
Towards a Linear-Data Monotone Wrapper
Algorithm for Machine Learning Algorithms

07-06-2023
Berend Kam - 4567242
EEMC- MSc Computer Science
Pattern Recognition & Bioinformatics

Preface

Machine learning algorithms can behave in surprising ways, and one of such surprises is non-monotonicity.
Non-monotone machine learning algorithms may become worse given more training data, the opposite of
what a scientist might expect when using an algorithm that is supposed to learn from data. This research tries
to get a step closer to removing non-monotonicity from machine learning algorithms in a data efficient way,
reshaping crooked learning curves like a smith hammering away at a bar of metal. The research was carried
out at TU Delft under close supervision of Marco Loog and Tom Viering, who I wholeheartedly thank for
guiding me during this process. Additionally, special thanks goes to the members of the Thesis Committee:
Jan van Gemert and Sicco Verwer.
Berend Kam
07-06-2023

2

Towards a Linear-Data Monotone Wrapper Algorithm for
Machine Learning Algorithms

Berend Kam, Thesis Supervisor: Jan van Gemert, Daily Supervisor: Marco Loog, Daily Co-Supervisor: Tom
Viering
TU Delft

Machine learning algorithms (learners) are typically expected to produce monotone
learning curves, meaning that their performance improves as the size of the training
dataset increases. However, it is important to note that this behavior is not universally
observed. Recently monotonicity of learning curves has gained renewed attention,
as several authors have proposed ’wrapper’ algorithms; algorithms that attempt at
filtering the hypotheses produced by a learner to turn them into a monotone learner,
even if the learner itself is not monotone. Such wrappers use part of the training data as
validation data, and each newly produced hypothesis is evaluated using this validation
data. However, with each new hypothesis, the validation data grows in size exponentially.
As such the wrapper is data-hungry, using up to 85% of the training data as validation
data in some cases. This paper investigates what happens when a linearly growing
validation sample is used instead. Is it enough to retain monotonicity? We proof that
selecting the best performing hypothesis from a finite set of hypotheses, based on a
validation sample that grows linearly, results in a monotone learning curve. However,
when introducing a new hypothesis with each increase in the validation sample size, it
has been observed that this selection process does not demonstrate monotonic behavior.
The authors of this paper hope that this work provides key insight into how to choose
from a set of hypotheses in a monotone way, and that the work may be a stepping stone
for a fully functioning linear-data monotone wrapper algorithm.

I. Introduction

Contrary to popular belief, the ability of a machine learning algorithm (learner) to generalise can become
worse with larger training samples [1–6]. Such machine learners are non-monotone, meaning the expected

true error of the learner may increase with each additional instance of training data[7]. Such learners thus
also have a non-monotone learning curve, the curve of the generalisation error of a learner vs the amount of
training data it has trained on.

Unfortunately non-monotonicity is an undesirable trait of learning curves; in general, learners are expected
to become better with more training data, or at least not worse [2]. Additionally non-monotonicity makes
certain learning curves analysis tasks much more difficult, such as model selection or extrapolation of learning
curves to larger training sizes [2]. Ideally then, all learners are monotone learners, but is it even possible to
turn a non-monotone learner into a monotone learner? And can this be done without altering the search space
of the learner? Ideally, one would create a ’wrapper’ algorithm that has only black-box acces to the learner.
The wrapper keeps track of outputted hypotheses of the learner at increasing training sizes, and picks which
of the generated hypotheses to return in order to form a monotone learning curve.

Bousquet et al. were recently able to construct the first universally consistent monotone wrapper to
our knowledge, using only the aforementioned black-box access to any underlying learner[8]. Universally
consistent means that the algorithm is converges to the optimal error in for a given problem, also known as the
Bayes error, for any distribution of data 𝐷 on the input domain Z in the limit [7]. They do so by splitting the

3

training sample in two samples. One sample is used for training the learner and generating hypotheses, similar
to a normal training sample. The other is used as a validation sample, and evaluates the generated hypotheses.
Our work focuses mostly on the evaluation process using the validation sample. As we will show in more
detail in Section III, one potential problem with Bousquet’s method is that in order to guarantee monotonicity
for newly generated hypotheses, the validation sample must grow in size exponentially. In more detail, the
validation sample used to evaluate the hypotheses 𝑆validation, grows according to |𝑆validation

𝑡+1 | = 𝑐 |𝑆validation
𝑡 |

where c is some positive constant > 1. This severely limits the resolution of the learning curve as all training
sample sizes between 𝑆𝑡 and 𝑆𝑡+1 are skipped, having only few hypotheses at large intervals. We will highlight
some cases in which this may lead to unexpected results.

The main focus of this research is hence to work towards a universally consistent monotone wrapping
algorithm that can generate hypotheses more frequently. What happens if the validation sample grows by
a constant 𝑐 each time, so linearly? A simple algorithm 𝑀 is devised to test this. 𝑀 chooses from a set
of hypothesis 𝐻𝑡 the best performing hypothesis on a validation sample 𝑆validation

𝑡 . The validation sample
is then increased by |𝑆validation

𝑡+1 | = |𝑆validation
𝑡 | + 𝑐, for some positive constant 𝑐. We then evaluate a set of

hypotheses 𝐻𝑡+1 using this new validation set, and again choose a best performing hypothesis. Is the chosen
hypothesis based on 𝑆validation

𝑡+1 expected to have a lower generalisation error than the hypothesis chosen based
on 𝑆validation

𝑡 ? In other words, is this algorithm monotone? We ask three subquestions:

1) Given a immutable set of hypotheses |𝐻𝑡 | = 2, is 𝑀 monotone?
2) Given a immutable set of hypotheses |𝐻𝑡 | = 𝑘 , with 𝑘 some positive integer, is 𝑀 monotone?
3) Given an expanding set of hypotheses |𝐻𝑡+1 | = |𝐻𝑡 | + 1, is 𝑀 monotone?

Note that the last item on an expanding set of hypotheses is our final goal, a monotone wrapper algorithm that
uses linearly growing validation data.

Section II discusses related works. Section III introduces notation used, and discusses Bousquet’s work in
more detail, highlighting some areas of improvement. Section IV introduces our new monotone wrapper
algorithm, which is proven to be monotone in Section V. All results are discussed in Section VI, and finally a
conclusion is given in Section VII.

II. Related Works
In their classical work on machine learning, it was conjectured by Devroye, Györfi, and Lugosi[7] that no
universally consistent monotone learner can exist, who referred to such learners as ’smart’. Viering, Mey and
Loog[9] continue this line of questioning, and pose the open question to what extent you can expect learners
to behave monotonically, and what causes non-monotone behaviour? Several works focus on non-monotone
problems, such as the dipping phenomenon [1], or the peaking phenomenon [3]. Shortly summarised, the
dipping phenomenon may occur when a learner optimizes a different loss function than it is evaluated with.
The peaking phenomenon - which has become synonymous double descent - typically occurs at the point
where the number of instances is equal to number of features of the data [2]. Figure 1 shows both the peaking
and double descent learning curves.

To our knowledge, the first to proof wrong Devroye, Gyorfi and Lugosi’s conjecture was Pestov [4], who
proposes a universally consistent monotone binary classifier. Shortly summarised, Pestov splits a data sample
𝑆𝑡 into a "labelling" (training) sample and a "testing" (validation) sample. The classifier learns to split the
input domain into partitions based on training sample, with the majority of labels of a given class within a
partition determining the outputted label. Each round, a new partition is generated. Then, from all previously
generated partitions and this new partition the best performing partition is chosen based on the performance
on the validation sample. Crudely stated, by growing the validation sample exponentially each round, Pestov
guarantees enough instances are present in all partitions to make a monotone decision in expectation.

4

(a) Dipping Learning Curve (b) Peaking Learning Curve

Figure 1. Non-Monotone Learning Curves. Two graphs from "Making Learners (More) Mononotone" [6].
The black learning curves show a typical non-mononte learning curve, whereas the yellow learning curves
show a (mostly) monotone learning curve

Bousquet [8] extends Pestov’s method to create a universally consistent monotone wrapper algorithm for
all learners, effectively answering both Devroye, Gyorfi, and Lugosi, and Viering, Mey, and Loog; all learners
may be turned into universally consistent monotone learners. Their method guarantees monotonicity in a
similar manner to Pestov. They too split their training data into train and validation samples, generate a new
hypothesis each round, and grow the validation sample exponentially each round to guarantee monotonicity.
Section III goes into more detail of the inner workings of Bousquet’s algorithm.

Other works that create a nearly monotone wrapper algorithm are proposed by Viering [6] and Mhammedi
[5]. These learners are non-monotonic with at most probability 𝜖 .1 Viering’s algorithm uses McNemar’s
test, which Fagerland explains well [10]. Essentially, the probability of making a non-monotone decision is
bounded by the 𝛼 parameter of McNemar’s test. Mhammedi uses a modified version of his earlier work, the
FreeGrad algorithm [11] to attain monocity.

In a different perspective, monotone learning curves are part of a broader scope of research that focuses on
learning curves. Viering, Mey, and Loog [2] give a detailed survey on learning curves and what information
may be extracted from them. They highlight works [12–17] that parameterize learning curves, fitting known
functions to their shape at low data sizes. These functions are then extrapolated to larger training sizes to
estimate performance. Additionally, they highlight cases in which learning curves are used for model selection
or reducing complexity. A distinction is made between ’well-behaved’ learning curves, monotone learning
curves which are suited for parameterisation, and ’ill-behaved’ learning curves, which are non-monotone
learning curves.

III. Background

A. Notation and Setting
In order to construct a learning curve, one trains a machine learning algorithm 𝐴 on a sample of data 𝑆𝑡
where 𝑡 is an index. A sample 𝑆𝑡 consists of |𝑆𝑡 | instances, drawn independently and identically distributed
(i.i.d.) from underlying data distribution 𝐷, 𝑆𝑡 ∼ 𝐷. After training, the machine learning algorithm returns a
hypothesis ℎ = 𝐴(𝑆𝑡). To measure how well a hypothesis generated by the learner performs for its designed

1not to be confused with the notation we use for true error 𝜖𝑖 of a hypothesis ℎ𝑖

5

task, we evaluate a hypothesis on either the underlying 𝐿𝐷 or on a sample 𝐿𝑆𝑡 . Throughout this paper, we
will assume use of a classifier using the error rate to evaluate hypotheses. The error rate for a sample 𝑆𝑡 is
simply given by error rate =

number of instances classified incorrectly
number of instances in sample . For a hypothesis ℎ𝑖, the true error rate 𝜖𝑖, also

known as generalisation error, is the error rate of a hypothesis on the underlying 𝐷. As 𝐷 is a distribution
and not a sample, the true error rate 𝜖𝑖 is the probability of classifying a random instance of 𝐷 incorrectly,
𝜖𝑖 = 𝑃(𝐿𝑆1∼𝐷 (ℎ𝑖) = 0). The purpose of a learner is to minimize the true error rate.

We define a wrapper algorithm 𝑀 as an algorithm that chooses from a set of hypotheses 𝐻 a hypothesis
ℎ𝑏𝑒𝑠𝑡 which it deems best to return. This is not necessarily the hypothesis with the lowest generalisation error,
as other constraints may apply. Bousquet [8] and Viering [6] use a wrapper 𝑀 that takes as input a learner 𝐴
and a sample 𝑆𝑡 and choose a hypothesis ℎ𝑏𝑒𝑠𝑡 from a set of generated hypotheses by 𝐴, ℎ𝑏𝑒𝑠𝑡 = 𝑀 (𝐴, 𝑆𝑡).
Alternatively, we use algorithm 𝑀 to take in a predetermined set of hypotheses 𝐻 instead of 𝐴 to return a
hypothesis ℎ𝑏𝑒𝑠𝑡 ∈ 𝐻, ℎ𝑏𝑒𝑠𝑡 = 𝑀 (𝐻, 𝑆𝑡).

A learning curve is a plotted curve with on the horizontal axis |𝑆𝑡 |, and on the vertical axis the expected
true error rate on the underlying E𝑆𝑡∼𝐷 𝐿𝐷 (𝐴(𝑆𝑡)). If no exact error rate on the underlying can be determined,
an estimate on an out-of-sample test sample is used.

A monotone wrapper algorithm, is a wrapper algorithm for which the choice of ℎ𝑏𝑒𝑠𝑡 at increasing sample
sizes forms a monotone learning curve. We define a linear-data monotone wrapper as follows.

Definition 1 (Linear-Data Monotone Wrapper Algorithm) A wrapper 𝑀 is monotone if for any two i.i.d.
samples 𝑆𝑡 , 𝑆𝑡+1 ∼ 𝐷 with |𝑆𝑡+1 | = |𝑆𝑡 | + 𝑐 for some positive constant integer 𝑐, and a learner 𝐴, it holds
that the expected error on the underlying distribution 𝐷 does not become larger from 𝑡 to 𝑡 + 1 for any 𝑡, so
E𝑆𝑡+1∼𝐷 [𝐿𝐷 (𝑀 (𝐴, 𝑆𝑡+1))] ≤ E𝑆𝑡∼𝐷 [𝐿𝐷 (𝑀 (𝐴, 𝑆𝑡))].

An overview of all notation used can be found in Appendix A

B. Bousquet
Bousquet’s monotone wrapper algorithm [8] is the first universally consistent monotone wrapper algorithm to
our knowledge. Whilst the exact mechanisms of the wrapper are considered outside the scope of this work,
we have identified some opportunities for improvement, and will explain aspects of the wrapper which are
related to these improvements.

1. Training/Validation Split
Bousquet splits a training sample 𝑆𝑡 into blocks of increasing size 𝐵1, 𝐵2, ..., 𝐵𝑘 , 𝐵𝑘+1, 𝐵𝑘 + 2, each block 4
times larger than the previous block |𝐵𝑖 | = 4|𝐵𝑖−1 |, except for the last block 𝐵𝑘+2 = 𝐵𝑘 + 1. See Figure 2.
The best hypothesis is initialised as ℎ𝑏𝑒𝑠𝑡 = ℎ∅ , with ℎ∅ a randomly initialised hypothesis. Each round, a
new hypothesis ℎ 𝑗 is trained on a conjunction of all blocks up to 𝑖 ∪𝑖={1.. 𝑗 }𝐵𝑖

, and then evaluated together
with ℎ𝑏𝑒𝑠𝑡 on the next block 𝐵 𝑗+1. The best of ℎ 𝑗 and ℎ𝑏𝑒𝑠𝑡 is then chosen as the new ℎ𝑏𝑒𝑠𝑡 . The process of
evaluating and updating ℎ𝑏𝑒𝑠𝑡 is done through means of the update rule 𝑈. After the last update, an additional
block is used to regularize the outputted hypothesis, which is not relevant for our work. All in all, the wrapper
is quite data-hungry, using 85.7% of 𝑆𝑡 as validation data (lim𝑛→∞

2·4𝑛
(2·4𝑛+∑𝑛−1

𝑖=0 4𝑖) ≈ 0.857).

2. Update Rule
The update rule uses a validation set to update ℎ𝑏𝑒𝑠𝑡 , ℎ𝑏𝑒𝑠𝑡 = 𝑈 (ℎ𝑏𝑒𝑠𝑡 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, ℎ𝑖 , 𝐵𝑖+1). One important
feature we want to highlight is that the wrapper algorithm only chooses a new hypothesis as ℎ𝑏𝑒𝑠𝑡 if it
outperforms a the original hypothesis with a margin of 𝜖𝑛 2 dependent on the number of instances in the

2Unrelated to the true error as defined in Subsection III.A

6

Figure 2. Data sample split. The last two data blocks are used the last update 𝑈 and a regularisation step 𝑅,
and contain approximately 85.7% of all data in the sample.

(a) no dipping, 3 classes (b) dipping, 2 classes

Figure 3. Learning curves of Bousquet’s wrapper. Curves are plotted up to sample size 50k, the estimated
true error is the error rate over a test sample of size 1000, the test is repeated 1000 times and averaged. The
error bars are 1 standard deviation.

validation sample |𝐵𝑖 | = 𝑛. For a classification problem with more than two classes, 𝜖𝑛 is defined as
𝜖𝑛 =

√︁
𝑙𝑛(64𝑛)/𝑛 + 72√

𝑛
.

As an example, imagine the first initialised hypothesis ℎ∅ has an error rate on the underlying of
𝐿𝐷 (ℎ∅) ≈ 0.666. This is plausible in a classification problem with 3 classes who appear equally frequently
in 𝐷, and when ℎ∅ is set to classify all instances as one class. In order for a new hypothesis ℎ𝑖 to be
selected through update on a validation sample 𝐵𝑖+1, the 𝜖𝑛 term must be less than this number 0.666 when
𝐿𝐵𝑖+1 (ℎ𝑖) = 0, so 𝐿𝐵𝑖+1 (ℎ𝑖) + 𝜖𝑛 ≤ 𝐿𝐵𝑖+1 (ℎ∅). This first happens when 𝑛 = 12891, so when the size of the
validation set 𝐵𝑖+1 is 12891. Since 𝐵𝑖 is only a split of the training sample 𝑆𝑡 , the entire sample 𝑆𝑡 needs to
be at least 38229, |𝑆𝑡 | ≥ 38229.

3. Shape of the Learning Curve
Learning curves are plotted for a toy 3-class classification problem in Figure 3a, with 1 dimensional input
data. The classes appear equally frequent, and are sampled from Guassians 𝑁 (0, 0.5), 𝑁 (2, 0.5), 𝑁 (4, 0.5)
respectively. Two learning curves are plotted, one of classifier 𝐴(𝑆𝑡) which simply matches inputs to the
mean of each class seen in training data, also known as a nearest mean classifier. The other shows Bousquet’s
wrapper 𝑀 (𝐴, 𝑆𝑡). Notable of these learning curves is that whilst 𝐴(𝑆𝑡) converges rather quickly, because of
the update rule, 𝑀 (𝐴, 𝑆𝑡) does not. This is a practical problem in low-data settings.

7

Figure 3b shows the learning curve of a toy 2-class classification problem, also known as the dipping
problem. The classes also appear equally frequent as Gaussians, but one class is drawn from 𝑁 (0, 0.5) while
the other is drawn from 𝑁 (−2, 0.5), 𝑁 (2, 0.5), both with equal probability. Again two learning curves are
plotted, one of the nearest mean classifier 𝐴(𝑆𝑡), and one of Bousquet’s wrapper 𝑀 (𝐴, 𝑆𝑡). Notable of these
learning curves is that 𝑀 (𝐴, 𝑆𝑡) is unable to converge to the best performing hypothesis generated by 𝐴(𝑆𝑡).
The reasons for these are twofold: on the one hand, the update rule prohibits choosing hypotheses generated
at small validation sample sizes. On the other hand, exponentially growing validation sample sizes limit the
frequency of generated hypotheses. For example, say 𝐴(𝑆70) is the best performing hypothesis. As 𝑀 (𝐴, 𝑆𝑡)
only generated hypotheses 𝐴(𝑆64) and 𝐴(𝑆256), it is unable to output 𝑆70.

To improve the shape of the learning curve, it would be ideal to have a slower growing validation sample,
such as a linear growing sample |𝑆𝑡 | = |𝑆𝑡−1 | − 𝑘 . Additionally, this would cut down on the data hungriness.

IV. Algorithm
We present Algorithm 1 to investigate what happens if a linearly growing validation sample is used instead
of an exponentially growing validation sample. The main idea of Algorithm 1 is to take a learner 𝐴, and
randomly produce an immutable set of hypotheses 𝐻 in the parameter space of this learner. Contrary to a
’normal’ wrapper algorithm, which splits a sample 𝑆𝑡 into a training sample 𝑆train

𝑡 and validation sample
𝑆validation
𝑡 , the entire training sample 𝑆𝑡 is used as a validation sample in our algorithm. To generate a learning

curve, we ’train’ our learner by selecting a best performing hypothesis ℎ𝑏𝑒𝑠𝑡 ∈ 𝐻 based on the performance
(lowest error rate) on 𝑆𝑡 . In the case of a tie/draw for the lowest error rate on 𝑆𝑡 between multiple hypotheses,
any of the tying hypothesis is returned with random uniform probability. For example for hypotheses ℎ𝑖 and
ℎ 𝑗 this means that ℎ𝑖 and ℎ 𝑗 are returned with probability 0.5 each.

By increasing the size of 𝑆𝑡 linearly, so |𝑆𝑡 | = |𝑆𝑡−1 | + 𝑐 for some positive constant 𝑐, we show it is
possible to construct a monotone learning curve. Randomly initialising 𝐻 and not training 𝐴 on any training
data may seem a strange choice. However, the aim of this research is investigate the effects of a linearly
growing validation sample. As such, we imagine that 𝐴 is some learner that can only produce some fixed
amount of hypotheses 𝐻 𝑓 𝑖𝑥𝑒𝑑 . By setting 𝐻 = 𝐻 𝑓 𝑖𝑥𝑒𝑑 we show that we can turn this learner into a monotone
learner without altering its search space. Additionally, both our technique and a wrapper choose the best
performing hypothesis from a set of previously produced hypotheses 𝐻. The only difference between the two
is that a wrapper algorithm not only considers this set of previously produced hypotheses 𝐻 but also a new
hypothesis that the underlying learner just produced, ℎ𝑛𝑒𝑤 . Proving monotonicity for 𝐻 = 𝐻 𝑓 𝑖𝑥𝑒𝑑 , could be
an integral part of proving monotonicity for 𝐻 = 𝐻 + ℎ𝑛𝑒𝑤 . More on this in Section VI. Also note that if
𝐻 𝑓 𝑖𝑥𝑒𝑑 contains the hypothesis with the optimal error, the wrapper is universally consistent.

To give high level intuition of why this produces a monotone learning curve, imagine that as the size
of the ’validation’ sample 𝑆𝑡 increases, so does the probability of choosing the hypothesis with the lowest
error rate, as the validation sample approaches the actual underlying distribution of data 𝐷. Even a single
additional instance will improve this probability, which makes that 𝑀 returns, in expectation, an improving
hypothesis. In the limit, the probability of choosing the hypothesis with the lowest error rate becomes 1.

V. Theoretical Results
This section contains the main technical contribution of this research. It consists of the proof of two theorems,
Theorem 1 and Theorem 2. The proof of Theorem 1 serves a warmup proof for Theorem 2,.

1. Assumptions
Note that all proofs assume a classification problem, with the error rate as both the training error and the
validation error function, as defined in Section III. Another, strong assumption is that any two hypotheses

8

Algorithm 1
1: procedure 𝑀 (𝐻, 𝑆𝑡) → 𝑓

2: if 𝑡 = 0 then
3: return uniform randomly picked ℎ𝑖 ∈ 𝐻
4: end if
5: 𝐻𝑏𝑒𝑠𝑡 ← ∅
6: 𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 ←∞
7: for ℎ𝑖 ∈ 𝐻 do
8: 𝑒𝑟𝑟𝑜𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐿𝑆𝑡 (ℎ𝑖)
9: if 𝑒𝑟𝑟𝑜𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 < 𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 then

10: 𝐻𝑏𝑒𝑠𝑡 ← {ℎ𝑖}
11: 𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 ← 𝑒𝑟𝑟𝑜𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡
12: else if 𝑒𝑟𝑟𝑜𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑒𝑟𝑟𝑜𝑟𝑏𝑒𝑠𝑡 then
13: 𝐻𝑏𝑒𝑠𝑡 ← 𝐻𝑏𝑒𝑠𝑡 : ℎ𝑖 ⊲ ":" is the concat operation, so ℎ𝑏𝑒𝑠𝑡 is a list of the best hypotheses
14: end if
15: end for
16: return uniform randomly picked ℎ𝑖 ∈ ℎ𝑏𝑒𝑠𝑡
17: end procedure

ℎ𝑖 , ℎ 𝑗 ∈ 𝐻 classify independently. This means that the event that a single instance is classified correctly or
incorrectly by ℎ𝑖 does not affect the probability that ℎ 𝑗 classifies that instance correctly or incorrectly. For
example, the given the two hypotheses ℎ𝑖 and ℎ 𝑗 with respective true error rates 𝜖𝑖 and 𝜖 𝑗 , the probability that
both classify any given instance incorrectly is simply 𝜖𝑖𝜖 𝑗 . Two hypotheses can actually classify independently
by using a separate validation sample per hypothesis, but we choose to formulate this as an assumption for
ease of notation. It is discussed in more detail in Section V.G.

Theorem 1 (Monotonicity for |𝐻 | = 2) For two samples 𝑆𝑡 , 𝑆𝑡+1 ∼ 𝐷 with 𝑡 some positive integer, and
𝐻 = {ℎ1, ℎ2}, learning algorithm 𝑀 as defined in Algorithm 1 is monotone.

Theorem 2 (Monotonicity for |𝐻 | = 𝑘) For two samples 𝑆𝑡 , 𝑆𝑡+1 ∼ 𝐷 with 𝑡 some positive integer, and
𝐻 = {ℎ1, ℎ2, ..., ℎ𝑘}, learning algorithm 𝑀 as defined in Algorithm 1 is monotone, under the assumption all
hypotheses ℎ ∈ 𝐻 classify independently.

A. Preliminaries
In order to proof monotonicity of Algorithm 1, we must find that its expected true/generalisation error
becomes smaller with more data. So, given 𝑀, 𝐻, and 𝐷, we must find that 𝐸𝑆𝑡+1∼𝐷 (𝐿𝐷 (𝑀 (𝐻, 𝑆𝑡+1))) ≤
𝐸𝑆𝑡∼𝐷 (𝐿𝐷 (𝑀 (𝐻, 𝑆𝑡))). We first define 𝑀 for |𝐻 | = 2, so 𝐻 = {ℎ1, ℎ2}. A simple formulation of 𝑀 (𝐻, 𝑆𝑡)
can be given as Equation 1 below, with $ the uniform random selection operation.

𝑀 (𝐻, 𝑆𝑡) =

ℎ1, if 𝐿𝑆𝑡 (ℎ1) < 𝐿𝑆𝑡 (ℎ2)
ℎ2, if 𝐿𝑆𝑡 (ℎ1) > 𝐿𝑆𝑡 (ℎ2)
ℎ𝑖

$← {ℎ1, ℎ2}, otherwise
(1)

Subsequently, 𝐸𝑆𝑡∼𝐷 (𝐿𝐷 (𝑀 (𝐻, 𝑆𝑡))) is defined as below.

𝐸𝑡 = 𝐸𝑆𝑡∼𝐷 (𝐿𝐷 (𝑀 (𝐻, 𝑆𝑡))) = 𝑝𝑡[1]𝜖1 + 𝑝𝑡[2]𝜖2 + 𝑝𝑡[1,2] (
1
2
𝜖1 +

1
2
𝜖2) (2)

9

𝜖𝑖 signifies the true error of hypothesis ℎ𝑖 ∈ 𝐻 on 𝐷. 𝑝 [1] denotes the probability that ℎ1 has the lowest
error rate on 𝑆𝑡 . As a general notation 𝑝𝑡

𝐵
denotes the probability that all hypotheses of 𝐻 with the lowest

error rate on a validation sample 𝑆𝑡 ∼ 𝐷 are contained within 𝐵, with 𝐵 ⊆ 𝐻. To formally define 𝑝𝑡
𝐵

:

𝑝𝑡𝐵 = 𝑃

(
∀ℎ𝑖 ∈ 𝐵 : 𝐿𝑆𝑡∼𝐷 (ℎ𝑖) = 𝑚𝑖𝑛ℎ 𝑗 ∈𝐵𝐿𝑆𝑡∼𝐷 (ℎ 𝑗) ∧ 𝐿𝑆𝑡∼𝐷 (ℎ𝑖) < 𝑚𝑖𝑛ℎ 𝑗 ∈𝐻/𝐵𝐿𝑆𝑡∼𝐷 (ℎ 𝑗)

)
(3)

One way to look at the definitions of the expected values 𝐸𝑡 and 𝐸𝑡+1 given by Equation 2, is that they are
simply the probability of 𝑀 returning a hypothesis multiplied by the true error of that hypothesis, given some
i.i.d. sample 𝑆𝑡 ∼ 𝐷.

To proof monotonicity of 𝑀 for |𝐻 | = 2, the expected true error of 𝑀 at training size 𝑡 needs to be larger
or equal to the expected error of 𝑀 at training size 𝑡 + 1. In other words, the equation below needs to hold.

𝐸𝑡 − 𝐸𝑡+1 = (𝑝𝑡[1] − 𝑝𝑡+1[1])𝜖1 + (𝑝𝑡[2] − 𝑝𝑡+1[2])𝜖2 + (𝑝𝑡[1,2] − 𝑝𝑡+1[1,2]) (
1
2
𝜖1 +

1
2
𝜖2) ≥ 0 (4)

For |𝐻 | = 𝑘 , we can express 𝐸𝑡 as follows:

𝐸𝑡 =
∑︁
𝐵⊆𝐻

𝑝𝑡𝐵

∑︁
ℎ𝑖∈𝐵

1
|𝐵| 𝜖𝑖 (with 𝐵 ≠ ∅) (5)

In a similar fashion to the derivation of Equation 4, an expression for 𝐸𝑡 − 𝐸𝑡+1 can also be derived for
the case |𝐻 | = 𝑘 . Please see the equation below.

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
𝐵⊆𝐻
(𝑝𝑡𝐵 − 𝑝𝑡+1𝐵) (

1
|𝐵|

∑︁
𝑖∈𝐵

𝜖𝑖) ≥ 0 (6)

The proof of Equation 4 and 6 is equivalent to the proof of Theorem 1 and 2. To foreshadow the main
clue of these proofs; it is useful to find an exact expression for 𝑝𝑡+1

𝐵
that contains 𝑝𝑡

𝐵
, so that we may rewrite

𝑝𝑡
𝐵
− 𝑝𝑡+1

𝐵
into something more digestible.

B. Exact Expression 𝑝𝑡
𝐵

In this subsection an exact expression is given for 𝑝𝑡
𝐵
, first for 𝐻 = {ℎ1, ℎ2} and afterwards for 𝐻 =

{ℎ1, ℎ2, ..., ℎ𝑘}. Equation 3 shows 𝑝𝑡
𝐵

is the probability that all hypotheses in 𝐵 are the best performing on a
given sample 𝑆𝑡 . So how does one go about finding an exact expression for 𝑝𝑡

𝐵
?

1. Exact Expression of 𝑝𝑡
𝐵

for 𝐻 = {ℎ1, ℎ2}
First, the notion of a "classification outcome" is introduced. For a sample 𝑆𝑡 and 𝐻 = {ℎ1, ℎ2}, a classification
outcome is a pair of nonnegative integers (𝑛1, 𝑛2) denoting the amount of instances classified correctly by ℎ1
and ℎ2 respectively. It can also tell us which hypothesis algorithm 𝑀 chooses to return: if 𝑛1 > 𝑛2 it returns
ℎ1, if 𝑛2 > 𝑛1 it returns ℎ2, and if 𝑛1 = 𝑛2 it returns either ℎ1 or ℎ2 with equal probability. Please see Table 1.

For any classification outcome (𝑛1, 𝑛2) of sample 𝑆𝑡 , 𝑃𝑡 (𝑛1, 𝑛2) denotes the probability of that classification
outcome. With the help of Table 1, an exact definition of 𝑃𝑡 (𝑛1, 𝑛2) is given below in Equation 7.

𝑃𝑡 (𝑛1, 𝑛2) =
(
𝑡

𝑛1

)
(1 − 𝜖1)𝑛1𝜖

𝑡−𝑛1
1

(
𝑡

𝑛2

)
(1 − 𝜖2)𝑛2𝜖

𝑡−𝑛2
2 (7)

With the definition of a classification outcome (𝑛1, 𝑛2) and its associated probability 𝑃𝑡 (𝑛1, 𝑛2), 𝑝𝑡𝐵 can
now be defined. Note that 𝑝𝑡[1] - the probability that ℎ1 has the lowest error rate on a sample 𝑆𝑡 - is simply the

10

Table 1. Definition 𝜖 and 𝑛 for any ℎ ∈ 𝐻. The first column indicates whether a hypothesis classifies the
instance correct 1 or incorrect 0. The second column denotes the associated probability of that classification.
For example, the probability that ℎ𝑖 classifies any random instance correctly is (1 − 𝜖𝑖), with 𝜖𝑖 the true error
rate of ℎ𝑖 . The third column denotes the variable used to count how many instances of a sample are classified
correctly or incorrectly. So for a sample 𝑆10 for which ℎ1 classifies the first 3 instances correctly and ℎ2 the
first 4 instances correctly (and the other instances thus incorrectly), 𝑛1 = 3 and 𝑛2 = 4. The probability of this
event is then (1 − 𝜖1)3𝜖7

1 (1 − 𝜖2)4𝜖6
2 .

ℎ𝑖 probability of classification associated instance count
0 𝜖𝑖 𝑛𝑖

1 1 − 𝜖𝑖 𝑡 − 𝑛𝑖

sum of all probabilities of classification outcomes for which 𝑛1 < 𝑛2. This allows us to write 𝑝𝑡[1] (and 𝑝𝑡[2]
and 𝑝𝑡[1,2]) as follows:

𝑝𝑡[1] =
𝑡∑︁

𝑛1=1

𝑛1−1∑︁
𝑛2=0

𝑃𝑡 (𝑛1, 𝑛2) 𝑝𝑡[2] =
𝑡∑︁

𝑛2=1

𝑛2−1∑︁
𝑛1=0

𝑃𝑡 (𝑛1, 𝑛2)

𝑝𝑡[1,2] =
𝑡∑︁

𝑛1=0
𝑃𝑡 (𝑛1, 𝑛2) with 𝑛2 = 𝑛1

(8)

2. Exact Expression of 𝑝𝑡
𝐵

for 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑘}
A similar argument is made for 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑘} as is made for 𝐻 = {ℎ1, ℎ2}. First we redefine 𝑃𝑡 (𝑛1, 𝑛2)
so that it includes 𝑛𝑖 values for all hypotheses ℎ𝑖 ∈ 𝐻.

𝑃𝑡 (𝑎) =
𝑘∏
𝑖=1

(
𝑡

𝑖

)
(1 − 𝜖𝑖)𝑛𝑖𝜖 𝑡−𝑛𝑖𝑖

with 𝑎 = {𝑛1, 𝑛2, ...𝑛𝑘} (9)

Next, the definition for 𝑃𝑡
𝐵

in terms of 𝑃𝑡 (𝑛1, 𝑛2, ...𝑛𝑘) is given.

𝑝𝑡𝐵 =
∑︁
𝑎∈𝐴

𝑃𝑡 (𝑎) with

𝐴 = {{𝑛1, 𝑛2, ..., 𝑛𝑘} ∈ Z𝑘0≤𝑡 |∀𝑛𝑖 , 𝑛 𝑗 ∈ {𝑛1, 𝑛2, ..., 𝑛𝑘} :

{
𝑛𝑖 > 𝑛 𝑗 , if ℎ𝑖 ∈ 𝐵, ℎ 𝑗 ∉ 𝐵

𝑛𝑖 = 𝑛 𝑗 , if ℎ𝑖 , ℎ 𝑗 ∈ 𝐵
(10)

C. Exact Expression 𝑝𝑡+1
𝐵

The same derivation is made as in Section V.B to find an exact expression for 𝑝𝑡+1
𝐵

for 𝐻 = {ℎ1, ℎ2}. Please
see Equation 11 below.

𝑝𝑡+1[1] =
𝑡+1∑︁
𝑛1=1

𝑛1−1∑︁
𝑛2=0

𝑃𝑡+1(𝑛1, 𝑛2) 𝑝𝑡+1[2] =
𝑡+1∑︁
𝑛2=1

𝑛2−1∑︁
𝑛1=0

𝑃𝑡+1(𝑛1, 𝑛2),

𝑝𝑡+1[1,2] =
𝑡+1∑︁
𝑛1=0

𝑃𝑡+1(𝑛1, 𝑛2) with 𝑛2 = 𝑛1

(11)

11

Figure 4. Visualisation of 𝑝𝑡
𝐵

(left) and 𝑝𝑡+1
𝐵

(right). A single box denotes the probability mass of a
classification outcome 𝑃𝑡 (𝑛1, 𝑛2). All green boxes together from the probability mass of 𝑝𝑡[1] , all red boxes
of 𝑝𝑡[2] , all blue boxes 𝑝𝑡[1,2] .

Whilst this does give an exact expression for 𝑝𝑡+1
𝐵

, unfortunately it is not the easiest way to express
𝑝𝑡
𝐵
− 𝑝𝑡+1

𝐵
; writing both 𝑝𝑡+1

𝐵
and 𝑝𝑡

𝐵
out and subtracting gets messy quickly, especially for large sizes of 𝐻.

What is a better way to approach this?

1. Informal Explanation Inflow and Outflow
First, a visual representation of the probability mass of 𝑝𝑡

𝐵
and 𝑝𝑡+1

𝐵
is given. Please see the visualisation for

𝐻 = {ℎ1, ℎ2} in Figure 4
As all 𝑡 + 1 instances of sample 𝑆𝑡+1 are i.i.d. sampled, the probability of any classification outcome of

𝑆𝑡+1 can be defined as the probability of a classification outcome of 𝑆𝑡 with the addition of a classification
outcome of a single additional instance. For example, there are four components that make up 𝑃𝑡+1(1, 1) of
𝑆𝑡+1. These are: 𝑃1(1, 1,)𝑃𝑡 (0, 0), 𝑃1(1, 0)𝑃𝑡 (0, 1), 𝑃1(0, 1)𝑃𝑡 (1, 0), and 𝑃1(0, 0)𝑃𝑡 (1, 1).

Another way to look at this is that, for 𝐻 = {ℎ1, ℎ2}, the probability mass of a classification outcome
𝑃𝑡 (𝑛1, 𝑛2) is redistributed to 4 different classification outcomes of 𝑆𝑡+1. See Figure 5.

The redistribution of probability mass, when going from sample size 𝑡 to 𝑡 + 1, we describe here with
what we refer to as flows. Consider, for instance, the probability mass indicated by A in Figure 5. The red
arrow indicates that part of that mass will be redistributed from 𝑝𝑡[1,2] into 𝑝𝑡+1[1] , which we call ’inflow’. For
B, some probability mass flows out of 𝑝𝑡[1] into 𝑝𝑡+1[1,2] , which we call ’outflow’. For C, there is no flow from
𝑝𝑡[1] into 𝑝𝑡+1[1,2] or vice versa: no matter the outcome of the additional instance, all probability mass of 𝑝𝑡[1]
stays in 𝑝𝑡+1[1] .

So why is this any useful? Well, as stated before, our objective is to write 𝑝𝑡+1
𝐵

in terms of 𝑝𝑡
𝐵
. By

identifying the border region of 𝑝𝑡[1] , the part of the probability mass that can "flow out" of 𝑝𝑡[1] into 𝑝𝑡+1[1,2] ,
we can write 𝑝𝑡+1[1] = 𝑝𝑡+1[1] −𝑂 [1]→[1,2] + 𝐼[1,2]→[1] . Here 𝑂 [1]→[1,2] is the outflow of probability mass from
𝑝𝑡[1] into 𝑝𝑡+1[1,2] , and 𝐼[1,2]→[1] the inflow of 𝑝𝑡[1,2] into 𝑝𝑡+1[1] . This is exactly what we want, an expression of
𝑝𝑡+1[1] in terms of 𝑝𝑡[1] , which allows us to write 𝑝𝑡[1] − 𝑝𝑡+1[1] = 𝑂 [1]→[1,2] − 𝐼[1,2]→[1] .

12

Figure 5. Flow of probability mass from 𝑃𝑡 (𝑛1, 𝑛2) to 𝑃𝑡+1(𝑛′1, 𝑛
′
2). Left: Arrows indicate the direction

of ’flow’ of the probability mass 𝑃𝑡 (𝑛1, 𝑛2) to 𝑃𝑡+1(𝑛′1, 𝑛
′
2). The probability mass 𝑃𝑡 (𝑛1, 𝑛2) is completely

redistributed in four directions: 𝑃𝑡 (𝑛1, 𝑛2) = 𝑃1(0, 0)𝑃𝑡 (𝑛1, 𝑛2) + 𝑃1(1, 0)𝑃𝑡 (𝑛1, 𝑛2) + 𝑃1(0, 1)𝑃𝑡 (𝑛1, 𝑛2) +
𝑃1(1, 1)𝑃𝑡 (𝑛1, 𝑛2). Right: The border region of 𝑝𝑡[1] (red encircled), the only part of the probability mass of
𝑝𝑡[1] that can be redistributed to 𝑝𝑡+1[1,2] .

2. Exact Definition Outflow and Inflow
We rewrite Equation 8 to Equation 12 as shown below. Notice that the border region of 𝑝𝑡[1] is highlighted
in green, the border of 𝑝𝑡[2] in red, and the border of 𝑝𝑡[1,2] in blue. Black highlighted parts of Equation 12
signify parts of the probability mass that will not ’flow’ from one 𝑝𝑡

𝐵
to another 𝑝𝑡+1

𝐵′ .

𝑝𝑡[1] =

(
𝑡∑︁

𝑛1=1
𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1 − 1)

)
+

(
𝑡∑︁

𝑛1=2

𝑛1−2∑︁
𝑛2=0

𝑃𝑡 (𝑛1, 𝑛2)
)

𝑝𝑡[2] =

(
𝑡∑︁
𝑛2

𝑃𝑡 (𝑛1 = 𝑛2 − 1, 𝑛2)
)
+

(
𝑡∑︁

𝑛2=2

𝑛2−2∑︁
𝑛1=0

𝑃𝑡 (𝑛1, 𝑛2)
)

𝑝𝑡[1,2] =
𝑡∑︁

𝑛1=0
𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1)

(12)

The outflow and inflow can now be easily determined: simply take the probability mass of the border
region of one of the 𝑝𝑡

𝐵
highlighted in color, and multiply it by the probability of the classification outcome of

a single instance that takes it to another 𝑝𝑡+1
𝐵′ .

With 𝜖00 = 𝜖1𝜖2, 𝜖10 = (1 − 𝜖1)𝜖2, 𝜖01 = 𝜖1(1 − 𝜖2), and 𝜖11 = (1 − 𝜖1) (1 − 𝜖2), 𝑝𝑡+1
𝐵′ is defined for

𝐻 = {ℎ1, ℎ2}.

13

𝑝𝑡+1[1] =(𝜖00 + 𝜖10 + 𝜖11)
(

𝑡∑︁
𝑛1=1

𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1 − 1)
)
+ (𝜖00 + 𝜖01 + 𝜖10 + 𝜖11)

(
𝑡∑︁

𝑛1=2

𝑛1−2∑︁
𝑛2=0

𝑃𝑡 (𝑛1, 𝑛2)
)

+𝜖10

𝑡∑︁
𝑛1=0

𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1)

𝑝𝑡+1[2] =(𝜖00 + 𝜖01 + 𝜖11)
(

𝑡∑︁
𝑛2

𝑃𝑡 (𝑛1 = 𝑛2 − 1, 𝑛2)
)
+ (𝜖00 + 𝜖01 + 𝜖10 + 𝜖11)

(
𝑡∑︁

𝑛2=2

𝑛2−2∑︁
𝑛1=0

𝑃𝑡 (𝑛1, 𝑛2)
)

+𝜖01

𝑡∑︁
𝑛1=0

𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1)

𝑝𝑡+1[1,2] =(𝜖00 + 𝜖11)
𝑡∑︁

𝑛1=0
𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1) + 𝜖01

(
𝑡∑︁

𝑛1=1
𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1 − 1)

)
+ 𝜖10

(
𝑡∑︁
𝑛2

𝑃𝑡 (𝑛1 = 𝑛2 − 1, 𝑛2)
)
(13)

Notice that red corresponds to outflow 𝑂 [2] → [1, 2], green to outflow 𝑂 [1] → [1, 2], and blue to inflow
𝐼 [1, 2] → [1] and 𝐼 [1, 2] → [2].

For the general case 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑘}, Inflow and Outflow are formally defined as follows.

Definition 2 (Inflow) For any three sets of classifying hypotheses 𝐻,𝑉,𝑊 , with 𝑉 ⊆ 𝐻 and 𝑊 ⊂ 𝑉 , and any
i.i.d. random samples 𝑆𝑡 ∼ 𝐷, the inflow 𝐼𝑉→𝑊 is defined as:

𝐼𝑉→𝑊 =
∏
ℎ𝑥 ∈𝐻

𝑏𝑥

𝑡∑︁
𝑎∈𝐴

𝑃𝑡 (𝑎) with

𝑏𝑥 =

(1 − 𝜖 𝑗), if ℎ 𝑗 ∈ 𝑊
𝜖 𝑗 , if ℎ 𝑗 ∈ 𝑉/𝑊
(1 − 𝜖 𝑗) + 𝜖 𝑗 , otherwise

and

𝐴 = {{𝑛1, 𝑛2, ..., 𝑛𝑘} ∈ Z𝑘0≤𝑡 |∀𝑛𝑖 , 𝑛 𝑗 ∈ {𝑛1, 𝑛2, ..., 𝑛𝑘} :

{
𝑛𝑖 > 𝑛 𝑗 + 1, if ℎ𝑖 ∈ 𝑉, ℎ 𝑗 ∉ 𝑉

𝑛𝑖 = 𝑛 𝑗 if ℎ𝑖 , ℎ 𝑗 ∈ 𝑉 (14)

Definition 3 (Outflow) For any three sets of classifying hypotheses 𝐻,𝑉,𝑊 , with 𝑉 ⊆ 𝐻 and 𝑊 ⊂ 𝑉 , and

14

any i.i.d. random samples 𝑆𝑡 ∼ 𝐷, the outflow 𝑂𝑊→𝑉 is defined as:

𝑂𝑊→𝑉 =
∏
ℎ𝑥 ∈𝐻

𝑏𝑥

𝑡∑︁
𝑎∈𝐴2

𝑃𝑡 (𝑎) +
∏
ℎ𝑦∈𝐻

𝑏𝑦

𝑡∑︁
𝑎∈𝐴1

𝑃𝑡 (𝑎) with

𝑏𝑥 =

(1 − 𝜖𝑥), if ℎ𝑥 ∈ 𝑉/𝑊
𝜖𝑥 , if ℎ𝑥 ∈ 𝑊
(1 − 𝜖𝑥) + 𝜖𝑥 , otherwise

, 𝑏𝑦 =

{
(1 − 𝜖𝑦), if ℎ𝑦 ∈ 𝑉/𝑊
𝜖𝑦 otherwise

and

𝐴2 = {{𝑛1, 𝑛2, ..., 𝑛𝑘} ∈ Z𝑘0≤𝑡 |∀𝑛𝑖 , 𝑛 𝑗 ∈ {𝑛1, 𝑛2, ..., 𝑛𝑘} :

𝑛𝑖 = 𝑛 𝑗 + 1, if ℎ𝑖 ∈ 𝑊, ℎ 𝑗 ∈ 𝑉/𝑊
𝑛𝑖 > 𝑛 𝑗 + 1, if ℎ𝑖 ∈ 𝑊, ℎ 𝑗 ∉ 𝑊

𝑛𝑖 = 𝑛 𝑗 if ℎ𝑖 , ℎ 𝑗 ∈ 𝑊
and

𝐴1 = {{𝑛1, 𝑛2, ..., 𝑛𝑘} ∈ Z𝑘0≤𝑡 |∀𝑛𝑖 , 𝑛 𝑗 ∈ {𝑛1, 𝑛2, ..., 𝑛𝑘} :

{
𝑛𝑖 = 𝑛 𝑗 , if ℎ𝑖 , ℎ 𝑗 ∈ 𝑊
𝑛𝑖 = 𝑛 𝑗 + 1 otherwise

(15)

Armed with the definitions of inflow and outflow, we can now finally give an expression for 𝑝𝑡+1
𝐵

in terms
of 𝑝𝑡+1

𝐵
for 𝐻 = {ℎ1, ℎ2}.

𝑝𝑡+1[1] = 𝑝𝑡[1] + 𝐼[1,2]→[1] −𝑂 [1]→[1,2]
𝑝𝑡+1[2] = 𝑝𝑡[2] + 𝐼[1,2]→[2] −𝑂 [2]→[1,2]

𝑝𝑡+1[1,2] = 𝑝𝑡[1,2] − 𝐼[1,2]→[1] − 𝐼[1,2]→[2] +𝑂 [1]→[1,2] +𝑂 [2]→[1,2] (16)

With this, Equation 4 is rewritten to Equation 17 below. Proving Equation 17 is equivalent to proving
Theorem 1.

𝐸𝑡 − 𝐸𝑡+1 =(𝑂 [1]→[1,2] − 𝐼[1,2]→[1])𝜖 [1]
+(𝑂 [2]→[1,2] − 𝐼[1,2]→[2])𝜖 [2]

+(𝐼[1,2]→[1] −𝑂 [1]→[1,2] + 𝐼[1,2]→[2] −𝑂 [2]→[1,2]) (
1
2
𝜖 [1] +

1
2
𝜖 [2])

≥0 (17)

It can further be simplify to:

𝐸𝑡 − 𝐸𝑡+1 =𝐼[1,2]→[1] (
−1
2
𝜖1 +

1
2
𝜖2)

+𝐼[1,2]→[2] (
1
2
𝜖1 +
−1
2
𝜖2)

≥0 (18)

Equation 18 might seem to come a bit unexpectedly; there are no outflow terms in Equation 18. This is no
accident, as all outflow terms together equate to zero. Section V.D proves this in the form of Lemma 1 and
Lemma 2.

For 𝐻 = {ℎ1, ℎ2, ...ℎ𝑘}, things are a bit more complicated; there is not only inflow and outflow between
𝑝 [1] , 𝑝 [2] , and 𝑝 [1,2] , but any two sets 𝑉,𝑊 ⊆ 𝐻 with 𝑊 ⊂ 𝑉 . Please see the closed form below, where [𝐴]𝑖
is the notation for all unique subsets of 𝐴 of size 𝑖.

15

𝐸𝑡 − 𝐸𝑡+1 =

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
𝑊=[𝑉] 𝑗

𝐼𝑉→𝑊
©«(

∑︁
ℎ𝑥 ∈𝑉/𝑊

1
𝑖
𝜖𝑥) + (

∑︁
ℎ𝑦∈𝑊

− 𝑖 − 𝑗

𝑖 𝑗
𝜖𝑦)

ª®¬
≥0 (19)

For a full derivation of Equation 19, see Appendix F.

D. Inflow Inequality and Outflow Equality
Lemma 1 (Outflow Equality) For two outflows 𝑂𝐵→𝐴 and 𝑂𝐶→𝐴, if both hypothesis sets 𝐵 and 𝐶 contain
an equal amount of hypotheses, so |𝐵| = |𝐶 |, then they are equal: 𝑂𝐵→𝐴 = 𝑂𝐶→𝐴.

Lemma 2 (Inflow Inequality) For two outflows 𝐼𝐴→𝐵 and 𝐼𝐴→𝐶 , with both hypothesis sets 𝐵 and 𝐶

containing an equal amount of hypotheses, so |𝐵| = |𝐶 |, and 𝐵 and 𝐶 differing by one hypothesis
ℎ𝑏 = 𝐵/𝐶, ℎ𝑐 = 𝐶/𝐵, then if 𝐿𝑆𝑡+1 (ℎ𝑏) ≤ 𝐿𝑆𝑡+1 (ℎ𝑐), it must hold that 𝐼𝐴→𝐵 ≥ 𝐼𝐴→𝐶 .

As a warmup, Appendix B and C proof that for 𝐻 = {ℎ1, ℎ2}, Lemma 1 and Lemma 2 hold. For
𝐻 = {ℎ1, ℎ2, ..., ℎ𝑘}, the general case, Appendix D and E are provided.

E. Theorem 1

1. To Prove
𝐸𝑡 − 𝐸𝑡+1 ≥ 0 (20)

2. Proof

𝐸𝑡 − 𝐸𝑡+1 =(𝑝𝑡[1] − 𝑝𝑡+1[1])𝜖1 + (𝑝𝑡[2] − 𝑝𝑡+1[2])𝜖2 + (𝑝𝑡[1,2] − 𝑝𝑡+1[1,2]) (
1
2
𝜖1 +

1
2
𝜖2) (by Equation 4)

=(𝑂 [1]→[1,2] − 𝐼[1,2]→[1])𝜖 [1] + (𝑂 [2]→[1,2] − 𝐼[1,2]→[2])𝜖 [2] (by Definition 2, 3)

+ (𝐼[1,2]→[1] −𝑂 [1]→[1,2] + 𝐼[1,2]→[2] −𝑂 [2]→[1,2]) (
1
2
𝜖 [1] +

1
2
𝜖 [2])

=𝐼[1,2]→[1] (
−1
2
𝜖1 +

1
2
𝜖2) + 𝐼[1,2]→[2] (

1
2
𝜖1 +
−1
2
𝜖2)

+ (1
2
𝑂 [1]→[1,2] −

1
2
𝑂 [2]→[1,2])𝜖1 + (

1
2
𝑂 [2]→[1,2] −

1
2
𝑂 [1]→[1,2])𝜖2

=𝐼[1,2]→[1] (
−1
2
𝜖1 +

1
2
𝜖2) + 𝐼[1,2]→[2] (

1
2
𝜖1 +
−1
2
𝜖2) (by Lemma 1)

=𝐼[1,2]→[1] (𝐴) + 𝐼[1,2]→[2] (−𝐴) (with 𝐴 =
−1
2
𝜖1 +

1
2
𝜖2)

≥ 0 (by Lemma 2)
(21)

∴ As 𝐸𝑡 − 𝐸𝑡+1 ≥ 0, the expected true error of Algorithm 1 does not increase with more training data. QED
Theorem 1 holds.

F. Theorem 2

1. To Prove
𝐸𝑡 − 𝐸𝑡+1 ≥ 0 (22)

16

2. Proof

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
𝐵⊆𝐻
(𝑝𝑡𝐵 − 𝑝𝑡+1𝐵) (

1
|𝐵|

∑︁
𝑖∈𝐵

𝜖𝑖) (by Equation 6)

=

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
𝑊=[𝑉] 𝑗

𝐼𝑉→𝑊
©«(

∑︁
ℎ𝑥 ∈𝑉/𝑊

1
𝑖
𝜖𝑥) + (

∑︁
ℎ𝑦∈𝑊

− 𝑖 − 𝑗

𝑖 𝑗
𝜖𝑦)ª®¬ (by Equation 19)

=

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
{𝑊,𝑊 ′ }∈{ [𝑉] 𝑗 }2∗

(
𝐼𝑉→𝑊 (

1
𝑖 𝑗
ℎ𝑊 ′/𝑊 −

1
𝑖 𝑗
ℎ𝑊/𝑊 ′) (see note below)

+𝐼𝑉→𝑊 ′ (
1
𝑖 𝑗
ℎ𝑊/𝑊 ′ −

1
𝑖 𝑗
ℎ𝑊 ′/𝑊)

)
(see Appendix G)

≥0 (by Lemma 2) (23)

∴ As 𝐸𝑡 − 𝐸𝑡+1 ≥ 0, the expected true error of Algorithm 1 does not increase with more training data. QED
Theorem 2 holds

Note: {[𝑉] 𝑗}2∗ is the group of all unique pairs of subsets of 𝑉 of size 𝑗 that have all overlapping elements
except one. So for 𝑊 ⊂ 𝑉 , 𝑊 ′ ⊂ 𝑉 , |𝑊 | = |𝑊 ′ | = 𝑗 and |𝑊/𝑊 ′ | = |𝑊 ′/𝑊 | = 1

G. Dependent Hypotheses and Growing Hypothesis Set
In its current form Algorithm 1 grows linearly |𝑆𝑡 | = |𝑆𝑡−1 | + 1. However, for both proofs of Theorem 1 and 2
it was assumed that for any two hypotheses ℎ𝑖 and ℎ 𝑗 with respective true error rates 𝜖𝑖 and 𝜖 𝑗 , the probability
that both classify a random instance incorrectly is simply 𝜖𝑖𝜖 𝑗 . This assumption of independent classification
holds when each hypothesis ℎ𝑖 is given it’s own i.i.d. drawn sample 𝑆𝑖𝑡 to evaluate and compare error rates.
The growth remains linear, going from |𝑆𝑡 | = |𝑆𝑡−1 | + 1 to

∑
ℎ𝑖∈𝐻 |𝑆𝑖𝑡 | =

∑
ℎ𝑖∈𝐻 |𝑆𝑖𝑡−1 | + |𝐻 |.

In practice however, hypotheses generally do not classify independently. Joint classification probabilities
must be defined, and so monotonicity does not necessarily hold for a single validation set. It should be noted
that for 𝐻 = {ℎ1, ℎ2}, Algorithm 1 is monotone, using only a single validation set 𝑆𝑡 . See Appendix H.A for
a proof of this using joint probabilities.

For a growing hypothesis set |𝐻𝑡+1 = |𝐻 | + 1, it is shown Algorithm 1 is not monotone, even if hypotheses
classify independently. Imagine two hypotheses ℎ1 and ℎ2 that classify almost identically, so 𝜖1 ≈ 𝜖2. The
expected value at sample size 𝑡 is then 𝐸𝑡 ≈ 𝑝𝑡[1,2]𝜖1, with 𝑝𝑡[1,2] ≈ 1. Now imagine that at sample size 𝑡 + 1 a
new hypothesis ℎ3 is introduced with 𝜖3 > 𝜖1. We can now show 𝐸𝑡+1 ≈ 𝑝𝑡+1[1,2]𝜖1 + 𝑝𝑡+1[3] 𝜖3, which is larger
than 𝐸𝑡 when 𝑝𝑡+1[3] > 0.

VI. Discussion
It is proven that Algorithm 1 is monotone for an immutable set of hypotheses 𝐻. As such, a new monotone
learning algorithm is introduced that randomly produces 𝑘 hypotheses at the start, and becomes (monotonically)
better at returning the best hypothesis from this set with more data. However, this new monotone machine
learning algorithm’s function is very limited. Firstly, randomly generating a finite amount of hypotheses and
selecting the best performing hypothesis in a near infinite hypothesis space is not an effective strategy for
learning a good solution. Instead the hypothesis set should grow at each step |𝐻𝑡+1 | = |𝐻𝑡 | + 1, with each
additional hypothesis being learned from data by a machine learning algorithm as normally done. It is shown
in Section V.G that Algorithm 1 does not produce a monotone learning curve in this case. Furthermore, the
linear growth of the validation set 𝑆𝑡 with |𝑆𝑡+1 | = |𝑆𝑡 | + 𝑘 is directly tied to the amount of hypotheses 𝑘 ,
which causes data inefficiency; the more hypotheses you initialise, the more validation data you need at each
step. Ideally, the size of the validation set is not dependent on the amount of hypotheses generated, and can

17

grow linearly as |𝑆𝑡 | = |𝑆𝑡−1 | + 1, as is the case for 𝐻 = {ℎ1, ℎ2}. Even though this work is not an effective
monotone machine learning algorithm or monotone wrapper, this work may be a step in the right direction.
By growing the validation sample linearly, one can monotonically improve at choosing from an existing set
of hypotheses 𝐻. In order to turn Algorithm 1 into a monotone wrapper algorithm using linearly growing
validation data, one only needs to find a solution for the non-monotonicity of introducing a new hypothesis to
the hypothesis set.

For future research, it would be interesting to find this solution for the expanding hypothesis set
|𝐻𝑡+1 | = |𝐻𝑡 | + 1. Finding such a wrapper would mean one can use a machine learning algorithm to learn
from training data and then evaluate the produced hypotheses with said wrapper. This is much more efficient
in finding a good solution than randomly generating hypotheses at the start, and then evaluating them. One
possible solution is to use an upper bound of 𝛼 for the probability of choosing a new, worse performing
hypothesis, which might possibly be done with the McNemar test as in Viering’s work[6, 10]. Using an upper
bound in conjunction with an expanding validation data set allows the upper bound 𝛼 to become smaller
over time, decreasing the probability of making a non-monotone decision. This decrease then amounts to
a monotone learning curve. Another option that could produce a linear-data monotone wrapper would be
to find the lower bound of 𝐸𝑡 − 𝐸𝑡+1. Once this is known, a regularisation term can be used to increase the
expected error 𝐸𝑡 so that 𝐸𝑡 ≥ 𝐸𝑡+1 in the worst case, forcing the wrapper to be monotone. This method is
similar to Bousquet[8]. Both of these avenues of exploration could successfully yield a linear-data monotone
wrapper algorithm, and were considered but not explored due to time constraints.

Additionally, finding a wrapper algorithm that bounds the learning curve to be not only monotone, but also
fit a parametric model could be very interesting for extrapolation methods, allowing much of the parametric
model selection to be skipped. As shown in Appendix I, at a quick glance it seems Algorithm 1 already yields
an easily parameterisable learning curve. Future work could look at what functions fit the learning curves of
Algorithm 1 best.

In a broader perspective, we may ask whether monotone wrapper algorithms offer substantial improvement
over normal machine learning algorithms. When it comes to learning curve analysis, monotonicity of learning
curves is listed as a desirable trait in order to extrapolate learning curves or to perform model selection
[2]. However, as Figure 3a shows, a monotone learning curve may not necessarily be more suited to be
parametrically fitted, as the wrapper warps the shape of the learning curve severely. Is monotonicity alone
truly the solution for making learning curves more interpretable? Or should there be additional requirements
for ’well-behaved’ learning curves? Furthermore, if we are interested in selecting the best possible hypothesis,
instead of forcing the learning curve to be monotone, it may be more efficient to simply analyse all hypotheses
on the learning curve on a single validation set at the end of training. We make the case that in general, one
should not train on a single training size, but on multiple training sizes and construct a learning curve.

VII. Conclusion
In conclusion, we have presented a simple algorithm that constructs a monotone learning curve by choosing
the best performing hypothesis out of set of hypotheses 𝐻 based on a validation sample, and doing this for
multiple validation sample sizes. We show that simple choosing process is monotone in Theorem 1 and
Theorem 2 when 𝐻 is immutable. It is also shown that the algorithm is not monotone for an expanding set of
hypotheses. Even though our algorithm alone is not enough to create a fully functioning linear-data monotone
wrapper algorithm, we hope our work provides insight for future works to address this issue.

References
[1] Loog, M., and Duin, R. P. W., “The Dipping Phenomenon,” Structural, Syntactic, and Statistical Pattern

Recognition, Vol. 7626, edited by D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,

18

G. Gimel’farb, E. Hancock, A. Imiya, A. Kuĳper, M. Kudo, S. Omachi, T. Windeatt, and K. Yamada, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 310–317. URL http://link.springer.com/10.1007/978-
3-642-34166-3_34, series Title: Lecture Notes in Computer Science.

[2] Viering, T., and Loog, M., “The Shape of Learning Curves: a Review,” , Mar. 2021. URL http://arxiv.org/
abs/2103.10948, arXiv:2103.10948 [cs].

[3] Krĳthe, J. H., and Loog, M., “The Peaking Phenomenon in Semi-supervised Learning,” , 2016.
[4] Pestov, V., “A universally consistent learning rule with a universally monotone error,” CoRR, 2021, p. 27.
[5] Mhammedi, Z., “Risk-Monotonicity in Statistical Learning,” , Jan. 2022. URL http://arxiv.org/abs/2011.
14126, arXiv:2011.14126 [cs, math, stat].

[6] Viering, T. J., Mey, A., and Loog, M., “Making Learners (More) Monotone,” Advances in Intelligent Data Analysis
XVIII, Vol. 12080, edited by M. R. Berthold, A. Feelders, and G. Krempl, Springer International Publishing,
Cham, 2020, pp. 535–547. URL http://link.springer.com/10.1007/978-3-030-44584-3_42, series
Title: Lecture Notes in Computer Science.

[7] Devroye, L., Györfi, L., and Lugosi, G., A Probablistic Theory of Pattern Recognition, Vol. 31, Springer, 1996.
Journal Abbreviation: NewYork: Springer Verlag Publication Title: NewYork: Springer Verlag.

[8] Bousquet, O., Daniely, A., Kaplan, H., Mansour, Y., Moran, S., and Stemmer, U., “Monotone Learning,” , Aug.
2022. URL http://arxiv.org/abs/2202.05246, arXiv:2202.05246 [cs, math, stat].

[9] Viering, T., Mey, A., and Loog, M., “Open Problem: Monotonicity of Learning,” Proceedings of the Thirty-Second
Conference on Learning Theory, PMLR, 2019, pp. 3198–3201. URL https://proceedings.mlr.press/
v99/viering19a.html, iSSN: 2640-3498.

[10] Fagerland, M. W., Lydersen, S., and Laake, P., “The McNemar test for binary matched-pairs data: mid-p and
asymptotic are better than exact conditional,” BMC Medical Research Methodology, Vol. 13, No. 1, 2013, p. 91.
doi: 10.1186/1471-2288-13-91, URL https://doi.org/10.1186/1471-2288-13-91.

[11] Mhammedi, Z., and Koolen, W. M., “Lipschitz and Comparator-Norm Adaptivity in Online Learning,” , Aug.
2020. doi: 10.48550/arXiv.2002.12242, URL http://arxiv.org/abs/2002.12242, arXiv:2002.12242 [cs,
stat].

[12] Kolachina, P., Cancedda, N., Dymetman, M., and Venkatapathy, S., “Prediction of Learning Curves in Machine
Translation,” , Jul. 2012. URL https://aclanthology.org/P12-1003.

[13] Gu, B., Hu, F., and Liu, H., “Modelling Classification Performance for Large Data Sets,” , Jul. 2001.
[14] Last, M., “Predicting and Optimizing Classifier Utility with the Power Law,” , Oct. 2007. ISSN: 2375-9259.
[15] Singh, S., “Modeling Performance of Different Classification Methods: Deviation from the Power Law,” , 2005.
[16] Frey, L. J., and Fisher, D. H., “Modeling decision tree performance with the power law,” , Jan. 1999. URL

https://proceedings.mlr.press/r2/frey99a.html, iSSN: 2640-3498.
[17] Cortes, C., Jackel, L. D., Solla, S., Vapnik, V., and Denker, J., “Learning Curves: Asymp-

totic Values and Rate of Convergence,” , 1993. URL https://papers.nips.cc/paper/1993/hash/
1aa48fc4880bb0c9b8a3bf979d3b917e-Abstract.html.

19

http://link.springer.com/10.1007/978-3-642-34166-3_34
http://link.springer.com/10.1007/978-3-642-34166-3_34
http://arxiv.org/abs/2103.10948
http://arxiv.org/abs/2103.10948
http://arxiv.org/abs/2011.14126
http://arxiv.org/abs/2011.14126
http://link.springer.com/10.1007/978-3-030-44584-3_42
http://arxiv.org/abs/2202.05246
https://proceedings.mlr.press/v99/viering19a.html
https://proceedings.mlr.press/v99/viering19a.html
https://doi.org/10.1186/1471-2288-13-91
http://arxiv.org/abs/2002.12242
https://aclanthology.org/P12-1003
https://proceedings.mlr.press/r2/frey99a.html
https://papers.nips.cc/paper/1993/hash/1aa48fc4880bb0c9b8a3bf979d3b917e-Abstract.html
https://papers.nips.cc/paper/1993/hash/1aa48fc4880bb0c9b8a3bf979d3b917e-Abstract.html

A. Notation

A. Refresher Notation
• [], subset notation, 𝐵 = [𝐻] 𝑗 is all unique subsets 𝐵 of 𝐻 of size 𝑗

• /, excluding notation, 𝐵/𝐶 denotes all elements in 𝐵 not in 𝐶

•
()

, binomial coefficient,
(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘)!

• $← is the uniform random selection operator

B. General Notation
• 𝐴 is a machine learning algorithm, produces hypotheses ℎ using a sample of data ℎ = 𝐴(𝑆)
• E𝑡 = E[𝐿𝐷 (𝐴(𝑆𝑡))] is the expected error on the underlying 𝐷 of the hypothesis returned by 𝐴(𝑆𝑡)
• ℎ is a hypothesis, is be produced by a learner 𝐴
• 𝐻 is a set of hypotheses
• 𝐿 is an error function, which evaluates an estimate of 𝑌 by a hypothesis 𝐿 (ℎ(𝑋), 𝑌)
• 𝐿𝐷 (ℎ) is the generalisation error of a hypothesis ℎ on the underlying distribution 𝐷

• 𝐿𝑆𝑡 (ℎ) is the population error of a hypothesis ℎ on a sample with sample size 𝑡
• 𝑀 is a monotone wrapper algorithm such that for any learner 𝐴, 𝑀 (𝐴, 𝑆) is monotone
• 𝑆𝑡 is a sample of size 𝑡

C. Paper specific notation
• 𝜖𝑖 is the generalisation error rate 𝐿𝐷 (ℎ𝑖) of hypothesis ℎ𝑖 ∈ 𝐻
• 𝑝𝑡

𝐵
is the probability that on a sample 𝑆𝑡 , all the hypotheses ℎ ∈ 𝐵 have the same classification score on

that sample, and better than all other hypotheses
• 𝑃𝑡 (𝑛10, 𝑛01) is the probability that for a sample 𝑆𝑡 and a hypothesis class 𝐻 = {ℎ1, ℎ2}, there are
𝑛10 instances which ℎ1 classifies correctly and ℎ2 incorrectly, and 𝑛01 instances which ℎ1 classifies
incorrectly and ℎ2 correctly.

• 𝜌𝑏1,𝑏2,...,𝑏𝑘
is the probability that a single instance is classified correctly by a hypothesis 𝑏𝑖 = 1 and

incorrectly by another 𝑏 𝑗 = 0 or either 𝑏𝑠 = ∗ with ℎ𝑖 , ℎ 𝑗 , ℎ𝑠 ∈ 𝐻 and |𝐻 | = 𝑘 .
• {[𝑉] 𝑗}2∗ is the group of all unique pairs of subsets of 𝑉 of size 𝑗 that have all overlapping elements

except one. So for 𝑊 ⊂ 𝑉 , 𝑊 ′ ⊂ 𝑉 , |𝑊 | = |𝑊 ′ | = 𝑗 and |𝑊/𝑊 ′ | = |𝑊 ′/𝑊 | = 1.

20

B. Inflow Proof 2 Hypotheses
To prove

𝜖1 ≤ 𝜖2 =⇒ 𝐼[1,2]→[1] − 𝐼[1,2]→[2] ≥ 0 (24)

𝜖1 ≥ 𝜖2 =⇒ 𝐼[1,2]→[1] − 𝐼[1,2]→[2] ≤ 0 (25)

Proof Both 𝐼[1,2]→[1] and 𝐼[1,2]→[2] are defined, with all variables as shown in Table 1:

𝐼[1,2]→[1] = (1 − 𝜖1)𝜖2𝑝
𝑡
[1,2]

= (1 − 𝜖1)𝜖2

𝑡∑︁
𝑖=0

𝑃𝑡 (𝑖, 𝑖)

= (1 − 𝜖1)𝜖2

𝑡∑︁
𝑖=0

[(
𝑡

𝑖

)
(1 − 𝜖1)𝑖𝜖 𝑡−𝑖1

(
𝑡

𝑖

)
(1 − 𝜖2)𝑖𝜖 𝑡−𝑖2

]
(26)

𝐼[1,2]→[2] = 𝜖1(1 − 𝜖2)𝑝𝑡[1,2]

= 𝜖1(1 − 𝜖2)
𝑡∑︁

𝑖=0
𝑃𝑡 (𝑖, 𝑖)

= 𝜖1(1 − 𝜖2)
𝑡∑︁

𝑖=0

[(
𝑡

𝑖

)
(1 − 𝜖1)𝑖𝜖 𝑡−𝑖1

(
𝑡

𝑖

)
(1 − 𝜖2)𝑖𝜖 𝑡−𝑖2

]
(27)

Note that both 𝐼[1,2]→[1] and 𝐼[1,2]→[1] can be divided by 𝑝𝑡[1,2] . All that remains is to proof:

𝜖1 ≤ 𝜖2 → (1 − 𝜖1) (𝜖2) ≥ (𝜖1) (1 − 𝜖2) (28)

𝜖1 ≥ 𝜖2 → (1 − 𝜖1) (𝜖2) ≤ (𝜖1) (1 − 𝜖2) (29)

Note that 𝜖1 and 𝜖2 are both ≤ 1 as they error rates, and can hence be written as
1
𝑎

and
1
𝑏

respectively,
with 𝑎, 𝑏 ≥ 1. Thus 𝜖1 ≤ 𝜖2 ↔ 𝑎 ≥ 𝑏 → (1 − 𝜖1) (𝜖2) ≥ (𝜖1) (1 − 𝜖2) and similarly 𝜖1 ≥ 𝜖2 ↔ 𝑎 ≤ 𝑏 →
(1 − 𝜖1) (𝜖2) ≤ (𝜖1) (1 − 𝜖2). We can then derive:

(1 − 𝜖1) (𝜖2) = (
𝑎 − 1
𝑎
) (1
𝑏
) = (𝑎𝑏 − 𝑏

𝑎𝑏
) (30)

(𝜖1) (1 − 𝜖2) = (
1
𝑎
) (𝑏 − 1

𝑏
) = (𝑎𝑏 − 𝑎

𝑎𝑏
) (31)

And thus equivalently:

𝑎 ≥ 𝑏 =⇒ 𝑎𝑏 − 𝑏

𝑎𝑏
≥ (𝑎𝑏 − 𝑎

𝑎𝑏
) (32)

𝑎 ≤ 𝑏 =⇒ 𝑎𝑏 − 𝑏

𝑎𝑏
≤ (𝑎𝑏 − 𝑎

𝑎𝑏
) (33)

With these definitions it is immediately apparent that both Equations 28 and 29 hold.

21

C. Outflow Proof 2 Hypotheses
To prove

𝑂 [1]→[1,2] = 𝑂 [2]→[1,2] (34)

Proof We define both 𝑂 [1]→[1,2] and 𝑂 [2]→[1,2] using a binomial coefficients:

𝑂 [1]→[1,2] = 𝜖1(1 − 𝜖2)
𝑡∑︁

𝑛1=1
𝑃𝑡 (𝑛1, 𝑛2 = 𝑛1 − 1)

= 𝜖1(1 − 𝜖2)
𝑡∑︁

𝑛1=1

[(
𝑡

𝑛1

)
(1 − 𝜖1)𝑛1 𝜖

𝑡−𝑛1
1

(
𝑡

𝑛1 − 1

)
(1 − 𝜖2)𝑛1−1𝜖 𝑡+1−𝑛1

2

]
(35)

𝑂 [2]→[1,2] = (1 − 𝜖1)𝜖2

𝑡∑︁
𝑛2=1

𝑃𝑡 (𝑛1 = 𝑛2 − 1, 𝑛2)

= (1 − 𝜖1)𝜖2

𝑡∑︁
𝑛2=1

[(
𝑡

𝑛2 − 1

)
(1 − 𝜖1)𝑛2−1𝜖 𝑡+1−𝑛2

1

(
𝑡

𝑛2

)
(1 − 𝜖2)𝑛2𝜖

𝑡−𝑛2
2

]
(36)

With these definitions, a direct derivation is possible:

𝑂 [1]→[1,2] =(𝜖1) (1 − 𝜖2)
𝑡∑︁

𝑛1=1

(
𝑡

𝑛1

)
(1 − 𝜖1)𝑛1 𝜖

𝑡−𝑛1
1

(
𝑡

𝑛1 − 1

)
(1 − 𝜖2)𝑛1−1𝜖 𝑡+1−𝑛1

2

=

𝑡∑︁
𝑛1=1

(
𝑡

𝑛1

)
(1 − 𝜖1)𝑛1 𝜖

𝑡+1−𝑛1
1

(
𝑡

𝑛1 − 1

)
(1 − 𝜖2)𝑛1𝜖

𝑡+1−𝑛1
2

=(1 − 𝜖1) (𝜖2)
𝑡∑︁

𝑛2=1

(
𝑡

𝑛2 − 1

)
(1 − 𝜖1)𝑛2−1𝜖 𝑡+1−𝑛2

1

(
𝑡

𝑛2

)
(1 − 𝜖2)𝑛2−1𝜖 𝑡−𝑛2

2

=𝑂 [2]→[1,2] (37)

22

D. Inflow Proof k Hypotheses
To prove

For hypothesis set 𝐻, 𝐵 ⊆ 𝐻, 𝑊 ⊂ 𝐵, 𝑊 ′ ⊂ 𝐵 with |𝑊 | = |𝑊 ′ | and |𝑊 ∩𝑊 ′ | = |𝑊 | − 1.

𝜖𝑊/𝑊 ′ ≤ 𝜖𝑊 ′/𝑊 =⇒ 𝐼𝐵→𝑊 − 𝐼𝐵→𝑊 ′ ≥ 0 (38)

𝜖𝑊/𝑊 ′ ≥ 𝜖𝑊 ′/𝑊 =⇒ 𝐼𝐵→𝑊 − 𝐼𝐵→𝑊 ′ ≤ 0 (39)

Proof
We define both 𝐼𝐵→𝑊 and 𝐼𝐵→𝑊 ′ .

𝐼𝐵→𝑊 =
∏
𝑖∈𝑊
(1 − 𝜖𝑖)

∏
𝑗∈𝐵/𝑊

𝜖 𝑗

∏
𝑙∈𝐻/𝐵

((1 − 𝜖𝑙) + 𝜖𝑙)𝑝𝑡𝐵
(40)

𝐼𝐵→𝑊 ′ =
∏
𝑖∈𝑊 ′
(1 − 𝜖𝑖)

∏
𝑗∈𝐵/𝑊 ′

𝜖 𝑗

∏
𝑙∈𝐻/𝐵

((1 − 𝜖𝑙) + 𝜖𝑙)𝑝𝑡𝐵
(41)

We divide both 𝐼𝐵→𝑊 and 𝐼𝐵→𝑊 ′ by
∏

𝑙∈𝐻/𝐵 ((1 − 𝜖𝑙) + 𝜖𝑙)𝑝𝑡𝐵

𝐼𝐵→𝑊 =
∏
𝑖∈𝑊
(1 − 𝜖𝑖)

∏
𝑗∈𝐵/𝑊

𝜖 𝑗

(42)

𝐼𝐵→𝑊 ′ =
∏
𝑖∈𝑊 ′
(1 − 𝜖𝑖)

∏
𝑗∈𝐵/𝑊 ′

𝜖 𝑗

(43)

Since there is only one element in 𝑊/𝑊 ′ and only one element in 𝑊 ′/𝑊 , and all elements of 𝑊 and 𝑊 ′

are contained within 𝐵, the expression can be further simplified. Both 𝐼𝐵→𝑊 and 𝐼𝐵→𝑊 ′ are divided by their
common factors.

𝐼𝐵→𝑊 = (1 − 𝜖𝑊/𝑊 ′)𝜖𝑊 ′/𝑊 (44)

𝐼𝐵→𝑊 ′ = (1 − 𝜖𝑊 ′/𝑊)𝜖𝑊/𝑊 ′ (45)

Wll that remains is to proof:

𝜖𝑊/𝑊 ′ ≤ 𝜖𝑊 ′/𝑊 =⇒ (1 − 𝜖𝑊/𝑊 ′)𝜖𝑊 ′/𝑊 ≥ (1 − 𝜖𝑊 ′/𝑊)𝜖𝑊/𝑊 ′ (46)

𝜖𝑊/𝑊 ′ ≥ 𝜖𝑊 ′/𝑊 =⇒ (1 − 𝜖𝑊/𝑊 ′)𝜖𝑊 ′/𝑊 ≤ (1 − 𝜖𝑊 ′/𝑊)𝜖𝑊/𝑊 ′ (47)

Note that 𝜖𝑊/𝑊 ′ and 𝜖𝑊 ′/𝑊 are both fractions, and can hence be written as
1
𝑎

and
1
𝑏

respectively, with
𝑎, 𝑏 ≥ 1. 𝜖𝑊/𝑊 ′ ≤ 𝜖𝑊 ′/𝑊 then implies 𝑎 ≥ 𝑏 and similarly 𝜖𝑊/𝑊 ′ ≥ 𝜖𝑊 ′/𝑊 then implies 𝑎 ≤ 𝑏. We can
then derive:

(1 − 𝜖𝑊/𝑊 ′) (𝜖𝑊 ′/𝑊) = (
𝑎 − 1
𝑎
) (1
𝑏
) = (𝑎𝑏 − 𝑏

𝑎𝑏
) (48)

(𝜖𝑊/𝑊 ′) (1 − 𝜖𝑊 ′/𝑊) = (
1
𝑎
) (𝑏 − 1

𝑏
) = (𝑎𝑏 − 𝑎

𝑎𝑏
) (49)

Conclusion
Since 𝜖𝑊/𝑊 ′ ≤ 𝜖𝑊 ′/𝑊 implies 𝑎 ≥ 𝑏, it also implies (𝑎𝑏 − 𝑏

𝑎𝑏
) > (𝑎𝑏 − 𝑎

𝑎𝑏
), and similarly 𝜖𝑊/𝑊 ′ ≥ 𝜖𝑊 ′/𝑊

implies (𝑎𝑏 − 𝑏

𝑎𝑏
) ≤ (𝑎𝑏 − 𝑎

𝑎𝑏
), proving both cases.

23

E. Outflow Proof k Hypotheses
To prove

For hypothesis set 𝐻, with 𝐵 ⊆ 𝐻, 𝑊 ⊂ 𝐵, 𝑊 ′ ⊂ 𝐵 with |𝑊 | = |𝑊 ′ |

|𝑊 | = |𝑊 ′ | =⇒ 𝑂𝑊→𝐵 = 𝑂𝑊 ′→𝐵 (50)

Proof
We define both 𝑂𝑊→𝐵 = 𝑂𝑊 ′→𝐵 using a binomial coefficients.

𝑂𝑊→𝐵 =
∏

𝑖∈𝐵/𝑊
(1 − 𝜖𝑖)

∏
𝑗∈𝑊

𝜖 𝑗

∏
𝑙∈𝐻/𝐵

((1 − 𝜖𝑙) + 𝜖𝑙)

𝑡∑︁

𝑎=2

𝑎−2∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡−𝑎𝑖

) ©«
∏

𝑗∈𝑊/𝐵
(1 − 𝜖 𝑗)𝑎−1𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝐵
(1 − 𝜖𝑙)𝑏𝜖 𝑡𝑙

ª®¬

+
∏

𝑖∈𝐵/𝑊
(1 − 𝜖𝑖)

∏
𝑗∈𝑊

𝜖 𝑗

∏
𝑙∈𝐻/𝐵

𝜖𝑙

𝑡∑︁

𝑎=1

𝑎−1∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡−𝑎𝑖

) ©«
∏

𝑗∈𝑊/𝐵
(1 − 𝜖 𝑗)𝑎−1𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝐵
(1 − 𝜖𝑙)𝑏𝜖 𝑡𝑙

ª®¬

=
∏

𝑙∈𝐻/𝐵
((1 − 𝜖𝑙) + 𝜖𝑙)

𝑡∑︁

𝑎=2

𝑎−2∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡+1−𝑎𝑖

) ©«
∏

𝑗∈𝑊/𝐵
(1 − 𝜖 𝑗)𝑎𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝐵
(1 − 𝜖𝑙)𝑏𝜖 𝑡𝑙

ª®¬

+
∏

𝑙∈𝐻/𝐵
𝜖𝑙

𝑡∑︁

𝑎=1

𝑎−1∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡+1−𝑎𝑖

) ©«
∏

𝑗∈𝑊/𝐵
(1 − 𝜖 𝑗)𝑎𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝐵
(1 − 𝜖𝑙)𝑏𝜖 𝑡𝑙

ª®¬

(51)

𝑂𝑊 ′→𝐵 =
∏

𝑖∈𝐵/𝑊 ′
(1 − 𝜖𝑖)

∏
𝑗∈𝑊 ′

𝜖 𝑗

∏
𝑙∈𝐻/𝐵

((1 − 𝜖𝑙) + 𝜖𝑙)

𝑡∑︁

𝑎=2

𝑎−2∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡−𝑎𝑖

) ©«
∏

𝑗∈𝑊 ′/𝐵
(1 − 𝜖 𝑗)𝑎−1𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝐵
(1 − 𝜖𝑙)𝑏𝜖 𝑡𝑙

ª®¬

+
∏

𝑖∈𝐵/𝑊 ′
(1 − 𝜖𝑖)

∏
𝑗∈𝑊 ′

𝜖 𝑗

∏
𝑙∈𝐻/𝐵

𝜖𝑙

𝑡∑︁

𝑎=1

𝑎−1∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡−𝑎𝑖

) ©«
∏

𝑗∈𝑊 ′/𝐵
(1 − 𝜖 𝑗)𝑎−1𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝑊
(1 − 𝜖𝑙)𝑏𝜖 𝑡𝑙

ª®¬

=
∏

𝑙∈𝐻/𝐵
((1 − 𝜖𝑙) + 𝜖𝑙)

𝑡∑︁

𝑎=2

𝑎−2∑︁
𝑏=0

(∏
𝑖∈𝐵
(1 − 𝜖𝑖)𝑎𝜖 𝑡+1−𝑎𝑖

) ©«
∏

𝑗∈𝑊 ′/𝐵
(1 − 𝜖 𝑗)𝑎𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝑊
(1 − 𝜖𝑙) (𝑏)𝜖 𝑡𝑙

ª®¬

+
∏

𝑙∈𝐻/𝐵
𝜖𝑙

𝑡∑︁

𝑎=1

𝑎−1∑︁
𝑏=0

(∏
𝑖∈𝑊
(1 − 𝜖𝑖)𝑎𝜖 𝑡+1−𝑎𝑖

) ©«
∏

𝑗∈𝑊 ′/𝐵
(1 − 𝜖 𝑗)𝑎𝜖 𝑡+1−𝑎𝑗

ª®¬ ©«
∏

𝑙∈𝐻/𝐵
(1 − 𝜖𝑙) (𝑏)𝜖 𝑡𝑙

ª®¬

(52)
From these definitions, it can be directly seen that the two terms are equal.

24

F. Derivation of Equation 19

A. Derivation for |𝐻 | = 3
First the derivation is shown for |𝐻 | = 3. This is a warm up for the general case, |𝐻 | = 𝑘 for any positive
integer 𝑘 .

𝐸𝑡 =𝑝
𝑡
[1]𝜖 [1]

+𝑝𝑡[2]𝜖 [2]
+𝑝𝑡[3]𝜖 [3]

+𝑝𝑡[1,2] (
1
2
𝜖 [1] +

1
2
𝜖 [2])

+𝑝𝑡[1,3] (
1
2
𝜖 [1] +

1
2
𝜖 [3])

+𝑝𝑡[2,3] (
1
2
𝜖 [2] +

1
2
𝜖 [3])

+𝑝𝑡[1,2,3] (
1
3
𝜖 [1] +

1
3
𝜖 [2] +

1
3
𝜖 [3]) (53)

We can derive a similar expression for 𝐸𝑡+1. From previous proofs we know that 𝑝𝑡+1
𝐵

can be expressed as
a function of 𝑝𝑡

𝐵
with the help of inflow and outflow. This leads to the next expression for 𝐸𝑡+1.

𝐸𝑡+1 =(𝑝𝑡[1] + 𝐼[1,2]→[1] −𝑂 [1]→[1,2] + 𝐼[1,3]→[1] −𝑂 [1]→[1,3] + 𝐼[1,2,3]→[1] −𝑂 [1]→[1,2,3])𝜖 [1]
+(𝑝𝑡[2] + 𝐼[1,2]→[2] −𝑂 [2]→[1,2] + 𝐼[2,3]→[2] −𝑂 [2]→[2,3] + 𝐼[1,2,3]→[2] −𝑂 [2]→[1,2,3])𝜖 [2]
+(𝑝𝑡[3] + 𝐼[1,3]→[3] −𝑂 [3]→[1,3] + 𝐼[2,3]→[3] −𝑂 [3]→[2,3] + 𝐼[1,2,3]→[3] −𝑂 [3]→[1,2,3])𝜖 [3]

+(𝑝𝑡[1,2] +𝑂 [1]→[1,2] − 𝐼[1,2]→[1] +𝑂 [2]→[1,2] − 𝐼[1,2]→[2] + 𝐼[1,2,3]→[1,2] −𝑂 [1,2]→[1,2,3]) (
1
2
𝜖 [1] +

1
2
𝜖 [2])

+(𝑝𝑡[1,3] +𝑂 [1]→[1,3] − 𝐼[1,3]→[1] +𝑂 [3]→[1,3] − 𝐼[1,3]→[3] + 𝐼[1,2,3]→[1,3] −𝑂 [1,3]→[1,2,3]) (
1
2
𝜖 [1] +

1
2
𝜖 [3])

+(𝑝𝑡[2,3] +𝑂 [2]→[2,3] − 𝐼[2,3]→[2] +𝑂 [3]→[2,3] − 𝐼[2,3]→[3] + 𝐼[1,2,3]→[2,3] −𝑂 [2,3]→[1,2,3]) (
1
2
𝜖 [2] +

1
2
𝜖 [3])

+(𝑝𝑡[1,2,3] +𝑂 [1]→[1,2,3] − 𝐼[1,2,3]→[1] +𝑂 [2]→[1,2,3] − 𝐼[1,2,3]→[2] +𝑂 [3]→[1,2,3] − 𝐼[1,2,3]→[3]+
𝑂 [1,2]→[1,2,3] − 𝐼[1,2,3]→[1,2] +𝑂 [1,3]→[1,2,3] − 𝐼[1,2,3]→[1,3] +𝑂 [2,3]→[1,2,3] − 𝐼[1,2,3]→[2,3])

(1
3
𝜖 [1] +

1
3
𝜖 [2] +

1
3
𝜖 [3])

(54)
We can then write 𝐸𝑡 − 𝐸𝑡+1 as follows.

25

𝐸𝑡 − 𝐸𝑡+1 =(𝑂 [1]→[1,2] − 𝐼[1,2]→[1] +𝑂 [1]→[1,3] − 𝐼[1,3]→[1] +𝑂 [1]→[1,2,3] − 𝐼[1,2,3]→[1])𝜖 [1]
+(𝑂 [2]→[1,2] − 𝐼[1,2]→[2] +𝑂 [2]→[2,3] − 𝐼[2,3]→[2] +𝑂 [2]→[1,2,3] − 𝐼[1,2,3]→[2])𝜖 [2]
+(𝑂 [3]→[1,3] − 𝐼[1,3]→[3] +𝑂 [3]→[2,3] − 𝐼[2,3]→[3] +𝑂 [3]→[1,2,3] − 𝐼[1,2,3]→[3])𝜖 [3]

+(𝐼[1,2]→[1] −𝑂 [1]→[1,2] + 𝐼[1,2]→[2] −𝑂 [2]→[1,2] +𝑂 [1,2]→[1,2,3] − 𝐼[1,2,3]→[1,2]) (
1
2
𝜖 [1] +

1
2
𝜖 [2])

+(𝐼[1,3]→[1] −𝑂 [1]→[1,3] + 𝐼[1,3]→[3] −𝑂 [3]→[1,3] +𝑂 [1,3]→[1,2,3] − 𝐼[1,2,3]→[1,3]) (
1
2
𝜖 [1] +

1
2
𝜖 [3])

+(𝐼[2,3]→[2] −𝑂 [2]→[2,3] + 𝐼[2,3]→[3] −𝑂 [3]→[2,3] +𝑂 [2,3]→[1,2,3] − 𝐼[1,2,3]→[2,3]) (
1
2
𝜖 [2] +

1
2
𝜖 [3])

+(𝐼[1,2,3]→[1] −𝑂 [1]→[1,2,3] + 𝐼[1,2,3]→[2] −𝑂 [2]→[1,2,3] + 𝐼[1,2,3]→[3] −𝑂 [3]→[1,2,3]+
𝐼[1,2,3]→[1,2] −𝑂 [1,2]→[1,2,3] + 𝐼[1,2,3]→[1,3] −𝑂 [1,3]→[1,2,3] + 𝐼[1,2,3]→[2,3] −𝑂 [2,3]→[1,2,3])

(1
3
𝜖 [1] +

1
3
𝜖 [2] +

1
3
𝜖 [3])

(55)
We group all terms by 𝜖 .

26

𝐸𝑡 − 𝐸𝑡+1 =(−1
2
𝐼[1,2,3]→[1,2] +

1
3
𝐼[1,2,3]→[1,2] +

−1
2
𝐼[1,2,3]→[1,3] +

1
3
𝐼[1,2,3]→[1,3] +

−1
1
𝐼[1,2,3]→[1] +

1
3
𝐼[1,2,3]→[1]+

1
3
𝐼[1,2,3]→[2,3] +

1
3
𝐼[1,2,3]→[2] +

1
3
𝐼[1,2,3]→[3] +

−1
1
𝐼[1,2]→[1] +

1
2
𝐼[1,2]→[1] +

1
2
𝐼[1,2]→[2]+

−1
1
𝐼[1,3]→[1] +

1
2
𝐼[1,3]→[1] +

1
2
𝐼[1,3]→[3] +

1
2
𝑂 [1,2]→[1,2,3] +

−1
3
𝑂 [1,2]→[1,2,3] +

1
2
𝑂 [1,3]→[1,2,3]+

−1
3
𝑂 [1,3]→[1,2,3] +

1
1
𝑂 [1]→[1,2,3] +

−1
3
𝑂 [1]→[1,2,3] +

1
1
𝑂 [1]→[1,2] +

−1
2
𝑂 [1]→[1,2] +

1
1
𝑂 [1]→[1,3]+

−1
2
𝑂 [1]→[1,3] +

−1
3
𝑂 [2,3]→[1,2,3] +

−1
3
𝑂 [2]→[1,2,3] +

−1
2
𝑂 [2]→[1,2] +

−1
3
𝑂 [3]→[1,2,3] +

−1
2
𝑂 [3]→[1,3])𝜖1

+(−1
2
𝐼[1,2,3]→[1,2] +

1
3
𝐼[1,2,3]→[1,2] +

1
3
𝐼[1,2,3]→[1,3] +

1
3
𝐼[1,2,3]→[1] +

−1
2
𝐼[1,2,3]→[2,3] +

1
3
𝐼[1,2,3]→[2,3]+

−1
1
𝐼[1,2,3]→[2] +

1
3
𝐼[1,2,3]→[2] +

1
3
𝐼[1,2,3]→[3] +

1
2
𝐼[1,2]→[1] +

−1
1
𝐼[1,2]→[2] +

1
2
𝐼[1,2]→[2]+

−1
1
𝐼[2,3]→[2] +

1
2
𝐼[2,3]→[2] +

1
2
𝐼[2,3]→[3] +

1
2
𝑂 [1,2]→[1,2,3] +

−1
3
𝑂 [1,2]→[1,2,3] +

−1
3
𝑂 [1,3]→[1,2,3]+

−1
3
𝑂 [1]→[1,2,3] +

−1
2
𝑂 [1]→[1,2] +

1
2
𝑂 [2,3]→[1,2,3] +

−1
3
𝑂 [2,3]→[1,2,3] +

1
1
𝑂 [2]→[1,2,3] +

−1
3
𝑂 [2]→[1,2,3]+

1
1
𝑂 [2]→[1,2] +

−1
2
𝑂 [2]→[1,2] +

1
1
𝑂 [2]→[2,3] +

−1
2
𝑂 [2]→[2,3] +

−1
3
𝑂 [3]→[1,2,3] +

−1
2
𝑂 [3]→[2,3])𝜖2

+(1
3
𝐼[1,2,3]→[1,2] +

−1
2
𝐼[1,2,3]→[1,3] +

1
3
𝐼[1,2,3]→[1,3] +

1
3
𝐼[1,2,3]→[1] +

−1
2
𝐼[1,2,3]→[2,3] +

1
3
𝐼[1,2,3]→[2,3]+

1
3
𝐼[1,2,3]→[2] +

−1
1
𝐼[1,2,3]→[3] +

1
3
𝐼[1,2,3]→[3] +

1
2
𝐼[1,3]→[1] +

−1
1
𝐼[1,3]→[3] +

1
2
𝐼[1,3]→[3]+

1
2
𝐼[2,3]→[2] +

−1
1
𝐼[2,3]→[3] +

1
2
𝐼[2,3]→[3] +

−1
3
𝑂 [1,2]→[1,2,3] +

1
2
𝑂 [1,3]→[1,2,3] +

−1
3
𝑂 [1,3]→[1,2,3]+

−1
3
𝑂 [1]→[1,2,3] +

−1
2
𝑂 [1]→[1,3] +

1
2
𝑂 [2,3]→[1,2,3] +

−1
3
𝑂 [2,3]→[1,2,3] +

−1
3
𝑂 [2]→[1,2,3] +

−1
2
𝑂 [2]→[2,3]+

1
1
𝑂 [3]→[1,2,3] +

−1
3
𝑂 [3]→[1,2,3] +

1
1
𝑂 [3]→[1,3] +

−1
2
𝑂 [3]→[1,3] +

1
1
𝑂 [3]→[2,3] +

−1
2
𝑂 [3]→[2,3])𝜖3

(56)
We assume Lemma 1 holds. The expression becomes the following after eliminating all outflow terms.

𝐸𝑡 − 𝐸𝑡+1 =(−1
6
𝐼[1,2,3]→[1,2] +

−1
6
𝐼[1,2,3]→[1,3] +

−2
3
𝐼[1,2,3]→[1] +

1
3
𝐼[1,2,3]→[2,3] +

1
3
𝐼[1,2,3]→[2] +

1
3
𝐼[1,2,3]→[3]+

−1
2
𝐼[1,2]→[1] +

1
2
𝐼[1,2]→[2] +

−1
2
𝐼[1,3]→[1] +

1
2
𝐼[1,3]→[3])𝜖1

+(−1
6
𝐼[1,2,3]→[1,2] +

1
3
𝐼[1,2,3]→[1,3] +

1
3
𝐼[1,2,3]→[1] +

−1
6
𝐼[1,2,3]→[2,3] +

−2
3
𝐼[1,2,3]→[2] +

1
3
𝐼[1,2,3]→[3]+

1
2
𝐼[1,2]→[1] +

−1
2
𝐼[1,2]→[2] +

−1
2
𝐼[2,3]→[2] +

1
2
𝐼[2,3]→[3])𝜖2

+(1
3
𝐼[1,2,3]→[1,2] +

−1
6
𝐼[1,2,3]→[1,3] +

1
3
𝐼[1,2,3]→[1] +

−1
6
𝐼[1,2,3]→[2,3] +

1
3
𝐼[1,2,3]→[2] +

−2
3
𝐼[1,2,3]→[3]+

1
2
𝐼[1,3]→[1] +

−1
2
𝐼[1,3]→[3] +

1
2
𝐼[2,3]→[2] +

−1
2
𝐼[2,3]→[3])𝜖3

(57)
We can group like terms together to obtain.

27

𝐸𝑡 − 𝐸𝑡+1 =𝐼[1,2]→[1] (
−1
2
𝜖1 +

1
2
𝜖2)

+𝐼[1,2]→[2] (
1
2
𝜖1 +
−1
2
𝜖2)

+𝐼[1,3]→[1] (
−1
2
𝜖1 +

1
2
𝜖3)

+𝐼[1,3]→[3] (
1
2
𝜖1 +
−1
2
𝜖3)

+𝐼[2,3]→[2] (
−1
2
𝜖2 +

1
2
𝜖3)

+𝐼[2,3]→[3] (
1
2
𝜖2 +
−1
2
𝜖3)

+𝐼[1,2,3]→[1] (
−2
3
𝜖1 +

1
3
𝜖2 +

1
3
𝜖3)

+𝐼[1,2,3]→[2] (
1
3
𝜖1 +
−2
3
𝜖2 +

1
3
𝜖3)

+𝐼[1,2,3]→[3] (
1
3
𝜖1 +

1
3
𝜖2 +
−2
3
𝜖3)

+𝐼[1,2,3]→[1,2] (
−1
6
𝜖1 +
−1
6
𝜖2 +

1
3
𝜖3)

+𝐼[1,2,3]→[1,3] (
−1
6
𝜖1 +

1
3
𝜖2 +
−1
6
𝜖3)

+𝐼[1,2,3]→[2,3] (
1
3
𝜖1 +
−1
6
𝜖2 +
−1
6
𝜖3) (58)

This is an expression of the form of Equation 19.

B. Derivation for |𝐻 | = 𝑘

Note that this sections follows the same steps as for the derivation given for |𝐻 | = 3. 𝑉 is a subset of
hypotheses of 𝐻, so 𝑉 ⊆ 𝑊 . For ease of notation, we do not consider the emptyset ∅ to be part of any subset
𝑉 ⊆ 𝑊

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
𝑉⊆𝐻
(𝑝𝑡𝑉 − 𝑝𝑡+1𝑉) (

1
|𝑉 |

∑︁
ℎ𝑥 ∈𝑉

𝜖𝑥) ≥ 0 (59)

Substitute 𝑝𝑡+1
𝑉

with inflow and outflow. Remember that another subset 𝑊 ⊆ 𝐻 with 𝑊 ⊂ 𝑉 , 𝑊 receives
inflow from 𝑉 , and loses outflow to 𝑉 . Similarly if 𝑉 ⊂ 𝑊 , 𝑊 loses inflow to 𝑉 , and gains outflow from 𝑉 .

28

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
𝑉⊆𝐻
(𝑝𝑡𝑉 −

(
𝑝𝑡𝑉 +

∑︁
𝑊⊂𝑉
(𝑂𝑊→𝑉 − 𝐼𝑉→𝑊) +

∑︁
𝑊⊆𝐻:𝑉⊂𝑊

(𝐼𝑊→𝑉 −𝑂𝑉→𝑊)
)
(1
|𝑉 |

∑︁
ℎ𝑥 ∈𝑉

𝜖𝑥)

=
∑︁
𝑉⊆𝐻

(∑︁
𝑊⊂𝑉

𝐼𝑉→𝑊 −
∑︁
𝑊⊂𝑉

𝑂𝑊→𝑉 −
∑︁

𝑊⊆𝐻:𝑉⊂𝑊
𝐼𝑊→𝑉 +

∑︁
𝑊⊆𝐻:𝑉⊂𝑊

𝑂𝑉→𝑊)
)
(1
|𝑉 |

∑︁
ℎ𝑥 ∈𝑉

𝜖𝑥)

=
∑︁
𝑉⊆𝐻

∑︁
ℎ𝑥 ∈𝑉

𝜖𝑥

(∑︁
𝑊⊂𝑉

1
|𝑉 | 𝐼𝑉→𝑊 −

∑︁
𝑊⊂𝑉

1
|𝑉 |𝑂𝑊→𝑉 −

∑︁
𝑊⊆𝐻:𝑉⊂𝑊

1
|𝑉 | 𝐼𝑊→𝑉 +

∑︁
𝑊⊆𝐻:𝑉⊂𝑊

1
|𝑉 |𝑂𝑉→𝑊)

)
≥0

(60)
We group all variables by value of 𝜖𝑖 . Refer to Appendix F.A if this step is unclear. With |𝐻 | = 𝑘:

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
ℎ𝑥 ∈𝐻

𝜖𝑥

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖 :ℎ𝑖∈𝑉

(∑︁
𝑊⊂𝑉 :ℎ𝑖∈𝑊

(1
|𝑊 |𝑂𝑊→𝑉) −

∑︁
𝑊 ′⊂𝑉

(1
|𝑉 |𝑂𝑊 ′→𝑉)

−
∑︁

𝑊⊂𝑉 :ℎ𝑖∈𝑊
(1
|𝑊 | 𝐼𝑉→𝑊) +

∑︁
𝑊 ′⊂𝑉

(1
|𝑉 | 𝐼𝑉→𝑊 ′)

)
=

∑︁
ℎ𝑥 ∈𝐻

𝜖𝑥

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖 :ℎ𝑖∈𝑉

𝑖−1∑︁
𝑗=1

©«
∑︁

𝑊=[𝑉] 𝑗 :ℎ𝑖∈𝑊
(1
𝑗
𝑂𝑊→𝑉) −

∑︁
𝑊 ′=[𝑉] 𝑗

(1
𝑖
𝑂𝑊 ′→𝑉)

−
∑︁

𝑊=[𝑉] 𝑗 :ℎ𝑖∈𝑊
(1
𝑗
𝐼𝑉→𝑊) +

∑︁
𝑊 ′=[𝑉] 𝑗

(1
𝑖
𝐼𝑉→𝑊 ′)

ª®¬ (61)

For any given set 𝑉 ⊆ 𝐻 of size 𝑖 and positive integer 1 < 𝑗 < 𝑖, there are
(𝑖
𝑗

)
subsets 𝑊 ⊂ 𝑉 of size

𝑗 . For any given hypothesis ℎ𝑥 ∈ 𝑉 , there are
(𝑖−1
𝑗−1

)
subsets 𝑊 ⊂ 𝑉 of size 𝑗 containing ℎ𝑥 , so ℎ𝑥 ∈ 𝑊 .

Remember that any two outflows 𝑂𝑊→𝑉 and 𝑂𝑊 ′→𝑉 are equal by Lemma 1 if |𝑊 | = |𝑊 ′ |. Using 𝑂𝑊 𝑗→𝑉 as
any outflow term where |𝑊 𝑗 | = 𝑗 , we can now write:

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
ℎ𝑥 ∈𝐻

𝜖𝑥

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖 :ℎ𝑥 ∈𝑉

𝑖−1∑︁
𝑗=1

((
𝑖 − 1
𝑗 − 1

)
1
𝑗
𝑂𝑊 𝑗→𝑉 −

(
𝑖

𝑗

)
1
𝑖
𝑂𝑊 𝑗→𝑉

−
∑︁

𝑊=[𝑉] 𝑗 :ℎ𝑥 ∈𝑊
(1
𝑗
𝐼𝑉→𝑊) +

∑︁
𝑊 ′=[𝑉] 𝑗

(1
𝑖
𝐼𝑉→𝑊 ′)

ª®¬ (62)

Using the fact that
(𝑖
𝑗

) 1
𝑖
=

(𝑖−1
𝑗−1

) 1
𝑗

all outflow terms can now be eliminated. We write:

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
ℎ𝑥 ∈𝐻

𝜖𝑥

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖 :ℎ𝑥 ∈𝑉

𝑖−1∑︁
𝑗=1

©«−
∑︁

𝑊=[𝑉] 𝑗 :ℎ𝑥 ∈𝑊
(1
𝑗
𝐼𝑉→𝑊) +

∑︁
𝑊 ′=[𝑉] 𝑗

(1
𝑖
𝐼𝑉→𝑊 ′)

ª®¬ (63)

The term
∑

𝑊 ′=[𝑉] 𝑗 (1𝑖 𝐼𝑉→𝑊 ′) is rearranged, yielding:

𝐸𝑡 − 𝐸𝑡+1 =
∑︁
ℎ𝑥 ∈𝐻

𝜖𝑥

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

©«
∑︁

𝑊=[𝑉] 𝑗 :ℎ𝑥 ∈𝑊
− 𝑖 − 𝑗

𝑖 𝑗
𝐼𝑉→𝑊 +

∑︁
𝑊 ′=[𝑉] 𝑗 :ℎ𝑥∉𝑊

′

1
𝑖
𝐼𝑉→𝑊 ′

ª®¬ (64)

29

Grouping by inflow terms instead of 𝜖 finally yields:

𝐸𝑡 − 𝐸𝑡+1 =

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
𝑊=[𝑉] 𝑗

𝐼𝑉→𝑊
©«(

∑︁
ℎ𝑦∈𝑊

− 𝑖 − 𝑗

𝑖 𝑗
𝜖𝑦) + (

∑︁
ℎ𝑥 ∈𝑉/𝑊

1
𝑖
𝜖𝑥)

ª®¬
≥0 (65)

G. Derivation of Equation 23
First, the following equation is given.

𝐸𝑡 − 𝐸𝑡+1 =

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
𝑊=[𝑉] 𝑗

𝐼𝑉→𝑊
©«(

∑︁
ℎ𝑥 ∈𝑉/𝑊

1
𝑖
𝜖𝑥) + (

∑︁
ℎ𝑦∈𝑊

− 𝑖 − 𝑗

𝑖 𝑗
𝜖𝑦)

ª®¬
=

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
𝑊=[𝑉] 𝑗

𝐼𝑉→𝑊
©«(

∑︁
ℎ𝑥 ∈𝑉/𝑊

𝑗

𝑖 𝑗
𝜖𝑥) + (

∑︁
ℎ𝑦∈𝑊

− 𝑖 − 𝑗

𝑖 𝑗
𝜖𝑦)

ª®¬ (66)

We can make pairs of any two hypotheses ℎ𝑥 ∈ 𝑉/𝑊 and ℎ𝑦 ∈ 𝑊 and their respective 𝜖 values as follows:

𝐸𝑡 − 𝐸𝑡+1 =

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
𝑊=[𝑉] 𝑗

∑︁
ℎ𝑥 ∈𝑉/𝑊

∑︁
ℎ𝑦∈𝑊

𝐼𝑉→𝑊

(
1
𝑖 𝑗
ℎ𝑥 −

1
𝑖 𝑗
ℎ𝑦

)
(67)

Note that it is possible to make pairs with factor 1
𝑖 𝑗

because there are 𝑗 elements in the set 𝑊 , so 1
𝑗

𝑗

𝑖 𝑗
= 1

𝑖 𝑗
.

There are also 𝑖 − 𝑗 elements in the set 𝑉/𝑊 , so 1
𝑖− 𝑗

𝑖− 𝑗
𝑖 𝑗

= 1
𝑖 𝑗

.
We use the information that we may express 𝐸𝑡 − 𝐸𝑡+1 for any 𝑉 and 𝑊 and any two pairs of ℎ𝑥 ∈ 𝑉/𝑊

and ℎ𝑦 ∈ 𝑊 as a sum of all 𝐼𝑉→𝑊 (1
𝑖 𝑗
ℎ𝑥 − 1

𝑖 𝑗
ℎ𝑦). We mirror 𝑊 with another subset of 𝑉 , 𝑊 ′ ⊂ 𝑉 , given that

|𝑊 ∩𝑊 ′ | = |𝑊 | − 1 = |𝑊 ′ | − 1. If we match unique pairs of 𝑊 and 𝑊 ′ such that ℎ𝑥 = 𝑊 ′/𝑊 and ℎ𝑦 = 𝑊/𝑊 ′,
we may rewrite our expression a final time.

𝐸𝑡 − 𝐸𝑡+1 =

𝑘∑︁
𝑖=2

∑︁
𝑉=[𝐻]𝑖

𝑖−1∑︁
𝑗=1

∑︁
{𝑊,𝑊 ′ }∈{ [𝑉] 𝑗 }2∗

𝐼𝑉→𝑊 (
1
𝑖 𝑗
ℎ𝑥 −

1
𝑖 𝑗
ℎ𝑦) + 𝐼𝑉→𝑊 ′ (

1
𝑖 𝑗
ℎ𝑦 −

1
𝑖 𝑗
ℎ𝑥)

(68)

Here {[𝑉] 𝑗}2∗ denotes the set of all pairs of unique subsets of 𝑉 size 𝑗 , so |𝑊 | = |𝑊 ′ | = 𝑗 that overlap on
all elements except one in each subset so |𝑊/𝑊 ′ | = |𝑊 ′/𝑊 | = 1

30

H. Proof of monotonicity for |𝐻 | = 2, dependent
We first need to redefine Table 1. As we no longer assume hypotheses classify independently, so we need to
define the joint probabilities of classification outcomes of ℎ1 and ℎ2.

Table 2. Definition 𝜌 and 𝑛 for |𝐻 | = 2 There are four possible classifications of a single instance (𝑥, 𝑦) ∈ 𝑆𝑡 .
The first two columns indicate whether a hypothesis classifies the instance correct 1 or incorrect 0. The third
column denotes the associated probability of that classification. For example, the probability that both ℎ1
and ℎ2 classify an instance correctly is equal to 𝜌11, row 4. The 4th column denotes variable associated
with the amount of instances of a sample 𝑆𝑡 that are classified according to column one and two, with
𝑡 = 𝑛00 + 𝑛10 + 𝑛01 + 𝑛11. So for a sample 𝑆𝑡 for which both hypotheses classify all instances correctly, 𝑑 = 𝑡.
The probability of this outcome is 𝜌𝑛11

11

ℎ1 ℎ2 probability of classification associated instance count
0 0 𝜌00 𝑛00

1 0 𝜌10 𝑛10

0 1 𝜌01 𝑛01

1 1 𝜌11 𝑛11

We need to redefine 𝑝𝑡
𝐵

for the case hypotheses do not necessarily classify independently.

𝑃𝑡 (𝑛10, 𝑛01) =
𝑡−𝑛10−𝑛01∑︁

𝑛00=0

(
𝑡

𝑛00

)
𝜌
𝑛00
00

(
𝑡 − 𝑛00

𝑛10

)
𝜌
𝑛10
10

(
𝑡 − 𝑛00 − 𝑛10

𝑛01

)
𝜌
𝑛01
01 𝜌

𝑡−𝑛00−𝑛10−𝑛01
11 (69)

With the definition of a classification outcome (𝑛1, 𝑛2) and its associated probability 𝑃𝑡 (𝑛1, 𝑛2), 𝑝𝑡𝐵 can
now be defined. Note that 𝑝𝑡[1] - the probability that ℎ1 has the lowest error rate on a sample 𝑆𝑡 - is simply the
sum of all probabilities of classification outcomes for which 𝑛1 < 𝑛2. This allows us to write 𝑝𝑡[1] (and 𝑝𝑡[2]
and 𝑝𝑡[1,2]) as follows:

𝑝𝑡[1] =
𝑡∑︁

𝑛10=1

𝑚𝑖𝑛(𝑛10−1,𝑡−𝑛10)∑︁
𝑛01=0

𝑃𝑡 (𝑛10, 𝑛01)

𝑝𝑡[2] =
𝑡∑︁

𝑛01=1

𝑚𝑖𝑛(𝑛01−1,𝑡−𝑛01)∑︁
𝑛10=0

𝑃𝑡 (𝑛10, 𝑛01)

𝑝𝑡[1,2] =
⌊𝑡/2⌋∑︁
𝑛10=0

𝑃𝑡 (𝑛10, 𝑛01) (with 𝑛10 = 𝑛01)
(70)

Next we define 𝑝𝑡+1[1] as

𝑝𝑡+1[1] =𝑝
𝑡
[1] + 𝐼[1,2]→[1] −𝑂 [1]→[1,2]

𝑝𝑡+1[2] =𝑝
𝑡
[2] + 𝐼[1,2]→[2] −𝑂 [2]→[1,2]

𝑝𝑡+1[1,2] =𝑝
𝑡
[1,2] − 𝐼[1,2]→[1] +𝑂 [1]→[1,2] − 𝐼[1,2]→[2] +𝑂 [2]→[1,2] (71)

Note that this is the exact same as presented in Subsection 11. Hence, if we proof Lemma 1 and 2, we
proof monotonicity for the dependent case.

31

A. Inflow Proof 2 Hypotheses
To prove

𝜌10 > 𝜌01 =⇒ 𝐼[1,2]→[1] − 𝐼[1,2]→[2] > 0 (72)

𝜌10 < 𝜌01 =⇒ 𝐼[1,2]→[1] − 𝐼[1,2]→[2] < 0 (73)

Proof We define both 𝐼𝑝1 and 𝐼𝑝2 :

𝐼[1,2]→[1] = 𝜌10𝑝
𝑡
[1,2] (74)

𝐼[1,2]→[2] = 𝜌01𝑝
𝑡
[1,2] (75)

With these definitions it is immediately apparent that 𝜌10 > 𝜌01 implies 𝐼𝑝1 > 𝐼𝑝2 , and similarly 𝜌10 < 𝜌01
implies 𝐼𝑝1 < 𝐼𝑝2 .

B. Outflow Proof 2 Hypotheses
Using Table 2, we can write out 𝑂 [1]→[1,2] and 𝑂 [2]→[1,2] for sample 𝑆𝑡 .

𝑂 [1]→[1,2] = 𝜌01

⌈𝑡/2⌉∑︁
𝑛10=1

𝑃(𝑛10, 𝑛01) (with 𝑛10 = 𝑛01 + 1)

= 𝜌01

⌈𝑡/2⌉∑︁
𝑛10=1

𝑡−𝑛10−𝑛01∑︁
𝑛00=0

(
𝑡

𝑛10

) (
𝑡 − 𝑛10

𝑛01

) (
𝑡 − 𝑛10 − 𝑛01

𝑛00

)
𝜌
𝑛00
00 𝜌

𝑛10
10 𝜌

𝑛01
01 𝜌

𝑡−𝑛00−𝑛01−𝑛10
11

(76)

𝑂 [1]→[1,2] = 𝜌10

⌈𝑡/2⌉∑︁
𝑛01=1

𝑃(𝑛10, 𝑛01) (with 𝑛01 = 𝑛10 + 1)

= 𝜌01

⌈𝑡/2⌉∑︁
𝑛01=1

𝑡−𝑛10−𝑛01∑︁
𝑛00=0

(
𝑡

𝑛10

) (
𝑡 − 𝑛10

𝑛01

) (
𝑡 − 𝑛10 − 𝑛01

𝑛00

)
𝜌
𝑛00
00 𝜌

𝑛10
10 𝜌

𝑛01
01 𝜌

𝑡−𝑛00−𝑛01−𝑛10
11

(77)
With these definitions, a direct derivation is possible:

𝑂 [1]→[1,2] = 𝜌01

⌈𝑡/2⌉∑︁
𝑛10=1

𝑡−𝑛10−𝑛01∑︁
𝑛00=0

(
𝑡

𝑛10

) (
𝑡 − 𝑛10

𝑛01

) (
𝑡 − 𝑛10 − 𝑛01

𝑛00

)
𝜌
𝑛00
00 𝜌

𝑛10
10 𝜌

𝑛01
01 𝜌

𝑡−𝑛00−𝑛01−𝑛10
11 (with 𝑛10 = 𝑛01 + 1)

=

⌈𝑡/2⌉∑︁
𝑛10=1

𝑡−𝑛10−𝑛01∑︁
𝑛00=0

(
𝑡

𝑛10

) (
𝑡 − 𝑛10

𝑛01

) (
𝑡 − 𝑛10 − 𝑛01

𝑛00

)
𝜌
𝑛00
00 𝜌

𝑛10
10 𝜌

𝑛01
01 𝜌

𝑡−𝑛00−𝑛01−𝑛10
11 (with 𝑛10 = 𝑛01)

= 𝜌01

⌈𝑡/2⌉∑︁
𝑛10=1

𝑡−𝑛10−𝑛01∑︁
𝑛00=0

(
𝑡

𝑛10

) (
𝑡 − 𝑛10

𝑛01

) (
𝑡 − 𝑛10 − 𝑛01

𝑛00

)
𝜌
𝑛00
00 𝜌

𝑛10
10 𝜌

𝑛01
01 𝜌

𝑡−𝑛00−𝑛01−𝑛10
11 (with 𝑛01 = 𝑛10 + 1)

=𝑂 [1]→[1,2]
(78)

With these proofs of Lemma 1 and 2, we proof monotonicity by Equation 23.

32

I. Exponential Fitting
For |𝐻 | = 𝑘 , we plot 𝐸𝑡 for different 𝑡, 𝑘 and 𝜖 values. Simply choose and values and fill in in Equation 5,
repeated below.

𝐸𝑡 =
∑︁
𝐵⊆𝐻

𝑝𝑡𝐵

∑︁
ℎ𝑖∈𝐵

1
|𝐵| 𝜖𝑖 (with 𝐵 ≠ ∅) (79)

with

𝑝𝑡𝐵 =
∑︁
𝑎∈𝐴

𝑃𝑡 (𝑎) with

𝐴 = {{𝑛1, 𝑛2, ..., 𝑛𝑘} ∈ Z𝑘0≤𝑡 |∀𝑛𝑖 , 𝑛 𝑗 ∈ {𝑛1, 𝑛2, ..., 𝑛𝑘} :

{
𝑛𝑖 > 𝑛 𝑗 , if ℎ𝑖 ∈ 𝐵, ℎ 𝑗 ∉ 𝐵

𝑛𝑖 = 𝑛 𝑗 , if ℎ𝑖 , ℎ 𝑗 ∈ 𝐵
(80)

and

𝑃𝑡 (𝑎) =
𝑘∏
𝑖=1

(
𝑡

𝑖

)
(1 − 𝜖𝑖)𝑛𝑖𝜖 𝑡−𝑛𝑖𝑖

with 𝑎 = {𝑛1, 𝑛2, ...𝑛𝑘} (81)

For |𝐻 | = 3 is plotted for uniform random combinations of values of true error rates 𝜖1, 𝜖2 and 𝜖3 in the
range 𝜖 = (0, 1), for the range 𝑡 = [1, 30]. The legend contains the randomly selected epsilon values in order,
so 𝜖1 = 0.2, 𝜖2 = 0.3 and 𝜖3 = 0.8 is listed as [0.2, 0.3, 0.8]

The same is shown for and |𝐻 | = 5.

33

At a glance, for |𝐻 | = 3 and |𝐻 | = 5 Algorithm 1 seems to produce well-behaved learning curves. Not
only are they monotone, but the curve of 𝐸𝑡 seems to be smooth.

Lastly, a plot is shown where an expanding hypothesis set is used |𝐻 | = 𝑡. The additional random
hypothesis each turn has great impact on the shape of the learning curve.

34

Figure 6. The indexes in the legend correspond to the 𝜖 values below

The following are the randomly chosen 𝜖 values. They are ordered in order of inclusion in 𝐻.

0 =[0.2, 0.6, 0.2, 1.0, 0.9, 0.8, 0.1, 0.6, 0.5, 0.1, 0.1, 1.0, 0.0, 0.5, 0.4]
1 =[0.3, 0.3, 0.3, 1.0, 0.4, 0.3, 0.5, 0.8, 0.2, 0.2, 0.9, 0.0, 0.8, 0.4, 0.7]
2 =[0.8, 0.1, 1.0, 0.4, 0.4, 0.6, 0.7, 0.7, 0.4, 0.5, 0.1, 0.2, 0.6, 0.9, 0.5]
3 =[0.5, 0.1, 0.0, 0.7, 0.6, 0.3, 0.2, 1.0, 0.5, 0.1, 0.3, 0.1, 0.3, 0.6, 0.11
4 =[0.1, 0.4, 1.0, 0.2, 0.8, 0.1, 0.6, 0.2, 0.3, 0.1, 0.7, 0.1, 0.5, 0.3, 0.9]
5 =[0.0, 0.2, 0.6, 0.6, 0.0, 1.0, 0.5, 0.7, 0.3, 0.9, 0.9, 0.7, 0.5, 0.1, 0.7]
6 =[1.0, 0.6, 0.7, 0.6, 0.3, 0.4.0.5, 0.6, 0.2, 0.0, 0.3, 0.8, 1.0, 0.7, 0.1]
7 =[0.3, 0.9, 0.4, 0.1, 0.3, 0.1, 0.5, 0.7, 0.8, 0.9, 0.0, 0.6, 0.1, 1.0, 0.0]
8 =[0.2, 0.3, 0.4, 0.9, 0.9, 0.0, 0.7, 0.2, 0.8, 0.2, 1.0, 0.4, 0.8, 0.7, 0.3]
9 =[0.1, 0.8, 0.2, 0.9, 0.3, 0.8, 0.7, 0.9, 0.1, 0.3, 0.6, 0.0, 0.0, 1.0, 0.8] (82)

35

	Introduction
	Related Works
	Background
	Notation and Setting
	Bousquet
	Training/Validation Split
	Update Rule
	Shape of the Learning Curve

	Algorithm
	Theoretical Results
	Assumptions
	Preliminaries
	Exact Expression TEXT
	Exact Expression of TEXT for
	Exact Expression of TEXT for

	Exact Expression TEXT
	Informal Explanation Inflow and Outflow
	Exact Definition Outflow and Inflow

	Inflow Inequality and Outflow Equality
	Theorem 1
	To Prove
	Proof

	Theorem 2
	To Prove
	Proof

	Dependent Hypotheses and Growing Hypothesis Set

	Discussion
	Conclusion
	Notation
	Refresher Notation
	General Notation
	Paper specific notation

	Inflow Proof 2 Hypotheses
	Outflow Proof 2 Hypotheses
	Inflow Proof k Hypotheses
	Outflow Proof k Hypotheses
	Derivation of Equation 19
	Derivation for
	Derivation for TEXT

	Derivation of Equation 23
	Proof of monotonicity for TEXT, dependent
	Inflow Proof 2 Hypotheses
	Outflow Proof 2 Hypotheses

	Exponential Fitting

