

Delft University of Technology

Practices and Tools for Better Software Testing

Spadini, Davide

DOI
10.1145/3236024.3275424
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conferenceand Symposium
on the Foundations of Software Engineering

Citation (APA)
Spadini, D. (2018). Practices and Tools for Better Software Testing. In Proceedings of the 26th ACM Joint
Meeting on European Software Engineering Conferenceand Symposium on the Foundations of Software
Engineering (pp. 928-931). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3236024.3275424
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3236024.3275424
https://doi.org/10.1145/3236024.3275424

Practices and Tools for Better Software Testing
Davide Spadini

Delft University of Technology, Software Improvement Group
Delft, The Netherlands

d.spadini@sig.eu
Advisors: Alberto Bacchelli (academic), Magiel Bruntink (industrial)

ABSTRACT
Automated testing (hereafter referred to as just ‘testing’) has be-
come an essential process for improving the quality of software
systems. In fact, testing can help to point out defects and to ensure
that production code is robust under many usage conditions. How-
ever, writing and maintaining high-quality test code is challenging
and frequently considered of secondary importance. Managers, as
well as developers, do not treat test code as equally important as
production code, and this behaviour could lead to poor test code
quality, and in the future to defect-prone production code. The goal
of my research is to bring awareness to developers on the effect of
poor testing, as well as helping them in writing better test code. To
this aim, I am working on 2 different perspectives: (1) studying best
practices on software testing, identifying problems and challenges
of current approaches, and (2) building new tools that better sup-
port the writing of test code, that tackle the issues we discovered
with previous studies.

Pre-print: https://doi.org/10.5281/zenodo.1411241

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
software testing, automated testing, code review, mocking, coupling

ACM Reference Format:
Davide Spadini. 2018. Practices and Tools for Better Software Testing. In
Proceedings of the 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3236024.3275424

1 INTRODUCTION
Software testing has a fundamental role in any successful software
development process [4, 14]. Test cases form the first line of defense
against the introduction of software faults and ensure that produc-
tion code is robust under many usage conditions [4, 6, 20]. Despite

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3275424

this, developers do not test as they should and tend to overestimate
their testing effort [2, 15].

In the last decade, a lot of research has been done to understand
the negative impact of poor testing on the overall quality of the
system. First, van Deursen et al. [23] described how the quality of
test code was “not as high as the production code [because] test
code was not refactored as mercilessly as our production code” [23].
This is in line with the recent studies reporting that developers
perceive and treat production code as more important than test
code, thus generating quality problems in the tests [2, 3, 25].

In the same work, van Deursen et al. introduced the concept of
test smells, inspired by Fowler et al.’s code smells [8]. These smells
were recurrent problems that van Deursen et al. found when refac-
toring their troublesome tests [13]. Similarly, Palomba et al. [16]
investigated the relationship between flaky tests and test smells,
showing that more than half of flaky tests also contained smells.

Even though research showed that testing is a fundamental pro-
cess to improve the quality of the project, developers still con-
sider testing less important than “writing features.” In my previous
work [20], interviewees admitted that developers and managers
prioritize production code to tests, because that “is the code run-
ning on clients’ machines;” tests, on the other hand, are only useful
for developers: clients can not know if the new feature they are
trying is tested or not. Another discovery of my previous work is
that current tools do not fully support developers in writing test
code: for example, code review tools are built mainly to support
the review of production code [20].

With my work, I want to (1) raise practitioners awareness of the
effect of writing poor tests on the overall software code quality
and (2) support developers in writing better test code, by means
of new techniques and tools.

To this aim, I will help developers under two different perspec-
tives: first, in better understanding current practices in software
testing, and second, building better tools to support them in writ-
ing/reviewing test code. Regarding the first point, current practices
can help novice developers in understanding how experts handle
specific problems when writing and testing software, and they also
help expert developers in understanding if their practices are in line
with others. On the other hand, when interviewing practitioners I
noticed that current software development tools do not have fea-
tures that may help developers in writing good test code: to fill this
gap, I will build new tools that better support the writing/reviewing
of tests.

https://doi.org/10.5281/zenodo.1411241
https://doi.org/10.1145/3236024.3275424
https://doi.org/10.1145/3236024.3275424

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Davide Spadini

2 TEST QUALITY AND SOFTWARE QUALITY
With the aim of bringing awareness to developers on the effect of
poor testing, with these studies I want to investigate the relation
between test and production code quality. Since developers con-
sider tests less important than production [20], if we are able to
demonstrate that the tests quality has an impact on the production
quality, developers may re-consider both as equally important.

2.1 Test Smells to Software Code Quality [22]
In this work we wanted to bring empirical knowledge on the effect
of poor testing on the software quality. Van Deursen et al. [23]
introduced the concept of test smells: These smells were recurrent
problems that authors found when refactoring their troublesome
tests [13]. Given the definition of test smells, we wanted to inves-
tigate what is their impact on the overall quality of the system,
calculated as change- and defect-proneness of both test methods
and the production code they intend to test. To this aim, we con-
ducted a large observational study [5], collecting data from 221
releases pertaining to ten open source software systems, analyze
more than a million test cases, and investigate the association be-
tween six test smell types and change- and defect-proneness of the
code.

Our results show that tests with smells are more change- and
defect-prone than tests without smells and production code is more
defect-prone when tested by smelly tests. Among the studied test
smells, Indirect testing, Eager Test and Assertion Roulette are those
associated with highest change-proneness; moreover, the first two
are also related to a higher defect-proneness of the exercised pro-
duction code.

Overall, our results provide empirical evidence that detecting
test smells is important to signal underlying software issues. Fur-
thermore, we showed that the presence of design flaws in test code
is associated with the defect-proneness of the exercised production
code; indeed the production code is 71% more likely to contain
defects when tested by smelly tests. This is a call to arms for practi-
tioners, since we finally demonstrated that poor test code is related
to poor production code, hence they should be treated as equally
important.

2.2 Test coupling: Free your code and tests (in
submission at ICSE 2019)

The problem of coupling between test and production code is a well-
known problem for practitioners [7, 9, 11]. This problem happens
when, due to a refactor or a semantic change in the production
code, many tests break. If this is the case, there a chances that tests
are tightly coupled to the implementation, namely the tests have
too much knowledge of the implementation details of the code. By
reducing the coupling between test and production code developers
can freely refactor the code in the knowledge that the tests will
only fail when they’ve actually broken something, not just because
they applied a different pattern.

In this on-going work, I am studying the problem under different
angles: first, we aim at understanding to extent this coupling is a
problem by means of quantitative research, namely how spread is
the problem? Then, we will look at the cause of the problem and
how developers fixed it. Finally, we will discuss with developers

different refactorings strategies to tackle the problem in a way that
it will never happen again.

If we can detect some refactoring patterns that solve the coupling,
we may be able to create a tool that automatically suggests to
change/refactor the code according to it.

3 CURRENT PRACTICES IN TESTING
To help developers in writing better test code, we first need to
understand how they are currently writing it. To this aim, the
works presented in this section are focused on different practices
of software testing, with the intention of uncover problem and
challenges of current approaches.

3.1 To Mock or Not To Mock? [21]
A widespread practice in software testing is mocking [21]. When
testing a unit (e.g., a class in object-oriented programming), de-
velopers often need to decide whether to test the unit and all its
dependencies together (similar to integration testing) or to simulate
these dependencies and test that unit in isolation (by means of
mocking).

By testing all dependencies together, developers gain realism:
The test will more likely reflect the behavior in production [24];
however, some dependencies, such as databases and web services,
may slow the execution of the test [12], or be costly to properly
setup for testing [19]. By simulating its dependencies, developers
gain focus: The test will cover only the specific unit and the ex-
pected interactions with its dependencies; moreover, inefficiencies
of testing dependencies are mitigated.

We performed a study to empirically understand how and why
developers apply mock objects in their test suites. To this aim, we
analyzed more than 2,000 test dependencies from three OSS projects
and one industrial system. We then interviewed developers from
these systems to understand why some dependencies were mocked
and others were not. We challenged and supported our findings
by surveying 105 developers from software testing communities.
Finally, we discussed our findings with a main developer from the
most used Java mocking framework.

We found that developers tend to mock dependencies that make
testing difficult, i.e., classes that are hard to set up or that depend
on external resources. In contrast, developers do not often mock
classes that they can fully control. Interestingly, a class being slow
is not an important factor for developers whenmocking. As for chal-
lenges, developers affirm that challenges when mocking are mostly
technical, such as dealing with unstable dependencies, the coupling
between the mock and the production code, legacy systems, and
hard-to-test classes are the most important ones.

This paper has been invited for an extension to the Empirical
Software Engineering (EMSE) journal. In the extension, we focused
on the evolution of mocks and on the coupling between the mock
object and the production code.

3.2 When Testing Meets Code Review [20]
Modern Code Review (MCR) is now a widespread practice in many
development projects, since it has been shown that it can improve
the quality of the source code [1, 18]. However, past research mainly
focused on the review of production code, while there is still a gap

Practices and Tools for Better Software Testing ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

of knowledge on how and why developers review test code. To
fill this gap, we conducted a two-phase study to understand how
test code is reviewed, to identify current practices and reveal the
challenges faced during reviews, and to uncover needs for tools
and features that can support the review of test code.

In the first phase, we analyzed more than 300,000 code reviews
related to three open source projects (Eclipse, OpenStack and Qt)
that employ extensive code review and automated testing. In the
second phase, we interviewed developers from these projects and
from a variety of other projects (from both open source and indus-
try) to understand how they review test files and the challenges
they face.

We found evidence that developers tend to discuss test files
significantly less than production files. The main reported cause is
that reviewers see testing as a secondary task and they are not aware
of the risk of poor testing or bad reviewing. We discovered that
when reviewing test files, reviewers often discuss better testing
practices, tested and untested paths, and assertions. Regarding
defects, often reviewers discuss severe, high-level testing issues, as
opposed to results reported in previous work [1], where most of
the comments on production code regarded low level concerns.

Among the various review practices on tests, we found two ap-
proaches when a review involves test and production code together:
some developers prefer to start from tests, others from production.
In the first case, developers use tests to determine what the pro-
duction code should do and whether it does only that, on the other
hand when starting from production they want to understand the
logic before validating whether its tests cover every path. As for
challenges, developers’ main problems are: understanding whether
the test covers all the paths of the production code, ensuring main-
tainability and readability of the test code, gaining context for the
test under review, and difficulty reviewing large code additions
involving test code.

3.3 Test-Driven Review (in submission to ICSE
2019)

My work on how developers review test code [20] has provided
initial evidence that some reviewers use the tests to guide their
understanding of the code to review. Similarly to how tests can
be used to document the corresponding production code, some
reviewers have reported to take advantage of tests at review time.

This practice, which we name Test-Driven Review (TDR), could
be an attractive take on improving the code review process. In fact,
tests often have to accompany a change in production code [10, 25],
thus adopting this practice would not require more contribution
effort, but only a change in how a reviewer would proceed to under-
stand the code under review. The similarities of TDR with scenario-
driven inspection, which was effective in the context of code in-
spections [17], give an additional interesting rationale on why TDR
could bring benefits to MCR.

In this paper, we aim at empirically understanding this practice in
order to have a more comprehensive view of (i) when and how TDR
is applied and (ii) what are its main advantages and disadvantages
from the developers point of view. To address these questions and
find insights about TDR, we first performed an experiment with 93
developers, analyzing data from more than 150 reviews, and second,

we interviewed 9 developers that employ extensive code review
and automated testing.

Key findings of our study report that having tests together with
production code makes the reviewing of the production faster. Fur-
thermore, we discovered that developers tend to spend more time
on the first file it is presented to them, independently whether it
is a test or production file, with the consequence of finding more
defects on that file.

As for the main implications of this work, we showed that there
is a statistically significant difference in the time required to review
the production code: Indeed, when it is together with the test code,
reviewers take less time to review it compared to when the produc-
tion code is alone, even though reviewers find the same amount
of issues. Hence, reviewers find the same amount of issues in less
time. Furthermore, as developers tend to more carefully review
the first code change they inspect, we believe there is the need for
prioritization mechanisms that can effectively rank code changes
to be inspected first.

4 BUILDING BETTER TOOLS
While studying best practices in software testing, I identified some
weak points of current tools that do not fully support the writ-
ing/reviewing of test code. In this section I will explain how I aim
to improve software development tools to better handle tests.

4.1 GitHub enhancement
The first tool I want to discuss is the one regarding code review.
My previous studies on how developers review test code uncover
problems of current MCR tools that do not fully support the review
process of test code. I identified 4 main features that may ease the
review:

(1) Linking test and production code: when reviewing, the
files are presented in alphabetical order. This has the disad-
vantage that all the production files will be presented at the
beginning, and all the test files at the end. However, after
reviewing a production file, developers would like to imme-
diately see the test file: This results in scrolling the page
from the top to the bottom many times. In our tool we aim
at adding a link to every production file that will link its test.

(2) Provide Test-Driven Review (and Production-Drive re-
view): similarly, current MCR tools do not provide the pos-
sibility to apply TDR. We aim at adding this feature: with
the press of a button, all the files will be re-ordered and pre-
sented following his/her best practice, namely first the test
class and then its production class, or viceversa.

(3) Detailed code coverage information within the code
review: many IDEs currently provide this information, but
it is more difficult to have it within the code review tool. We
aim at adding this feature in which it will be possible to see
whether the added lines are covered by tests and what is the
overall test code coverage.

(4) Code navigation: all the interviewees complained about
the lack of navigation support in GitHub. For example, it is
currently not possible to navigate through the dependencies
or go to the definition of a variable/method. This is instead
possible in (almost all) IDEs, resulting in reviewers having

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Davide Spadini

to checkout the change and opening it in their IDE. We aim
at adding this feature, enabling the reviewer to click on the
name of a variable/method and pointing to the definition

The tool is finished and I am currently testing it with practition-
ers, collecting inputs and feedback in order to improve it.

4.2 Coupling between test and production code
As discussed in Section 2.2, the coupling between test and pro-
duction code is a well-known problem for practitioners[7, 9, 11].
However, understanding where the problem is and how to fix it is
challenging and requires the developers to perform difficult code
refactorings.

With our study (Section 2.2) we aim at understanding how spread
the problem is and how developers current solve it: the aim is to
identify a set of rules that prevent the code to be too coupled. Once
completed, we will be able to build a tool that automatically detects
classes that are too coupled with the tests, to prevent a cascade of
failing tests when refactoring the source code. We aim at doing this
within the IDE through static analysis of the code.

Once a pattern is detected, a number of suggestions will appear
in the IDE to solve the problem: these suggestions will be a refac-
toring of the code, for example the creation of a new class, or the
refactoring of the test.

5 CONCLUSIONS AND FUTUREWORK
Software testing has a fundamental role in any successful software
development process [4, 14]. However, many developers underesti-
mate the effect of poor testing on the overall system code quality,
and managers prioritize “new features” to test code. However, in
my studies I discovered that test code quality is well related to
production code quality, hence they should be treated as equally
important.

For this reason, I am working closely with practitioners to under-
stand their best practices when it comes to writing tests, for example
studying mocking [21], how they review test code [20], TDR, and
test coupling. When investigating best practices in software testing,
I uncovered many problems of current tools that do not ease the
process of testing. To this aim, I am writing and building new tools
that better support developers.

After I finish to build the tools presented in Section 4, my future
agenda includes deploying them in a real setting with developers
and testers. I plan to do this in SIG 1, the company partner of my
PhD. I will be able to collect information on how people use the
tools, problems of them and how to improve it. After some iteration,
I will have collected enough information to write a research/tool
paper and, after that, the tools will be mature enough to be deployed
outside SIG.

6 ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No. 642954.

1https://www.sig.eu

REFERENCES
[1] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-

lenges of modern code review. In Proceedings - International Conference on Soft-
ware Engineering. 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[2] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and A. Zaidman. 2017.
Developer Testing in the IDE: Patterns, Beliefs, and Behavior. IEEE Transactions on
Software Engineering PP, 99 (2017), 1–1. https://doi.org/10.1109/TSE.2017.2776152

[3] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
179–190.

[4] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In 2007 Future of Software Engineering. IEEE Computer Society, 85–103.

[5] Barry Boehm, Dieter H Rombach, and Marvin V. Zelkowitz. 2005. Foundations of
Empirical Software Engineering. Springer Berlin Heidelberg. 440 pages. https:
//doi.org/10.1007/3-540-27662-9

[6] George Candea, Stefan Bucur, and Cristian Zamfir. 2010. Automated software
testing as a service. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 155–160.

[7] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. 2017. Scripted GUI
Testing of Android Apps. Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software Engineering - PROMISE (2017),
22–32. https://doi.org/10.1145/3127005.3127008 arXiv:arXiv:1711.03565v1

[8] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Xtemp01 (1999), 1–337.
https://doi.org/10.1007/s10071-009-0219-y arXiv:arXiv:gr-qc/9809069v1

[9] Jon Hilton. 2016. Reduce coupling: Free your code and your tests. https://
jonhilton.net/2016/03/29/coupling-tests-production/. (2016).

[10] Cosmin Marsavina, Daniele Romano, and Andy Zaidman. 2014. Studying fine-
grained co-evolution patterns of production and test code. In Source Code Analysis
and Manipulation (SCAM), 2014 IEEE 14th International Working Conference on.
IEEE, 195–204.

[11] Robert C. Martin. 2017. Test Contra-variance. http://blog.cleancoder.com/
uncle-bob/2017/10/03/TestContravariance.html. (2017).

[12] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion.

[13] Leon Moonen, Arie van Deursen, Andy Zaidman, and Magiel Bruntink. 2008. On
the Interplay Between Software Testing and Evolution and its Effect on Program
Comprehension. In Software Evolution, Tom Mens and Serge Demeyer (Eds.).
Springer, 173–202. https://doi.org/10.1007/978-3-540-76440-3_8

[14] Glenford Myers. 2004. The Art of Software Testing, Second edition. Vol. 15. 234
pages. https://doi.org/10.1002/stvr.322 arXiv:arXiv:gr-qc/9809069v1

[15] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. 2016. On the diffusion of test smells in automatically generated test
code. Proceedings of the 9th International Workshop on Search-Based Software
Testing - SBST ’16 (2016), 5–14. https://doi.org/10.1145/2897010.2897016

[16] Fabio Palomba and Andy Zaidman. 2017. Does refactoring of test smells induce
fixing flaky tests?. In Proceedings of the International Conference on Software
Maintenance (ICSME). IEEE, 1–12.

[17] Adam A Porter and Lawrence G Votta. 1994. An experiment to assess different
defect detection methods for software requirements inspections. In Proceedings of
the 16th international conference on Software engineering. IEEE Computer Society
Press, 103–112.

[18] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open source
software peer review practices. Proceedings of the 13th International Conference
on Software Engineering (2008), 541. https://doi.org/10.1145/1368088.1368162

[19] Hesam Samimi, Rebecca Hicks, Ari Fogel, and Todd Millstein. 2013. Declarative
Mocking Categories and Subject Descriptors. (2013), 246–256.

[20] Davide ; Spadini, Maurício ; Aniche, Margaret-Anne Storey, Magiel Bruntink,
Alberto Bacchelli, Davide Spadini, and Maurício Aniche. 2018. When Testing
Meets Code Review: Why and How Developers Review Tests. 11 (2018). https:
//doi.org/10.1145/3180155.3180192

[21] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.
To Mock or Not To Mock? An Empirical Study on Mocking Practices. In Mining
Software Repositories (MSR), 2017 IEEE/ACM 14th International Conference on.
IEEE, 402–412.

[22] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On The Relation of Test Smells to Software Code Quality. (2018).

[23] Arie van Deursen, Leon Moonen, Alex Bergh, and Gerard Kok. 2001. Refac-
toring Test Code. In Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP). 92–95.

[24] E.J. Weyuker. 1998. Testing component-based software: a cautionary tale. IEEE
Software 15, 5 (1998), 54–59. https://doi.org/10.1109/52.714817

[25] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011.
Studying the co-evolution of production and test code in open source and in-
dustrial developer test processes through repository mining. Empirical Software
Engineering 16, 3 (2011), 325–364.

https://www.sig.eu
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/TSE.2017.2776152
https://doi.org/10.1007/3-540-27662-9
https://doi.org/10.1007/3-540-27662-9
https://doi.org/10.1145/3127005.3127008
http://arxiv.org/abs/arXiv:1711.03565v1
https://doi.org/10.1007/s10071-009-0219-y
http://arxiv.org/abs/arXiv:gr-qc/9809069v1
https://jonhilton.net/2016/03/29/coupling-tests-production/
https://jonhilton.net/2016/03/29/coupling-tests-production/
http://blog.cleancoder.com/uncle-bob/2017/10/03/TestContravariance.html
http://blog.cleancoder.com/uncle-bob/2017/10/03/TestContravariance.html
https://doi.org/10.1007/978-3-540-76440-3_8
https://doi.org/10.1002/stvr.322
http://arxiv.org/abs/arXiv:gr-qc/9809069v1
https://doi.org/10.1145/2897010.2897016
https://doi.org/10.1145/1368088.1368162
https://doi.org/10.1145/3180155.3180192
https://doi.org/10.1145/3180155.3180192
https://doi.org/10.1109/52.714817

	Abstract
	1 Introduction
	2 Test quality and software quality
	2.1 Test Smells to Software Code Quality ICSME
	2.2 Test coupling: Free your code and tests (in submission at ICSE 2019)

	3 Current practices in testing
	3.1 To Mock or Not To Mock? spadini2017mock
	3.2 When Testing Meets Code Review Spadini2018
	3.3 Test-Driven Review (in submission to ICSE 2019)

	4 Building better tools
	4.1 GitHub enhancement
	4.2 Coupling between test and production code

	5 Conclusions and future work
	6 ACKNOWLEDGMENTS
	References

