data,
and how we solved them. We then compare real-world data with open-source one and highlight several
identified differences. Finally, we evaluate the generated attack graphs and their potential use in the
daily operation of a SOC analyst.

5.1. Dataset description and analysis
In this section, we describe the criteria based on which we have created the datasets, as well as provide
a short analysis of the underlying alerts. For creating the dataset, three network environments have
been chosen, each corresponding to a separate scenario: an environment where a penetration test
has been performed, an environment which had a true positive high severity alert and a more ”noisy”
environment with a larger number of alerts compared to the others. These scenarios would allow us
to create three datasets with different characteristics and goals. In the pentest dataset, we expect to
see attack graphs where the nodes are the actions of the pentester. In the true positive scenario, we
expect an attack graph which illustrates all of the actions leading to the true positive high-severity alert.
Finally, in the big environment dataset, we want to evaluate the alert summarization capabilities of our
approach, as well as examine the attack graphs for any potential past attacks.

In each of the chosen environments, the intrusion alerts were collected over a set period of time: 3
weeks for the pentest environment, and 3 months for the others. The 3-week duration for the pentest
dataset was chosen due to the fact that according to literature, the maximum duration of a pentest is
usually 3 weeks [24], so we wanted to make sure we caught all alerts related to it. On the other hand,
the 3-month period was chosen because that is the maximum amount of time that alerts are stored in
Sentinel.

A Sentinel intrusion alert has multiple fields related to the detection. Table 5.1 provides a brief
description of those attributes which we find themost useful and will use when generating attack graphs.
Note that it is possible for some of these attributes to be missing in an alert, depending on its type.

Figure 5.1 shows the distribution of the ’Severity’ field across the three datasets. One thing common
among all of them, is Medium alerts being the most numerous, followed by Low and finally High alerts.
The same distribution pattern can be seen in the CPTC-2018 dataset in figure 5.2. An exception to
this is the Pentest dataset, which has more High alerts than Low ones. This can be tied to the nature
of a penetration test which usually involves more high-impact actions than those that occur during the
normal operation, which would trigger a High severity alert.
1https://northwave-cybersecurity.com/
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Table 5.1: Sentinel alert attributes which will be used when generating attack graphs

Attribute name Attribute description
Timestamp Time of generation of alert
Signature Description of what was detected
Severity Severity of the detected behaviour: Low, Medium, High

MITRE Tactic What the attacker is trying to achieve (e.g. Initial Access)
MITRE Technique How the attacker is trying to achieve his goal (e.g. Phishing)

Entity What the alert refers to: hostname, IP address, account name
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Figure 5.1: Severity distribution of intrusion alerts from the
three Northwave datasets. Medium alerts are the most frequent

across all three datasets. The Pentest dataset has more
High-severity alerts compared to Low-severity ones.
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Figure 5.2: Severity distribution of alerts for CPTC-2018
dataset. Similar to the Northwave data, Medium-severity alerts

are the most common.

Due to the fact that the three datasets contain a mix of alerts generated by Sentinel, NIDS and
EDR (Endpoint Detection and Response) systems, as well as the large variety of behaviours that they
detect, there are two major differences in terms of the features present in them compared to CPTC’s
Suricata dataset. The first one is the lack of a source IP address in some alerts, which is usually the
case for EDR alerts, which only contain the victim host. For example, an alert about malware detected
on a host cannot have the source IP address of an attacker related to it. The second one is the lack
of the destination port in non-NIDS alerts. We will describe how these changes have influenced the
attack graph generation pipeline in section 5.2.

5.1.1. Dataset pre-processing
After obtaining the alerts from the specified time periods, we pre-process them using the procedure
described in table 5.2. We start with cleaning out alerts that are uninteresting for us because they
cannot be used when generating attack graphs. These include alerts that do not contain any entities,
where the entity is not a hostname or an IP address, and those that have neither an MTIRE technique
nor a tactic. We then remove duplicate alerts, which are two alerts that have the same hostname,
signature and have a difference in timestamps of less than 1 second. We then split alerts that contain
multiple entities into separate alerts that contain only one entity. For example, if the alert contains a
list of three hostnames, it would be separated into three alerts, each having the same details as the
original one, but a single host as the entity.

Following this, we extract the attack stage from each alert, using both the MITRE Tactic and Tech-
nique. If the alert has both of these attributes, its attack stage becomes <Tactic.Technique>. Some
alerts also have multiple tactics, or multiple techniques listed for the same tactic, in which case we
concatenate all of them, their attack stage becoming <Tactic1.Technique1, Tactic2.Technique1>. Oth-
erwise, if the technique is unknown, the attack stage becomes <Tactic. Unknown Technique>. This
approach was chosen in order to use all the available information from the alerts and prevent informa-
tion loss. Finally, we anonymize the hostnames, since we are dealing with sensitive data.
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Table 5.2: Summary of pre-processing steps performed on the extracted datasets

Pre-processing step Description

Cleaning

Remove alerts that:
do not contain any entities
do not contain a hostname or IP address
do not have a MITRE technique or a tactic

Duplicate removal Remove alerts that have the same signature,
host, and a difference of timestamps of less than 1 sec.

Entity separation Split alerts that contain multiple entities
into separate alerts with a single entitiy

Alert augmentation Concatinate the Mitre Tactic and Techniques
to create the attack stage of each alert

Host anonymization Anonymize the hostnames

5.2. Methodology
In this section, we describe the modified attack graph generation pipeline using real-world datasets.
Table 5.3 presents a summarised version of the pipeline and its differences from the one previously
used by SAGE.

We start with a dataset of pre-processed intrusion alerts. First, we need to convert these alerts
into attack episodes and group them by the host to which they belong. The episodes are grouped into
sequences per victim host (instead of attacker-victim combination) because not all alerts have a source
IP address. Due to the scarcity of the alerts, we opted to convert each alert directly into an episode,
rather than clustering them based on alert frequency. The attack stage of the alert then becomes the
attack stage of the episode and the start and end times are the same and correspond to the alert
timestamp. The result of this step is a list of episode sequences for every host.

The episode sequences are then partitioned into episode sub-sequences. This is done by finding
two episodes in a sequence where the severity decreases, dividing it into two subsequences. The first
episode will then become the end of the first subsequence, and the second episode the start of the
next subsequence. This process is repeated until the end of the sequence is reached.

Next, each subsequence is converted into a trace. Since we have no target service in the alerts,
when creating the traces, only the attack stage can be used as a symbol. However, we observed that
in some cases the attack stage of two alerts can be the same, whereas their severity could be different.
An example of this would be an unauthorised login alert, whose attack stage is Initial Access, and the
alert severity would depend on whether the login was during or outside office hours. This would have
resulted in an SPDFAwhich inaccurately represents the data because the same attack stage potentially
refers to actions of different severity depending on the context. To counter this issue, when converting
an episode into a symbol, we extract its attack stage and severity. An example of such a symbol is
Privilege Escalation. Process Injection | Medium. This way we can illustrate the
different severities of the attacker’s actions and attribute different contexts to them.

With the traces, we use Flexfringe to learn an SPDFA, which will represent a summarised version of
the data. We then map each episode to a state in the SPDFA using the corresponding state identifier.
Finally, we generate the attack graphs using the episodes, one attack graph per (victim, objective)
combination, where the objective is a high-severity episode. This time the node labels indicate the
attack stage as well as the state identifier of the episode, while the edge label illustrates the number
of the action in the sequence, the gap between the next episode and the previous one, as well as the
timestamp of the next episode. The episode number in the sequence was added to make the order of
the attacker’s actions easier to understand for an analyst.

5.3. Results
5.3.1. Datasets and SPDFA
Table 5.4 illustrates the difference between the datasets in terms of alert number, number of traces
generated, as well as the average length of an episode sequence. The pre-processing of the CPTC-
2018 dataset was described in section 2.4. As expected, the big environment dataset has the most
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Table 5.3: Description of the pipeline for attack graph generation from real-world data. The second column highlights the
changes between the SAGE pipeline and this one.

Pipeline Step Description Difference from SAGE

Transform alerts into episodes
and group them per host

Each episode will contain only one alert.
Episodes are grouped per host only
instead of (attacker, host).

Create episode subsequences, by
splitting each sequence into
multiple ones, in places where the severity
of the episodes decreases

No differences

Use ESS to create traces, by extracting
attack stage and severity of each episode

Each symbol will contain attack stage and
severity, instead of service.

Use traces to learn SPDFA No differences
Map each episode to their
corresponding state in the SPDFA No differences

Create an attack graph for every
victim, objective combination

Edges will also display the
number of action in the sequence.
No attacker IPs are displayed.

alerts among the three. The number of alerts before and after pre-processing is not majorly different
because even though some alerts got split into multiple ones, others were removed due to referring to
a non-host entity.

Table 5.4: Comparison between the three datasets and CPTC-2018, in terms of alert and trace number

Alert # Alert # after pre-process Number of traces Avg. sequence length
Pentest 136 116 24 3.50
TP 261 261 35 6.14
Big Environment 529 508 83 4.40
CPTC-2018 331,554 71,126 664 5.78

Multiple differences can be seen between the real-world datasets and the CPTC-2018 one. First,
there is the raw alert number, which is significantly lower in the real-world datasets. Even if we were to
compare the average number of alerts generated per team, which is 55,259, the alert number would
still be higher than that of the biggest dataset obtained in the real world. A cause for this might be
that the intrusion detection system deployed during CPTC has not been tuned, and as a result, a large
amount of the alerts generated were false positives. It can also be noted that the number of alerts is
directly proportional to the number of traces generated, while the TP dataset has the highest average
sequence length of 6.14. This could mean that this environment has hosts which trigger false positive
alerts periodically, creating bigger sequences of episodes.

Figure 5.3 shows the SDPFA generated using the traces of the big environment dataset. Even
though the trace file contained 83 traces, we can conclude that most of them were unique and infre-
quent, because they are not part of the main model. Even though the traces have been reversed, most
of the actions are related to either Credential or Initial access. A common observation among all the
SPDFAs learned using these datasets is that the automaton is less successful in learning the patterns
from the training data. Thus the main model is smaller and contains fewer behaviours, while the sinks
(states corresponding to infrequent sequences from the training data) contain more of them. This is
mostly due to the small size of the training dataset, and because a lot of the sequences are infrequent,
the learning algorithm does not have enough data to learn something useful from them.

5.3.2. Attack graphs
Figures 5.4 through 5.6 show examples of attack graphs for each dataset. The pentest dataset attack
graph (figure 5.4) is the biggest one of the three and showcases the actions of the red teamers against
a host. It can be observed that the objective ”Defense Evasion.Unknown Technique” was reached in
two different contexts, once close to the start, and a second time after a longer sequence of actions.
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Figure 5.3: SDPFA learned from 83 traces generated using the Big Environment Dataset. We can see that only a small part of
the traces were included in the main model, due to their infrequency.

A lot of the nodes are dotted because their corresponding states are in the sinks due to them being
infrequent, which also makes sense because this is the first time such actions have been used against
a host. Such an attack graph can be very useful for an analyst, as it links multiple alerts together
providing a summarised view for this host.

The attack graph generated from the Big environment dataset from figure 5.5 showcases actions for
”Defense Evasion.Impair Defenses” objective, which usually means turning off the antivirus. The first
action in the sequence was ”Execution. User Execution”, as seen by the yellow Node. It can also be
seen that the first 5 actions are low and medium severity (left part of the graph), and the high severity
alerts start with action 6, ”Credential Acccess. OS Credential Dumping”. As was later identified, a
penetration test was in process when the data for this environment had been collected, and this host
has been part of it.

Victim: HOST16
Defense Evasion.Unknown Technique

Defense Evasion.Unknown Technique
ID: 17

Defense Evasion.Unknown Technique
ID: -1

Execution.User Execution
ID: 10

action no. 4
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next_ts: 12/04/23, 09:55:34

Execution.Unknown Technique
ID: -1

Execution.User Execution
ID: -1

action no. 1
gap: 5.1 min

prev_ts: 12/04/23, 09:40:17
next_ts: 12/04/23, 09:45:25

action no. 3
gap: 9.7 min

next_ts: 12/04/23, 09:55:17

action no. 2
gap: 8 sec

next_ts: 12/04/23, 09:45:33

Execution.Unknown Technique
ID: 61

action no. 5
gap: 4.6 min

next_ts: 12/04/23, 10:00:09

Execution.Exploitation for Client Execution

action no. 13
gap: 5 sec

next_ts: 12/04/23, 12:40:30

action no. 15
gap: 4.9 min

next_ts: 12/04/23, 12:50:30

Execution.User Execution
ID: 54

action no. 6
gap: 5.5 min

next_ts: 12/04/23, 10:05:37

Persistence.Unknown Technique
Privilege Escalation.Unknown Technique

ID: 47

action no. 7
gap: 4.8 min

next_ts: 12/04/23, 10:10:24

Credential Access.OS Credential Dumping
ID: 34

action no. 8
gap: 39.8 min

next_ts: 12/04/23, 10:50:13

Credential Access.OS Credential Dumping
ID: 15

action no. 9
gap: 15.0 min

next_ts: 12/04/23, 11:05:14

Credential Access.OS Credential Dumping
ID: 4

action no. 10
gap: 1.6 h

next_ts: 12/04/23, 12:40:15

Persistence.Unknown Technique
Privilege Escalation.Unknown Technique

action no. 11
gap: 9 sec

next_ts: 12/04/23, 12:40:24

action no. 12
gap: 0 sec

next_ts: 12/04/23, 12:40:24

action no. 16
gap: 4.8 min

next_ts: 12/04/23, 12:55:18

action no. 14
gap: 5.1 min

next_ts: 12/04/23, 12:45:35

Figure 5.4: Attack graph for a host from the Pentest dataset
showcasing the Defense Evasion objective.
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Credential Access.OS Credential Dumping
ID: 39
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next_ts: 30/05/23, 14:47:27
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Figure 5.5: Attack graph for a host from the Big Environment
Dataset, showcasing the Defense Evasion. Impair Defense

objective.

Unfortunately, our hypothesis for the TP dataset did not prove itself, because the attack graph for the
host which had the TP high severity alert did not contain any other ones (figure 5.6). This showcases
a disadvantage of the approach because the attack graph is highly reliant on the generated alerts.
Moreover, it is constructed for each individual victim. Thus, if an attacker performs lateral movement
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between hosts, or if the intrusion system does not detect some actions, they will also not be visible in
the attack graph.

Figure 5.6: Attack graph for the host which had the True Positive high severity alert from the TP dataset. Unfortunately, the
attack graph contains only the high-severity actions, due to there being no other alerts for this host.

We have also observed that attack graphs related to false positives will often contain the same
action repeated multiple times. An example of such an attack graph can be found in figure 5.7. It
showcases only three actions related to ”Initial Acesss”, for the same host. The time gap between the
actions is also large, being 142.8 hours between actions 1 and 2, and 409.6 hours between actions 2
and 3. All of the alerts related to these actions were later identified to be false positives and triggered
due to a network administrator. We believe that such attack graphs could prove useful to analysts when
deciding whether an alert is a false positive or not, as they illustrate actions that re-occur periodically
on the same host.

Victim: HOST49
Initial Access.Valid Accounts

Initial Access.Valid Accounts
ID: 11

Initial Access.Valid Accounts
ID: 43

Initial Access.Valid Accounts
ID: 29action no. 1

gap: 142.8 h
prev_ts: 02/05/23, 13:29:10

action no. 2
gap: 409.6 h

next_ts: 25/05/23, 13:55:14

Figure 5.7: Attack graph showcasing only ”Initial Access.Valid accounts” actions. It can be observed that the time gap between
these actions is very large. The alerts related to these actions were later confirmed to be false positives and caused by an

administrator.

5.4. Discussion
In this chapter, we have examined the usability of SAGE on real-world generated data. We have
decided to generate attack graphs offline, using all of the alerts in the dataset, rather than in real-
time. Such an approach was chosen for multiple reasons. First, our primary goal with this research
question was to study real-world data and identify key differences between it and open-source data.
Moreover, previously SAGE was used for generating attack graphs using intrusion alerts from an open-
source dataset, thus we were interested in testing it with real-world data. Secondly, by using offline
generation, we can control the amount of data, meaning we can compensate for the sparsity of the
real-world dataset. Finally, the real-time generated pipeline is a modified version of the offline one, so
the results obtained with offline attack graphs are also valid for real-time generated attack graphs.

We have identified significant distinctions between open-source datasets and those derived from
actual operations. Notably, the quantity of alerts generated in real-world settings is considerably lower,
even when aggregated over an extended period, such as three months. It is important to note that
our analysis is confined to the alerts from a single Security Operations Center (SOC), and as such, it
would be premature to assert that this trend is universally applicable across all real-world environments.
Moreover, the elevated number of alerts in the CPTC-2018 dataset may be attributed to the possibility
that the Intrusion Detection System (IDS) used during the competition was not optimally configured,
resulting in a substantial volume of false positives.

Despite these challenges, our findings show how important it is to have high-quality datasets from
the real world for research. When researchers have access to good data that reflects what’s actually
happening in operational settings, their results are more likely to be useful and applicable in real-world
situations.

We have also evaluated the usefulness of an SPDFA in providing an accurate summarization of the
data. For all of the datasets, the SPDFA only contained a small number of behaviours observed in the
data. The cause for this is of course the small number of sequences which was used for training this.
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Thus, we believe that the SPDFA performs best when it has more data to learn from. Future research
could explore adjustments to the learning algorithm’s parameters to optimize performance.

We have adapted the SAGE pipeline to generate attack graphs based on intrusion alerts from real-
world scenarios. Typically, attack graphs derived from penetration testing activities, which involve sim-
ulated attack scenarios, were of higher quality, as they contained more observed attacker actions. This
leads us to believe that attack graphs could be a valuable tool in the event of an actual attack, provided
that the intrusion detection system successfully identifies malicious activities. Generating attack graphs
in real time would allow the analysts to get an overview of the intrusion alerts observed for a single host,
and assist them with alert analysis. Additionally, this approach can facilitate the identification of false
positives, as attack graphs generated from these often exhibit repetitive actions.

Ultimately, the usefulness of such a method depends on the intrusion detection system itself, as it
only displays the actions which were already detected. That being said, this characteristic could also
be used as an advantage. For example, if used offline, our approach could be used as an evaluation
method for the IDS. For instance, a red team could conduct an attack on a monitored environment,
and subsequent analysis of the attack graphs could reveal which actions were detected, which went
unnoticed, and which areas require further enhancement.

5.5. Conclusions
Summarizing, we can draw the following conclusions:

• Real-world data is much more sparse and different than artificially generated intrusion alerts
dataset, both because the IDS is more tuned (less triggered alerts), and because attacks happen
rarely in the real world

• SPDFA is not as useful in this scenario, since it cannot provide an accurate representation of the
behaviours observed in the data, due to its sparsity

• Attack graphs are especially useful during real attacks or penetration tests because in these sce-
narios more intrusion alerts are generated than usual, so the resulting attack graphs will provide
a big-picture view of the situation

• AGs related to false positives usually contain only several high severity nodes, without any other
actions leading to them (but exceptions can also happen, such as the one shown in figure 5.6).

• Real-time attack graphs generated in the real world can be used as a tool to summarize and
visualise all alerts for one host as well as help in identifying false positives

• Offline attack graphs generated in the real world can be used as an evaluation method for the
IDS, to see which behaviours were detected by the IDS and which were missed.





6
User study: Interviews with Northwave

SOC analysts
In order to further evaluate the applicability of our method in the real world, and get feedback from
security experts, we organised 1-on-1 structured interviews with 6 SOC analysts from Northwave. This
chapter describes the interview process, a summarised version of the answers of the participants, and
finally the implications of those answers for our research.

6.1. Objective and set up
The first objective is to identify how useful would real-time generated attack graphs be in the daily tasks
of a SOC analyst. Particularly, here we are interested in the current challenges the SOC analysts face
regarding alert handling, if our method addresses any of those challenges, and if the analysts would use
it as an alert visualization and summarization tool. The second objective is to evaluate the usefulness
of predicting the next attacker’s action. We would like to verify if the analysts would trust the result of
the prediction, and in what way they would use it when analyzing alerts.

SOC analysts can be classified into three tiers, based on their experience level: Tier 1, 2 and 3.
Tier 1 analysts are responsible for analyzing most of the alerts, and deciding whether they are justified
or false positives. In the case that the tier 1 analyst requires help with their tasks, they involve a tier
2 analyst, who has more experience and can take a more in-depth look. Finally, Tier 3 analysts are
responsible for continuously monitoring and evaluating current processes and routines within the SOC.

The interviews were conducted with five Tier 2 and one Tier 3 analyst, as we wanted the opinion
of analysts with more experience. Each interview was done in a structured manner, meaning that we
prepared a script with a list of questions, which we asked each of the participants in the same order.
We started the interview with background questions related to the experience of the participant while
working in the SOC, to get an idea of the current challenges and workflow. Afterwards, we provided the
participants with the knowledge required to understand how attack graphs are generated and how can
they be read. We then asked the participants to use the attack graphs in four hypothetical scenarios.
These scenarios were developed to check whether the participants can correctly extract information
from an attack graph, as well as to see how they would integrate them into their current workflow. Finally,
we asked them to evaluate the usefulness of the different aspects of our method, as well as provide
feedback and point out potential areas of improvement. Each 30-minute interview was conducted on
Microsoft Teams and was recorded with the consent of the participants. The recordings were then
transcribed, and the transcriptions were analyzed, by extracting the answer of each participant for
every question.

The next section presents a summarised version of the answers, grouped per question. To stream-
line the report, we have grouped answers that align with common themes or sentiments, without at-
tributing the responses to specific participants. Thus, when participants share similar ideas or express
a collective opinion on a topic, we aggregate their responses for clarity and conciseness. Conversely,
if the answers of participants express different ideas, or if their opinion diverges on a particular topic,
we will address their answers independently. We have adopted such a mixed approach to ensure the
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report provides maximum value to the reader, focusing on both shared insights and differing viewpoints
where necessary.

6.2. Interview questions and results
6.2.1. Background questions
We started the interview with background questions regarding the experience of the participants while
working in the SOC.
Q: How long have you been working as a SOC analyst?
The work experience of the participants ranged from 1 year and 3 months to 5 years, with an average
of 2.54 years across all participants. We do not disclose the exact numbers for each participant, in
order to avoid re-identification.

Q: What would you say is the biggest challenge you experience when handling alerts?
Participants highlighted a range of different challenges associated with handling alerts. First, multiple
problems that come from data were identified. Two participants highlighted challenges in retrieving
information from all available log sources, especially when an analyst needs to get an overview of what
is happening for a particular host. Finding a correlation between multiple events and/or alerts was
another identified challenge.

Some challenges that arise from the alerts themselves were also identified. One of the main ones
is not having an overview of the alerts for a host, stated Participant 4. They further provided an ex-
ample of a scenario where an alert seems to be of medium severity when analyzed on its own but is
actually high severity if linked with other alerts which have been triggered in the past. Other challenges
include the large number of alerts that are generated daily, as well as dealing with false positives and
distinguishing them from true positives. Another identified challenge identified was the deep dive in-
vestigations, which can take multiple days. Finally, the lack of automation and the large amount of
manual work which the analysts have to perform daily was another big challenge.

Q: In your opinion, do you or your colleagues suffer from alert fatigue?
The presence of alert fatigue emerged as a notable concern among participants, with four out of six
acknowledging personal experiences or those of their colleagues. Participant 1 pointed out that the
high frequency of repeated alerts contributes to analysts overlooking nuances in their analysis. Simi-
larly, Participant 4 highlighted the potential for a decline in work quality attributed to the overwhelming
volume of alerts. Conversely, Participant 6 expressed a more cautious stance, noting that while they
don’t perceive alert fatigue as an immediate issue, they believe it is a topic that demands ongoing
awareness from everyone involved.

Q: What do you do when you want to look into all alerts related to a host or a particular in-
cident, in order to get more context for an alert you are analysing?
Four participants stated that in order to get more information about a particular host or alert, they would
perform an initial search in the alert ticketing system using the hostname, followed by amore in-depth in-
vestigation utilizing specific log sources, such as an Endpoint Detection and Response (EDR) solution.
In contrast, the remaining two participants opted for a more direct strategy, bypassing the alert tick-
eting system and heading straight to the EDR to conduct their search for additional host-related events.

Q: Do you use any visualization tools, and if yes, which ones and for what?
Two participants mentioned not using any visualization tools. On the other hand, three participants
shared that they occasionally use correlation graphs linked to alerts from the EDR, which show the en-
tities related to the alert. Additionally, some participants noted using time charts selectively to examine
events for a specific host, but only for certain types of alerts.

Q: Do you use any attack prediction tools?
None of the participants use attack prediction tools. Participant 5 noted that sometimes the playbook
(which contains information about how to handle a type of alert) also contains information about the
possible next actions of the attacker.



6.2. Interview questions and results 51

6.2.2. Attack graphs scenarios
Next, we provided the participants with the background knowledge required to understand the attack
graphs generated by our method, by telling them how are they constructed, how can they be read, and
what the different colours, shapes and symbols mean. We then showed the participants four different
scenarios and asked them to either describe the actions in the attack graphs or use the attack graph
when analyzing an alert.

Scenario 1: Could you describe what you see in the following attack graph? (fig. 6.1)
All of the participants were able to identify the different events and read the attack graph. The partici-
pants hovered over nodes in order to read the signatures, and using them and the timestamps from the
edges, they could reconstruct the story behind the attack graph. That being said, only one participant
noticed that the second node repeats once, and is composed of two separate alerts. One participant
confused the prediction node with an objective node at first. Another participant made the observation
that the attack stages (the title of the nodes) do not offer a lot of details about what actually happened,
and without the signatures, it is difficult to get an idea of all of the events in the timeline.

Scenario 2: After more alerts come in, we regenerate the attack graph. Can you describe what
has changed? What do you think is going on in the network? (fig. 6.2)
The majority of participants observed a continuity between the current attack graph and the previous
one, noting that the first three nodes remained unchanged. One participant noticed that it is difficult to
tell what exactly happened without having more information from the alert (for example, the name of the
hack tool which was executed). Two participants inferred host compromise based on the attack graph.
For instance, P5 pointed out that an attack graph with only the credential dumping node might suggest
a false positive, but the presence of the entire attack chain leading to credential dumping would lead
to the assumption of a compromised host.

Nevertheless, some participants faced challenges interpreting certain elements of the attack graph.
One participant believed that our method would generate new alerts based on previously observed
ones, while another confused the objective node with a prediction node. Lastly, a participant misun-
derstood the dotted nodes (sink nodes), thinking they corresponded to alerts in the attack chain that
had not been triggered.

Scenario 3: You receive a low-severity alert from the NIDS for a host, which concerns sus-
picious activities of service discovery (such as an NMAP scan). You also see the attack graph
corresponding to the alert, which showcases a sequence of past episodes for this host. For
now, ignore the prediction node. (fig. 6.3)
Q1: What information from the attack graph would you use during your alert analysis?
Every participant stated that they would utilize the signatures of the nodes to check the specific types of
scans and the targeted services. Additionally, some participants mentioned incorporating timestamps
into their analysis to improve their understanding of the timeframe in which these events are happening.
Additionally, one participant emphasized assigning a higher priority to the alert, due to the presence of
multiple discovery actions.

Q2: What are the usual recommended actions for system administrators to perform for this
type of alert?
Participants suggested various actions based on whether the source IP is internal or external to the
environment. In either scenario, the following recommendations were commonly advised: checking
that software running on the target host is up to date, reviewing open ports for any unnecessary ones,
and conducting a thorough scan. If the source host is internal, participants recommended additional
investigation to identify the cause of the scans. This involves scanning the internal source using anti-
malware tools and questioning the owner of the host about any peculiar behaviour observed. On the
other hand, if the source IP is external to the organization, a common recommendation is to block it
using the firewall.

Q3: How would you change the recommendation given the current attack graph?
The majority of participants indicated that they wouldn’t alter the recommendations, citing reasons
such as all actions being of low severity or involving only discovery actions. Participant 2 highlighted
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Victim: HOST16
Defense Evasion

Defense Evasion
ID: -1
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ID: -1
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action no. 1
gap: 5.1 min
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action no. 3
gap: 9.7 min

next_ts: 12/04/23, 09:55:17

action no. 2
gap: 8 sec

next_ts: 12/04/23, 09:45:33

Figure 6.1: Attack graph which was shown in scenario one,
generated using Northwave intrusion alerts. The ”Execution”
node contains a suspicious command line signature, and the

”Execution. User Execution” contains two signatures: ”Malware
detected” and ”hacking tool detected”. Finally, the ”Defense
Evasion” node contains a signature of ”multiple alerts on a

single host”.

Victim: HOST16
Credential Access.OS Credential Dumping

Credential Access.OS Credential Dumping
ID: 4

Execution
ID: -1

Execution.User Execution
ID: -1

action no. 1
gap: 5.1 min

prev_ts: 12/04/23, 09:40:17
next_ts: 12/04/23, 09:45:25

action no. 2
gap: 8 sec

next_ts: 12/04/23, 09:45:33

Defense Evasion
ID: -1

action no. 3
gap: 9.7 min

next_ts: 12/04/23, 09:55:17

Execution.User Execution
ID: 10

action no. 4
gap: 17 sec

next_ts: 12/04/23, 09:55:34

Execution
ID: 42

action no. 5
gap: 4.6 min

next_ts: 12/04/23, 10:00:09

Execution.User Execution
ID: 31

action no. 6
gap: 5.5 min

next_ts: 12/04/23, 10:05:37

Persistence
Privilege Escalation

ID: 15

action no. 7
gap: 4.8 min

next_ts: 12/04/23, 10:10:24

action no. 8
gap: 39.8 min

next_ts: 12/04/23, 10:50:13

Figure 6.2: Attack graph used in the second scenario, also
generated using Northwave data. It was created for the same
host as the attack graph in figure 6.1, after more alerts have
been triggered, consequently the first actions are the same. It

can also be seen that more high-severity actions have
occurred, and the attacker is further down the attack chain.

the usefulness of the attack graph in correlating multiple scanning events for the same host.
Among those willing to make changes to the recommendation, one participant suggested amending

it to specify the services being scanned, which they obtained by examining the signatures of the nodes.
Another participant proposed advising the limitation of traffic originating from the identified source IP
as a preventive measure.

Scenario 4: Now also take into account the prediction of the next action from the attack graph,
which is a high-severity action related to data manipulation (for example, modification of the
privilege rights of a non-admin user)
Q1: Given the prediction, would you perform any additional actions on the host?
The majority of participants expressed a willingness to take additional actions. Among these, some
participants advocated for isolating the host from the network, particularly if the prediction had a high
probability. Another participant highlighted the importance of conducting further analysis on the host
and considering the prediction while analyzing logs. In a slightly different approach, one participant
mentioned checking the destination host for other observed behaviours from the past.

Contrarily, a participant took a more cautious stance regarding the prediction, opting not to under-
take any additional actions. They justified this decision by suggesting that the current behaviour might
align with the normal operations of a network administrator.

Q2: Given the prediction, how would you change the recommendation?
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Victim: 10.0.1.40
DATA MANIPULATION

http
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DATA MANIPULATION

http

SERVICE DISCOVERY
ssh

action no. 1
start_next: 03/11/18, 15:44:34

gap: 3344sec
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Attacker: 10.0.254.206

VULNERABILTY DISCOVERY
http

action no. 2
start_next: 03/11/18, 21:52:24

gap: 22069sec
end_prev: 03/11/18, 15:44:34

SERVICE DISCOVERY
ads-c

action no. 3
start_next: 03/11/18, 21:52:26

gap: -40sec
end_prev: 03/11/18, 21:53:06

HOST DISCOVERY
http

action no. 4
start_next: 03/11/18, 21:53:56

gap: 0sec
end_prev: 03/11/18, 21:53:56

SERVICE DISCOVERY
unknown

action no. 5
start_next: 03/11/18, 22:15:11

gap: 1274sec
end_prev: 03/11/18, 21:53:56

Probability
 0.875

Figure 6.3: Attack graph used in the third scenario, generated using CPTC-2018 alerts. It showcases a sequence of
discovery-related actions for a single host, as well as a prediction for a potential ”data manipulation” action.

The majority of participants affirmed that they would maintain the existing recommendations without
modifications. However, a participant suggested recommending a check for sensitive data on the host.
In contrast, another participant proposed a more proactive approach by advising the blocking of access
rights for the user on the destination host and temporarily blocking the source IP pending the completion
of the investigation.

6.2.3. Attack graph evaluation and feedback
Finally, after the interviewees had used the attack graph in different scenarios, we asked them to eval-
uate them based on different aspects.
Q: What situations do you see yourself using intrusion alert-based attack graphs in?
All participants unanimously agreed on utilizing attack graphs for summarization and correlation pur-
poses. For instance, Participant 1 highlighted the value of intrusion-driven attack graphs in cases where
multiple weak indicators which are scattered across different alerts, can be combined to form a strong
indication of an attack. Several participants expressed their intention to use attack graphs while analyz-
ing alerts to gain an overview of past alerts and the observed behaviour on a specific host. Participant
5 specifically emphasized the utility of attack graphs for high-severity alerts, where the attacker has
progressed further down the attack chain, posing a more serious threat. A common sentiment among
participants was that the overview offered by attack graphs plays a crucial role in enhancing analysts’
understanding of the situation and the possible threats.
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Q: What features of the attack graphs did you find particularly useful?
All of the participants highlighted that one of the most useful features of the attack graphs is the fact
that they provide the order of the observed events as well as a timeline corresponding to these actions.
Another frequently mentioned feature was the ability of attack graphs to effectively summarize informa-
tion and offer a comprehensive overview of the events from one host. Participant 3 specifically noted
that examining the gaps between actions could be insightful in discerning whether an alert is a false
positive. Additionally, participant 4 highlighted the utility of predictions, even when appearing lower in
the attack chain.

Q: What elements of the attack graphs were confusing, if any?
Participants identified multiple issues, with a shared sentiment that understanding all the elements of
attack graphs would be challenging without explanations from the researcher. Assuming explanations
are provided, two participants stated that there are no elements of the attack graphs which they find
confusing.

The majority of confusing aspects were related to node properties. Participant 1 expressed confu-
sion regarding using node shapes as an indicator of severity and suggested using colours or another
textual indicator for more clarity. Participant 6 added that the similarity of node shapes could lead to
confusion, and the varying node sizes might mislead analysts into assigning different priorities to nodes
of the same severity. Participant 3 further pointed out that nodes sharing the same name (attack stage)
could be confusing without having any other additional information available. Lastly, Participant 5 noted
the difficulty in understanding negative gaps present in some edges.

Q: What features would you like to be added to them?
Four participants stated that if they could add a feature, they would add the ability to open the alert
details in the alert ticketing system by clicking the corresponding node in the attack graph. Partici-
pant 2 proposed incorporating additional details for each alert, such as the executed command line or
the specific hack tool used, though acknowledging the need to find a balance between the amount of
information and the readability of the attack graph.

Moreover, Participant 2 suggested the use of colour to distinguish between different severities. Par-
ticipant 3 envisioned the addition of recommendations based on the observed actions, offering guid-
ance on how to mitigate the risks of these malicious actions. Participants 1 and 6 stated they would
add more timeline-related features. The former stated that they would arrange the nodes horizontally,
making the attack graph more similar to a timeline. The latter stated that they would add a separate
summarized timeline near the attack graph, which showcases the timespan of the events.

Q: Assuming that the predictions are based on past alerts and are not always accurate, would
you still trust them and use them during your analysis of an alert? What information can you
infer from them?
Participants provided various insights into the utility of the prediction feature and its potential applica-
tions. Participant 5 characterized the feature as a valuable pointer to consider during alert analysis.
Many participants emphasized the use of predictions for generating additional recommendations aimed
at preventing the predicted actions. Participant 6 added that even if the prediction is incorrect, a well-
formulated recommendation could still be valuable. However, concerns about the accuracy of such
predictions were expressed, with participants indicating a need for testing. In a different perspective,
Participant 1 suggested using predictions during alert triage as a method of increasing the priority of
some alerts. For example, if the predicted action for an alert is a high-severity one, its priority would
be increased, and it would be analyzed earlier compared to other alerts.

Q: How do the attack graphs compare to other visualization tools you’ve used in the past?
How about prediction tools?
The participants who previously utilized correlation graphs from the EDR portal noted a significant ad-
vantage in the attack graphs generated by our method. They highlighted the comprehensive nature of
these graphs, incorporating events from multiple alerts along with their respective timeframes, as op-
posed to only the entities associated with a single alert. Participant 3 further observed that our method
offered a notable improvement by providing a cohesive overview, eliminating the need for manual
searches to obtain the start and end times of events.
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Q: On a scale of 1 to 10, how would you rate the overall usefulness of the attack graphs in
assisting with your daily tasks?
The attack graphs received an average rating of 7.45 out of 10. Participant 1 expressed a willing-
ness to elevate their grade from 5 to 8 if our method could correlate alerts from multiple hosts into a
single attack graph. Participant 5 evaluated their usefulness based on the severity of the alerts, as-
signing a rating of 8.5 for attack graphs used for the analysis of high-severity alerts and 7 for low and
medium-severity ones. Additionally, Participant 2 provided a rating of 8 for attack graphs related to
NIDS (Network Intrusion Detection System) alerts, emphasizing their efficiency in summarizing numer-
ous events associated with such alerts.

Q: On a scale of 1 to 10, how would you rate the usefulness of the prediction feature?
The prediction feature received an average rating of 7 out of 10. Participant 1, while not providing a
rating for the current implementation, indicated a potential rating of 8 if the feature could be applied to
alert triage. Participant 2 expressed the view that the prediction feature could be valuable for mitigating
potential risks. Several participants emphasized that their decision to use the feature ultimately hinges
on its accuracy, underscoring the importance of its reliability in practical applications.

Q: On a scale of 1 to 10, how easy to follow/intuitive were the attack graphs?
The intuitiveness of the attack graphs received an average rating of 8.2 out of 10. Participants noted
that the graphs were initially somewhat confusing, but after receiving explanations, they found them
to be quite easy to follow. Participant 3 also stated that the fact that the order of the actions is from
bottom to top is beneficial when reading the attack graphs.

Q: Do you have any other comments/suggestions which weren’t covered by the questions?
Participant 1 proposed an area of future improvement for the method, suggesting the creation of attack
graphs that connect events from multiple hosts or the entire network. Even in the current iteration, they
acknowledged that the method provides value by offering an overview of activities on a single host,
aiding the analyst during alert analysis. Additionally, Participant 1 pointed out that the generic nature of
the attack stages printed on the nodes limits insight into the actions. They recommended adding more
details, such as the executed command line, to enrich the narrative of the ongoing attack. Participant
3 suggested another improvement by incorporating recommendations on mitigating the risks at each
node. This feature, according to the participant, would aid analysts during alert analysis and enable
the creation of a unified recommendation for multiple alerts.

6.2.4. Summary
In this section, we provide a summary of all of the answers and observed themes in the interview. The
interviews conducted with SOC analysts have provided insights into the challenges they encounter
when analyzing alerts. These challenges encompass data-related issues, such as dealing with large
volumes of data and the need for effective data summarization. Additionally, alert-related challenges
include finding correlations between multiple alerts and obtaining a comprehensive overview of events
occurring on a single host. One participant stated: ”sometimes it (an alert) comes in as medium, but if
you look at the events, so many things are happening that you can make it a high (severity)”. These
challenges are compounded by the lack of automation, compelling analysts to manually search and
correlate events. A participant highlighted the untapped potential of the available data, saying ”I feel
like the data is there, but we’re not doing enough with it.” Alert fatigue emerged as a shared concern,
particularly when combined with the difficulty of distinguishing false positives from true alerts. Moreover,
analysts currently lack tools that provide an effective overview of alerts associated with a single host.

Participants identified several uses for intrusion alert-based real-time generated attack graphs. All of
the participants agreed that their main strength is their ability to summarize alerts and give an overview
for the analyst, by providing a timeline of the observed attacker actions and their timestamps. As noted
by one of the participants, ”It’s amazing that you have everything in one place and you have everything
linked together and also have a timeline and when it happened and what kind of action was it”.

Participants also identified some uses for the prediction feature. Most of them centered around
providing additional recommendations of actions for the system administrator to perform, in order to
prevent the predicted action from happening or to minimize its impact. One participant noted, ”I think
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Table 6.1: Results of quantitative questions from the interview

Question Average rating (1-10)
General usefulness of attack graphs 7.45

The usefulness of predicting the next attacker action 7.00
Readability of attack graphs 8.20

it’s a nice pointer to just take another minute or two to look into whatever the prediction says, just to
be sure that you didn’t miss anything”. Although participants were eager to give the feature a try, they
stated that its use in the real world ultimately depends on its accuracy. One participant also suggested
using the prediction during alert triage, for modifying the priority of the alerts based on the severity of
the predicted action.

Participants also put forth several suggestions for improving attack graphs to enhance their inte-
gration into SOC environments. These recommendations included providing more detailed information
about observed actions to address issues associated with the generic nature of the attack stage. To fur-
ther integrate the attack graphs into their existing workflow, they proposed adding the ability to open the
alert details in the alert ticketing system by clicking on the corresponding node in the attack graph. An-
other requested feature was the creation of attack graphs which connect events across multiple hosts,
to further improve their correlation ability. Table 6.1 presents the average ratings from the quantitative
questions.

6.3. Discussion
As can be seen based on the answers of the participants, the attack graphs address some of their
previously identified challenges, particularly for summarizing multiple events observed on a single host
and getting an overview of those events. Additionally, attack graphs enhance the process of attack cor-
relation, making it easier for analysts to connect the dots and discern patterns. Moreover, the automatic
generation of attack graphs eliminates the requirement for manual event searches, thus contributing to
an increase in automation by using currently available data. This automation streamlines the workflow
within the SOC, allowing analysts to allocate their time and expertise more efficiently.

Several participants identified the presence of alert fatigue as well as some of the consequences
it brings. This shows the need for real-time generated attack graphs, which can help in identifying
false positives and reducing the time spent on analyzing alerts. We further observed that most of the
participants were able to use the attack graph when analyzing alerts, thus we conclude that we were
successful in generating attack graphs that provide additional insights for the analyst.

The feedback from participants points to a clear need for continued research into better tools for
correlating and visualizing security alerts, tools that would directly aid SOC analysts in their work. Ad-
ditionally, it’s important that this research is carried out in close cooperation with security professionals.
Working alongside these experts ensures that the new methods are not only effective but also fit well
within the practical context of daily SOC operations.

The prediction feature was seen as something which could aid the analysts in handling alerts, by
providing an idea of potential future attacker actions. This highlights the need for more research on
the topic of attack prediction tools, as they hold significant potential in assisting SOC analysts with the
early identification and circumvention of emerging threats.

Based on the observed interaction of the participants and the attack graphs, we also believe that the
attack graphs could be further simplified. For example, the state ID from each node could be removed,
and we could opt for making all nodes the same appearance, regardless if their corresponding state is
in the main model or the sink. While these details are important for research purposes and for gaining a
deeper understanding of the SPDFA’s behaviour, in real-world scenarios the primary objective of attack
graphs is to provide a summarised representation of observed alerts. Consequently, SOC analysts
prefer a more straightforward and less cluttered representation that is easily digestible and facilitates
quick comprehension. This simplification would not only enhance the user-friendliness of attack graphs
but also align them more closely with the practical needs of SOC analysts.

Our interviews have provided valuable insights, but we must also acknowledge certain limitations
associated with the employed methodology. Firstly, the small sample size is a potential constraint.
While the insights gained are significant, they may not comprehensively represent the diversity of per-
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spectives, experiences, or demographics present in the broader population, particularly in the context
of other SOCs. Additionally, the limitations introduced by a small sample size extend to issues related
to variability and generalization. It is important to recognize that the findings may be most applicable
to the specific SOC under study.

Secondly, we recognize the potential for confirmation bias in our interviews, which is a known issue
for qualitative interviews [25]. This bias can arise when the questions are formulated in a way which
favours a particular outcome, thus influencing participants’ responses in a certain direction. To mit-
igate this issue to the greatest extent possible, our approach has been to create questions that are
open-ended and neutral in nature. By doing so, we aimed to provide participants with the freedom to
express their perspectives without being influenced. Nonetheless, the potential for bias in responses
is a consideration that we remain conscious of in our study.

6.4. Conclusions
In summary, the interviews proved that intrusion alert-based real-time generated attack graphs can be
used in the real world. We can draw the following conclusions:

• SOC analysts face challenges such as difficulty in correlating events, lack of automation, and
alert fatigue

• Intrusion alert-based real-time generated attack graphs are a useful visual tool for alert sum-
marization and correlation, which could aid the analyst when handling alerts by providing more
context

• The ability to provide a timeline of observed events and their order, as well as summarize infor-
mation from multiple alerts proved to be the strongest point of attack graphs

• Predicting the next attacker action is a useful feature for the analysts, however, our method needs
further improvements and a higher accuracy before it can be deployed in the real world

• Attack graphs can be further improved to facilitate their deployment in the real world, by integrating
them with existing systems that SOC analysts use and providing more details about the observed
attacker actions
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Discussion

In this chapter, we discuss our main findings and take a closer look at the limitations and challenges
associated with the method proposed in this thesis. As the results of each sub-question have already
been discussed in greater detail in their corresponding chapter, this chapter aims to provide a more
high-level and centralized form of discussion. Our approach brings forward innovative techniques for
visualizing attacks in real-time and predicting potential future actions. However, it is crucial to acknowl-
edge and understand the constraints that might affect its effectiveness and applicability.

7.1. Real-time generated attack graphs
Our primary research question, as delineated in the introduction, states: How can we generate at-
tack graphs in real-time, providing a comprehensive overview of the triggered intrusion alerts,
predicting the subsequent actions of a malicious actor, and assisting a SOC analyst during the
analysis of alerts?

In this thesis, we have addressed this question by developing a novel methodology for attack pre-
diction and real-time generation of attack graphs, which operates independently of network topology
knowledge and solely utilizes intrusion alerts as input data. Furthermore, we have tested our approach
using a dataset derived from a real-world SOC environment and have undertaken a thorough evaluation
of its practical utility through interviews with security experts.

7.1.1. How can the SPDFA be used to predict the next attacker action?
First, we have developed a method to predict the next attacker action given a sequence of observed
actions, using a pre-trained SPDFA. For the best SPDFA-based strategy, we have achieved an accu-
racy of 33.71 % when predicting the entire symbol, and 42.05 % when predicting only the attack stage.
Given the complexity of the problem at hand, which is a multi-class classification task with 148 distinct
classes, the performance of our method demonstrates promising results in this challenging context.
As stated previously, this performance might be rooted in the non-deterministic nature of the reversed
SPDFA. The exploration of multiple paths during prediction might introduce ambiguities, which in the
end might result in a worse probability distribution of the next actions. Another possible reason might
lie in the way we calculate probability distributions of the next actions, which ultimately depends on
the actions observed in the training data. Due to the nature of cyberattacks, attacker strategies tend
to constantly evolve, in order to avoid detection. Thus, it is possible that an attacker will perform a
different action than the one observed in the training data, resulting in a wrong prediction.

Another potential cause might have been the dataset, which consists of intrusion alerts generated
during a penetration testing competition where the participants were students. Due to this, the dataset
contained a mix of different strategies with varying frequencies, which might have introduced additional
ambiguities in the SPDFA. This underscores the need for high-quality datasets in the domain of predic-
tive modelling. Therefore, an artificially created dataset, designed in collaboration with security experts
and based on real-world attack patterns, may offer a more robust foundation for refining predictive
algorithms in this realm.
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On the other hand, the PDFA-based algorithm has scored an accuracy of 31.47%, while maintaining
a low execution time of 9.25e-05 seconds. Our experiments aimed at identifying the reasons behind the
comparable performance of the SPDFA and PDFA algorithms did not yield definitive conclusions. This
highlights that more complex algorithms do not invariably result in superior outcomes, and in real-time
scenarios, the determinism and efficiency of the PDFA algorithm make it a more pragmatic choice.

7.1.2. How can we generate attack graphs in real-time, which will aid a SOC an-
alyst when handling alerts?

Subsequently, we integrated the predictive functionality into the SAGE attack graph generation pipeline,
culminating in a real-time variant. One of the biggest challenges here was finding a method to evaluate
our approach. Unlike the previous research question, we could not use metrics such as accuracy, as
the results for this question are of a visual nature.

The interviews with SOC analysts of Northwave Cybersecurity proved to be a great way of evaluat-
ing our approach. Real-time generated attack graphs were found to be useful for summarizing multiple
events observed on a single host and getting an overview of those events. Additionally, attack graphs
enhance the process of attack correlation, making it easier for analysts to connect the dots and discern
patterns. Moreover, the automatic generation of attack graphs eliminates the requirement for manual
event searches, thus contributing to an increase in automation by using currently available data. This
automation streamlines the workflow within the SOC, allowing analysts to allocate their time and exper-
tise more efficiently. Ultimately, this shows the ability of our method to help in dealing with alert fatigue,
as it can help in identifying false positives, and reducing the time spent on analyzing alerts.

The prediction of the next attacker action was also seen as something which could aid an analyst
during alert analysis, obtaining a score of 7 out of 10 on the usability scale (table 6.1). That being
said, several participants have stated that its real-world usability highly depends on its accuracy. This
highlights the need for more research on the topic of attack prediction tools, as they hold significant
potential in assisting SOC analysts with the early identification and circumvention of emerging threats.
Furthermore, the research of predictive methods should extend beyond achieving high accuracy. It is
imperative that future research delves into the effective integration of these tools into SOC analysts’
workflows, enhancing the ease of deployment. Concurrently, it is crucial to ensure that these predictive
tools are designed with a strong emphasis on transparency and explainability — attributes that are
essential for their successful implementation in real-world settings.

Through interviewswith industry professionals, we have empirically validated ourmethod and showed
the demand for such tools in practice. Our findings show the presence of alert fatigue and the absence
of adequate visualization tools as tangible challenges in real-world contexts, thereby emphasizing the
requirement for research to address these specific issues. Future research should aim to work closely
with security experts to ensure that their findings are both relevant and can be effectively applied in
real-world security settings.

7.1.3. Can attack graphs be generated using data collected in the real world?
Finally, to further assess the applicability of our approach in real-world contexts, we have created and
analyzed three datasets corresponding to distinct scenarios, using intrusion alerts from Northwave Cy-
bersecurity’s SOC. The datasets were created based on different characteristics of the environments
which the SOC was monitoring: an environment where a penetration test had been performed (136
alerts), an environment which had a true positive high severity alert (261 alerts) and a more ”noisy”
environment with a larger number of alerts compared to the others (529 alerts). A notable observation
was the significantly lower volume of alerts in the real-world datasets, highlighting the discrepancies
between research environments and operational realities. This observation underlines the critical im-
portance of utilizing data that closely mirrors real-world scenarios in research aimed at addressing
challenges within practical operational environments, such as SOCs. Despite these differences, and
the requisite adaptations to accommodate diverse alert formats, the resultant attack graphs remained
representative of the underlying data, demonstrating the feasibility of generating attack graphs from
real-world data.
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7.1.4. Summary
Summarizing, this thesis highlights several critical insights for the field. Firstly, the development of an
attack prediction and alert visualization tool presents a significant advancement in aiding SOC analysts
to manage alert fatigue and prioritize alerts efficiently. The ability of our method to both provide contex-
tualized overviews of alerts for individual hosts and also to correlate these alerts marks a substantial
step towards more coherent security incident analysis. Moreover, the innovative aspect of predicting
potential future attacker actions introduces a proactive dimension to the defensive capabilities of SOCs,
which are currently mostly reactive. However, this work also underscores the necessity for predictive
tools to not only be accurate but to be seamlessly integrated into the analysts’ workflow, emphasizing
transparency and explainability as indispensable features for real-world application. Additionally, the
stark contrast between the volume of alerts in real-world datasets versus research ones shows the need
for data that closely reflects operational realities. These findings advocate for a research approach that
privileges practical applicability and operational fidelity in developing tools that support SOC analysts
in the dynamic and complex landscape of cybersecurity threats.

7.2. Limitations
While the method presented in this work offers innovative solutions for real-time attack visualization
and prediction, it is not without limitations.

The reliance on intrusion alerts for graph generation may lead to incomplete representations if the
underlying intrusion detection system is not comprehensively configured, potentially resulting in false
negatives or positives. The predictive capability, although a novel addition, is dependent on the accu-
racy and reliability of the underlying model, and current results indicate a need for improvement before
real-world deployment. Moreover, we have only tested the prediction algorithm on one dataset, making
it difficult to objectively compare it to related works, and also to make conclusions about its performance
with other training data.

Additional limitations stem from the singular focus on real-world data procured from a specific Se-
curity Operations Center (SOC). This constraint raises questions regarding the generalizability of the
findings, as the characteristics of the datasets may be uniquely tailored to the SOC in question.

Lastly, the evaluation methodology employed for real-time attack graphs, specifically the utilisation
of interviews, introduces potential biases. The limited participant pool, coupled with their shared work-
place environment, may result in a homogeneity of experiences and feedback, potentially skewing the
findings and limiting their applicability across diverse SOC contexts.

7.3. Reflections
In reflecting on the design of this thesis, there are several areas where strategic modifications could
potentially enhance the quality and applicability of the research outcomes.

Firstly, given additional time and resources, we would prioritize the evaluation of our prediction
method across diverse datasets. This expansion would not only allow for a more comprehensive com-
parison with existing methodologies but also provide a deeper understanding of the model’s perfor-
mance under various operational scenarios. Moreover, designing a broader spectrum of experiments
could shed light on the robustness and limitations of the proposed method, offering a clearer assess-
ment of its efficacy.

Furthermore, an exploration of alternative predictive models, such as Hidden Markov Models, could
prove of value. Such comparative analysis could illuminate the relative strengths of each approach,
guiding the selection of the most suitable method for the task at hand.

Secondly, the involvement of SOC analysts in the developmental cycle of real-time generated attack
graphs from the earlier stages of this research would likely yield significant benefits. Establishing a
continuous feedback loop with end-users would not only ensure that the resulting tool aligns more
closely with operational requirements but also facilitate smoother adoption into existing workflows. This
collaborative approach stands to bridge the gap between theoretical research and practical application,
ultimately enhancing the real-world impact of our contributions.





8
Conclusion

Security Operation Centers are crucial for protecting companies, with intrusion detection systems play-
ing a key role by setting off intrusion alerts. However, it’s up to the SOC analysts to look at these alerts
and spot any harmful behaviour.

In this thesis, we’ve developed a way to help SOC analysts review alerts by giving them a clear
overview of the alerts linked to a specific host in the form of an attack graph. The attack graphs are
generated in real-time using only intrusion alerts as input data and contain a prediction of the next
potential attacker action based on the observed alerts.

The prediction can guide the analyst to notice and stop potential harmful actions in the future. We
achieved this using a pre-trained SPDFA which contains known attacker behaviours. We have devel-
oped three separate SPDFA-traversal strategies, which could be used in different scenarios, depending
on the required accuracy and execution time. Moreover, we have compared this method to a PDFA-
based one and evaluated their performance under different circumstances.

We have achieved an accuracy of 33.71 % when predicting the entire symbol, and 42.05 % when
predicting only the attack stage using the best SPDFA-based strategy. That being said, this method is
limited by the large execution time of the algorithm, which further increases with the size of the input.
On the other hand, the PDFA-based algorithm has scored an accuracy of 31.47 %, and has proved to
have a low execution time regardless of the size of the input, factors which make it the preferred choice
in real-time operational scenarios. Despite the challenges presented by a multi-class classification
problem involving 148 distinct classes, coupled with a baseline accuracy of only 0.67 %, the results
attained by our approach are noteworthy and indicative of its effectiveness in this complex scenario.
That being said, a higher accuracy is required before this method can be used in a real-world operational
setting.

We have developed two types of real-time generated attack graphs, based on the predicted next
action of a sequence of alerts. Thus, if the action is low or medium severity, the attack graph combines
the episodes of all the hosts where that particular prediction was made. On the other hand, if the
episode sequence ends in a high-severity action, or if the predicted one is high severity, the attack
graph is constructed for only one host. Due to the short runtime of the real-time pipeline, attack graphs
can be generated for every alert that triggers, which allows the analyst to have a better understanding
of the context of an alert during analysis, reducing the amount of manual work required.

We have demonstrated that our approach can be used on open source as well as real-world data
and that in both cases the resulting attack graphs provide a meaningful representation of the data.
Moreover, we have evaluated our approach by organizing interviews with security experts. This way,
we have grounded our research in practical reality, ensuring that our contributions are relevant and
applicable in a real SOC environment.

8.1. Contributions
In summary, we have successfully developed and validated a tool designed to enhance the SOC an-
alyst’s ability to analyze alerts, demonstrated its effectiveness on real-world data, and confirmed its
capacity to address prevalent challenges in the field. Furthermore, our work distinguishes itself from
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existing literature by concurrently offering alert correlation, attack visualization, and attacker action
prediction, underscoring the innovative nature of our approach. Our main contributions are:

• Prediction of Future Attacker Actions - We have developed a method of predicting the po-
tential future attacker actions based on the observed intrusion alerts using an SPDFA. We have
implemented three SPDFA traversal strategies and compared them with a PDFA-based approach
under different circumstances.

• Real-time generated attack graphs - We have created a tool that aids SOC analysts in inter-
preting and responding to alerts generated by intrusion detection systems. Real-time generated
attack graphs provide a visual overview of the triggered alerts for a host, while also displaying
the possible next action of the attacker. This not only helps in correlating different alerts but also
offers valuable context to each triggered alert, aiding in the more efficient identification of mali-
cious activities. The predictive capability helps in proactively identifying and mitigating threats,
potentially minimizing the impact of harmful activities. SOC analysts can now focus on the most
critical alerts, enhancing their ability to respond to potential threats swiftly.

• Validation through Expert Interviews - We have conducted interviews with six security ex-
perts to validate our approach, ensuring that our method is aligned with the real-world needs of
SOC analysts. Additionally, the interviews offer valuable perspectives on the existing difficulties
encountered by SOC analysts related to visualization and correlation methods, which could be
beneficial for other studies seeking to assist SOC analysts.

• Application on Real-World Data - We have demonstrated the applicability and effectiveness of
our method in real-world settings, by testing it on three datasets created using real-world industry
data, showcasing its practical utility.

8.2. Future work
We now outline potential avenues for future research, aiming to build upon the foundations laid in this
work and address its limitations. The enhancement of the prediction method stands as a primary ob-
jective. The PDFA-based prediction algorithm, for instance, could be refined through the exploration
of multiple paths within the PDFA, rather than following a single one. Alternatively, the SPDFA-based
algorithm might see improvements in efficiency and runtime through the implementation of early path-
pruning techniques. Adopting a hybrid strategy may also prove beneficial; this would entail utilizing the
SPDFA for short-sequence predictions and the PDFA for longer sequences. Furthermore, additional
empirical testing with diverse datasets is imperative. Our hypothesis suggests that a training set com-
prised exclusively of intrusion alerts from specific real-world attack scenarios would yield more accurate
predictions, decrease ambiguities, and result in a more compact and efficient SPDFA.

Improvements are not confined to the prediction methods; the attack graphs themselves present
substantial opportunities for refinement. Insights gleaned from interviews indicate that analysts fre-
quently deal with events distributed across multiple hosts. Addressing this, future research efforts
could be directed towards developing methodologies to generate coherent and comprehensible attack
graphs that seamlessly integrate alerts from multiple hosts. Enhancing the alert correlation capabilities
is another potential focus area, extending beyond hostname-based correlations to encompass addi-
tional indicators. Lastly, by incorporating more detailed information from intrusion alerts, the attack
graphs could be rendered more comprehensive, ultimately enhancing their practical utility in real-world
scenarios.
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