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SUMMARY

O Ptical trapping of metallic nanoparticles has diverse applications because metallic
nanoparticles have unique properties. One significant advantage is that the opti-

cal force exerted on metallic nanoparticles is considerably larger than that on dielectric
nanoparticles of the same size and shape. This results in a significantly deeper optical
potential well compared to the optical trapping of dielectric nanoparticles.

In this thesis, our central objective is to delve into the underlying physical mech-
anisms behind an exceptional and enhanced optical trapping phenomenon that is re-
ferred to as"nonlinear optical trapping". To achieve this, we extensively investigated the
third-order nonlinear effects that come into play in this intriguing optical trapping be-
havior. This investigation aimed to shed light on the underlying principles and mecha-
nisms that enable the manipulation of nanoparticles beyond the diffraction limit, open-
ing up exciting possibilities for various applications in nanotechnology and beyond.

First, we analytically calculated the time-averaged optical force exerted on a metal-
lic nanoparticle using the dipole approximation theory. Besides the usual variables that
had an influence on stable optical trapping, we considered the volume fraction of the
samples in our simulation model. This study highlighted the critical role of the volume
fraction of the sample for the stability of optical trapping of a gold nanoparticle in vari-
ous solutions, including gold nanoparticle solutions, human serum albumin solutions,
and HIV-1 virus solutions. Our calculations show that the optical force on the trapped
gold nanoparticle weakens and the depth of the potential well reduces as the volume
fraction of the corresponding sample increases. These results provide valuable insights
for optimizing the stability of optical trapping in various applications.

In the subsequent exploration of the nonlinear regime, our research centered on un-
covering the intricate nonlinear optical trapping of gold nanoparticles. During our in-
vestigation, it became increasingly clear that the conventional approach using the scalar
polarizability of the nanoparticle, was insufficient for accurately depicting the optical
response of the nanoparticle to the tightly focused external field. Consequently, we ex-
panded upon the traditional scalar method, introducing a vectorial approach to better
analyze the nonlinear optical forces at play. Upon comparing the outcomes of both the
scalar and vectorial methods, we arrived at the conclusion that, particularly in scenarios
involving nonlinear effects induced by tightly focused fields, the vectorial polarizability
agrees more closely with experimental observations and results.

We have discussed changes in optical forces in the context of nonlinear optical trap-
ping. However, the intricate interactions between the nonlinear optical effect and optical
trapping are still unsolved. To address this issue, we have deeply investigated the sat-
urable absorption effect on the gold nanoparticle caused by the circular-polarized fem-
tosecond laser beam. Thus, based on the saturable absorption (SA) effect, the nonlinear
refractive index of the gold nanoparticle and its extinction cross-sections were calculated
as a function of the incident power. Furthermore, at higher peak power, the nonlinear

xi



xii SUMMARY

effect of gold nanoparticles changed from saturable absorption to reverse saturable ab-
sorption (RSA). The changes in the nonlinear absorption coefficient of the gold nanopar-
ticle altered the nonlinear optical trapping in the SA and RSA regime. As a result of the
SA effect, a distinct potential energy barrier forms within a circular energy ravined. Dur-
ing the initial phase of the RSA regime, the structure of the nonlinear optical potential
remained consistent with that observed in the SA regime, but an interesting alteration
occured in the deep RSA regime. A novel nonlinear optical trapping emerged in which
gold nanoparticles are trapped at the center, encircled by the original circumgyrating
nanoparticles. This experimental result confirmed our theoretical prediction proposed
in our thesis.

The findings presented here contributed to bridging gaps in our knowledge of non-
linear optical trapping, thus enhancing our understanding of this phenomenon and pro-
viding a more comprehensive understanding of the underlying physical principles. This
research also opened doors to further exploration of nonlinear metallic materials. Ad-
ditionally, the discovery of novel nonlinear optical trapping effects had the potential to
synergize with various structured light beams and other nonlinear materials, including
quantum dots and nonlinear nanocrystals. We anticipated that these works can lead to
the discovery of new trapping phenomena and their integration with other nanotech-
nologies, expanding the scope of nonlinear optical trapping and facilitating advance-
ments in practical applications.



SAMENVATTING

Het optisch vangen van metalen nanopartikels heeft diverse toepassingen vanwege hun
unieke eigenschappen. Een significant voordeel is dat de optische kracht uitgeoefend op
gouden nanopartikels aanzienlijk groter is dan die op dielectric nanopartikels. Dit resul-
teert in een aanzienlijk diepere optische potentiaalput in vergelijking met de optische
vangst van dielectric nanopartikels.

In deze thesis is ons centrale doel om de onderliggende fysische mechanismen ach-
ter een uitzonderlijk en verbeterd optisch vangstverschijnsel dat wordt aangeduid als
"niet-lineaire optische vangst"te onderzoeken. Om dit te bereiken, onderzoeken we uit-
gebreid de niet-lineaire effecten van de derde orde die een rol spelen in dit intrigerende
optische vangstgedrag. Via rigoureuze analyse en experiment is ons doel om de funda-
mentele principes en mechanismen te verduidelijken die de manipulatie van nanoparti-
kels mogelijk maken buiten de beperkingen van de diffractiegrens. Dit onderzoek beoogt
inzicht te verschaffen in de onderliggende principes en mechanismen die de manipu-
latie van nanopartikels mogelijk maken buiten de diffractiegrens, en opent spannende
mogelijkheden voor diverse toepassingen in nanotechnologie en daarbuiten.

Eerst berekenen we analytisch de tijdgemiddelde optische kracht uitgeoefend op het
metalen nanopartikel met behulp van de dipoolbenaderingstheorie. Naast de gebrui-
kelijke variabelen die invloed hebben op stabiele optische vangst, hebben we aanvan-
kelijk de volumefractie van de monsters in ons simulatiemodel overwogen. Dit onder-
zoek benadrukt de cruciale rol van de volumefractie van het monster in de stabiliteit van
de optische vangst van een gouden nanopartikel in verschillende oplossingen, waaron-
der gouden nanopartikeloplossingen, menselijk serumalbumine-oplossingen en HIV-1-
virusoplossingen. Onze berekeningen tonen aan dat de optische kracht op het gevan-
gen gouden nanopartikel afneemt en de diepte van de potentiaalput afneemt naarmate
de volumefractie van het overeenkomstige monster toeneemt. Deze resultaten bieden
waardevolle inzichten voor het optimaliseren van de stabiliteit van optische vangst in
diverse toepassingen.

In het daaropvolgende onderzoek naar het niet-lineaire regime concentreert ons on-
derzoek zich op het ontrafelen van de ingewikkelde niet-lineaire optische vangst van
gouden nanopartikels. Tijdens ons onderzoek werd steeds duidelijker dat de conven-
tionele benadering, die afhankelijk is van scalaire polariseerbaarheid, onvoldoende is
om de optische respons van het nanopartikel op het sterk gefocuste externe veld nauw-
keurig te beschrijven. Daarom hebben we de traditionele scalaire methode uitgebreid en
een vectoriële benadering geïntroduceerd om de niet-lineaire optische krachten beter te
analyseren. Door de resultaten van zowel de scalaire als de vectoriële methoden te ver-
gelijken, zijn we tot de conclusie gekomen dat, met name in situaties met niet-lineaire
effecten veroorzaakt door sterk gefocuste velden, de vectoriële polariseerbaarheid nau-
wer aansluit bij experimentele waarnemingen en resultaten.

xiii



xiv SAMENVATTING

We hebben de veranderingen in optische krachten besproken in het kader van niet-
lineaire optische vangst. Echter, de complexe interacties tussen het niet-lineaire opti-
sche effect en optische vangst zijn nog gedeeltelijk onbekend. Om dit probleem aan te
pakken, onderzoeken we diepgaand het verzadigbare absorptie-effect op het gouden na-
nopartikel gestimuleerd door de circulair-gepolariseerde femtoseconde laser. Daarom
wordt op basis van het verzadigbare absorptie (SA) effect de niet-lineaire brekingsindex
van het gouden nanopartikel en zijn doorsnede berekend als een functie van het inge-
straalde vermogen. Bovendien verandert het niet-lineaire effect van gouden nanoparti-
kels bij hoger piekvermogen van verzadigbare absorptie naar omgekeerde verzadigbare
absorptie (RSA). De veranderingen in de niet-lineaire absorptiecoëfficiënt van het gou-
den nanopartikel veranderen de niet-lineaire optische vangst in de SA- en RSA-regio.
Als gevolg van het SA-effect vormt zich een duidelijke potentiële energiebarrière bin-
nen een cirkelvormige energiegeul. Tijdens de initiële fase van het RSA-regime blijft de
structuur van het niet-lineaire optische potentiaal consistent met die waargenomen in
het SA-regime, maar er treedt een interessante verandering op in het diepe RSA-regime.
Een nieuw niet-lineaire optische vangsteffect ontstaat waarbij een gouden nanopartikel
wordt gevangen in het midden, omringd door het oorspronkelijke cirkelvormige nano-
partikel. Dit experimentele resultaat toont perfect de theoretische voorspelling die in
onze thesis is voorgesteld.

De bevindingen die hier worden gepresenteerd dragen bij aan het overbruggen van
lacunes in onze kennis van niet-lineaire optische vangst, waardoor ons begrip van dit fe-
nomeen wordt verbeterd en een meer alomvattend begrip van de onderliggende fysische
principes wordt geboden. Dit onderzoek opent ook de deuren naar verder onderzoek
van niet-lineaire metalen materialen. Bovendien heeft de ontdekking van nieuwe niet-
lineaire optische vangsteffecten het potentieel om te synergiseren met verschillende ge-
structureerde lichtbundels en andere niet-lineaire materialen, waaronder quantumdots
en niet-lineaire nanokristallen. We verwachten dat dit zal leiden tot de ontdekking van
nieuwe vangstfenomenen en hun integratie met andere nanotechnologieën, waardoor
het bereik van niet-lineaire optische vangst wordt uitgebreid en vooruitgang in prakti-
sche toepassingen wordt vergemakkelijkt.



1
INTRODUCTION

"Well, this is my life’s work. It has to do with radiation pressure, the pressure of light. I’m
going to give you a little lecture. When light shines on you, it pushes on you. Everybody

knows that light has heat. The sun is hot. But the fact is, the sun pushes on you. And with
lasers, if you focus the light down to very small spots, you can actually push things or

pull, it turns out. Push, pull, and make what they call optical traps. So I am the inventor
of the optical trap, and it sort of started in that very strange way. Just by accident."

—— Arthur Ashkin

1
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2 1. INTRODUCTION

The central topic of this thesis is the nonlinear optical trapping of metallic nanoparticles.
This thesis provides a mathematical description of the nonlinear optical trapping model,
along with experimental demonstrations and discussions of potential applications.

In this chapter, we begin with a brief review of optical trapping, including its history,
evolution, and various applications in scientific research. Then, we also introduce the
motivation and the latest advance of the research in “nonlinear optical trapping” pre-
sented in this dissertation. Finally, we conclude the chapter by descrbing the scope of
the thesis and providing an overview of the link between the chapters.

1.1. OPTICAL TRAPPING

A S far back as the 16th century, Johannes Kepler speculated that sunlight would exert
a certain pressure because the tails of the comets he observed were always pointing

away from Sun[1]. James Clerk Maxwell predicted that the electromagnetic field carries
with its momentum and that "optical radiation pressure" is exerted on illuminated ob-
jects in 1873[2]. Until 1901, the optical radiation force was observed by Nichols[3] and
Lebedev[4]. Radiation pressure has since played an important role mainly in astron-

Figure 1.1: The diagram of a comet showing the dust tail and iron gas tail[5].

omy, where light intensities and distances are vast. However, the invention of lasers in
the early 1970s paved the way for the manipulation of micrometer-sized objects, as first
demonstrated by Arthur Ashkin’s group at the Bell Laboratory in New Jersey [6–8]. Fig.
1.2 shows excerpts of the original design of optical trapping from A. Ashkin’s archives at
Bell Labs in 1969. By striking a focused continuous visible laser with a power of 1 W at a
dielectric sphere with a radius of 1 wavelength, a radiation pressure of Fr ad = 10−10N [7]
was produced, causing the particle to be accelerated inwards and forwards, as published
in 1970. The team demonstrated stable optical potential wells through their experiment
on optical levitation of small glass spheres in the following year[8]. This micromanipu-
lation of small objects opened up diverse potential applications, such as optical power
and pressure measurements. At the time, Ashkin believed that trapping atoms using this
technique was impossible. However, only a few years later, the analysis and methods of
atomic trapping were carried out by Ashkin in 1978[9] and Letokhov in the USSR[10]. In
1986, the first demonstration of a three-dimensional stable atom trap was achieved using
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Figure 1.2: Two excerpts from A. Ashkin’s archives at Bell Labs in 1969. It presents the original design of optical
trapping[6].

a single tightly focused Gaussian beam by Steve Chu at Bell Labs[11]. For the develop-
ment of methods to cool and trap atoms with laser light, Steve Chu[12], Claude Cohen-
Tannoudji[13], and William D. Phillips[14] were awarded the Nobel prizes in Physics
1997. The development of laser cooling and trapping[15, 16] has enabled groundbreak-
ing advances in physics, including Bose-Einstein condensation[17–19], quantum com-
putation with neutral atoms[20, 21], and high precision optical clocks[22]. To date, opti-
cal trapping of diatomic molecules[23] and the poly-atomic molecules[24] already have
been demonstrated successfully. Although optical trapping was originally designed for
an atom trapping experiment, the first optical tweezers experiment was not applied to
atoms [25]. Due to the difficulties of atomic trapping, the more straightforward dielec-
tric particle was chosen to try the tweezer trap. Finally, in 1983, a transparent particle
(silica nanosphere) was trapped by a single highly focused laser beam, and the single-
beam trap was referred to as an "optical tweezer"[6]. On October 2, 2018, A. Askin was
awarded the Nobel Prize in Physics. The Royal Swedish Academy of Sciences said " He
was honored for his invention of ’optical tweezers’ that grab particles, atoms, viruses,
and other living cells with their laser beam fingers. With this, he was able to use the
radiation pressure of light to move physical objects, ’an old dream of science fiction’."

Encouraged by the trapping of silica nanospheres [26], a new subfield of optical trap-
ping emerged. Ashkin et al. employed an optical tweezer in cells[27], viruses, and bacteria[28],
which marked the beginning of optical trapping in biology. Remarkable observation
of cell reproduction was achieved within optical trapping. Using infrared lasers, opti-
cal trapping provided the ability to manipulate cells under damage-free conditions[27].
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When probing the cytoplasmic flow of the organelles in the cell, one can detect the elas-
tic and viscoelastic properties of the cytoplasm[29]. Manipulation of organelles in cells
is also possible in vivo cells using the optical trap[30, 31]. The deformations and elastic
behavior of cells were demonstrated by optical tweezers[32]. Optical tweezers in combi-
nation with the technique of pulsed laser can achieve cutting and moving cells and or-
ganelles, such as cutting and manipulating pieces of chromosomes for gene isolation[33].

One of the most profound advances in biological applications of optical tweezers
is the study of objects of molecular scale. The feasibility of using optical tweezers as
a force probe to measure the driving force of kinesin molecules was demonstrated by
Block and Svoboda et al. in 90s[34, 35]. Another striking advance in this field was the
detection of the overstretching forces exerted on DNA molecules, which is essential for
understanding the kinetics of DNA[36]. The observation of single base-pair (0.34 nm)
steps taken by RNA polymerase represents a milestone in precision measurements of
optical trapping[37]. Integrating optical tweezers with spectroscopy and microscopy is
vital in life science. Combined with single-fluorophore detection, even the angstrom-
scale tether extension of labeled DNA suspended between two trapped beads was di-
rectly observed[38]. Direct observation of the folding transitions of a single calmod-
ulin molecule can be achieved using single-molecule force spectroscopy[39]. Combined
with multicolor confocal and stimulated emission depletion (STED) fluorescence mi-
croscopy, proteins on DNA are visualized at a resolution of 50 nm[40]. Optical tweezers
can also be applied in protein synthesis by manipulating the ribosome[41]. Although
originally designed for atom trapping, optical tweezers, as a powerful tool, have broad-
reaching applications in biology.

Exciting applications of optical trapping also exist in other diverse areas of physics
and chemistry. Optical levitation of nanoparticles has been used to demonstrate force
sensing at the level of 10−21N , which is suitable for precise measurements[42]. Opti-
cal trapping of designed anisotropic microparticles with high-speed spin was demon-
strated on a plane perpendicular to the optic axis[43]. Using a trapped particle as a
tip, the scanning force microscope has a much lower spring constant than a mechan-
ical cantilever[44]. Ablation[45] and microfabrication with optical tweezers[46] were
demonstrat-ed with micro samples. Svoboda and Block found that metallic nanopar-
ticles have polarizabilities larger than dielectric particles and can be stably trapped in
three dimensions [47]. Measurements within optical tweezers show a phenomenon that
strong attractive interactions can exist between colloidal particles in a metastable super-
heated state[48].

In recent years, optical tweezers have profited greatly from advances in other fields
of nano-optics. Near-field optical techniques provide new possibilities to decrease the
size of the trap into the sub-diffraction-limit scale[49, 50]. Unlike conventional far-field
methods, the use of surface plasmon(SP) techniques enables the generation of sub-
diffraction-limited spot sizes, which facilitate the high precision of optical trapping in
various nanostructures and materials[51, 52]. Structured light beams as an advanced
method have been widely used in optical manipulation[53]. The light fields shaped
in amplitude, phase and polarization can boost the optical trapping schemes in two-
dimensional and three-dimensional trapping[54]. In addition, acoustic and electron
beam trapping have emerged as well[55, 56]. Since the invention of optical tweezers,
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Figure 1.3: The first schematic of an optical tweezer designed by A. Ashkin[6] and an enlarged view near the
beam focus.

this technique has been proven to be a powerful and indispensable tool in the study of
the light-matter interactions at micro-, nano-, and angstrom-scales.

1.2. NONLINEAR OPTICAL TRAPPING

O ptical trapping has proven to be a powerful tool with a wide range of applications.
A conventional optical tweezers system is schematically shown in Fig. 1.3. A colli-

mated Gaussian laser beam propagates through an objective lens and is tightly focused
into a medium. Benefiting from the confinement of optical forces, a nanoparticle is
trapped in the focal spot on the optical axis at the equilibrium point. It has been a con-
sensus that only one optical potential well is observable when nanoparticles are trapped
by a single Gaussian beam[26]. However, Jiang et al.[57] discovered a novel physical phe-
nomenon of optical trapping in 2010. They found that the site of the stable trap of gold
nanoparticles is split into two positions when utilizing a single focused femtosecond
laser. The behavior of nonlinear trapping of gold nanoparticles has been studied. Us-
ing a linear-polarized femtosecond pulsed laser with a center wavelength of 800 nm, the
minimal split distance between two trapped gold nanoparticles was measured as 100 nm
in the experiment of Jiang et al.[57].

Generally, the size of the focal spot is determined by the diffraction limit of the optical
system[52, 58], which restricts the precision of optical trapping. However, in nonlinear
optical trapping, the distance between two spaced trapping positions depends on the
intensity and can reach below the diffraction limit without the help of any other complex
optical instruments. Jiang et al. proposed that the "trap split" effect can be explained
by a nonlinear polarization mechanism but the exact physical mechanism is unknown.
Their work advanced optical trapping from the linear regime into the nonlinear regime
and started the study of nonlinear optical trapping.

Multiple traps often require either the fabrication of nanostructures or complex opti-
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cal elements. Optical trapping from a single to multiple traps can be performed by opti-
cal manipulation techniques[53], such as laser scanning[59], diffractive optical element
[60, 61], and SP tweezers[62]. Zhang et al. [63] demonstrated the nonlinear-induced
multiplexed optical trapping through femtosecond cylindrical vector beams (CVBs). The
required topological degree is produced by a simple vortex retard plate. The obtained
vortex beam can determine the number of trap sites in nonlinear optical trapping.

In addition to pushing and pulling the nanoparticle, the ability to rotate objects is
also highly demanded in micromachines[64] and metrology[65, 66]. Over past decades,
an appealing way is to transfer angular momentum to particles to realize the rotation.
The spin rotation of a trapped nanoparticle can be achieved by a circular polarization
beam carrying spin angular momentum (SAM)[67, 68]. The orbital rotation can be ob-
tained by transfer of orbital angular momentum (OAM) from a vortex beam[69, 70].
Qin et al. [71] experimentally demonstrated orbital manipulation of metallic nanoparti-
cles in the nonlinear regime with only a single circular-polarized femtosecond Gaussian
beam. The rotation frequency can be more than 1 kHz in water and the radius of rotation
is at the sub-diffraction-limit scale.

There are several other publications that continue the exploration of nonlinear opti-
cal trapping. Huang and Jiang et al. [72] demonstrated a three dimensional spheroidal
shell-like nonlinear optical trapping when the gold nanoparticles were trapped by a lin-
early polarized femtosecond laser beam. Their theoretical results can well describe the
three dimensional nonlinear optical potential well. However, their qualitative analyses
can not thoroughly explain the mechanism behind the nonlinear optical trapping pro-
cess. Gong et al. [73] theoretically investigated the time averaged optical forces exerted
on a nonlinear dielectric nanoparticle by a focused femtosecond laser pulse. The authors
concluded that the splitting of the trap in two can be attributed to the self-defocusing
effect of the particle. The self-focusing effect of the dielectric nanoparticle can only en-
hance the stability of optical trapping. Although their theoretical work can provide some
support for the calculation of time averaged nonlinear optical forces and optical poten-
tial wells, they only show the trap splitting in one dimension while the experimental
results demonstrate a three dimentional stable nonlinear optical trapping.

1.3. RESEARCH OBJECTIVE AND OUTLINE
From the above section, the most promising characteristic of nonlinear optical trapping
is the ability to manipulate the nanoparticle below the diffraction limit scale. The lack of
comprehensive and explicit theoretical work limits the development of nonlinear optical
trapping. The details of light-matter interaction behind the nonlinear optical trapping
process is still unknown. There are three aspects in the research of nonlinear optical
trapping which have been and still are challenging:
1. Under the stimulation of a tightly focused laser pulse, the changing process of the

physical properties of the nano-object needs to be investigated;
2. The intensity-dependent nonlinear optical forces exerted on the nanoparticle should

be described clearly during the process of nonlinear optical trapping;
3. New applications of nonlinear optical trapping should be explored.

Hence, in this thesis, a quantitative analysis model is developed to achieve a deeper
understanding of the physics relevant to nonlinear optical trapping. Based on a sound
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theoretical model, more novel phenomena linked to nonlinear optical trapping are then
demonstrated.

Before proceeding with an in depth study of nonlinear optical trapping research, the
theoretical framework of optical trapping in the linear regime needs to be introduced
following in the footsteps of predecessors[26, 47]. This is done in Chapter 2. Optical
trapping is the consequence of the equilibrium of optical forces exerted on the nanopar-
ticle. Under certain conditions, the optical response of a nanoparticle to the external
optical field can be modeled as an electric dipole[74]. We derived equations for the time
averaged optical forces using the dipole approximation theory[75–77]. The focused op-
tical field is analytically described using vectorial diffraction theory[78]. While several
factors have been proposed which influence the stability of optical traps, the volume
fraction of the particles during optical trapping has often been neglected. To address
this topic, we analyze the stability of optical trapping of a gold nanoparticle in human
serum albumin solutions, HIV-1 virus solutions, and gold nanoparticle solutions using
effective medium theory. Our analysis of the optical force on a single gold nanoparticle
in solutions of varying volume fractions reveals that the optical force and the depth of
optical potentials well decrease with increasing volume fraction.

In Chapter 3, almost all the nonlinear optical trapping experiments are performed
with metallic nanoparticles[57, 63, 71, 72]. A metallic nanoparticle of gold[79–81], silver[82],
or copper[83] can exhibit saturable absorption under a femtosecond pulsed illumina-
tion. The refractive index and permittivity of the nanoparticle change during this tran-
sient nonlinear process. These changes in the optical properties lead to a variation in the
polarizability, scattering, and absorption cross-section of the nanoparticle. The interac-
tion between the dipole and the optical field is determined by the dipolar polarizability[84].
However, the scalar polarizability, which is convenient and effective in traditional opti-
cal trapping, cannot adequately present the nonlinear response of the metal nanopar-
ticle to the external optical fields. Hence, we propose a theoretical model to interpret
the nonlinear optical trapping effect using the vector method. By combining the vec-
tor diffraction theory and the nonlinear optical effect, the polarizability vector of the
metallic nanoparticle is derived. Analytical expressions are obtained for the optical force
equations as well as for the optical potential well. We describe the experimental setup
in detail and compare the experimental results with the theoretical model. The vectorial
method yields good agreement with experimental observations.

In Chapter 4, based on the above-mentioned theoretical model, when the optical in-
tensity is gradually increased, nonlinear effects from saturable absorption and reverse
saturable absorption arise subsequently and thereby modulate the nonlinear proper-
ties of materials. However, in current non-linear optical traps, the underlying physical
mechanism is mainly confined within the SA regime because threshold values required
to excite the RSA regime are extremely high. In chapter 4, we demonstrate, both in theory
and experiment, nonlinear optical tweezers within the RSA regime proving that a fasci-
nating composite trapping state is achievable at ultra-high intensities through an optical
force reversal induced through nonlinear absorption. Our research can help perfect the
nonlinear optical trapping system, thereby providing beneficial guidance for wider ap-
plications of nonlinear optics.
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"Facts do not cease to exist because they are ignored."

—— Aldous Huxley
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2.1. INTRODUCTION

T he research in the field of optical trapping can be categorized into three distinct ar-

eas, each focusing on specific research topics. First, the technology of laser cooling

of atoms has paved the way for modern ultra-cold atom technology. Second, the ma-

nipulation of micrometer-sized particles stands as a versatile tool with a wide range of

applications[1]. Last but certainly not least, the stable optical trapping of nanoparticles

within the nano-scale size range is a primary area of interest in the field of nanotech-

nology. Our research scope reported in this thesis is mainly in the third sub-field in our

thesis.

Metallic nanoparticles, especially gold nanoparticles, are efficient and natural probes,

which can be used as a highly sensitive force transducer[2–4] to monitor forces in the

pico-Newton regime and to measure distances in the nanometer range. Compared to

other probes, such as quantum dots and organic dyes, gold nanoparticles can be biolog-

ically harmless when exposed to light for prolonged periods[5]. In addition, the optical

forces exerted on gold nanoparticles are several times greater than those exerted on di-

electric nanoparticles [6]. Gold nanoparticles have been widely used in biomedical ex-

periments, for instance, in the diagnosis of cancer cells[5], the detection of DNA [7, 8],

delivery of therapeutic drugs [9], and monitoring the motion of protein [10].

In this chapter, taking the gold nanoparticle as an example, we first give a theoreti-

cal framework for the description of optical trapping. For particles much smaller than

the wavelength of incident light, the nanoparticle can often be modeled as an electric

dipole[11]. The dipolar polarizability reflects the strength and method of interaction

between the nanoparticle and the optical field[12]. We deduce the time-averaged op-

tical force exerted on the particle using the dipole approximation theory and perform

a quantitative analysis of the optical force and potentials on a single gold nanoparticle.

In addition, we theoretically investigate the effect of the volume fraction on the optical

trapping of gold nanoparticles. This finding can aid in more effective control of gold

nanoparticles in various applications.

2.2. THE METHOD FOR OPTICAL TRAPPING OF METALLIC NANOPAR-
TICLES

O ptical trapping of nanoparticles is a subdivision of nano-optics. All the problems

that need to be solved in this thesis belong to the light-matter interaction. It is

necessary and convenient to express the basic theory in the subsequent chapters with

uniform notation and convention. The notation introduced below is used throughout

the rest of the thesis.
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2.2.1. THE DEDUCTION OF THE TIME-AVERAGED OPTICAL FORCE EQUATION

The equations for optical forces exerted on the nanoparticle in electromagnetic fields are

based on the conservation law of linear momentum. The light field can be described by

two vectors: the electric field strength E(r, t ) and the magnetic field H(r, t ), respectively.

The magnetic induction is B = µ0H. In vacuum, at every point and every time, the field

vectors satisfy the Maxwell equations.:

∇×E =−∂B
∂t

, (2.1)

∇× B
µ0

= ε0
∂E
∂t

+J , (2.2)

∇·ε0E = ρ, (2.3)

∇·B= 0, (2.4)

where ε0 and µ0 are the permittivity and permeability of the vacuum, J and ρ denote

current density and charge density, respectively.

A sufficiently small nanoparticle can be modeled as an electric dipole. We will derive

the force an electromagnetic field exerts on an electric dipole. We start from the Lorentz

force on a charge q , which moves with speed v(t) and is at the position r:

F = q(E(r,t)+v(t)×B(r,t)), (2.5)

The conservation of the charge requires that the rate of increase of the charge inside a

volume V must be equal to the flux of charges passing through its surface from outside

of volume:

−
∫
∂V

J · n̂ d2r = d

d t

∫
V
ρ d3r, (2.6)

where the source has the charge density ρ and the current density J . We omit (r, t ) here.

∂V is the boundary of V with outwards pointing unit vector n̂. Using the divergence

theorem, the differential form of the conservation law follows:

−∇·J = ∂ρ

∂t
, (2.7)

Because scattering is primarily by electric dipoles, we will assume that all charges and

currents are due to variations of the polarisation density P . It means that only polariza-

tion current density ∂P/∂t occurs:

J = ∂P
∂t

. (2.8)

The force on the moving charge can be expressed in terms of a volume integral over a

force density f,

F =
∫

V
f d3r. (2.9)
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Then for the force density, we have the expression:

f = ρE +J ×B, (2.10)

By substituting Eq. (2.8) into Eq. (2.7), the charge density becomes ρ =−∇·P . The force

density Eq. (2.10) can then be rewritten as

f =−E(∇·P)+ ∂P
∂t

×B. (2.11)

Considering the Cartesian component of f and denote it as fi where i = x, y, z. Using

Gauss’s theorem, the first term of the force density fi can be expressed as∫
V
−Ei (∇·P)d3r =

∫
V

(P ·∇)Ei d3r −
∫
∂V

(EiP) · n̂ d2r , (2.12)

To derive the optical forces exerted on a dipole at point r0 inside V , we use the polariza-

tion density that is given by P = p δ(r− r0) where p denotes the dipole moment vector.

We assume that the dipole is at a fixed position and its time dependence is solely due

to the time dependence of the dipole moment p. The second term at the right side of

Eq. (2.12) vanishes if the dipole’s position is not on the boundary of the volume. Only the

first term of Eq.(2.12) contributes to the force density. We can write the force as follows:

F =
∫

V
(P ·∇)E d3r +

∫
V

∂

∂t
P ×B d3r (2.13)

=
∫

V
(P ·∇)E d3r +

∫
V

∂

∂t
(P ×B) d3r−

∫
V
P × ∂

∂t
B d3r. (2.14)

After integration and combing with Eq. (2.1), the expression for the force can be written

as

F = (p ·∇)E +p× (∇×E)+ ∂

∂t
(p×B). (2.15)

Combing with Eq. (A1), we have an identity:

p× (∇×E) =∇(p ·E)− (p ·∇)E , (2.16)

then Eq. (2.15) can be rewritten as

F =∇(p ·E)+ ∂

∂t
(p×B) (2.17)

=∑
i

pi∇Ei + ∂

∂t
(p×B), i = x, y, z. (2.18)

Notice that optical force is additive. We can sum the forces acting on individual dipoles

to obtain the net force acting on a macroscopic body. This thesis solely analyzes the force

acting on a small object treated as a single dipole.
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With a fixed frequencyω, we will now delve into time-harmonic sources and fields in

more detail. If the electromagnetic field is time-harmonic, then the electric field strength

E and the magnetic field H can be described with the complex time-harmonic factor

e−iωt with ω> 0:

E(r, t ) = Re{E(r)e−iωt}, (2.19)

H(r, t ) = Re{H(r)e−iωt}, (2.20)

where the E and H are the complex field amplitudes. The relationship between the dipole

and field is linear and hence the dipole moment is a time-harmonic field as well

p(t ) = Re{pe−iωt}, (2.21)

where p is the complex dipole vector. Combining with Eq. (2.18) and Eq. (2.21), the time-

averaged force on a unit dipole can be rearranged as

〈F〉 = 1

2

∑
i

Re
{

p∗
i ∇Ei

}
. i = x, y, z, (2.22)

where 〈...〉 denotes the time average and the second term of the right side of Eq. (2.18)

vanishes in the time average. We assume that the particle has no permanent dipole mo-

ment. The induced dipole moment is proportional to the external electric field at the

position r0,

p =αE(r0), (2.23)

where α denotes the polarizability of the particle. Note that the α is the complex num-

ber. The optical forces exerted on the nanoparticle are usually separated into two com-

ponents: gradient forces and radiation pressures. By inserting Eq. (2.23) into Eq. (2.22)

and arranging the corresponding items, we obtain

〈F〉 =1

2

∑
i

Re
{
(αEi )∗∇Ei

}
(2.24)

=1

2
Re{α}

∑
i

Re{E∗
i ∇Ei }+ 1

2
Im{α}

∑
i

Im{E∗
i ∇Ei }, i = x, y, z. (2.25)

This result will be more intuitive if we can represent it in two separated parts: the gradi-

ent force part and the radiation pressure part. For the first term in Eq.(2.25), we have the
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gradient force part:

〈F〉grad =1

2
Re{α}

∑
i

Re{E∗
i ∇Ei } (2.26)

=1

4
Re{α}(

∑
i

{E∗
i ∇Ei }+∑

i
{Ei∇E∗

i }) (2.27)

=1

4
Re{α}∇(

∑
i

{Ei E∗
i }) (2.28)

=1

4
Re{α}∇|E|2. (2.29)

This term is called the gradient force. The second term of Eq.(2.25) is called the radiation

pressure. Maxwell showed that the radiation pressure can be regarded as a consequence

of the momentum transfer from the radiation field to the particle and this force pushes

the polarized particle in the direction of radiation. The radiation pressure is associated

with the imaginary part of the complex polarizability and the gradients of the optical

field. The radiation pressure part is:

〈F〉rad = 1

2
Im{α}

∑
i

Im{E∗
i ∇Ei }. (2.30)

We consider the complex electric field vector E as a constant. E = p/α. Then using the

vector calculus identity Eq.(A1) we have:

∑
i

{E∗
i ∇Ei } =∑

i

p∗
i

α∗∇Ei (2.31)

=∑
i
∇(

p∗
i

α∗ ·Ei ) (2.32)

=∇(
p∗

α∗ ·E) (2.33)

= p∗

α∗ × (∇×E)+ (
p∗

α∗ ·∇)E, (2.34)

and together with maxwell equations, the last term in Eq. (2.30) can be written as

〈F〉rad = 1

2
Im{α}Im{E∗× (∇×E)+ (E∗ ·∇)E}

= ωµ0

2
Im{α}Re

{
E×H∗}+ 1

2
Im{α}Im

{
(E∗ ·∇)E

}
,

(2.35)

whereω is the angular frequency of the light in the vacuum and µ0 is the permeability in

the vacuum. We will use the symbol σ for the extinction cross-section of the nanoparti-

cle,

σ= nhk0

ε0
Im{α} = nhcωµ0Im{α}. (2.36)
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where nh = 1 and it is the refractive index of the medium, k0 is the wavenumber in

the vacuum and c is the speed of light in a vacuum. The Poynting vector S =E×H, which

represents the direction and magnitude of the rate of transfer of energy as a function of

spaces and time. For an electromagnetic field with a given frequencyω, the time average

of Poynting vector 〈S〉 is written as:

〈S〉 = 1

2
Re{E×H∗}. (2.37)

We can rewrite the Eq.(2.35) as

〈F〉rad = σ

c
〈S〉+ σε0

2k0
Im

{
(E∗ ·∇)E

}
. (2.38)

Then we can get a concise form of the force equation:

〈F〉total = 〈F〉grad +〈F〉rad (2.39)

= 1

4
Re{α}∇|E|2︸ ︷︷ ︸

gradient force

+ σ

c
〈S〉+ σε0

2k0
Im

{
(E∗ ·∇)E

}
︸ ︷︷ ︸

radiation pressure

(2.40)

This represents the final phase of the force equation, essential for accurately determin-

ing the total force acting on a dipole-like nanoparticle. Understanding this equation is

crucial for advancing our research in nanotechnology. The total force consists of the

gradient force on the nanoparticle and the radiation pressure acting on the dipole-like

nanoparticle. The first term is known as the gradient force. The second term represents

the radiation force from the Poynting vector. The last term is also a special component

of the radiation pressure. We will discuss this term in more detail here. First, we can

consider an identity:

2i Im{(E∗ ·∇)E} =(E∗ ·∇)E− [(E∗ ·∇)E]∗ (2.41)

=(E∗ ·∇)E− (E ·∇)E∗. (2.42)

Let us consider another identity Eq.(A2),

∇× (E×E∗) =−(E ·∇)E∗+ (E∗ ·∇)E−E∗∇·E+E∇·E∗

= 2iIm
{
(E∗ ·∇)E

}+E∇·E∗−E∗∇·E

= 2iIm
{
(E∗ ·∇)E

}+2iIm
{

E∇·E∗}
.

(2.43)

Then we can write the second item of Eq.(2.38) as

σε0

2k0
Im

{
(E∗ ·∇)E

}= cσε0

4iω
[∇× (

E×E∗)
]− cσε0

2ω
Im

{
E∇·E∗}

, (2.44)
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We can see the third term in Eq.(2.40) associated with the spin density of the electric

field and the imaginary part of the divergence of the conjugate electric field. This de-

rived equation demonstrates that the radiation pressure exerted on an electric dipole is

not only proportional to the Poynting vector[13, 14]. This can be neglected for linear-

polarized beams.

According to Eq.(2.40), optical trapping depends on many multiple parameters, such

as the distribution of optical field gradients, the polarizability of the nanoparticle, and

the corresponding total cross-section[15].

The depth of the optical potential well is often used to reflect the stiffness and ef-

ficiency of optical trapping. The trapping potential is normalized to kB T , which is a

measure of the energy of Brownian motion of the particle in an aqueous environment.

Here, kB is the Boltzmann constant and T is the absolute temperature of the environ-

ment, which is chosen to be equal to 300 K. A requirement for stable optical trapping is

that the depth of the potential well is deeper than 10 kB T [16]. The radiation part of the

force is not conservative; therefore, the definition of potential depends on the chosen

curve C :

U (r) =−
∫

C
〈F(r)〉dr. (2.45)

It is essential to remark that the formula is particularly suited for describing the be-

havior of dipolar nanoparticles. When a large particle cannot be approximated as a

dipole, the optical force on a particle can be calculated with a rigorous electromagnetic

model such as the Maxwell stress tensor (MST) method[17]. However, delving into the

details of this method is beyond the scope of this thesis.

2.2.2. THE DIPOLE POLARIZABILITY OF A NANOPARTICLE

According to the equation derived in the previous section, we found that the polarizabil-

ity α plays a vital role in the calculation of optical forces. It is important to take a close

look at the dipole approximation process because our core theoretical model developed

in this thesis for nonlinear optical trapping is based on it.

Let a homogeneous isotropic nanoparticle be illuminated by a plane wave. The elec-

tric field is given by E0 = E0ẑ, as can be seen in Figure. 2.1. The radius of the spheri-

cal particle is r0 and the distance to its center is r . εp denotes the permittivity of the

nanoparticle and εh is the permittivity of the host medium (surrounding environment).

The electric field inside and outside the nanosphere is E1 and E2, respectively. Provided

the particle is small enough one may use the quasi-static approximation for which the
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Figure 2.1: A nanosphere in a uniform electric field.

electric field is derived from electric potentialsΦ1(r,θ) andΦ2(r,θ),

E1 =−∇Φ1, ∇2Φ1 = 0 (r < r0), (2.46)

E2 =−∇Φ2, ∇2Φ2 = 0 (r > r0). (2.47)

At the boundary of the sphere, the electric potential must satisfy the continuity equa-

tions:

Φ1 =Φ2, εp
∂Φ1

∂r
= εh

∂Φ2

∂r
(r = r0). (2.48)

At a large distance from the sphere r , we require that the potential gives the unperturbed

incident field:

lim
r→∞Φ2 =−E0r cosθ =−E0z. (2.49)

It means the electric field is the unperturbed applied field and we have the functions to

satisfy the boundary condition and partial differential equations above:

Φ1 =− 3εh

εp +2εh
E0r cosθ, (2.50)

Φ2 =−E0r cosθ+ r0
3E0

εp −εh

εp +2εh

cosθ

r 2 . (2.51)

Consider two opposite charges ( q and−q ) which are separated by distance d , as

shown in Figure. 2.2. This configuration of charges is called a "dipole" with a "dipole mo-

ment" p = p ẑ, where p = qd . The two charges are inside the medium with permittivity

εh . The two closely spaced opposite charges ±q have the potential at any point A (see

Figure (2.2)):

Φ= 1

4πεh

(
q

|r − r+|
− q

|r − r−|
)

, (2.52)
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Figure 2.2: The diagram of an electric dipole.

In the lim(d → 0), the potential becomes:

Φ= p cosθ

4πεhr 2 . (2.53)

Let us compare this result with the potentialΦ2 in the exterior of the sphere as given

by Eq. (2.51). Φ2 is the sum of the applied uniform field and the field of an ideal dipole

at the origin. with the dipole moment:

p = 4πε0r 3
0

εp −εh

εp +2εh
E0. (2.54)

Combining with Eq. (2.23), the polarizability of the nanoparticle is

α= 4πε0r 3 εp −εh

εp +2εh
. (2.55)

This equation can be used to analyze the response of a nanoparticle to an applied

uniform electric field. Note that the field in the nanoparticle is uniform and we can re-

place this nanoparticle with an ideal dipole as long as it satisfies a constraint 2πnr0/λ≪
1, where n is the imaginary part of the refractive index of the nanoparticle[11].

2.2.3. THE FOCAL FIELD WITH THE VECTORIAL DIFFRACTION THEORY

T he equilibrium position of optical trapping in three orthogonal directions is estab-

lished through the intricate interplay between the gradient force and the scattering

force. Within the equation governing the time-averaged force, the focused optical field

assumes a paramount role. This is because the gradient force is directly proportional to

the gradients of the electric field intensity, while the scattering force correlates with the

Poynting vector of the electromagnetic field, as outlined in Eq. (2.40). To achieve stable

optical trapping of nanoparticles along all three dimensions, it is imperative to have a
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Figure 2.3: The geometrical representation of the focused incident beam and definition of the coor-
dinates system.

steep distribution of field intensity gradients, which counters the scattering force[18].

This specific optical field configuration can be realized by employing an objective lens

with a high numerical aperture (NA). Such a lens facilitates the formation of a focal spot

with a diffraction-limited size, thereby ensuring the stringent conditions necessary for

stable optical trapping.

In typical setups, the objective lens of a microscope has a relatively large pupil with a

diameter of several millimeters. As a result of this large aperture, it is reasonable to only

apply the paraxial approximation to describe the incident beam. In this approximation,

we assume that the incident beam is entirely polarized along the x-direction, denoted

as Einc = Eincnx . Additionally, it’s assumed that the lens used in the setup has a high

transmission coating, and the Fresnel transmission coefficients equal 1.

The schematic diagram of the focus of the optical field is shown in Figure. 2.3. θ is

the divergence angle of the conjugate ray. ϕ is the azimuthal angle on the XOY plane.

f is the focal length of the lens. Assuming that the incident electric field has a funda-

mental Gaussian beam Einc = E0 exp(− f 2 sin2θ/w2
0 ), the size of the focal field E will de-

pend on the radius of incoming beam w0 relative to the size of the lens. We define the

filling factor f0 as

f0 = w0/ f sinθmax, (2.56)

where θmax is determined by the NA of the objective lens and the real part of the re-

fractive index of the composite material as θmax = arcsin(NA/Re{nh}). According to the

vector diffraction theory, the angular spectrum expression of the focal field is in terms

of cylindrical coordinates ( ρ =
√

x2 + y2 , ϕ, z) with origin at the focal point, given by
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[19, 20]:

E = Einc

 I00 + I02 cos(2ϕ)
I02 sin(2ϕ)
−2i I01 cos(ϕ)

 , (2.57)

H = Einc

Zµε

 I02 sin(2ϕ)
I00 − I02 cos(2ϕ)
−2i I01 sin(ϕ)

 , (2.58)

where,

I00 =
∫ θmax

0
l (θ)sinθ(1+cosθ)J0(kρ sinθ)exp(i kz cosθ)dθ, (2.59)

I01 =
∫ θmax

0
l (θ)sin2θJ1(kρ sinθ)exp(i kz cosθ)dθ, (2.60)

I02 =
∫ θmax

0
l (θ)sinθ(1−cosθ)J2(kρ sinθ)exp(i kz cosθ)dθ, (2.61)

with,

l (θ) = i k f

2π
exp(−i k f )(nh cosθ)

1
2 exp

(
− f 2sin2θ

w2
0

)
, (2.62)

where Zµε is the wave impedance of the medium: where Zµε =
√

(µ0µ)/(ε0εh) and Jn is

nth-order of the Bessel function of the first kind. The relation between the average power

of the incident light P and the amplitude of the incident light is |Einc|2 = 4P/(πw2ε0c).

Therefore, we can analytically calculate the distribution of the focused electromagnetic

field using the above equations.

According to the derived time-averaged optical force equation Eq. (2.40), stable op-

tical trapping of a nanoparticle is the consequence of the interplay of different factors.

When analyzing optical trapping, several factors are taken into account, including the

size of gold nanoparticles, the wavelength of the incident light, and the impact of Brow-

nian motion[21–23]. Take gold nanoparticles as an example, we are going to discuss the

effect of variable factors on stable optical trapping. In addition to the factors mentioned

earlier, we will also explore the effect of the volume fraction of the sample in a liquid

environment on the optical trapping of gold nanoparticles.

Based on the vectorial diffraction theory and time-averaged force equation of Rayleigh

nanoparticles, a simulation of the optical trapping of metallic nanoparticles is shown

here. We fixed the average power of the incident light at 500 mW in the simulation. An

objective with a high NA (NA = 0.9) is selected to focus the incident light. An x-polarized

Gaussian beam is focused into a nanoparticle solution which is made of gold nanoparti-

cles dispersed in water. The radius of the nanoparticle r0 is set to 30 nm. The wavelength



2.2. THE METHOD FOR OPTICAL TRAPPING OF METALLIC NANOPARTICLES

2

27

of incident light λ is 800 nm in vacuum. θmax is determined by the NA of the objective

lens as θmax = arcsin(NA/nh), and that of the surrounding water is nh = 1.333 [24]. We set

the filling factor fw = 1. At this wavelength, the relative permittivity of the gold nanopar-

ticles is εp =−24.061+1.5068i [25].
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Figure 2.4: Plots of three components of the electromagnetic field of an x-polarized focused Gaus-
sian beam on the XOY plane. The wavelength of the incident beam is 800 nm. The NA of the objective
is 0.9. The host medium is water (nh = 1.33). (a) - (c) show the magnitudes of the individual field
components |Ex |2, |Ey |2, and |Ez |2 in the focal plane, respectively. (d)-(f) The intensities of individ-

ual components of the magnetic field |Hx |2, |Hy |2, and |Hz |2 in the focal plane, respectively. (g)-(i)
The three components of time-average Poynting vector 〈S〉 in the focal plane.

Figure. 2.4 shows the distributions for the focused electromagnetic field on the focal

plane (XOY plane). The vectorial focused electric field E is marked as E = (Ex ,Ey ,Ez ) in

Cartesian coordinates. The distribution of the squared moduli of the three components

of the focused electric fields is calculated with the parameters in the caption shown in

Figure. 2.4 (a), (b), and (c), respectively. The x-component of the electric field dominates

the total electric field. As can be seen in Figure. 2.4 (c), Max|Ez |2/Max|Ex |2 = 0.12 which

indicates that an appreciable amount of the electric field amplitude is in the longitudinal

field. Using the Eq. (2.58), three magnetic field components focused on the focal plane
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are also calculated and shown in Figure. 2.4 (d)-(f).

The Poynting vector in the focal plane (x-y plane) is also shown in Figure. 2.4. As

can be seen in Figure. 2.4 (g) and (h), the magnitude of the Poynting vector along the

x-direction and y-direction are almost zero in the focal plane. Figure. 2.4 (i) shows that

the z component of the Poynting vector dominates the total Poynting vector. By substi-

tuting each set of |E|2 and S into Eq. (2.40), the time-averaged force exerted on the gold

nanoparticle is obtained. For a comprehensive analysis, the three components of the

optical forces on a dipole are discussed in the next section.

2.2.4. THE EFFECT OF VOLUME FRACTION ON OPTICAL TRAPPING

Optical trapping of gold nanoparticles in liquids has made significant progress since its

first report in 1994 [6], including the extension of the nanoparticle size to diameters from

5 to 250 nm [22], and even controlling the orientation of nanorods [26, 27]. However,

due to the strong scattering force and the unavoidable Brownian motion in the water,

it is challenging to achieve stable optical trapping of gold nanoparticles with a radius

ranging between 1 and 50 nm [28].

Quantitative analysis of the optical force is crucial for optimizing the stability of op-

tical trapping. Stable optical trapping is the consequence of the interplay of different

factors. The optical forces depend highly on the size of the particle. When the parti-

cle size is smaller than, or of the order of the skin depth of the gold, experiments show

that the gradient force is proportional to the polarized volume of the particle [29]. When

the radius is significantly larger than the skin depth of the gold for a given wavelength,

the gradient force increases slowly because of the attenuation of the incident field in

the particle. An increase in the size of the nanoparticle also leads to a larger extinction

cross-section, which results in an enlargement of the radiation force.

In addition to the previously mentioned factors, there is an aspect that has not yet

been explored in the optical trapping of gold nanoparticles: the effect of the sample’s vol-

ume fraction, especially in aqueous environments. In practical biological experiments,

it is common to encounter high-concentration aqueous solutions containing various bi-

ological samples. In practical biological experiments, the presence of aqueous solutions

with high concentrations of bio-samples is inevitable[30, 31]. Therefore, it becomes es-

sential to investigate the theoretical influence of the sample’s volume fraction on the sta-

bility of optical trapping when dealing with gold nanoparticles in diverse solutions. This

study includes various solutions such as gold nanoparticles, human serum albumin, and

HIV-1 virus solutions.

The effective refractive index of the composite material is analyzed for three differ-
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ent sample solutions. For the dispersal of metal Rayleigh nanoparticles in a liquid, the

Maxwell-Garnett (MG) mixing rule can be used to describe the equivalent permittivity

of a composite medium. The effective permittivity can be written as [32]

εeff = εh

[
1+3 f Γ

(
1+ i

2

3
(kr0)3Γ

)]
, (2.63)

Γ= χ

1−χ f
, χ= (εp −εh)

(εp +2εh)
. (2.64)

where εeff is the effective permittivity of the liquid containing the particles and f ( f =
4πN r 3

0 /3V ) is the volume fraction of the gold nanoparticle in the solution and N is the

number of nanoparticles in a volume V . Eq. (2.63) is called the MG mixing rule. The

radius of the gold particle is 15 nm in our simulation.

HIV-1 virus with a radius of 50 nm [33] is selected as the large biosample (non-Rayleigh

particle) in our simulations. The simple mixing rule is often used in biology applications

without considering the shape of the inclusions and the topology of the composite ma-

terial [34]. The effective refractive index can be obtained as a function of volume fraction

f :

neff = np f + (1− f )nh. (2.65)

where neff is the effective refractive index of the composite material, np is the refractive

index of the sample, nh is the refractive index of the host medium.

Human serum albumin with a radius of 2.74 nm [35] is used as a biosample (dipole)

in our simulation. For the composite medium consisting of a small sample and liquid,

such as protein solution or DNA solution, we introduce the extended Lorenz-Lorenz

equation[36]:
neff

2 −1

neff
2 +2

= f
np

2 −1

np
2 +2

+ (1− f )
nh

2 −1

nh
2 +2

, (2.66)

f is the volume fraction of the dipole in the solution.

2.2.5. THE OPTICAL FORCE ON A DIPOLE EMBEDDED IN A MEDIUM

We have deduced the effective refractive index of the mixture. It is necessary to extend

the force equation Eq.( 2.40) from a vacuum to a general medium.

We limit our study to non-magnetic materials. It is customary to distinguish between

primary and secondary sources. A primary source is located far from other sources and is

not affected by them. It is assumed to have known charge and current densities. Charges

within the matter in motion respond to the Lorentz force from other charges and external

sources, making them generally secondary charges.

The total electromagnetic field inside medium is the superposition of the fields ra-

diated by the primary sources and the fields radiated by the oscillating dipoles that are
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induced inside matter. The latter fields (secondary sources) vary at an atomic scale. In-

side the matter with a polarization density P, the electric displacement D is defined by:

D = ε0E+P. (2.67)

In vacuum, P = 0. Inside matter, the current and charge densities that correspond to the

dipole density induced in medium is call secondary (s) current and charge densities:

Js =−iωP, (2.68)

ρs =−∇·P. (2.69)

Both bound and free electrons contribute to these current and charge densities. The

total source is the sum of the primary (p) and secondary (s) sources.The total source and

current densities are thus

ρ = ρp +ρs = ρp −∇·P, (2.70)

and

J = Jp + Js = Jp − iωP. (2.71)

The current and densities of the primary source connected the continuity equation Eq. (??)

become

∇· Jp = iωρp . (2.72)

By substituting Eq. (2.70) and Eq. (2.71) into the Maxwell equations in vacuum Eq. (2.1)

to (2.4). Combing with Eq,(2.67) and B = µ0µH, the electromagnetic fields in medium

satisfy the Maxwell equations:

∇×E = iωµ0µH, (2.73)

∇×H =−iωD+ Jp , (2.74)

∇·D = ρp , (2.75)

∇·B = 0, (2.76)

where D denotes the electric displacement, B is the magnetic induction, J and ρ denote

current density and charge density. ε0 and µ0 are the permittivity and permeability of

the vacuum, respectively. µ is the relative permeability of the matter. Here we assure the

matter is non-magnetic and µ= 1.

Take a homogeneous isotropic nanoparticle as an example. The polarization P is the

average dipole moment per unit volume of the medium, which means the sum of the

dipole moment vectors in a region(region, divided by the volume of that region.)[11].
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Commonly, it is equal to zero if there are no external fields. The susceptibility χ repre-

sents how easily the medium can be polarized under the excitation by the total field. For

linear medium, we have the relation:

P = ε0χE, (2.77)

where χ is the electric susceptibility tensor. The relative electric permittivity tensor is

ε= 1+χ. (2.78)

For simplicity, ε is the complex relative permittivity of the matter. Hence we can rewrite

the Eq.(2.67) as:

D = ε0E+P = ε0E+ε0(ε−1)E = ε0εE, (2.79)

which gives

∇×E = iωµ0H, (2.80)

∇×H =−iωε0εE+ Jp . (2.81)

Consider an electromagnetic field E, H in a medium, we have the Lorentz force ex-

erted by fields on a dipole inside a volume V is :

F =
∫

V
f, (2.82)

f = ρs E+ Js ×B. (2.83)

Combing with Eq.(2.68) and Eq.(2.69), we have

f =−E(∇·P)+ ∂P

∂t
×B. (2.84)

To derive the electromagnetic force acting on a dipole located at r0, we can introduce the

dipole approximation between the polarization density P and dipole moment p:

P = pδ(r− r0), (2.85)

into the Lorentz force density f.

In a linear medium the dipole moment p that is induced in an atom or a molecule

is directly proportional to the so-called local electric field E. This is the electric field

acting on an atom or molecule due to both external (primary) sources and all secondary

sources within the matter, excluding the atom or molecule itself. So we have

p =αE, (2.86)

α= 4πε0r 3 εp −εh

εp +2εh
, (2.87)
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where εp and εh denotes the complex permittivity of dipole-like nanoparticle and the

complex permittivity of the host medium. We can deduce the force exerted on a dipole

embedded in a medium:

〈F〉 = 1

2
Re{α}Re{E∗∇E}+ 1

2
Im{α}Im{E∗∇E}. (2.88)

This is the optical force on a dipole embedded in a medium with the complex notation.

In this chapter, we will discuss only linear conditions. Metallic nanoparticles can ex-

hibit nonlinear effects when exposed to high-intensity fields. We will investigate these

nonlinear effects in subsequent sections of the thesis.

2.3. CALCULATION RESULTS AND DISCUSSION

To achieve stable optical trapping of small gold nanoparticles, it is essential to employ

a high-intensity focused beam that can generate a force significant enough to counter-

act the Brownian motion within the host medium. In this study, we utilize an x-polarized

Gaussian beam with an average power of 500 mW as a beam which is focused by the lens.

The refractive index of the HIV-1 virus is 1.5 at λ= 633 nm[33]. According to the experi-

mental measurement[36], the refractive index of human serum albumin (HSA) solution

is 1.603 when the wavelength of incident light λ is 589 nm.

The trapped gold nanoparticles can be treated as a probe in the gold nanoparticle

solution. The refractive index of the gold nanoparticle is 0.274+2.94i at 589 nm and

0.183+3.43i at 633 nm in the HSA solution and protein solution[25]. An objective with

a high NA (NA = 1.2) is selected to focus the incident light. θmax is determined by the NA

of the objective lens and the real part of the refractive index of the composite material as

θmax = arcsin(NA/Re{neff}).

The effective refractive index (neff) of the composite material with a volume fraction

from low to high is calculated using Eq.(2.63) - (2.65). Fig. 2.5 plots the real and imaginary

parts of the refractive index of three composite materials colored blue and red, respec-

tively. In practice, the gold nanoparticle solution is highly dilute in the optical trapping

experiment. Therefore, the volume fraction of the gold nanoparticle f is set from 0 to

0.05 in our simulation, as shown in Fig. 2.5 (a). The blue line represents the real part

of the refractive index of the gold nanoparticle solution below the red line (imaginary

part). Note that our force equation for a dipole is derived in a non-absorbing environ-

ment. The red line in Fig. 2.5 (a) represents an environment with an absorption property

at an order of magnitude of ten to the power of minus 2. Therefore, we can disregard the

minor difference. The refractive index of the virus and protein solution are real. Both the

volume fraction of the virus solution f1 and the protein solution f2 are set from 0 to 0.5,
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as shown in Fig. 2.5 (b) and (c).
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Figure 2.5: Comparison in the effective refractive index of three composite media: (a) gold nanopar-
ticle solution at λ= 633 nm, (b) Virus solution (HIV-1 virus) at λ= 633 nm, and (c) protein solution
(human serum albumin) at λ =589 nm. The real and imaginary parts of the refractive index are
plotted by the blue line and red line. The surrounding environment is water.

Fig. 2.6 shows the distribution of optical forces along the x-axis on the gold sphere

with a radius of 15 nm in three different solutions and for three volume fractions. The

first solution investigated is the gold nanoparticle solution itself with an incident wave-

length of 633 nm. Fig. 2.6 (a), (d), and (g) show the gradient force, scattering force, and

potential, respectively, along the x-axis with volume fractions of f = 0.000, f = 0.025, and

f = 0.05 (black, red, and blue colors, respectively). In Fig. 2.6 (a), gradient forces along

the x-axis are shown as an odd function of x for different values of the volume fraction,

while the scattering forces are negligible on the focal plane, as shown in Fig. 2.6 (d). The

positive sign indicates force toward the x-axis, while the negative sign indicates force

away from the x-axis. Fig. 2.6 (g) shows the potential with four-volume fractions along

the x-axis. Although all the depth of the potential well exceeds 10 kB T , the decrease in

the depth of the potential well shows the reduction of the stability of optical trapping as

the volume fraction is increased. Next, the optical trapping in the virus solution is inves-

tigated based on the gold nanoparticle solution, as shown in Fig. 2.6 (b), (e), and (h) with

volume fractions of f1 = 0, f1 = 0.25, and f1 = 0.5 (black, red, and blue colors, respectively).

The calculation results show that the optical forces and potentials of a gold nanoparticle

in the virus solution decrease along the x-axis as the volume fraction increases. Finally,

the optical forces and potential depth of the potential wells in the protein solution are

shown for the optical trapping of a gold nanoparticle with an incident wavelength of 589

nm in Fig. 2.6 (c), (f), and (i) with volume fractions of f2 = 0, f2 = 0.25, and f2 = 0.5 (black,

red, and blue colors, respectively).

The optical forces which its direction along the y-axis are shown in Fig. 2.7 (a)-(f). The

gradient forces on a gold nanoparticle in the gold nanoparticle solution, virus solution,

and protein solution are plotted with different volume fractions, as shown in Fig. 2.7 (a),

(b), and (c). In the virus solution and the protein solution, the black, red, and blue color
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Figure 2.6: Distribution of optical forces and potentials on a gold particle with 15 nm radius along
the x-axis. (a) the gradient force in the gold nanoparticle solution, (d) the scattering force, and
(g) the corresponding optical potential. The black, red, and blue denote the volume fraction of the
gold nanoparticle f = 0.000, f = 0.025, and f = 0.05, respectively. (b), (e) and (h) plot the gradient
force, the scattering force, and the potential in the virus solution. The black, red, and blue colors
denote the volume fraction f1 = 0, f1 = 0.25, and f1 = 0.5. For the protein solution, the optical force
and potentials are illustrated in (c), (f), and (i). Its volume fraction f2 is set to 0, 0.25, and 0.5,
respectively.
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Figure 2.7: The optical force and the potential along the y-axis for a gold nanoparticle with a radius
of 15nm. (a), (b) and (c) show the gradient force for different values of the volume fraction along
the y-axis in gold nanoparticle solution, virus solution, and protein solution, respectively. (d), (e),
and (f) plot the scattering force. The corresponding potential along the y-axis in three composite
materials is shown in (g), (h), and (i).
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indicate the volume fraction f = 0, f = 0.25, and f = 0.5, respectively. The scattering forces

in three composite materials are plotted in (d), (e), and (f). The potential along the y-axis

is shown in Fig. 2.7 (g), (h), and (i). All optical forces and potentials decrease along the y-

axis with an increasing volume fraction. Fig. 2.6 and Fig. 2.7 demonstrate that the focal

point (0,0) is a position for the stable trapping of a gold nanoparticle in the transverse

plane.
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Figure 2.8: Distribution of gradient, scattering forces, and potentials along the z-axis in three com-
posite materials. (a)-(c) Gradient forces in gold nanoparticle solution, virus solution, and protein
solution. (d)-(f) Scattering forces in three solutions. (g)-(i) Optical potentials along the z-axis in
three solutions.

For the forces whose direction along the optical axis (z- axis), 〈F〉grad and 〈F〉scatter are

calculated. The positive sign indicates the force towards the z-axis, while the negative

sign indicates the force away from the z-axis. In Fig. 2.8 (a)-(c), the magnitude of the

gradient force decreases as the volume fraction increases from low to high. Similarly, the

scattering force also decreases when the volume fraction increases, but always points

toward the positive direction of the z-axis, as shown in (d), (e), and (f). The magnitude of
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the radiation force along the z-axis is several orders larger than the force along the x- and

y-axes because the energy flux mainly propagates along the z-axis, as shown in Fig. 2.4.

〈F〉total is the sum of the gradient force and scattering force. The optical potential well

is obtained by Eq. (2.45) for three volume fractions and are shown along the z-axis, as

can be seen in Fig. 2.8 (g), (h), and (i). The equilibrium position of the optical trapping

is only slightly away from the focal plane, as shown in Fig. 2.8 (g), (h), and (i). Therefore,

the impact of this displacement of the particle away from the focal point on the trap-

ping stiffness is negligible. Based on the calculations presented in Fig. 2.6, Fig. 2.7, and

Fig. 2.8, it is evident that stable optical trapping can be effectively achieved in three di-

mensions. This is supported by the depth of the potential well exceeding 10 kB T along

the x-, y-, and z-axis. Furthermore, these results emphasize the critical role played by

the sample’s volume fraction in influencing the stability of optical trapping within the

composite medium. As the volume fraction increases, both the gradient force and po-

tential depth decrease, resulting in reduced stability of optical trapping. Therefore, when

optimizing conditions for optical trapping, careful consideration of the sample’s volume

fraction is essential.

2.4. CONCLUSION

To summarize, our approach in this chapter begins with an introduction to the classical

method used to calculate the time-averaged optical force acting on a dipole, without in-

volving nonlinear effects. We combine Maxwell’s equations with the Lorentz force law

and provide a comprehensive step-by-step derivation of the time-averaged force equa-

tion. We also apply the concept of the polarizability of a dipolar sphere to characterize

how the dipole responds to an external optical field, employing the dipole approxima-

tion theory. Additionally, we delve into the calculation of the tightly focused field gener-

ated by an x-polarized beam, employing the vectorial diffraction theory.

In Section 2.3, we obtain the distribution of optical field gradients of the tightly fo-

cused field. The effect of volume fraction on optical force and potential is also analyt-

ically investigated based on dipole-approximation of the nanoparticle. The correlation

between the effective refractive index of the composite material and the volume frac-

tions from low to high is presented for the gold nanoparticle solution, the HIV-1 solution,

and the human serum albumin solution. The time-averaged force is calculated on a gold

nanoparticle with a radius of 15 nm along three orthogonal directions at three different

volume fractions. The optical potential is studied comparatively for a given incident

power. The stability of the optical trapping is strong enough to allow a gold nanoparticle

to remain trapped in three composite materials for a long time.
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Remarkably, the results of our calculations show robust stability in optical trapping,

indicating that the gold nanoparticles could remain trapped within the three composite

materials for extended durations. We observe that as the volume fraction increases, the

depth of the potential well decreases. Consequently, achieving stable optical trapping

became more challenging at higher volume fractions within the sample solution. The

insights gained from this model offer valuable theoretical support for enhancing the ef-

ficiency of optical trapping techniques involving gold nanoparticles in a wide range of

applications.
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METALLIC NANOPARTICLES IN

NONLINEAR REGIME

How many roads must a man walk down;

Before they call him a man.

Bob Dylan

Some original content of this chapter has been submitted in Chinese Optics Laser.
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Chapter 2 serves as an introduction to the classical theory extensively employed for cal-

culating the optical force acting on Rayleigh metallic particles within a linear regime.

However, in 2010, a groundbreaking discovery emerged in the field of optical trapping,

known as the "trap split" phenomenon. This discovery posed a formidable challenge to

our established understanding of physics [1]. The "trap split" phenomenon is an intrigu-

ing and enigmatic occurrence that holds the potential to revolutionize the manipulation

of nanoparticles. It surpasses the constraints imposed by the diffraction limit, opening

up exciting new possibilities for scientific exploration within the nonlinear realm of op-

tical trapping.

Yet, the scalar method, which has proven to be both convenient and effective in tra-

ditional optical trapping, can not adequately represent the nonlinear response of metal

nanoparticles to external optical fields. Consequently, there arises a need to extend our

theoretical framework to accommodate the nonlinear regime.

In response to this challenge, in this chapter, we propose a theoretical model that

elucidates the nonlinear optical trapping effects through the application of the vector

method. By amalgamating the principles of vectorial diffraction theory with optical non-

linear effects, we derive a vectorial method for calculating the nonlinear response of the

nanoparticle to the tightly focused field. This model facilitates a quantitative analysis of

optical force equations and optical potential wells. Furthermore, we undertake a com-

parative analysis between the results obtained using the scalar method and those de-

rived through the vector method, ultimately revealing that the latter demonstrates supe-

rior alignment with experimental observations. In light of these findings, we conclude

that this vector method offers a promising avenue for studying deeper into the quantita-

tive analysis of nonlinear optical force and optical potential.

3.1. INTRODUCTION

A widely accepted consensus in the field of optical trapping was that when sub-

wavelength particles were trapped just using a single linear-polarized focused beam,

only one optical potential well could be observed. This understanding has persisted for

several decades since the invention of optical tweezers [2–4]. Nonlinear optical trapping

introduces an intriguing and unconventional phenomenon known as the "trap split."

This phenomenon defies traditional optical trapping expectations by allowing the ob-

servation of two distinct trapping sites. It occurs when the third-order nonlinear ef-

fect of dipolar gold nanoparticles is stimulated, leading to this remarkable "trap split"

phenomenon [1]. The adjustable distance between two spaced trapping positions can

reach beyond the diffraction limit of the focus field without any other complex opti-
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cal instruments [5–8]. The tunable gap of trapped particles and stable manipulation of

multiple nanoparticles thereby provide new opportunities for the application in atomic

and molecular trapping [9], micro-fluid mechanics [10] and bio-medicine[11] at the sub-

diffraction-limit scale. Therefore, a comprehensive and quantitative analysis of nonlin-

ear optical trapping is urgently needed.

For particles with radii much smaller than the wavelength of the incident light, they

can effectively be represented as dipoles. [12, 13].The dipole approximation theory is

a commonly employed framework for calculating both radiation and gradient forces in

such scenarios [14–18]. Considering a homogeneous and isotropic dipolar particle im-

mersed in an aqueous medium and illuminated by an electromagnetic field, scalar po-

larizability can be used to describe the response of the dipole to the external optical field

in the linear regime[12].

In the linear regime, the gradient force arises due to the interaction between the elec-

tric dipole moment of the particle and the gradients in optical intensity and this force is

proportional to the real part of the polarizability[14]. Conversely, the radiation force,

which results from the radiation and absorption of light by the particle, is proportional

to the imaginary part of the polarizability.[15]. However, the scalar method is insufficient

to fully comprehend the nonlinear effects in the gradient force and potential well. This

raises questions about whether scalar polarizability can adequately reflect the nonlinear

response of the dipole to the external field. To address these questions and challenges,

we expand upon the traditional approach and demonstrate that employing the vector

method offers a more accurate and complete description of nonlinear optical trapping

effects. This vector method is better suited to unravel the intricacies of nonlinear inter-

actions between particles and optical fields.

In this chapter, we embark on a comprehensive analysis of nonlinear gradient forces

and radiation forces that come into play when a nanoparticle interacts with tightly fo-

cused laser pulses. Our approach utilizes a focused linear-polarized pulse laser as the

light source to achieve high optical intensity and a 30 nm radius gold nanoparticle as the

modeled particle. When subjected to illumination from a high-NA objective lens, this

configuration triggers the optical Kerr effect at a corresponding excitation level[19–21].

To describe the behavior of the gold nanoparticles accurately, we calculate their com-

plex refractive index as a function of the incident electric field’s intensity, relying on the

Kerr-effect equations.

In our analysis, we take advantage of vectorial diffraction theory to dissect the tightly

focused optical field into its individual three-dimensional components, each correspond-

ing to one of the three orthogonal directions[22]. The vectorial polarizability of the
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dipole emerges from the intricate interplay between the nonlinear optical properties of

the dipole and the three components of the tightly focused field. Capitalizing on the

principle of vectorial superposition, we formulate traditional gradient force equations

along specific directions, utilizing the polarizability vector and the vectorial optical field.

By integrating the total optical force in the focal plane, we obtain the corresponding non-

linear optical potential, which serves as a precise indicator of the equilibrium trapping

position of the dipole.

A notable disparity becomes evident when comparing the potential well obtained

through the scalar method with that derived through the vector method. While the

model employing the scalar method fails to yield a definitive conclusion, the optical

potential calculated using the vector method consistently situates the trapped particles

along the axis parallel to the direction of linear polarization. The calculation results un-

equivocally establish that the vector approach closely aligns with experimental observa-

tions. This innovative method is effective not only in nonlinear optical trapping but also

in the traditional method. It represents a significant stride towards achieving a deeper

understanding of nonlinear optical trapping.

3.2. THE NONLINEAR OPTICAL PROPERTIES OF THE GOLD NANO-
PARTICLE

Supposing the incident laser is an x-polarized Gaussian beam, α is the polarizability of

the nanosphere given by[14],

α0 = 4πε0r 3
0

n2
p −n2

h

n2
p +2n2

h

, α= α0

1− iα0k3/(6πεh)
, (3.1)

where the complex number np is the complex refractive index of the gold nanoparticle

and nh is the refractive index of the host medium. ε0 is the relative permittivity of the

vacuum. εh is the relative permittivity of the host medium. r0 is the radius of the particle.

c is the speed of light in a vacuum. k is the wave number of the incident optical field in

the host medium. Here, σ is the extinction cross-section (σ = ωnhIm{α}/cε0)[23], with

ω is the optical frequency of the incident light.

For metallic nanoparticles, especially, the absorption of light by the particle con-

tributes significantly to the radiation force[24]. It is meaningful to discuss the absorp-

tion and the localized surface plasmon resonance (LSPR) effect during the optical trap-

ping process. Here, we take the gold nanoparticle with a radius of 30 nm as an example.

Its absorption (σabs), scattering (σsca), and extinction (σext = σabs +σsca) cross sections

are calculated and plotted in Fig. 3.1(a). Clearly, the cross-sections mentioned above
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exhibit a peak at approximately the Surface Plasmon Resonance (SPR) wavelength, typi-

cally around 510 nm for gold nanoparticles. It is noteworthy that close to the SPR wave-

length, the absorption cross-section is much larger than the scattering cross-section.

This means that the absorption of light caused by the SPR can create heating problems

that may interfere with optical manipulation, which can disrupt optical manipulation

processes[25]. This is especially problematic when working with gold nanoparticles and

other metallic nanoparticles.
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Figure 3.1: (a) The cross-section of a gold nanoparticle with a 30 nm radius. The extinction cross-
section (σext), absorption cross-section (σabs), and scattering cross-section (σsca) are plotted as
black, red, and blue lines, respectively. (b) The complex polarizability of the gold nanoparticle as
a function of the incident wavelength.

The gradient and radiation force follow the behavior of the real and imaginary parts

of the polarizability, respectively. The magnitude of Im{α} is much larger than the mag-

nitude of the real part Re{α} at the SPR wavelength, as shown in Fig. 3.1 (b). The gradient

force exerted on the gold nanoparticle is comparatively smaller than the radiation force

at the SPR wavelength [17], leading to a weak trapping stiffness of the gold nanoparticle.

Therefore, we chose the near-infrared pulsed laser as the light source to stimulate the

nonlinear optical effect and avoid the LSPR effect on the traps.

Gold nanoparticles have many nonlinear optical properties that generate great in-

terest in applications, such as optical switches [26, 27], optical limiting devices [28], and

nanoprobes [29]. The changes in the complex refractive index of the gold nanoparticle

are described by the Kerr-effect equation: (n = np +n2I) [21, 30, 31], where I is the peak

intensity of the focused field and n2 is the nonlinear complex refractive index.

To excite the nonlinear effect of the particle, it is highly desirable to focus the incident

pulse laser with a high NA objective lens. In this work, we consider the incident optical

field as an x-polarized femtosecond laser pulse. For a femtosecond laser pulse, the peak
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power of a pulse is estimated from the pulse duration τ and the pulse energy Epulse.

Ppeak ≈ γ
Epulse

τ
= γPave

ντ
, (3.2)

where γ is the factor depending on the temporal shape of the pulse and v is the repet-

itive frequency of the pulse laser. Pave is the average power of the pulsed laser. For the

Gaussian shape pulse and soliton pulse, the factor is 0.94 and 0.88, respectively[32]. In

this thesis, we assign the incident pulse in our analytical model to a rectangular tem-

poral envelope and γ = 1. In this scenario, the strength of the pulse will remain steady

over the pulse duration. The peak intensity of the incident beam can be expressed as

I = 2Ppeak/πr 2 where the radius of the focal spot rspot = 0.82λ/NA [33]. The maximum

value of the modulus square of the total electric field |E |2 = 2I/(ε0cnh), ε0 is the per-

mittivity of the vacuum. Then we will discuss the nonlinear optical properties of gold

nanoparticles under such an incident optical field.

Supposing the incident average power Pave increases gradually from 0 W to 0.5 W,

the peak intensity of the focused field Ipeak is plotted as a function of incident average

power Pave in Fig.3.2 (a). Here, the imaginary part of n2 is set as −1.6i × 10−16m2/W

when the center wavelength of pulsed light λ is 800 nm, while the real part of n2 is much

smaller than the imaginary part and is set to be zero in our simulations [34, 35]. The

linear refractive index of gold nanoparticles np = 0.41661+5.2347i whenλ= 800nm.[36].

By combing the optical Kerr-effect equation n = np + n2I [31, 37], We can rewrite the

polarizability of the nanoparticle into a form that depends on intensity:

α= 4πε0r 3
0 [(np +n2I)2 −n2

h]/[(np +n2I)2 +2n2
h]

1− i 2ε0k3r 3
0

3ε [(np +n2I)2 −n2
h]/[(np +n2I)2 +2n2

h]
. (3.3)

The calculation results of the nonlinear polarizability which determines the optical

force are plotted as a function of the optical intensity in Fig.3.2 (b). From Eq.(??), the

sign change of the real part of polarizability indicates the reversal of the direction of

the gradient force. With the incident power increasing, a peak of the imaginary part

of polarizability appears because of the nonlinear effects. The extinction cross-section

depends on the imaginary part of polarizability plotted in Fig.3.2 (c).

The focused electromagnetic field can be calculated using vectorial diffraction the-

ory [22]. The total electric field E is divided into three-dimensional components Ex ,Ey ,

and Ez . Using Eq.(3.3), the response of the dipole to each component of the electric

field can be calculated individually and formed into a polarizability vector. Following

the principle of vector superposition, the expression of the polarizability vector can be
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Figure 3.2: (a) The optical intensity of the focused field is plotted as a function of the average
power Pave increasing from 0 to 0.5W. (b) The real and imaginary parts of the nonlinear polariz-
ability change with the increasing average power Pave. (c) The extinction cross-section σext of gold
nanoparticles varies with the increasing of the average power; a peak value of σext occurs for the
nonlinear sphere.

written as

αi =
4πε0r 3

0 [(np +n2Ii )2 −n2
h]/[(np +n2Ii )2 +2n2

h]

1− i 2ε0k3r 3
0

3ε [(np +n2Ii )2 −n2
h]/[(np +n2Ii )2 +2n2

h]
, i = x, y, z. (3.4)

Here αi denotes the Cartesian components of the polarizability vector α = {αx ,αy ,αz }.

Combined with the distribution of the electric field, we can obtain the distribution of the

polarizability in the focal plane.

3.3. THE NONLINEAR OPTICAL FORCE ON A METALLIC NANOPAR-
TICLE

The pulsed light consists of superimposed monochromatic plane waves. Let’s consider

an x-polarized electromagnetic wave packet, which is a combination of waves with dif-

ferent frequencies, and its propagation along the z-axis[38],

E(z, t ) = Re

{
1

2π

∫ ∞

0
E(Ω)e i (Ωt−k(Ω)z) · êx dΩ

}
, (3.5)

where E(Ω) = |E |e iφ(Ω) is the complex amplitude of the electric field at frequency Ω and

complex wave number k = nΩ/c. Here, n is the complex refractive index, and c is the

velocity of light in vacuum, respectively. In general, the refractive index is a function

of frequency and we are concerned with the propagation of a pulse created by a com-

bination of monochromatic waves centered around a center carrier frequency ω0. We

can separate an optic pulse into a carrier wave and an envelope A(z, t ) with a center
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frequency ω0:

E(z, t ) = Re
{
A(z, t )e i (ω0t−k(ω0)z)

}
, (3.6)

A(z, t ) = 1

2π

∫ ∞

−ω
A(ω)e i (ωt−k(ω)z)dω. (3.7)

where we introduce offset wave vector

k(ω) = k(Ω)−k(ω0), ω=Ω−ω0. (3.8)

If the full width at half maximum (FWHM) of the pulse spectrum is significantly

smaller than the carrier frequency, the pulse envelope changes slowly over time. The

phase shift of the pulse is linear with respect to frequency and does not cause distortion

of the pulse.

The Lorentz law describes the instantaneous force exerted on an electric dipole by

general real electromagnetic fields E , H[39]:

F = (P ·∇)E +µ0
∂P
∂t

×H. (3.9)

The electric dipoleP = Re{p} is fixed at position r in a medium. The complex dipolar mo-

ment p is relate to the electric field and a complex polarizationα in SI units. Substituting

the complex field and complex dipole moment into Eq.(3.9), we have the time-average

force[15, 39]:

〈F〉 = 1

2
Re{α}Re

{
E∗ ·∇E

}+ 1

2
Im{α} Im

{
E∗ ·∇E

}
. (3.10)

The time-averaged optical force on the particle over a pulse duration can be derived

by an integral of the force over one pulse cycle τ= 1/ν:

〈F (r)〉 = 1

T

∫ −τ/2

−τ/2
〈F〉 d t . (3.11)

This is the final expression of the time-averaged optical force during the pulse dura-

tion. The optical force in the focal plane (x−y plane) can be considered as the sum of

the x− and y−components. Let τ= 1/v be the period of the laser pulses with duration τ,

then the we can rewrite time-averaged gradient force 〈F〉grad as

〈Fx〉grad = 1

T

τ/2∫
−τ/2

1

4

∑
i

Re{αi }
∂|Ei

2|
∂x

d t , (3.12)

〈
Fy

〉
grad = 1

T

τ/2∫
−τ/2

1

4

∑
i

Re{αi }
∂|Ei

2|
∂y

d t , (3.13)

〈Fz〉grad = 1

T

τ/2∫
−τ/2

1

4

∑
i

Re{αi }
∂|Ei

2|
∂z

d t , (3.14)
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with i = (x, y, z). The radiation force in Eq.(2.40) can be rewritten as follows,

〈Fx〉rad = 1

T

τ/2∫
−τ/2

1

2
Im{αi }Im{E∗

i
∂Ei

∂x
}d t , (3.15)

〈
Fy

〉
rad = 1

T

τ/2∫
−τ/2

1

2
Im{αi }Im{E∗

i
∂Ei

∂y
}d t , (3.16)

〈Fz〉rad = 1

T

τ/2∫
−τ/2

1

2
Im{αi }Im{E∗

i
∂Ei

∂z
}d t . (3.17)

After calculating the sum of all the individual optical forces along a path C, we can

calculate the optical potential of the particle in the focused field as

U (r) =−
∫

C
〈F(r)〉dr. (3.18)

It is worth noting that the gradient force is conservative and the radiation force is

a non-conservative force. The integral path from r to ∞ is limited to a certain area in

the focal plane where the net force is a conservative vector field. After carrying out the

integration of net force, we obtain the comparison result between the use of the scalar

method and the vector method.

3.4. RESULTS AND DISCUSSION
Supposing the average power Pave = 0.5W, Fig. 3.3 (a)-(c) show the distribution and mag-

nitude of the three components of the electric field in the Cartesian coordinate in the fo-

cal plane. The x− component of the electric field dominates the total electric field. The

real part of individual polarizability components Re{αx },Re{αy }, and Re{αz } are shown

in Fig. 3.3 (d) - (f), respectively. The sign inversion of Re{αx } indicates the reversal of

the direction of gradient forces. As shown in Fig. 3.3 (e) and (f), the sign inversion of the

y− and z−components polarizability does not occur due to the relatively low intensity

of the y− and z− components of the electric field. The magnitude of the changes in αy

and αz is not significant compared to αx , but their contribution to the optical forces in

the focal plane should not be ignored.

3.4.1. CALCULATION RESULTS

The x−component gradient force 〈Fx〉grad generated by the interaction of the x− com-

ponent of the field intensity gradients ∂ |Ex |2 /∂x and Re{αx } is shown in Fig. 3.4 (a). The

red color indicates that the particle experiences a force along the positive x−axis, while

blue indicates a force along the negative x−axis. The magnitude of 〈Fx〉grad resulting
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Figure 3.3: Distribution of the focused electric field intensity in the focal plane and the correspond-
ing polarizability of the dipolar sphere. (a)-(c) The peak value of the individual field components
|Ex |2, |Ey |2, and |Ez |2, respectively. (d)- (f) The real part of the individual components Re{αx },
Re{αy }, and Re{αz }, respectively.

from the y− and z− components of the electric field are comparatively small, as shown

in Fig. 3.4 (b) and (c). Fig. 3.4 (d) - (f) show the results of the y−component of the gra-

dient forces derived from the x−, y−, and z−component of the electric field using Eq.

(3.12), respectively. Fig. 3.4 (g) and (h) show that the radiation force is negligible and can

be omitted in the focal plane. This is because the energy of the light propagates mainly

along the z−direction in the focal plane [22]. After the sum of all the individual optical

force vectors, we can obtain the total optical force in the focal plane, as shown in Fig.

3.4 (i). The dark blue color indicates that the optical force is pointing towards the cen-

ter point, which is the same as that in a linear regime. Due to the nonlinear effect, the

optical force is reversed in a certain region marked in brown color. The position of the

optical trapping is not evident from the distribution of optical force, as shown in Fig. 3.4

(i). A comparison of optical forces along the x− and y−axis calculated by the scalar and

vector methods is made to better understand the difference between the two methods.

A comparison of total forces calculated by the scalar and vector methods is made

to further understand the difference between the two methods. The red color indi-

cates that the particle experiences a force towards the center point, while blue indi-

cates that a force is away from the center of the circle. The total force obtained by the

scalar method is shown in Fig. 3.5 (c). Fig. 3.5 (a) shows the vector results as the sum of

forces in Fig. 3.4 (a)- (f). The distribution and magnitude of the forces obtained by these
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Figure 3.4: The nonlinear optical force in the focal plane. (a)-(c) The plot of x−component of gradi-
ent forces derived from Re{αx }, Re{αy }, and Re{αz }, respectively. The red indicates that the direction
of the gradients is along the x−axis and the force value is positive; while the blue denotes that the
negative force is in the opposite direction of the x−axis. (d)-(f) The plot of the y−component of gra-
dient forces calculated with the vector method. The positive value means the direction of force is
pointing to the y−axis and vice versa for the negative force. (g) and (h) The x− and y− components
of radiation forces. (i) The total optical force in the focal plane. Dark blue indicates that the optical
force is towards the center point, while brown indicates that the optical force direction is away from
the center.
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Figure 3.5: The total optical forces obtained by scalar and vectorial methods. (a) The total gradi-
ent forces are calculated with the scalar method. (b) Plots of gradient forces along the x−axis for
the comparison of the two methods. The green line means the gradient force is calculated by the
scalar method; the black line for the calculation results based on the vectorial method. (c) The to-
tal gradient forces are calculated using vectorial polarizability. (d) y−component of gradient forces
calculated with scalar polarizability and vectorial polarizability.
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Figure 3.6: The nonlinear optical potential well in the focal plane. (a) The nonlinear optical poten-
tial well with the vector method in the focal plane. (b) The parallel projection of the potential well
to the direction of the y−axis. (c) The parallel projection of the potential well to the direction of the
x−axis. (d) The potential well with the scalar method. (e) and (f) Parallel projections to the y−axis
and x−axis, respectively.

two methods are different and the distribution of the force with scalar method is not

spherical. The black line computed by the vectorial polarizability has a larger maximum

value than those calculated by the scalar polarizability in the x−axis, as shown in Fig. 3.5

(b). Fig. 3.5 (d) shows the results of total forces using the scalar method and the vector

method on the y−axis, respectively. The total force with α coincides exactly with the re-

sults using αin the y−axis. The difference in the results of the x−component of forces

in Fig. 3.5 (b) can be attributed to the use of the vectorial model. In the scalar method,

the scalar polarizability is calculated using the total electric field, which approximates

the real part of the polarizability along the dominant electric field component (e.g., the

x−component for the x−polarized field). However, the scalar method cannot explicitly

calculate the contributions of the other components (e.g., y and z) of the electric field

and their corresponding polarizabilities (Re{αy} and Re{αz}). In contrast to the scalar

method, the vectorial model calculates the interaction between Re{αy} and
∣∣Ey

∣∣2 on the

x−axis, as well as the interaction between Re{αz}and |Ez |2 on the x−axis individually.

Although the x−component of the electric field dominates the total electric field, the y−
and z−components of the electric field also contribute to the force along the x−axis.
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The nonlinear optical potential well in the focal plane can be obtained by the vec-

torial method as shown in Fig. 3.6 (a). Here, the positive and negative values of the po-

tential indicate that the particle experiences a repulsive and attractive potential in this

plane. The coordinate of the minimum potential represents the position of the stable

optical trapping. Fig. 3.6 (b) and (c) show that the minimum potential is located at two

points along the x−axis, indicating the presence of two equilibrium positions for the

optical trapping. To illustrate the difference between the scalar method and the vector

method, the potential wells calculated using the scalar method are plotted in the second

row. The two different methods can both achieve the "trap split" of the optical potential

well, as shown in Fig. 3.6 (a) and (d). However, parallel projections of the optical poten-

tial well reveal the difference between them. The potential well deduced from the scalar

method has a “ring-like” depth in the lower part which means the particle will be trapped

in a ring shape, as shown in Fig. 3.6 (e) and (f). In contrast, the vector method considers

the response of the dipolar particle to each individual component of the vectorial optical

field, providing a different description, as shown in Fig. 3.6 (a).

3.4.2. EXPERIMENTAL RESULTS AND DISCUSSION

The schematic diagram of the experimental setup based on our simulation parameters

is shown in Fig. 3.7 (a). We used an x−polarized pulsed laser with a center wavelength

of 800 nm, 100 fs pulse duration and 80 MHz repetitive frequency as a light source. Then

it is focused by an objective lens with NA = 0.75 inside a glass tube that contains water

with gold nanoparticles of 30 nm radius. The light emitted by the green illuminator is

used to illuminate the fluid. The images of the focal region are collected by the CCD.

The direction of polarization of a pulsed laser can be rotated by using a half-wave plate.

When the polarization direction is rotated by 90 degrees using a half-wave plate, the two

trapped nanoparticles are reoriented from being parallel to the x−axis to being parallel

to the y−axis, as demonstrated in Fig. 3.7 (b) (see supplementary videos S1). This result

is consistent with the prediction of the vectorial model, as shown in Fig. 3.6 (a). There-

fore, it can be concluded that the scalar method is not able to accurately describe the

dipole’s response to the tightly focused optical field in nonlinear optical trapping, while

the vectorial method provides a more precise description.

In the nonlinear regime, it’s crucial to recognize that when the peak intensity of

each individual component of the electric field is sufficiently high, it can induce third-

order nonlinear optical effects, causing changes in the dielectric function of the metal

nanoparticle. When dealing with a tightly focused field, the nonlinear optical response

to each component of the electric field can vary. Therefore, to accurately describe non-
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Figure 3.7: (a) The schematic diagram of the experimental setup. An x−polarized pulsed laser prop-
agates through a half-wave plate. The incident beam is focused by an objective with 0.75 NA. The
sample in a glass tube consists of gold nanoparticles with a radius of 30 nm. A Green illuminator is
used to illuminate the trapped particles. The filter is a lower pass plate for passing the green light
and blocking the pulsed light. The image of the optical trapping is recorded by a CCD. (b) Yellow
arrows indicate the direction of the polarization of the pulsed laser. The two trapped- nanoparticles
are also rotated along with the half-wave plate.
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linear optical trapping, it becomes necessary to analyze optical forces using the vecto-

rial method. In contrast, in the linear regime, where the optical properties of the metal

nanoparticle remain unchanged, there is no distinction between the scalar method and

the vectorial method.

3.4.3. DISCUSSION

In this chapter, we have provided a detailed analysis of the nonlinear optical forces acting

on the transverse plane. However, 3-D experimental results are observed in the actual

experiment. In addition to the detection of the results on the transverse plane, we also

placed an objective lens of 0.2 NA on the side for observing the results on the longitudinal

plane, as shown in Fig. 3.8 (a). Fig. 3.8 (b) and (c) demonstrate a stable nonlinear optical

trapping on the transverse plane and longitudinal plane (see supplementary videos S2).

Hence, to achieve a comprehensive understanding of the observed 3-D nonlinear optical

trapping, it is essential to extend our discussion to include the optical forces along the

longitudinal plane.

By using Eq.(3.14) and Eq.(3.17), the gradient forces and radiation forces along the

z-axis can be calculated. The real part of the nonlinear polarizability of the three com-

ponents is depicted in Fig. 3.9. (a), (b), and (c). The negative value of the real part of

polarizability demonstrates the alteration of the optical response raised by the nonlinear

optical effect. In the longitudinal plane, the gradient forces exerted on the particles are

described in the second row, as can be seen in Fig. 3.9 (d), (e), and (f). The red color sig-

nifies the direction of the gradient force along the positive direction of the z-axis, while

the blue represents the force along the negative direction. The radiation forces can not

be neglected because the energy flux mainly propagates in the longitudinal direction

in the focal region. The imaginary components of nonlinear polarizability are plotted

in Fig. 3.10 (a), (b), and (c). The z-component of radiation forces associated with the

corresponding three components of imaginary polarizabilities are calculated and illus-

trated in Fig. 3.10 (d), (e), and (f). The calculations indicate that the magnitude of the

radiation force in the z-direction is significantly larger, approximately one order of mag-

nitude greater, than the gradient force on z- direction. This significant difference in force

magnitudes suggests that the radiation force dominates in the z-direction.

The total optical forces along the z-direction are obtained by the sum of each individ-

ual gradient force and radiation force, as shown in Fig. 3.11. Based on the calculations, it

appears that there is no optical force in the negative z-axis direction to counterbalance

the optical force along the positive z-axis. Consequently, there are no stable equilibrium

positions in the z-direction for the trapped nanoparticle. However, this is controversial
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Figure 3.8: (a) Experimental setup diagram. In the experiment, the optical axis was set as the z-
axis. We used an objective lens of 0.75 NA to achieve the nonlinear optical trapping and observe
experimental results in the transverse plane. Additionally, we used a 0.2 NA objective lens to observe
results in the longitudinal plane. (b) Nonlinear optical trapping results in the transverse plane. (c)
Light capture results in the longitudinal plane.
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Figure 3.9: (a), (b), and (c) Distribution of the three components of the real part of the polarizability
in the longitudinal plane for Pave = 0.5 W, respectively. (d) - (f) The z-component of the gradient
force is plotted in the second row.
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Figure 3.11: The distribution of total optical forces along the z-direction. The red color denotes the
direction of force towards the positive direction of the z-axis.

with our observation that the nanoparticle is stably trapped in the z-axis. Although we

successfully analyzed the nonlinear optical force and the nonlinear optical potential well

in the transverse plane, it is limited in the z-component optical force.

3.5. CONCLUSION

In summary, we have introduced an enhanced vectorial model for the quantitative anal-

ysis of nonlinear optical forces using the dipole’s polarizability vector. This nonlinear

polarizability, contingent upon optical intensity and incorporating the Kerr effect, has

been derived. The nonlinear response of a dipolar gold nanoparticle to the tightly fo-

cused field is comprehensively described utilizing vector diffraction theory, culminating

in the determination of a polarizability vector. With the vectorial approach, we have elu-

cidated the individual gradient forces generated by each component of the electric fields

in the focal plane, as well as the radiation forces. By integrating the total optical force at

the focal plane, the nonlinear potential well has been determined and compared with

experimental results. In the longitudinal plane (along the z− direction), the calculation

results using the vectorial method reveal that there is no equilibrium position. However,

this lack of equilibrium positions in the z− direction does not impact the analysis per-

formed in the focal plane. The "trap split" in the focal plane remains consistent with the

theoretical framework and experimental observations.

Our study incontrovertibly demonstrates the inadequacy of the scalar method in an-
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alyzing nonlinear optical trapping, while the vectorial model significantly enhances our

understanding of these phenomena. This transition from a scalar to a vector model not

only expands the traditional methodology but also holds promise for advancing the de-

velopment of nonlinear optical tweezers and their associated applications.
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4. NONLINEAR OPTICAL TRAPPING WITH SATURABLE AND REVERSE SATURABLE

ABSORPTION EFFECT

We have observed that the direction of the gradient force can be reversed in nonlinear

optical trapping, a phenomenon whose underlying physical mechanisms have remained

elusive. In this chapter, we shed light on the intricate processes responsible for this phe-

nomenon. We attribute the nonlinear optical force to a combination of factors, includ-

ing the third-order nonlinear effect of the metallic nanoparticle, optical saturable ab-

sorption (SA), and reverse saturable absorption (RSA) under high-intensity irradiance.

Our investigation focuses on the change in gradient forces acting on a gold nanopar-

ticle when subjected to a femtosecond pulse laser with circular polarization. We have

discovered that the gradient force initially diminishes and reverses its direction as the

light power increases due to the SA effect. Subsequently, under even higher intensities,

the gradient force reverses once more because of the RSA effect. Our quantitative cal-

culations also reveal alterations in potential wells induced by these nonlinear effects.

Encouragingly, experimental results align closely with our theoretical predictions, pro-

viding empirical validation for our findings.

4.1. INTRODUCTION

The stable optical trapping of nano-objects is based on the interaction between the scat-

tering and the gradient force[1]. The scattering force is exerted on a nanoparticle in the

direction of light propagation while the gradient force is in the direction of the tightly

focused optical field gradient[2]. This classical principle is convenient and intuitive in

a discussion of normal optical trapping. However, in nonlinear optical trapping of the

gold nanoparticle, the gradient forces are not in the direction of the spatial light gradi-

ent and become tunable by introducing the intensity-dependent nonlinear processes:

optical saturable absorption (SA) and reverse saturable absorption (RSA).

Ample works show that gold nano-objects exhibit SA and RSA effect[3–5]. The SA is

excited with a relatively low excitation intensity, whereas the RSA is excited with a higher

optical intensity. In the SA process, the electrons are pumped from the ground-state

to the excited-state leading to ground-state bleaching during the short pulse duration.

The nonlinear absorption coefficient of the gold nanoparticle is observed to be negative,

and the transmittance of the material increases under this circumstance. The nonlinear

process changes from SA to RSA at a higher laser intensity and the nonlinear absorption

coefficient becomes positive, and the value of transmittance begins to decrease due to

excited-state absorption [6, 7]. The idea behind our theoretical approach is to investigate

the gradient forces on the gold nanoparticle with a reversal of the nonlinear coefficient

sign in these two nonlinear processes as the increase of input laser power.

In the Rayleigh regime (radius ≪ wavelength), a nanoparticle can be modeled as an
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electric dipole in response to the incident optical field. The gradient force depends on

the polarizability of the dipole and on the inhomogeneous electric field. To stimulate the

SA and RSA processes, a tightly focused circularly-polarized femtosecond pulsed laser

beam is applied as the incident optical field using Debye vectorial diffraction theory[8].

The complex refractive index of the gold nanoparticles is calculated as a function of the

modulus of the incident electric field. As the incident electric field increases, the trans-

mittance of the material increases as a consequence of the SA effect and reduces because

of the RSA effect. Combining the incident optical field and polarizability with the time-

averaged force equation, we found that gradient forces reduce and reverse when the in-

cident electric field exceeds a threshold value during the SA process in a certain region of

the focused field. In the RSA process, the magnitude of gradient forces becomes smaller

and another reversal of the direction of gradient forces appeals. After calculating the po-

tential well of optical trapping, the potential well changes from a concave to a convex

type in the SA process. As the input power increases, the potential well changes from a

convex to a concave type in the RSA process. The results of the calculation indicate that

ring-shaped particles can be trapped in the nonlinear optical trapping, which is in good

agreement with the reported experiments[9].

4.2. THE THEORETICAL METHOD
Numerous works have indicated that gold nanoparticles exhibit distinct responses in the

SA and RSA regimes[3–7, 10]. Physically, the rate of change in the coefficient of nonlin-

ear absorption for a gold nanoparticle remains negative during SA but switches to be-

ing positive within the RSA regime. This reversal of sign produces significant changes

in physical properties. The dependence on the intensity of the coefficient of nonlinear

absorption κ for gold nanoparticles is calculated from [11].

κ= λ

4π

(
a0

1+ I /Is
+βI

)
, (4.1)

where Is is the saturable optical intensity, β is the two-photon absorption coefficient,

and a0 is the linear absorption coefficient of the gold nanoparticle.

The nonlinear absorption coefficients of the gold nanoparticles are summarized and

compared in Table 4.1. All of the experimental results are obtained with two-dimensional

gold nanoparticle arrays. The magnitude of saturable intensity Is is 1013W/m2 and the

nonlinear absorption coefficient β is 10−11m/W.

Plenty of works have demonstrated the enhancement of field intensity on the closely

spaced gold nanoparticle arrays[12, 13]. So the saturable intensity for a single nanopar-

ticle is higher than the arrays. For optical trapping, accurate values of the saturable
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intensity Is of a single nanoparticle are desirable and different from the values of gold

nanoparticle arrays. However, we can estimate a reasonable value of saturable intensity

Is of a single gold nanoparticle based on the previous results of gold nanoparticle arrays

in table.4.1. The nonlinear parameters of the gold nanostructures are summarized and

compared here.

Table 4.1: Comparison of the absorption coefficient values of gold from different articles.

Sample λ(nm) τ(fs) Is (W/m2) β(m/W)
nanorods [4] 780 220 7×1013 15×10−11

triangular nanoparticles [10] 800 50 55×1013 29×10−11

nanocubes [14] 800 60 12.8×1013 16.1×10−11

nano-octahedras [14] 800 60 25.3×1013 24.4×10−11

In the above cases, the magnitude of saturable intensity Is is in the order of 1013W/m2.

It should be noted that the experimental results are obtained with two-dimensional nano

particle arrays. For optical trapping in our work, however, the saturable intensity Is in the

above table should be lower than that of a single nanoparticle. For scientific rigor, here,

we should use a reasonable value of saturable intensity Is for a single gold nanoparticle.

Numerous experimental works have demonstrated that the field intensities are en-

hanced in closely spaced gold nanoparticle arrays due to the field hybridization effect[13,

15–18]. Consequently, to stimulate the nonlinear effect, the requirement of optical inten-

sity for arrays is lower than for a single nanoparticle, due to the absence of interference

among particles. Hence, we can estimate a reasonable value based on the previous re-

sults of measurement, which is one order higher than that in the arrayed cases. Given

this, the saturable optical intensity of a single gold nanoparticle Is is set to a reasonable

estimated value which is 55×1014 W/m2 and β= 29×10−11 m/W[10] in our simulation.

It is known that the real part of n2 is much smaller than the imaginary part, and thus,

as an approximation, we set the real part equal to zero. The complex refractive index of

the gold nanoparticle can be obtained with the intensity-dependent nonlinear absorp-

tion coefficient by np = n0 + i aλ/(4π)[19]. The linear refractive index of gold nanoparti-

cles np is = 0.41661 + 5.2347i and a0 = 7.8311×107 m−1[20].

The incident electric field E plays an essential role in determining the direction and

magnitude of the gradient force. To excite the nonlinear effect of samples, the tightly

focused optical field with a high NA object lens is beneficial. At the excitation wavelength

λ = 840nm, the wave number in the host medium (water) is k (k = 2πnh/λ). The focal

length in the host medium F = 6.5 mm and the filling factor of the lens is fw = 1. The

maximum focal angle θmax is determined by the NA of the lens and the host medium as

θmax = arcsin(NA/nh). We use cylindrical coordinates in the focal region, given by ρ (ρ =
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√
x2 + y2),ϕ,and z withϕ the azimuthal angle and z the coordinate along the optical axis

with z=0 corresponding to the focal plane. According to vectorial diffraction theory, the

focused electromagnetic field E and H with circular-polarization is given by[8]:

E = E00

 I00 + I02(cos(2ϕ)+ i sin(2ϕ))
i I00 − I02(cos(2ϕ)− i sin(2ϕ))
2I01(sin(ϕ)− i cos(ϕ))

 , (4.2)

H = E00

Zµε

 i I00 + I02(sin(2ϕ)+ i cos(2ϕ))
I00 − I02(cos(2ϕ)− i sin(2ϕ))
2I01(cos(ϕ)− i sin(ϕ))

 , (4.3)

where I00 =
∫ θmax

0
l (θ)sinθ(1+cosθ)J0(kρ sinθ)exp(i kz cosθ)dθ, (4.4)

I01 =
∫ θmax

0
l (θ)sin2θJ1(kρ sinθ)exp(i kz cosθ)dθ, (4.5)

I02 =
∫ θmax

0
l (θ)sinθ(1−cosθ)J2(kρ sinθ)exp(i kz cosθ)dθ, (4.6)

and l (θ) = exp(−i kF )
i kF

2π
(nh cosθ)

1
2 ·exp

( −sin2θ

f 2
w sin2θmax

)
, (4.7)

where E00 is the amplitude of the circular-polarised electric field in the pupil of the lens,

Jn is the nth order of the Bessel function of the first kind. Zµε is impedance of the host

medium. E00 is the amplitude of the incident electric field. Compared with the continu-

ous wave (CW) source, an ultrafast pulsed laser has a much higher peak power. The peak

power of the pulsed laser Ppeak can be expressed in the incident average power Pave, the

pulse duration τ, and the repetition frequency frep : Ppeak = Pave/(τ frep)[21]. The peak

optical intensity in the focal point is then given by Ipeak = 2Ppeak/πR2 where R is the ra-

dius of the Airy spot. The peak intensity of the focused pulsed laser is high enough to

excite the nonlinear effect and leads to stable optical trapping of the particles [22].

By substituting the Ipeak into Eq.(4.1), we can get the polarizability α of nonlinear

gold nanoparticles from Eq.(3.1). Then, the time-averaged gradient forces in the pres-

ence of the nonlinear effect can be obtained. Let T = 1/ f be the period of the laser

pulses with duration τ, then the time-averaged gradient force 〈F〉grad is

〈F〉grad = 1

T

∫ τ/2

−τ/2
〈F〉gradd t . (4.8)

Here, the pulse has a rectangular temporal envelope, which means that the peak

power is constant during the pulse duration. Furthermore, by integrating the gradient
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force over a path we obtain the force potential:

U (r) =−
∫ r

∞
〈

F(r′)
〉

grad dr′. (4.9)

Supposing the incident average power Pave increases gradually from 0 W to 2.0 W,

the peak electric field amplitude |Epeak| of the focused field can be calculated with the

relation |Epeak|2 = 4Ppeak/(πR2εcnh)[21].

4.3. EXPERIMENTAL SETUP
The schematic diagram of the experimental setup is based on our simulation parame-

ters, as shown in Fig. 4.1. We used an x-polarized pulsed laser with a pulse duration of

100 fs and 80 MHz repetitive frequency as a light source. The laser beam from a Ti: sap-

phire laser is firstly linearly polarized by a polarizer, and its polarization direction is then

regulated by rotating a half-wave (λ/2) plate. After passing through the second polar-

izer, the laser power can be changed by rotating the (λ/2) plate with the controller. The

circularly polarized beam is obtained by a quarter-wave (λ/4) plate.

Then it is focused by an objective lens with NA = 0.65 inside a glass micro-tube, and

the sample solution with gold nanoparticles of 60 nm diameter is filled in the micro-

tube. The light emitted by the illuminator indicated in green is used to illuminate the

sample solution. The illumination and the trapping beam incident orthogonally into the

sample tube; thus, only the scattered illuminating beam can be collected by the objec-

tive. This design works like the dark-field illumination and helps to improve the motion

presentation of the gold nanoparticles on the CCD.

4.4. RESULTS AND DISCUSSION

4.4.1. CALCULATION RESULTS

The peak value of the electric field and the magnetic field of the focused circularly po-

larized femtosecond laser pulse are displayed in Fig.4.2. Here, all numerical calculations

in this paper are performed under the conditions that F = 4.5mm, N A = 0.65, fw = 1,

nh = 1.33, τ= 100 f s, and v = 80 MHz, according to the experiments.

The values of |Epeak| are plotted as a function of incident average power Pave in Fig.4.3

(a). The calculation results of the nonlinear absorption coefficient κ are plotted as a

function of the modulus of the peak electric field in Fig.4.3 (b). The decrease in κ with

low excitation refers to the saturable absorption (SA). When the value of the maximum

electric field reaches high excitation, the growth in κ indicates that the nonlinear effect

turns into reverse saturable absorption (RSA), as shown in Fig.4.3 (b). The extinction

cross-section σext is calculated with the increasing input power. When the incident field
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Figure 4.1: The schematic diagram of the experimental setup. An x-polarized pulse laser propagates
through a quarter wave plate to generate a circular polarization beam. The laser beam is focused
by an objective with 0.65 NA. The sample solution consisting of 60 nm gold nanoparticles is filled in
the glass micro-tube. An additional green beam is used to illuminate the sample. The experimental
manipulation process is observed through the objective and imaged on the CCD.
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Figure 4.2: Focal field distributions of a circularly-polarized femtosecond laser pulse with an aver-
aged power Pave = 1.54 W (i.e., the maximal power used in the experiment). (a–d) The square of the
modulus of the peak electric field in the focal plane (a) The square of the modulus of the total electric
field (b-d) The x, y, and z components of the electric field. (e–h) The magnetic field in the focal plane.
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Figure 4.3: (a) The amplitude of the peak electric fields of the focused field is plotted as a function of
the average power Pave increasing from 0 to 2.0W. (b) Nonlinear absorption coefficients are plotted
as a function of the peak electric field. (c) The extinction cross-section σext of gold nanoparticles
varies with the increase of the peak electric field. The peak of σext appears in the SA process (A, B,
and C) and in the RSA process (D, E, and F), respectively.

is zero, the extinction cross-sections are determined by the localized surface plasmon

resonance (LSPR)[23]. As the incident optical intensity increases from low to high, the

peak of the cross-section appears with a certain wavelength due to the nonlinear effects,

as shown in Fig.4.3 (c). We investigate the processes of change of the optical force and

potential well at three points (A, B, and C) in the SA process and at another three points

(D, E, and F) in the RSA process below.

Fig.4.4 shows the optical forces and potential well during the SA process in the fo-

cal plane (x, y,0). The blue color indicates the direction and magnitude of the gradient

force toward the center point. Note that the scattering forces are neglected because the

magnitude of the scattering force is very small in the focal plane. Combined with the

vectorial diffraction theory Eq.(4.2), the direction and distribution of the gradient force

are calculated using Eq.(4.8).

Fig.4.4 (a) and (d) shows the distribution of the gradient force in the focal plane for

the average power Pave= 110 mW. The distribution of the optical force is circularly sym-

metry because of the circular polarization beam. The gradient force points to the cen-

ter of the focal spot similar to that for the case without a nonlinear effect. Fig.4.4 (b)

shows the corresponding optical force along the x-axis. The extinction cross-section

σext reaches a peak value at Pave = 170 mW marked as point B in the SA process. At the

B point, the magnitude of the gradient force is close to zero in a certain region, as shown

in Fig.4.4 (b) and (e). The curve of the optical force becomes flat in a certain region when

the extinction cross-section reaches a peak during the SA process. At C point in Fig.4.3,

Fig.4.4 (c) shows a reversed gradient force, whose direction points away from the center

point in a certain region for the average power Pave= 300 mW. According to Fig.4.4 (f), the

maximum of this opposing force is 0.45 pN and the length of the region of the opposing
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Figure 4.4: The gradient force and potential well in the SA process. (a) The gradient forces in the
focal plane are plotted for Pave = 110mW. (d) The gradient force along the x-axis. (g) The potential
well normalized to kB T on the focal plane. (j) The potential well along the x-axis for Pave = 110
mW. (b) and (c) The gradient forces in the focal plane are plotted for Pave = 170 mW and 300 mW,
respectively. The blue color indicates the direction towards the center of the focal plane and the red
color indicates the force backwards the center point. (e) and (f) The corresponding optical forces
along the x-axis (g) - (i) The corresponding potential wells in the focal plane for Pave = 170mW and
300mW. (h) - (l) The distribution of potential well along the x-axis.
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force along the x-axis is 426 nm.

The trapping potential is normalized to kB T , where kB is the Boltzmann constant,

and T (T = 300K) is the absolute temperature of the environment. The corresponding

potentials for Pave = 110 mW are calculated and shown in Fig.4.4 (g). The potential well

has a conventional concave surface at the bottom part. The depth of the potential well

is -13 kB T , as shown in Fig.4.4 (g) and (j). The shape of the bottom part of the potential

becomes flat in a certain region for Pave = 170 mW, which indicates that the optical force

starts to reverse with increasing input power, as can be seen in Fig.4.4 (h). The depth of

the potential well is -20 kB T at 170 mW. In Fig. 4.4 (k), the shape of the bottom part of

the potential well changes from a flat plane to a convex plane in a certain region. The

minimal potential is -20 kB T and the potential on the top of the convex plane is -16 kB T .

The radius of the region is 426 nm in Cartesian coordinate, as shown in Fig. 4.4 (l). The

region of the convex shape is in accordance with the region of the reversed gradient force.

Therefore, the particle will be trapped in a ring shape between the conventional gradient

force and the reversed force. This theoretical prediction of nonlinear optical trapping is

in good agreement with the result of the reported experiment[9].

At D point in the RSA process, the incident average power Pave is 0.7 W. The opti-

cal force and potential well are plotted in Fig.4.5 (a), (d), (j), and (h). The region of the

reversed gradient force has a radius of 376 nm, as shown in Fig.4.5 (a) and (d). The po-

tential in this region has an inverted shape of the well. The maximum potential is 12

kB T for Pave = 1.15 W. The minimal value of the potential is -20 kB T , which is the same

as the minimal value at the B and C points in the SA process, as can be seen in Fig.4.4 (k)

and (l). The particle can be trapped in the ring shape between the conventional gradient

force region and the reversed gradient force region. At the peak point of the extinction

cross-section in the RSA process, namely the E point, the average power Pave is 1.15 W.

The curve of the gradient force becomes flat and the magnitude of the gradient forces

is close to zero near the focal point, as can be seen in Fig.4.5 (e) and (f). The region of

the first reversed gradient force becomes larger with a radius of 430 nm. The maximum

potential is 35 kB T for Pave = 1.15 W. The top part of the potential well is flat, as shown

in Fig. 4.5 (h) and (k). The average power Pave is 1.54 W at the F point in the RSA pro-

cess. The radius of the region of the first reversed gradient force is 465 nm which is larger

than the radius in case E. The gradient forces reverse again from the focal point with the

increasing of incident power, as shown in Fig. 4.5 (i) and (j). The top part of the poten-

tial well changes from a flat plane to a concave shape, which generates a conventional

potential well in the center region. There are two possible regions for optical trapping of

a particle according to Fig.4.5 (k) and (l). One is a ring shape of the potential well with
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Figure 4.5: The optical force and potential well in the RSA process. (a) Distribution of the gradient
force on the focal plane at D point in the RSA process (d) A curve of the gradient force along the x-
axis for Pave = 0.7 W. (g) and (j) The optical potential well in the focal plane and its profile along the
x-axis for Pave = 0.7 W, respectively. (b), (e), (h), and (k) the gradient forces in the focal plane, the
gradient forces along the x-axis, the optical potential well in the focal plane and its profile along the
x-axis for Pave = 1.15 W at the E point in the RSA process, respectively. (c) and (f) For Pave = 1.54 W,
the gradient forces and the corresponding potential on the focal plane, respectively. (i) and (l) the
gradient forces and the corresponding potential along the x-axis, for an average power of 1.54 W,
respectively.
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Figure 4.6: (a) and (b) are experimental screenshots of gold nanoparticles trapped under incident
powers of 1.15 W and 1.54 W, respectively. Because of the distinctive trapping potential formed
within the deep RSA regime, a gold nanoparticle is constrained stably at the center while another
performs an outer circumgyration.

a radius of 460 nm has a depth of -20 kB T . In this circumstance, the central potential

barrier flattens out, and a maximum positive potential barrier of 34 kB T .

4.4.2. EXPERIMENTAL RESULTS

Fig. 4.6 (a) and (b) present successive frames of the video of optical trapping (see sup-

plementary videos S3 and S4). In the early RSA regime, the optical force and trapping

potential well retained a similar circumgyrating motion to that for the SA regime at Pave

= 1.15 W, as shown in Fig. 4.6 (a). For the experiments at Pave = 1.54 W, in addition to

a circumgyrating nanoparticle, another particle is trapped at the center point inside the

path of circumgyration. The bright flare at the center verifies the high stability of the cen-

tral trapped nanoparticle, whereas the fall in brightness in the outer ring results from the

particle being in a state of circumgyration of high speed. We conclude that circumgyra-

tion originally arising in the SA regime holds steady, and another trap is formed through

the deep RSA effect.

Although our camera’s sampling rate is lower at 30 fps compared to the 1500 fps used

in the previous work Ref. [9], we have maintained consistent experimental conditions,

for example, the NA of the objective lens, size of nanoparticles, central wavelength, and

the repetition frequency of the trapping laser. The only different parameter is the pulse

duration, which results in different input peak power. According to the measurements

provided in Ref. [9], there is a strong correlation between the rotation speed and the in-
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Table 4.2: Rotation speeds under different input powers.

Ref.[9] This work

point C point D point E point F

Pave (W) 0.35 0.5 0.65 0.3 0.7 1.15 1.54

Ppeak ×105(W) 6.25 8.93 11.6 3.75 8.76 14.38 18.76

Rotation speed (r/s) 220 235 250 200 230 260 290

put peak power. Therefore, by carefully comparing the peak power of the incident pulse

in our work with that in the reported experiment, we can draw a reasonable conclusion

for the rotation rate, as shown in Table.4.2.

According to the results in Ref. [9], the rotation speed is nearly a linear function with

the incident laser. Thus, we can approximately estimate the rotation speed with an av-

erage power of 0.7 W, 1.15 W, and 1.54 W, which refer to the points D to F in our work,

respectively. The estimated rotation speeds are shown in the right half part of Table. 4.2.

4.4.3. DISCUSSION

The optical force originates from the physical properties of the trapped objects and their

interactions with the optical field. The consensus is that stable optical trapping is achieved

through the balance of optical forces. The nonlinear response of the gold material ex-

cited in an ultra-high electric field, however, disturbs the established balance. Its trans-

mittance increases as a consequence of SA and diminishes under RSA. With an incident

femtosecond pulse of circularly polarized light, the optical forces exerted thereby on a

gold nanoparticle reduce and reverse in the SA regime. The potential profile changes

from concave to convex at the central position. Consequently, at relatively low intensi-

ties in the nonlinear optical tweezers, a ring-shaped potential well can be formed and

nanoparticles can be driven to circumgyrate along the orbital energy flux.

As input power increases, nonlinear RSA comes into effect and the convex energy

barrier strengthens gradually. When the incident intensity reaches a specific threshold

value, the magnitude of the optical forces becomes smaller and another reversal in the

direction of the optical forces appears at the center. From a potential energy perspec-

tive, a neo-subsidence appears at the original convex vertex within a larger excitation,

indicating that an additional particle is trapped at the center, encircled by the original

circumgyrating nanoparticle(s). Hereto, a completed nonlinear optical trapping mecha-

nism is established in theory and demonstrated in experiments. Implementing nonlin-

ear composite optical manipulation phenomena now becomes possible with the poten-
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tial for an expansion in applications.

THE HEATING PROCESS UNDER THE ILLUMINATION OF FEMTOSECOND PULSES

Since we used a large laser fluence to stimulate the third-order nonlinear effect, it is

needed to discuss the induced thermal problem in our experimental environment. We

note that femtosecond-pulsed illumination can lead to a sharp and transient increase in

the temperature of the nanoparticle. This effect can confine the heat to the close vicinity

of the nanoparticle, preventing extended heating of the surrounding environment[24].

Compared to the absorption coefficient of the gold NP (aAu = 8.2053×105cm−1) [25], the

absorption coefficient of water (awater = 1.9639×10−2cm−1)[26] is extremely small at the

wavelength of 800 nm. The temperature increase is mainly caused by gold nanoparticle

absorption. The absorption of laser pulse energy by a gold nanoparticle can be described

as a three-step process [27, 28], each of these steps involving different time scales as fol-

lows:

1. electronic absorption: During the SA and RSA process, part of the incident laser pulse

is absorbed by free electrons of the gold NP. The electronic gas thermalizes over a time

scale τe−e ≈ 220 f s[27]. The temperature of the electron (Te ) is increased but the tem-

perature of the phonon (Tph) remains unchanged.

2. Electron-phonon thermalization: The hot electronic gas relaxes through an electron-

phonon interaction (τe−ph ≈ 1.7ps) [28]. The ion of the gold lattice is heated due to the

electron–phonon interaction and this step is independent of the size of the nanoparti-

cle. At this step, the nanoparticle is in internal equilibrium at a uniform temperature

(Te = Tph) but is not in equilibrium with the initial ambient temperature.

3. External heat diffusion: The energy diffusion from the nanoparticle to the surrounding

environment (water) usually occurs at a longer time scale and leads to a cooling of the

nanoparticle and the heating of the surroundings. The time scale of this step depends

on the size of the NP and ranges from 100 picoseconds to a few nanoseconds[29].

In the ideal case, the heat source (the gold nanosphere) can be modeled as a dipole,

the heat power density can be calculated by a Dirac distribution:[30]

ρw cw∂t T (d , t ) = kw∇2T (d , t )+σabs Iaveδ(d)δ(t )/ frep, (4.10)

where ρw is the mass density of water, cw is the specific heat capacity at constant

pressure, and kw is the thermal conductivity of the system at the time t and distance

d from the dipole, σabs is the absorption cross-section of the nanoparticle, Iave is time

average optical intensity, and fr ep is the repetition rate of the pulsed laser. The ideal

problem has an analytical solution with the thermal diffusivity of water aw which can be
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written as[31]

T (d , t ) = σabs Iave

ρw cw f

1

(4πaw t )3/2
exp(− d 2

4πaw t
). (4.11)

Considering a realistic spherical nanoparticle (r = 30 nm), there is no analytical solution

but the approximation can be done according to the above equation. The initial tem-

perature can be obtained by calculating the time t for ∂t T (d , t ) = 0 at the original point

(d ≈ 0). Then the temperature increase of the gold nanoparticle reaches its maximum

value at its center point which can be written as[30]

TN P _max=
1

3
p

3

σabs Iave

V ρAucAu f
, (4.12)

where ρAu is the mass density of gold, cAu is the specific heat capacity of gold at constant

pressure, and V is the volume of the nanosphere. The time evolution of the temperature

in the nanoparticle can be conveniently fitted using a stretched exponential function

[30]

TN P (t ) = TN P _max exp

[
−

(
aw t

τ0r 2

)n]
. (4.13)

Then we use this function to fit the evolution of the temperature, as plotted in Fig.4.7.

The optimized fit parameters are n = 0.39 and τ0 = 0.041. Note that the pulse repetition

f = 80MHz and pulse duration is 100 fs. The average power is 1.54 W. These parame-

ters correspond to those configured at point F. The sampling time is 50 ns. The room

temperature is 23 °C. Fig.4.7 illustrates the temperature gain and loss as a function of

time under the pulsed illumination. The temperature of the nanoparticle rises instan-

taneously to the maximum value and then drops back to room temperature after a few

hundred picoseconds.

Next, we then discuss the subsequent spatial evolution of the temperature in the sur-

rounding environment. Firstly, the initial temperature T (d ,0) remains uniform inside

the sphere (0 < r ≤ 30nm) because the thermal conductivity of the gold kAu is much

higher than kw . Then it generates a temperature envelope[30],

Initial temperature: T (d , t ) = TN P (t ), for 0 < d < r ; (4.14)

Boundary conditions: kw 4πr 2∂r T (r, t ) =V ρA ucAu
dTN P (t )

d t , for d = r; (4.15)

Diffusion equation: ρw cw∂t T (d , t ) = kw
1

d 2 ∂r t [d 2∂r T (d , t )], for d < r. (4.16)

The Eq. 4.16 is the boundary condition at the interface from the energy conservation law.

Similarly, when considering a finite-size nanoparticle, a stretched exponential function
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Figure 4.7: The temporal temperature profile at the original point of the GNP. The repetition rate of
a pulsed laser is 80 MHz. The total time scale is 50 ns.

can also be used to fit the envelope of the spatial temperature profile in the surrounding

water [31]:

Tspatial(d , t ) = TN P (t )exp

[
−

(
d/r −1

ρ0

)n]
. (4.17)

The fit parameters are n = 0.45 and ρ0 = 0.06 [31]. The result is presented in Fig. 4.8

with the spatial temperature of the nanoparticle. For a large interface resistivity [32, 33],

the heating of the surrounding fluid can be highly inefficient. The spatial temperature

profile reveals that the temperature outside of the nanoparticle rapidly returns to room

temperature over a short distance. Therefore, the temperature rising is completely ig-

norable in this work.

4.5. CONCLUSION

Using a circular polarization femtosecond beam, we performed intensive research on

the evolution of nonlinear properties and responses of gold nanoparticles, as well as the

nonlinear optical forces that accompany the process. Within the deep RSA regime, a

composite trapping state, i.e., a state in which an additional static trap encircled by the

original circumgyration appears at the very center, is demonstrated. The results from ex-

periments match well with those from theory. The demonstration proves that the switch-

ing of trap states stems from a reversal of the optical forces, which is induced through the

reversal in sign of the rate of change in the coefficient of nonlinear absorption. The re-

sults fill gaps in knowledge of the existing nonlinear optical tweezers and help in perfect-

ing a relatively complete physical system. Our understanding of the mechanism under-
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Figure 4.8: The temperature envelope of the spatial evolution for the system consisting of a particle
(r = 30 nm) in water.

scoring nonlinear optical trapping is improved thus paving the way for a broader study

of nonlinear metallic materials. Furthermore, the novel nonlinear optical trapping effect

has the potential to synergize with diverse structured light beams and other nonlinear

materials, including quantum dots and nonlinear nanocrystals. More novel trap phe-

nomena binding with other nanotechnologies are expected to be discovered for the ex-

tension of the physical significance of nonlinear optical trapping, as well as conductive

to further developments in practical applications.
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5
CONCLUSIONS AND OUTLOOK

I N the Introduction (Chapter 1) we introduce traditional optical trapping and its wide

applications in physics and biology. Each step of exploiting optical trapping in the

nonlinear regime is also introduced at the end of the chapter.

With regard to the time-averaged optical force exerted on the metallic nanoparticle

in the Rayleigh regime, we conclude:(Chapters 2)

1. The deduction of the time-averaged optical forces equation and the dipole approx-

imation theory for the Rayleigh nanoparticle. The vectorial diffraction theory for the

focused optical field.

2. The simulation results of optical trapping are affected by the sample’s size and the

volume fraction. The stable optical trapping is affected

With regard to the nonlinear effect involved in the optical trapping, we conclude

(Chapter 3):

3. The changes in the nonlinear optical properties of the gold nanoparticle under the

stimulation of tightly-focused pulsed-laser.

4. The changes of the nonlinear gradient forces and optical potentials with the nonlin-

ear effect. We also discussed the nonlinear scattering forces along the optic axis in the

discussion. The experimental results coincided with the theoretical prediction.

Then regarding the mysteries behind the nonlinear optical trapping, we conclude

(Chapter 4):

5. The stimulation of the saturable absorption effect via the circular polarization pulsed

beam. The nonlinear polarizability and the nonlinear refractive index of the gold nanopar-

ticle are also explored and calculated.

6. The derivation of the nonlinear optical force exerted on the gold nanoparticle in the

87
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Reverse saturable absorption (RSA) regime. The changes in the optical potential well are

also developed and demonstrated. The experimental results are also presented in the

chapter. After combining the third-order nonlinear effects and the changes in nonlin-

ear optical properties of the gold nanoparticles, we analytically present a quantitative

analysis for the nonlinear optical trapping.

In this thesis, we present an updated and comprehensive theoretical framework for

the optical trapping of metallic nanoparticles. This versatile method is applicable to

both linear and nonlinear optical trapping scenarios, accommodating arbitrary polar-

ization states. Our quantitative analysis of nonlinear optical trapping has wide-ranging

applications and implications.

In the nonlinear regime, we unlock the potential for achieving sub-diffraction-limit

control over the rotation of gold nanoparticles. This breakthrough allows for a detailed

understanding of the underlying physics of light-matter interactions in these intricate

systems. The newfound capability to manipulate nonlinear composite optical phenom-

ena opens the door to diverse applications.

For instance, these advanced optical tweezers can serve as optically-driven sensors

and microfluidic devices, offering unprecedented control over particle speed, rotation

radius, and direction. Such capabilities have immense value in metrology and various

other fields. This thesis marks a significant step forward in the study and application of

optical trapping, particularly in the nonlinear regime, expanding the boundaries of what

is achievable with this technology.

These nonlinear optical trapping effects and the creation of the analysis method

open up exciting possibilities for synergizing with other nonlinear materials, such as

quantum dots and nonlinear nanocrystals. Additionally, when combined with various

structured light beams, these effects have the potential to yield even more remarkable

trapping phenomena. We anticipate the discovery of novel trap behaviors and their in-

tegration with other nanotechnologies, extending the physical significance of nonlinear

optical trapping and catalyzing further advancements in practical applications. This rep-

resents a promising frontier in the realm of optical manipulation and nanotechnology.



APPENDIX

.1. APPENDIX
A× (∇×B) =∇(A ·B)−(A ·∇)B. (A1)

∇× (A×B) =−(A ·∇)B+A∇·B+(B ·∇)A−B∇·A. (A2)

89





ACKNOWLEDGEMENT

To everyone who reads this, at first glance, it might seem like I did this all on my own.

However, this dissertation, which I needed to obtain my doctorate, was definitely not a

solo effort. Many individuals have supported me throughout this journey, and I wish to

express my deep gratitude to them here.

First, I would like to thank my promoter at Delft University of Technology, Prof. H.

Paul Urbach, and my co-promoter, Dr. Aurèle Adam. Paul, thank you for your guidance

in tackling complex problems and for helping me develop strong academic standards.

Your emphasis on rigorous mathematics has deeply impacted me and will continue to

benefit me in the future. Aurèle, thank you for your extensive help in many aspects. You

participated in all my research work, provided abundant assistance, always encouraged

me, and responded promptly to my needs.

I also wish to extend my gratitude to my promoter, Prof. Xiaocong Yuan, and my

other supervisors, Prof. Changjun Min and Prof. Yuquan Zhang at Shenzhen University.

Prof. Yuan, you have been not just a promoter but also a sponsor. I deeply appreciate

all your support. Your insightful views greatly helped me address my questions, partic-

ularly in resolving a longstanding issue that had troubled me for years. I would like to

express my gratitude to Prof. Min and Prof. Zhang for their guidance and support. Your

guidance has strengthened both my theoretical understanding and experimental skills.

Your guidance has significantly enriched the quality of my work. This dissertation could

not have been completed without your help.

I am also grateful to all the other members of the Optic research group: Yvonne,

Lidija, Silvania, Omar, Gao, Joseph, Florian, Roland, Thim, Peter, and the late Jeff. It

was always a pleasure to chat with you during coffee breaks. I would also like to thank

my PhD fellows: Andreas, Boling, Daniel, Dmytro, Fellipe, HouZhe, Kefei, Lei, Luca,

Matthias, Paolo, Peiwen, Poju, Posheng, Sander, Xiujie, Xukang, Yifeng, YingTang, and

Yuxin. Thanks for all the enjoyable activities inside and outside the office.

I extend my thanks to the thesis committee for their careful consideration and eval-

uation of this thesis.

Lastly, I want to thank my family, who have always supported me, especially Anqi

and Emma, who encouraged me and stood by me through the toughest moments. Your

support and encouragement were crucial in the completion of this dissertation. Thank

91



92 5. CONCLUSIONS AND OUTLOOK

you, everyone!

ZhengZhu



CURRICULUM VITÆ

ZHENG ZHU

27-04-1990 Born in Shandong, China.

EDUCATION
2008–2012 Undergraduate in Computer science

Nanchang University

2012–2015 Undergraduate in Optics engineer
Chinese Petrolum University

2016 PhD. Applied Physics
Technische Universiteit Delft
Thesis: Nonlinear optical trapping of metallic nanoparticles
Promotor: Prof. dr. H.P. Urbach & Prof. dr. Xiaocong. Yuan

AWARDS
2015 National scholarship of Master student

2015 Outstanding graduates

93





LIST OF PUBLICATIONS

Refereed Publications

6. Z. Zhu, Y. Zhang, C. Min,A.J.L Adam, H.P. Urbach, and X. Yuan An improved method to cal-
culate propagation of light field into multi-layer structure, (In preparation).

5. Z. Zhu, Y. Zhang,C. Min, A.J.L Adam, H.P. Urbach, and X. Yuan Relocation of field enhance-
ment in the nanostructure via nonlinear plasmonics, (In preparation).

4. Y. Zhang, Z. Zhu, S. Zhang, W. Zhang, Z. Man, A.J.L Adam, C. Min, H.P. Urbach, A.V. Zayats,
and X. Yuan Bistable nonlinear optical tweezers, (In preparation).

3. Z. Zhu, Y. Zhang, A.J.L Adam, C. Min, H.P. Urbach, and X. Yuan A vectorial model for the
nonlinear gradient force exerted on metallic Rayleigh nanoparticles, Chinese Optics Letter,
Vol. 22, Issue 2, (2024).

2. Z. Zhu, Y. Zhang, S. Zhang, A.J.L Adam, C. Min, H.P. Urbach, and X. Yuan Nonlinear opti-
cal trapping effect with reverse saturable absorption, Advanced Photonics 5(4), pp.046006-
046006 (2023).

1. Z. Zhu, Y. Zhang, A.J.L Adam, C. Min, H.P. Urbach, and X. Yuan Theoretical investigation on

the effect of volume fraction in the optical trapping of gold nanoparticles, Optics Communi-

cations 541, p.129572 (2023).

Conference Proceedings

2. Y. Zhang, Z. Zhu W. Zhang, C. Min, H.P. Urbach, and X. Yuan Nonlinear effects in femtosec-
ond optical tweezers, Proc. SPIE 11558, Quantum and Nonlinear Optics VII, 1155806 (10
October 2020).

1. Z. Zhu, A.J.L Adam, Y. Zhang, C. Min, H.P. Urbach, and X. Yuan A New Method to Calculate
the Propagation of an Arbitrary Plane Wave into a Multi-layer Structure, Photonics Electro-
magnetics Research Symposium Fall (2019).

95

https://www.researching.cn/EN/HPArticle/COL-23-0702?type=en
https://www.researching.cn/EN/HPArticle/COL-23-0702?type=en
https://doi.org/10.1117/1.AP.5.4.046006
https://doi.org/10.1117/1.AP.5.4.046006
https://doi.org/10.1016/j.optcom.2023.129572
https://doi.org/10.1016/j.optcom.2023.129572
https://doi.org/10.1117/12.2573822
https://doi.org/10.1117/12.2573822
https://piers.org/piers2019Xiamen/files/FinalProgram.pdf
https://piers.org/piers2019Xiamen/files/FinalProgram.pdf

	Summary
	Samenvatting
	Introduction
	Optical trapping
	Nonlinear optical trapping
	Research objective and outline
	titleReferences

	 The optical trapping of metallic nanoparticles
	Introduction
	The method for optical trapping of metallic nanoparticles
	The deduction of the time-averaged optical force equation
	The dipole polarizability of a nanoparticle
	 The focal field with the vectorial diffraction theory
	The effect of volume fraction on optical trapping
	The optical force on a dipole embedded in a medium

	Calculation results and discussion
	Conclusion
	titleReferences

	The optical trapping of metallic nanoparticles in nonlinear regime
	Introduction
	The nonlinear optical properties of the gold nano-particle
	The nonlinear optical force on a metallic nanoparticle
	Results and discussion
	Calculation results
	Experimental results and discussion
	Discussion

	Conclusion
	titleReferences

	 Nonlinear optical trapping with saturable and reverse saturable absorption effect
	introduction
	The theoretical method
	Experimental setup
	Results and discussion
	Calculation results
	Experimental results
	Discussion

	Conclusion
	titleReferences

	Conclusions and outlook
	Appendix
	Appendix .1

	Acknowledgement
	Curriculum Vitæ
	List of Publications

