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LuGre-based tyre model is presented.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Although friction is essential to almost every aspect of mechanical behaviour, dealing with the phenomenon remains a
challenge in many engineering areas. In control systems engineering this is not different. Incorporating the complex and
nonlinear behaviour of friction in a control system design has been a topic of research for decades (see [1] and the references
therein). As many of the control solutions tend to be model-based, there has always been a need for a faithful but relatively
simple friction model.

Starting from static models, where the friction force is described as a function of the relative velocity between the two
surfaces in contact, several extensions have led to dynamical friction models that capture both the nonlinear force–velocity
relation with Coulomb friction, viscous friction, and the Stribeck effect, as well as transient behaviour and stiction without a
logic rule.

The Dahl model [7] is the first continuous-time model that captures stiction. However, the first continuous-time, dynamic
friction model able to capture all the relevant friction phenomena mentioned above, is the LuGre model [5,15]. Although the
model has some inaccuracy in the pre-sliding (i.e., stiction) regime and is subsequently modified in [17], it is used in numer-
ous control applications (see, e.g., [4,11,12,20]). Further developments of the LuGre model included longitudinal and com-
bined-slip tyre models, see [6,21,8].

In this paper, we present a port-Hamiltonian description of the LuGre model and extend the result presented in [14]. The
port-Hamiltonian formalism naturally arises from network modelling of physical systems in a variety of domains (e.g.
mechanical, electrical, electromechanical, hydrodynamical, and thermodynamical); see [9] for a comprehensive summary
of the developments of this framework over the past decade. Exposing the relation between the energy storage, dissipation,
and interconnection structure, this framework underscores the physics of the system. An attractive aspect of the port-Ham-
iltonian formalism is that a power-preserving interconnection between port-Hamiltonian systems results in another port-
Hamiltonian (PH) system with composite energy, interconnection, and dissipation structure. Based on this principle, com-
. All rights reserved.
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plex multi-domain systems can be modeled by interconnecting PH descriptions of its subsystems. Moreover, control design
methodologies are available that can be directly applied to such PH model descriptions [16]. It is precisely in this context that
a PH description of the LuGre model can be of great value. The PH description of the LuGre friction model that is presented in
this paper can be used as a resistive element in PH descriptions of (complex) systems containing friction, which can then be
used for control system design.

Since friction is, in its very nature, a dissipation phenomenon (although the pre-sliding phase should ideally be conser-
vative), it is clear that any model describing it faithfully has to be passive. In [5], passivity of the LuGre model is proven for
the mapping from relative velocity to the virtual bristle state. However, it is correctly argued in [2] that the model should be
passive in the mapping from relative velocity to friction force, which is the natural power-conjugate input–output pair. In
[2], necessary and sufficient conditions are derived for this physically relevant passivity property. The proof is constructed
using the direct analysis of passivity in terms of time-integrals of (physical) power. The PH description of the LuGre model
that we present in this paper enables us to give a short alternative proof for this passivity condition.

The remainder of this paper is organized as follows. In Section 2 we give a description of the LuGre friction model with
some of its important characteristics. We also reformulate the model to render it physically more consistent. In Section 3 we
present the PH description of the model, after which we derive the passivity conditions in Section 4. Finally, in Section 5, PH
interconnections of a mass with Lugre friction, and a quarter-car system with LuGre friction based tyre model are presented.

2. LuGre friction model

The LuGre friction model that is presented in [5,15] is a so-called bristle model, i.e., the dynamical part of the model de-
scribes a virtual bristle deflection. The model is described by the set of equations
_z ¼ �r0jv rj
gðv rÞ

zþ v r;

F ¼ ðr0zþ r1 _zþ r2v rÞFn; ð1Þ
where z denotes the virtual bristle deflection, vr the relative velocity of the surfaces in contact, and F the resulting friction
force between the surfaces. The normal force between the surfaces is denoted by Fn. The function
gðv rÞ ¼ lC þ ðlS � lCÞe
� vr

vS

��� ���a
;

parameterizes the static friction curve that is incorporated in the model, with lC being the Coulomb friction, lS the Stribeck
friction, vS the Stribeck velocity, and a a curve parameter that further tunes the Stribeck effect. The remaining terms param-
eterize the bristle dynamics. In the literature, r0 is used to denote the bristle stiffness coefficient, r1 the bristle damping coef-
ficient, and r2 the viscous friction coefficient. These coefficients, however, are normalized by Fn and therefore do not have the
appropriate units. To render the model physically more appealing, we introduce the variables
k0 :¼ r0Fn;

d1 :¼ r1Fn;

d2 :¼ r2Fn;

g0 :¼ jv rj
Fngðv rÞ

:

ð2Þ
We now have that k0 ([N m�1]) is a proper stiffness coefficient, d1 and d2 ([Ns m�1]) are proper damping coefficients, and g0

([m N�1 s�1]) turns out to be a proper conductance coefficient. If we further eliminate _z from the force output equation, we
get the following formulation of the LuGre model,
_z ¼ �g0k0zþ v r ;

F ¼ ð1� d1g0Þk0zþ ðd1 þ d2Þv r:
ð3Þ
An important characteristic of the LuGre model is that the virtual bristle displacement z is bounded according to
�lS

r0
6 z 6

lS

r0
: ð4Þ
The fact that the state space does not consist of the whole of R turns out to be crucial for the passivity analysis of the model.
Another key feature of the model is the fact that the steady-state behaviour coincides with a commonly used static fric-

tion curve parametrization [1,3], namely
Fðv rÞj_z¼0 ¼
1
g0
þ d2

� �
v r:
This is exactly the rationale behind the LuGre friction model, but at the same time it offers the opportunity to incorporate
other friction curve parameterizations into the model by changing the conductance term g0 in (2).
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With respect to this presentation of the LuGre friction model, we like to make the following remarks:

� The LuGre model is an extension of, and therefore closely related to, the Dahl model [7]. In fact, if g(vr) = lC, and d1 = 0, we
have the original Dahl model. This means that for these values, the port-Hamiltonian model presented in Section 3 is
actually a port-Hamiltonian form of the Dahl model.
� In the original work [5], the LuGre model is not assumed to be an explicit function of the normal force Fn. However, fol-

lowing the discussion in [8,1], and the presentation of the LuGre model in [6], the normal force dependency in (1) is used.
� Friction modelling is very much application dependent [1], and it might therefore be that in some cases the LuGre model,

and subsequently its port-Hamiltonian form presented here, is not applicable.

3. Port-Hamiltonian (PH) formulation of the LuGre friction model

In this section, we give a PH description of the LuGre friction model (3). First, we recall the standard PH description of a
system without direct feedthrough, as it is treated in, e.g., [18], after which we extend it to a more general form.

3.1. PH systems

A basic PH system description is given as follows [18]:
_x ¼ ½JðxÞ � RðxÞ�rxHðxÞ þ GðxÞu;
y ¼ GTðxÞrxHðxÞ; ð5Þ
where x 2 X is the state, and H : X! R the Hamiltonian, of which the gradient is denoted by rT
x H. The input distribution

matrix is denoted by GðxÞ : X! Rn�m, the lossless interconnection structure matrix by JðxÞ : X! Rn�n, satisfying J(x) = �JT(x),
and the dissipation structure matrix by RðxÞ : X! Rn�n, satisfying R(x) = RT(x). Although this type of PH description is suit-
able for describing a large class of physical systems, for the LuGre model it turns out that a more generic form is needed.

3.2. PH systems with feedthrough and modulation

A more general description of a PH system than (5) arises when a direct feedthrough channel is incorporated. This form is
not yet widely used in the literature, but it can be found in [19,13]. If we furthermore also allow for modulations of the sys-
tem matrices by external parameters, we arrive at the following PH system description:
_x ¼ ½Jðx;qÞ � Rðx;qÞ�rxHðx;qÞ þ ½Gðx;qÞ � Pðx;qÞ�u;
y ¼ ½Gðx;qÞ þ Pðx;qÞ�TrxHðx;qÞ þ ½Mðx;qÞ þ Sðx;qÞ�u;

ð6Þ
with q 2 Rp denoting the vector of external parameters. The lossless interconnection structure of the system is now deter-
mined by J : X� Rp ! Rn�n;G : X� Rp ! Rn�m, and M : X� Rp ! Rm�m, while the dissipation structure is determined by
R : X� Rp ! Rn�n; P : X� Rp ! Rn�m, and S : X� Rp ! Rm�m. The matrices M(x,q) and S(x,q) are respectively skew-sym-
metric and symmetric. In practice, the structure matrices and the Hamiltonian are often functions of the state x, but it also
occurs (e.g. in power converters [18]) that they are modulated by external variables. The description above is therefore a
practically relevant form. Having this generic PH form, the question now is how to put the LuGre friction model in such a
framework.

3.3. PH LuGre model

The input and output of the LuGre friction model are given by vr and F respectively, thereby constituting a natural power-
conjugate input–output pair. Since we are dealing with a scalar system, the skew-symmetric interconnection terms are nec-
essarily zero, i.e., J‘ = M‘ = 0, where we use the subscript ‘ to refer to the LuGre model. The remaining terms have to be se-
lected sequentially. We start by selecting the feedthrough matrix S‘(q). A natural choice for this matrix is
S‘ðFnÞ ¼ d1 þ d2: ð7Þ
Next, we choose the Hamiltonian. The most natural candidate is the elastic energy stored by the virtual bristles
H‘ðz; FnÞ ¼
1
2

k0z2: ð8Þ
Although we have the freedom to choose other Hamiltonians, the one above has the advantage of not being modulated by
the relative velocity vr and having a clear physical meaning.

Having set both H‘(x,q) and S‘(q), we proceed by selecting G‘(x,q) and P‘(x,q) from
½G‘ðx;qÞ þ P‘ðx;qÞ�TrzH‘ðz; FnÞ ¼ k0ð1� d1g0Þz) ½G‘ðv rÞ þ P‘ðv rÞ�T ¼ ð1� d1g0Þ:
We select
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G‘ðv rÞ ¼ 1� 1
2

d1g0; ð9Þ

P‘ðv rÞ ¼ �
1
2

d1g0: ð10Þ
(The motivation for this particular form is given in Section 5.) The dissipation term R‘(x,q) is now derived as
_z ¼ v r � k0g0z ¼ �R‘ðx;qÞk0zþ ½G‘ðv rÞ � P‘ðv rÞ�v r ) v r � k0g0z ¼ �R‘ðx;qÞk0zþ v r ) R‘ðv r ; FnÞ ¼ g0: ð11Þ
Hence we obtain the PH description of the LuGre friction model given by
_z ¼ �R‘ðv r; FnÞrzH‘ðz; FnÞ þ ½G‘ðv rÞ � P‘ðv rÞ�v r;

F‘ ¼ ½G‘ðv rÞ þ P‘ðv rÞ�rzH‘ðz; FnÞ þ S‘ðFnÞv r ;
ð12Þ
with S‘(Fn), H‘(z,Fn), G‘(vr), P‘(vr), and F‘(vr,Fn) as in (7)–(11), respectively.
4. Passivity analysis of the LuGre model via dissipation structure

As stated in the Introduction, passivity of the LuGre model in the vr ´ F mapping is crucial. In this section, we show that
exploiting the physical structure of the PH description (12), the passivity conditions for the LuGre friction model naturally
follow by a direct analyses of the dissipation structure of the system. Our results coincide with the passivity condition de-
rived in [2], with the modest exception that our results hold for any constant Fn. This implies that in the passivity analysis
below, we assume that q remains constant. The definitions of passivity used in this paper are based on the seminal works
[18,22]. Details on passivity of port-Hamiltonian systems with direct feedthrough can be found in [9].

4.1. Passivity of PH systems

A particularly appealing feature of PH systems of the form (6) is that, because of skew-symmetry of J(x), the energy flow of
the system satisfies (for sake of brevity we omit the arguments)
_H ¼ uT y� rT
x H uT

� � R P

PT S

� � rxH

u

� �
; ð13Þ
expressing that the power associated to the energy stored by the system equals the power supplied to it minus the power
that is dissipated. Furthermore, if H(x) is bounded from below and if the dissipated power is such that
rT
x H uT

� � R P
PT S

� � rxH
u

� �
P 0; ð14Þ
for all x 2 X and admissible inputs u : ½t0; t1� ! Rm, the system satisfies the power balance inequality _H 6 uT y. Integrating the
latter from time t0 to t1 yields the inequality
Hðxðt1ÞÞ � Hðxðt0ÞÞ 6
Z t1

t0

uTðtÞyðtÞdt; ð15Þ
which states that the system cannot store more energy than it receives from the environment. In other words, the system is
passive with respect to the supply rate uTy and storage function the Hamiltonian H(x). In the special case that (14) is iden-
tically zero, we have that H = uTy, which implies that the system is lossless.

4.2. Passivity conditions for the LuGre friction model

Although it is often stated that (14) is satisfied if
R P

PT S

� �
� 0; ð16Þ
this is only true when the latter is not a function of the states, otherwise the product in (14) cannot be treated as a pure
quadratic form. Furthermore, one also has to take into account the nature of the state space. If the state space is a bounded
subset X � Rn, the inequality has to be satisfied only on the domain of interest.

Taking into account the fact that the state space of the LuGre friction model is bounded according to (4) and using the
result of the previous section, the passivity condition (14) for the LuGre friction model (12) is given by
k0z v rð Þ
g0 � 1

2 d1g0

� 1
2 d1g0 d1 þ d2

 !
k0z

v r

 !
P 0;
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8z 2 �lS

r0
;
lS

r0

� �
; v r 2 R; ð17Þ
which, under the assumption that Fn is constant, implies that (for details, see the Appendix)
d1 6 d2
lC

lS � lC
: ð18Þ
Hence, under this condition, together with the fact that the Hamiltonian (8) is positive semi-definite (and hence bounded
from below) for all z and k0 P 0, the LuGre friction model is passive.

Not surprisingly, the inequality (18) precisely coincides with the passivity condition derived in [2]. The difference, how-
ever, is that our result directly follows from the energetic and dissipative structure of the PH description of the LuGre friction
model, whereas the result in [2] is derived from the positivity requirement of the supplied power.

4.3. Modified bristle damping

The passivity condition (18) is often in contradiction with the friction parameter values that are identified in experiments.
Besides that, in [15] it is argued that a constant r1 leads to inconsistent behaviour in the transition from slip to stick. In order
to resolve these two issues, a relative velocity-dependent bristle damping
r̂1 ¼ r1e
� vr

vd

	 
2

ð19Þ
is proposed, with vd being the bristle damping parameter [15]. For a general relative velocity-dependent r̂1, the condition for
passivity is derived in [15] reads
0 6 r̂1 6 4
jv r j

gðv rÞ
: ð20Þ
The proof for this condition is given in terms of direct integrals of power. Again, we can use the dissipation structure of the
PH description of the LuGre model, and in particular condition (17), to conclude the following.

Assuming that we have a relative velocity-dependent bristle damping d�1 ¼ r̂1Fn, a sufficient condition for (17) is given by
g0 � 1
2 d�1g0

� 1
2 d�1g0 d�1 þ d2

 !
<0; ð21Þ
which, in turn, by taking the Schur complement, is satisfied if and only if the following three inequalities are satisfied:
g0 P 0;
d�1 þ d2 P 0;
1
4

d�1
� �2g0 � d�1 þ d2

� �
6 0:
First note that both g0 and d2 are positive. Due to positivity of d2, a sufficient condition for the last inequality to hold is
1
4
ðd�1Þ

2g0 � d�1 6 0;
which, due to positivity of g0, is satisfied if and only if
0 6 d�1 6
4
g0
: ð22Þ
This inequality is equivalent to the passivity condition (20).

4.4. Discussion

Concerning the passivity analysis, we can state the following remarks:

� The analysis above shows that a zero bristle damping d1, renders the model passive. Some authors indeed found that the
influence of this parameter is negligibly small to be observable on their test setup (which is specifically the case for tyre
friction applications discussed in Section 5.3.1). The need of introducing such a term is therefore questionable.
� Although the passivity discussion here is centered around the energy dissipative nature that one would expect from a

friction model, one can argue that for control purposes, this type of passivity is not easily exploited. In many cases, vr

is not available for measurement, and an estimate of vr has to be used. Such an estimation procedure might introduce
delays that hamper the exploitation of passivity. For a further discussion on this issue, we refer to [10].
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5. PH description of systems with friction

In this section, we present a PH description of a mass subject to friction and a quarter-car with LuGre-based longitudinal
tyre force model. These interconnections show how the PH description of the LuGre model can be used as a building block for
physical modelling of systems in a PH framework. Moreover, due to the specific nature of these interconnection examples,
the way in which the dissipation structure of the PH LuGre friction and the LuGre tyre force building blocks carry over to the
interconnected systems, becomes particularly transparent.

5.1. Interconnection of a PH system with the PH LuGre model

Let us first introduce a standard (negative) feedback interconnection of a basic PH system (without feedthrough) with the
PH Lugre model. If we denote the state, the input, and the output of the LuGre model by x‘ = z, u‘ = vr, and y‘ = F‘, respectively,
and further omit the arguments of the matrices in (12), the PH LuGre model is described by
R‘ :
_x‘ ¼ �R‘rx‘H‘ þ ½G‘ � P‘�u‘;
y‘ ¼ ½G‘ þ P‘�Trx‘H‘ þ S‘u‘;

(
ð23Þ
with R‘, H‘, G‘, P‘ and S‘ given in (11), (8)–(10) and (7) respectively. The basic general PH system that we interconnect the PH
LuGre model with, is described by
Rp :
_xp ¼ ½Jp � Rp�rxp Hp þ Gpup;

yp ¼ GT
prxp Hp:

(
ð24Þ
Using a standard negative (power-preserving) feedback interconnection
up

yp

 !
¼

0 �1
1 0

� �
u‘
y‘

� �
þ

1
0

� �
u; ð25Þ
with external input u, we get the PH system
R :
_x ¼ ½J � R�rxH þ Gu;

y ¼ GTrxH;

(

with x ¼ ð xp x‘ ÞT and G ¼ ðGp 0 ÞT . The total energy (Hamiltonian) is given by
H ¼ Hp þ H‘;
and the lossless interconnection and dissipation structure matrices by
J ¼
Jp �GpGT

‘

G‘G
T
p 0

 !
;

R ¼
Rp þ GpS‘G

T
p GpPT

‘

P‘G
T
p R‘

 !
:

The description above shows which terms of both systems (23) and (24) contribute to the lossless interconnection structure
of the closed-loop system and what terms contribute to its dissipation structure.

5.2. Feedback interconnection of the PH LuGre friction model with a mass

Having described a general negative feedback interconnection of a PH system with the PH LuGre model, it is now straight-
forward to substitute the PH description of a mass m into this feedback loop, see Fig. 1. The PH description of the mass is
given by
Fig. 1. Mass with friction model with mass m, forward velocity v, and relative velocity vr.
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Rm :
_xm ¼ Gmum;

ym ¼ Gmrxm Hm;

�
ð26Þ
with xm = pm being the momentum of the mass, input um = F the total force acting upon the mass, and output ym the velocity
of the mass. Furthermore, the Hamiltonian consists of the kinetic energy of the mass
HmðpmÞ ¼
p2

m

2m
:

Of all the other terms in the PH description of the mass, only Gm = 1 is non-zero. Using again the power-preserving intercon-
nection (25)
um

ym

� �
¼

0 �1
1 0

� �
u‘
y‘

� �
þ

1
0

� �
uF ;
where the external input uF is an external force, the closed-loop system is given by
_x ¼
_pm

_xl

� �
¼

0 �1þ 1
2 d1g0

1� 1
2 d1g0 0

 !"

�
d1 þ d2 � 1

2 d1g0

� 1
2 d1g0 g0

 !#
pm
m

k0xl

� �
þ

1
0

� �
uF ;

y ¼ v ¼ 1 0½ �
pm
m

k0xl

� �
; ð27Þ
with Hamiltonian
Hðpm; xlÞ ¼
p2

m

2m
þ k0x2

l

2
; ð28Þ
representing the sum of the kinetic energy of the mass and the elastic energy stored by the virtual bristles. Since the
mass is a lossless system, the dissipation structure of the mass-friction interconnection is determined solely by the fric-
tion part. On the other hand, it can be shown that the chosen Hamiltonian (28) admits only one unique realization of
both the lossless interconnection structure matrix and the dissipation structure matrix. The specific form of both G‘(	)
and P‘(	), proposed in Section 3, are chosen such that the PH LuGre description is consistent with the PH description
of the mass-friction system.

5.3. Interconnection of a PH LuGre friction based longitudinal tyre model with a quarter-car

A second example of how a PH description of the LuGre friction model can be used in modelling nonlinear systems, we
present a PH description of a quarter-car model with a LuGre-based longitudinal tyre force model. First we introduce the
longitudinal tyre force model as it is presented in [6].

5.3.1. LuGre friction based longitudinal tyre force model
Based on the LuGre friction model, several tyre models have been developed that describe either the longitudinal [6], or

the combined longitudinal and lateral tyre–road interaction [21,8]. These models are generally derived by setting up the par-
tial differential equations (PDE) describing the LuGre bristle dynamics for the tyre–road contact patch. Under the assumption
of some normal force distribution, these PDEs are then averaged, which produces a lumped, single-bristle LuGre model with
an extra conductivity term capturing the ‘convective losses’ effect of the bristles moving in and out of the contact patch due
to the rolling motion.

The longitudinal tyre–road interaction model in [6] is used in this section and is, in the notation of Section 2, given by the
following equations:
_z ¼ v r � k0gtz;

F ¼ �k0ð1� d1gtÞz� ðd1 þ d2Þv r; ð29Þ
with k0, d1, and d2 as described in (2) and the tyre conductivity gt being the sum of the original LuGre bristle conductivity g0

(2) and a new term g1, that is,
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gt :¼ g0 þ g1;

g0 :¼ jv rj
gðv rÞFn

;

g1 :¼ jjrxj
r0Fn

:

The extra conductivity term g1 captures the rolling motion of the tyre, with x being the rotational velocity of the tyre/wheel,
r the effective radius of the tyre, and j a term representing the averaging of the friction PDEs over some assumed normal
force distribution. We furthermore have that the relative velocity vr is related to the forward velocity of the wheel v, and
its rotational velocity x according to
v r ¼ v � rx:
5.3.2. Quarter-car model with longitudinal tyre force model
Fig. 2 shows a quarter-car with car body mass mb and wheel mass mw, tyre/wheel moment of inertia I, forward velocity v,

and wheel rotational velocity x. The PH description of the combined car body and wheel mass m = mb + mw is given by (26),
while the PH description of the rolling tyre is given by
RI :
_xI ¼ GIuI;

yI ¼ GIrxI HIxI;

�

with xI = pI the momentum of the rolling wheel, input uI = T the total torque acting upon the wheel, and output yI the rota-
tional velocity. The input distribution matrix is given by GI = 1. The Hamiltonian consists of the kinetic energy of the wheel
HIðpIÞ ¼
p2

I

2I
:

The last component is the PH description of longitudinal tyre force model, given by
Rt :
_xt ¼ �Rtrxt Ht þ ½Gt � Pt�ut;

yt ¼ ½Gt þ Pt�Trxt Ht þ Stut:

(

Using the longitudinal tyre force model introduced in the previous section, the PH description of the total system is now
given by
_x ¼ ½J � R�rxHðxÞ þ Gu;
with
x ¼
pm

pI

xt

0
B@

1
CA:
Hamiltonian
HðxÞ ¼ p2
m

2m
þ p2

I

2I
þ k0x2

t

2
;

and lossless-interconnection and dissipation structure matrices
m

I

vr

ω

v

Fig. 2. Quarter-car model with mass m, moment of inertia I, forward velocity v, wheel rotational velocity x and relative velocity vr.



J. Koopman et al. / Simulation Modelling Practice and Theory 19 (2011) 959–968 967
Jðpv ;px; FnÞ ¼
0 0 �1þ 1

2 d1gt

0 0 1� 1
2 d1gt

� �
r

1� 1
2 d1gt �1þ 1

2 d1gt

� �
r 0

0
B@

1
CA;

Rðpv ;px; FnÞ ¼
ðd1 þ d2Þ �ðd1 þ d2Þr � 1

2 d1gt

�ðd1 þ d2Þr ðd1 þ d2Þr2 1
2 d1gtr

� 1
2 d1gt

1
2 d1gtr gt

0
B@

1
CA:
The actuation input u = s is the traction or brake torque, for which the input distribution matrix is given by
G ¼
0
1
0

0
B@

1
CA:
6. Concluding remarks

In this paper we have presented a port-Hamiltonian (PH) description of the LuGre friction model. Apart from establishing
a closer connection between the mathematics and the physical background of the parameters in the model, a PH description
of the LuGre model also enables us to assess the passivity conditions, as originally derived in [2] from an input–output per-
spective, in a straightforward and natural manner using the dissipation structure. Moreover, we showed that the passivity
conditions can be given in case of any constant normal force between the surfaces in contact.

As a specific example of the use of the PH Lugre model, we presented an interconnection with a mass. It was shown that
the lossless interconnection structure and dissipation structure of the port-Hamiltonian LuGre model are consistent with
those of the interconnection, which are in turn uniquely determined by the choice of the Hamiltonian. A further example
was presented in the form of a quarter-car with longitudinal tyre force model.
Appendix A

Writing out (17) results in
k2
0g0z2 � k0d1g0zv r þ ðd1 þ d2Þv2

r P 0;

8z 2 �lS

r0
;
lS

r0

� �
; v r 2 R:

ð30Þ
First of all we note that the left hand term of the inequality is equal to zero for vr = 0, so for this case the inequality is trivially
satisfied. Furthermore, we have that the inequality in (30) is equivalent to
k2
0z2 g0

v2
r
� k0d1z

g0

v r
þ ðd1 þ d2ÞP 0: ð31Þ
for all v r 2 R n f0g. The first two terms on the left-hand side have their infimum for jvrj?1, producing the strongest con-
ditions on the friction parameters. Indeed, both g0/vr and 1/vr are odd and their product is non-negative for all vr 2 R with
lim
jvr j!1

k2
0z2 g0

v2
r

� �
¼ 0:
With z2 also being non-negative, this results in
inf
vr2R

�lS
r0
6z6

lS
r0

k2
0z2 g0

v2
r
¼ 0:
For the second term in (31) the infimum is given by
inf
vr2R

�lS
r0
6z6

lS
r0

�k0d1z
g0

v r

� �
¼ lim

vr!1
�k0d1z

g0

v r

� �����
z¼lS

r0

¼ lim
vr!�1

�k0d1z
g0

v r

�� ����
z¼�lS

r0

¼ �d1lS
1
lC

:

This results in the passivity condition
�d1lS
1
lC
þ ðd1 þ d2ÞP 0;
which is equivalent to (18).
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