
Computer Engineering
Mekelweg 4,
2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

SIMD Floating Point Extension for Ray Tracing

Yunus Ökmen

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-30

In the last decade, the importance of graphics capabilities have be-
come very important in the mobile market. As a result low power
embedded solutions for mobile devices have been developed to run
computationally intensive graphics applications, which extensively
uses floating point calculations. The work proposed in this thesis
target the extension of the Silicon Hive processors capabilities for
graphics applications. The Silicon Hive core generation flow that al-
lows to introduce a very high degree of parallelism can be efficiently
used to generate a processor for graphics. In order to achieve that,
in this thesis, we present an hybrid VLIW/SIMD floating point pro-
cessor derived from the base Silicon Hive VLIW architecture, Pearl
Ray. The hardware implementation of floating point functional units
is realized using the Synopsys DesignWare building blocks, which are
designed in a way that allows the efficient use of register retiming

option in the Design Compiler flow, in order to introduce pipeline stages and improve the timing. The
proposed architecture can process 8-way vectors, consisting of 32-bit vector elements. To evaluate the effi-
ciency of the proposed architecture a Ray Tracing algorithm, has been mapped on the developed processor.
We have shown that the ray tracing algorithm efficiently exploits the full power of floating point vector
instructions and also the instruction level parallelism provided by both the VLIW and the SIMD (Vector)
nature of our processor. The results shown that a close-to-linear speed-up can be achieved for the Ray
Tracing algorithm using the proposed architecture. Finally, the performance of the proposed extended
VLIW/SIMD floating point processor has been compared with a very high-end graphic processing unit and
a general purpose processor, in terms of number of cycles, total execution time and power consumption
on the same Ray Tracing algorithm. The results show that proposed extended Silicon Hive processor can
compete with both the GPU and the CPU in terms of execution times. Furthermore, it overperforms the 8
core machine after the execution time is normalized with respect to corresponding clock frequencies. The
overall performance on the GPU is slightly better than the proposed processor. However, the advantage of
our extended embedded processor becomes clear when the area and the power consumption values are taken
into account. Whereas the GPU and the CPU consumes around 140 watt and 85 watt power, respectively,
our floating point VLIW/SIMD processor consumes only 0.2-0.3 watt.

SIMD Floating Point Extension for Ray Tracing

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Yunus Ökmen

born in Gölcük, Turkey

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

SIMD Floating Point Extension for Ray Tracing

by Yunus Ökmen

Abstract

I
n the last decade, the importance of graphics capabilities have become very important in the
mobile market. As a result low power embedded solutions for mobile devices have been devel-
oped to run computationally intensive graphics applications, which extensively uses floating

point calculations. The work proposed in this thesis target the extension of the Silicon Hive pro-
cessors capabilities for graphics applications. The Silicon Hive core generation flow that allows
to introduce a very high degree of parallelism can be efficiently used to generate a processor for
graphics. In order to achieve that, in this thesis, we present an hybrid VLIW/SIMD floating
point processor derived from the base Silicon Hive VLIW architecture, Pearl Ray. The hardware
implementation of floating point functional units is realized using the Synopsys DesignWare
building blocks, which are designed in a way that allows the efficient use of register retiming
option in the Design Compiler flow, in order to introduce pipeline stages and improve the timing.
The proposed architecture can process 8-way vectors, consisting of 32-bit vector elements. To
evaluate the efficiency of the proposed architecture a Ray Tracing algorithm, has been mapped
on the developed processor. We have shown that the ray tracing algorithm efficiently exploits the
full power of floating point vector instructions and also the instruction level parallelism provided
by both the VLIW and the SIMD (Vector) nature of our processor. The results shown that a
close-to-linear speed-up can be achieved for the Ray Tracing algorithm using the proposed archi-
tecture. Finally, the performance of the proposed extended VLIW/SIMD floating point processor
has been compared with a very high-end graphic processing unit and a general purpose processor,
in terms of number of cycles, total execution time and power consumption on the same Ray Trac-
ing algorithm. The results show that proposed extended Silicon Hive processor can compete with
both the GPU and the CPU in terms of execution times. Furthermore, it overperforms the 8 core
machine after the execution time is normalized with respect to corresponding clock frequencies.
The overall performance on the GPU is slightly better than the proposed processor. However,
the advantage of our extended embedded processor becomes clear when the area and the power
consumption values are taken into account. Whereas the GPU and the CPU consumes around
140 watt and 85 watt power, respectively, our floating point VLIW/SIMD processor consumes
only 0.2-0.3 watt.

i

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-30

Committee Members :

Advisor: Georgi Gaydadjiev, CE, TU Delft

Advisor: Menno Lindwer, Silicon Hive, Intel BV.

Chairperson: Koen Bertels, CE, TU Delft

Member: Wauter Serdijn, ME, TU Delft

Member: Carlo Galuzzi, CE, TUDelft

ii

I dedicate this thesis to my beloved parents,

İsmail Hakkı Ökmen and Berrin Ökmen

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Overview . 1
1.2 Outline of the Thesis . 2

2 Background Information 5
2.1 Silicon Hive Technology . 5

2.1.1 The Silicon Hive Processors . 6
2.1.2 The Processor Generation Flow . 8
2.1.3 The System Description . 9

2.1.4 The HiveCC Compiler . 10
2.1.5 The Silicon Hive Simulation Environment 11
2.1.6 The Base Processor: Pearl Ray . 12

2.2 The Synopsys Environment . 13

2.2.1 The DesignWare Library . 14
2.2.2 Synthesis . 16

2.3 Conclusions . 18

3 Floating Point and Vector Extension 19

3.1 Floating Point Arithmetic Extension . 19
3.1.1 Floating Point vs. Fixed Point . 19
3.1.2 Floating Point Format . 20
3.1.3 Targeted Operations . 21

3.2 Implementation of Floating Point Units 21
3.2.1 DesignWare Floating Point Units 21
3.2.2 Improving Timing of DesignWare Units 22

3.3 Floating Point Units . 23

3.3.1 Faru Unit . 23
3.3.2 Fmul Unit . 24
3.3.3 Fdiv Unit . 25
3.3.4 Fsqrt Unit . 27
3.3.5 Fcmp Unit . 29

3.3.6 Fxalu Unit . 30
3.4 Method of Introducing FPUs into Base Processor 30

3.4.1 Operation Semantics . 31

v

3.4.2 Functional Unit Definitions . 32
3.4.3 Register File Connections . 32

3.5 Vector (SIMD) Extension . 34
3.5.1 Vector Arithmetic Functional Units 35
3.5.2 Vector Load/Store Unit . 37
3.5.3 Vector Pass Unit . 37
3.5.4 Flag Units . 38
3.5.5 Vector Register Files . 38
3.5.6 Vector Memory . 39
3.5.7 Vector Issue Slot . 40

3.6 Overview of the Processor . 40
3.7 Synthesis Results . 40
3.8 Conclusions . 43

4 Ray Tracing Algorithm Customizations 45
4.1 What is Ray Tracing? . 45
4.2 The Main Steps of the Ray Tracing Algorithm 46
4.3 The Mapping of the Ray Tracing Algorithm 47
4.4 Vectorization of the Ray Tracing Algorithm 48

4.4.1 Vectorizing by Packets of Rays . 49
4.4.2 Conditional Execution on Vectors 50

4.5 Code Optimizations . 51
4.5.1 The Use of Inlines . 52
4.5.2 Recursions . 53
4.5.3 Loop Unrolling . 53

4.6 Architectural Refinement . 54
4.6.1 Double Issue Slot . 54
4.6.2 Final Configuration . 55

4.7 Conclusions . 57

5 Experimental Results 59
5.1 The GPU Comparison . 59
5.2 The CPU Comparison . 61
5.3 C-ray Benchmark . 62
5.4 Conclusions . 63

6 Conclusions 65
6.1 Summary . 65
6.2 Contributions . 66
6.3 Future Work . 67

Bibliography 71

vi

List of Figures

2.1 ASIP programmability and performance comparison. 6
2.2 An example of a VLIW Silicon Hive processor with scalar and vector data

path. 7
2.3 The Silicon Hive core generation flow . 8
2.4 The main components of a Silicon Hive system. 10
2.5 The Silicon Hive Compilation Flow. 11
2.6 General schematic of a Programming and Storage Element (PSE). 13
2.7 Schematic of the Pearl Ray Base Processor 14
2.8 Backward retiming. 17
2.9 The Synopsys Retiming Process. 17

3.1 IEEE 754 single precision floating point format. 20
3.2 The dw fp addsub unit employed in the Faru unit. 23
3.3 Combinational and sequential area results for the Faru unit after retiming. 24
3.4 The dw fp mul unit employed in the Fmul unit. 24
3.6 The dw fp div unit employed in the Fdiv unit. 25
3.5 Combinational and sequential area results for the Fmul unit after retiming. 26
3.7 Combinational and sequential area results of Fdiv unit after retiming. . . 27
3.8 The dw fp sqrt unit employed in the Fsqrt unit. 27
3.9 Combinational and sequential area results for the Fsqrt unit after retiming. 29
3.10 The dw fp cmp unit employed in the Fcmp unit. 29
3.11 The Pearl Ray baseline processor with the floating point unit extension. . 33
3.12 Vector Architecture: a) single pipelined unit b) multiple pipelined units. . 36
3.13 The Pearl Ray base processor with Floating Point Units and Vector Units. 41

4.1 The Ray Tracing Schematic from Wikipedia. 45
4.2 Array of Structures and Structure of Arrays comparison [36]. 49
4.3 Declaration of a ray structure for the scalar version of the algorithm. . . . 49
4.4 Decleration of a vector ray structure for SIMD implementation. 50
4.5 Conditional execution on vectors. 51
4.6 Loop unrolling by a factor of 2 and 4. 53
4.7 The final architecture. 58

5.1 The Parallel ray tracing implementation using OpenMP. 61
5.2 The original scene rendered using the C-Ray tracing algorithm. [3] 63
5.3 Similar scene rendered in using our algorithm. 64

vii

viii

List of Tables

2.1 Different abstraction levels for the simulations in the Silicon Hive envi-
ronment. 11

2.2 Floating Point Number Bit Positions. 15

3.1 Area and worst case negative slack for the Faru unit with respect to the
number of register stages. 23

3.2 Area and worst case negative slack for the Fmul unit with respect to the
number of register stages. 25

3.3 Area and worst case negative slack for the Fdiv unit with respect to the
number of register stages. 26

3.4 Area and worst case negative slack for the Fsqrt unit with respect to the
number of register stages. 28

3.5 The dw fp cmp building block pin descriptions. 29
3.6 Area and worst case negative slack results for the Fcmp unit. 30
3.7 List of operations in the Fxalu unit. 30
3.8 Floating point operation latencies. 31
3.9 Vector Operations. 35
3.10 Vector load/store operations. 37
3.11 Vector pass unit operations. 38
3.12 Area Results. 42

4.1 The number of clock cycles for the implementation of the ray tracing with
respect to the number of iterations. 48

4.2 Comparison of the scalar and the vector implementation of the ray tracing
with respect to the number of iterations. 50

4.3 Improvement after utilizing the vector condition checks. 52
4.4 Improvement in cycle count after using inlines instead of function calls. . 52
4.5 Improvement after removing recursions. 53
4.6 Cycle count improvement via the unrolling technique. 54
4.7 Performance comparisons between single and double vector (SIMD) issue

slot, before and after code optimizations. 55
4.8 Vector functional unit utilization in percentage with respect to the number

of cycles. 56
4.9 The comparison of the final configuration with the previous results. 56

5.1 Performance comparison between the GPU and the proposed architecture. 60
5.2 CPU comparison with our processor. 61
5.3 Cray comparison results. 63

ix

x

Acknowledgements

I owe sincere thankfulness to my supervisor, Menno Lindwer, for the supervision and
the support he gave throughout the course of my thesis. I would like to thank Georgi
Gaydadjiev for his encouragement, patience and time. It would not have been possible
without his guidance. I am also indebted and truly thankful to Carlo Galuzzi for his help
and encouragement during the most critical stages of my dissertation writing. I would
also like to thank my other committee members, Koen Bertels and Wouter Serdijn.

I am obliged to the all people at Silicon Hive, Intel BV, who spared their time
generously to help me. It was a pleasure for me to share the same environment with them
during these nine months. Especially, I would like to mention Mauro Cocco, Allessandro
Paschina, Harm Peters, Carlos Alba Pinto and Alexendre Nery for their support.

My gratitude also goes to my friends Emre Buyukcerci, Onur Kaya and Halil Kukner
for their support to write my thesis. I appreciate my house-mates Aashini Gulati, Gok-
turk Cinserin and Alper Kemal Koc for standing by me in every difficult situation. I
would also like to thank my friends in Delft for all the good times we have had together,
especially Sinan Tufekcioglu hosting me in his house during my stays in Delft. Finally,
I would like to thank my friends and cousins in Turkey, for their support.

At last and truly the most, I would like to thank my parents, İsmail Hakkı and Berrin
Ökmen for their love and support. I cannot express what I feel towards my parents with
the word ”thanks”, for providing everything they have, to support me all the time. Their
dedication and encouragement has made this work possible. If where I am now is an
achievement, that is something that belongs to my parents, and I would be more than
honored to dedicate this thesis to them.

Annecim ve babacım, sizin sonsuz desteğiniz olmadan bu tezi tamamlayamazdım.
Bugüne kadar elde ettigim tüm başarılardaki payınız yadsınamaz ve her şeyden değerli.
Sizi çok seviyorum.

Yunus Ökmen
Delft, The Netherlands
October 28, 2011

xi

xii

Introduction 1
The technology is moving very fast in the mobile world. The devices shrink in size and,
at the same time, their need for complex computation expands. In the last decade, the
importance of graphics has increased in the mobile market and today’s market offers
many low power embedded solutions for mobile devices to run computationally intensive
graphics applications. These applications extensively use floating point calculations.
As a result, a floating point calculation capability plays an important role to meet the
performance requirements in the embedded domain.

Silicon Hive is a company that targets the mobile multimedia domain and develops
low power programmable parallel processor technology solutions. This technology is em-
bedded and applied in high performance camera systems, video systems, and wireless
communications. Its innovative processors, which combine features from different archi-
tectural styles, enable system-on-chips boasting throughput of 100’s of Giga-operations
per second.

In this thesis, our target is the extension of the capability of a Silicon Hive processor
for graphics applications. The Silicon Hive core generation flow that allows to introduce
a very high degree of parallelism can be efficiently used to generate a processor for
graphics. In order to achieve that, in this thesis, we present a VLIW/SIMD floating
point processor based on this technology.

1.1 Overview

The proposed generic VLIW floating point vector processor is implemented via the Silicon
Hive development flow. The proposed architecture can process 8-way vectors, consisting
of 32 bit vector elements, in which both integers and single precision floating point
numbers are treated. A basic Silicon Hive VLIW processor,the Pearl Ray processor,
with three instructions wide issue slot, is used as the baseline processor to extend with
new capabilities. First, we had introduced scalar floating point functional units into
the processor. We have used IEEE 754 compliant 32-bit single precision floating point
format. Included floating point are addition, subtraction, multiplication, division, square
root, float-to-integer and integer-to-float conversions. Finally, a vector issue slot, which
includes both integer and floating point vector operations, a vector memory and vector
register files, are also included. The proposed VLIW architecture can process 8-way
vectors, consisting of 32 bit vector elements. The final result is a hybrid VLIW/SIMD
floating point processor.

The hardware implementation of floating point functional units is realized using
the Synopsys DesignWare building blocks. These blocks consist of full combinational
logic. However, they are designed in a way that allows efficient use of the register
retiming option in the Design Compiler flow. Without any register retiming, they cannot

1

2 CHAPTER 1. INTRODUCTION

reach our target frequency of 333 MHz. In order to achieve that frequency, the register
retiming technique has been used. For those functional units failed to satisfy the timing
constraints, a number of registers are added to their input side. By using the Synopsys’
retiming engine, these registers are propagated through the combinational logic to build
optimal pipeline stages. In order to find the minimum number of registers required to
meet the timing constraints, experiments are conducted for various number of pipeline
stages.

To evaluate and show the efficiency of the proposed architecture, the Ray Tracing
algorithm, has been mapped on the developed processor. The Ray Tracing algorithm
intensively uses floating point operations and it provides a high level of data parallelism.
As part of the work in this thesis, we have shown that the parallel nature of the ray
tracing algorithm can efficiently utilize the floating point computation resources provided
by the proposed processor. It efficiently exploits the full power of floating point vector
instructions and the instruction level parallelism provided by both the VLIW and the
SIMD (Vector) nature of our processor. The results shown that a close-to-linear speed-up
can be achieved for the Ray Tracing algorithm using the proposed architecture.

In order to have better matching of the architecture and the algorithm, they are both
co-developed. First, the ray tracing algorithm is vectorized to exploit SIMD instructions.
Additionally, the algorithm is further optimized to increase the instruction level paral-
lelism. Recursions, that are the bottleneck for the parallel nature of the algorithm, are
removed using methods like function inlining and loop unrolling are utilized. Finally, the
architecture is refined by including multiple vector issue slots rather than having single
one that includes all the vector functional units. The copies of functional units, which
are frequently used by the ray tracing application, are introduced in more than one issue
slot. The final configuration of the multi-issue slots is determined after analyzing the
algorithm performance for various issue slot configurations.

Lastly, the performance of the ray tracing algorithm on our architecture is compared
with other platforms. The same algorithm is implemented on a contemporary GPU
and on a CPU. For the Nvidia Quad 4000 GPU, the algorithm is rewritten for the
Nvidia CUDA environment and simulated. Similarly, an OpenMP version of the same
algorithm is implemented and executed on an 8 core Intel Xeon processor. The results
showed that the proposed extended Silicon Hive processor can compete with both the
GPU and the CPU in terms of execution times. Furthermore, it over performs the 8 core
machine after the execution time is normalized with respect to the corresponding clock
frequencies. The overall performance on the GPU is slightly better than the proposed
processor. However, the advantage of our extended embedded processor appears, when
the area and the power consumption values are taken into account. Whereas the GPU
and the CPU consumes around 140 watt and 85 watt power, respectively, our floating
point VLIW/SIMD processor consumes only 0.2-0.3 watt.

1.2 Outline of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2, we present the background information. The Silicon Hive technology

1.2. OUTLINE OF THE THESIS 3

and the ASIP solutions, which offer a competitive performance in the embedded
domain, are introduced. Additionally, the Silicon Hive processors, system solutions,
and development flow are briefly explained. The details of the Pearl Ray processor,
which is the baseline processor for the work presented in this thesis are given.
Additionally, the Synopsys Environment and the features of DesignWare Library
of Synopsys are described.

• In Chapter 3, the extensions of the baseline processor are described. First, we
present the targeted floating point operations. After that, we present the hard-
ware implementation of these operations using DesignWare floating point building
blocks. The method for introducing floating point capability using the Silicon Hive
core generation flow is explained in detail. Secondly, vector extensions are cov-
ered and we explain how the vector (SIMD) instructions are introduced into the
baseline processor. Finally, the general overview of the proposed floating point
VLIW/SIMD processor is presented and the synthesis results are introduced and
described.

• In Chapter 4, we describe the Ray Tracing algorithm that we used to evaluate the
performance of the proposed processor. The vectorization of the ray tracing, in
order to exploit SIMD instructions, is explained. Further optimizations to exploit
the ILP of the VLIW architecture is presented. Finally, the refinement of the
processor for the algorithm is shown. Finally, we present results on the execution
time improvements of the processor after each optimization step.

• Chapter 5 contains the details regarding the experimental results. The performance
of our processor is compared with those of a GPU and a CPU. Implementation
details on the CPU and the GPU are given as well. Finally, a comparison between
the power and the execution time results is presented.

• In Chapter 6, we finally conclude with the conclusive remarks and a summary of the
work presented in this thesis. Possible ideas to further extent the work presented
in this thesis are also discussed.

4 CHAPTER 1. INTRODUCTION

Background Information 2
In the introductory chapter of this thesis, we state the goal of this work: The extension
of a baseline processor with floating point capabilities. In this chapter, we first introduce
Silicon Hive and the ASIP solutions it offers for the embedded domain. Afterthat, the
Silicon Hive processors, system solutions, and development flow are briefly explained.
The details on the baseline to extend via the work presented in this thesis, are provided.
After that, we describe the Synopsys Environment and the features of the DesignWare
IP of Synopsys.

2.1 Silicon Hive Technology

The performance needs in the embedded domain is growing day by day. However, general
purpose processors are very costly in terms of area and power to satisfy the need for per-
formance. As a consequence, application specific embedded computing systems gained
popularity like the Application Specific Integrated Circuits (ASIC) in the embedded
world. ASICs are dedicated hardware specifically designed for a domain of applications.
As a result, they can provide very efficient and optimized solutions in terms of power and
area. However, a variety of factors makes difficult and expensive the design and manu-
facturing of traditional ASICs. For example, bugs can be founded after the production
of the silicon and without programmability, in case there is a bug, the hardware has to
be redesigned and reproduced. This increases the overall time-to-market and cost of the
design. Programmability provides higher volume to amortize design and manufacturing
costs, as the same platform can be used over multiple related applications, as well as
over different versions of an application. The flexibility provided by programmability
comes with a performance and power overhead. This can be significantly mitigated by
using application specific platforms, also referred as Application Specific Instruction Set
Processors (ASIPs) [19].

On the near extreme, the ASIC (Application Specific Integrated Circuit) offers low-
cost, fast turnaround, and tailored hardware solutions. On the far extreme, the pro-
grammability of processors offers flexibility, but sometimes at a high cost. The ASIP
(Application Specific Instruction-Set Processor) is a balance between these two extremes.
ASIPs offer the availability of custom sections for time critical tasks (e.g. a Multiply-
Adder for real-time DSP), and offer flexibility through an instruction-set. They can
be finely tuned to run a small range of applications very efficiently, while keeping the
ability to run other tasks through a micro-code program [21]. The relative position of
the flexibility and performance of ASIP designs taken in comparison to programmable
DSP processors and ASIC solutions is depicted in Figure 2.1. Retargetable ASIP based
designs represent an alternative to ASIC and general-purpose based solutions. They aim
at matching the programmability of general purpose solutions while keeping the efficient

5

6 CHAPTER 2. BACKGROUND INFORMATION

Figure 2.1: ASIP programmability and performance comparison. [8]

performance t of ASIC solutions [8].

The Silicon Hive produces and licences ASIP processors. The target application
domains of the Silicon Hive are image and video solutions. It also provides advanced
software development tools and application libraries to enable semiconductor companies
to create fully programmable System on Chips (SoCs). Moreover, The Silicon Hive
environment offers a high level of configurability for the processors and systems, which
can be easily adapted to different kind of application domains [15]. A detailed description
of Silicon Hive processors, tools and environment is provided in the rest of this section.

2.1.1 The Silicon Hive Processors

It is very difficult to categorize a Silicon Hive processor, as it presents features from
different architectural styles [13]. This type of processors are built according to the
load/store architecture and use compiler-directed scheduling (RISC). They have a user
configurable instruction set, like the ARM processors, a massive number of issue slots
(VLIW) and single instruction multiple data issue slots (SIMD).

The main feature these processors is probably the Very Long Instruction Word
(VLIW) capability. Dozens of issue slots can be deployed in a Silicon Hive processor.
For this reason, a Silicon Hive processor is sometimes called also Ultra Long Instruc-
tion Word (ULIW) architecture, which is an apt description. These processors execute

2.1. SILICON HIVE TECHNOLOGY 7

Scalar

RF

Scalar

RF

Issue slot

functional

unit

functional

unit

Scalar

RF

Issue slot

functional

unit

Vector

RF

Vector issue slot

functional

unit

Vector memoryScalar memory

Scalar

RF

Figure 2.2: Example of a VLIW Silicon Hive processor with multiple scalar and a vector
data path.

long instructions that can contain multiple operations, where an operation, in our con-
text, corresponds to what is otherwise called an instruction. As a result, a high level
of instruction level parallelism can be achieved. The hardware executes an instruction
by executing all its operations in parallel, without having to check for dependencies or
resource conflicts among them, as the compiler handles all the dependencies and the con-
trol overhead. Each operation in this very long instruction word is issued by a separate
issue slot consisting of many functional units. The capabilities of the functional units can
be configured by including new instructions. Additionally, the configuration of the issue
slots can be modified by adding or removing different functional units. The performance
of the processor can be further increased by including more issue slots. Nevertheless, an
increase in the performance depends on the ILP of the application and the efficiency of
the compiler used to extract it [13].

Besides the main VLIW capability, Silicon Hive processors can be deployed with
Single Instruction Multiple Data (SIMD or vector) issue slots as proposed in [23]. An
N-way SIMD vector issue slot can perform N operations on N vector elements in parallel.
Figure 2.2 illustrates an example of a Silicon Hive Processor with multiple scalar and a
vector issue slot, register files, and memory. In the figure, it is shown how the functional

8 CHAPTER 2. BACKGROUND INFORMATION

Area, Speed, Power Cycle Count

Operation
Semantic
Library

Processor
Model

(C-syntax)

Processor
Model

Generator

High-level
C Program

HiveCC
Spatial

Compiler

Assembly
Code

(C-Syntax)

Standard
C Compiler

Compiled
Simulator

Assembler
& Linker

Binary
Code

TIM
Machine

Description

Function
Unit

Library

Processor
Simulator/
Generator

Netlist
Layout

Logic Synth
Place &
Route

HDL
Code

State View
&

Trace File

Simulation
&

Verification

Figure 2.3: The Silicon Hive core generation flow for the generation of optimized imple-
mentations of the CPU architecture.

units are located within the issue slots, how the register files are connected to these issue
slots and how the interconnections are organized for this example.

2.1.2 The Processor Generation Flow

One of the main strengths of Silicon Hive cores is the capability of being generated and
configured in a very short time. The Silicon Hive claims that an optimized ULIW (Ultra
Long Instruction Word) architecture can be created in a matter of hours, depending on
the amount of fine tuning required. The Silicon Hive has an entire tool chain for the rapid
design of custom VLIW cores [15]. A flexible architecture template is used as starting
point to generate and/or configure cores. The number of processing units, function units,
register files, interconnects, and local memories is customizable and, additionally, new
function units, registers and instructions can be added. New issue slots can be added
to the template and the lengths of the instruction words as well as the lengths of the
operations within the instruction words are configurable.

Figure 2.3 depicts the Silicon Hive system design flow. The flow starts with a TIM
(The Incredible Machine) description file, which lies at the heart of the Silicon Hive
processor generation flow. By using this language it is possible to specify all the rele-

2.1. SILICON HIVE TECHNOLOGY 9

vant information for the generation, programming, and simulation of a processor. This
includes, for example, register file sizes and widths, interconnect, issue slots, operation
sets, custom operations, memory and I/O subsystem of the processor.

TIM is a proprietary hardware design language. It is a higher level language than
VHDL or Verilog. TIM language allows the configuration of a core by specifying high
level parameters, such as the number of function units, register files, interconnects and
issue slots, the list of instructions that each function unit can execute, the cycle time
information of each function units and others. With this information, TIM also derives
other parameters like, for example, the length of the instruction words [13]. Additionally,
it invokes the compiler by providing necessary information about the operation semantics,
the latencies of the operations for scheduling, etc. By using the TIM language the
entire processor can be described with few code lines. As a matter of fact, a mere
300 lines of TIM can result in 100.000 lines of code VHDL code. It can describe a
register file by simply specifying the number of registers, the widths of the registers and
the number of read/write ports [7]. From these descriptions, TIM invokes pre written
blocks of VHDL. TIM also drives the development-tool generator that creates a matching
assembler, linker, C compiler, instruction set simulator and cycle accurate simulator [13].
The detailed design flow and co-simulation strategy for the generation of the processor
architecture and also the application correlation are shown in Figure 2.3.

Once a TIM file is created, it is tested with representative programs from the applica-
tion domain. This provides important feedbacks to the designer, such as the scheduling
of the instructions according to the processor resources (i.e. register files, issue slots,
interconnects), which reflects into the resource utilization. Once the design has been
verified, a complete synthesizable RTL hardware description of the processors is gener-
ated. Pre-written blocks of VHDL or Verilog (stored in the component library depicted
in the flow) are invoked from TIM description and the processor is generated [20]. This
flow has several properties, which can help designers to generate processors:

• this flow allows to quickly generate a processor, including the VHDL code;

• this flow allows to have a fast design-space exploration of a processor;

• the generated processors are tuned for specific application domains in terms of
area, performance and power trade-offs.

2.1.3 The System Description

Silicon Hive processors must reside in a system, which is need to test the processor
and fulfill its functionality. In a Silicon Hive system, multiple processors can be placed
together with other components, such as peripherals, memories, and interconnections.
In Silicon Hive terminology, a system is considered as the combination of a number
of Silicon Hive processors, a host processor, a control bus, FIFO adapters, external
memories, and/or custom devices.

Figure 2.4 shows a simple example of a Silicon Hive system including some of these
components. A host processor, typically an ARM, ATOM or a similar processor, is re-
sponsible for controlling the system. The host (control interface) fulfills the role of system

10 CHAPTER 2. BACKGROUND INFORMATION

Host

CPU

SiHive

Processor
MEM

SiHive

Processor
I/O

Figure 2.4: The main components of a Silicon Hive system.

controller, where the main tasks are: the initialization of the system components, the
download of the applications into the processors, the upload of the required parameters
to the processors’ local memory or the external memory, and, finally, status checks.

Silicon Hive systems are described in a high-level language called HSD. The proper-
ties of the system, the components and the connections can be easily configured using
HSD in a hierarchical way. The system description is exploited to generate a system
simulator containing all the system-specific information, such as bus address mappings
and connectivity [7].

2.1.4 The HiveCC Compiler

The performance of VLIW architectures depends on the instruction-scheduling compiler
used. The challenge of a VLIW compiler is to extract the ILP in the application by
picking operations that can be executed in parallel and map them efficiently onto the
computational resources of a target processor. As a result, a massive number of instruc-
tions can be executed in parallel.

HiveCC is the Silicon Hive compiler, which supports innovative code generation,
efficient scheduling and resource allocation techniques for VLIW cores. HiveCC, itself,
statistically handles all of the processor’s pipeline management and forwarding control
tasks. This allows for much more efficient processors, where most of the resources are
dedicated to process the data, instead of control overhead [7]. Like a VLIW compiler,
however HiveCC must use inactive NOPs (No OPerations) to pad any issue slots that
it cannot be filled with useful operations. Unlike most VLIW compilers, HiveCC uses
constraint-solving scheduling techniques that are capable of dealing with large number
of issue slots, register files, and interconnect. The scheduling techniques used by HiveCC

2.1. SILICON HIVE TECHNOLOGY 11

app.c
core

compiler

instr

selector

machine

description

HiveCC

instr

scheduler
assembler loader exe

Figure 2.5: The Silicon Hive Compilation Flow.

Simulation Type Execution Method Execution Time Accuracy

C-run Native Native Functionality only
Unsched Native > 3 Mops/s Bit-accurate
Sched Native 3 Mops/s Cycle-accurate

System vhdl RTL 100 ops/s Signal-accurate

Table 2.1: Different abstraction levels for the simulations in the Silicon Hive environment.

guarantee that the generated code is optimal, given sufficient compilation time. HiveCC
provides two kinds of schedulers, namely hivesched and manifold. Manifold guarantees
the optimal solution for the scheduling problem, whereas hivesched is based on greedy
algorithms, which give a solution in a much shorter time, but does not guarantee the
optimality of the solution. In the work presented in this thesis, hivesched is used due to
the large number of simulations, which are time consuming.

To conclude, the instruction scheduler is a very important part of the HiveCC com-
piler as it determines the resource utilization of a VLIW processor. If the compiler
would not be able to fill the instructions with sufficient parallel operations, the resources
not utilized would be wasted. In this respect, HiveCC compiler performs quite well by
optimizing the use of resources.

2.1.5 The Silicon Hive Simulation Environment

The Silicon Hive’s development environment allows the simulation of the applications on
different levels. The abstraction levels differ in timing accuracy and simulation/execution
speed [6]. The simulation/execution levels are shown in Table 2.1.

• In C-run, both the host program and the codes to be run on a Silicon Hive processor
are compiled through the gcc compiler into a native simulation code that can
be executed by the host. C-run is the fastest method, as it only simulates the
functionality of the application and excludes many details of a Silicon Hive core
flow. These includethe location of the variables, which, in this case, are located in
C-memory and not in the Silicon Hive cell memories; additionally no instruction
selection or scheduling takes place and no statistics or listing available.

12 CHAPTER 2. BACKGROUND INFORMATION

• The next simulation type is unsched, the unscheduled simulation. In unsched, the
host code is compiled with gcc and the Silicon Hive code is compiled with the
HiveCC compiler, although it is not scheduled. This means that the instruction
selection is performed for the Silicon Hive cores, but issue slot allocation, cycle
allocation and register allocation do not take place.

• In sched, the Silicon Hive code is fully compiled with HiveCC and a cycle accurate
simulation takes place. The operations are scheduled according to the architecture
of the target core. The compiler also generates an html output, listing, and statistic
files, which give detailed information about execution cycles, processor resource
utilizations, memory usage, etc.

• The last type of simulation is system vhdl which is the most accurate one. It
is a RTL simulation. Testbench files created within the core generation flow are
linked with the compiler and a signal level simulation is performed. Besides cycle
accurate simulation, cycle count in the core I/O level is taken into account within
this simulation.

2.1.6 The Base Processor: Pearl Ray

As a starting processor for the work presented in this thesis, we used the Pearl Ray
processor of Silicon Hive. This processor consists of two building blocks, namely Pearl
and Ray. Those blocks are referred as Processing and Storing Elements (PSE) in Silicon
Hive terminology. PSEs are the most coarse-grained building blocks in the Silicon Hive
processor building block library. These blocks can be used serve as a starting point
and more fine-grained building blocks can be constructed and included. These include
functional units, issue slots, register files and memories, in order to implement the target
floating point vector architecture.

A PSE is a VLIW-like data path consisting of several Interconnection Networks (IN),
a plurality of operation Issue-Slots (IS), including the corresponding Functional Units
(FU), distributed Register Files (RF), and local MEMory storage (MEM) accompanied
by a Load/Store Unit (LSU). A PSE allows a high level of configurability. More fine
grained building blocks could easily be introduced in a PSE. A general schematic of such
a PSE is depicted in Figure 2.6.

Figure 2.7 depicts the architecture of the baseline processor, which is mainly a VLIW
processor. Compared to other processors of Silicon Hive, which have tens of issue slots,
Pearl Ray is a simpler core, in terms of number of issue slots. However, it carries all
the important features of a generic Silicon Hive processor. It contains 3 issue slots in
which 3 operations can be issued simultaneously. The first 2 issue slots (bp pearl s1 and
bp pearl s2) belong to the Pearl PSE. The issue slot 1 (bp pearl s1) hosts 8 FU’s. The
BRanch Unit (BRU) and Status Update Unit (SUU) are both used for program control
purposes. The instructions for general-purpose processing are provided by the LoGic
Unit (LGU), ARithmetic Unit (ARU), SHift Unit (SHU), Sign-Extension Unit (SEU)
and PaSs/immediate Unit (PSU). The Send/Receive Unit (SRU) is used for token-based
synchronization with external devices (via bidirectional FIFO) or for data streaming
from/to external devices. Each of these two issue slots has an associated register file. The

2.2. THE SYNOPSYS ENVIRONMENT 13

CL

MEM

IN

RF RF RF

FU

IN

FU

IN

IN

FU LD/ST

IS IS IS

C

L

C

L

Figure 2.6: General schematic of a Programming and Storage Element (PSE).

size of register file is 16x32 bits. In the issue slot 2 (bp pearl s2), 5 FU’s are instantiated:
a LoGic Unit (LGU), an ARithmetic Unit (ARU), aMULtiply-unit (MUL), a Load-Store
Unit (LSU) to access the default memory and a PasS/immediate Unit (PSU).

The Ray PSE contains only a single issue slot (ray ray s1, see Figure 2.7). It contains
4 functional units; a Load/ Store Unit (LSU), a LoGic Unit (LGU) and an ARithmetic
Unit (ARU). The main difference between the Pearl and the Ray PSE is that in the
Ray PSE, the load/store unit is connected to a master interface that accesses to devices
outside of the processor.

In the proposed work, we aim at configuring issue slots of the baseline processor
by introducing new functional units capable of executing floating point arithmetic op-
erations. Additionally, the Silicon Hive core generation flow allows us to deploy the
new issue slots. By using that feature, a SIMD issue slot can be introduced with the
introduction of the proper register files, load/store units and a vector memory.

2.2 The Synopsys Environment

Synopsys, is a world leader in Electronic Design Automation (EDA). Moreover, It is
a leading provider of high-quality, silicon-proven IP solutions for SoC designs used in
semiconductor design, verification and manufacturing. In this thesis, the DesignWare
IP library of Synopsys, and the Synopsys Design Compiler for hardware synthesis and
optimization have been utilized. In the following sections, we will describe them in detail.

14 CHAPTER 2. BACKGROUND INFORMATION

pearl_ray

ray_ray_s1_op0_BUS

bp_config_pmem_conf_pmem

bp_pearl_s1

bp_pearl_rf1

16 x 32

bp_pearl_s2_op1_BUS

bp_fifo_fifo

bp_pearl_s2

bp_pearl_rf2

16 x 32

bp_pearl_s2_op0_BUS

ray_ray_s1

ray_ray_rf1

8 x 32

bp_dmem_mem

bp_pearl_s1_sr_BUS

ray_xmem_master

bp_pearl_pc

bp_pearl_s1_pc_BUS

bp_pearl_sr

bp_pearl_s1_op0_BUS

stat_ctrl

10 x 32

pmem

4096 x 128

bru suu aru lgu shu seu psu sru

fifo0

2 x 32

fifo1

2 x 32

aru lgu mul psu lsu lsu psu lgu aru

mem

8194 x 32

master_int

1073741823 x 32

Figure 2.7: Schematic of the Pearl Ray Base Processor

2.2.1 The DesignWare Library

Synopsys provides an IP library called DesignWare which includes highly optimized RTL
for arithmetic building blocks. Design Compiler can automatically determine when to use
the DesignWare components and it can then efficiently synthesize them into gate-level
implementation [35]. The DesignWare Building Block library is a collection of reusable
intellectual property blocks, which are tightly integrated into the Synopsys synthesis
environment.

By using the DesignWare Building Block IP, it is possible to significantly improve the
productivity and performance improvement through pre-designed, pre-verified, highly
optimized critical building blocks for high end ASICs. additionally, it allows a transpar-
ent high-level optimization of the performance during the synthesis. In this study, the
Floating Point Arithmetic library from the DesignWare library has been used.

2.2.1.1 Floating Point Components

The Floating Point components comprise a library of functions used to synthesize float-
ing point computational circuits in high end ASICs. The functions mainly deal with

2.2. THE SYNOPSYS ENVIRONMENT 15

Sign Exponent Fraction

(e+f) (e+f-1)......f (f-1)........0

Table 2.2: Floating Point Number Bit Positions [35].

arithmetic operations in floating point format, format conversions and floating point
comparisons [35]. The main features of this library are the following:

• the format of the floating point numbers, which determines the precision of the
number that they represent, is parameterizable. The user can select the precision
based on the number of bits in the exponent and significant (or mantissa). The
parameters cover all the IEEE formats;

• the accuracy conforms to the definitions in the IEEE 754 Floating Point standard
for the basic arithmetic operations. Improved accuracy is obtained with multi-
operand Floating Point components.

Floating point numbers are signed-magnitude numbers encoded with three unsigned
integer fields: a sign bit, a biased exponent, and a fraction as shown in Table 2.2.
All the floating point formats are defined by two integer parameters: e and f. The
parameter e determines the number of biased exponent bits and f determines the number
of normalized fraction bits. The most significant bit (msb)(e+f) corresponds to the sign
of the floating point number. Therefore, a floating point format based number is always
e+f+1 bits long. Finally, this definition is consistent with the IEEE 754 Standard. This
option allows to implement any precision format choice in the design.

2.2.1.2 The IEEE 754 Floating Point Standard

The IEEE 754 standard is a technical standard for floating point computation which
was first published in 1985 and established by IEEE. Before the establishment of this
standard, floating point arithmetic was implemented in a very different number of ways in
terms of, word sizes, precisions, rounding procedures and over/underflow behaviors. The
IEEE standard defines floating point data, rounding schemes, operations, and exception
handling (such as division by zero, overflow, etc.). This standard provides a method for
computations with floating point numbers that will yield the same result whether the
processing is done in hardware, software, or a combination of the two [1].

The floating point components in the DesignWare library cover more cases than
the IEEE 754 floating point standard. For a given set of parameters, the components
will use floating point formats that correspond to the ones defined in the standard (for
example, single precision floating point format uses f=23 and e=8). The use of denor-
malized numbers (denormals) and ”Not A Number” (NaN) is controlled by a parameter
(ieee compliance). When this parameter is allowing denormals and NaNs, the compo-
nents are completely compatible with the IEEE standard. When denormals and NaNs
are not used, denormalized numbers are considered zeros and NaNs are considered in-
finities.

16 CHAPTER 2. BACKGROUND INFORMATION

2.2.2 Synthesis

The synthesis is a design automation task in which RTL descriptions are transformed
into a gate-level net list and then area, power and timing results are produced accord-
ingly. A gate-level net list is basically a circuit implementation of the design made of
library components (both combinational and sequential cells) available in the technology
library and their interconnections. A synthesis tool takes an RTL hardware description,
a standard cell library, and design constraints as input and produces a gate-level as
output.

2.2.2.1 The Design Compiler

The Design Compiler tool is the core of the Synopsys synthesis products. The Design
Compiler optimizes designs to provide the smallest and fastest logical representation
of a given function. It includes tools that synthesize the HDL designs into optimized
technology-dependent, gate-level designs. It supports a wide range of flat and hierarchical
design styles and it can optimize both combinational and sequential designs for speed,
area, and power [34].

A synthesis tool performs many optimizations, such as steps high-level RTL opti-
mizations, arithmetic optimizations, technology independent optimizations, timing and
area optimizations. In this study, the register retiming optimization technique is mainly
used to optimize area and, more importantly, timing of the DesignWare IPs.

2.2.2.2 Retiming

Register retiming is a sequential optimization technique that moves the registers through
the combinational logic gates in order to optimize the timing of design without changing
the behavior of the circuit at the primary inputs and primary outputs [31]. With reg-
ister retiming, the locations of the flip-flops in a sequential design can be automatically
adjusted to match as close as possible the delays of the stages. This capability is partic-
ularly useful when some stages of a design exceed the timing goal, while other stages fall
short. If no path exceeds the timing goals, retiming can be used to reduce the number
of flip flops, whenever possible.

Purely combinational designs can also be retimed by introducing pipelining into the
design. In this case, we need first to specify the desired number of pipeline stages and the
preferred flip-flop from the target library. The appropriate number of registers is added
at the outputs of the design. Then the registers are moved through the combinational
logic to retime the design for optimal clock period and area.

During retiming, registers are moved forward or backward through the combinational
logic of the design. Figure 2.8 illustrates an example of delay reduction through backward
retiming of a register. In this example, Figure 2.8a shows the circuit before the retiming.
Before register retiming, there are four levels of combinational logic and only one register
at the endpoint of the critical path. However, in Figure 2.8b, the single register, has
been replaced by four registers, moved back through two levels of logic and, therefore,
the critical path now consists of two stages. The critical path delay in each stage is less
than the critical path delay in the initial single stage design. As shown in this example,

2.2. THE SYNOPSYS ENVIRONMENT 17

D Q

(a) Before the retiming.

D Q

D Q

D Q

D Q

(b) After the retiming.

Figure 2.8: Backward retiming.

Figure 2.9: The Synopsys Retiming Process.

delay reduction through retiming can lead to an increase in the number of registers in
the design. Anyhow, usually, this increase is small.

Besides reducing the delay of a design, register retiming presents another advantage:
area optimization. After registers are moved through the design and established equal
pipeline stages, if there is a positive timing slack, those combinational paths with positive
slack can be optimized in terms of area by a min-area retiming step, as shown in Figure
2.9.

The example in Figure 2.9 shows the steps of the register retiming engine of Synopsys.
The original RTL design has 3 registers in the output stage. First, these registers are

18 CHAPTER 2. BACKGROUND INFORMATION

moved such that a minimum period for each path is satisfied and the data paths are
optimized at the same time. As it can be seen, the number of registers is increased after
this step. After that, the next step is (min-area Retiming), where the number of registers
required is decreased by moving them into the stage in which less number of fan in/out
takes place. In the third step, the are is optimized. After step 2, some of the data paths
have positive slack, which makes possible to decrease the area of the combinatorial logic.
As a result, the area-recovery reduces the design size.

2.3 Conclusions

In this chapter, we presented an overview of the Silicon Hive processor development flow,
its tool set and architecture. Innovative ultra long instruction word architecture from
the Silicon Hive is the basis for this study. We had presented the out-of-box simple
baseline core, the Pearl Ray core of Silicon Hive.

The Synopsys synthesis tool and optimization process, used for synthesizing the
proposed processor and improve the timing of the floating point units, are explained
in detail. Register retiming technique is described by giving examples. Additionally,
the features of the Synopsys DesignWare building blocks, which are used to implement
floating point functional units, are also given. We presented the floating point standard,
IEEE 754 single precision, used in this study. Finally, we described DesignWare floating
point IP blocks that can be configured for this floating point format.

In the next chapter, we will present the floating point extensions on the baseline
Pearl Ray processor. Additionally, the timing optimizations of DesignWare blocks by
introducing pipeline stages using register retiming will be presented.

Floating Point and Vector

Extension 3
In this chapter, we will describe the floating point and vector extension of the Pearl
Ray processor described in Chapter 2. At first, our focus will be on the floating point
extension. The format of floating point numbers, targeted operations, and other design
choices about floating point numbers will be covered. After that, in Section 3.2, we
present the implementation details of the scalar floating point units and the DesignWare
components that we used. Additionally, the timing improvement of the DesignWare
floating point building blocks, by utilizing register retiming, is explained. In Section 3.3,
the register retiming experiments on each floating point functional unit are explained
by introducing the synthesis results. In Section 3.4, the methodology to introduce these
functional units into the Pearl Ray processor is explained. Section 3.5 focuses on the
vector extension. A new vector issue slot capable of executing both integer and floating
point SIMD operations is presented. Details on the vector issue slot and the other SIMD
components, like vector register file, vector memory and vector arithmetic units, are also
presented. Finally, in Section 3.6 a final overview of extended processor is presented and
synthesis results are given.

3.1 Floating Point Arithmetic Extension

One of the main goals of the work presented in this thesis is the introduction of a floating
point arithmetic support in the Pearl Ray processor. So that, graphics algorithms can be
efficiently executed. Graphics applications deal with real numbers that require a com-
putational accuracy. Real numbers can be efficiently represented with the floating point
format and the floating point format implementations take fewer cycles to execute than
fixed point code (assuming, of course, that the fixed-point code offers similar precision).

3.1.1 Floating Point vs. Fixed Point

The choice on which format to use in the processor, a fixed point format or a floating
point format, in a processor is usually related to the use of floating point operations
in the targeted application domain. More specifically, the question boils down to what
is the degree of computational precision required by the target application? Floating
point applications require greater accuracy than what the fixed point can offer and the
representation of data in the floating point format is more accurate than in fixed point
format [11].

For application data sets that require real arithmetic, a greater precision and a wider
dynamic range, the floating point format offers the best solution [11]. In this study, our
aim is at extending the capabilities of a Silicon Hive processor, so to efficiently execute

19

20 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

Figure 3.1: IEEE 754 single precision floating point format.

applications in the graphics domain. As the accuracy of floating point format plays a
key role in graphics, we decide to adopt it.

3.1.2 Floating Point Format

Today’s floating point processors are designed to handle two different data types: the
single-precision floating point format and the double-precision floating point format.
These two data types cover all the various data accuracies necessary for the markets,
which is classically driven by digital signal processing. However, other floating point
precision formats are available.

The floating point precision is an important design choice, which is always a trade off
between performance and accuracy. In our work, we adopted a single precision format, as
only very high end architectures, for scientific graphics applications that consumes huge
amount of power, use a double precision floating point format. As mentioned in [11],
the use of double-precision, 64-bit arithmetic results in a significant decrease in terms
of performance. As a result, anyone planning to use the current generation of graphics
processors for scientific computation must address the following question ”How important
is single-precision compared to double-precision (64-bit) arithmetic for the application in
use? In the proposed architecture, we target performance rather than accuracy. As a
result, single-precision format floating point units are implemented.

In our architecture, we have implemented floating point hardware that fully supports
the IEEE 754 Single Precision floating point format. The baseline processor is designed
for 32-bit integer arithmetic operations. It uses 32 bit data path with register files,
load/store units and memory. As a result, the 32-bit single-precision floating point
number representation can share the same data path, register files and memory with
integer operations without a significant change in the control architecture.

The IEEE single precision floating point standard representation requires a 32-bit
word. The first bit is the sign bit, the next 8 bits are the exponent bits, and the final
23 bits are the fraction bits (see Figure 3.1). The rounding mode can be changed by a
hardware switch to round-to-zero, round-to-even and round-to-odd. There is no software
control to change the rounding scheme. We have fixed the rounding scheme as ”round to
the nearest significant” to have the same simulation results with the simulator in which
the same rounding scheme is utilized by default.

3.2. IMPLEMENTATION OF FLOATING POINT UNITS 21

3.1.3 Targeted Operations

The floating point operations that we target are: addition, subtraction, multiplication,
division, square root, absolute value, float-to-integer and integer-to-float conversions.
According to the profiling in [41], floating point multiplication, addition and subtraction
operations are the most commonly used operations in graphics algorithms. Therefore,
we had introduce those operations in the first hand.

Although the square root and the division operations are very complex and costly
operations that designers usually avoid to introduce, we aim at introducing these oper-
ations as well. First of all, square root and division operations are commonly used in
our ray tracing algorithm, as explained in Chapter 4. Secondly, our aim is at having a
generic floating point processor. Therefore, we cover as much as floating point opera-
tions as possible. If the design becomes very costly in terms of area, the processor can
be easily reconfigured by removing these operations. Additionally, since we are using
the DesignWare floating point IP library, we do not spend time for implementing full
custom design of these units. Therefore, all floating point operations provided by the
library can be easily introduced to the Silicon Hive base core. There is no difference in
our architecture between integer and floating point load/store and pass operations. As
a result, the same instructions already present in the basic processor are used.

Besides the operations just mentioned, more powerful application specific floating
point operations could also be introduced as presented in [42]. For instance, there are
many cross and dot product operations in graphics algorithms. A specific hardware
for these kinds of operations would increase the overall performance of the processor.
However, in this study, our aim at extending a Silicon Hive architecture for more generic
operations. More specific floating point extensions are left as a future work.

3.2 Implementation of Floating Point Units

The implementation of hardware floating point data paths is a difficult task. The IEEE
754 standard makes it even more complicated due to different rounding schemes, normal-
ization and de-normalization process, NaN values, etc. There are processors that provide
IEEE 754 support through software extensions. However, we aim at having a fully IEEE
compatible hardware. Since the implementation of the hardware for all floating point
operations is not in the scope of this thesis, we have used predesigned blocks from the
DesignWare library previously described in Section 2.2.1.

3.2.1 DesignWare Floating Point Units

In order to synthesize floating-point circuits, the designer must provide the detailed
circuit description using Verilog or VHDL. Instead, a model-based design description
using the DesignWare Library of Synopsys environment is used to provide a sufficient
level of abstraction to allow the automated synthesis of floating-point data paths. As
mentioned before, the design of hardware for all floating point operations would be very
time consuming and not in the scope of this thesis. As a result, the use of predesigned and
pre-verified floating point hardware can considerably reduce the development time. The

22 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

DesignWare library provides the floating point hardware with different parameterizable
configurations. In our study, we tuned the parameters so that the floating point units
can support the 32-bit IEEE 754 single precision format.

The following DesignWare Building Blocks from the DesignWare library have
been used: dw fp addsub, dw fp mul, dw fp sqrt, dw fp div, dw fp2int, dw int2fp and
dw fp cmp. The blocks are described in detail in the following sections.

3.2.2 Improving Timing of DesignWare Units

In this section, we describe the method to improve the timing of DesignWare functional
units. Our target frequency is 333 MHz (3 ns clock period). As a standard cell library,
we use the TSMC 40 Low Power Technology. The synthesis of complex floating point
units at 333 MHz in TSMC 40 LP technology results in a negative slack, due to the long
critical path delays exceeding the clock period constraints. This happens because the
floating point building blocks of the DesignWare library are fully combinatorial logic,
which means there are huge combinational paths from the input to the output. As a
result, the achievement of a 3 ns clock period constraints is not feasible especially for
more complex operations, such as the division and the square root.

Our approach is to improve the timing of these units and, at the same time , to
satisfy the clock period constraints. Unfortunately, we do not have access to the source
RTL code of the DesignWare units. As a result, the manual insertion of pipeline stages
is not possible. However, Synopsys claims that full combinational DesignWare units are
designed in such a way that the register retiming option invoked by the optimize registers
command at Synopsys Design Compiler can be effectively used to improve the timing of
these units [35]. This command allows the insertion of pipeline stages for combinational
DesignWare Building Blocks during the synthesis process.

For the pipelining of combinational data paths, the pipeline registers have to be
placed at inputs or outputs of the RTL implementation. Retiming, described in detail in
the previous chapter, is utilized to move registers to the optimal locations. As a result,
the timing of these units is improved by having a pipeline design. As we started with a
full combinational design, the throughput of the pipelined units is 1. In other words, it
can produce output at every cycle. The latency will be equal to the number of registers
included.

The number of registers required depends on how big is the delay of the starting
combinational design. More complex operations will require more register stages. In
order to determine how many registers are required for each floating point component,
we synthesized them for different number of register stages, starting from zero. The
target is to find out what is the smallest number of registers that satisfies the timing
constraints. Additionally, by exploring the area improvement obtained by the retiming,
we may balance latency and the area by trading off the number of registers, i.e. the
latency, and the area. The number of registers is increased till the are cannot be further
optimized.

3.3. FLOATING POINT UNITS 23

3.3 Floating Point Units

3.3.1 Faru Unit

Figure 3.2: The
dw fp addsub unit
employed in the
Faru unit.

The Faru functional unit is responsible for the floating point addi-
tion and subtraction operations. The dw fp addsub (see Figure 3.2)
unit is used from the DesignWare library. Two 32 bit IEEE 754
compatible single precision floating point numbers can be added or
subtracted in this functional unit. The input, ”op”, determines sub-
traction or addition of the number depending on the operation code.
The rounding scheme is round to the nearest significand.Status out-
put of the DesignWare unit is left unconnected, as there is no flag
support for floating point exceptional cases in our processor. These
exceptional cases are handled by the compiler. Finally, the result
is connected to 32 bit register file.

Number of stages com (µm2) seq (um2) Total Area (µm2) WNS (ns)

0 6257 0 6257 -1.505
1 3471 481 3952 MET
2 2988 659 3647 MET
3 3009 869 3879 MET

Table 3.1: Area and worst case negative slack results for the Faru unit with respect to
the number of register stages.

The area results after the synthesis are presented in Table 3.1. The process tech-
nology is TSMC 40 LP and the target clock period is 3 ns. The table also presents the
corresponding Worst Case Negative slack values (WNS) reported by the DC compiler.
In the table, MET means that the timing is satisfied for that design. The positive slack
results are not given since they are very close to zero. The synthesis tool uses positive
slack for area optimization and uses bigger logic for the combinational paths that has
positive slack. The first row shows the case when no registers are included which turns
into a -1.505ns negative slack on the critical path for the initial implementation. The
clock period is 3 ns. By summing up the two values, the overall latency of this combi-
natorial addsub unit becomes 4.505 ns. This means that the timing of the unit must be
improved by introducing register stages and utilizing the retiming option as it explained
before..

In Table 3.1, the first column shows the number of register stages introduced to have
an optimum design. We conclude that the introduction of 1 register stage is enough
to meet the timing constraints for this unit. There is no Worst Case negative slack
reported by the tool in case of 1 stage. This result is somehow expected from the
previous theoretical WNS calculation. If we assume that the registers will be moved
into the middle of the critical path, the new critical path delay will be around 2.250ns
(4.505ns divided by 2) plus the delay coming from the registers. As a result, there is

24 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3

A
re

a
 (

u
m

2
)

Number of register Stages

Sequential

Combinational

Figure 3.3: Combinational and sequential area results for the Faru unit after retiming.

enough positive slack for a clock period of 3ns.

Consequently, this positive slack has been used for area optimization by the DC
compiler. In Figure 3.3, we can observe that the area improves around 37 % when
1 register stage is introduced . As the graph depicts, this improvement is due to a
combinational area optimization.

Although the required timing constraints are met with 1 stage, we kept introducing
more register stages in order to observe if we can achieve a better area result that may
lead us to a better trade off between latency and area. However, we observed that the
improvement is limited, if more register stages are introduced, as depicted in Figure 3.3.
In conclusion, the dw fp addsub unit extended with 1 pipeline stage has been chosen for
the implementation of the Faru unit in our processor. As a result, the execution latency
of the floating point addition and subtraction operations is 1 clock cycles.

3.3.2 Fmul Unit

Figure 3.4: The
dw fp mul unit
employed in the
Fmul unit.

The Fmul functional unit is responsible for the floating point mul-
tiplication operation. The dw fp mult building block from the De-
signWare floating point library is used in order to realize the im-
plementation of the Fmul unit. It can multiply two 32-bit single
precision floating point numbers and gives the result again in 32-bit
single precision format in the IEEE 754 standard. The result is
rounded to the nearest value. dw fp mult has also a status output,
which reports exceptional cases. However, the status output is left
unconnected since we do not have a floating point flag for such an
exceptional cases yet in our architecture.

As for the Faru unit, the Fmul unit is synthesized using the
same approach at 333MHz clock frequency with TSMC 40 LP technology. Table 3.2
shows the results of the experiments. When the floating point multiplier is synthesized

3.3. FLOATING POINT UNITS 25

Number of stages com (µm2) seq (µm2) Total Area (µm2) WNS (ns)

0 10927 - 10927 -1.169
1 6111 763 6875 MET
2 5656 844 6501 MET
3 5570 1057 6627 MET

Table 3.2: Area and worst case negative slack results for the Fmul unit with respect to
the number of register stages.

without including any register stages (when number of stages is 0), it is observed that
there is 1.169 ns worst case negative slack in the design. By the preview analysis for
Faru, we can expect that 1 register stage can be enough for Fmul unit too. We include
pipeline stages and perform the retiming in order to improve the timing to satisfy 3
ns clock period constraint. As before, 1 register stage is enough to satisfy the timing
constraints (see Table 3.2).

As shown in Figure 3.5, there is a significant improvement in the area after introduc-
ing 1 pipeline stage. The improvement is around 38 %. A similar analysis to do one done
for the Faru unit can be done for the Fmul unit as well. As before, we introduced also
2 and 3 levels of register stages, in order to further explore possible area optimizations.
However, the area does not change much compared to 1 register stage (see Figure 3.5).
Consequently, 1 stage is chosen for the Fmul unit. As a consequence, the final execution
latency for the multiplication floating point unit is 1 clock cycle.

As a matter of fact, in the literature, the floating point addition operation is con-
sidered as a more complex operation than the multiplication [22], as the significands
are represented in signed value format but not in 2’s complement. However, our results
contradicts this statement. According to our results, multiplication operation occupies
much more area than addition. While the area of the dw fp addsub unit is 6257 µm2

(see Table 3.1), the dw fp mult unit’s area is 10927 µm2 (see Table 3.2).

3.3.3 Fdiv Unit

Figure 3.6: The
dw fp div unit
employed in the
Fdiv unit.

The Fdiv functional unit is responsible for the division operation.
The dw fp div building block from the DesignWare library is used
to build the Fdiv unit. The parameters are chosen so to support
the IEEE single precision floating point format as explained before.
Like the dw fp mul block, the dw fp div building block has a 8-bit
status output. It reports overflows, division by zero, NaN values and
other exceptional cases. However, it is left unconnected, as there is
no floating point number flag implemented in our processor. The
compiler is mainly responsible to handle such exceptional cases.
For example it reports the division by zero. For this unit, rounding
scheme is chosen as round-to-zero. Our software simulation and

RTL simulation result comparisons show that we should use this rounding scheme to

26 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

0

2000

4000

6000

8000

10000

12000

0 1 2 3

A
re

a
 (

u
m

2
)

Number of Register Stages

Sequential

Combinational

Figure 3.5: Combinational and sequential area results for the Fmul unit after retiming.

have matching results.

The floating point division operation is a more complicated operation than both the
addition and the multiplication. As a result, more pipeline stages should be needed to
satisfy the timing constraints for this unit. Again, we started with the original design
without introducing any register stage and without using any register retiming. The
synthesis results in Table 3.3 show a worst case negative slack of -7.557ns in that case.
If we consider also the clock period, the overall latency becomes around 10.55ns. In
ideal case, if 3 registers could be moved to establish a perfect 3 level pipeline stage, than
the critical path delay would be approximately 2.64ns (here we assume no extra delay
resulted from the registers.). If we approximate delay for each register stage to be 200ps,
it seems improbable to achieve the timing constraint.

Number of stages com (µm2) seq (µm2) Total Area (µm2) WNS (ns)

0 19446 0 19446 -7.557
1 19380 1174 20554 -2.703
2 19279 2929 22208 -1.224
3 18430 3127 21557 -0.378
4 14107 4211 18318 -0.080
5 12637 3374 16011 MET
6 12722 3595 16318 MET
7 12666 3790 16457 MET
8 12681 3993 16675 MET

Table 3.3: Area and worst case negative slack results for the Fdiv unit with respect to
the number of register stages.

As the results in Table 3.3 show, 5 registers are required to achieve the target fre-

3.3. FLOATING POINT UNITS 27

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8

A
re

a
 (

u
m

2
)

Number of Register Stages

Sequential

Combinational

Figure 3.7: Combinational and sequential area results of Fdiv unit after retiming.

quency of 333 MHz. It could be claimed that 4 registers are also enough, since the worst
case negative slack is quite close to zero, namely 0.08ns. However, the area of 5 pipeline
stages is 13% smaller. Moreover, 0.08ns is very critical. Therefore, we used 5 register
stages implementation in our processor for dw fp div block. Consequently, the latency
of the floating point division is 5 clock cycles.

As shown in Figure 3.7, for a small number of the register stages (1 or 2) or no
register stage at all, where high worst case negative slack occurs, the inclusion of more
registers results in an increase in the total area. The reason is that, as the initial WNS
is very high, the positive slack achieved for individual paths is limited. If there is no
positive slack, the combinational area cannot be further optimized. Additionally, the
deployment of the new register stages increases the sequential area as well. As a result,
the overall area increases, as shown in the graph in Figure 3.7. While WNS gets closer
to zero, the area starts to improve. The reason is that there is more playground for
the DC compiler’s area optimization phase, due to more positive slack achieved on the
individual combinational paths.

3.3.4 Fsqrt Unit

Figure 3.8: The
dw fp sqrt unit
employed in the
Fsqrt unit.

The floating point square root operation is implemented in the Fsqrt
functional unit. The dw fp sqrt is the DesignWare building block is
used to build this unit. It supports 32-bit single precision floating
point format and it is Fully IEEE 754 compliant, as the other units.
Round to nearest significant is used as a rounding scheme. The
input and the output are connected to a 32-bit register file.

The dw fp sqrt building block is synthesized using the same con-
straints as the previous units. The synthesis result of the original
implementation are shown in Table 3.4. It can be concluded, from
the table, that the design is far away from satisfying the timing con-

28 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

straints. This is something expected because the floating point square root design is a
very complex operation and the hardware is more complicated. The worst case negative
slack of the original unit is -10.288ns at 333 MHz. The overall latency is 13.288ns. This
gives a hint that more register stages are required to achieve the target frequency. In
theory, 4 stages do not seem feasible. Under an ideal pipelining conditions, the delay of
the critical path would be 2.656ns, without considering the clock-to-Q delay, hold and
setup time delays of the flip flops. Under these circumstances, the most possible number
of registers that meets the timing requirements is probably 5.

Number of stages com (µm2) seq (µm2) Total Area (µm2) WNS (ns)

0 11013 0 11013 -10.288
1 12024 504 12528 -4.013
2 12174 1088 13262 -2.177
3 11212 1538 12751 -0.871
4 10754 2100 12855 -0.306
5 8089 2515 10604 MET
6 6258 2813 9072 MET
7 5350 2813 8163 MET
8 5483 2921 8405 MET

Table 3.4: Area and worst case negative slack results for the Fsqrt unit with respect to
the number of register stages.

The results (see Table 3.4) show that the previous assumption is correct. There is
a negative slack until the 5th pipeline stage is included into the dw fp sqrt unit. When
more registers are included, the total area continues to decrease as it can be observed
in the graph in Figure 3.9, as combinational logic can be optimized more exploiting the
achieved positive slack by the retiming, as explained before. However, the inclusion of
even more registers, for example 8 registers, does not bring to an area decrease. This
happens because the area optimization reaches its limits.

For our processor, we decided to introduce 7 register stages for the implementation
of the Fsqrt functional unit, due to the small area. The area improvement with 7 stages
respect to 5 stages is 25%. Considering the fact that, the latency increases from 5 to 7,
which is 40%, this decision could be criticized at first. However, there are two reasons
that lead us to chose 7 pipeline stages. First of all, the square root unit is the largest
floating point unit. As a result, a 25% increase is a lot compared to the other units. For
instance, 25% of the Fsqrt unit is equal to half of the Faru unit. Secondly, as we stated
earlier, the square root operation is not a very common operation like the addition or the
multiplication. Therefore, it would not affect the overall performance of our processor,
when it runs the targeted graphics algorithms. Additionally, since our floating point unit
is pipelined, the throughput will always be 1 and the latency can be hidden by efficiently
scheduling the instructions. Anyhow, a faster implementation could be preferred, if the
square root operation is a very critical operation for the target application domain.

3.3. FLOATING POINT UNITS 29

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8

A
re

a
 (

u
m

2
)

Number of Register Stages

Sequential

Combinational

Figure 3.9: Combinational and sequential area results for the Fsqrt unit after retiming.

3.3.5 Fcmp Unit

a

b

zctr

z0
status0

>
=
<

status1

altb
agtb
aeqb

z1

unordered

Figure 3.10: The
dw fp cmp unit em-
ployed in the Fcmp
unit.

The Fcmp unit is the floating point comparator unit. It com-
pares two floating point numbers. Depending on the opera-
tion code, the output is chosen by the multiplexing network
for the corresponding operation. The results are written to the
same 32-bit register file, even though these might be one bit
boolean results in the case of comparison operations. The accu-
racy conforms to the IEEE 754 floating point standard. Status
flags are unused in our implementation. Figure 3.10 shows the
dw fp cmp unit taken from the DesignWare library and Table
3.5 gives details about the inputs and the outputs.

Pin Name Width Function

a 32 Floating-point number
b 32 Floating-point number

altb 1 High when a is less than b
agtb 1 High when a is greater than b
aeqb 1 High when a is equal to b

unordered 1 High when one of the inputs is NaN and ieee compliance = 1
z0 32 Min(a,b) when zctr=0 or open, otherwise, Max(a,b)
z1 32 Max(a,b) when zctr=0 or open, otherwise, Min(a,b)

Table 3.5: The dw fp cmp building block pin descriptions.

30 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

The floating point comparison unit has a small design compared to the other floating
point units. As Table 3.6, shows there is no need to include any register stages to
do retiming, as the design itself can satisfy the timing constraints. By including more
register stages, the are does not improve at all. Anyway, the area is much smaller than
the other units. In conclusion, the unit has been used without including any register
stage in the processor. The resulting latency is 0 cycles.

Number of stages com (µm2) seq (µm2) Total Area (µm2) WNS (ns)

0 423 - 423 MET
1 455 321 876 MET
2 458 675 1134 MET

Table 3.6: Area and worst case negative slack for the Fcmp unit with respect to number
of register stages.

3.3.6 Fxalu Unit

Simple operations like the floating point absolute value, get sign, negate and float to
integer conversions are introduced in the Fxalu functional unit. The implementations
of fabs, fnegate and fsign operations are very straightforward. For those operations, we
have not use pre-build blocks and the implementation has been done manually. However,
for the fp2int and int2fp operations pre-build blocks are used. The list of operations in
the Fxalu unit is shown in Table 3.7. The area of this unit is around 100 µm2 which is
negligible compared to the other floating point units. The latency of all these operations
is 0.

Operation Name Output Width Function

fabs 32 Gets the absolute value of a floating-point number
fnegate 32 Negates a floating point number
fsign 1 Gets the sign bit of the floating point number
fp2int 32 Converts SP floating point number to integer value
i2fp 32 Converts integer value to SP floating point format

Table 3.7: List of operations in the Fxalu unit.

3.4 Method of Introducing FPUs into Base Processor

In this section, we explain how to introduce the floating point units into the Silicon Hive
baseline processor, the Pearl Ray VLIW processor, described in the previous chapter.
The configuration of a processor using the Silicon Hive core generation flow is pretty

3.4. METHOD OF INTRODUCING FPUS INTO BASE PROCESSOR 31

straightforward. The TIM description language allows us to define new operations, to
introduce new functional units or issue-slots easily. As depicted in Figure 2.3, the TIM
machine description lies at the heart of the core generation. The architecture description,
compilation and simulation process starts with TIM. In the following, the process of
introducing new floating point functionality into the baseline processor step-by-step is
presented.

3.4.1 Operation Semantics

First of all, the floating point operation semantics need to be defined. This is required
for the simulation of the processor. The floating point operations are defined in a C-like
description. The simulator gets the operation semantics through the TIM description. In
this way, the simulator is informed on how it should treat the new floating point opera-
tions. Additionally, a specific operation code is assigned for each operation automatically
by the flow.

Besides operation definitions, another important issue is how to handle the schedul-
ing of the floating point operations. This can be done statically by a compiler, similar
to the way in which operations from static code schedules are scheduled and issued on
VLIW processors [10], or dynamically, similar to the way in which out of-order proces-
sors issue instructions, when their operands become available [30] . In our processor,
like other VLIW architectures, there is no hardware scheduler that resolves data depen-
dencies or schedules the instructions. The compiler is responsible for the analysis and
to resolve the data dependencies. Instead of doing the scheduling in hardware, where
the scheduling logic is power hungry, the scheduling for a Silicon Hive architecture is
done by the compiler. The operations are scheduled in a way that optimizes both the
resource utilization and the pipeline depth to achieve maximum execution throughput
by the compiler. The compiler must be informed about the latencies of each operation
pipeline. As a result, the latencies of the newly defined floating point units must be in-
troduced to the compiler. In Section 3.3, we have presented the pipeline depth (latency)
of each operation. Table 3.8 shows an overview of the floating point operations and the
corresponding latency values.

Operation Latency

Addition/Subtraction 1
Multiplication 1

Division 5
Square root 7

Comparisons 0
Other fp oeprations 0

Table 3.8: Floating point operation latencies.

The TIM language allows to inform the compiler by presenting the timing of opera-
tions. This information is given by the cycle time parameter in the TIM language. The

32 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

Cycle Time information of the operations are presented according to the table. Hence,
the compiler knows when the result will be ready. As a result, the operations can be
effectively and efficiently scheduled by the compiler.

3.4.2 Functional Unit Definitions

Functional units group the operations, which are comparable from a hardware point
of view. For instance, the addition and the subtraction operations are implemented in
the same functional unit. Set of operations can be performed by one functional unit.
All FUs in our architecture are fully pipelined so that one instruction can be issued at
each cycle even when the latency of that instruction is more than one cycle. Different
implementations may lead to different latencies, which can be specified in the operation
description (see Section 3.4.1) and it is supported by the compiler.

We have already presented the floating point functional units and operations involved
in each of them. The implemented Floating Point Units (functional units) are deployed
into the issue slot 2 (bp pearl s2) of the baseline processor (Figure 3.11). The baseline
architecture is designed for a 32-bit data path. Similarly, our floating point units operate
on a 32-bit format. Therefore, 32-bit integer and floating point functional units can share
the same data path, memory, register files, load/store unit and pass unit in the same
issue slot.

The VLIW feature of the Silicon Hive baseline processor makes possible and easy to
introduce these floating point units in multi issue slots. Actually, the inclusion of all the
FPUs into the same issue slot is not very good design choice. The use of multi issue slots
will immediately increase the theoretical peak of floating point operations per second of
the architecture, as multiple floating point operations can be issued in parallel. However,
at first, the main target of this study is at having a generic floating point processor, which
is able to execute graphics applications. Additionally, the decision on how to distribute
FPUs into multi issue slots depends on the application. As a result, the application has
to be well explored in order to find an efficient distribution of the FPUs. The high level
of reconfigurability in the Silicon Hive cores gives space to improve by exploiting the
achievable ILP in the algorithm and by correlating the operations that can execute in
parallel for that code. Such an approach is presented in Section 4.6, during the analysis
of the architectural refinements, where we first examine the Ray Tracing algorithm as a
case example and then tune the architecture by distributing the floating point units into
different issue slots to efficiently execute the Ray Tracing algorithm.

3.4.3 Register File Connections

The register files are part of the important storage elements in our VLIW architecture.
In the baseline processor we have 3 register files. The read ports of those registers
are directly connected to FUs inside the corresponding issue slots (see Figure 3.11).
Normally, VLIW architectures need multiple port register files for high performance. On
the other hand, keeping the register files as simple as possible is important in terms of
area and power. Simpler and smaller register files are not only faster but also consumes
less power. Therefore, in our architecture, we use the same register files for integer and
floating point format storage. The 32-bit data registers of the baseline processor can

3.
4.

M
E
T
H
O
D

O
F
IN

T
R
O
D
U
C
IN

G
F
P
U
S
IN

T
O

B
A
S
E

P
R
O
C
E
S
S
O
R

33

ray_ ray_s1_op0_BUS

bp_conf ig_pmem_conf_pmem

bp_pear l_s1

bp_pear l_ r f1

3 2 x 3 2

bp_pea r l _s2_op1_BUS

bp_ f i f o_ f i f o

bp_pear l_s2

bp_pear l_ r f2

6 4 x 3 2

bp_pea r l _s2_op0_BUS

ray_ray_s1

ray_ray_rf1

8 x 3 2

bp_dmem_mem

bp_pear l_s1_s r_BUS

ray_xmem_master

bp_pear l_pc

bp_pear l_s1_pc_BUS

bp_pear l_sr

bp_pea r l _s1_op0_BUS

stat_ctr l

1 0 x 3 2

pmem

4096 x 122

bru suu aru lgu shu seu psu sru

f i f o0

2 x 3 2

f i f o1

2 x 3 2

aru lgu mul psu lsu falu fxalu ifmul fcomp f d i v f sq r t lsu psu lgu aru

mem

8192 x 32

master_int

1 0 7 3741823 x 3 2

FPUs

F
ig
u
re

3.
11
:
T
h
e
P
ea
rl

R
ay

b
as
el
in
e
p
ro
ce
ss
or

w
it
h
th
e
fl
oa
ti
n
g
p
oi
n
t
u
n
it
ex
te
n
si
on

.

34 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

support both. For each issue slot there is one register file deployed. The write ports of
the register files are connected to each other through the bus. However, the read ports
are only connected to the corresponding issue slot. Each register file can be only read
by the issue slot it belongs to. When a data requires to be transferred from one register
file to another, it should pass through the pass unit in that issue slot. A pass unit can
read from a register file, which is in the same issue slot with, and write to other register
files through the write bus.

Register file 1 lies in issue slot 1. It (bp pearl rf1) has 1 write and 2 read ports. 2
read ports are adequate since in that issue slot there is no FU that requires 3 inputs from
the register file. It is only connected to integer arithmetic units. The length of the rf1
register is 32 registers, which is the same with initial baseline processor. Register File 2
(bp pearl rf2) has 2 write and 3 read ports. More write ports are included, considering
the fact that it will provide data to many FPUs. Additionally, the length of the register
file 2 is doubled to 64 registers, after the inclusion of floating point units, assuming that
more registers would be required for better performance. Lastly, there is ray rf1, which
consists of 8 32-bit registers and has 1 write port and 3 read ports.

3.5 Vector (SIMD) Extension

The target processor should have a sufficiently high floating point capability, as the
very high performance required by the target application domain and a great number
of floating point operations are executed, . This can be achieved by taking advantage
of the data level parallelism existing in graphics applications. Most of the traditional
techniques actually focus on exploiting more Instruction Level Parallelism (ILP) [26].
We already explained the importance of the VLIW property, in order to exploit ILP
in the applications. However, in this section, our focus will be more on the data level
parallelism.

The data Level Parallelism, which can also be addressed to Single Instruction Multiple
Data (SIMD) paradigm refers to a single instruction that can specify a large number
of operations to be performed on independent data words. This method traditionally
is exploited in the super computing domain by vector [28] and array [27] processors.
However, it has also been shown that SIMD instructions can be efficiently deployed
in VLIW processors [29]. In order to exploit the data level parallelism in graphics
algorithms, the SIMD version of the floating point operations and the other in general
operations (RISC-like) are implemented on the proposed architecture.

In the rest of this section, the SIMD operation extensions will be described. Both the
integer and the floating point vector instructions are introduced. The implementation
of vector arithmetic units, load/store unit, register files and vector memory is described.
The vector extension allow our VLIW processor to perform 8-way SIMD operations. This
support is provided by including a vector issue slot. As a result, the final architecture
becomes a hybrid VLIW/SIMD processor.

3.5. VECTOR (SIMD) EXTENSION 35

3.5.1 Vector Arithmetic Functional Units

Arithmetic operations are defined for vectors in terms of the corresponding scalar oper-
ations. SIMD versions of floating point units are the Fvaru unit (addition/subtraction),
the Fvdiv unit(division), the Fvmul unit(multiplication), the Fvsqrt unit(square root),
the Fvxalu unit (absolute value, get sign, negate), and the Fvcmp unit (comparison),
which are all supported by our architecture. Although floating point vector operations
are our primary target, some operations on integers and logical operations are also in-
cluded. These are defined in the Varu functional unit. The addition, the subtraction,
and the comparison operations are also introduced to operate on integers. Integer multi-
plication and division are omitted, since they are more complex and less commonly used
operations. The floating point division and multiplication are used for integer arithmetic
as well by first converting the integers to the floating point numbers.

FU Name Operation Type Operand1 Operand2 Result Latency

varu: add/sub int vector vector vector 0
add c/sub c int vector scalar vector 0
compare int vector vector flag 0
compare c int vector scalar flag 0

fvaru: add/sub fp vector vector vector 1
add c/sub c fp vector scalar vector 1

fvmul: multiply fp vector vector vector 1
multiply c fp vector scalar vector 1

fvdiv: divide fp vector vector vector 5
divide c fp vector scalar vector 5

fvsqrt: sqrt fp vector vector vector 5
square root c fp vector scalar vector 5

fvcomp: compare fp vector vector flag 0
compare c fp vector scalar flag 0

fvxalu: absolute fp vector vector vector 0
get sign fp vector vector vector 0
negate fp vector scalar vector 0

Table 3.9: Vector Operations.

The sizes of integer and floating point vector data are the same, 32 bits. Hence, both
integer and floating point vector arithmetic units can be included in the same issue slot
and share the same data path and vector register files. Vector by scalar operations are
also supported by vector arithmetic units. For example, a floating point vector data
can be multiplied by a scalar floating point number and the result can be written to a
vector register file. Table 3.9 shows the vector arithmetic operations supported by our
processor, their operand and result types, and the latency values.

For the comparisons of two floating point vectors, there is the Fvcomp unit. The
Fvcomp takes two floating point vectors as input and produces and 8-bit flag vector.

36 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

Figure 3.12: Vector Architecture Types: a) Single pipelined unit. b) Multiple pipelined
units.

The use of flag vector will be described while explaining the mux operations in Section
3.11. There is also a flag register file to store resulting comparison flags.

In general, there are two common techniques to implement vector arithmetic units
as depicted in Figure 3.12. The first one is a single pipeline architecture, where each
element of a vector is driven into a single pipelined execution unit. The second technique
is via multiple parallel pipelined execution units. Figure 3.12 shows the two different
techniques. The approach in Figure 3.12b is followed to implement the vector arithmetic
units. Basically, each floating point vector arithmetic unit is eight complete replicas
of the pipelined scalar arithmetic functional units mentioned in Section 3.3. This im-
plementation is very straightforward compared to other techniques. The advantage of
this approach is that the processor throughput increases without a significant change in
the control unit complexity [14]. However, it increases the area since the total area of
a vector functional unit is 8 times of the one of a scalar functional unit for the same
arithmetic operation. However, our primary target is to increase the floating point per-
formance of our processor, since a lot of floating point operations are executed in the
graphic algorithms we target. As a result, we trade area for performance. The hardware
implementation of the Varu functional unit is automatically generated by the Silicon
Hive core generation tools.

3.5. VECTOR (SIMD) EXTENSION 37

3.5.2 Vector Load/Store Unit

The Vector Load/Store Unit (VLSU) moves the vector data between vector register
files and vector memory. The vector load/store unit in our processor is quite simple.
In fact, there is not much difference between a standard and a load/store units in our
architecture. The only difference is the size of the operands. Since it loads and stores 8
vector elements, the read and wrote data are 256-bit wide. Similarly, vectors can consist
of integers or floating point numbers. There are no differences from a load/store units
point of view between the two formats.

Operations Operand 1 Operand 2 Operand 3 Result Latency

load Vector memory Base address - vector 1
load offset Vector memory Base address offset vector 1

store Vector register Base address - memory 1
store offset Vector register Base address offset memory 1

Table 3.10: Vector load/store operations.

Basically, the load/store unit directly loads or stores the entire 256 bit wide vector
data at once. Therefore, unlike the traditional vector load/store units, in which vector
elements are loaded one by one in the pipeline, the latency of the load/store unit does not
depend on the vector length. However, this type of load/store architecture necessitates
vector memories. As a result, we introduced a vector memory in our processor. Our
vector memory is 256-bit wide and it allows only vector accesses. One vector load/store
unit can access one vector memory. The vector load/store unit does not support complex
scatter and gather memory operations. As, we use a simple 256-bit wide vector memory
there is no access for the individual elements of the vectors in the vector memory. It only
allows regular and aligned memory access. The latencies of vector load/store operations
is 1 clock cycle. In Table 3.10, the supported load/store operations are presented.

3.5.3 Vector Pass Unit

A vector pass unit is introduced to pass vectors between register files and to establish the
connection between vector and scalar registers. It operates 4 different vector operations:
vec pass, vec get, vec set and vec clone. vec get reads an element from the vector
register, depending on the given index and writes it to a scalar register, vice versa vec set
writes to a particular element of a vector for scalar register file. vec clone replicates a
vector data, and vec pass reads a vector from one register file and writes it to another
one if there is any. Table 3.11 summarizes the vector pass unit operations.

Additionally, the vector pass unit includes vector multiplex operations. The vec mux
operation is required to handle conditional executions in SIMD. In the SIMD program-
ming, there are cases when the operation to be performed on each element of vector
is dependent on the element itself. A solution for that problem can be found by using
the vec mux (mask) operations. First, a flag (mask) vector is created by the compari-
son unit. Thereafter, the vec mux operation is executed. Basically, it multiplexes two

38 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

Operations Operand1 Operand2 Operand 3 Result Latency

vec pass vector - - vector 0
vec get vector index scalar 0
vec set scalar index vector 0

vec clone vector - - vector 0
vec mux vector vector flag vector 0
vec mux c vector scalar flag vector 0

Table 3.11: Vector pass unit operations.

vectors, or one vector and one scalar, according to the previously calculated flag vector.
The flag vector is 8-way 1-bit vector, which determines which vectors element will be
picked. This operation is needed to resolve conditional statements. In Section 4.4.2, we
will explain conditional executions by giving an example.

3.5.4 Flag Units

Unlike scalar processing, vector processing requires other forms of conditional execution
to vectorize code containing conditional statements. Therefore, flag (mask) vector op-
erations should be introduced to handle conditional executions. Previously it has been
stated that the output of vector conditional operations are 8-bit flag vectors. A flag
vector controls the element positions where a vector instruction is allowed to update the
result vector. The flag vector may be held in one or more special flags or mask registers.
As a result, another register file mechanism is introduced for flag registers that contains
8 by 1 bit flag data.

The operations on flag registers are done in 3 functional units: the fpsu unit, the
flgu unit and the fintra unit. As the names suggests, the psu unit is responsible for flag
pass operations, in a very similar way as the vpsu unit does. The flgu unit handles the
logical operations on flags. This gives more flexibility on the efficient control of complex
conditional statements. Finally, the fintra unit operates on the individual elements of
a flag vector. It can calculate the maximum or the minimum element in a vector. The
fintra unit can also do logical operations. These operations are not between two vectors,
but within the elements of a vector. It outputs a single scalar result, but it is connected
to a 32 bit register file.

3.5.5 Vector Register Files

A vector register file is an important component in vector architectures. The source of
vector arithmetic operands and the destination results are registers in our architecture.
The vector register file provides storage for vector elements and access ports to vector
functional units. Since our architecture is a multiple lane architecture, the implementa-
tion of the vector register file is not as complicated as it is presented in [2]. There is no
so much difference between the scalar and the vector register files, for the processor that
we extend. The only difference is the width of the register file. However, this structure

3.5. VECTOR (SIMD) EXTENSION 39

limits the flexibility of use of individual vector elements. In order to pick an element
from a vector register, another operation must be executed, which is explained in the
vector pass unit discussion.

The proposed architecture can process 8-way vectors, consisting of 32-bit vector
elements, in which both integers and single precision floating point numbers are treated
in the same way. As a result, there is no difference from the register file point of view
between the two of them. The duty of the vector register file is to provide and store 256-
bit wide data to the vector functional units and vector load/store unit. Vector functional
units use 256-bit data as their operands in the vector register as their operands. Integer
and floating point number vectors are stored in the same vector register file as 8 by 32-bit
wide vectors.

The width of the vector register file is enough to make it costly. Therefore, we wanted
to keep the port configuration simple. Two read ports are required to provide data for
the vector functional units, as there is no operation that necessitates more than 2 vector
data. Similarly, one write port connected to the vector load/store and arithmetic units
is enough for a one vector issue slot implementation. If another vector issue slot is
introduced, it is better to increase the number of write ports of the register file to make
possible its use by more than one issue slots or another register file has to be introduced.

The size (length) of a register file is another important design choice. Silicon Hive
simulator provides a switch to simulate the program for different register lengths. There-
fore, the final sizes of the registers are fixed after evaluating the needs of the ray tracing
algorithm in the next chapter. We started with a large size, which is 256 registers and
decreased it gradually as much as possible to the point where similar performance results
are still achieved. It has been observed that, until 32 registers, there is no much decrease
in performance. As a result, we fixed the vector register file size to 32 registers.

A scalar register is also included to provide data for scalar-to-vector or vector-to-
scalar operations. This register file is connected with other existing issue slots and
register files. Additionally, a flag register has been included to provide storage for previ-
ously mentioned flag vectors. The width of the flag register file (frf) is 8 and the length
is chosen to be 32 registers.

3.5.6 Vector Memory

The internal vector memory stores 256-bit wide data. The data to process using SIMD
instructions are first stored into the vector memory through the host processor. After
that, the vector load/store unit reads form vector memory and writes to the vector
register files. It only allows regular access. Unaligned or stride access are not supported.
Only vectors as 256-bit wide data can be read from our vector memory. Individual
elements of a vector can be accessed by first storing them into the vector register file and
than reading each element with the vec get operation. The size of the vector memory
should be limited, as it is costly in terms of area. As a matter of fact, since we kept
access patterns quite simple our vector memory is not very costly. The size of our vector
memory is 32 kB.

40 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

3.5.7 Vector Issue Slot

The aforementioned vector functional units are introduced in a vector issue slot. Figure
3.13 shows the instantiation of the vector units in the vector issue slot. The issue
slot number 3 (bp pearl s3) is the vector issue slot in the figure. The total number of
functional units in the vector issue slot is big. This type of distribution of functional
units is not efficient. A better approach is to separate them in different issue slot. This
will increase the SIMD instruction level parallelism. However, in this chapter our goal
is to present a generic vector floating point support. In chapter 4.6, we will refine the
issue slot to have better configurations by introducing functional units in multiple issue
slots. Additionally, improvements on the ray tracing algorithm using this approach will
be presented.

3.6 Overview of the Processor

Figure 3.13 depicts the structure of the proposed extended processor. Essentially, it is
a VLIW processor with the addition of floating point support, a vector register file, a
vector memory and a number of vector functional units. The processor can issue up to
4 instructions per cycle executed in 4 issue slots.

Issue slot number 1 and 4 are responsible for scalar integer operations and they
have not been configured. They are exactly the same ones of the baseline processor,
which is described before in Section 2.1.6. The issue slot number 2 is deployed with
scalar floating point functional units. It can execute both integer and floating point
arithmetic operations. Finally, the issue slot 3 is a vector issue slot that can perform
SIMD operations. As it can be seen from the figure, both integer (varu) and floating
point operations (fvaru, fmul, fdiv etc.) share the same data path.

It can execute 8-way SIMD operations. Both integer and vector support is 8x32 bits.
Therefore, the width of the vector register files and the vector memory is 256 bits.

The floating point operations supported are addition, multiplication, division, square
root, float conversion, comparison and absolute value operations, which are fully com-
patible with the IEEE 754 single precision floating point standard. It supports simple
RISC operations and it has one integer multiplier unit. It provides vector registers of 32
256-bit words each, vector load/store operations to move data from/to memory, to/from
the vector registers, and a set of computation operations that operate on vector registers.

3.7 Synthesis Results

The proposed processor is synthesized using the TSMC 40 um low power process tech-
nology. The basic gate area for this technology is 0.71 µm2. The target clock frequency
is 333 MHz. The synthesis tool is the Synopsys Design Compiler. The wire load model
is chosen to be physical and the ultra effort mode is utilized. The synthesis area results
are presented in Table 3.12. Issue slots, functional units, register files and memories are
shown separately.

In this generic core, three memories are introduced, namely dram, vram and pmem.
dram is connected to the scalar load/store unit, whereas vmem is read or written from

3.7.
S
Y
N
T
H
E
S
IS

R
E
S
U
L
T
S

41

pear l_ray_vec_processor
pearl_ray_vec

ray_ray_s1_op0_BUS

bp_conf ig_pmem_conf_pmem

bp_pear l_s1

bp_pear l_ r f1

3 2 x 3 2

bp_pea r l _s3_ fop0_BUS

bp_ f i f o_ f i f o

bp_pear l_s2

bp_pear l_ r f2

1 2 8 x 32

bp_pea r l _s3_op0_BUS

bp_dmem_mem

bp_pear l_s3

bp_pear l_v r f0

3 2 x 2 56

bp_pea r l _s3_ov0_BUS

ray_ray_s1

bp_vmem_lm_vmem

bp_pear l_ r f3

3 2 x 3 2

bp_pea r l _s2_op1_BUS

ray_xmem_master

bp_pear l_ f r f1a

3 2 x 8

bp_pea r l _s2_op0_BUS

ray_ray_rf1

8 x 3 2

bp_pear l_s1_s r_BUS

bp_pear l_pc

bp_pear l_s1_pc_BUS

bp_pear l_sr

bp_pea r l _s1_op0_BUS

stat_ctr l

1 0 x 3 2

pmem

2048 x 256

bru suu aru lgu shu seu psu sru

f i f o0

2 x 3 2

f i f o1

2 x 3 2

aru lgu mul psu lsu falu fxalu ifmul fcomp f d i v f sq r t

mem

8192 x 32

varu fvaru fvmul f v d i v f v sq r t f vcomp fvxa lu vlsu vpsu v lgu fpsu f in t ra f lgu psu lsu psu lgu aru

vec_dmem

1024 x 256

master_int

1 0 7 3741823 x 32

F
igu

re
3.13:

T
h
e
P
earl

R
ay

b
ase

p
ro
cessor

ex
ten

d
ed

w
ith

fl
oatin

g
p
oin

t
u
n
its

an
d
vector

u
n
its.

42 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

Area (µm2) Number of gates percentage

Issue Slot 0: aru 1403 1978 0.16%
lgu 219 309 0.02%
shu 787 1110 0.09%
bru 184 259 0.02%
psu 133 188 0.02%
lsu 50 71 0.01%
Total IS0: 4026 5677 0.46%

Issue Slot 1: fdiv 16390 23110 1.86%
lgu 216 305 0.02%
fsqrt 7536 10626 0.85%
psu 210 296 0.02%
lsu 1237 1744 0.14%
falu 3227 4550 0.37%
fxalu 71 100 0.01%
fmul 6585 9285 0.75%
fcmp 520 733 0.06%
Total IS1: 36978 52139 4.19%

Issue Slot 2: psu 87 123 0.01%
fvaru 21100 29751 2.40%
fpsu 8 11 0.00%
flgu 48 68 0.01%
fvmul 52743 74368 6.00%
fvdiv 130571 184105 14.86%
fvsqrt 58000 81780 6.60%
fvcomp 3843 5419 0.44%
fvxalu 13061 18416 1.49%
vlsu 217 306 0.02%
vpsu 1956 2758 0.22%
vlgu 2116 2984 0.24%
Total IS2: 287019 404697 32.51%

Issue Slot 3: lsu 1237 1744 0.14%
lgu 210 296 0.02%
aru 1403 1978 0.16%
Total IS3: 3852 5431 0.44%

Register Files: rf0 32x32 2r 1w 8151 11493 0.93%
rf1 128x32 3r 2w 40132 56586 4.57%
rf2 32x256 2r 1w 26234 36990 2.98%
rf3 32x32 2r 1w 8230 11604 0.94%
rf4 32x8 2r 1w 152 214 0.02%
rf5 8x32 2r 1w 2191 3089 0.25%
Total Regs: 85090 119977 9.64%

Memories: dmem 8192x32 111060 156578 12.58%
vmem 1024x256 111228 156726 12.60%
pmem 2048x256 222319 313131 25.18%
Total Mem: 444607 626832 50.36%

Other Comp. 21232 29915 2.42%
Total AREA 878952 1239322 100.00%

Table 3.12: Area results.

3.8. CONCLUSIONS 43

the vector load/store unit. pmem stores the long instruction words. The size of the dram
is 32 kB (8196x32), the vector memory is 32 kB (1024x256) and the program memory is
64 kB (2048x256). Approximately, half of the total area is occupied by the memories.

There are 6 register files (rf) in the processor. Their area depends on the length and
width values, as well as on the number of read and write ports. Table 3.12 illustrates
the properties of the register files and their area results. rf1 is the largest one, since it
has 128 entries, 3 read and 2 write ports. The total area occupied by the register files is
about 10% of the total processor area.

Issue slot 0 and issue slot 3 are the ones existing in the Pearl Ray processor. Since
they do not include any floating point or vector unit, their area is negligible. The sum
of the issue slot 0 and the issue slot 3 is less than 1%. Around 4% is occupied by the
issue slot number 1, which has scalar floating point operations in. The other slot in
which vector functional units deployed, issue slot 3, covers 32% of the all area. The total
area of the vector issue slot is 8 times the area of a scalar issue slot, as expected. We
can see the same correlation on the functional unit base. For example, while the Fsqrt
unit (scalar floating point square root unit) includes 10626 logic gates, Fvsqrt (vector
floating point square root unit) has 81780. Similarly, the Fmul unit (scalar floating point
multiplication) occupies 6585 µm2, fvmul (vector floating point multiplication) occupies
is 52743 µm2. In conclusion, the total area of the extended processor is 880000 µm2.
In terms of total number of gates, this number corresponds to around 1.2 million basic
gates.

3.8 Conclusions

In this chapter, firstly, we started by describing the floating point extensions of the base-
line Pearl Ray processor. We presented a comparison between fixed point and floating
point architectures, our floating point design choices and the targeted floating point op-
erations. After that, we presented the implementations of the floating point functional
units by using Synopsys DesignWare building blocks.

We showed that the Synopsys register retiming option can be efficiently utilized
to improve the timing of the DesignWare floating point units so to introduce pipeline
stages. Our experimental results show that this method allows the introduction of effi-
cient pipelines on the DesignWare building blocks. In Section 3.4, a description on how
to introduce these new floating point operations into the baseline processor using Silicon
Hive core generation flow is shown.

In Section 3.5, the SIMD extension of the baseline processor is presented and the
implementation details of vector floating point units are described. Additionally, we pre-
sented details on other vector units, such as the vector register files, the vector memory,
the flag unit, vector load/store and the vector pass unit.

Finally, an overview of the proposed VLIW/SIMD vector processor is shown, together
with the synthesis result. In the next chapter, we will present the Ray Tracing algorithm
and evaluate the performance of the proposed processor when this algorithm is executed
on it.

44 CHAPTER 3. FLOATING POINT AND VECTOR EXTENSION

Ray Tracing Algorithm

Customizations 4
In this chapter, we explain the mapping of a ray tracing algorithm on the implemented
architecture. First, the general concept of ray tracing is given and the details of the
algorithm are covered. After that, in order to map the algorithm on our processor more
efficiently, we present some code optimizations. Additionally, the issue slot configuration
of the processor is refined, in order to achieve a higher instruction level parallelism and
increase the performance. We also present execution time improvements after each step
of the algorithm and further processor optimizations.

4.1 What is Ray Tracing?

Ray Tracing is a method to create a two-dimensional image from a three dimensional
scene by shooting rays from a virtual camera through a window of pixels [33]. It produces
an image of the scene by launching rays from a virtual camera pointed toward the scene
that you want to view, as depicted in Figure 4.1. For this, the algorithm computes the
closest intersection between a ray and an object in the scene.

The rays are launched from the camera and each ray goes through its corresponding
pixel in the image plane as seen in the figure. As a result, the number of rays cast
matches the total number of pixels. The aim of the algorithm is at finding a color value

Figure 4.1: The Ray Tracing Schematic from Wikipedia [40].

45

46 CHAPTER 4. RAY TRACING ALGORITHM CUSTOMIZATIONS

for each pixel by using the corresponding ray. Once the closest intersection of a ray and
an object is found, the color of this object is assigned to the pixel in question. This short
part of the algorithm is called Ray Casting, and it does not comprehend illumination
effects such as shadow reflections and other light affects.

When there is a hit, i.e. when a ray and an object intersects, the ray tracer computes
the color value contribution of the pixel that the cast ray belongs to. First, a path of
the light is traced back through the pixels. Then, interactions of this light ray with the
objects at the same scene are simulated.

If the object that a ray hits is reflective, the ray can bounce off. In that case, a
reflected ray is computed by the algorithm and the same process is done for the reflection
rays until it ends up in a non reflexive object or until a certain number of iterations is
reached. Finally, these reflected and/or refracted rays will eventually contribute to the
color value of the pixel that the primarily cast ray belongs to. That kind of ray tracing
algorithm was first presented in [39] and was called recursive ray tracing. In this thesis,
the ray tracing is referred to as recursive ray tracing, as presented in [39].

Additionally, for each intersection point shadow rays are generated in the direction
of every light source present in the scene. These are used to compute the effect of the
light for that point. Shadow rays are used to verify if the intersection point receives the
light. In addition, the algorithm calculates the contribution of each light source to the
color of the surface at the point of intersection. That makes the illumination effects look
more realistic in the image. This process of coloring by using light is called shading.

The ray tracing algorithm comprises a high degree of parallelism. It fits in the
category of global illumination models. Unlike the local illumination models, it considers
interaction between all elements in the scene for the composition of the image. Effects
such as reflection, refraction, shadows, diffusion, specular are natural results of the ray
tracing algorithm, differentiating it from the classical scan based rendering techniques.
As a result, it brings a high level of realism.

4.2 The Main Steps of the Ray Tracing Algorithm

A ray tracer typically consists of the following steps:

1. Ray generation

2. Ray traversal

3. Intersection test

4. Shading

In the following, we analyze each of these steps in detail:

1. Ray generation. In the beginning, primary rays are generated through each pixel
in the image window. A ray is defined by two points, namely an origin point and
a direction point. The origin of the primary rays is the position of the virtual
camera and the direction of the primary rays is the pixel, which the corresponding

4.3. THE MAPPING OF THE RAY TRACING ALGORITHM 47

ray goes through, in the image plane. The ray generation step can be done in two
different ways. The first method is based on having a pre-processing step, in which
all primary rays for every pixel are calculated and stored in the memory. Then, the
algorithm reads sequentially each ray from the memory. Pre-processing of primary
rays enhances the performance of the algorithm at the cost of an increase in the
required memory size. The second way is to perform ray tracing after calculating
each primary ray one after the other, by skipping any pre-processing. In this way,
a large amount of memory space is saved.

2. Ray Traversal. After generating the primary rays, the next step is to search for
closest intersections between rays and objects in the scene. The easy and näive
way is to test every ray for all the objects in the geometric scene. This would
work for low geometry scenes with a limited number of objects. However, for more
complex scenes, the amount of intersection tests will become computationally ex-
pensive. Therefore, ray traversing algorithms are developed to speed up the overall
performance. More specifically, they divide the scene into spatial subsets and cre-
ate acceleration data structures like tree structures, grid structures or bounding
volume hierarchies [36]. Instead of checking all possible intersections for a given
ray for all objects in the scene, these data structures have to be traversed looking
for subsets hit by a ray. As a result, the number of intersection tests is reduced
significantly. However, in this study, we have not used any acceleration structures
as the main objective of this thesis is the evaluation of the performance of ray
tracing in terms of architectural optimizations rather than algorithmic ones.

3. The intersection test. The intersection test step calculates if an intersection
exists between a ray and an object in the scene. If so, the point in space where the
intersection takes place is calculated. The intersection test depends on the chosen
geometric primitive in the scene. The scene can be represented with mathematical
formulas or combination of geometric primitives. In our case, scenes consisting of
spheres as geometric primitives are taken into consideration.

4. Shading. After finding the nearest intersection of a ray and an object, the color of
the surface at the intersection point is determined and the color value is adjusted
based on the light sources in the scene. This step is called shading. Determining
the color at the intersection point also involves casting of extra rays for reflective
or refracting surfaces. As a result, the same process is repeated recursively for the
new refracted or reflected rays.

4.3 The Mapping of the Ray Tracing Algorithm

In this section, we describe the mapping of the ray tracing algorithm to the Silicon Hive
processor. In Section 2.1.3, we have described the Silicon Hive system in detail. As a
matter of fact, the host processor loads the program and the data into the memory of
the Silicon Hive processor. In this section, we explain which parts of the algorithm are
compiled as a host code and run on the host processor and which parts are mapped and
run on the proposed Silicon Hive architecture.

48 CHAPTER 4. RAY TRACING ALGORITHM CUSTOMIZATIONS

The algorithm steps, which are not considered deserving the evaluation of the per-
formance of the ray tracing algorithm, are compiled for the host processor. These are
pre-processing steps, such as creating camera variables, setting up the scene, construct-
ing the image window, etc. After these initializations, the host loads the camera and the
scene information into the memory. As a result, they can be processed by the proposed
processor. Additionally, the program compiled by the HiveCC compiler is loaded into
the internal memory of the proposed Silicon Hive processor.

From that point on, our processor performs all the aforementioned steps starting
from the generation of the primary rays till returning a color value for every pixel. The
resulting color value is written back into the memory by the processor and the host reads
the color values from the memory and constructs the image.

The initial aim was at running the algorithm using scalar floating point operations.
This implementation is used as a reference design to compare the results, when the SIMD
(vector) version of the algorithm is simulated using vector instructions in the vector issue
slot of the processor. In Table 4.1, we present the results of the cycle count for the ray
tracing algorithm on our processor using only scalar floating point operations.

Number of Iterations 1 2 3 4

Cycle count per pixel 357 526 582 601

Table 4.1: The number of clock cycles for the implementation of the ray tracing with
respect to the number of iterations.

4.4 Vectorization of the Ray Tracing Algorithm

There are 2 important requirements to be able to vectorize an algorithm. First, there
must be some opportunity to perform the same calculations on a stream of data elements
and, second, each of the calculations must be independent by the results of the other
calculations in the stream [25]. As the nature of the ray tracing is to shoot rays through
each pixel and calculate ray-object intersections over all objects in a scene against all
rays cast, the smallest independent element in the algorithm is the pixel. Thus, the
parallelization of the rendering process is on per-pixel basis.

To exploit the vector instructions presented in Section 3.5, the code needs to be
rewritten and vectorized in a single instruction multiple data format. In literature, there
are several implementations of the ray tracing algorithm for single instruction multiple
data format like, for example, [5].

Vectorization can be done by transforming loops of scalar operations into a sequence
of vector operations. In fact, there are two possibilities to vectorize a ray tracing algo-
rithm. The former is by vectorizing using spheres and the latter is by using packets of
rays. The decision on which of the two to use needs to be taken. For an efficient vec-
torization of the ray tracing algorithm, correlation between the elements of the vector is
very important, as it can reduce the overhead resulted from the mask operations used in
SIMD implementations. In terms of ray tracing, correlation can be defined as the degree
of spatial deviation within a set of vector elements, which can be possible rays or scene

4.4. VECTORIZATION OF THE RAY TRACING ALGORITHM 49

Figure 4.2: Array of Structures and Structure of Arrays comparison [36].

objects [4]. The details on how this affects the performance, will be discussed in Section
4.4.2.

In [38], the authors have shown that, there is a high correlation between rays. For
primary rays the correlation will be higher. Nevertheless experiments show that the
second, and the third level rays have a large correlation as well [37]. On the other hand,
for geometric primitives the correlation is limited. In addition, some pre-computations
are required to store spheres (objects), which are close to each other in the same vector.
As a result, the packet of rays phenomena, first introduced in [38], is used to vectorize
the ray tracing algorithm in this work.

4.4.1 Vectorizing by Packets of Rays

In packet ray tracing, rays are not traced sequentially. They are traced as a group of 8
rays. To exploit the vector instructions in our architecture, the data organization needs
to be redesigned for vector of rays. This can be done by using 2 different configurations:
an array of structures or a structure of arrays. Although the organization of the data
as ”array of structures” is more intuitive, an efficient SIMD programming requires the
reorganization of such data into a more SIMD-friendly ”structure of arrays” form (see
Figure 4.3).

Any data used in the algorithm is replaced by an array of 8 values, one for each
ray. As a result, these data can be used as operands for any vector operation defined in
our instruction set. A ray consists of an origin and the direction data. As a result, the
structure of a ray in the initial scalar algorithm was something like the code in Figure
4.3 .

s t r u c t ray{ point o_p ; // o r i g i n
point d_p ; // d i r e c t i o n } ;

s t r u c t point{ f l o a t x ;
f l o a t y ;
f l o a t z ; }

Figure 4.3: Declaration of a ray structure for the scalar algorithm.

For the SIMD implementation, fvector type is used to define the points. fvector is
a packed type and consists of 8 32-bit single precision floating point numbers. As a
consequence, a point is defined by 3 fvectors, each defining the coordinate of 8 points.

50 CHAPTER 4. RAY TRACING ALGORITHM CUSTOMIZATIONS

Similarly, vray consists of vpoints, which represents 8 points in a structure of arrays.
Figure 4.4 shows the fvector definition.

Type fvector __packed8x32 ;

s t r u c t vray { vpoint ovp ;
vpoint dvp ;}

vpoint{ fvector x ;
fvector y ;
fvector z ; } ;

Figure 4.4: Declaration of a vector ray structure for SIMD implementation.

Table 4.2 shows the improvement via vectorization compared to scalar floating point
operations. The numbers denote the number of cycle counts per pixel and object. When
the number of iterations is equal to 1, vector improvement is 7.4x. As we are using 8-
way SIMD instructions, 7.4x. is a quite satisfactory result. However, when the number
of iterations increase, the performance gain decreases. This happens because of the
inefficient handling of the conditional checks in the algorithm. In the next section we
present a solution to this problem.

Number of Iterations 1 2 3 4

Scalar 357 526 582 601
Vector 48.4 95.7 142.9 190.2

Improvement 7.4x 5.5x 4.1x 3.15x

Table 4.2: Comparison of the number of clock cycle for the scalar and the vector imple-
mentation of the ray tracing algorithm with respect to the number of iterations.

4.4.2 Conditional Execution on Vectors

The Ray Packet data structure represents 8 rays. Every calculation in the algorithm is
done using these structures. Therefore the same operations have to be executed by each
ray in the same vector. Anyhow, a question arises: what will happen when those rays
intersect with different objects? In other words, how the conditional statements will be
executed for a vector?

In a vectorized code, conditional branches are resolved using mask operations. First
a flag vector is created, whose elements specify which branch is going to be taken for the
corresponding elements of the vector. To do that, all possible results of each branch needs
to be computed for all elements of the vector. Afterwards, based on the flag vector, a
condition decision will be taken based on the correlation of the vector elements. If all the
elements of a vector have the same behavior in conditional statements, it is advantageous.

In the initial code there are many conditionals. For vector operations, those condi-
tions need to be removed, as the result of conditional statements can be different for

4.5. CODE OPTIMIZATIONS 51

each ray in the same vector. Therefore, mask operations are used. The example given
in Figure 4.5 shows how the conditional statements are transferred to mask (multiplex)
operations.

f o r (i=0; i<8; i++)
i f (A [i]>0) then

A [i] = B [i] ;
e l s e
A [i] =C [i] ;

flag_X = fvcmp (vec_A , 0) ; // c r e a t e s the boolean f l a g vec tor
vec_A = vec_mux (vec_B , vec_C , flag_x) ; // chooses e lements with

// r e sp e c t to the f l a g vec tor

Figure 4.5: Conditional execution on vectors.

As the figure shows, flag vectors are used to resolve conditions in vector processor.
We have 8 by 1 flag vectors to store the results of the conditional statements. First,
the flag vector is assigned based on the condition. Then, two possible branches of the
conditional statements are calculated and stored in two different vectors. After that,
these two vectors are multiplexed using the vec mux operation and the corresponding
values picked as the final result, based on the flag vector. The advantage of using mask
operations is that there is no more control dependency. Therefore, more instructions can
be issued in parallel by the compiler, which increases the ILP of the algorithm. On the
other hand, now, there is an extra mux operation and, more importantly, two possible
results coming from different branches of the conditional statements must be executed,
even though, one of them is not going to be picked. As a result, performance drops
due to extra executions. This becomes more crucial when there are conditional function
calls.

The function calls take place even when only one element of the ray vector satisfies
the condition. This is a drawback of the use of vector operations. However, as it
mentioned before, rays in the same vector have similar behavior because of the large
correlation between them. Therefore, we can use the same conditional statements for
all the elements in that vector. To do that, another vector operation is added to the
architecture which checks all the elements of the flag vector. If all bits of the flag vector
are the same, this operation returns this value and, based on this value, the conditional
statement is handled.

The results (see Table 4.3) show that the use of condition checks for the vectors
increases the performance of the algorithm, as expected. However, when the number of
iterations increases, the contribution of using condition checks for the vectors decreases,
since rays become less correlated, as shown in the table.

4.5 Code Optimizations

In this section, we describe the code optimizations. The importance of the ILP for VLIW
processor has already been mentioned. As a result, the main goal of code optimizations

52 CHAPTER 4. RAY TRACING ALGORITHM CUSTOMIZATIONS

Number of Iterations 1 2 3 4

Vector Implementation 48.4 95.7 142.9 190.2
After condition check 43.8 67 74.6 77.8

Improvement percentage 9.5% 29.9% 47.7% 59.0%

Table 4.3: Improvement after utilizing the vector condition checks.

is to increase the instruction level parallelism, which, in turn, means that the program
can fully exploit the VLIW architecture. The proposed architecture has 4 issue slots,
which means that 4 instructions can be executed simultaneously. However, for the initial
ray tracing algorithm, the instruction level parallelism was very limited. The algorithm
was written in a highly sequential manner. There were many function calls, recursive
functions and conditions, which prevented the scheduler to find optimal schedules to
exploit the ILP. As a result, if we want to increase the ILP, we have to remove them.
In the rest of this section, we will explain these algorithmic improvements, which to
improve ILP.

4.5.1 The Use of Inlines

At first, function calls are redefined using the inline feature. The scheduler schedules
the basic-blocks on a block-by-block basis. A basic block is a sequence of operations,
where only the first and the last operations are allowed to be target of a jump and a
jump operation, respectively. This means that, each function is scheduled individually.
However, when inlines are used, bodies of those functions are copied to where these
functions are called. Hence, the code ends up with larger basic blocks to schedule.
Another advantage of using inlines is to remove the overhead of function calls, as in
case of a function call, the current variables have to be stored into the stack and then
reloaded. In case of inline usage, the overhead of the load/store operations is gone.
Anyhow, one drawback of function inlines is the increase of the program size, which
turns into more program memory. In our case, the functions replaced with inlines are
small sized. Therefore, the increase in program size is negligible. When appropriate
functions are exchanged with inlines, the performance of the overall algorithm increases,
as presented in Table 4.4.

Number of Iterations 1 2 3 4

Vector + condition check 43.8 (8.1) 67.0 (7.9) 74.6 (7.8) 77.8 (7.7)
Vector + cond. check + inline 39.5 (9.0) 54.7 (9.6) 61.0 (9.5) 63.0 (9.5)

Improvement percentage 9.80% 18.30% 18.20% 19%

Table 4.4: Cycle count improvement after using inlines instead of function calls.

4.5. CODE OPTIMIZATIONS 53

Figure 4.6: Loop unrolling by a) a factor of 2 and b) a factor of 4.

4.5.2 Recursions

Another factor that limits the ILP is the recursive function call. The trace function calls
the shade function. Then, in the next iteration, the shade function calls the trace function
and this recursion goes on until the number of iteration steps is reached. There are two
problems caused by a recursion call: it avoids the usage of the inline approach explained
before, and it also prevents the utilization of further optimizations, like loop unrolling,
software scheduling, etc. Therefore, the recursive function calls have to be avoided to
achieve a higher ILP. To prevent the recursion, the ”shade” and the ”trace” functions
copies are defined and, instead of calling a function, we call these inline copies. Table
4.5 shows the improvement in number of clock cycles, after the removal of recursions.

Number of Iterations 1 2 3 4

Vector+cond. check+inline 39.5 54.7 61 63
Vector+cond. check+inline+norecursion 25.3 39 43.6 45.5

Improvement 35% 28% 28% 27%

Table 4.5: Improvement after removing recursions.

4.5.3 Loop Unrolling

Loop unrolling is another technique that can be applied to increase the ILP. It replicates
the body of a loop depending on the loop unrolling factor. Consequently, it produces
a larger basic block of instructions for the scheduler to work with. This gives to the
compiler more flexibility to schedule the operations in a more optimal way. Therefore,
the ILP increases and the number of clock cycles decreases. The increase in terms of
program memory allocation is a trade-off. When the body of a loop is replicated multiple
times, eventually, the number of instructions increases. Figure 4.6 shows the unrolling
of a loop by a factor of 2 and by a factor of 4.

The Silicon Hive compiler supports automatic loop unrolling. It can be simply en-
abled by adding an unroll pragma to the loop to unroll. For example:

• #pragma hivecc unroll=2 means the loop will be unrolled 2 times.

54 CHAPTER 4. RAY TRACING ALGORITHM CUSTOMIZATIONS

• #pragma hivecc unroll=off means no unrolling.

Loop unrolling was used during the intersection test of the rays with the spheres in
the algorithm. In the first experiment, the loops are unrolled by two times, resulting in
20% decrease in the number of clock cycles, and a 10% increase in the program word
count. Then, loops were unrolled by a factor of 4. This improved the performance by 4%.
However the program size increase by 17%. In addition, the simulation time increased,
since the complexity of the scheduling is increased. An increase of the unroll factor of
more than 4 times did not improve the results, as the size of the register files is exceeded
and the compiler could not manage the scheduling of the code. As a result, unrolling
with a factor of 2 is chosen. Table 4.6 shows the effect of loop unrolling in terms of cycle
counts.

Number of Iterations 1 2 3 4

No unroll 25.3 39.0 43.6 45.5
Unroll 2 20.8 31.8 35.4 37,0
Unroll 4 19.5 29.7 33.2 34.6

Table 4.6: Cycle count improvement via the unrolling technique.

4.6 Architectural Refinement

It has been shown already that the data level parallelism can be efficiently exploited by
having SIMD Ray tracing and by using vector instructions. Now, the intention is to show
that ILP can also be exploited in a Ray Tracing algorithm, as opposed to what claimed
in [36]. The out-of-box algorithm is optimized by using the techniques mentioned in
the previous section to leave a more flexible play ground to the compiler to schedule
more instructions in parallel. However, in order to take full advantage of the ILP, the
architecture needs to be tuned in such a way that there are multiple vector issue slots
that can execute multiple instructions in parallel using long instruction words.

4.6.1 Double Issue Slot

A first approach to increase the ILP is by creating a copy of the same vector issue slot. As
a result, any two vector operations can be issued in parallel by our VLIW architecture.
Therefore, the ideal ILP for vector operations is 2. Again, the compiler will handle
the scheduling to find an optimal one to execute 2 vector instructions in parallel. The
second vector issue slot is a replica of the vector issue slot previously explained. The
only difference is that it does not have its own load/store unit and vector memory. Both
share the same vector memory and vector load/store unit. However, it has the same
register files with the same size and port configuration.

Table 4.7 denotes the resulting cycle count improvement after introducing the second
issue slot. For the sake of simplicity, we present the results of only 3 iterations in the
table. The improvement after the vectorization of the code and the use of only a single

4.6. ARCHITECTURAL REFINEMENT 55

vector issue slot was 7.7 times compared to the scalar implementation. By using the
double issue slots, it resulted in a 13.0 times improvement, in comparison to the scalar
implementation. The ideal improvement for double vector issue slots would be 16 times
that of the scalar implementation, as in theory 16 floating point operations can be done
sequentially. We remind that these results do not make use of any code optimization.

Table 4.7 shows also the performance comparison of two architectures before and
after utilizing the code optimizations. Here, we compare the effect of code optimizations
on both architectures. The results show that code optimizations improve the perfor-
mance of the double vector issue slot implementation more than the single vector issue
slot implementation. Although it decreases the cycle count by 41% for the single issue
slot implementation, it reduces 57% for double vector issue slot implementation. The
reason is that the double vector issue slot can exploit more the achieved ILP after the
code optimizations, compared to the single vector issue slot implementation. Finally, we
observe that the overall gain of the double issue slot architecture with the code optimiza-
tions is 30 times better than using only one scalar floating point issue slot. This result
is achieved by the VLIW and the SIMD combination in the proposed architecture.

Cycle Count SpeedUp

Scalar IS 601.0 1.0x
Single Vector IS 77.8 7.7x
1 Vector IS with code optimizations 34.6 17.4x
Double Vector IS 46.12 13.0x
2 Vector IS after code optimizations 20.4 30.0x

Table 4.7: Performance comparisons for single and double vector(SIMD) issue slot im-
plementations.

To have an idea on the achieved SIMD ILP, we have investigated the scheduling
results. The Silicon Hive scheduler provides functional unit utilization results. The
algorithm has a huge main outer loop where most of the computation takes place. As a
result, we focused on that loop. It has been observed that the achieved ILP for SIMD
instructions is 1.77. The ideal achievable SIMD ILP is 2, since there are 2 vector issue
slots that can run floating point SIMD instructions consequently.

These results prove that the ILP for the ray tracing algorithm can be efficiently
exploited. Doubling the vector issue slot resulted in around a 1.8 increases in the perfor-
mance. However, the deployment of another vector issue slot is costly in terms of area.
The area results in Section 3.7, show that 30% of total processor area comes from the
vector issue slots. The inclusion of another vector issue slot increases the total area 30%
and the logic area by 60%.

4.6.2 Final Configuration

The inclusion of a copy of the vector issue slot results in more than 60% increase in
total logic area of the processor. This is very high compared to the 41% improvement in
the performance. Anyhow, the question is: do we really need copies of every functional

56 CHAPTER 4. RAY TRACING ALGORITHM CUSTOMIZATIONS

unit in both issue slots? The answer can be found by exploring the resource utilization
scheme provided by the compiler. While some functional units can be critical for the
performance, some may not be utilized that much. Table 4.8 shows the utilization of each
vector functional unit for the main loop of the algorithm, which is the largest portion of
the code.

Functional Units Utilization % (cycles)

flgu 11%
fvaru 21%
fvcomp 12%
fvdiv 3%
fvmul 18%
fvsqrt 3%
fvxalu 1%
psu 1%
vlsu 5%

Table 4.8: Vector functional unit utilization in percentage with respect to the number
of cycles.

As the table shows, the floating point vector arithmetic unit (fvaru) and the multiplier
(fvmul) unit are the mostly utilized units. Therefore, we copy these functional units into
the two issue slots. Additionally, the pass unit (vpsu) is copied, as it is needed to
pass the data between two issue slots. The rest of the vector functional units is not
replicated. Instead, we separated them into two issue slots. This can result in many
configurations. However, our experiments have showed that there is limited difference
between these configurations, as long as the number of functional units is kept similar for
the two vector issue slots. As a result, the configuration in Figure 4.7 has been chosen
in our experiments and it is the final architecture used to compare the results with other
platforms.

cycle count SpeedUp

Scalar IS 601 1.0x
1 Vector IS 34.6 17.4x
2 Vector IS 20.4 30.0x

Final Architecture 21.4 28.1x

Table 4.9: The comparison of the final configuration with the previous results.

In this configuration (see Table 4.9), the logic area increases by only 15% compared
to single issue slot (it was 60% for double issue slots). However, the total number of
cycles is reduced by 38%. If those results are compared with the 2 vector issue slot
configuration, we can observe that the overall performance did not drop much. Anyhow,
a large area is saved. The average ILP in this configuration is 1.7, which is very close to
the previous result. As a matter of fact, a very close performance achievement is realized

4.7. CONCLUSIONS 57

by a much less area increase.

4.7 Conclusions

In this chapter, the ray tracing algorithm was presented in detail. First, the general con-
cept of ray tracing has been given and the details of the algorithm have been covered.
After that, in order to map the algorithm on our processor more efficiently, we presented
some code optimizations. Additionally, the issue slot configuration of the processor is
refined in order to achieve higher instruction level parallelism and increase the perfor-
mance. We also present execution time improvements after each step of the algorithm
and further processor optimizations. In conclusion, the results show that the ray tracing
algorithm is embarrassingly parallel algorithm. Both instruction level and data level
parallelism can be efficiently exploited. This is proved by the use of SIMD instructions
and by introducing multi issue slots and investigating the resulting ILP.

In the next chapter, we will compare the performance results of the ray tracing
algorithm on the proposed architecture with other architectures.

58
C
H
A
P
T
E
R

4.
R
A
Y

T
R
A
C
IN

G
A
L
G
O
R
IT

H
M

C
U
S
T
O
M
IZ
A
T
IO

N
S

p e a r l _ r a y _ v e c 2 _ p r o c e s s o r

p e a r l _ r a y _ v e c 2
r a y _ r a y _ s 1 _ o p 0 _ B U S

b p _ c o n f i g _ p m e m _ c o n f _ p m e m

b p _ p e a r l _ s 1

b p _ p e a r l _ r f 1

3 2 x 3 2

b p _ p e a r l _ s 4 _ f o p 0 _ B U S

b p _ f i f o _ f i f o

b p _ p e a r l _ s 2

b p _ p e a r l _ r f 2

6 4 x 3 2

b p _ p e a r l _ s 4 _ o p 0 _ B U S

b p _ d m e m _ m e m

b p _ p e a r l _ s 3

b p _ p e a r l _ v r f 0

2 5 6 x 2 5 6

b p _ p e a r l _ s 4 _ o v 0 _ B U S

b p _ v m e m _ l m _ v m e m

b p _ p e a r l _ s 4

b p _ p e a r l _ r f 3

1 2 8 x 3 2

b p _ p e a r l _ s 3 _ f o p 0 _ B U S

r a y _ x m e m _ m a s t e r

r a y _ r a y _ s 1

b p _ p e a r l _ v r f 1

2 5 6 x 2 5 6

b p _ p e a r l _ s 3 _ o p 0 _ B U S

b p _ p e a r l _ r f 4

1 2 8 x 3 2

b p _ p e a r l _ s 3 _ o v 0 _ B U S

b p _ p e a r l _ f r f 0 a

3 2 x 8

b p _ p e a r l _ s 2 _ o p 1 _ B U S

b p _ p e a r l _ f r f 1 a

3 2 x 8

b p _ p e a r l _ s 2 _ o p 0 _ B U S

r a y _ r a y _ r f 1

8 x 3 2

b p _ p e a r l _ s 1 _ s r _ B U S

b p _ p e a r l _ p c

b p _ p e a r l _ s 1 _ p c _ B U S

b p _ p e a r l _ s r

b p _ p e a r l _ s 1 _ o p 0 _ B U S

s t a t _ c t r l

1 0 x 3 2

p m e m

8 1 9 2 x 2 8 8

b r u s u u a r u l g u s h u s e u p s u s r u

f i f o 0

2 x 3 2

f i f o 1

2 x 3 2

a r u l g u mu l p s u l s u f a l u f x a l u i f m u l f c o m p f d i v f s q r t

m e m

1 0 4 8 5 7 6 x 3 2

v a r u f v a r u f v m u l f v d i v f v x a l u v l s u v p s u f p s u f i n t r a p s u

v e c _ d m e m

1 5 7 2 8 6 4 x 2 5 6

f v a r u f v m u l f v s q r t f v c o m p v p s u v l g u f p s u f l g u

m a s t e r _ i n t

1 0 7 3 7 4 1 8 2 3 x 3 2

l s u p s u l g u a r u

F
igu

re
4.7:

T
h
e
fi
n
al

arch
itectu

re
w
ith

2
vector

issu
e
slots.

Experimental Results 5
In this chapter, to have an idea of how well our architecture can perform on the ray
tracing algorithm, we compare the performance of the proposed extended SIMD/VLIW
floating point processor with a very high-end graphic processing unit and a general purpose
processor, in terms of number of cycles, total execution time and power consumption. As
our processor is an embedded DSP, a huge difference for power results is expected. GPUs
have immense parallel floating point operation capability. Nonetheless, this comparison
provides a general idea on the relative performance. At first, we present performance
results for the algorithm presentedin the previous chapter on some other architectures.
Then, we compare and evaluate the performance of our processor with respect to the other
architectures. Finally, we present comparative results based on the C-ray benchmark.

5.1 The GPU Comparison

The goal is to compare the GPU performance and our processor. Therefore, the ray
tracing algorithm, presented in Chapter 4, is mapped on a GPU. GPUs are massively
parallel processors. At the end, our expectation is to have faster execution time on the
GPU.

The implementation of the ray tracing algorithm on the GPU is realized using the
CUDA Software Development Kit of Nvidia. CUDA (Compute Unified Device Architec-
ture) is a parallel computing architecture developed by NVIDIA. It enables programmers
to use GPUs for non-graphics computations. GPUs, with their highly parallel architec-
ture, are capable of processing over more than a thousand threads at high speeds. This
is why CUDA and GPU computing have gained interest from the industry and academia
in the last years. Many highs speed parallel processing on CUDA platform can be found
in the literature, for example [16].

The GPU we evaluated is the Nvidia Quadro 4000. It has 256 CUDA cores that can
execute thousands of threads in parallel. Its maximum power consumption is 142 watt
according to the data sheet [24]. As a result, compared to our processor, there is a huge
floating point compute power in this GPU.

As done for the mapping of the ray tracing algorithm into our platform, it is necessary
to separate the code for the host and the code for the device, in order to utilize Recursive
Ray-Tracing [32]. The CPU generates the scene and camera variables. Afterwards, this
data is passed from the host CPU to the GPU and written to the GPU memory using
the cuda mem cpy function.

In terms of parallelism of the algorithm, a similar approach to the one used in vector-
ization of ray tracing is followed for the GPU implementation as well. Each pixel, which
means each ray, is assigned to one thread of the GPU. In this way, each individual thread
calculates the lighting, shading and intersections for all objects. Each thread needs an

59

60 CHAPTER 5. EXPERIMENTAL RESULTS

access to the entire scene. As a result, the scene information and camera variables are
stored in ”the shared memory” of the GPU.

The implementation is straightforward: we create a CUDA grid
dimensions (dimGrid) and block dimensions dimBlock so that (dim-
Grid.x*dimGrid.y)*(dimBlock*dimBlock.y) is exactly the number of pixels in the
image and the host invokes the CUDA kernel with these device specifications. The
CUDA kernel includes all the steps of the ray tracing algorithm starting from the
generation of the primary rays. The recursive function calls in the algorithm removed
in the GPU kernel too, in similar way to the one explained in the code optimizations
section. However, conditional statements and jumps are still present in the GPU version
of the code and that cause the GPU to slow down. As this is something related to the
GPU architecture itself, we will take this drawback into account.

All threads need to be synchronized so to start simultaneously. Construction and
synchronization of the threads take some time. The scheduling of the threads is done
automatically. If there are more threads available for the GPU, the compiler decides
how to schedule them. The performance comparison between the GPU and our VLIW
vector processor can be seen in Table 5.1.

Execution Time (ms) Number of Cycles

Number of Objects GPU Our processor GPU Our processor

1 75 82 71.3 28

4 80 117 76 39

8 93 246 88.4 82

40 127 1122 120.7 374

80 170 2097 161.5 698

Table 5.1: Performance comparison between the GPU and the proposed architecture.

Our processor gives better performance results for the smaller scenes that have less
number of objects because of the previously mentioned thread construction and synchro-
nization of the GPU. Approximately, 70-75 ms are spent on thread construction initially.
When the scene size becomes relatively large, this initialization delay becomes negligible
and the performance of the GPU overtakes our processor.

When the total number of objects in the scene is 80, the GPU executes the algorithm
12.3 times faster than the proposed processor. The clock frequency of the GPU is 3
times higher than our processor. So, if we normalize the execution time with respect
to corresponding clock frequencies, it can be concluded that the GPU performs 4 times
better than our architecture. However, as we have previously mentioned, the power
consumption and the area of the GPU should be taken into consideration.

If we compare the power consumption of two devices, the GPU and the implemented
processor, the former consumes much more power than the latter. The maximum power
consumption of the used GPU is 142 watt, according to the data sheet. We do not know
exactly how much percentage of the GPU power is used to execute our algorithm, but
we know that total number of pixels in the image is larger than the total number of
threads in the GPU. Therefore, the resource utilization of the sources of the GPU must

5.2. THE CPU COMPARISON 61

be close to the maximum. The power estimation results for our processor show that the
average power consumption is around 0.2-0.3 watt. In conclusion, the GPU performs 4
times faster, although the power consumption difference is notable. Around 700 times
more power is consumed by the GPU.

5.2 The CPU Comparison

Another parallel implementation to compare the performance of our ray tracer is the
parallelization with OpenMp of the code executed on a 4 core (8 thread) Intel Xeon
machine. In fact, the OpenMP implementation is very similar with the CUDA imple-
mentation. The scene data structure is kept in the shared memory avoiding the overhead
of distributing it to multiple processors [12]. Each thread is assigned to one pixel and
the results are taken for different number of threads. The code piece in Figure 5.1 shows
how the parallelization is done using OpenMP pragmas.

For this comparison, we used an Intel Xeon X5570 processor. It is a 4 core processor
that runs at 2.8 GHz clock frequency. The number of threads is 8, including Intel’s
hyperthreading technology. It consumes 95 watt power on average, according to the
data sheet [17].

#pragma omp parallel f o r
f o r (x=0; x < width∗height ; x++)
{

finalImage [x] [y] = trace (x , cam , &data) ;
}

Figure 5.1: The Parallel ray tracing implementation using OpenMP.

Execution Time (ms) Number of Cycles

of Obj. 1 thread 8 threads Our core 1 thread 8 threads Our core

1 740 160 82 2146 464 28

4 990 161 117 2871 466 39

8 1055 210 246 3059 609 82

40 4469 650 1122 12960 1885 374

80 6152 938 2097 17840 2720 698

Table 5.2: CPU comparison with our processor. Intel Xeon processor use single thread
and 8 threads implemented on OpenMP.

Table 5.2 shows the comparison between our processor and the Intel Xeon CPU. The
results for 8 core CPU was obtained using 1 thread and 8 threads on our OpenMp im-
plementation. We can state that an 8 thread implementation improves the performance
by 6.5 times compared to single core implementation (when the number of objects is
80). Linear speed up is observed with respect to the number of threads. However, par-
allelization is not as effective as in our vectorized implementation. When the algorithm

62 CHAPTER 5. EXPERIMENTAL RESULTS

is vectorized and simulated in our 8-way vector architecture, the achieved performance
speed up was very close to 8 times. Although the algorithm is parallelized in the same
manner for the 8 core machine, 8 times improvement was not feasible on an 8 core ma-
chine. However, after utilizing techniques like load balancing or using more effective
communication as presented in [18], the performance of the OpenMP implementation
might be increased.

It is more convenient to make a comparison when the number of objects is large.
As a result, the focus is on the last line of Table 5.2, when the total objects are 80. In
terms of execution times, our VLIW/vector processor is 3 times faster compared to the
single thread (single core) implementation in the CPU. When the code parallelized in
OpenMP is mapped onto 8 cores of Intel Xeon processor, it can execute the algorithm
in 938ms, which is 2 times faster than ours. Nevertheless, if the results are normalized
with respect to the clock speeds, and we speak about the number of clock cycles, rather
than execution time, our processor performs the same algorithm 3.9 times faster than
the CPU. It may be concluded that our processor can compete with an high end CPU
for the execution of the ray tracing algorithm. Furthermore, if we take a look at the
power consumptions of the two, the CPU consumes hundreds times more power than
our processor. Power estimation for the former is 80-90 watt, and for the latter is 0.2-0.3
watt.

5.3 C-ray Benchmark

C-ray is a simple open source ray tracing benchmark, which is created to measure floating
point CPU performance. The algorithm that C-ray uses and our Ray tracer are not
exactly the same. However, they are quite similar. There are some small differences, but
most of the key things (intersection test, shading, simple tracing etc.) are the same. The
source code and the performance results for many different CPUs on the Cray benchmark
are presented in [3]. These results are based on a fixed scene description described by
the benchmark. A very similar scene has been created for the ray tracing algorithm
we used in this study and the algorithm is simulated on our processor. Figure 5.2 and
5.3 show the resulting images. Figure 5.2 is the original scene rendered using the C-ray
tracing algorithm in [3], and Figure 5.3 is rendered using our ray tracing algorithm on our
platform. There are small differences in the scene description. However those differences
do not affect the overall complexity of the problem. As a result, comparison between
the two makes sense. Table 5.3 shows the comparison of our implementation with some
CPU results with respect to power and performance analysis.

Again the comparison shows that our processor competes with the presented CPUs
in terms of performance. Our processor takes 178 ms to render the scene. Some of
the presented CPUs performs better. However, the difference is not much. At most 3
times faster. The power comparison shows the effectiveness of our architecture. The
difference in terms of energy consumption is huge as it is depicted in Table 5.3. The
MIPS processors date from 1998 to 2002 and were fabricated in 110, 130, and 180 nm
processes, which would account for an 8x to 16x relative power difference with the current
40nm processes.

5.4. CONCLUSIONS 63

Figure 5.2: The original scene rendered using C-Ray tracing algorithm. [3]

Freq. Exec (ms) Cycles Energy(j)

VLIW/Vector Processor (0.3W) 333 MHz 178 59 M 0.05
32xMIPS R14000(32x17W) 600 MHz 63 38 M 34

2xIntel Xeon E5420 (2x80W) 2.5 GHz 50 125 M 8
8xMIPS R16000 (8*20W) 700 MHz 189 132 M 30
8xMIPS R12000 (8*20W) 300 MHz 457 137 M 73
Intel Core i5 750 (95W) 2.6 GHz 90 239 M 8.6

Table 5.3: Cray comparison results.

5.4 Conclusions

In this chapter, we presented comparative results of the ray tracing algorithm on the
proposed architecture and two other architectures. The same algorithm, implemented
in CUDA and OpenMP, is mapped on a GPU and a CPU, respectively. The results
show that our low power VLIW/SIMD processor can compete, in terms of execution
times, with power hungry architectures. In the next chapter, finally, we will present an

64 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.3: Similar scene to the C-ray benchmark is created and rendered using our ray
tracing algorithm.

overview of the work presented in the thesis and we explore possible directions to further
improve our work.

Conclusions 6
This chapter concludes the study presented in this thesis. First, we summarize the content
of the thesis and, afterwards, the main contributions are detailed. Finally, the chapter
proposes further improvements to the work presented.

6.1 Summary

The aim of this thesis was to present a VLIW/SIMD floating point processor able to
efficiently execute graphics algorithms, generated using Silicon Hive tools. As a result,
we performed two different studies. The first one is the architectural design that covers
the floating point vector extension of a basic VLIW processor and, as a result, the
creation of a hybrid VLIW/SIMD floating point processor. Secondly, in order to prove
the performance benefits of the proposed architecture in the graphics domain, a well-
known graphics algorithm, Ray Tracing, was mapped on the processor.

The proposed processor was implemented as an extension of a base scalar VLIW
processor of Silicon Hive, the Pearl Ray processor, augmented with a floating point
arithmetic extension. The Targeted floating point operations were addition, subtraction,
division, multiplication, square root, absolute value, all in floating point format. These
operations adopted are the most commonly used operations in graphics algorithms. We
used the IEEE 754 32-bit single precision format. The floating point functional units
were created using DesignWare Building Blocks of Synopsys. DesignWare IP provided
configurable floating point arithmetic hardware that allows us to implement the targeted
operations in single precision floating point format.

DesignWare IP for floating points are fully combinatorial logic. However, they are
designed in such a way that the register retiming engine of Synopsys could be efficiently
used in order to introduce pipeline stages. Our approach introduced register stages
to the input of the building blocks. In order to find the minimum number of registers
required to meet the timing constraints, experiments were conducted for different number
of pipeline stages. The experiments showed that these units can be efficiently pipelined
using retiming to meet the target frequency of 333 MHz. These units were added to
our base Pearl Ray processor as previously explained in Section 3.4.2. Additionally, The
resulting number of pipeline stages is very competitive compared to other floating point
processors in the market.

The processor extended in this study can be defined as hybrid VLIW/SIMD archi-
tecture. It has 5 separate issue slots that can execute 5 different instructions in parallel.
2 issue slots handles simple RISC operations. One is a scalar floating point issue slot
and the final two slots are for vector operations. Vector issue slots are capable of exe-
cuting 8 way SIMD operations. In conclusion, 17 floating point operations can be done
sequentially: 2x8 operations from the two vector issue slots and 1 operation per cycle

65

66 CHAPTER 6. CONCLUSIONS

from the scalar floating point issue slot. The processor includes three 32-bit register
files for scalar data and two 256-bit wide register files for vector data. Both integer and
floating point format data shares the same register files. The separation between the
two is visible only to the compiler. The processor has 3 different memory types. Since
it is a Harvard architecture, one of them is for the program. The size of the program
memory is 64 kB (2048x256) and 256-bits are necessary for our very long instructions.
The second memory is for the scalar data, which is 128 kB and, finally the third memory
is a vector memory 256-bit wide, which is 64 kB (1024x256).

The processor was synthesized in Synopsys DC using TSMC 40 LP technology. The
clock frequency is 333 MHz. The total area of the processor, including all memories,
is 0.88 mm2 which corresponds to 1.24 million basic gates in 40 LP technology. The
memories occupy approximately half of the total core area. The remaining area is ba-
sically the data path. The control logic area is very small due to the VLIW feature of
the architecture, as the compiler is responsible for the complex control operations like
scheduling, resolving data dependencies, etc. Within the data path, vector functional
units covers 32 % of the whole core area. The estimated maximum power consumption
of the processor is 0.2-0.3 watt.

The architecture proposed in this thesis was evaluated for a complete ray tracing
algorithm and the performance results were compared with the implementation of the
same algorithm on other platforms. It was shown that the well-known graphics render-
ing algorithm, ray tracing, can be efficiently mapped and run on the proposed processor.
We had started with an out-of-box naive ray tracing algorithm and increased the per-
formance by vectorizing the algorithm and by introducing algorithmic optimizations, in
order to efficiently exploit both the data level parallelism (vectorization) and instruction
level parallelism (code optimizations) provided by our processor. As a result,the ray
tracing algorithm could be executed 30 times faster compared to the out-of-box scalar
implementation. This improvement was a result of hybrid ”8 way SIMD” and ”double
vector issue VLIW” features of the processor.

6.2 Contributions

In following, we present the main contributions of this thesis in detail:

• A VLIW/SIMD floating point processor, which can issue 5.7 GFLOPS as a peak
floating point performance. The supported floating point operations are addition,
subtraction, multiplication, division, square root and format conversions in addi-
tion to RISC instructions and integer multiplications.

• We have shown that the proposed processor can be efficiently used for a complex
graphics algorithm. The ray tracing algorithm was mapped on the proposed pro-
cessor and gained satisfactory results, which showed that both instruction and data
level parallelism can be exploited using the hybrid VLIW/SIMD architecture we
propose.

• We have analyzed the performance of the processor is analyzed and compared
it with other platforms. Comparative results show that our processor can even

6.3. FUTURE WORK 67

compete with power hungry architectures, such as CPU and GPU. Although, the
execution time results are very similar, our processor is much more efficient in
terms of energy consumption. The power consumption difference is larger than 2
orders of magnitude compared to contemporary GPU and CPU architectures.

• We have shown that a parallel implementation of the ray tracing was possible in
multi-core and GPU domain. Both OpenMP, for an 8 core CPU, and CUDA, for
a GPU, implementations of ray tracing were evaluated.

• We have shown that Synopsys DesignWare building blocks can be easily deployed
into a Silicon Hive processor, thanks to the high level configurability of the pro-
cessor generation flow, hence, configuring a basic Silicon Hive processor to extend
it with floating point operation support.

• We have shown, by conducting experiments on DesignWare floating point IPs,
that the timing of these blocks could be improved by utilizing the register retiming
engine of Synopsys. Our results show that, by introducing pipeline stages we moved
quite close to the ideal pipelining and, additionally, the areas of the DesignWare
Building Blocks were improved as a side effect.

6.3 Future Work

There are several avenues of research to be further explored and lead on from this work:

1. Variable Precision Floating Point Support. In this thesis, we used 8-way
32-bit SIMD instructions for floating points. This configuration can be changed,
depending on the targeting floating point accuracy. For example, if half precision
is enough for the target application than 16 by 16 configurations can be adapted.
This would double the performance in terms of flops, with less accuracy. Similarly,
instead of using single precision, 64-bit double precision can be picked and, as a
result, we will have, a 4 way floating point SIMD instructions. Anyhow, when the
precision is doubled the latencies of floating point operations increase and actually,
the opposite would happen when the precision is reduced in half.

2. Multiple SIMD Issue Slots. We already showed that the ray tracing algorithm
efficiently exploits instruction level parallelism. In the final version of the proposed
processor, there are two vector issue slots and achieved ILP at SIMD instructions
is around 1.8. However, more than 2 issue slots can be introduced, instead of dis-
tributing vector functional units into 2 issue slots. Eventually, this will increase the
performance by increasing the ILP. Anyhow this has some drawbacks. For exam-
ple, register file configurations would be more complex, the size of an instruction
word would expand, etc. Moreover, finding the optimal solution for distributing
functional units into multi issue slots will require extra effort to explore the design
space.

3. Further Algorithmic Improvements. As we stated earlier, the ray tracing
algorithm we used in this study can be considered as a naive ray tracer, as it does

68 CHAPTER 6. CONCLUSIONS

not involves complex ray traversal step to accelerate the execution. As a future
work, a high end ray tracing algorithm can be mapped onto our processor. This
will require efficient handling of memory, due to the complex data structures in
the ray traversal step. and, maybe, some pre-computation could be necessary to
arrange the memory in such a way to allow efficient traversal of the objects in the
scene.

4. Floating Point Benchmark. The main goal of the mapping of the ray trac-
ing algorithm onto our platform is to evaluate the performance of the proposed
extended processor. As a matter of fact, the ray tracing is a very complicated al-
gorithm, which, in general, is not run in an embedded processor for benchmarking
purposes. Since floating point support in embedded domain is a recent topic, there
is no common floating point benchmark for embedded processors. The Embed-
ded Microprocessor Benchmark Consortium (EEMBC) provides benchmarks for
embedded systems. However, a floating point benchmark (FPBench) is under de-
velopment [9]. In the future, we are planning to run ”FPBench”, which will provide
a standardized, industry-accepted method to measure floating point performance
on our platform.

Bibliography

[1] Ieee standard for floating-point arithmetic, IEEE Std 754-2008 (2008), 1 –58.

[2] Krste Asanovic, Vector Microprocessors, Ph.D. thesis, EECS Department, Univer-
sity of California, Berkeley, 1998.

[3] Melvin C. August, Gerald M. Brost, Christopher C. Hsiung, and Alan J. Schiffleger,
Cray x-mp: The birth of a supercomputer., IEEE Computer.

[4] Carsten Benthin, Realtime Ray Tracing on current CPU Architectures, Ph.D. thesis,
Naturwissenschaftlich-Technische Fakultät I, Universität des Saarlandes, 2006.

[5] Jacco Bikker, Interactive ray tracing, (2009), Available at:
http://software.intel.com/en-us/articles/interactive-ray-tracing/.

[6] Geoffrey F. Burns, Marco Jacobs, Menno Lindwer, and Bertrand Vandewiele, Ex-
ploiting parallelism, while managing complexity using Silicon Hive Programming
Tools, Tech. report, Silicon Hive, High Tech Campus 45, 5656 AE Eindhoven, The
Netherlands, January 2003.

[7] Silicon Hive B.V., Silicon hive software development kit (sdk).

[8] R. Chidambaram, A scalable and high-performance fft processor, optimized for uwb-
ofdm, Master’s thesis, Delft University of Technology, July 2005.

[9] EEMBC, Fpbench, Online, 2010, http://www.eembc.org/benchmark/.

[10] Joseph A. Fisher, Paolo Faraboschi, and Cliff Young, Embedded computing - a VLIW
approach to architecture, compilers, and tools, Morgan Kaufmann, 2005.

[11] Gene Frantz, Comparing fixed and floating point dsps, Report, Texas Instruments,
Post Office Box 655303 Dallas, Texas 75265, 2007.

[12] Arturo Garcia, Francisco Avila, Adrian Ortega, and Leo Reyes, A distributed system
analysis for ray tracing using mpi and posix threads, Intel Corporation.

[13] Tom R. Halfhill, Silicon hive breaks out, Tech. Report MSU-CSE-01-22, January
2003.

[14] John Hennessy and David Patterson, Computer Architecture - a Quantitative Ap-
proach, Morgan Kaufmann, 2003.

[15] Silicon Hive, The Silicon Hive Company Webpage, Online, 2011, Availabe at:
http://www.siliconhive.com.

[16] Johan A. Huisman, High-speed parallel processing on cuda-enabled graphics process-
ing units, Master thesis, Delft University of Technology, 05 2010.

69

70 BIBLIOGRAPHY

[17] Intel Corporation, Intel xeon processor 5500 series datasheet, volume 1 ed., June
2011, Document Number:321321-002.

[18] S. M. Ashraful Kadir and Tazrian Khan, Parallel ray tracing using mpi and openmp.

[19] K. Keutzer, S. Malik, and A.R. Newton, From asic to asip: the next design discon-
tinuity, Computer Design: VLSI in Computers and Processors, 2002. Proceedings.
2002 IEEE International Conference on, 2002, pp. 84 – 90.

[20] A. Kumar, A. Hansson, J. Huisken, and H. Corporaal, An fpga design flow for
reconfigurable network-based multi-processor systems on chip, Design, Automation
Test in Europe Conference Exhibition, 2007. DATE ’07, april 2007, pp. 1 –6.

[21] C. Liem, May T., and P. Paulin, Instruction-set matching and selection for dsp
and asip code generation, European Design and Test Conference, 1994. EDAC,
The European Conference on Design Automation. ETC European Test Conference.
EUROASIC, The European Event in ASIC Design, Proceedings., feb-3 mar 1994,
pp. 31 –37.

[22] L. Louca, T.A. Cook, and W.H. Johnson, Implementation of ieee single precision
floating point addition and multiplication on fpgas, FPGAs for Custom Computing
Machines, 1996. Proceedings. IEEE Symposium on, apr 1996, pp. 107 –116.

[23] Moataz A. Mohammed, Device for the treatment of hiccups, Patent US 366998 B1,
US, April 2002, US class: 712/17; 712/20; 712/222; 712/24.

[24] Nvidia, Quadro 4000 datasheet, Nvidia website, Jul 2010.

[25] David Plunkett and Michael Bailey, The vectorization of a ray-tracing algorithm for
improved execution speed, IEEE Comput. Graph. Appl. 5 (1985), 52–60.

[26] B. Ramakrishna Rau and Joseph A. Fisher, Instruction-level parallel processing:
history, overview, and perspective, J. Supercomput. 7 (1993), 9–50.

[27] S. F. Reddaway, Dapa distributed array processor, SIGARCH Comput. Archit. News
2 (1973), 61–65.

[28] Richard M. Russell, Readings in computer architecture, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2000, pp. 40–49.

[29] E. Salami and M. Valero, A vector- mu;simd-vliw architecture for multimedia ap-
plications, Parallel Processing, 2005. ICPP 2005. International Conference on, june
2005, pp. 69 – 77.

[30] John P. Shen and Mikko H. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processors, first ed., McGraw-Hill Science/Engineering/Math, 2004.

[31] N. Shenoy and R. Rudell, Efficient implementation of retiming, Computer-Aided
Design, 1994., IEEE/ACM International Conference on, nov 1994, pp. 226 –233.

BIBLIOGRAPHY 71

[32] Min Shih, Yung-Feng Chiu, Ying-Chieh Chen, and Chun-Fa Chang, Real-time
ray tracing with cuda, Proceedings of the 9th International Conference on Algo-
rithms and Architectures for Parallel Processing (Berlin, Heidelberg), ICA3PP ’09,
Springer-Verlag, 2009, pp. 327–337.

[33] Kevin Suffern, Ray Tracing from the Ground Up, A. K. Peters, Ltd., Natick, MA,
USA, 2007.

[34] Synopsys, 700 E. Middlefield Road Mountain View, CA 94043, Design compiler user
guide, f 2011.09 ed., 09 2011, Available at: www.synopsys.com.

[35] Synopsys, 700 E. Middlefield Road Mountain View, CA 94043, Designware building
block ip, f 2011.09 ed., 09 2011, Available at: www.synopsys.com.

[36] Ingo Wald, Realtime Ray Tracing and Interactive Global Illumination, Ph.D. thesis,
Computer Graphics Group, Saarland University, 2004.

[37] Ingo Wald, Christiaan P Gribble, Solomon Boulos, and Andrew Kensler, SIMD Ray
Stream Tracing - SIMD Ray Traversal with Generalized Ray Packets and On-the-fly
Re-Ordering, Tech. Report UUSCI-2007-012, 2007.

[38] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner, Interactive
rendering with coherent ray tracing, Computer Graphics Forum, 2001, pp. 153–164.

[39] Turner Whitted, An improved illumination model for shaded display, Commun.
ACM 23 (1980), 343–349.

[40] Wikipedia, Ray tracing graphics, Online, 2010, Availabe at:
http://en.wikipedia.org/).

[41] Chia-Lin Yang, B. Sano, and A.R. Lebeck, Exploiting parallelism in geometry pro-
cessing with general purpose processors and floating-point simd instructions, Com-
puters, IEEE Transactions on 49 (2000), no. 9, 934 –946.

[42] Xiao Yang and R.B. Lee, Plx fp: an efficient floating-point instruction set for 3d
graphics, Multimedia and Expo, 2004. ICME ’04. 2004 IEEE International Confer-
ence on, vol. 1, june 2004, pp. 137 – 140 Vol.1.

72 BIBLIOGRAPHY

