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A B S T R A C T   

Cities play a critical role in developing adaptable strategies to address the challenges posed by 
climate change. However, the inherent complexity of urban environments and their uncertain 
future conditions necessitate exploring innovative approaches and tools to assist the current 
planning practices. This paper presents a workflow rooted in model-based scenario planning for 
long-term adaptation planning given uncertain futures. To demonstrate the workflow’s effec-
tiveness, a pertinent case study was conducted in a flood-prone area of Rome. The study employed 
a land-use change model to examine potential urban growth patterns, considering the uncertain 
implementation of new poles of attraction. This interdisciplinary study constitutes an initial stride 
toward implementing uncertainty within urban planning frameworks. Future prospects encom-
pass the integration of multiple models for cross-scale analysis, embracing further critical envi-
ronmental and social aspects. This research contributes to advancing urban resilience strategies. It 
enhances the understanding of adapting to an uncertain future in the face of climate change, as 
urban areas must embrace comprehensive planning to ensure flexible adaptation when faced with 
climate-driven uncertainties in long-term planning. In conclusion, the study underscores that 
embracing uncertainty is a challenge and a pivotal opportunity to shape resilient and adaptable 
urban futures.   

1. Introduction 

The impact of climate-related developments on the built environment is a pivotal issue in the scientific debate (Mabrouk & 
Haoying, 2023). Climate change already affects the built environment through increasing urban flooding (Choi et al., 2021) and the 
Urban Heat Island effect (Falasca et al., 2019). Nevertheless, a comprehensive workflow to guide urban planners in developing flexible 
adaptation plans in the face of uncertainty is still lacking. 

Conventionally, planning rests on the assumption of stationarity. However, anthropogenic and climatic changes have seriously 
affected the conditions underpinning historical time series used in forecasting. Therefore, "stationarity is dead" (Milly et al., 2008). For 
planning, this implies that if the actual future is different from the one assumed (e.g., with respect to population growth, economic 
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development, economic activities, local demands, climate change), the plan is unlikely to achieve the stated objectives. True, ignoring 
uncertainties can simplify planning in the short-term, but with a higher risk of negative surprises in the long-term. 

The problem of dealing with uncertainty is further amplified by the fact that cities are complex (self) adaptive systems (Cozzolino & 
Moroni, 2022; Moroni & Cozzolino, 2019). The inability to effectively comprehend and address uncertainties in decision-making 
processes carries significant costs. Urban planners often lack awareness of uncertainty or the knowledge to manage it effectively. 
The key to address this lies not in accurately predicting the future, but in being prepared to embrace the inherent uncertainty while still 
adhering to adequate planning practices (Moroni & Chiffi, 2021). 

In response to uncertainty and complexity, in other disciplines that are planning for the future, alternative planning approaches 
emerged (Shepherd et al., 2018). Since the mid-20th century, scenario planning has continuously increased in popularity. As of today, 
an abundance of methods and techniques exists, and their application spans across a wide array of sectors in both public and private 
industries. 

Scenario planning is a crucial support in addressing complex challenges and uncertainties in various domains requiring strategic 
decision-making, overcoming the limitations of human reasoning, identifying future trends, and adapting to changes. Scenario 
planning enables the identification of the pivotal factors that engender uncertainty, facilitating the comprehension of their interplay 
and weaving plausible alternative narratives of the future (Saliba, 2009). Several studies on the topic have investigated the origin of 
scenario planning and the typologies of scenarios highlighting the qualitative and quantitative methodologies and techniques 
employed (Amer et al., 2013; Bishop et al., 2007; Bradfield et al., 2005; Cordova-Pozo & Rouwette, 2023; Ducot & Lubben, 1980; 
Notten et al., 2003; Robinson, 1990; Walton et al., 2019). 

Börjeson et al. (2006) provide a straightforward typology of scenarios according to three questions: "What will happen?", "What can 
happen?", and "How can a specific target be reached?". The first question refers to predictive scenarios (Makridakis et al., 1998), which 
aim to predict future outcomes based on probability and likelihood. These scenarios help plan, adapt to expected situations, and 
identify potential challenges. Predictions are usually made within a defined structure, relying on historical data and causal re-
lationships. The second question, "what can happen?”, is addressed by explorative scenarios (Avin & Goodspeed, 2020). Explorative 
scenarios are particularly beneficial when the underlying structure for scenario construction is uncertain, such as during periods of 
rapid and unpredictable changes or when the mechanisms leading to potentially challenging futures are not fully understood. 
Additionally, explorative scenarios prove useful when users possess a solid understanding of the current system but seek to explore the 
implications of alternative developments. The third question, "How can a specific target be reached?", is addressed by normative or 
prescriptive scenarios (Iverson Nassauer & Corry, 2004). This type of scenario incorporates normative considerations and values to 
assess how to reach or avoid a specific target. 

Compared to predictive or normative approaches, the advantages of exploratory scenarios are rooted in their capacity to encompass 
a wider spectrum of potential futures, transcend the limitations of projections, and embrace the intricacies of systems characterized by 
deep uncertainty. This insight contributes to a more holistic and adaptable approach to strategic decision-making in the face of an 
uncertain and evolving future (Maier et al., 2016). 

Scenario planning has evolved into distinct schools (Carvalho, 2021): (i) The Intuitive Logics School (Bradfield et al., 2005), also 
referred to as the Anglo-Saxon school, finds its roots in the work of Herman Kahn and is notably influenced by business perspectives. 
Royal Dutch/Shell serves as a pioneering reference in this approach. The method entails the identification of influential micro and 
macro forces, ranking uncertainties, and constructing scenarios. (ii) The Probabilistic Modified Trends School (Amer et al., 2013) is 
deeply influenced by methodologies like Trend Impact Analysis (TIA) and Cross-Impact Analysis (CIA). TIA involves adjusting ex-
trapolations by incorporating historical data and accounting for unforeseen events, while CIA assesses the intricate interdependencies 
among variables. This school, seeks to generate multiple alternative futures rather than a single extrapolation. (iii) The French School - 
La Prospective (Godet, 1986) originates from Gaston Berger’s emphasis on long-term planning. have paved the way a mathematical 
and systems analysis-oriented approach. This approach, informed by the “La Prospective” methodology, combines varied analytical 
tools to create scenarios. 

The central question for this paper is: "How to evaluate long-term urban planning options under uncertain future conditions?". The 
study aims to address the research gap, specifically the absence of a workflow utilized by urban planners to address the uncertainty 
about cities’ future and inherent complexity. To this end, we rely on exploratory modeling (Bankes, 1993; Moallemi, Kwakkel, de 
Haan, & Bryan, 2020) and scenario discovery (Bryant & Lempert, 2010; Kwakkel & Jaxa-Rozen, 2016), which are rooted in explorative 
scenario thinking and the scenario logic school, in order to create scenario narratives (Dawson & Moglia, 2019) that describe how 
uncertainties influence future vulnerabilities and what this implies for urban planning. We use District X in Rome as a case study and 
explore plausible futures up to 2050 in light of the uncertainties that influence urban development. 

To structure the analyses, we used a land-use change model implemented in Metronamica (Van Delden and Hurkens, 2011), a generic 
integrated spatial decision support system to simulate land-use dynamics, widely used for scenario-based land-use modeling to explore 
adaptive strategies to climate change (Carter, 2018; Kazak, 2018; Mancosu et al., 2015), participatory policy approaches (Hewitt et al., 
2014), and for investigating the land-use dynamics triggered by human decision-making (Lauf et al., 2012). We account for future un-
certainties regarding land-use demands and the influences of infrastructure options. For this study, we performed five thousand 
computational "what if" experiments using exploratory modeling. The resulting land-use maps for 2050 are clustered to reveal arche-
typical land-use patterns. Next, the clusters are analysed to assess their relevance for decision-makers. Lastly, Scenario Discovery is 
performed for each decision-relevant cluster to reveal the combination of uncertain input parameters under which the cluster occurs. 

The paper is structured accordingly. First, we provide a literature background to support the methodologies and tools applied. 
Secondly, we introduce the general workflow and present an applicative case based on the selected case study. Finally, we present the 
conclusions regarding the approach, addressing the limitations and future challenges. 
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Fig. 1. The general workflow used for this study.  

Fig. 2. Case study area. The X Municipality of Rome.  
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2. Literature Background 

Decision-makers face various uncertain factors that might undermine their plans’ success. Furthermore, communicating un-
certainties is an ongoing effort between policy stakeholders and scientists from different fields (Schueller et al., 2020). Usually, urban 
planners rely on forecasts, but undesirable outcomes can occur if the future differs from the assumptions made in the forecast. 

Uncertainty is a multidimensional concept defined as any departure from the unachievable ideal of determinism (Walker et al., 
2003). In this study, we focus specifically on deep uncertainties. Deep uncertainty means that a set of alternative assumptions can be 
enumerated but not ranked in terms of their plausibility (Kwakkel, Walker, & Marchau, 2010). Various planning and decision-making 
approaches to support the design of robust and adaptive plans have emerged under the umbrella of Decision Making under Deep 
Uncertainty (DMDU) (Lempert et al., 2003; Walker et al., 2001, 2010). Each approach (Haasnoot, Kwakkel, Walker, & ter Maat, 2013; 
Kwakkel, Haasnoot, & Walker, 2016; Lempert, Groves, Popper, & Bankes, 2006) offers different analytical perspectives and uses 
different techniques. Given a specific context, it can be beneficial to combine different techniques drawn from these different ap-
proaches (Kwakkel & Haasnoot, 2019). 

Supporting decision-making under deep uncertainty benefits greatly from using simulation models. When dealing with deep un-
certainty, one typically faces a complex dynamic system. Consequently, it is difficult to understand how the system works and 
anticipate possible future outcomes (Diehl & Sterman, 1995; Sterman, 2002). Therefore, simulation models are valid support to 
instantiate the system of interest, investigate plausible futures, and test interventions in the system in light of the various uncertainties 
(Bankes, 2009; Bankes, Walker, & Kwakkel, 2013; Holtz et al., 2015). 

To structure the problem and organize the available information, many DMDU methods start from the "XLRM" framework (Lempert 
et al., 2003), which stands for: (i) Exogenous uncertainties ("X"): Elements that planners cannot control but could affect the feasibility 
or success of the decided strategies. The uncertainties can be environmental, demographical, economic, etc. They can also be char-
acterized by more gradual changes over time or be surprise events in the future. (ii) Policy levers ("L"): Short-term strategies applied to 
reach near-term objectives. (iii) Relationships ("R"): Element of connection describing the interactions among the other described 
groups over time. It is usually represented by the model that can be implemented according to the planners’ aims. The system’s 
complexity necessitates a computational approach in case of deep uncertainties. (iv) Measures ("M"): Elements used to evaluate the 
performance of the policy levers in the different scenarios generated. They are ranked according to the desirability of the outcome. 
Once the information is organized, the simulation model is iteratively used to test the proposed actions in many plausible futures, 
refine the actions, and develop a strategy with desirable performance least affected by the uncertainties. 

2.1. Model-based support for designing adaptive strategies 

Kwakkel and Haasnoot (2019) present a taxonomy of the available DMDU approaches and the key ideas underpinning DMDU:  

• Exploratory Modelling: A computer-assisted research methodology used to explore complex systems that cannot be understood 
entirely with human reasoning.  

• Decision support: Approaches and tools used to facilitate the comprehension of a problem and the course of action that could be 
implemented using a posteriori decision analysis.  

• Adaptive Planning: An approach that allows designing plans to be adapted as the conditions change, which implies exploring a wide 
range of possible futures to build a plan with flexible, adaptive actions to respond to possible uncertain conditions that could 
undermine the plan’s success. 

For this study, we rely on Exploratory Modelling (Bankes, Walker, & Kwakkel, 2013; Moallemi, Kwakkel, de Haan, & Bryan, 2020), 
a research method based on computational experimentation to investigate large ensembles of "what if" scenarios. The aim is not to 
develop a single model that reproduces reality because the uncertainties make a single representation a non-reliable source of in-
formation for the outcomes of interest (Bankes, 1993). Instead, exploratory modelling uses large-scale computational experimentation 
to explore how the system would behave across alternative assumptions regarding the uncertainties. So, a set of models reveals the 
system’s behaviour across the uncertainties and is used to reveal the conditions under which strategies fail. 

In the DMDU literature, identifying the conditions under which plans fail is called as vulnerability analysis. The basic idea is to 
identify the subspaces in the uncertainty space under which candidate strategies fail to meet the stated objectives. Vulnerability 
analysis uses two complementary analysis techniques: global sensitivity analysis (Jaxa-Rozen & Kwakkel, 2018) and Scenario Dis-
covery (Bryant & Lempert, 2010; Kwakkel, 2019). Global sensitivity analysis helps reduce the problem’s dimensionality by identifying 
which uncertainties and/or policy levers significantly impact the outcomes of interest. Scenario Discovery focuses on finding subspaces 
in the multidimensional model input space that generate decision relevant types of outcomes (e.g., the combination of uncertain 
conditions where a candidate strategy fails to reach the objectives). 

Broadly speaking, Scenario Discovery is a model-based technique to finding subregions in the model input space (i.e., the combined 
uncertainty and lever space) given classified results from computational experiments. These subregions can be communicated as 
scenarios and help to define and frame uncertainty, identify vulnerabilities of a chosen strategy, and aid the development of adaptive 

Fig. 3. (a) Maps of the urban growth in the X Municipality of Rome. (b) Land cover per class of land use expressed in percentage for the ana-
lysed periods. 
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strategies. The most often used algorithm for Scenario discovery is the Patient Rule Induction Method (PRIM) (Friedman & Fisher, 
1999). PRIM is a rule induction algorithm that has proven effective in producing lower-dimensional, orthogonal box-shaped regions in 
the model input space, which maximize coverage, density, and interpretability. These box-shaped regions can be interpreted as sce-
narios. Coverage measures how many cases of interest are included in the identified box-shaped region. Density measures the precision 
of box-shaped region by assessing how many cases are of interest out of all the cases within the box. This is important as the 
decision-makers would like their scenarios to have a good explanation for the cases of interest. Interpretability measures how easily the 
decision-makers can make sense of the box-shaped region. This is typically proxied by looking at the number of dimensions used to 
characterize the box. These three objectives compete, therefore, if one increases, it typically comes at the expanse of the others (Bryant 
& Lempert, 2010). 

2.2. RDM: approaches and applications 

The leading DMDU approach used in climate adaptation is Robust Decision-making (RDM) (Lempert et al., 2003), and its derived 
frameworks (Bartholomew & Kwakkel, 2020), which leverage the concepts of exploratory modeling, decision support, and adaptive 
planning to address complex environmental decision-making problems characterized by deep uncertainty. RDM and is variants rely on 
computational tools not to provide predictions about the future but to facilitate the reasoning about the impacts of uncertainty to aid 
decision making and planning in case of deep uncertainty. RDM, through Exploratory Modeling, combines Decision Analysis, 
Assumption-based planning, and Scenario Analysis with a bottom-up process: the process starts by considering one or multiple 
strategies. Models and data are then employed to evaluate these strategies across a diverse set of plausible future scenarios, providing 
valuable insights into the proposed strategies’ vulnerabilities and identifying and assessing potential responses. The aim is to broaden 
the scope of futures and alternatives under consideration. Instead of offering fixed options, RDM focuses on shedding light on the 
trade-offs among reasonable choices. 

Frameworks derived from RDM are: (i) Many Objective Robust Decision Making (MORDM) (Kasprzyk et al., 2013), which employs 
a many-objective evolutionary algorithm to manage diverse decision-maker perspectives and conflicting objectives. It generates a rich 
set of policy alternatives through many-objective evolutionary algorithms, allowing trade-offs among competing objectives. Uncer-
tainty analysis, scenario discovery, and interactive visualizations aid in selecting preferred solutions from the generated set. Multiple 
scenarios representing deeply uncertain factors are used to stress-test candidate policies. The iterative process focuses on robustness 
assessment and refining alternatives by adjusting uncertainty parameters and decision levers. (ii) Multi-Scenario MORDM (Watson and 
Kasprzyk, 2017) built on MORDM by searching for candidate strategies across multiple reference scenarios. It addresses the limitation 
of single-scenario optimization by selecting additional scenarios based on where candidate solutions from the first scenario fail to meet 
objectives. The goal is to construct an optimized set of policy alternatives under different scenarios. (iii) Many Objective Robust 
Optimization (MORO) (Hamarat, Kwakkel, Pruyt, & Loonen, 2014; Kwakkel, Haasnoot, & Walker, 2015), an approach that integrates 
Many-Objective Robust Optimization into the RDM framework. MORO incorporates robustness considerations during the search phase 
by evaluating candidate solutions over an ensemble of scenarios. The family of RDM approaches offer a systematic way to explore and 
improve policy alternatives while considering a wide range of uncertain factors and scenarios. 

An example of RDM is given by the long-term planning of the water resources for the Colorado River Basin (Groves et al., 2013, 
2019). The primary goal was to assess the resilience of the Colorado River system over the following 50 years and to explore various 
strategies for managing the river’s resources effectively. Key findings indicated that vulnerable conditions would likely arise in most 
scenarios characterized by lower-than-historical average streamflows and prolonged drought conditions. The analysis also highlighted 
important near-term, high-priority options that should be implemented, such as municipal, industrial, and agricultural conservation. 
The application of RDM and derived frameworks is growing rapidly to aid decision-making on complex environmental challenges 
marked by deep uncertainties and conflicting priorities, and many examples can be found in the literature (Beh et al., 2017, 2015; 
Ben-Tal et al., 2017; Daron, 2015; Dessai & Hulme, 2007; Gupta et al., 2020; Haasnoot et al., 2012; Iglesias & Garrote, 2015; Jäger 
et al., 2015; John et al., 2021; Lempert et al., 2013; Lempert & Groves, 2010; Lygoe et al., 2013; Shavazipour, Kwakkel, & Miettinen, 
2021; Singh et al., 2015; Smith et al., 2022; Tolk, 2022; Trindade et al., 2017; Wang et al., 2023; Yan et al., 2017). 

3. Workflow 

Fig. 1 synthesizes the workflow, which guides the progression from initial case study selection to creating a comprehensive un-
derstanding of a complex system’s behavior under uncertain circumstances. It emphasizes data-driven analysis, modeling, scenario 
generation, and scenario discovery, culminating in actionable insights for decision-making and understanding the potential impli-
cations of different courses of action. This section further explains each step, and an operative example is provided in the next sections.  

1. Case Study Selection: This initial step identifies a complex system operating within uncertain conditions. This might involve 
choosing a real-world scenario or situation that exhibits intricate relationships and variables influenced by uncertainty. The aim is 
to set the foundation for a comprehensive analysis. 

Fig. 4. Inundations maps for different return periods (10, 30, 50, 200, 500 years). 
Source: Authors’ elaboration from the data provided by Consorzio di Bonifica Litorale Nord. 
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2. Data Collection: Once the case study is chosen, the process involves gathering relevant data related to urban development and 
environmental factors. This data collection phase helps comprehensively understand the chosen complex system’s current state and 
potential dynamics.  

3. Model Implementation: With the collected data, a model is constructed to simulate the interactions and behaviors of the analysed 
factors within the complex system.  

4. Information Organization: In this step, the acquired information is structured and organized using the XLRM framework described in 
the literature background (Lempert et al., 2003). Based on the selection of the case study and the implemented model (R) are 
specified the uncertainties (X), the policy leavers (L), and the metrics (M).  

5. Exploration, clustering, and selection of decision-relevant clusters: Various scenarios are generated to explore potential outcomes and 
responses within the complex system. The ensemble of experiments is generated using a space-filling experimental design over the 
entire space spanned by the set of uncertain factors. The generation, execution, and analysis of the computational experiments are 
done through the Modelling and Analysis Workbench (EMA) (Kwakkel, 2017). The EMA workbench structures the information 
using the XLRM framework. The model captures the relationships (R), but we still need to specify the uncertainties (X), the levers 
(L), and the outcomes (M). Before proceeding with the next step, the experiments are clustered because a binary classification is 
typically applied to the experiments when applying scenario discovery (Bryant & Lempert, 2010; Kwakkel & Jaxa-Rozen, 2016). 
However, in the case of complex models with rich outputs, directly imposing a binary classification on the results can produce a 
massive loss of decision-relevant information (Helgeson, 2020; Rozenberg et al., 2014; Gerst et al., 2013; Steinmann, Auping, & 
Kwakkel, 2020). Clustering is a process for dividing a set of objects into subsets with similar characteristics, which are different for 
each subset. Finding the best results for clustering is crucial since different algorithms can be used for this process. Once the 
scenarios have been generated and clustered, the next critical phase involves identifying and selecting the clusters of scenarios that 
hold particular importance for decision-making. This step acknowledges the role of domain-specific knowledge and expertise 
possessed by the decision maker. Drawing upon their deep understanding of the complex system, the decision maker employs their 
know-how to discern clusters with the most potential relevance and impact.  

6. Scenario Discovery and scenario narratives: To analyse the experiments’ results, Scenario Discovery (Bryant & Lempert, 2010; 
Kwakkel & Jaxa-Rozen, 2016) is applied to the identified relevant clusters with decision-making significance. The outcomes of 
Scenario Discovery serve as the foundation for constructing scenario narratives. These narratives holistically depict the plausible 
evolution of the complex system under distinct conditions. Each narrative paints a vivid picture of how variables interact. The 
scenario narratives generated through this process are indispensable tools for planners. They provide a nuanced understanding of 
the system’s behavior, considering different futures and their associated uncertainties. Based on that information, planners can 
make informed decisions, develop adaptive strategies, and devise contingency plans that align with the system’s inherent dy-
namics. By translating complex analytical results into accessible narratives, this step enhances communication between analysts 
and stakeholders. 

4. Workflow application 

This section presents the practical application of the methods and tools by adhering to the previously illustrated sequence of 
workflow steps. The initial selection of case studies through the subsequent stages encompassing data collection, model imple-
mentation, and information organization establishes the foundational underpinning for an exhaustive exploration of the intricate 
system under uncertainty. As the progression of the procedure unfolds, the generation of an ensemble of scenarios is followed by their 
subsequent clustering. At this stage, the planner’s expertise is essential By actively selecting decision-relevant clusters relying on the 
analysis with a nuanced understanding of the system’s intricacies that data alone might not capture. This convergence of data-derived 
insights and domain-specific proficiency ensures that the resultant narratives underpinning the scenarios are undergirded by both an 
empirical bedrock and a strategic understanding. 

4.1. Case study selection and Data collection 

The case study area is an urbanized flood-prone deltaic area in Rome, the X Municipality (Fig. 2), located between the Tiber River 
and the Tyrrhenian Sea. It is particularly suitable because the area is already highly vulnerable to flooding (Recanatesi & Petroselli, 
2020), future urban development and climate change are likely to worsen the risk, urban development has been shaped by formal and 
informal settlements (Cellamare, 2010; Clough Marinaro & Solimene, 2020; Insolera, 1960), which is an interesting feature as former 
informal settlements are more vulnerable to climate change (Galdini & Nardis, 2023). The administration is considering several 
infrastructure investments and new poles of attraction for urban development that will shape the future urban fabric if implemented. 

We diachronically analysed the urban development and used this to develop a land use change model. The analysis (Fig. 3) was 
carried out using a Geographical Information System (GIS) with a level III classification in the National Land Cover Map; the reference 
system is UTM (Universal Transverse Mercator) with WGS84 datum, and as software we used QGIS. ISPRA provided the base map from 
2017, and other sources are satellite images from Digital Globe, geographic vector data (e.g., regional technical maps (CTR)), infra-
structure networks from Open Street Map, and Urban Atlas-specific data regarding mining sites, dump sites, airports, and harbours. We 
relied on IGM (Geographical Military Institute) cartographies with an acquisition scale of 1:25000 for the historical mapping. 

The data shows that soil sealing has constantly grown. In the 1950–1970 s, the rate was coherent with population growth, but from 
the 1970 s-2006, there was a decoupling (Munafò et al., 2010) where urban sprawl grew despite a decreasing demographic trend, 
which is consistent with the pattern of development of many areas in the Mediterranean (Salvati et al., 2012). The uncontrolled urban 
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growth, environmental changes, outdated drainage systems that cannot cope with extreme events, and anthropic pressure make this 
area one of the most flood-affected municipalities in Rome (Fig. 4). 

Fig. 5 shows the infrastructure options and new poles of attraction considered by the administration. The infrastructure options are 
two new bridges connecting the X Municipality to the other side of the Tiber. The Scafa bridge is to support the obsolete "Ponte della 
Scafa", which connects the X Municipality with the international airport. The Ostia Antica bridge would connect a commercial hub on 
the other side of the river with the main road and the adjacent agricultural area. Next to these two bridges, the idea of building a new 
football stadium with a business center is being discussed. The new football stadium had an assigned location just outside the 
boundaries of the X Municipality. However, since the project has repeatedly been called off, we are considering two potential locations 
here. The first location (Stadium hp1) is within the city of Rome limits, in the district of Tor di Valle. The second hypothetical football 
stadium location (Stadium hp2) is outside Rome’s city limits. 

4.2. Model implementation 

The study explores how urban tissue might develop conditional on the various uncertainties and what this implies for the key 
vulnerabilities requiring planners’ attention to reduce or monitor potential risk. 

To explore the consequences of future urban developments due to the possible implementation of new infrastructure options and/ 
or the new poles of attraction in the case study area, we implemented a land-use model using used Metronamica (RIKS, 2011). Two 
different time frames are considered for the calibration and validation of the model: 1962–1988 for calibration and 1988–2017 for 
validation. The land use map of 1962 was used as the initial conditions for simulating the land use patterns of 1988. We used "manual 
calibration" (Vliet et al., 2016), where the parameters are tweaked until a meaningful level of similarity is reached, indicating that the 
model is performing well enough. Next, we simulated the developments from 1988 to 2017 and used these for validation. 

The Kappa statistic (Vliet, Bregt, & Hagen-zanker, 2011) and the Fuzzy Kappa (Hagen, 2010) are employed to evaluate the accuracy 
quantitatively through map comparison. The Kappa coefficients of agreements are widely used to assess if an acceptable level of 
accuracy is reached (Hagen-Zanker, 2009). In the calibration, the values obtained are 0.972 for Fuzzy Kappa and 0.98 for average 
similarity. The value obtained from the validation for Fuzzy Kappa is 0.94, and 0.96 for average similarity. Based on this, we consider 
the model fit for its purpose, which is the exploration of future urban fabric developments based on the past development pattern, 
given the possible implementation of new poles of attraction. 

4.3. Information organization following the XLRM framework 

The uncertainties are mainly about the demand for different land use classes and the influence of new infrastructures and new 
points of attraction (see Table 1). The range of values chosen is based on the analyses of the urban development, estimating the data 

Fig. 5. The X Municipality of Rome with the existing poles of attraction (International Airport and commercial hub) and the new infrastructures. A 
larger bridge to cope with the traffic towards the airport. A bridge to connect the commercial hub with the other side. 
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through extrapolation from the demand values for each land-use class. We relied on data from the past to simulate what would happen 
if similar conditions were in place in light of climate change, fostering new vulnerabilities within the built environment. This case 
study does not consider explicit policy interventions, so the levers are kept empty. The outcomes are the land use maps for 2050 
generated in the exploration phase. 

4.4. Exploration, clustering, and selection of the decision-relevant clusters 

The model is employed to explore the evolution of the urban tissue in the X Municipality up to 2050 through computational 
experimentation performed with the EMA workbench that organized the information as described in 4.3. 

To explore the 8-dimensional uncertainty space, we generated 5000 computational experiments using Latin Hyper Cube Sampling 
(Helton & Davis, 2002). This provides a space-filling design where all parts of the uncertainty space are explored equally. Before 
applying Scenario Discovery, the land use maps resulting from the 5000 experiments are clustered on spatial land-use patterns. In 
order to identify what specific algorithm performs better for the given data set, two different clustering algorithms are compared: 
agglomerative clustering (Theodoridis & Koutroumbas, 2009) and K-medoids (Jin & Han, 2010) (Table 2). Both clustering algorithms 
need a metric that specifies the similarity or inverse distance between data points. For this case, we used the kappa metric, which was 
also used for model calibration and validation. 

Both clustering algorithms select the appropriate number of clusters based on high within-cluster similarity, high between-cluster 
dissimilarity, and interpretability (i.e., the total number of clusters). The average similarity, that is, the average Kappa value, is 0.96 
amongst the 5000 experiments, which indicates that the resemblance is high. The relatively high similarity across the 5000 experi-
ments is not unexpected because future developments are strongly environmentally constrained. According to the results, agglom-
erative clustering performs slightly better. Therefore, we used agglomerative clustering, obtaining five clusters based on the more 
balanced allocation of data points among the clusters and the within-cluster and between-cluster dissimilarity, suggesting a relatively 
low within-cluster dissimilarity and a meaningful separation between the clusters (Fig. 6). 

Next, we visually inspected the maps in each cluster and derived quantitative data (Table 3, Table 4), to identify the decision- 
relevant clusters. We analysed the clusters to reveal the decision-relevant ones by quantifying the growth of each land use class, 
counting the pixels, and then comparing the results with the map from 2017 to assess the percentage increase. These are case-specific 
evaluations based on the context, where the recurring pattern of informal urbanization has led to an increased vulnerability of the built 
environment to climate-related phenomena and social disparities. Hence, the criteria to assess which cluster is decision-relevant should 
be tailored to the case under exam, relying on the experts’ know-how to understand the overall picture emerging from the scenarios.In 
this case, the clusters representing the most undesirable outcome are clusters 4 and 5. In both clusters, informal settlements increase 
the most; in cluster 4, residential demand is higher than in the other clusters (Fig. 7). 

Table 1 
Uncertainties considered and the associated ranges of values.  

Exogenous Uncertainties (X) Ranges Ranges Motivation 

Land demand Informal land use class 208 – 7051 Min value: 2017 n. of cells in the land use class; Max value: extrapolation of a value for the growth of the 
land use class expressed in n.of cells, based on the historical mapping. 

Land demand residential land use 
class 

38500 – 
52000 

" 

Land demand residential 
+ commercial land use class 

4500 – 
5500 

" 

Land demand commercial land use 
class 

1200 – 
1500 

" 

Land demand industrial land use class 1800 – 
2300 

" 

Scafa bridge weight [0, 0.1, 0.4] Relative importance of the infrastructure ranging from 0 to 1. The ranges of parameters are based on the 
values used in calibration of the model for the weight of the accessibility parameters on the land use 
classes. 

Ostia Antica bridge weight [0, 0.1, 0.4] " 
Stadium weight [0, 0.1, 0.4] "  

Table 2 
Results of the two candidate algorithms.   

Agglomerative clustering K-medoids 

No. of clusters 5 4 
Members of each cluster [1879; 608; 1131; 676; 706] [1664; 1289; 1341; 706] 
Distribution Quite evenly distributed Quite evenly distributed 
Within-cluster dissimilarity 0.023036 0.037750 
Between-cluster dissimilarity 0.025754 0.038639  
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4.5. Scenario discovery and scenario narratives 

From the Scenario Discovery results for cluster 4, we see that the land use pattern exhibited by this cluster arises when the football 
stadium is built in Fiumicino, on the other side of the river, and it strongly influences the development of the built environment. The 
land-use demand for the residential land-use class has the highest value, increasing by 2,07% from 2017 to 2050. Taken together, 
cluster 4 represents a situation where the X Municipality is an attractive area, the new poles of attraction generate new job oppor-
tunities, and the demand for housing is high. Urban growth is concentrated in the most vulnerable zone in terms of flooding. The 
narrative emerging from this depicts an area with increased imperviousness and, consequently, a worsened flood risk, specifically in 
zones already fragile as initially informal or built during the building speculation. Climate change will worsen urban heat island effects 
and make extreme rainfall more frequent in the future. This directly increases pluvial flood risk, but, since the surface drainage system 
has outlets in the sea and the river, climate change-induced sea-level rise could also become a significant issue in the future. The 
informal settlements increase by 0.19%, representing an undesirable outcome, as self-constructed houses are more vulnerable to 
environmental hazards, which exacerbate climate change. Moreover, the emergence of these new informal settlements is also a sign of 
the partial failure of the strategies in place because they are not fulfilling the housing demand, or the housing market is not attainable 

Fig. 6. Within-cluster and the between-cluster dissimilarity for the two candidate choices.  

Table 3 
Numbers of pixels for each land-use class in each cluster and in 2017.  

Land use classes Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 2017 

Non consumed  38381  39468  39572  36884  40424  33872 
Agricultural  34255  34302  34281  34180  33862  43492 
Informal  262  76  125  661  1178  208 
Res/comm  5254  5216  5309  5402  4749  4566 
Residential  42057  41121  41154  43515  40463  38752 
Industrial  2272  2272  2081  1918  1822  1785 
Commercial  1264  1308  1223  1201  1262  1211 
Archaeological site  1489  1489  1489  1489  1489  1489 
Pinewood  16094  16094  16094  16094  16094  16094 
Reserve  96099  96099  96099  96099  96099  96099 
Beach  4145  4145  4145  4145  4145  4145 
Rural houses  268  268  268  268  268  268  

Table 4 
Percentage of land-use for each class in each cluster and in 2017.  

Land use classes Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 2017 

Non consumed  15.87%  16.31%  16.36%  15.25%  16.71%  14.01% 
Agricultural  14.16%  14.18%  14.18%  14.13%  14.00%  17.99% 
Informal  0.10%  0.03%  0.05%  0.27%  0.48%  0.08% 
Res/comm  2.17%  2.15%  2.19%  2.23%  1.96%  1.88% 
Residential  17.39%  17.00%  17.01%  17.99%  16.97%  15.92% 
Industrial  0.93%  0.93%  0.86%  0.79%  0.75%  0.73% 
Commercial  0.52%  0.54%  0.50%  0.49%  0.52%  0.50% 
Archaeological site  0.65%  0.65%  0.65%  0.65%  0.65%  0.65% 
Pinewood  6.65%  6.65%  6.65%  6.65%  6.65%  6.65% 
Reserve  39.75%  39.75%  39.75%  39.75%  39.75%  39.75% 
Beach  1.71%  1.71%  1.71%  1.71%  1.71%  1.71% 
Rural houses  0.11%  0.11%  0.11%  0.11%  0.11%  0.11%  
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Fig. 7. (a) 2017 map. (b) Cluster 4.(c) Cluster 5. In both Clusters is overlayed a flooding map with a 50-year return period.  
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by lower-income inhabitants. Therefore, the new planned developments are insufficient for the demand, or some of the development 
should be implemented as social housing. 

The land-use pattern of cluster 5 emerges if the stadium is built in Fiumicino and the new pole has high importance. The land use 
demand for the residential land-use class is in the middle of the considered range. In this case, urban growth compared to 2017 in-
creases by 1,05%, the lowest value among the clusters. The narrative emerging from this is one where the importance of the new pole 
of attraction is high. Still, residential land use does not grow in line with local demand. This housing shortage results in the highest 
increase in informal settlements (i.e., 0.4%) across the clusters. This is reminiscent of historical developments in the area. The new 
stadium results in an increased attraction and, thus, higher demand for housing and potential new jobs for people with different social 
backgrounds. The residential development is inadequate to meet this demand, or the housing prices are not affordable for a portion of 
the population. Hence, informal settlements grow according to patterns seen in the past. This scenario shows several vulnerabilities. 
First, the new developments are concentrated in lower-lying areas so that floods will spread wider. In addition to an increase in soil 
sealing, we can assume that extreme rainfall events will be more frequent in the future. The overall picture illustrates a concerning 
situation, particularly regarding informal settlements. 

5. Discussion 

The built environment is complex and composed of many interrelated factors, which are, per se, a significant source of uncertainty. 
It is essential to account for uncertainties within the planning process to grasp better the overall changes that urban contexts may be 
undergoing (Borges et al., 2020). 

Even though urban planning approaches have evolved in the last two decades, and flexible adaptation has been recognized as an 
essential feature, there is a need for a comprehensive workflow to guide urban planners in developing flexible adaptation plans in the 
face of uncertainty. This study presented a generic workflow and illustrated it using a relevant case study. Broadly speaking, the 
workflow can be divided into the following steps: (i) case study selection, (ii) data collection, (iii) model implementation, (iv) or-
ganization of the information, (v) exploration, clustering, and selection of decision-relevant clusters, and (vi) scenario discovery and 
scenario narratives. 

In this case, the results could be utilized by planners and decision-makers to deliberate on the potential relocation of the stadium 
from the Fiumicino area due to the increasing vulnerabilities in the X Municipality that may arise. If the emerging points of attraction 
can contribute to the local economy, in response, possible measures can be implemented to mitigate future risks. However, the 
application of DMDU approaches in the built environment is still in its infancy and consequently requires further studies. The workflow 
presented in this study represents a first step toward such future investigations. 

Computational scenario planning can help planners in architectural and urban fields to address uncertainties. However, most of the 
methods applied in the research are outside their expertise. Therefore, to structure a real cross-disciplinary plan to cope with un-
foreseen events, the first necessary step is to build common ground with other professionals and discuss further the best way to address 
uncertainties in the definition of adaptive plans for the built environment. Here we implemented a land-use model to simulate the land- 
use changes over time. The first limitation is that the uncertainties considered were just connected to the land-use demands and the 
impact of the possible implementation of infrastructures and poles of attractions. Consequently, the breadth of uncertainties 
considered can be improved, for example, by including social parameters to account for just urban planning in the face of climate 
change (Ciullo, Kwakkel, De Bruijn, Doorn, & Klijn, 2020). A second limitation concerns the modeling: a more accurate analysis of 
future floods requires a hydraulic model. In turn, this next requires considering how land-use change is affected by changing flood risk. 

We used a case study to structure the analyses; therefore, the data and the uncertainties are case-specific. Given the complexity of 
the built environment and the characteristics that are necessarily related to context, this study cannot be interpreted as a one-size-fits- 
all solution. However, the workflow is generally applicable. A more comprehensive set of comparable cases would help develop 
general findings relevant to the urban environment. Nevertheless, the DMDU approaches and tools support building adaptive plans. 
Technical solutions are already oriented toward the implementation of resilient and adaptive strategies. 

6. Conclusions and future outlooks 

This work presents an interdisciplinary approach to include uncertainties in the urban planning process evaluating possible futures. 
We illustrated it through a case study in a flood-prone area in Rome. In this case, we implemented a land-use change model to assess the 
influence of uncertainties on future urban development, namely, land use demands for the different land use classes and the impact of 
possible infrastructures that could trigger an expansion of the urban fabric in the area. We generated five-thousand computational 
experiments that described the possible shape of the urban area through "what if" scenarios and described the narrative emerging from 
the decision-relevant cases. Although, as stated, the case study has limitations, the combination of methods shows the potential for 
further studies and applications toward the operative inclusion of uncertainties in the urban planning process. 

Furthermore, additional analyses can be conducted to evaluate short-term and long-term options and structure several dynamic 
adaptive policy pathways (Haasnoot, Kwakkel, Walker, & ter Maat, 2013), addressing the vulnerabilities and emerging opportunities 
that may arise under changing conditions. A challenge for the future is integrating several models in the process, as cross scales analysis 
is necessary to increase adaptation to changing environmental conditions in the built environment. 

Urban areas are expected to cope with many uncertainties in the future, namely climate change and the related environmental, 
economic, and social issues deriving from it. In this study, the identified vulnerabilities were related to the possible effect of different 
infrastructures on the built environment according to the pattern of urban development that emerged over time. However, as a future 
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challenge, the implementation should be extended to a set of models that enables scenario planning under different "what if" condi-
tions. Thus, the inclusion of more variables from Urban Physics and energetic factors for evaluating Urban Heat Island, combing the 
various environmental threats emerging from climate change. 

In conclusion, the future is unknown, and anticipating this without addressing the uncertainties involved in delineating a long-term 
plan is no longer feasible. However, integrating uncertainties in the design process to pursue a flexible adaptation is still an open 
challenge for researchers and practitioners for field applications. In all the disciplines that require planning for the future, there should 
be particular attention to the exploration of unforeseen events that might undermine the objective of a plan. This kind of approach has 
already been proven beneficial in water management. However, it still lacks application in urban and architectural planning. 
Therefore, more case studies should be implemented to investigate how to move from theory to practice. 
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Jäger, J., Rounsevell, M. D. A., Harrison, P. A., Omann, I., Dunford, R., Kammerlander, M., & Pataki, G. (2015). Assessing policy robustness of climate change 

adaptation measures across sectors and scenarios. Climate Change, 128, 395–407. https://doi.org/10.1007/s10584-014-1240-y 
Jaxa-Rozen, M., & Kwakkel, J. (2018). Tree-based ensemble methods for sensitivity analysis of environmental models: A performance comparison with Sobol and 

Morris techniques. Environ. Model. Softw., 107, 245–266. https://doi.org/10.1016/j.envsoft.2018.06.011 
Jin, X., & Han, J. (2010). K-medoids clustering. In C. Sammut, & G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 564–565). US, Boston, MA: Springer. https:// 

doi.org/10.1007/978-0-387-30164-8_426.  
John, A., Horne, A., Nathan, R., Fowler, K., Webb, J. A., & Stewardson, M. (2021). Robust Climate change adaptation for environmental flows in the Goulburn River, 

Australia. Frontiers in Environmental Science, 9, 1–18. https://doi.org/10.3389/fenvs.2021.789206 
Kasprzyk, J. R., Nataraj, S., Reed, P. M., & Lempert, R. J. (2013). Many objective robust decision making for complex environmental systems undergoing change. 

Environmental Modelling & Software, 42, 55–71. https://doi.org/10.1016/j.envsoft.2012.12.007 
Kazak, J.K., 2018. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions — The Case of 

the Wrocław Larger Urban Zone ( Poland). https://doi.org/10.3390/su10041083. 
Kwakkel, J. H. (2017). The Exploratory Modeling Workbench: An open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust 

decision making. Environ. Model. Softw., 96, 239–250. https://doi.org/10.1016/j.envsoft.2017.06.054 
Kwakkel, J. H. (2019). A generalized many-objective optimization approach for scenario discovery. Futur. Foresight Sci., 1, e8. https://doi.org/10.1002/ffo2.8 
Kwakkel, J. H., & Jaxa-Rozen, M. (2016). Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes. Environ. Model. 

Softw., 79, 311–321. https://doi.org/10.1016/j.envsoft.2015.11.020 
Kwakkel, J. H., & Haasnoot, M. (2019). Supporting DMDU: A Taxonomy of Approaches and Tools. In V. A. W. J. Marchau, W. E. Walker, P. J. T. M. Bloemen, & 

S. W. Popper (Eds.), Decision Making under Deep Uncertainty: From Theory to Practice (pp. 355–374). Cham: Springer International Publishing. https://doi.org/ 
10.1007/978-3-030-05252-2_15.  

Kwakkel, J. H., Walker, W. E., & Marchau, V. A. W. J. (2010). Classifying and communicating uncertainties in model-based policy analysis. Int. J. Technol. Policy 
Manag., 10, 299–315. https://doi.org/10.1504/IJTPM.2010.036918 

Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2015). Developing dynamic adaptive policy pathways: a computer-assisted approach for developing adaptive 
strategies for a deeply uncertain world. Clim. Change, 132, 373–386. https://doi.org/10.1007/s10584-014-1210-4 

Kwakkel, J. H., Haasnoot, M., & Walker, W. E. (2016). Comparing Robust Decision-Making and Dynamic Adaptive Policy Pathways for model-based decision support 
under deep uncertainty. Environ. Model. Softw., 86, 168–183. https://doi.org/10.1016/j.envsoft.2016.09.017 

Lauf, S., Haase, D., Hostert, P., Lakes, T., & Kleinschmit, B. (2012). Uncovering land-use dynamics driven by human decision-making - A combined model approach 
using cellular automata and system dynamics. Environmental Modelling & Software, 27–28, 71–82. https://doi.org/10.1016/j.envsoft.2011.09.005 

Lempert, R. J., & Groves, D. G. (2010). Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American 
west. Technol Forecasting and Social Change, 77, 960–974. https://doi.org/10.1016/j.techfore.2010.04.007 

Lempert, R. J., Popper, S. W., & Bankes, S. C. (2003). Shaping the next one hundred years: New Methods for quantitative. Santa Monica, CA: Long-Term Policy Analysis.  
Lempert, R. J., Groves, D. G., Popper, S. W., & Bankes, S. C. (2006). A general, analytic method for generating robust strategies and narrative scenarios. Management 

Science, 52, 514–528. https://doi.org/10.1287/mnsc.1050.0472 
Lempert, R. J., Kalra, N., Peyraud, S., Mao, Z., Tan, S. B., Cira, D., & Lotsch, A. (2013). Ensuring robust flood risk management in Ho Chi Minh City (pp. 1–63). World 

Bank. https://doi.org/10.1596/1813-9450-6465 
Lygoe, R. J., Cary, M., & Fleming, P. J. (2013). A real-world application of a many-objective optimisation complexity reduction process. In R. C. Purshouse, 

P. J. Fleming, C. M. Fonseca, S. Greco, & J. Shaw (Eds.), Evolutionary multi-criterion optimization (pp. 641–655). Berlin, Heidelberg: Springer Berlin Heidelberg.  
Mabrouk, M., & Haoying, H. (2023). Urban resilience assessment: A m ulticriteria approach for identifying urban flood-exposed risky districts using. International 

Journal of Disaster Risk Reduction, 91, Article 103684. https://doi.org/10.1016/j.ijdrr.2023.103684 
Maier, H. R., Guillaume, J. H. A., van Delden, H., Riddell, G. A., Haasnoot, M., & Kwakkel, J. H. (2016). An uncertain future, deep uncertainty, scenarios, robustness 

and adaptation: How do they fit together? Environ. Model. Softw., 81, 154–164. https://doi.org/10.1016/j.envsoft.2016.03.014 
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and applications. Wiley.  
Mancosu, E., Gago-Silva, A., Barbosa, A., de Bono, A., Ivanov, E., Lehmann, A., & Fons, J. (2015). Future land-use change scenarios for the Black Sea catchment. 

Environmental Science & Policy, 46, 26–36. https://doi.org/10.1016/j.envsci.2014.02.008 

S. Mannucci et al.                                                                                                                                                                                                     

https://doi.org/10.1016/j.buildenv.2019.106242
https://doi.org/10.1023/A:1008894516817
https://doi.org/10.1016/j.futures.2023.103170
https://doi.org/10.1016/j.envsoft.2012.09.001
https://doi.org/10.1016/0016-3287(86)90094-7
http://refhub.elsevier.com/S0016-3287(23)00169-6/sbref31
http://refhub.elsevier.com/S0016-3287(23)00169-6/sbref31
https://doi.org/10.1007/978-3-030-05252-2
https://doi.org/10.1016/j.advwatres.2020.103718
https://doi.org/10.1016/j.gloenvcha.2012.12.006
https://doi.org/10.1007/s10584-012-0444-2
https://doi.org/10.1080/13658810802570317
https://doi.org/10.1016/j.simpat.2014.02.008
https://doi.org/10.1007/s11245-018-9584-y
https://doi.org/10.1007/3-540-54029-6_187
https://doi.org/10.1007/3-540-54029-6_187
https://doi.org/10.1016/j.envsoft.2013.10.019
https://doi.org/10.1016/j.eist.2015.05.006
https://doi.org/10.1016/j.agwat.2015.03.014
https://doi.org/10.1023/B:LAND.0000030666.55372.ae
https://doi.org/10.1023/B:LAND.0000030666.55372.ae
https://doi.org/10.1007/s10584-014-1240-y
https://doi.org/10.1016/j.envsoft.2018.06.011
https://doi.org/10.1007/978-0-387-30164-8_426
https://doi.org/10.1007/978-0-387-30164-8_426
https://doi.org/10.3389/fenvs.2021.789206
https://doi.org/10.1016/j.envsoft.2012.12.007
https://doi.org/10.1016/j.envsoft.2017.06.054
https://doi.org/10.1002/ffo2.8
https://doi.org/10.1016/j.envsoft.2015.11.020
https://doi.org/10.1007/978-3-030-05252-2_15
https://doi.org/10.1007/978-3-030-05252-2_15
https://doi.org/10.1504/IJTPM.2010.036918
https://doi.org/10.1007/s10584-014-1210-4
https://doi.org/10.1016/j.envsoft.2016.09.017
https://doi.org/10.1016/j.envsoft.2011.09.005
https://doi.org/10.1016/j.techfore.2010.04.007
http://refhub.elsevier.com/S0016-3287(23)00169-6/sbref58
https://doi.org/10.1287/mnsc.1050.0472
https://doi.org/10.1596/1813-9450-6465
http://refhub.elsevier.com/S0016-3287(23)00169-6/sbref61
http://refhub.elsevier.com/S0016-3287(23)00169-6/sbref61
https://doi.org/10.1016/j.ijdrr.2023.103684
https://doi.org/10.1016/j.envsoft.2016.03.014
http://refhub.elsevier.com/S0016-3287(23)00169-6/sbref64
https://doi.org/10.1016/j.envsci.2014.02.008


Futures 154 (2023) 103265

16

Milly, A. P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Zbigniew, W., Lettenmaier, D. P., Stouffer, R. J., & Milly, P. C. D. (2008). Stationarity Is Dead: 
Stationarity Whither Water Management ? Science (80- ), 319, 573–574. https://doi.org/10.1126/science.1151915 

Moallemi, E. A., Kwakkel, J., de Haan, F. J., & Bryan, B. A. (2020). Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. 
Environ. Chang., 65, 102186. https://doi.org/10.1016/j.gloenvcha.2020.102186 

Moroni, S., & Cozzolino, S. (2019). Action and the city. Emergence, Complexity, Planning Cities, 90, 42–51. https://doi.org/10.1016/j.cities.2019.01.039 
Moroni, S., & Chiffi, D. (2021). Complexity and uncertainty: Implications for urban planning. Handb Cities Complex, 319–330. https://doi.org/10.4337/ 

9781789900125.00027 
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