
 
 

Delft University of Technology

Mitigating Leakage and Noise in Superconducting Quantum Computing

Battistel, F.

DOI
10.4233/uuid:07d93422-d07c-492e-8d65-592344e01936
Publication date
2022
Document Version
Final published version
Citation (APA)
Battistel, F. (2022). Mitigating Leakage and Noise in Superconducting Quantum Computing. [Dissertation
(TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:07d93422-d07c-492e-8d65-
592344e01936

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:07d93422-d07c-492e-8d65-592344e01936
https://doi.org/10.4233/uuid:07d93422-d07c-492e-8d65-592344e01936
https://doi.org/10.4233/uuid:07d93422-d07c-492e-8d65-592344e01936


MITIGATING LEAKAGE AND NOISE IN
SUPERCONDUCTING QUANTUM COMPUTING





MITIGATING LEAKAGE AND NOISE IN
SUPERCONDUCTING QUANTUM COMPUTING

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op donderdag 27 january 2022 om 15:00 uur

door

Francesco BATTISTEL

Master of Science in Theoretical and Mathematical Physics,
Ludwig-Maximilians Universität & Technische Universität München, Duitsland,

geboren te Pordenone, Italië.



Dit proefschrift is goedgekeurd door de promotoren

Prof.dr. B.M. Terhal
Prof.dr. L. DiCarlo

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr. B.M. Terhal, Technische Universiteit Delft, promotor
Prof.dr. L. DiCarlo, Technische Universiteit Delft, promotor

Onafhankelijke leden:
Prof.dr. K.R. Brown Duke University, Verenigde Staten
Prof.dr. S. Filipp Technische Universität München / Walther-Meißner-Institute,

Duitsland
Prof.dr. M. Walter Universiteit van Amsterdam
Prof.dr. Y.M. Blanter Technische Universiteit Delft
Prof.dr. L.M.K. Vandersypen,

Technische Universiteit Delft, reservelid

Keywords: superconducting qubits, leakage, quantum error correction, gates

Printed by: Gildeprint

Copyright © 2022 by F. Battistel

ISBN 978-94-6384-285-3

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Quantum computing landscape . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Superconducting Qubits 9
2.1 Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Tunable transmon . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Starmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Other superconducting qubits . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Circuit quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 All-microwave reset . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4 Flux pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 Dispersive readout . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6.2 Readout of a transmon in experiment . . . . . . . . . . . . . . . . 25

2.7 Single-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Two-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8.1 Coupled transmons . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8.2 Avoided crossings . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.3 Three alternative methods to implement the CZ gate . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Noise in Superconducting Qubits 43
3.1 Overall measures of decoherence: T1 and T2 . . . . . . . . . . . . . . . . 43
3.2 Physical noise sources in superconducting qubits . . . . . . . . . . . . . 45

3.2.1 Two-Level Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Quasi-particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.3 Cosmic rays and radioactivity . . . . . . . . . . . . . . . . . . . . 47
3.2.4 Photon-shot noise . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 Distortions of electronic signals . . . . . . . . . . . . . . . . . . . 48
3.2.6 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



vi CONTENTS

3.2.7 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Noise models in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Lindblad simulations . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 Density-matrix simulations . . . . . . . . . . . . . . . . . . . . . 54

3.4 Gate-benchmarking tools . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Process tomography . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Randomized benchmarking . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 Randomized benchmarking with leakage modification . . . . . . . 61

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Quantum Error Correction 69
4.1 Quantum error correcting codes . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Stabilizer codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Surface code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.6 Beyond (independent) Pauli errors . . . . . . . . . . . . . . . . . . . . . 75
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Leakage and Quantum Error Correction 79
5.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Leakage-Reduction Units (LRUs). . . . . . . . . . . . . . . . . . . 79
5.1.2 Threshold theorem for concatenated codes with LRUs. . . . . . . . 81
5.1.3 Topological codes and LRUs . . . . . . . . . . . . . . . . . . . . . 81
5.1.4 Studies of coherent leakage in superconducting qubits . . . . . . . 85
5.1.5 Studies of stochastic leakage in trapped ions. . . . . . . . . . . . . 85
5.1.6 Data- versus ancilla-qubit leakage and critical leakage locations. . . 86

5.2 Comparison with work in this thesis . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Net Zero Conditional-Phase Gates 89
6.1 Part 1: Fast, High-Fidelity Conditional-Phase Gate Exploiting Leakage In-

terference in Weakly Anharmonic Superconducting Qubits . . . . . . . . . 90
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Net-Zero Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Echo effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Experiment-simulation match . . . . . . . . . . . . . . . . . . . . . . . 93
6.7 Leakage interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.9 Limiting noise sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.10 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.11 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.11.1 Device parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.11.2 Flux pulse parametrization. . . . . . . . . . . . . . . . . . . . . . 98
6.11.3 Simulation structure . . . . . . . . . . . . . . . . . . . . . . . . . 100



CONTENTS vii

6.11.4 Conditional oscillation experiment . . . . . . . . . . . . . . . . . 106
6.11.5 Optimal performance . . . . . . . . . . . . . . . . . . . . . . . . 106
6.11.6 Net-Zero pulses as a Mach-Zehnder interferometer . . . . . . . . . 107
6.11.7 Leakage modification for randomized benchmarking . . . . . . . . 110

6.12 Part 2: High-fidelity controlled-Z gate with maximal intermediate leakage
operating at the speed limit in a superconducting quantum processor . . . 113

6.13 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.14 Sudden Net Zero concept . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.15 Easiness of tune-up: theory . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.16 Easiness of tune-up: experiment . . . . . . . . . . . . . . . . . . . . . . 116
6.17 Robustness to pulse discretization . . . . . . . . . . . . . . . . . . . . . 118
6.18 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.19 Limiting noise sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.20 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.21 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.21.1 Comparison of conventional NZ pulses and SNZ pulses . . . . . . . 121
6.21.2 Simulation results for SNZ and conventional NZ CZ gates versus

different error models . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Spectral Quantum Tomography 133
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Eigenvalues of Trace-Preserving Completely Positive (TPCP) maps . . . . . 135

7.2.1 Relation to gate-quality measures . . . . . . . . . . . . . . . . . . 136
7.2.2 Relation to relaxation and dephasing times . . . . . . . . . . . . . 137

7.3 Spectral tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.3.1 Signal analysis or matrix-pencil method for extracting eigenvalues . 139
7.3.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Spectral tomography on two superconducting chips . . . . . . . . . . . . 142
7.5 Leakage and non-Markovian noise . . . . . . . . . . . . . . . . . . . . . 144

7.5.1 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5.2 Non-Markovianity: time-correlated noise . . . . . . . . . . . . . . 146
7.5.3 Non-Markovianity: coherent revivals . . . . . . . . . . . . . . . . 148

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.6.1 Logical Spectral Quantum Tomography . . . . . . . . . . . . . . . 149

7.7 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.7.1 Single-qubit case with non-diagonalizable matrix T . . . . . . . . . 150
7.7.2 Upper bound on the entanglement fidelity with the targeted gate . . 151
7.7.3 Frame Mismatch Accumulation . . . . . . . . . . . . . . . . . . . 153

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8 Leakage Detection for a Transmon-Based Surface Code 159
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.2 Leakage error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3 Effect of leakage on the code performance . . . . . . . . . . . . . . . . . 165
8.4 Projection and signatures of leakage . . . . . . . . . . . . . . . . . . . . 165



viii CONTENTS

8.5 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.6 Data-qubit leakage detection . . . . . . . . . . . . . . . . . . . . . . . . 169
8.7 Ancilla-qubit leakage detection . . . . . . . . . . . . . . . . . . . . . . . 170
8.8 Improving code performance via post-selection . . . . . . . . . . . . . . 174
8.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.10 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.10.1 Simulation protocol . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.10.2 Error model and parameters . . . . . . . . . . . . . . . . . . . . . 178
8.10.3 HMM formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.11 Supplemental material . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.11.1 Transmon measurements in experiment . . . . . . . . . . . . . . . 182
8.11.2 Leakage-induced anti-commutation. . . . . . . . . . . . . . . . . 184
8.11.3 Projection of data-qubit leakage by stabilizer-measurement back-

action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.11.4 HMM error budget . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.11.5 An alternative scheme for enhancing ancilla-qubit leakage detection 192
8.11.6 Second-order leakage effects. . . . . . . . . . . . . . . . . . . . . 193
8.11.7 Effects of leakage mobility and superleakage on leakage detection

and code performance . . . . . . . . . . . . . . . . . . . . . . . . 196
8.11.8 Leakage steady state in the surface code . . . . . . . . . . . . . . . 196

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9 Hardware-Efficient Leakage-Reduction Scheme for Quantum Error Correc-
tion with Superconducting Transmon Qubits 205
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.2 Readout-resonator LRU . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9.2.1 Transmon-resonator Hamiltonian . . . . . . . . . . . . . . . . . . 208
9.2.2 Performance of the readout-resonator LRU . . . . . . . . . . . . . 211

9.3 Surface code with LRUs . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.3.1 Layout and operation scheduling . . . . . . . . . . . . . . . . . . 215
9.3.2 Implementation of the LRUs in the density-matrix simulations . . . 217
9.3.3 Average leakage lifetime and steady state . . . . . . . . . . . . . . 219
9.3.4 Logical performance . . . . . . . . . . . . . . . . . . . . . . . . . 221

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.5 Approximate transmon-resonator Hamiltonian. . . . . . . . . . . . . . . 224

9.5.1 Schrieffer-Wolff Transformation . . . . . . . . . . . . . . . . . . . 224
9.5.2 SWT of the capacitive coupling . . . . . . . . . . . . . . . . . . . 226
9.5.3 SWT of the pure drive Hamiltonian . . . . . . . . . . . . . . . . . 228
9.5.4 Analysis of the |20〉↔ |01〉 avoided crossing . . . . . . . . . . . . . 231

9.6 Further characterization of the readout-resonator LRU . . . . . . . . . . . 232
9.6.1 Effective T1 and T2 due to the drive . . . . . . . . . . . . . . . . . 232
9.6.2 Long-drive limit in the underdamped regime and its drawbacks as a

LRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
9.6.3 Sensitivity to residual Z Z crosstalk . . . . . . . . . . . . . . . . . 234



CONTENTS ix

9.7 Further Surface-17 characterization . . . . . . . . . . . . . . . . . . . . 235
9.7.1 Details about the density-matrix simulations . . . . . . . . . . . . 235
9.7.2 Logical error rate as a function of the LRU parameters . . . . . . . . 239
9.7.3 Effect of the leakage conditional phases on the logical error rate . . . 239

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

10 Conclusion 249
10.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 249
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Acknowledgements 257

Curriculum Vitæ 259

List of Publications 261





SUMMARY

Computers are used all over the place to perform tasks ranging from sending an email
to running some complicated numerical simulation. That is brilliant of course, because
computers enable us to solve a lot of problems in the world in this way. At the same
time, for some of those problems, not even powerful supercomputers are enough to get
the result of the computation in any reasonable amount of time. An alternative that
might be able to solve some of these problems very quickly are quantum computers. The
operations performed by a quantum computer need to be faithful in order to get the right
result of the quantum computation. However, nowadays quantum computers are fairly
noisy, severely limiting their range of applicability in the near future.

Various methods for quantum error correction have been developed, showing that,
if error rates are below a certain threshold, one can make the computation as error-
free as desired. However, while quantum error correction is starting to be tested in
experiments, its performance has been mostly studied with respect to idealized error
models. Furthermore, quantum error correction comes at the price of a substantial
overhead in number of qubits and number of operations, especially if error rates are just
barely below threshold. From a different perspective, error-mitigation techniques that do
not need the full machinery of quantum correction have been put forward, fostering hope
that noisy near-term devices might run useful applications even without quantum error
correction. However, in either case the physical error rates of the fundamental operations
are still high.

In this thesis we focus on achieving lower error rates for some of the fundamental
operations in a quantum computer, specifically for superconducting qubits, and we
demonstrate the beneficial impact of these results on quantum error correction in a
realistic setting.

We develop error models that are physically motivated for superconducting qubits
(reviewed in Chapter 2), based on the noise sources to which they are sensitive (reviewed
in Chapter 3). The major elements of novelty in our models are the inclusion of leakage,
quasi-static flux noise, and distortions of electronic signals.
In Chapter 6 we discuss a flux-pulsing technique for controlled-phase gates, named Net
Zero. In the first part, we show that the characteristic zero-integral feature protects from
long-timescale distortions, echoes out flux noise and uses leakage interference to mitigate
leakage, leading to a fast, high-fidelity gate. In the second part, we introduce an updated
version of Net Zero, called Sudden Net Zero, that maintains the same advantages and
adds easiness of tuneup and straightforward conditional-phase tunability.

Diagnosing errors is crucial for correcting them and tuning up gates. In Chapter 7
we introduce Spectral Quantum Tomography, a tomographic method that can provide
detailed information about errors in single- and two-qubit gates, in a way that is inde-
pendent of state-preparation and measurement errors. In particular, we investigate the
footprint of relaxation and dephasing, as well as leakage and non-Markovian noise.

xi



xii SUMMARY

Leakage outside of the qubit computational subspace is particularly damaging for
quantum error correcting codes, in particular stabilizer codes (reviewed in Chapter 4).
Leakage-reduction units (reviewed in Chapter 5) can bring a leaked qubit back to the
computational subspace, thus restoring part of the loss in performance. Based on the
error model developed for two-qubit gates, we study the effect of leakage in quantum
error correction using realistic density-matrix simulations.
In Chapter 8 we use hidden Markov models to detect leakage in a transmon-qubit-based
surface code and improve the logical fidelity by post-selection. The detection is based
on recognizing patterns in the stabilizer measurements that can likely be attributed to
leakage.
In Chapter 9 we introduce a hardware-efficient leakage-reduction scheme to directly
remove leakage in a scalable way that does not require extra qubits or time, leading to
a reduction of the logical error rate. In particular, we propose two separate leakage-
reduction units tailored for data and ancilla qubits, respectively. For data qubits, we apply
a microwave pulse that transfers leakage to its dedicated readout resonator, where it
quickly decays into the environment. For ancilla qubits, we use a microwave pulse that
maps the leaked state to a computational state.

These techniques for two-qubit gates, tomography and leakage mitigation contribute
to reducing the error rates, benefiting quantum error correction as well as near-term
devices. In the Conclusion we give an outlook on the potential challenges in super-
conducting quantum computing, including tunable couplers, real-time decoding and
physical error rates in large devices.



SAMENVATTING

Computers worden voortdurend gebruikt om taken uit te voeren die variëren van het
verzenden van een email tot het doen van een complexe numerieke simulatie. Dat is
natuurlijk waardevol, want computers stellen ons in staat om op deze wijze veel pro-
blemen in de wereld op te lossen. Tegelijkertijd kunnen voor bepaalde problemen zelfs
krachtige supercomputers niet het resultaat van een berekening verkrijgen in een aan-
vaardbaar tijdsbestek. Kwantumcomputers vormen een alternatief om sommigen van
deze problemen erg snel op te lossen. The operaties die door een kwantumcomputer
worden uitgevoerd moeten betrouwbaar zijn om het juiste resultaat van de berekening te
verkrijgen. Hedendaagse kwantumcomputers zijn echter relatief gevoelig voor ruis, iets
dat hun toepassingsgebied in de nabije toekomst sterk beperkt.

Er zijn verschillende methoden voor kwantumfoutcorrectie ontwikkeld. Deze laten
zien dat wanneer de foutgraad beneden een bepaalde drempelwaarde ligt, de bereke-
ning zo foutvrij gemaakt kan worden als men wilt. Ondanks dat kwantumfoutcorrectie
in een experimentele omgeving getest begint te worden, is hun prestatie tot op heden
voornamelijk getest aan de hand van geïdealiseerde foutmodellen. Daarnaast gaat kwan-
tumfoutcorrectie gepaard met een substantiële overhead in termen van het aantal qubits
en het aantal operaties, voornamelijk wanneer de foutgraad amper beneden de drempel-
waarde ligt. Als alternatief zijn er methodes voor foutmitigatie voorgedragen die niet het
volledige kwantumfoutcorrectie mechanisme nodig hebben, wat hoop biedt dat kwantu-
mapparaten op korte termijn zelfs waardevolle berekeningen kunnen uitvoeren zonder
kwantumfoutcorrectie. In beide gevallen is de fysieke foutgraad van de fundamentele
operaties echter nog steeds hoog.

In dit proefschrift focussen we ons op het behalen van lage foutgraden voor een
aantal van de fundamentele operaties van een kwantumcomputer, in het specifiek voor
supergeleidende qubits, en demonstreren we het bevorderlijke effect van deze resultaten
op kwantumfoutcorrectie in een realistische omgeving.

We ontwikkelen fysisch gemotiveerde foutmodellen voor supergeleidende qubits
(besproken in Hoofdstuk 2), gebaseerd op de bronnen van ruis waarvoor zij gevoelig
zijn (besproken in Hoofdstuk 3). The belangrijkste nieuwe elementen in onze modellen
zijn het includeren van leakage effecten, quasi-statische flux ruis, en vervormingen van
elektronische signalen.

In Hoofdstuk 6 bespreken we een flux-puls methode voor controlled-phase gates,
genaamd Net Zero. In het eerste deel laten we zien dat de karakteristieke nul-integraal
eigenschap bescherming biedt tegen vervormingen op een lange tijdschaal, flux ruis uit
echoot en leakage interferentie gebruikt om leakage te verminderen, wat leidt tot een
snelle en betrouwbare gate. In het tweede deel introduceren we een bijgewerkte versie
van Net Zero, genaamd Sudden Net Zero. Deze behoudt dezelfde voordelen, en voegt ook
vergemakkelijking van de afstelling en rechtstreekse conditional-phase afstembaarheid
toe.

xiii
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Het diagnostiseren van fouten is cruciaal voor het herstellen ervan en het afstellen van
gates. In Hoofdstuk 7 introduceren we Spectrale Kwantum Tomografie; een tomografische
methode die gedetailleerde informatie geeft over fouten in enkele- en twee-qubit gates
op een wijze die onafhankelijk is van toestandsbereiding en meetfouten. Specifiek onder-
zoeken we het spoor van relaxatie en defasering, en van leakage en niet-Markoviaanse
ruis.

Leakage buiten de qubit computationele subruimte is bijzonder schadelijk voor kwan-
tumfoutcorrectie codes, in het bijzonder voor stabilisator codes (besproken in Hoofdstuk
4). Leakage-verminderingseenheden (besproken in Hoofdstuk 5) zijn in staat een door
leakage getergde qubit terug te brengen naar de computationele subruimte, en daarmee
een deel van de prestatieafname te compenseren. We bestuderen het effect van leakage in
kwantumfoutcorrectie aan de hand van het foutmodel ontwikkeld voor twee-qubit gates,
gebruikmakend van realistische dichtheidsmatrix simulaties.

In Hoofdstuk 8 gebruiken we verborgen Markov modellen om leakage te detecteren in
een surface code (gebaseerd op transmon qubits) en verbeteren we de logische betrouw-
baarheid aan de hand van naselectie. De detectie is gebaseerd op het herkennen van
patronen in de stabilisator metingen die waarschijnlijk toegeschreven kunnen worden
aan leakage.

In Hoofdstuk 9 introduceren we een hardware-efficiënte en leakage-reducerende
methode om direct leakage te elimineren op een schaalbare wijze die niet additionele
qubits of tijd nodig heeft, wat leidt tot een reductie van de logische foutgraad. We stellen
in het bijzonder twee verschillende leakage-verminderingseenheden voor, die specifiek
voor data qubits en voor ancilla qubits gemaakt zijn. Voor data qubits passen we een
microgolf puls toe die leakage overdraagt aan zijn toegewezen uitlees resonator, waarna
het snel vervalt naar de omgeving. Voor ancilla qubits gebruiken we een microgolf puls
die een door leakage getergde toestand afbeeldt op een toestand uit de computationele
subruimte.

Deze methodes voor twee-qubit gates, tomografie en leakage mitigatie dragen bij
aan de reductie van foutgraden, wat voordelen biedt voor zowel kwantumfoutcorrectie
als korte-termijn kwantumapparaten. In de Conclusie geven we een vooruitzicht op de
potentiële uitdagingen voor supergeleidende kwantum computers, waaronder afstelbare
koppelaars, real-time decoderen en fysieke foutgraden in grotere apparaten.



1
INTRODUCTION

1.1. QUANTUM COMPUTING LANDSCAPE
While the theory of quantum mechanics was developed already in the mid 1920s, it took
a much longer time to conceive the notion of quantum computing. The foundations
were laid in the 1980s and 1990s, with roots as far back as the 1970s, by physicists and
computer scientists such as Richard P. Feynman [1], Paul A. Benioff, David E. Deutsch
and Charles H. Bennett. Quantum key distribution introduced by Bennett and Brassard
in 1984 [2] was one of the first examples showing that quantum mechanics could allow
for the execution of tasks that are impossible using only classical resources, even though
in the context of communication rather than computing. A major boost to the field of
quantum computing was the factoring algorithm by Peter W. Shor in 1994 [3], which
demonstrated that quantum computers could have significant practical implications.
Realizing that noise was an obstacle to quantum computing that needed to be dealt with,
Shor also introduced the first quantum error correcting code [4] and contributed to the
emerging field of fault tolerance [5]. While practical levels of noise are still one of the most
important concerns nowadays, Shor’s code pioneered the following research efforts in
quantum error correction and fault tolerance [6]. These succeeded in proving that it is
indeed possible to achieve fault tolerance if error rates are below a certain threshold [7–9],
paving the way for experimental endeavors in building a functional quantum computer.

In 2021 quantum computing is a fast-growing enterprise. Not only universities and
research institutes are trying to develop this new technology, but also large companies.
Startups are being founded thanks to the support of governments and private investors
as well. The effort is not only concerned with quantum computing, which is the focus
of this thesis (mostly with superconducting qubits), but also quantum communication
and sensing. The quantum-computing platforms that are being developed in experiment
range from superconducting qubits to trapped ions, photons, spin qubits, Majorana
qubits and nitrogen-vacancy centers.

In the midst of all of this, it is not yet clear what will be the killer application for
quantum computing, if any. As loading large amounts of classical data on quantum hard-
ware seems a daunting problem [10], the most likely applications will involve relatively
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low amounts of data but a sufficiently long computation to be intractable by classical
means. In particular, quadratic quantum speedups seem to not be enough to beat classi-
cal computers in any reasonable timescale, whereas at least cubic or quartic speedups
(or of course exponential speedups) have a much better chance [11]. One of the most
important candidate areas for applications is quantum chemistry [12]. Shor’s factoring
algorithm [3] is also an application to break widely-used RSA public-key cryptosystems,
but new quantum-resistant cryptographic systems are being developed and deployed
to inhibit its usefulness against encrypted data generated today or in the future [13].
An ironic outcome of quantum computing might be better classical algorithms taking
inspiration from the quantum ones. It is not only a matter of return on investment for
the business sector, but quantum computers might also be a great tool for science to
discover new physics and chemistry. This applies both to direct scientific discoveries like
demonstrating the mechanisms of high-temperature superconductivity [14], as well as to
fundamental understanding of decoherence and quantum mechanics at large scales.

The most important milestone reached so far by quantum computing is probably the
demonstration of so-called “quantum supremacy” [15]. That is, the execution of a task
which, as far as we know, cannot be executed efficiently by a classical computer, even
though the considered quantum circuits are fairly shallow. However, this task (sampling
from random quantum circuits) does not provide any practical quantum advantage,
contrarily to the sought-after applications discussed above. An important goal towards
reaching practical quantum advantages is to scale up quantum error correction, which
is an active area in experimental research [16–18]. This is quite challenging as quantum
error correction requires error rates to be below threshold. Furthermore, these error
rates should be way below threshold to reduce an otherwise-large overhead in terms
of number of qubits and number of operations. Error mitigation [19] corresponds to
a series of techniques being developed to mitigate certain kinds of noise in current
processors, without the full machinery of quantum error correction. While a future
quantum computer might use both error correction and mitigation [20–22], it not clear
whether error mitigation can suffice alone.

The dangers ahead on the way to useful quantum computing are significant. The most
recent estimates require tens of thousands to millions of qubits [11, 23] to solve quantum-
chemistry problems or break cryptography on a significant scale. While these estimates
represent orders of magnitude of improvement over previous ones, we cannot naively
extrapolate past accomplishments into the future. On the hardware side, coherence times
and error rates have improved by orders of magnitude as well [24], but there might emerge
limiting factors that are difficult to eliminate. Regarding the financial support, many
governments and venture funds have made their first big bet on quantum computing and
a few more might do so too. At the same time, we have to deliver on those expectations if
we want a second bet to follow up.

Most challenges can be summarized in a few words: lowering the error rates and
scaling up. There is actually a third aspect, which is to keep the error rates low while
scaling up. Error rates need to be lowered in hardware first and then reduced as much
as possible with quantum error correction and mitigation. Furthermore, all operations
should be way below threshold, ideally by a few orders of magnitude. Scalability pertains
many aspects, among which are fabrication (high-yield production with on-target pa-
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rameters), calibration (automatized routines), classical electronics and heat load near
the chip, connectivity to and within the chip and potentially across different chips [25].
Keeping error rates low and scaling up requires to be able to think modularly about qubits,
operations and control. To this end, filters and tunable couplers between the qubits
and/or the external world will be of crucial importance (see also Chapter 10).

1.2. THESIS OUTLINE
In this thesis we focus on the first challenge, that is, mitigating noise at the hardware level
and lowering the error rates of some of the fundamental operations. We then study the
beneficial impact on quantum error correction, with respect to a realistic noise model.
Among the considered noise sources, a common thread in the following chapters is
an often-neglected aspect that plagues quantum error correction, which is leakage. In
superconducting transmon qubits, leakage comes mostly from the conditional-phase
gate (see Section 2.8.3). Other peculiar realistic noise sources that we include in our
modeling are low-frequency flux noise (see Section 3.2.1) and distortions of the electronic
signals (see Section 3.2.5).

The first few chapters (2-5) provide an introduction to the concepts that are useful for
the understanding of the following ones, which constitute the bulk of my research.

Chapter 2 introduces superconducting qubits, as well as techniques to control and
measure them. Since qubits and these techniques have often been developed in parallel
with the understanding of noise, it is hard to separate their description from an introduc-
tion to noise in superconducting qubits. However, in Chapter 2 we have chosen to only
briefly describe certain features of the noise where necessary, whereas we have postponed
a detailed description of noise to Chapter 3.
In Chapter 2 we start with a description of the physics of the Josephson junction, which is
the fundamental element allowing superconducting quantum computing to exist. We
give a physical motivation for the transmon qubit (transmon in short), describing how
it developed from the Cooper-pair box to counter charge noise. Note that most of this
thesis, especially Chapters 6, 8 and 9, is focused on transmons. In Chapter 2, only after
briefly describing other superconducting qubits, we formalize the mathematical recipe of
circuit quantization, which can be used to derive the Hamiltonian of any circuit and qubit.
We then discuss various methods for reset (particularly relevant for the leakage-reduction
units in Chapter 9), readout, single-qubit gates and two-qubit gates (particularly relevant
for the gating scheme in Chapter 6).

In Chapter 3 we broadly discuss noise in superconducting qubits. First, we give an
overview of the major sources of noise. Then, in relation to that, we summarize the
noise models that we use for the Lindblad simulations (used in Chapters 6, 8 and 9) and
for the density-matrix simulations (used in Chapters 8 and 9), with more details being
presented in Chapters 6 and 8, respectively. Finally, we discuss gate-benchmarking tools
such as process tomography and randomized benchmarking (relevant for Chapter 7 and
partially Chapter 6).

Chapter 4 introduces quantum error correction in general (so not only based on
superconducting qubits). We describe the surface code (relevant for Chapters 8 and 9), as
well as fault tolerance and decoding, mostly in the context of strictly two-level systems.

In Chapter 5 we discuss the interplay between quantum error correction and leak-



1

4 1. INTRODUCTION

age outside of the two levels forming the qubit computational subspace. We review the
literature that studied the effect of leakage on the performance of quantum error correc-
tion, as well as the leakage-reduction units that were introduced (relevant for Chapter 8
and especially Chapter 9). Some of the previous work had a general scope, whereas
some was focused on either superconducting transmon qubits or trapped-ion qubits. We
conclude Chapter 5 with a comparison to the leakage models and results in this thesis.

In Chapter 6 we introduce two variations of a technique for the controlled-phase gate,
that we call Net Zero. In transmons, there are three main ways to perform a controlled-
phase gate (reviewed in Section 2.8.3). Among those, baseband flux pulsing, although
it is the fastest approach, had the disadvantage of being susceptible to long-timescale
distortions, making the gate not repeatable. Net Zero divides a baseband flux pulse into
two halves with opposite polarity, removing the DC component of the pulse, thus helping
to suppress long-timescale distortions. On top of that, the symmetry of the Net Zero pulse
allows for echoing out quasi-static components of flux noise, leading to a high-fidelity gate.
Furthermore, Net Zero allows for destructive interference of leakage in analogy to a Mach-
Zehnder interferometer. The error model and the Lindblad simulations that I developed
match the experimental results and have been useful to reach the best performance in
experiment, as well as to analyze the error budget of the gate.
In the second part of Chapter 6, we introduce Sudden Net Zero, whose simpler (and faster)
pulse shape preserves all features above and adds easiness of tuneup and conditional-
phase tunability.

In Chapter 7 we describe Spectral Quantum Tomography. In experiment, gates are
often tuned up by repeating a gate for a variable number of times and measuring the
evolution of a certain error signature. Spectral tomography is the answer to the question
“How can I extract the maximum amount of information by repeating a gate multiple
times?”. In particular, spectral tomography provides the maximum amount of information
that depends on the gate only, i.e. that it is insensitive to state-preparation and measure-
ment errors. Unlike randomized benchmarking, spectral tomography is non-scalable as
it can be reasonably applied only to single- and two-qubit gates. However, contrasted to a
single number for the average fidelity in randomized benchmarking, spectral tomography
produces detailed information about relaxation, dephasing, leakage, non-Markovianity
and other kinds of errors.

Chapter 8 provides a way to detect leakage in a transmon-based surface code. Stabi-
lizer codes are not designed to correct leakage errors. Leakage has thus a disruptive effect,
because a leaked data qubit effectively reduces the code distance and a leaked ancilla-
qubit effectively disables the parity-check unit while spreading errors to nearby data
qubits. However, these effects produce characteristic patterns in the measured syndrome,
which can be used to detect leakage. We use hidden Markov models, one for each qubit,
to detect leakage based on the history of measured syndromes on neighboring stabilizers.
We train and benchmark these models with respect to density-matrix simulations of the
distance-3 rotated surface code. We show that post-selecting out runs where leakage was
detected allows us to significantly improve the logical performance of the code.

In Chapter 9 we introduce two leakage-reduction units (LRUs) for a transmon-based
surface code. The relaxation rate of the transmon sets the average time spent by a qubit
in the leaked state. Hence, leakage is local in space and time for a sufficiently large code,
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leading to the existence of a threshold, albeit it is expected to be low (assuming that regular
error rates are sufficiently below threshold). Using LRUs to quickly bring a qubit back to
the computational subspace can lead to a higher threshold. Unlike previous proposals
that require extra qubits, gates or time, we introduce a hardware-efficient scheme with no
overhead that uses two separate LRUs for data and ancilla qubits. For data qubits, using
Lindblad simulations we study a microwave pulse on the transmon. The pulse trades
two excitations on the transmon for one in its dedicated readout resonator, where the
excitation quickly decays to the feedline environment. For ancilla qubits, we consider a
|1〉↔ |2〉 π pulse on the transmon, conditioned on the declaration of a |2〉. Using density-
matrix simulations of the distance-3 rotated surface code, we significantly restore the
logical performance of the code, even if the LRUs are implemented with limited fidelity.

We conclude by outlining in Chapter 10 the most critical issues which, in my opinion,
need to be solved for superconducting quantum computing to succeed. Among these,
I highlight in particular the problem of crosstalk and the benefits of tunable couplers,
the issues with implementing real-time decoding, as well as scalability issues regarding
physical error rates, dilution refrigerators and the chip itself.
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2
SUPERCONDUCTING QUBITS

Superconducting qubits [1–4] are one of the most promising platforms for quantum
computing nowadays. In this chapter we review some of the developments towards the
transmon and other types of superconducting qubits, as well as typical methods for their
initialization, control and readout.

2.1. JOSEPHSON JUNCTION
The fundamental circuit element allowing superconducting quantum computing in the
first place is the Josephson junction. Here we provide the basic intuition about it, while
detailed information can be found in [5, 6]. Standard superconductivity, at least at low
temperature, is well explained by BCS theory, where electrons do not travel independently
but form Cooper pairs. Breaking a Cooper pair requires a certain amount of energy,
referred to as the superconducting gap. The Josephson effect corresponds to the quantum
tunneling of Cooper pairs between two superconductor pieces separated by a weak link.
In practice, the weak link forming such a Josephson junction can be either made of an
insulating material (S-I-S junction), or a piece of normal metal (S-N-S junction).

As the two pieces of superconductor face each other, they also create a small capacitor.
The circuit diagram for a real Josephson junction is thus given in Fig. 2.1(a). For the
moment we assume that this is the only electrical circuit we have. Each half of the circuit,
corresponding to one of the two superconducting pieces, is an “island” not directly
connected to anything else (except that one is grounded in practice; furthermore, usually
in a larger circuit only one island is really isolated from other circuitry, if there is any
island at all). The total number of Cooper pairs on both islands is fixed, but the number
in one of them, N , can vary due to Josephson tunneling. Quantum mechanically this
number corresponds to an operator N̂ =∑+∞

N=−∞ N |N〉〈N |.
The tunneling of Cooper pairs can be described via the Hamiltonian

HJ =−E J

2

+∞∑
N=−∞

(|N〉〈N +1|+ |N +1〉〈N |), (2.1)

9
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C EJ

(a)

JJ

= Vg EJ , C

Cg

(b)

CPB

Vg EJ , C

Cg

(c)

Transmon

CS

Figure 2.1: Circuit diagrams for a (a) Josephson junction (see Section 2.1), (b) Cooper-pair box (see
around Eq. (2.4)), (c) transmon (see after Eq. (2.4)).

where E J is the energy associated with one Cooper pair tunneling and it depends on the
material and characteristics of the junction. We can introduce the phase states

|φ〉 =
+∞∑

N=−∞
e i Nφ |N〉 (2.2)

and an operator e i φ̂ = 1/(2π)
∫ 2π

0 dφe iφ |φ〉〈φ|, whose eigenstates are the {|φ〉}. One can

easily check that e i φ̂ |N +1〉 = |N〉. Consequently, e i φ̂ = ∑+∞
N=−∞ |N〉〈N +1| and HJ =

−E J cos φ̂, where the phase φ can be interpreted as the superconducting-phase difference
across the junction. Furthermore, one can compute that [φ̂, N̂ ] = i , with the cautiousness

that only periodic functions of the compact variable φ are well-defined, like e i φ̂. Hence, φ̂
and N̂ behave like position and momentum, respectively.

To get the full Hamiltonian of the junction, the energy stored in the capacitor is given
by HC = Q̂2/2C , where C is the intrinsic junction capacitance and Q is the charge. As Q =
2eN for Cooper pairs, the overall Hamiltonian of a Josephson junction, H = HC +HJ , is
given by

H = 4EC N̂ 2 −E J cos φ̂, (2.3)

defining EC = e2/2C .

2.2. TRANSMON

COOPER-PAIR BOX

In the limit where E J ¿ EC , the eigenstates of the Josephson-junction Hamiltonian
in Eq. (2.3) are approximately the eigenstates of the charge operator 2eN̂ . If one connects
a voltage source Vg to the Josephson junction, one can bias the number of Cooper pairs
on the island, as well as generate superpositions of charge eigenstates. This device, known
as the Cooper-Pair Box (CPB) [6], is shown in Fig. 2.1(b), where Vg is connected to the
Josephson junction by a capacitance Cg . The bias is modeled by an offset charge Ng =



2.2. TRANSMON

2

11

−2 0 2

Ng

0

1

2

Ẽ
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Figure 2.2: Spectrum and relative anharmonicity. (a,b) Spectrum for a CPB (E J /EC = 5) and for a trans-
mon (E J /EC = 30), respectively, as a function of the charge offset Ng . Let Em ∈ {E0,E1,E2} be the energies

of the three lowest eigenstates of Eq. (2.4). We plot Ẽm := Em − ∫ 1
0 d Ng E0(Ng ) relative to the transition fre-

quency E0,1 := E1−E0 at Ng = 1/2 (where this transition frequency is minimal). One can see that the {Em } are in-

sensitive to Ng in the transmon regime. (c) Relative anharmonicity
E1,2−E0,1

E0,1
versus E J /EC , where Ei , j := E j −Ei ,

evaluated here at Ng = 1/2. One can see that the anharmonicity is relatively low and that the system becomes
more harmonic with increasing E J /EC .

Cg Vg /2e, thus giving the Hamiltonian

HCPB = 4EC (N̂ −Ng )2 −E J cos φ̂. (2.4)

CHARGE NOISE

In practice, any effective voltage source in the environment due to charges in the material
can couple to the island and make Ng fluctuate (charge noise). As this holds even if there
is no purposefully placed voltage source, the Hamiltonian in Eq. (2.3) is an idealization
in the absence of charge noise. Randomly hopping charges cause fluctuations in Ng . As
shown in Fig. 2.2(a), the energy of the CPB eigenstates varies strongly with Ng . As these
fluctuations in Ng happen uncontrollably, they lead to decoherence of the CPB, which
had typical dephasing times of at most a few nanoseconds [4].

TRANSMON

The solution to the problem of charge noise has been to introduce a large capacitance CS

shunting the Josephson junction. This design, shown in Fig. 2.1(c), is known as the
transmon [7]. While the transmon Hamiltonian is formally the same as in Eq. (2.4), in
this case EC = e2/[2(C +CS )]. For large CS one can enter the regime with E J À EC , where
the dependence of the spectrum on Ng is suppressed (see Fig. 2.2(b)). Compared to the
CPB, the eigenstates of the Hamiltonian are no longer approximate eigenstates of the

charge operator but of the phase operator e i φ̂. These eigenstates (see Eq. (2.2)) have a
broad distribution over charge states. Intuitively, a hopping charge causes a small shift
in such a distribution over charge states (rather than jumps between phase eigenstates).
In practice, this shift is negligible for E J /EC & 30 and leads to the flat dependence of the
transmon eigenenergies on Ng (see Fig. 2.2(b)), thus giving protection against charge
noise.
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TRANSMON ENERGY LEVELS

To better understand the transmon eigenstates, we expand cos φ̂ around 0 up to 4th order.
This approximation is based on the fact that the lowest-energy phase eigenstate has φ= 0
and that we expect this to be approximately the ground state in the transmon regime. The
Hamiltonian then takes the approximate form

Htransmon ≈ 4EC N̂ 2 + E J

2
φ̂2 − E J

24
φ̂4, (2.5)

where we can neglect Ng in the transmon regime as discussed above. The first two terms
in Eq. (2.5) constitute a quantum harmonic oscillator where N̂ and φ̂ take the role of
position and momentum, respectively. Explicitly, we can introduce annihilation and
creation operators b and b† via

N̂ = ip
2

( E J

8EC

)1/4
(b† −b) (2.6)

φ̂= 1p
2

( E J

8EC

)−1/4
(b† +b). (2.7)

Then

Htransmon =√
8E J EC

(
b†b + 1

2

)
− EC

12

(
b +b†)4. (2.8)

In the following we neglect the +1/2 term in Eq. (2.8) since it is a constant energy shift
for the whole Hamiltonian. The last, non-linear term in Eq. (2.8) turns this harmonic
oscillator into a (slightly) anharmonic one, for which the energy levels are not equally
spaced (see Fig. 2.2(b,c)). Analytically, we can expand (b +b†)4. This expansion contains
terms that are “energy conserving”, like b†b†bb, i.e. that contain twice b and twice b†

(in different orders), while all the other terms are “energy non-conserving”. We apply
the Rotating Wave Approximation (RWA), which consists of neglecting all the energy
non-conserving terms. Then, using the commutation relationship [b,b†] = 1 (identity) to
rearrange the b’s and b†’s, one can get

H RWA
transmon =ωb†b + α

2
b†b†bb, (2.9)

where

ω=√
8E J EC −EC , (2.10)

α=−EC (2.11)

are the transmon frequency and anharmonicity, respectively (within the given approx-
imations). We label the eigenstates of b†b as |0〉 , |1〉 , |2〉 . . . Since b†b†bb = b†b(b†b −1),
these are the eigenstates of H RWA

transmon as well. Labeling the energy of |i 〉 as ωi , we can
rewrite Eq. (2.9) as

H RWA
transmon =

+∞∑
i=0

ωi |i 〉〈i | (2.12)
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with

ω0 = 0, ω1 =ω, ω2 = 2ω+α, ω3 = 3ω+3α (2.13)

for the lowest energy levels. Hence the transition frequencies ωi , j between |i 〉 and | j 〉 are

ω0,1 =ω ω1,2 =ω+α ω2,3 =ω+2α. (2.14)

The anharmonicity thus directly expresses the degree of unequal spacing between energy
levels, compared to a harmonic oscillator. In particular, sinceα is negative (see Eq. (2.11)),
ω1,2 <ω0,1.

We briefly note that the 4th-order expansion, together with the RWA, can be somewhat
inaccurate especially in the vicinity of avoided crossings between energy levels [8]. Instead,
a 6th-order expansion without performing the RWA matches the exact result in a more
accurate way [8].

DISCUSSION ABOUT THE ANHARMONICITY

A finite anharmonicity is crucial to be able to use the two lowest-energy states as a
qubit. Indeed, in a perfectly harmonic oscillator there is no way to control the states |0〉
and |1〉 independently from |2〉 (or even higher states). However, typical transmons have
frequencies in the range ω/2π∼ 3-8 GHz and anharmonicities in the range α/2π∼−150-
400 MHz, due to practical limitations [9]. A relatively low anharmonicity is the price to
pay for insensitivity to charge noise. While it still allows the use of transmons as qubits,
the issue is that this limits the speed to execute gates and requires carefully-engineered
pulses to avoid leakage to higher excited states (see Sections 2.7 and 2.8).

2.2.1. TUNABLE TRANSMON
The transmon frequency can be made tunable by using two Josephson junctions in
parallel (SQUID), rather than a single one (see Fig. 2.3(a)). This creates a loop that allows
to apply an external magnetic fieldΦe for tuning. The Hamiltonian is

HSQUID = 4EC N̂ 2 −E J1 cos φ̂−E J2 cos(φ̂+φe ), (2.15)

where φe = 2πΦe /Φ0 andΦ0 = h/2e is the magnetic flux quantum (it can be derived using
circuit quantization as described in Section 2.4). Using trigonometric identities, Eq. (2.15)
can be rewritten as [7]

HSQUID = 4EC N̂ 2 −E JΣ (φe )cos(φ̂−ϕ0), (2.16)

where

E JΣ (φe ) := (E J1 +E J2 )

√
cos2

(φe

2

)
+d 2 sin2

(φe

2

)
(2.17)

tanϕ0 = d tan
(φe

2

)
(2.18)

and d = ∣∣E J1 −E J2

∣∣/(E J1 +E J2 ) is the degree of asymmetry. For a time-independent φe ,
the shift ϕ0 can be removed by a change of variables, leading to the Hamiltonian

HSQUID = 4EC N̂ 2 −E JΣ (φe )cos φ̂. (2.19)
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If φe is time dependent, the transmon eigenstates change in a time-dependent manner
via ϕ0. However, this change is small unless d is large and φe gets close to π. For example,
if d = 0.02 and φe = 1.4 rad (a typical value for CZ; see Fig. 2.6), then ϕ0 ≈ 1 deg only.

Equation (2.19) is equivalent to the Hamiltonian of a single-junction transmon (see Eq. (2.4))
but with a tunable Josephson energy, thus the results in Section 2.2 apply by simply re-
placing E J with E JΣ (φe ). If the junctions are symmetric, i.e. if E J1 = E J2 ≡ E J =⇒ d = 0,
Equation (2.17) simplifies to

E JΣ (φe ) = 2E J
∣∣cos(φe /2)

∣∣ . (2.20)

Based on Eq. (2.10), it follows that

ω(φe )+EC ∝
√∣∣cos(φe /2)

∣∣. (2.21)

One can observe that the transmon frequency decreases when φe goes from 0 to π and
that it never exceeds the value at φe = 0. These observations also hold for any d 6= 0
as can be understood from Eq. (2.17) since d ∈ [0,1] (see also Fig. 2.3(b)). We note that
for low-asymmetry SQUIDs (d ¿ 1) and φe close to π, E JΣ (φe ) in Eq. (2.17) can become
comparable or lower than EC , thus going outside of the transmon regime. In that case, one
cannot simply insert Eq. (2.17) into Eq. (2.10) to get the transmon frequency ω. To avoid
these issues, in Fig. 2.3(b) we compute ω by full diagonalization of Eq. (2.4) at Ng = 1/2,
as done for Fig. 2.2. Recall that Ng = 1/2 corresponds to the sweetspot as a function of Ng

when outside of the transmon regime.
The advantages of frequency tunability are multiple: avoiding frequency collisions

on a multi-qubit chip, avoiding two-level systems strongly coupled to the qubit (see Sec-
tion 3.2.1), mitigating crosstalk (see Section 3.2.7), allowing flux-based single- and two-
qubit gates (see Sections 2.7 and 2.8). On the other hand, magnetic-field fluctuations (flux
noise) introduce an important dephasing mechanism that is absent in fixed-frequency
transmons (given the use of air-bridges; see Fig. 2.4). We say more about flux noise
in Section 3.2.1. Here we only introduce the concept of a sweetspot, that is, a point φ∗

e
where

∂ω

∂Φe

∣∣∣
2πΦe

Φ0
≡φ∗

e
= 0. (2.22)

One can understand that sweetspots are first-order insensitive to fluctuations inΦe , since
the transmon frequency ω around these points does not change as a function of Φe ,
up to first order. Independently of d , the “main” sweetspot is at φ∗

e = 0, corresponding
to the maximum ω. Focusing on the range [0,2π] by periodicity, there is also a second
sweetspot at φ∗

e = π (see Fig. 2.3(b)), corresponding to the minimum of ω, where the
specific value of this minimum ωmin varies with d . At d = 0, ωmin = 0 and it is thus
too low to control the transmon with microwave pulses. If instead d is large enough so
that ωmin/2π& 3 GHz, then one can use standard microwave pulses and can in principle
exploit the flux-insensitivity at the second sweetspot. Asymmetric SQUIDs can thus be
advantageous if, for example, one fabricates all transmons in a chip in the same way,
but then biases half of them to the second sweetspot (this approach is currently taken
by ETH Zürich in their surface code). As a second example, one could make the second
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Figure 2.3: Tunable transmons. (a) The circuit diagram for a tunable transmon (see Section 2.2.1). (b) The trans-
mon frequency ω as a function of the external fluxΦe for various degrees of asymmetry d (see after Eq. (2.18)).
While ω follows closely Eq. (2.10) with E J given in Eq. (2.17) for large d and/or φe not too close to π, to avoid the
issues discussed after Eq. (2.21), we obtain ω by diagonalizing directly Eq. (2.4) at Ng = 1/2.

sweetspot align with the interaction frequency in a flux-based two-qubit gate, mitigating
dephasing during the gate. However, it is still hard to fabricate junctions which precisely
hit their target parameters, thus also limiting the use of asymmetric SQUIDs.

2.2.2. STARMON

There exist multiple physical designs for a transmon. The design used in the DiCarlo
lab is the so-called starmon (see Fig. 2.4). Two large capacitor plates face each other in
the middle, forming the transmon shunting capacitance. The SQUID that provides the
non-linearity is a relatively small element in between the two plates. The exact size of the
Josephson junctions determines the Josephson energy, which in turn sets the transmon
frequency. The flux line reaches the starmon on the SQUID side to provide flux tunability.
The starmon also has four larger arms to which the bus resonators can connect, allowing
two-qubit gates with other starmons (see Section 2.8). The microwave drive line and
the readout resonator connect to one smaller arm each. Each readout resonator has
a dedicated Purcell filter (see Section 2.6.1) for faster readout while protecting qubit
coherence.

The four starmons shown in Fig. 2.4 are part of a Surface-7 chip developed in the
DiCarlo lab. In line with the operation scheduling in Ref. [12] for the surface code, there
are three sets of frequency bands for the transmon qubit frequencies. The target parame-
ters for these transmon qubit frequencies are around 6.7,6.0,4.9 GHz, respectively. The
readout resonators and Purcell filters have frequencies around 7-7.8 GHz, whereas the
bus resonators around 20 GHz in the current design.

2.3. OTHER SUPERCONDUCTING QUBITS
The transmon belongs to the family of charge qubits, where the name comes from the fact
that in the CPB the charge is a good quantum number (meaning that CPB eigenstates are
approximately charge eigenstates; see Section 2.2). As discussed in Section 2.2, this is not
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Figure 2.4: Optical image [10] zoomed in to four transmons of the seven-transmon device in Section 6.12
and Ref. [11]. False colors are added to help identify circuit elements. Transmons QH (red) and QL (pink)
each connect to QM1 (green) and QM2 (cyan) using dedicated coupling bus resonators for each pair (light
orange). Each transmon has a flux-control line for two-qubit gating (yellow), a microwave-drive line mostly for
single-qubit gating (dark orange), and a dispersively-coupled resonator with Purcell filter for readout (purple).
The readout-resonator/Purcell-filter pair for QM2 is visible at the center of the image. The vertically running
common feedline (blue) connects to all Purcell filters, enabling simultaneous readout of the four transmons by
frequency multiplexing. Air-bridge crossovers enable the routing of all input and output lines to the edges of the
chip and enable to ground the whole plane as well, effectively breaking loops that could otherwise be a souce of
flux noise and flux crosstalk.
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really the case for transmons, but due to the similar design they are usually categorized
together. Here we discuss a few other families of superconducting qubits.

FLUX QUBIT

The other main family of superconducting qubits are flux qubits [13] and their evolutions.
In a way, the flux qubit is an evolution of a SQUID, where instead of two junctions in a
loop one uses three of them, one of which is smaller than the others. The introduction
of a third junction changes the potential profile in a relevant way compared to a SQUID.
Defining as γ the ratio between the E J of the large and small junctions, for γ > 1 the
Hamiltonian can be approximated as [2]

H ≈ 4EC N 2 −E J cos(φ+φe )−2γE J cos(φ/2). (2.23)

If 1 < γ< 2, the potential profile qualitatively changes from a single well (like for a SQUID)
to a double well in [0,2π]. Each of these wells hosts one of the qubit eigenstates, which
can be interpreted as corresponding approximately to current rotating in one or the other
direction in the loop. In this regime the flux qubit is known as the persistent-current flux
qubit.

CSFQ (CAPACITIVELY-SHUNTED FLUX QUBIT )
In the regime γ> 2, the interpretation of rotating currents no longer holds and the po-
tential well is again only one. To improve coherence times, in this regime a shunting
capacitance has been added such that E J À EC (similarly to how a shunting capacitance
was added to the CPB to get the transmon; see Section 2.2), leading to the so-called
CSFQ [14]. The CSFQ features long coherence times (T1 ∼O (100) µs) and a positive anhar-
monicity (typically 500 MHz) that can be larger than the transmon in absolute value. It has
been proposed to combine transmons and CSFQs in a single device to mitigate residual
Z Z crosstalk (see Section 3.2.7) thanks to their opposite-sign anharmonicities [15].

FLUXONIUM

As it emerges from the discussion above, there is no clear-cut division between the two
families of charge and flux qubits. There is rather a spectrum from CPB to transmon,
SQUID, CSFQ and flux qubit. The fluxonium [16] features elements from both families,
with a complex set of both transmon-like and flux-like transitions. Structurally, fluxonium
is a loop with one small junction and with, instead of two larger junctions as in the flux
qubit, many (M = O (100)) junctions in series. The Hamiltonian is seemingly similar
to Eq. (2.23):

H ≈ 4EC N 2 −E J cos(φ+φe )−MγE J cos(φ/M) (2.24)

≈ 4EC N 2 −E J cos(φ+φe )+ EL

2
φ2 (2.25)

with EL = (γ/M)E J , where the last approximation is motivated by the large M . Thus effec-
tively, the junctions simply form a linear inductor. The reason why a “normal” geometric
inductor is not used directly is that fluxonium requires a large inductance (corresponding
to a small EL , since EL = 4π2Φ2

0/L for an inductor with inductance L). However, it is hard
to realize geometric inductors with large inductance (and small parasitic capacitance).
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An alternative to an array of Josephson junctions is to use a material with high kinetic
inductance [17]. Different fluxonium designs then depend on the relative scale of EC , E J

and EL . So far, fluxonium exhibits record coherence times (T1,T2 > 1 ms [18]), thanks to
the fact that the qubit eigenstates are engineered to be fairly isolated from each other, each
in its own potential well. The flip side is that both single- and two-qubit gates are difficult
to implement, although promising gating techniques are being developed [19, 20]. Fur-
thermore, since the qubit frequency can be as low as ∼ 500 MHz, in general single-qubit
gates cannot be simply implemented with standard microwave drives (see Section 2.7)
because the electronics cannot generate pulses with such a low frequency.

2.4. CIRCUIT QUANTIZATION
In Section 2.2 we could derive the Hamiltonian of the transmon due to the relatively simple
structure of the circuit. Here we discuss the general procedure to get the Hamiltonian
of an arbitrary electrical circuit [6], which can be used to derive the Hamiltonian of any
other superconducting qubit (we use this procedure explicitly in Section 2.8.1). We limit
ourselves to the case of a lossless circuit, although dissipation can also be included [6].

Consider a network of two-terminal circuit elements (capacitors, inductors, Josephson
junctions. . . ). The points where two or more of these elements connect are called nodes.
Each connection between two nodes, independently of the specific element, is a branch.
We assign a certain orientation (chosen arbitrarily) to each branch. One can associate
a voltage Vb(t) and a current Ib(t) through each branch b, whose sign is determined
by the orientation of the branch. In the absence of time-varying magnetic fields the
circuit is conservative and the voltages and currents across different branches follow the
Kirchhoff rules, namely,

∑
b∈loop Vb = 0 and

∑
b∈node Ib = 0. Due to these constraints, {Vb}

and {Ib} are not independent variables. To solve for the classical dynamics, as well as for
quantization, it is important to identify a set of independent variables. Furthermore, for a
large circuit it is useful to have a general method to write the Kirchhoff laws for all nodes
and loops.

While one could make different choices of independent variables, here we proceed as
follows [6]. First, one can introduce a branch charge Qb and a generalized branch fluxΦb

as

Qb(t ) =
∫ t

−∞
d t ′ Ib(t ′) (2.26)

Φb(t ) =
∫ t

−∞
d t ′Vb(t ′). (2.27)

As a note, elements whose Vb (resp. Ib) is solely a function of Qb (Φb) are called capacitive
(inductive). Then we choose a spanning tree of the network, i.e. a loop-free subset
of branches such that each node is part of the tree. We also assign an orientation to
each fundamental loop l , i.e. any loop that is obtained by adding a single branch to the
spanning tree. We allow for the presence of (time-independent) external fluxes Φe

l , for
which it holds ∑

b∈l
RblΦb =Φe

l , (2.28)
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where Rbl =±1 depending on whether the branch and loop orientations are parallel or
anti-parallel (see [21] for circuit quantization with time-dependent external fluxes). We
pick any node and call this the “ground” nodeΦg . We can define node fluxes

Φn = ∑
b∈path g→n

SbnΦb , (2.29)

where the path is along the tree and Sb =±1 depending on the relative orientation of the
branch and the path. Note that these {Φn} are independent and anyΦb can be expressed
as a function of them, also using Eq. (2.28) to formally assign the external flux to the
branch outside the tree. Furthermore, as Φ̇b =Vb , by construction the Kirchhoff voltage
laws are automatically satisfied when expressing them in terms of the voltages at the
nodes Vn := Φ̇n .

To systematically address the Kirchhoff current laws (and to later move to the Hamil-
tonian formalism for quantization), we consider the Lagrangian formalism. As we have
chosenΦn as the independent variables (bold face indicates vectors obtained by stack-
ing all the variables) the Lagrangian is given in terms of Φn and Φ̇n as L (Φn ,Φ̇n) =
T (Φ̇n)−U (Φn), where T and U are the kinetic and potential energies, respectively.
The most common energy terms, associated with capacitors, inductors and Josephson
junctions are

C Φ̇2
b/2, Φ2

b/2L, −E J cosΦb , (2.30)

respectively, where the branch variables need to be expressed in terms of the node vari-
ables. Note that with these terms the kinetic part of the Lagrangian is linear and can be
expressed as

T (Φ̇n) = Φ̇T
n CΦ̇n/2, (2.31)

where the capacitance matrix C is constructed from all the capacitances in the circuit.
The Euler-Lagrange equations, i.e.

d

d t

( ∂L
∂Φ̇n

)
−

( ∂L
∂Φn

)
= 0, (2.32)

one for eachΦn , are then the equations of motion of the system. Note that taking these
derivatives of the energy terms given in Eq. (2.30) always gives a current, so here the
Euler-Lagrange equations are precisely the Kirchhoff current laws.

To proceed towards quantization we need to switch to the Hamiltonian formalism,
because only then we can introduce operators and commutation relations. First, the
generalized momenta are given by

qn = ∂L

∂Φ̇n
. (2.33)

Then the Hamiltonian is defined as

H (Φn ,qn) = Φ̇n(Φn ,qn) ·qn −L
(
Φn ,Φ̇n(Φn ,qn)

)
, (2.34)
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where · indicates the scalar product. Note that one is required to express Φ̇n in terms
ofΦn and qn , which in general requires that the Lagrangian is concave with respect to
the Φ̇n . In practice, here it means that C has to be invertible. If it is not, this pathological
case is usually due to aΦn that does not have dynamics (i.e. there is no Φ̇n in the Euler-
Lagrange equations) and thus can be algebraically removed using the Euler-Lagrange
equations themselves. Then one obtains a lower dimensional C which is invertible. Finally,
one can “promote” Φn and qn to operators and impose the canonical commutation
relations [Φn , qn] = iħ for each node, getting the quantum Hamiltonian of the system. In
the rest of this thesis we use the convention that ħ= 1.

2.5. RESET

Quantum computation requires the capability to initialize qubits in a known pure state,
usually taken to be |0〉, the ground state of the system (here a transmon). This has
to occur with high fidelity, needs to be fast for some applications and might involve
resetting not just |1〉 but also |2〉 or even higher levels to |0〉. Furthermore, reset (also
called initialization) can be unconditional or conditional on the measurement outcome
(feedback). Here we discuss the pros and cons and features of various reset methods
(relaxation, feedback [22, 23], all-microwave [24–26] and flux pulsing [27]). Other reset
methods, such as the quantum circuit refrigerator [28] and flux modulation [29], are not
discussed in detail here.

2.5.1. RELAXATION

The simplest approach lets the transmon passively relax to the ground state, on a time
scale set by the relaxation time T1 (see Section 3.1). Generally, waiting for ∼ 10T1 is more
than enough. This method does not really require any calibration and is unconditional.
However, it is relatively slow and it will (hopefully!) get worse in future devices with
longer T1’s. We note that a precondition for this method to work is that the excitation rate
from |0〉 to |1〉 is low, otherwise the steady state is not close to a pure state. More precisely,
assume that the transmon is in thermal equilibrium with a bath at temperature T . The

occupancy for each state |i 〉 is given by Zi /Z =: ni , where Zi = e
− ħωi

kB T and Z = ∑
i Zi is

the partition function, with ħωi the energy of state |i 〉. For a transmon, ω0 = 0, ω1 =ω

and ω2 = 2ω+α, where ω and α are the frequency and anharmonicity, respectively, as
discussed in Section 2.2. Considering only the first three levels,

Z = 1+e
− ħω

kB T +e
− ħ(2ω+α)

kB T . (2.35)

The lowest stage of the dilution refrigerator (fridge in short) where the chip is kept has a
temperature of about T ∼ 20 mK. Hence, for a common frequency ω/2π= 6 GHz, one has

ħωÀ kB T . In this limit we can approximate Z ≈ 1+e
− ħω

kB T , since e
− ħ(2ω+α)

kB T in Eq. (2.35) is

negligible compared to e
− ħω

kB T (recall thatα is low). In other words, as thermal fluctuations
cause only few excitations to |1〉 because of the relatively large energy gap, there are even
less excitations to |2〉 (or to even higher levels, which we had already neglected in the
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analysis above). Then the so-called average number of residual excitations is

n1 ≈ 1

e
ħω

kB T +1
. (2.36)

For example, for ω/2π = 6 GHz and T = 20 mK one has n1 ≈ 6 · 10−7. However, com-
monly n1 = 10−3-10−2 in the lab, which is not necessarily too high for practical purposes,
but definitively higher than based on the thermalization picture. This means that the ef-
fective transmon temperature is rather at 42-64 mK, potentially because of quasi-particles
(due to cosmic rays) and because of the connections of the transmon to higher stages of
the fridge and to the room-temperature electronics, but it is not fully understood.

We briefly note that for fluxonium (see Section 2.3), the two-level-system approxima-
tion before Eq. (2.36) still holds because the anharmonicity is positive and large. Hence,
we can apply Eq. (2.36) to fluxonium as well. However, since the frequency is much lower,
on the order of 500 MHz (see Section 2.3), even with T = 20 mK one finds n1 ≈ 0.23. This
value is huge, implying that passive relaxation methods cannot be used to reset fluxonium
to |0〉 within any good approximation.

2.5.2. FEEDBACK
This method consists of measuring the qubit in the {|0〉 , |1〉 , |2〉 , . . .} basis and applying
a corrective gate depending on the measurement outcome. E.g., if one measures |1〉,
then one applies an X gate (also called a π pulse) to bring the state back to |0〉. This
method is useful for applications where one needs to measure a qubit mid-circuit and
re-use it right away (furthermore, beyond reset, conditional feedback is useful to do a
certain operation depending on the outcome, for example in quantum error correction).
Conditional-feedback reset has been experimentally implemented for |0〉 and |1〉 [22, 23],
but not |2〉. However, due to the challenges in the implementation, conditional feedback
is not a common feature found in experimental settings at the moment. The issue is
to process the measurement outcome in the classical electronics (e.g. via an FPGA [30])
and feed back the corrective operation in a sufficiently short amount of time (. 500 ns).
In that way, the rest of the computation does not have to be delayed, with otherwise
detrimental effects in terms of coherence.

In Chapter 9 we assume that one can apply conditional feedback to map a mea-
sured |2〉 to |1〉, thus constituting a leakage-reduction unit (π-LRU; see Section 9.3.2).

2.5.3. ALL-MICROWAVE RESET
References [24–26] introduced an unconditional, active reset scheme that resets both |1〉
and |2〉 to |0〉. In Chapter 9 we adapt this scheme to a leakage-reduction unit (res-LRU;
see Section 9.2) and we discuss it in detail. Here we provide a short summary of the reset
scheme as introduced in Refs. [24–26].

The fundamental elements are the readout resonator and one or two transmon drives.
The resonator acts as an energy sink due to its designed strong coupling to the feedline
environment, while the drives moves excitations from the transmon to the resonator. In
one variation of the scheme [24, 25], a main, microwave drive on resonance with the
|20〉 ↔ |01〉 transition (notation: |transmon,resonator〉) is used to trade leakage on the
transmon for a photon in the resonator. This drive induces oscillations between |20〉
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and |01〉 and is calibrated to stop the first time that |20〉 is fully depleted. Then a second
microwave drive on resonance with the transmon |1〉↔ |2〉 transition is used to swap the
population in |1〉 onto the depleted |2〉. Finally, the main drive pulse is repeated a second
time, leaving the transmon ideally in |0〉. Note that technically the drive amplitude shifts
the eigenfrequencies (see Eq. (9.62)), thus changing the resonance condition, such that
the drive frequency has to be calibrated accordingly.

In the second variant [26], the two drives are applied at the same time, which allows
depletion in a single step, although calibration is harder. Furthermore, in Ref. [26] the
authors keep the drives on for a few oscillations, rather than stopping at the first min-
imum. This approach solves potential timing issues and is more resilient to crosstalk
(see Section 9.6.3). A fidelity to |0〉 of 99% has been shown in 280 ns, and of 99.8% in 500 ns,
compared to 98.3% in 210 ns in Ref. [25] (in the latter case, an overhead of 2 µs should
actually be added to account for the slow decay rate of their resonator).

2.5.4. FLUX PULSE

An unconditional reset scheme that uses a flux pulse is given in Ref. [27]. The trans-
mon is brought on resonance with its dedicated readout resonator to directly exploit
the capacitive coupling between them. The pulse is realized with the “fast-adiabatic”
technique [31]. The pulse parameters are chosen such that, not just the transmon
population in |1〉 is transferred to the resonator, but also in |2〉 and even |3〉, passing
through a cascade of avoided crossings (e.g. |10〉 7→ |01〉 or |20〉 7→ |11〉 7→ |02〉, with the
notation |transmon,resonator〉). After a carefully chosen time such that the exchange is
completed, the transmon is moved below the resonator frequency, also in a fast-adiabatic
fashion, allowing the resonator population to decay (so that e.g. |01〉→ |00〉 or |02〉→ |00〉).
Then the transmon is brought back as fast as possible (< 2 ns) to its sweetspot frequency.
Overall the protocol has been shown to reach > 99% fidelity to |0〉 in 250 ns, starting from
either |1〉, |2〉 and |3〉. In particular, the best fidelity is 99.8% when starting from |1〉.

As the transmon sweeps a 2.5 GHz range in frequency, this method can be applied only
in the presence of tunable couplers, otherwise the transmon frequency would very likely
be on resonance with some transition on nearby transmons, even if briefly. Furthermore,
as transmons are usually operated at their maximal-frequency sweetspot, this method
requires that the chip is designed with all readout-resonator frequencies to be below the
transmon frequencies in order to flux tune to resonant transitions (we note that this is
the opposite of the current approach in the DiCarlo lab; see Section 2.2.2). This was not a
requirement of the reset methods discussed above.

2.6. READOUT

Here we discuss the theory of dispersive readout, in particular how the resonator fre-
quency depends on the transmon state. Then we briefly outline how the resonator
frequency is measured in experiment and how the signals are treated to actually declare a
measurement outcome.
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2.6.1. DISPERSIVE READOUT

The most common way of measuring the state of a transmon is the so-called dispersive
readout, via its dedicated readout resonator. The Hamiltonian of the coupled transmon-
resonator system is given by

H = H r +H q +H c (2.37)

H r =ωr a†a (2.38)

H q =ωq b†b + α

2
(b†)2b2 (2.39)

H c = g (ab† +a†b), (2.40)

where ωr and ωq are the resonator and transmon frequencies, respectively, α is the
transmon anharmonicity, g corresponds to the capacitive coupling, a and b are the
annihilation operators for the resonator and transmon, respectively. The transmon
Hamiltonian H q is derived within the approximations described in Section 2.2. An
expression for the coupling g depending on the basic circuit parameters (EC ,E J , . . .)
is given in Eq. (2.67).

As in Eq. (2.12), one can rewrite H q as

H q =
+∞∑
j=0

ω
q
j | j 〉〈 j | , (2.41)

where ωq
0 = 0, ωq

1 = ωq , ωq
2 = 2ωq +α and in general ωq

j = jωq +α j ( j − 1)/2. We can

introduce the transition frequencies ωq
j , j+1 =ω

q
j+1 −ω

q
j and the detunings

∆ j :=ωq
j , j+1 −ωr . (2.42)

We assume to be in the dispersive regime, which can be expressed as g /∆¿ 1 with∆ :=∆0,
or more precisely as

λ j
p

n := g
√

j +1

∆ j

p
n ¿ 1, (2.43)

where n is the number of photons in the resonator (recall that a = ∑+∞
n=1

p
n |n −1〉〈n|),

and where we assume that this holds at least up to j = 2 and for low-enough n. One can
then use a Schrieffer-Wolff transformation eS =∑+∞

j ,n=0 | j n〉〈 j n|D [32–35] (reviewed also

in Section 9.5.1) to effectively capture the action of H c , where {| j n〉} are the eigenstates
of H 0 := H r + H q (the “bare” basis) and {| j n〉}D are the eigenstates of H 0 + H c = H r +
H q +H c (the “dressed” basis). Specifically, here we use S ≈ S1, where S1 is a first-order
transformation in λ j

p
n, for which eS1 | j n〉D ≈ | j n〉. Here [7]

S1 =
(+∞∑

j=0
λ j (a | j +1〉〈 j |)−h.c.

)
, (2.44)
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for which

eS He−S ≈ eS1 He−S1 ≈ H + [S1, H ] ≈ H̃ :=
+∞∑
j=0

(
ω

q
j +χ j−1, j

) | j 〉〈 j |

+
(
ωr +

+∞∑
j=0

(
χ j−1, j −χ j , j+1

) | j 〉〈 j |
)
a†a, (2.45)

where we have introduced the partial dispersive shifts

χ j , j+1 := g 2( j +1)

∆ j
(2.46)

and where we have neglected a double-excitation-exchange term since it is proportional
to α, which is relatively low for transmons.

For the moment we restrict Eq. (2.45) to the first two levels of the transmon:

H̃ |C = (
ωq +χ0,1

) |1〉〈1|
+

(
ωr −χ0,1 |0〉〈0|+

(
χ0,1 −χ1,2

) |1〉〈1|)a†a, (2.47)

= −ω
q +χ0,1

2
Z

+
(
ωr − χ1,2

2
+ (−χ0,1 +

χ1,2

2

)
Z

)
a†a, (2.48)

where we have used |0〉〈0| = (I +Z )/2 and |1〉〈1| = (I −Z )/2. We can introduce the shifted
qubit frequency ω̃q =ωq +χ0,1, the shifted resonator frequency ω̃r =ωr −χ1,2/2 and the
dispersive shift

χ=−χ0,1 +
χ1,2

2
(2.49)

= g 2α

∆(∆+α)
. (2.50)

Then

H̃ |C = − ω̃
q

2
Z + (

ω̃r +χZ
)
a†a. (2.51)

One can see that the dispersive shift is the amount by which ω̃r is shifted in one direction
or the other depending on the qubit being in |0〉 or |1〉 (ω̃r 7→ ω̃r ±χ, respectively).

MEASUREMENT OF STATE |2〉
If one also wants to measure |2〉, it is important to know by how much ω̃r is changed if the
transmon is in |2〉. This quantity, which we call χ(2), is not easily found in the literature to
my knowledge. From Eq. (2.45) it can be computed to be:

χ(2) =ωr + (χ1,2 −χ2,3)− ω̃r = 3χ1,2

2
−χ2,3 (2.52)

= 3g 2α

(∆+α)(∆+2α)
. (2.53)
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The ratio between the dispersive shifts is then

χ(2)

χ
= 3∆

∆+2α
. (2.54)

First, note that it is 1 for ∆ = α, in which case it would not be possible at all to distin-
guish |1〉 and |2〉 in the measurement. Luckily, commonly α∼−300 MHz and∆∼−1 GHz,
for which χ(2) ≈ 2χ. If instead ∆∼+1 GHz, then χ(2) ≈ 7χ. These are just some examples
but one can understand that χ(2) can vary widely.

PURCELL

On the one hand, the coupling term H c in Eq. (2.40) enables dispersive readout. On the
other hand, the coupling opens a relaxation channel for the transmon via the resonator,
known as the Purcell effect [36]. This is particularly troublesome because the relaxation
rate κ of the resonator is large by design, whereas one strives to keep the relaxation
rate 1/T1 of the transmon as small as possible. The rate κ is large because, as in Sec-
tion 2.6.2, it sets the time for the probe pulse to be returned from the resonator. It cannot
be too large either, because the interaction needs to last long enough to collect informa-
tion about the transmon state. Indeed, maximal contrast is achieved when χ= κ/2 [2],
where in practice these parameters are on the order of a few MHz, allowing for a measure-
ment time on the order of a few hundreds of nanoseconds.

A common solution to mitigate the Purcell effect is to use a Purcell filter [37, 38], which
consists of another resonator placed between the feedline and the readout resonator itself.
The Purcell filter is designed to alter the environmental impedance such that the coupling
to the environment is suppressed at the transmon frequency, while it remains strong at
the readout-resonator frequency.

2.6.2. READOUT OF A TRANSMON IN EXPERIMENT

MEASURING THE RESONATOR FREQUENCY

Thanks to the dispersive coupling (see Eq. (2.51)), one can measure the transmon by
collecting information about the resonator frequency. Here we sketch the experimental
measurement process [2, 3, 39]. One sends a signal that populates the resonator with
photons and that gradually leaks back out. The state populating the resonator acquires a
phase-shift which depends on the difference of the carrier frequency of the probe and the
resonator frequency (which depends on the qubit state). This phase-shift is converted
in the measurement of the outgoing amplified signal in the IQ plane, where the voltage
quadratures are called in-phase (I) and quadrature (Q). The final location in the IQ plane
thus provides information about the transmon state. To be more precise, the information
about the transmon state leaks out in time from the readout resonator, hence the final
voltage V in the IQ plane is obtained by integration with appropriate weights [40]. For
each given state (|0〉, |1〉, |2〉 . . .), one is not expected to measure always the same value
of V because of fundamental Heisenberg uncertainty relations. Rather, the measured
values of V generally follow a Gaussian distribution in the IQ plane.

MEASUREMENT CALIBRATION

The measurement is pre-calibrated to be able to associate to each value of V a likelihood
of corresponding to a |0〉, |1〉 or |2〉 (or even more states in principle). Many instances of
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each state are prepared and measured to identify where the Gaussian distributions N j

of each state are located (one can also observe relaxation and residual excitations in this
calibration). Then one can divide the IQ plane into maximum-likelihood regions, one per
each state. The procedure to associate a likelihood to each state is described in further
detail in Section 8.11.1.

IMPORTANCE OF MEASURING |2〉
We note that |2〉 if often neglected in measurements as the qubit states are generally
more relevant. However, as leakage can occur, measuring |2〉 is important to detect
leakage and possibly apply a correction to bring it back to the computational subspace
(see Chapters 8 and 9). Furthermore, one often does not record both quadratures but
only a linear combination of them, corresponding to the axis in the IQ plane that passes
through the centers of N0 and N1. In particular, one records the projection of V onto this
axis. Then, optimal separation corresponds to separating the projected distributions by
a threshold value placed in the middle. While this requires to save less data, in general
the price is a partial loss of information, since |2〉 cannot be measured as accurately as
it would from having data on the full IQ plane. It is still possible to extract information
about |2〉 only if (luckily) the projection of N2 onto the combined quadrature does not
significantly overlap with any of the other two.

AMPLIFICATION

The more the photons that populated the resonator, or the longer the probe pulse (with
fewer photons), the more separated the Gaussian distributions {N j } are in general, al-
lowing for a measurement with higher signal-to-noise ratio. However, the dispersive
regime is valid only until the photon number n̄ is limited, i.e. until the approximation
in Eq. (2.43) holds (also as long as other approximations leading to Eq. (2.51) hold, like the
RWA). In particular, n̄ should be smaller than the critical photon number ncr =∆2/4g 2 [7].
For current superconducting-qubit control stacks, ncr is generally too low to be properly
detected, so a long amplification chain to higher fridge stages is needed. Lots of work [2]
has been dedicated to amplifiers to avoid the introduction of unnecessary noise, espe-
cially because phase-insensitive amplifiers inevitably introduce some noise due to the
standard quantum limit. Finally, we note that from a fundamental-physics point of view,
it is unclear where exactly in this chain the transmon “collapses” onto an eigenstate and
is really measured.

MULTIPLEXED READOUT

In a chip with multiple qubits, using slightly different frequencies for the readout res-
onators allows simultaneous measurement via a single feedline [41]. This is because
probe pulses at different frequencies can be mixed together. There are limits in band-
width, though, as well as in how close the frequencies can be, so that, for example at the
companies IBM and Rigetti, a good tradeoff seems to have 8 resonators per feedline.

2.7. SINGLE-QUBIT GATES
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X Y CONTROL

A microwave-drive line is generally used to perform single-qubit gates for superconduct-
ing qubits. This line is capacitively coupled to the qubit and a voltage Vd (t) is applied
to perform different gates. The drive Hamiltonian is Hd = iE (t)(b −b†), where E (t) is
proportional to Vd (t) and b is the annihilation operator, here for a transmon. It can
be shown [2] that it is possible to implement arbitrary rotations around any axis in the
equator of the Bloch sphere, depending on the choice of Vd (t ). In particular, let

Vd (t ) =V0s(t )
(
I sin(ωd t )+Q cos(ωd t )

)
(2.55)

with I = cos(φ) and Q = sin(φ), where ωd and φ are the drive frequency and phase,
respectively, V0 is a constant, s(t) is an envelope function, I and Q are called the in-
phase and quadrature components of the voltage, respectively. The axis of rotation in the
equator is determined by φ and the angle of rotation by the drive power together with the
gate time, e.g., φ= 0 gives rotations around X and φ=π/2 around Y .

Z ROTATIONS

One can either implement Z rotations in a physical way, e.g. by fluxing a tunable transmon
slightly away from its sweetspot, or in a “virtual” way. This is achieved by appropriately
changing the drive phase [2] in the AWG (Arbitrary Waveform Generator) generating Vd (t ).
The advantage of virtual Z rotations is that they cost almost no time and their fidelity
is nominally unity as they are performed “in software” and merged with other pulses.
While X Y control alone allows to implement any single-qubit gate by applying multiple
rotations in sequence, combining X Y control with (virtual) Z rotations allows to reduce
the number of operations.

DRAG TO MITIGATE LEAKAGE AND PHASE ERRORS

As transmons have a relatively small anharmonicityα, Vd (t ) can contain components that
are on resonance with the |1〉↔ |2〉 transition and not just |0〉↔ |1〉, due to the smoothing
envelope s(t ). This can cause leakage to |2〉, as well as (coherent) phase errors due to the
repulsion of |1〉 and |2〉 in the presence of the drive. The DRAG technique (Derivative
Reduction by Adiabatic Gate) [42] allows to solve these issues. In its original implementa-
tions it allows one to reduce either leakage or phase errors. However, extensions of the
DRAG technique allow one to reduce both errors at the same time [2]. The overall result is
that single-qubit gates routinely reach average gate fidelities & 99.8% [43].

2.8. TWO-QUBIT GATES
We discuss the approximations underlying the Hamiltonian of two transmons coupled
via a bus resonator (the kind of system considered in the experiments and numerical
simulations described in Chapter 6). We then discuss the energy spectrum of the effective
two-transmon system, focusing on the avoided crossings as a function of flux, which can
be used to perform a two-qubit gate. Finally, we discuss the three major ways of imple-
menting a two-qubit gate with transmons: baseband flux pulsing (used in Chapter 6),
parametric driving and the cross-resonance gate.
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Figure 2.5: The circuit for two tunable transmons (see Section 2.2.1) coupled via a bus resonator. We introduce
node fluxesΦA ,ΦB ,Φ and groundΦg ≡ 0. The external magnetic fluxes areΦA

e andΦB
e . In orange our choice

for the spanning tree of the circuit.

2.8.1. COUPLED TRANSMONS

We apply the rules of circuit quantization (see Section 2.4) to the circuit in Fig. 2.5. Each
SQUID (X = A or B) has two Josephson junctions ( j = 1 or 2) characterized by E X

J j
, two

intrinsic capacitances C X
j and a shunting capacitance C X

S . Let C X
Σ =C X

1 +C X
2 +C X

S . Further-

more, each loop is pierced by an external magnetic fluxΦX
e and is capacitively connected

to the resonator by a capacitance C X
c . The resonator in the middle has capacitance C and

inductance L. Considering the spanning tree in Fig. 2.5, the Lagrangian of the circuit is

L = ∑
X=A,B

1

2
C X
Σ

(
Φ̇X )2 +E X

J1
cos(φX −φX

e )+E X
J2

cosφX

+ 1

2
C Φ̇2 − Φ

2

2L

+ ∑
X=A,B

1

2
C X

c

(
Φ̇X − Φ̇)2, (2.56)

where φX = 2πΦX /Φ0 and φX
e = 2πΦX

e /Φ0 with Φ0 being the flux quantum, and where
we have assumed Φ̇X

e = 0. The kinetic terms (those containing a time derivative) can be
rewritten in terms of a capacitive matrix C (see Eq. (2.31)). To move to the Hamiltonian
formalism, one needs to invert C. Assuming that C X

c ¿ min{C X
Σ ,C }, we approximate C−1

up to second-order in C A
c ,C B

c , leading to the Hamiltonian

H ≈ ∑
X=A,B

1

2C̃ X
Σ

(Q X )2 −E X
J1

cos
(
φX −φX

e

)−E X
J2

cosφX

+ 1

2C̃
Q2 + Φ

2

2L

+ ∑
X=A,B

1

C̃ X
c

Q X Q + 1

C̃ J
Q AQB , (2.57)
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where the momenta are defined as Q X := ∂L1
∂Φ̇X and Q := ∂L1

∂Φ̇
, and where

1

C̃ X
Σ

= 1

C X
Σ

− C X
c

(C X
Σ

)2
+

(
1

(C X
Σ

)3
+ 1

C (C X
Σ

)2

)
(C X

c )2 (2.58)

1

C̃
= 1

C
− C A

c +C B
c

C 2 + 1

C

(
(C A

c )2

(C A
Σ

)2
+ (C B

c )2

(C B
Σ

)2

)
+ (C A

c +C B
c )2

C 3 (2.59)

1

C̃ X
c

= C X
c

CC X
Σ

−
(

1

C (C X
Σ

)2
+ 1

C 2C X
Σ

)
(C X

c )2 − C A
c C B

c

C 2C X
Σ

(2.60)

1

C̃ J
= C A

c C B
c

CC A
Σ

C B
Σ

. (2.61)

We note that the term Q AQB /C̃ J in Eq. (2.57) is already a direct exchange term between
the two transmons, even before considering the dispersive regime (see after Eq. (2.70)).
This term can easily be forgotten if one tries to directly write the Hamiltonian of the circuit
in Fig. 2.5, instead of starting with the Lagrangian as prescribed by circuit quantization
(see Section 2.4). The effect of this term is to alter the expression for the effective coupling
between the two transmons and, for example, it plays a role in the design of tunable
couplers [44].

We proceed with a few manipulations of H in Eq. (2.57). For the resonator one can
introduce the standard harmonic-oscillator operators as

Q = i

√
C̃ωr

2
(a† −a) (2.62)

Φ= 1√
2C̃ωr

(a† +a), (2.63)

where ωr = 1/
√

LC̃ is the resonator frequency (note that it depends on the renormalized
capacitance C̃ and not C ). Then the resonator free Hamiltonian is simply ωr (a†a +1/2),
where the 1/2 term is ignored in the following since it is a constant energy shift.
Regarding the SQUIDs, as described in Eq. (2.19), the cosine terms can be combined
as E X

JΣ
(φX

e )cosφX , where we make the dependence of E X
JΣ

on φX
e explicit. Then, as

in Eqs. (2.6) and (2.7), in the transmon regime we can introduce similar operators as
for the resonator:

N X = ip
2

(E X
JΣ

(φX
e )

8E X
CΣ

)1/4
(b†

X −bX ) (2.64)

φX = 1p
2

(E X
JΣ

(φX
e )

8E X
CΣ

)−1/4
(b†

X +bX ), (2.65)

where N X =Q X /2e and E X
CΣ

= e2/(2C̃ X
Σ ). In the same approximations as leading to Eq. (2.9)

(cosine up to 4th order and rotating-wave approximation), the free transmon Hamiltonian

is ωX (φX
e )b†

X bX + αX

2 (b†
X )2b2

X , with transmon frequency ωX (φX
e ) =

√
8E X

JΣ
(φX

e )E X
CΣ

−E X
CΣ

and anharmonicity αX =−E X
CΣ

.
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Combining the results above, one gets

H ≈ ∑
X=A,B

ωX (φX
e )b†

X bX + αX

2
(b†

X )2b2
X

+ωr a†a

− ∑
X=A,B

g X (φX
e )

(
b†

X −bX
)(

a† −a
)

− J̃ AB (φA
e ,φB

e )
(
b†

A −bA
)(

b†
B −bB

)
, (2.66)

where

g X (φX
e ) := (C̃ X

c )−1e
√

C̃ωr

(E X
JΣ

(φX
e )

8E X
CΣ

)1/4
, (2.67)

J̃ AB (φA
e ,φB

e ) := (2e)2 1

2C̃ J

(E X
JΣ

(φA
e )

8E A
CΣ

)1/4(E B
JΣ

(φB
e )

8E B
CΣ

)1/4
. (2.68)

We now perform the rotating-wave approximation for the energy non-conserving terms
in Eq. (2.66), i.e. we neglect those terms containing two creation or two annihilation
operators, like b†

X a† and bAbB . We get

H ≈ ∑
X=A,B

ωX (φX
e )b†

X bX + αX

2
(b†

X )2b2
X

+ωr a†a

+ ∑
X=A,B

g X (φX
e )

(
b†

X a +bX a†
)
+ J̃ AB (φA

e ,φB
e )

(
b†

AbB +bAb†
B

)
. (2.69)

The free transmon Hamiltonian (first line in Eq. (2.69)) can be rewritten as
∑+∞

j=0ω
X
j | j 〉〈 j |X ,

similarly to Eq. (2.12), where {| j 〉X } are transmon eigenstates and {ωX
j } the eigenfrequen-

cies.
Similarly to the discussion after Eq. (2.43) in Section 2.6.1 about dispersive readout,

we assume to be in the dispersive regime, i.e. that the parameters

λX
j

p
n := g X

√
j +1

∆X
j

p
n, (2.70)

satisfy λX
j

p
n ¿ 1 (at least up to j = 2 and for low n), where ∆X

j =ωX
j , j+1 −ωr and ωX

j , j+1 is

the transition frequency from transmon level | j 〉X to | j +1〉X . Then we apply a Schrieffer-
Wolff transformation eS [32–35] (reviewed also in Section 9.5.1) to capture effectively

the action of
∑

X=A,B g X (φX
e )

(
b†

X a +bX a†
)

in Eq. (2.69). Specifically, here we use S ≈ S1,

where S1 is a first-order transformation in λ j
p

n. Here [7]

S1 =
( ∑

X=A,B

+∞∑
j=0

λX
j

(
a | j +1〉〈 j |X

)−h.c.
)
. (2.71)
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Then effectively

eSH e−S ≈ eS1H e−S1 ≈H + [S1,H ] (2.72)

≈ H̃ := ∑
X=A,B

+∞∑
j=0

(
ωX

j (φX
e )+χX

j−1, j

) | j 〉〈 j |X

+
(
ωr +

∑
X=A,B

+∞∑
j=0

(
χX

j−1, j −χX
j , j+1

) | j 〉〈 j |X
)
a†a

+
+∞∑

j k=0
J AB

j k (φA
e ,φB

e )
√

j +1
p

k +1
(
| j +1,k〉〈 j ,k +1|AB +h.c.

)
, (2.73)

where

J AB
j k (φA

e ,φB
e ) := J̃ AB (φA

e ,φB
e )+ g A(φA

e ) g B (φB
e )

2

( 1

∆A
j

+ 1

∆B
j

)
(2.74)

and where we have omitted the explicit dependence of ∆X
j and of the partial dispersive

shifts χX
j , j+1 := (g X )2( j+1)

∆ j
on φX

e .

Under the assumption that the resonator is in the ground state |0〉, since a†a |0〉 = 0
one finally gets

H̃ ≈ ∑
X=A,B

+∞∑
j=0

ω̃X
j (φX

e ) | j 〉〈 j |X

+
+∞∑

j k=0
J AB

j k (φA
e ,φB

e )
√

j +1
p

k +1
(
| j +1,k〉〈 j ,k +1|AB +h.c.

)
, (2.75)

where we introduce ω̃X
j (φX

e ) =ωX
j (φX

e )+χX
j−1, j . Beside a rescaled transmon frequency ω̃X (φX

e ) =
ω̃X

1 (φX
e ), we can also introduce a rescaled anharmonicity α̃X = αX +χX

1,2 − 2χX
0,1 and

rewrite Eq. (2.75) (exactly up to j = 2) as

H̃ = ∑
X=A,B

ω̃X (φX
e )b†

X bX + α̃(φX
e )

2
(b†

X )2b2
X

+
+∞∑

j k=0
J AB

j k (φA
e ,φB

e )
√

j +1
p

k +1
(
| j +1,k〉〈 j ,k +1|AB +h.c.

)
, (2.76)

where we make the dependence of α̃X on φX
e explicit (via χX

j , j+1).

Equation (2.76) is often presented as

H̃ ≈ ∑
X=A,B

ω̃X (φX
e )b†

X bX + α̃

2
(b†

X )2b2
X + J AB (bAb†

B +b†
AbB ) (2.77)

where J AB = g A g B

2 ( 1
∆A + 1

∆B ). In other words, beyond Eq. (2.76) one performs the further

approximations that 1) the dependence of J AB
j k on φX

e can be neglected; 2) ∆X
j ≈ ∆X

0 ≡
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∆X = ωX −ωr , leading to J AB
j k being independent of j ,k, specifically J AB

j k = J AB
00 ≡ J AB ;

3) J̃ AB in Eq. (2.68) can be neglected; 4) the dependence of α̃ on φX
e can be neglected. We

note that approximation 2) is generally good for transmons since the anharmonicity is
small (this approximation is exact if α= 0).
Within these approximations one has

J AB (bAb†
B +b†

AbB ) = J AB (|01〉〈10|+h.c.)+p
2J AB (|11〉〈02|+h.c.)+ . . . , (2.78)

i.e. the couplings in the one- and two-excitation manifolds are expected to differ by ap
2-factor. However, one is generally aware that the prediction of this

p
2 factor is only

approximate. As a consequence, in experiments these couplings, as well as frequencies
and anharmonicities, are directly measured (at the φX

e of interest) to avoid mismatches
with the approximations used in the theory.
We remark that in the numerical simulations in Chapter 6 (see around Eq. (6.11)), apart
for all other approximations in this section, we also consider approximations 2), 3), 4) and
partially 1), meaning that we take into account that ∆X , but not g X , varies with φX

e .
Nevertheless, we still find a very good match with the experimental results (see Fig. 6.4
in particular). We attribute this precisely to the fact that in the simulations we used the
parameters measured in experiment at the flux values that are relevant for the two-qubit
gate.

While measurements of parameters in experiment can provide direct insight into the
full Hamiltonian, the first-principle analysis performed in this section shows that one
should at least not take for granted certain relationships between parameters that are
predicted by approximate formulas, like the

p
2 factor in Eq. (2.78). Furthermore, for g X

and J AB
j k we have made explicit the dependence on φe as well as on other circuit parame-

ters (see Eq. (2.67) and Eq. (2.74), respectively). In particular, we highlight the dependence
of g X on ωr . This fact has been exploited in a recent update of the surface-code chips
in the DiCarlo lab: bus resonators used to have a target frequency of ωr /2π= 8.5 GHz,
but this was changed to 20 GHz. Naively, based on Eq. (2.74), one only expects J AB

j k to

decrease since ∆X
j increases. To keep the same two-qubit gate speed (i.e. the same value

for the coupling) one would need to increase the coupling capacitances C X
c , which are

already relatively large in current devices. However, the increase in g X with ωr helped to
keep the same two-qubit-gate speed without having to significantly increase the coupling
capacitances to compensate.

2.8.2. AVOIDED CROSSINGS
We now discuss the spectrum of two coupled transmons as a function of the applied flux
(see Fig. 2.6). We consider the coupling to be mediated by a bus resonator, as in Sec-
tion 2.8.1, but a direct capacitive coupling would give a similar spectrum as well. In
particular, we consider Eq. (2.77) for simplicity. We assume that only one transmon is
fluxed, specifically the one with higher frequency (here we assume it is transmon B),
whereas the other one stays at its sweetspot (φA

e = 0).
As discussed after Eq. (2.17), the frequency of a tunable transmon decreases when φB

e
increases from 0 to π. If there would be no coupling, the energy levels would simply cross
at those points where ωB

1 (φB
e ≡ φi SWAP

e ) = ωA
1 and ωB

2 (φB
e ≡ φCZ

e ) = ωA
1 +ωB

1 (φB
e ≡ φCZ

e ),



2.8. TWO-QUBIT GATES

2

33

0.0 0.5 1.0 1.5 2.0

φBe (rad)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ω
ij
/
2
π

(G
H

z)

φCZ
e

φiSWAP
e

|03〉
|12〉
|21〉
|30〉
|02〉
|11〉
|20〉
|01〉
|10〉
|00〉

Figure 2.6: Spectrum of two coupled transmons. We consider Eq. (2.77) with ω̃A (0)/2π= 4.9 GHz, ω̃B (0)/2π=
6 GHz, α̃A /2π= α̃B /2π=−300 MHz and J AB /2π= 45 MHz. We plot the frequencyωi j of level |i j 〉 as a function

of the external flux φB
e , while φA

e ≡ 0. The interaction points to perform CZ or i SWAP are marked by vertical
dotted lines.
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among others (see also Fig. 8.1). The latter condition for the CZ gate can also be rewritten
asωB

1 (φB
e ≡φCZ

e ) =ωA
1 −αB . The valuesφi SWAP

e andφCZ
e are called the interaction points for

the respective gates. In other words, these points correspond to the center of the so-called
avoided crossings between levels |01〉 and |10〉 and between |02〉 and |11〉, respectively.
The presence of a non-zero coupling makes these levels interact and opens a gap equal
to twice the coupling. To see this, consider Eq. (2.77) restricted to e.g. the subspace
S = span{|11〉 , |02〉}:

H̃ |S =
(
ω11(φB

e )
p

2J ABp
2J AB ω02(φB

e ).

)
(2.79)

At φB
e =φCZ

e , by definition one has ω11(φCZ
e ) =ω02(φCZ

e ), which we simply denote as ωCZ.
The eigenvalues are ωCZ −p

2J AB and ωCZ +p
2J AB and the corresponding eigenvectors

are |11〉 := (|11〉+ |02〉)/
p

2 and |02〉 := (|11〉− |02〉)/
p

2. The difference between the eigen-
values is thus 2(

p
2J AB ). This “level repulsion” is stronger at the center of the avoided

crossing (at φCZ
e or φi SWAP

e ) and it becomes weaker away from it, although it is never
really 0 (this is at the origin of the residual Z Z crosstalk discussed in Section 3.2.7).

Since J AB induces two-qubit interactions, these avoided crossings can be exploited in
various ways to implement two-qubit gates between transmons. In the following section
we describe the CZ in detail and we briefly mention the i SWAP.

2.8.3. THREE ALTERNATIVE METHODS TO IMPLEMENT THE CZ GATE
In this section we introduce baseband flux pulsing (used in Chapter 6) in a detailed
way, whereas we discuss a few specific points about parametric driving and the cross-
resonance gate.

A controlled-phase or control-Z or CZ gate is defined in the computational subspace
as

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (2.80)

i.e. |11〉 acquires a so-called conditional phase φ2Q =π (e iπ =−1), while the other compu-
tational states remain unchanged. In general, a gate of the form

U =


e iφ00 0 0 0

0 e iφ01 0 0
0 0 e iφ10 0
0 0 0 e iφ11

 (2.81)

can be brought to the form

U ′ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e iφ2Q

 (2.82)
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via single-qubit Z rotations (modulo a global phase), where

φ2Q =φ11 −φ01 −φ10 +φ00. (2.83)

This shows that φ2Q is the relevant quantity that characterizes the CZ. Then U ′ is a
generalized CZ with arbitrary conditional phase. If one deals with qutrits and not qubits,
one can exploit higher excited states, in particular |02〉 and its avoided crossing with |11〉
(see Section 2.8.2), to implement a CZ in the computational subspace.

ALTERNATIVE 1: BASEBAND FLUX-BASED CZ

Here one uses a relatively slow (“baseband”) flux pulse to tune the flux to φCZ
e , i.e. to the

|11〉 ↔ |02〉 avoided crossing, the so-called interaction point for CZ (see Section 2.8.2).
There are two “extreme” variants to implement a CZ using baseband flux. In the first,
adiabatic, variant the flux is tuned very slowly such that |11〉, which is the eigenstate
of H̃ (see Eq. (2.79)) at φB

e = 0, can evolve into |11〉 = (|11〉 + |02〉)/
p

2 at the avoided
crossing, which is the instantaneous eigenstate at that point (see after Eq. (2.79)). The
coupling pushes down the frequency of |11〉 by an amount

p
2J AB (see after Eq. (2.79))

compared to the case with no coupling (while |01〉 and |10〉 are approximately unchanged).
It follows that |11〉 acquires a conditional phase equal to J AB t (or more precisely J AB

01 t ;

see Eq. (2.74)), where t is the time spent at the avoided crossing. Then |11〉 is adiabatically
brought back to |11〉 by slowly turning off the applied flux. More precisely, since, as
mentioned in Section 2.8.2, the coupling does have an effect not only at the avoided
crossing, one chooses a pulse with total duration T such that the conditional phase

φ2Q :=
∫ T

0
d t ζ

(
φe (t )

)
(2.84)

is φ2Q =π, where

ζ
(
φe (t )

)=ω11
(
φe (t )

)−ω01
(
φe (t )

)−ω10
(
φe (t )

)+ω00
(
φe (t )

)
(2.85)

is the instantaneous Z Z -coupling strength. We note that ζ(0) quantifies the residual
Z Z coupling discussed in Section 3.2.7. The quantities

∫ T
0 d tω01(t ) =φ01 and

∫ T
0 d tω10(t ) =

φ10 are single-qubit phases that can easily be removed in practice (see Section 2.7) to
ideally give a CZ as defined in Eq. (2.80).

The second “extreme” baseband variant is fully diabatic, i.e. the flux is turned on as
fast as possible from 0 to φCZ

e , without letting |11〉 track the instantaneous eigenstate of
the Hamiltonian. Then |11〉 rotates in the subspace spanned by |11〉 and |02〉 (defined
after Eq. (2.79)). Specifically, at half the evolution, |11〉 fully transforms into |02〉 (i.e. in-
termediate leakage is maximal) and then goes back to −|11〉 (in the rotating frame of the
qubits for this explanation), as desired for CZ. The minus sign is due to the fact that a
2π rotation is equal to −I for a two-level system. Finally, the flux is turned off again as
fast as possible. In the lab frame, single-qubit phases are also acquired in the process but
they can be removed as for the adiabatic approach. We use this diabatic approach in the
Sudden Net Zero CZ gate introduced in Section 6.12.

There are also other baseband variants [31, 45] to do the CZ that fall in-between
these two “extreme” approaches. In particular, the “fast-adiabatic” approach [31] tries
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to combine adiabaticity and speed by optimizing the pulse shape such that it is fast
(although not as fast as in the fully diabatic case) but without letting |11〉 to significantly
leak to |02〉. The pulse shape is discussed in Section 6.11.2. We use this approach in
the original Net Zero CZ gate (see Section 6.1). In that case we actually use such a high
speed that the intermediate leakage is significant (similarly to a diabatic gate), but leakage
interference enables to have low leakage overall. Finally, for all variants discussed above,
in general one does not need to reach exactly the pointφCZ

e , but one can either undershoot
or overshoot by some amount. In that case, the effective coupling is less strong, leading
to a somewhat slower CZ.

iSWAP. We note that the i SWAP gate can be implemented in a similarly diabatic way
(or high-speed fast-adiabatic way) but using the |01〉↔ |10〉 avoided crossing instead of
|11〉↔ |02〉. Modulo single-qubit phases, the rotation of one state into the other leads to
the generalized i SWAPθ , with

i SWAPθ =


1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 1

 , (2.86)

where θ is proportional to the time spent at (or close to) the avoided crossing. In particular,
θ = π/2 gives the canonical i SWAP. We note that, since φCZ

e <φi SWAP
e (see Fig. 2.6), one

crosses the |11〉↔ |02〉 avoided crossing on the way to |01〉↔ |10〉, although rather quickly.
Still, this gives rise to the issue that i SWAP gates might produce a certain amount of
conditional phase [46], although techniques with tunable couplers have been developed
to solve this issue [47].

ALTERNATIVE 2: PARAMETRIC DRIVING

This alternative also uses flux to implement a CZ, but it is conceptually different. In
alternative 1, a “baseband” pulse is used, i.e. there are only relatively low-frequency
components since in general the pulse goes to the avoided crossing and back just once.
Instead, in parametric driving [48, 49] the flux is modulated at a relatively high frequency
(ωm ∼O (200) MHz [50]). Specifically, φB

e (t ) =Ωm cos(ωm t +θm), whereΩm , ωm and θm

are the modulation amplitude, frequency and phase, respectively. Choosing the rightΩm

and ωm [50] allows to effectively activate the |11〉 ↔ |02〉 interaction to implement a
CZ. However, the effective coupling is significantly smaller than the bare one

p
2J AB ,

leading to longer gate times compared to baseband pulses. The technical advantage of
parametric driving is that the pulse is inherently robust to long-timescale distortions
(see Section 3.2.5) since it does not contain low-frequency components.

ALTERNATIVE 3: CROSS-RESONANCE GATE

The cross-resonance gate [51, 52] does not use flux for its implementation, but it is a
purely microwave approach. It does not exploit the |11〉↔ |02〉 avoided crossing either,
thus it can be applied to strictly two-level systems, as well as anharmonic oscillators
such as transmons. The concept of the gate is to drive one qubit at the frequency of the

other, where the drive Hamiltonian is H B
d =Ω(t )

(
bB e−iωA t +b†

B e iωA t
)
, withΩ(t ) the drive

amplitude, and where we assume that e.g. qubit B is being driven. In the presence of a



REFERENCES

2

37

flip-flop coupling J AB like in Eq. (2.77), the result is that one induces Rabi oscillations
of the undriven qubit with a frequency that depends on the state of the driven one. The
effective coupling thus is a Z X term. Such a term does not give rise directly to either a
CZ or a CNOT (control-X ), but it can easily be transformed into either one via single-
qubit gates. A complication is that spurious terms are produced [34], especially I X and
Z I terms, apart for the desired Z X term. However, this issue has been addressed by using
a pulse scheme with echoing pulses designed to cancel the spurious terms [53, 54].

Since a flux line is not required, an advantage of the cross-resonance gate is that
it is compatible with fixed-frequency transmons, which have longer coherence times
compared to tunable ones, thanks to not being sensitive to flux noise. Besides, the flux
line is not required at all if one uses fixed-frequency transmons, allowing to remove
this component from the chip and to reduce the number of external control lines per
qubit. Of course the downside is to lose all the pros of tunability (see Section 2.2.1).
Furthermore, the effective Z X coupling is generally small, even when strong drives are
used. This means that cross-resonance gates usually take more time than baseband-
flux approaches, partially undermining the benefit of longer coherence times, although
there seems to be potential for improvement [55]. Furthermore, the strong drive can
enable unwanted exchanges between other levels of the same transmons or of nearby
transmons, especially since the anharmonicity is relatively low. This can lead to an
increased error rate or leakage [56], requiring careful design of the chip (as well as good
frequency targeting in fabrication [57]) to avoid frequency collisions. This has led IBM
to consider an architecture where qubits have at most three neighbors, and to develop
custom quantum error correcting codes beyond the surface code [58] (see Chapter 4 for
quantum error correcting codes).
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3
NOISE IN SUPERCONDUCTING

QUBITS

3.1. OVERALL MEASURES OF DECOHERENCE: T1 AND T2
Before discussing specific noise mechanisms for superconducting qubits, here we cover
the two major parameters that are used to characterize the quality of any kind of qubit.

Consider a Markovian system, where the correlation time of the noise is considered to
be much shorter than the typical timescale of the system dynamics [1]. In this case one
can describe the evolution via the Lindblad equation

ρ̇ =L (ρ) =−i [H ,ρ]+∑
j

L jρL†
j −

1

2
{L†

j L j ,ρ}, (3.1)

where H is the system Hamiltonian, {L j } are the quantum jump operators and L is the
overall Lindbladian. First, let L1 = σ−/

p
T1 for a qubit (or L1 = a/

p
T1 for a harmonic

oscillator, but in this section we focus on qubits) be the only jump operator. Then,
assuming that H is simply the free Hamiltonian, H =−ωZ /2, the initial density matrix
evolves as

ρ(0) =
(
1−p β

β∗ p

)
7→ ρ(t ) =

(
1−pe

− t
T1 βe iωt e

− t
2T1

β∗e−iωt e
− t

2T1 pe
− t

T1

)
. (3.2)

One can see that the population in |1〉 decays towards the ground state |0〉 with a time
constant given by T1. Thus the jump operator σ− models qubit relaxation and T1 is called
the relaxation time. Note also that the off-diagonal terms decay with a time constant 2T1

(apart for a phase factor which could be removed going to a reference frame rotating at the
qubit frequency). This is referred to as relaxation-induced dephasing and corresponds to
the fact that superposition states lose phase coherence when relaxation occurs. The jump
operator σ+ would instead model qubit excitation, although it is often neglected as the
excitation rate is usually much lower than the relaxation rate, given the low temperature
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at which qubits are kept (∼ 20 mK), relative to their frequency (3-8 GHz for transmons).
See Section 2.5.1 for more information about residual excitations.

If the only jump operator is instead L2 =
√

1/(2Tφ) Z , the density matrix evolves as

ρ(0) =
(
1−p β

β∗ p

)
7→ ρ(t ) =

 1−p βe iωt e
− t

Tφ

β∗e−iωt e
− t

Tφ p

 . (3.3)

In this case, only the off-diagonal elements decay with time constant Tφ, corresponding
to so-called pure dephasing. The combination of relaxation and pure dephasing makes
the off-diagonal elements decay at a rate 1/T2 := 1/2T1 +1/Tφ, where T2 is referred to as
the decoherence time.

While T1 and T2 are commonly used to characterize qubits, the validity of the model
above depends on how Markovian the environment is in experiment. Regarding relaxation
due to charge noise, since the latter is suppressed at least for transmons (see Section 2.2),
we focus on dephasing processes, which affect Tφ (and in turn T2). Non-Markovian
processes are the ones that are slow relative to the dynamics of the system, like the low-
frequency components of 1/ f noise (see Section 3.2.1). In a quasi-static approximation, a
parameter like the qubit frequency is assumed to stay constant within a certain period
(e.g. idling, or during a gate) but to vary across repetitions (of the experiment or the
gate), following a certain distribution. If this distribution is Gaussian, the off-diagonal

elements decay as a Gaussian e
−(t/T G

φ
)2

, instead of as an exponential e−t/Tφ (there is also a
factor e−t/2T1 for all cases so we do not write it explicitly in this discussion). In general,
the decay due to dephasing is e−χN (t ) for a generic function χN (t ), where the N is used to
refer to the number of echo pulses applied [2] (echo pulses are discussed below). This
function might fall somewhere in-between exponential and Gaussian decay, but it can
also be more general. An expression for e−χN (t ) is given by [2]

e−χN (t ) = exp
(
− t 2

2

∂ω

∂λ

∫ +∞

−∞
gN (ω, t )S(ω)dω

)
, (3.4)

where λ is the noise parameter (for example, it is the flux in the case of flux noise),ω is the
qubit frequency, gN is an appropriate filtering function and S(ω) is the spectral density of
the noise. The latter is defined as

S(ω) =
∫ +∞

−∞
d t 〈λ(t )λ(0)〉e−iωt , (3.5)

i.e. it is the Fourier transform of the noise autocorrelation function 〈λ(t)λ(0)〉. We re-
mark that this is the so-called bilateral spectral density and it is defined without a 1/π
or 1/(2π) factor in front, to which one needs to be careful when comparing different
references.

Slow noise components can often be mitigated using various techniques. The simplest
one is an echo experiment during an idling period, in which a π pulse (i.e. a bit flip) is
applied to the qubit in the middle of the evolution, as well as at the end. This perfectly
cancels out quasi-static noise because any drift in one direction is compensated by the
same drift in the opposite one. If T2 is measured in an echo experiment it is usually
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called T E
2 , while if it is measured in a standard Ramsey experiment (so no echo pulse) it is

called T ∗
2 . If the noise is slow but not “slow-enough” compared to the frequency of the

echo pulses, a single pair of echo pulses cancels out only a subset of the noise spectrum.
In other words, g1(t ,ω) [2] in Eq. (3.4) filters out only certain components of S(ω). In that
case, to improve the filtering effect, one can use more frequent echoing pulses. Clearly
T E

2 ≥ T ∗
2 so it is generally good to use echo pulses. However, they cannot be applied during

gates or measurements of the given qubit, thus one needs more specialized techniques,
such as the Net Zero technique that we introduce in Chapter 6 for flux-based gates.

3.2. PHYSICAL NOISE SOURCES IN SUPERCONDUCTING QUBITS

3.2.1. TWO-LEVEL SYSTEMS
In this section we provide a phenomenological description of noise due to two-level
systems (TLSs), highlighting first the connection between random telegraph noise and
1/ f noise.

RANDOM TELEGRAPH NOISE

Consider first a single TLS and assume that it randomly switches from one state to the
other, and vice versa, with rates γ↑ and γ↓, respectively. This is referred to as random
telegraph noise. For simplicity, assume that γ↑ = γ↓ ≡ γ. Consider that the TLS is in one
specific state at t = 0. Let p(t )d t be the probability that the TLS remains in that state for
a time t , and then jumps to the other state between t and t +d t . In other words, p(t ) is
the distribution of switching times. To derive an expression for p(t), let us discretize t
as t = nd t . By definition of rate, γd t is the probability that there is a change of state
during d t . It follows that

p(t )d t = (1−γd t )n γd t = (1−γd t )
t

d t γd t . (3.6)

Simplifying d t on both sides and taking the limit, one gets

p(t ) = lim
d t→0

(1−γd t )
t

d t γ= γe−γt . (3.7)

Thus p(t ) follows an exponential decay.
Let λ in Eq. (3.5) be λ(t) =∑

j λ
±
j (t), where the sum runs over TLSs and the {λ±

j } are

the values associated with the two states of a TLS. It has been proven [3] that the presence
of many TLSs with exponentially decaying p(t ) and with decay rates γ ∈ [γ1,γ2] produces
a noise spectral density (see Eq. (3.5)) given by

S( f ) = A

f
(3.8)

with A constant, for all the frequencies f =ω/(2π) such that γ1 ¿ f ¿ γ2. This is called
1/ f noise and it is found to be ubiquitous not just in quantum devices but also in e.g. clas-
sical electronics. The minimal set of assumptions required (i.e. an ensemble of TLSs with
broadly distributed rates) determines the ubiquity of 1/ f noise, but at the same time
makes it hard to exactly identify which physical systems are responsible for it (see below).
We note that the physical systems may have more than two levels, in which case one can
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substitute the rate γ with a sum of rates towards multiple states, while still getting the
same form for p(t ) in Eq. (3.7). If then one of these rates is much larger than the others,
one can even neglect the other levels and focus just on the two with the largest γ.

CHARGE NOISE

Regarding superconducting qubits, TLSs [4, 5] can couple to the qubits either via the
charge operator (charge noise) or via their magnetic field (flux noise). In the first case
these dielectric TLSs can cause qubit relaxation by swapping an excitation from the qubit
to the TLS and subsequently dispersing it in the environment [6]. These TLSs lead to
a reduction in T1 and are actually considered the current limiting factor that sets T1.
Furthermore, they are considered to be responsible for the relatively large fluctuations
of the measured values of T1 in time [6]. If E J /EC is not within the transmon regime,
these TLSs also produce fluctuations in the energy levels, which lead to a reduction of Tφ
as well. Indeed, the transmon was introduced over the Cooper-pair box to counter this
deleterious effect of charge noise (see Section 2.2).

One can make a distinction between TLSs that are strongly coupled to the qubit and
those that are weakly coupled to it [6]. The latter affect T1 as an ensemble independently
of the qubit frequency (in the way described above), whereas a single TLS of the former
type can strongly reduce T1 if the TLS frequency matches the qubit frequency. These
strongly coupled TLSs are fairly common and constitute a major challenge to coherence
times, especially in multi-qubit devices. One solution is to warm up and cool down again
the fridge (or only the chip, if possible), as it is observed that this usually changes the
location and distribution of the TLSs. However, it is not a scalable solution. Another
solution is to use flux-tunable qubits, so that one can tune them to a slightly different
frequency to avoid resonance with TLSs. However, frequency tunability comes at the cost
of potential frequency crowding, additional control circuitry and introduces sensitivity
to flux noise (see below), especially when qubits have to be moved far away from their
sweetspot(s).

FLUX NOISE

Magnetic TLSs cause flux noise for qubits that use an externally controlled magnetic field,
like tunable transmons (see Section 2.2.1), if they are physically located close enough to
the SQUID loop itself. Depending on whether the magnetic field points in one direction
or switches to the other, the magnetic flux through the SQUID loop is slightly altered.
The combination of many TLSs then causes fluctuations of the qubit frequency with
1/ f spectral density, as described around Eq. (3.8), leading to a reduction in Tφ away from
the sweetspot, as quantified in the following. The sensitivity s(Φ) to flux noise is defined
as

s(Φ) := 1

2π

∂ω(Φ)

∂Φ
, (3.9)

where ω/2π is the qubit frequency and Φ is the magnetic flux through the SQUID loop.
By definition (see Eq. (2.22)), s(Φ) = 0 at the sweetspots, in particular atΦ= 0, thus Tφ is
(first-order) insensitive to flux noise at that point. If the transmon is not at its sweetspot, in
experiment it is typically observed that the dephasing rate Γφ = 1/Tφ is linearly increasing
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with s(Φ) (see e.g. Fig. 6.9), at least for a not too largeΦ (after which second-order effects
may start to play a role). For an echo experiment, an analytical formula is given by [7]

ΓE
φ(Φ) = 2π

p
ln2

p
A s(Φ). (3.10)

By fitting the experimental measurements of ΓE
φ(Φ), one can use this formula to extract the

value of
p

A. For a Ramsey experiment, a linear dependence is also typically observed (see
e.g. Fig. 6.9, even though it is not necessarily guaranteed), where the numerical coefficient
of the linear increase with s(Φ) is larger (whereas

p
A is the same). This can be attributed

to the fact that an echo pulse mitigates the “slow-enough” components of 1/ f noise
(see Section 3.1), while this filtering effect is not present in a Ramsey experiment.

UNKNOWN IDENTITY OF TLSS

Dielectric TLSs are understood to correspond to defects or charge traps that reside at
interfaces between dielectrics, the junction tunnel barrier, the substrate or any combina-
tion thereof [2]. However, the details and the specific compounds involved are unclear
and an active research topic. Similarly, magnetic TLSs are associated with magnetic
dipoles at the superconducting metal surfaces, but their specific identity is unknown.
One common suspect are residual contaminants due to the fabrication process [8, 9].
Thus new fabrication techniques are regularly being developed trying to improve qubit
coherence times. Identifying the actual nature of TLSs would greatly help to steer these
efforts towards the most relevant direction.

3.2.2. QUASI-PARTICLES
At finite temperature, the Cooper pairs in a superconductor can be broken into two
separate electrons despite the protection provided by the superconducting gap. This
happens as the Gibbs state has excitations on top of the Cooper-pair condensate due to
thermal fluctuations. These unpaired electrons are called quasi-particles. Depending on
the type of qubit, they are responsible for a reduction in T1, e.g. for transmons, or T2 as
well [2].

The density of broken Cooper pairs, commonly expressed as Nbroken/Npair, is expected
to decay exponentially with temperature. In particular, it is expected to be < 10−24 at 20-
40 mK [10]. However, it is typically found to be around 10−8-10−6 [11, 12], that is, many
orders of magnitude larger than expected. This discrepancy is not well understood and
it is not explained by the theory of superconductivity alone. It might be partially due to
radioactive impurities or cosmic rays [10, 13, 14] (see Section 3.2.3 below), since both
release relatively large amounts of energy on the chip, potentially breaking many Cooper
pairs.

3.2.3. COSMIC RAYS AND RADIOACTIVITY
Recent work [10, 13, 14] has identified cosmic rays and radioactive impurities in materials
within the fridge as a threatening source of errors in superconducting qubits, due to the
quasi-particles produced by the energy deposited by these events. The upper bound on T1

set by cosmic radiation has been estimated around 4 ms [10]. While no superconducting
qubit has so far reported such a high number for T1, losses due to dielectric TLSs and other
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sources have been steadily diminishing to the point that such T1 seems to be achievable
in the near future [15]. Cosmic rays might thus soon become the limiting error source in
setting coherence times and will need to be addressed.

Reducing radioactive impurities and moving the fridge to an underground facility has
been shown to improve the quality factor of superconducting resonators [13] and the
same is expected for qubits. Furthermore, high-energy cosmic rays have been identified
as a source of catastrophic error bursts [14], corresponding to chip-wide correlated errors
at a rate of approximately 1 event every 10 s. These errors are too extended in space
and time to be handled by quantum error correction, constituting a roadblock to fault-
tolerance and to any computation that cannot be completed within just a few seconds
(unless the chip is really large, or a modular design is developed, with multiple chips
connected within the fridge or across different fridges). This further motivates research of
shielding methods, as well as techniques to reduce radioactive impurities in materials.

3.2.4. PHOTON-SHOT NOISE
Transmons are commonly coupled to their readout resonator for measurements (see Sec-
tion 2.6). Dispersive readout is based on the fact that the transmon state shifts the
resonator frequency depending on the state of the qubit, as manifested by Eq. (2.51). That
equation, in the computational subspace, can also be rewritten as

H̃ |C = (− ω̃q

2
+χa†a

)
Z + ω̃r a†a, (3.11)

i.e. it can be reinterpreted as the qubit frequency being shifted depending on the resonator
state. As a consequence, fluctuations in the photon number in the resonator (known as
photon-shot noise) lead to a reduction of Tφ, since the qubit phase cannot be tracked
precisely.

3.2.5. DISTORTIONS OF ELECTRONIC SIGNALS
Classical electronic signals need to be sent from the room-temperature control electronics
to deep inside the fridge where the qubits are located. Many effects might distort the
target shape of the signal, such as limited waveform-generator bandwidth, high-pass bias
tees, low-pass filters, impedance mismatches, skin effect, on-chip response. . . Here we
focus in particular on distortions in the flux line, where a voltage pulse VAWG(t ) induces a
current, which in turn generates a magnetic flux Φ(t) threading the SQUID loop of the
qubit. The flux is generally used to activate a two-qubit gate (mainly CZ and iSWAP) by
tuning the qubit frequency (see Section 2.8.3).

Distortions can be described as a linear time-invariant system that transduces voltage
to flux and is characterized by its impulse response h(t ), where

Φ(t ) = h ∗VAWG(t ) =
∫ +∞

−∞
dτh(t −τ)VAWG(τ) (3.12)

with ∗ indicating convolution. The impulse response would ideally be a Dirac delta func-
tion, h(τ) = cδ(τ), where c is the (constant) conversion factor from voltage to flux (which
needs to be calibrated in experiment). However, relative to the gate duration Tg , h(τ) gen-
erally contains short-, medium- and long-timescale distortions, which correspond to h(τ)
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being non-zero for τ¿ Tg (even on the sub-nanosecond scale), τ∼ Tg and τÀ Tg (up
to tens of microseconds), respectively. We can also translate these features from the
time domain to the frequency domain by applying the Fourier transform F to Eq. (3.12),
getting

Φ̂(ω) = ĥ(ω)V̂AWG(ω) (3.13)

thanks to the convolution theorem, where

f (t )
F7→ f̂ (ω) :=

∫ +∞

−∞
d t f (t )e−iωt . (3.14)

In the frequency domain, ideally ĥ(ω) = c, i.e. all frequency components in V̂AWG are
reproduced as intended in Φ̂ (modulo a constant rescaling). The definitions of short-,
medium- and long-timescale distortions translate to ĥ(ω) having peaks on high-, medium-
or low-frequency components (relative to 2π/Tg ), respectively. Hence, certain parts of

the spectrum of the flux pulse are altered by an unequal distribution of weights in ĥ(ω).
Distortions can be characterized experimentally using the qubit as a probe [16].

Thanks to this characterization, one can pre-distort the desired flux Φtarget(t) with a
best estimation h̃−1 of h−1, i.e. one sets

VAWG(t ) = h̃−1 ∗Φtarget(t ). (3.15)

Applying the Fourier transform and combining this equation with Eq. (3.13), we get

Φ̂(ω) = r̂ (ω)Φ̂target(ω), (3.16)

where

r̂ (ω) = ̂̃h−1(ω)ĥ(ω) (3.17)

quantifies the remaining distortions after corrections. From Eq. (3.16) it is clear that,
if h̃−1 = h−1, then one would have r̂ (ω) = 1 andΦ(t ) =Φtarget(t ). However, one can usually
correct only short- and medium-timescale distortions with so-called finite and infinite
impulse-response filters. Instead, long-timescale distortions are, first, hard to quantify
and, second, they are not compatible with real-time execution of operations in a fully
programmable quantum computer (see also Section 6.2). Pre-distortions to be applied
on a gate would depend on the history of previous gates, which is a challenging and
non-scalable solution.

Baseband-flux two-qubit gates (see Section 2.8.3) are generally the fastest among two-
qubit gates in transmons, because the qubit is fluxed right to the interaction point (and
back), for a total time that just slightly exceeds the fundamental speed limit (π/(

p
2J AB )

for the CZ) set by the exchange coupling J AB (see Eq. (2.77)). At the same time, in their con-
ventional form [17] they are among the most sensitive to long-timescale distortions, since
the spectral density of the pulse has a large weight on low-frequency components. Based
on the discussion after Eq. (3.17), r̂ (ω) multiplies these low-frequency components with
unequal factors, thus significantly distorting the pulse. Because of these long-timescale
distortions, this problem has been avoided either by removing the flux line altogether
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and doing purely microwave two-qubit gates, namely the cross-resonance gate [18, 19]
(see Section 2.8.3 for a brief introduction), or by resorting to parametric driving that mod-
ulates the qubit frequency via fast oscillations of the flux [20, 21] (see also Section 2.8.3).
In the latter case, since the pulse spectral density is peaked at relatively high ω, whereas it
is basically 0 at low ω, it does not matter if r̂ (ω) distorts those low-ω components.

In Chapter 6 we introduce the Net Zero technique and apply it to baseband-flux
gates. A single, positive-flux pulse is replaced by two symmetric halves with positive
and negative flux. The dependence of the transmon frequency on flux (see Eq. (2.21)) is
the same for positive and negative flux, leading to the same effect on the Hamiltonian.
Among other advantages, the key zero-integral feature removes the DC component and
the very-low frequency components ofΦ(t ) (see Section 6.3). In this way, long-timescale
distortions are strongly suppressed while keeping the same gate speed of baseband-flux
gates. See Chapter 6 for more information.

3.2.6. LEAKAGE

The name superconducting qubits is misleading because they are never actually two-level
systems. Rather, they are comprised of many levels, where only two can be approximately
considered as a qubit, thanks to the anharmonicity. However, due to a low anharmonicity
and/or the explicit use of non-qubit states for operations, it is possible that higher excited
states (usually |2〉 or also |3〉) get populated. This is called leakage and it is an often-
neglected error source in superconducting qubits. Remarkably, two-qubit gates are often
characterized only by their fidelity, but leakage is not quantified, based on the assumption
that it is “low”. However, even a seemingly low amount of leakage can have a significant
impact e.g. on the logical performance of the surface code (see Section 8.3).

We amply discuss leakage in Sections 2.7, 2.8, 3.3 and 3.4.3 and Chapter 5. Specifically,
in Section 2.7 we mentioned how the DRAG pulsing technique reduces leakage in single-
qubit gates to practically negligible levels. In Section 2.8 we discussed conditional-phase
gates, which are the major source of leakage in superconducting qubits, due to the use
of an avoided crossing between a computational and a leaked state. In Section 3.3 we
discuss our studies of leakage and in particular the effective model (based on Lindblad
simulations) that we use in the density-matrix simulations of the surface code. In Sec-
tion 3.4.3 we highlight a randomized-benchmarking protocol with a modification to
estimate the leakage rate. Finally, in Chapter 5 we discuss in great detail the previous
literature on leakage and how to deal with it using leakage-reduction units. We do not
discuss measurement-induced leakage (see e.g. Ref. [22] and the readout histograms in
Ref. [23]) as we assume that it is less strong than leakage from the two-qubit gates.

3.2.7. CROSSTALK

Crosstalk might refer to a variety of phenomena that, broadly speaking, occur when an
operation or the state of part of the system affects a different part which should be isolated
in principle. Crosstalk might come from purely classical effects or it can be an undesired
feature of the system Hamiltonian. Here we briefly discuss classical crosstalk due to the
lines coupled to the qubit, as well as residual Z Z crosstalk.



3.2. PHYSICAL NOISE SOURCES IN SUPERCONDUCTING QUBITS

3

51

CLASSICAL MICROWAVE AND FLUX CROSSTALK

Phenomenologically, the radiation produced by the microwave drive line of a qubit might
affect other qubits and induce some undesired extra driving. The design and isolation
of the drive lines is important to minimize this effect. One can also apply compensation
pulses to other microwave lines to actively counteract this kind of crosstalk.

The current flowing into the flux line can spill into nearby patches of the chip. As the
connections between qubits define closed loops in the chip topology, this current can
circulate there and induce magnetic flux in neighboring qubits. It is customary to use
airbridges [24], i.e. small pieces of metal over the various lines and connections, in order
to break such loops and ground the entire chip, allowing these currents to flow away.

RESIDUAL Z Z CROSSTALK

Here we consider qubits to be parked at their sweetspots (or anyway far away from avoided
crossings used to perform two-qubit gates). In this case, ideally, the frequency of a qubit
should not be affected by whether a neighboring qubit is in state |0〉 or |1〉. In other words,
one should have ω11 = ω01 +ω10 (let ω00 = 0). However, if two transmons A and B are
coupled with a fixed coupling J AB (e.g. via a bus resonator; see Eq. (2.77)), one can derive
from Eq. (2.79) that ω11 shifts by an amount

ζ≈ 2(J AB )2∣∣ωA −ωB −αB
∣∣ (3.18)

in the limit J AB ¿ ∣∣ωA −ωB −αB
∣∣, where ωA = ω10 and ωB = ω01. Here for simplicity

we have assumed that only |02〉 is sufficiently coupled to |11〉 (so B is by far the higher-
frequency qubit), whereas |20〉 is further off-resonant. Furthermore, technically also |01〉
and |10〉 interact with each other, even though with a lower coupling, but one can redefine
the working qubits as dressed qubits and this also renormalizes their qubit frequencies.

In practice [23], ζ/2π can reach up to ∼ 3 MHz and it is uncommon to find ζ/2π <
O (100) kHz without using any additional circuitry. If one is operating a surface code, for a
quantum error-correction cycle of duration 800 ns, this naively means that one performs
up to 1.6 extra CZ gates per qubit pair during that time (which is equivalent to 0.4 CZ gates
since CZ2 = I ). The effect is, however, not so catastrophic, since one can take this into
account and tune the parity-check unit (see Fig. 4.1(b,c)) as a single block [23], rather
than tuning the CZ gates individually, or one can use echo pulses (as mentioned below)
or dynamical decoupling [25].

Given the increasing size of quantum processors, residual Z Z crosstalk has received
increasing attention in the field. One simple, hardware-efficient mitigation approach
corresponds to using echo pulses on one qubit during the execution of the quantum
error-correction cycle [23, 26]. The echo pulses do not just help to mitigate decoherence
but they can partially revert the effect of residual Z Z crosstalk as well. This approach
can be applied to arbitrary circuits to some extent. To instead solve this issue altogether,
many tunable couplers have been developed [27–32]. The so-called gmon [27] was based
on an inductive tunable coupler, however, most recent proposals use a capacitive tunable
coupler [29], whose first example was introduced in Ref. [28].
Tunability comes at the price of additional components and control lines on the chip.
However, in my opinion tunable couplers are essential to be able to scale up quantum
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processors with no or little crosstalk. Furthermore, even with current tunable couplers, it
actually seems difficult to achieve the ζ= 0 condition for all pairs of qubits simultaneously,
since the frequency tuning of one coupler might slightly affect the other at the circuit-
Hamiltonian level. It is thus crucial to further develop tunable couplers.

3.3. NOISE MODELS IN THIS THESIS
Here we give an overview of the two main noise models developed and considered in
the numerical simulations in this thesis. Furthermore, we provide some information
about the implementation of the simulations themselves. The purpose of this section
is to summarize and tie together the multiple uses and descriptions of the simulations
that are contained in Chapter 6, Chapter 8 (specifically in Section 8.11.6) and Chapter 9
(specifically in Section 9.2) for the Lindblad simulations (sometimes referred to as full-
trajectory simulations) and in Chapter 8 and Chapter 9 (especially in Section 9.3) for
the density-matrix simulations. Extensive details can be found in Section 6.11.3 for the
Lindblad simulations and in Sections 8.10.1 and 8.10.2 for the density-matrix simulations.

3.3.1. LINDBLAD SIMULATIONS
In the Lindblad simulations we simulate the full dynamics of the system, using the
Lindblad equation. The Hamiltonian can in principle be arbitrary, although in practice
we consider either the Hamiltonian of two coupled transmons (see Eq. (6.11)) or of
a transmon capacitively coupled to its readout resonator (see Eq. (9.1)). We consider
relaxation (T1), dephasing (Tφ and quasi-static flux noise), leakage from the CZs and
distortions (for an introduction to noise see Sections 3.1 and 3.2).

RELAXATION

Relaxation is modeled in an effective way as in Section 3.1, thus we do not simulate the
TLSs, quasi-particles or cosmic rays that lead to the considered values of T1, as this would
be computationally unfeasible and goes beyond the purpose of these noise models.

A nuance is the basis in which relaxation should take place, e.g. in the case of two
coupled transmons (the same applies to fast dephasing, as described below). Namely,
one could consider the bare basis {|i j 〉 = |i 〉⊗ | j 〉} of each transmon independently, so
e.g. |10〉 → |00〉 upon a relaxation event on the first transmon. On the other hand, one
could consider the dressed basis {|i j 〉D } (see after Eq. (2.43)), that is, the basis that diago-
nalizes H0 +Hc , where H0 is the bare Hamiltonian and Hc is the coupling term. In this
case e.g. |10〉D →|00〉D . Specifically, we consider the dressed basis at the sweetspot, where
qubits are generally parked for most of the time. We assume that the environment has
time to “learn” that the eigenstates of the system are the dressed ones and thus couples to
them, causing transitions between those rather than the bare ones. In general, when one
performs measurements in experiment, one is indeed expected to measure features of the
dressed states [33, 34]. While being fluxed to perform e.g. a CZ, the qubit is not anymore
at the sweetspot and the dressed basis changes as a function of the flux. However, we
still consider relaxation in the sweetspot dressed basis, because these fluxing periods are
short and we assume that the environment does not have time to adjust.
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DEPHASING

As far as dephasing is concerned, we do not simulate the full 1/ f flux noise, nor we model
Markovian sources in detail (the only exception is that we explicitly include photon-shot
noise in Chapter 9). Instead, we try to capture the most important features in a computa-
tionally feasible way. Specifically, we take as a reference the gate time Tg and we consider
all frequency components of the noise with ω> 2π/Tg as “fast” (Markovian), whereas we
consider those withω< 2π/Tg as quasi-static. We assume that the former are captured by
the measured T E

2 and we include them in the simulations via the Lindblad equation (see
around Eq. (3.3). Furthermore, either using Eq. (3.10) or directly the measured experimen-
tal values, we keep into account that T E

2 varies as a function of the fluxΦ. The difference
with Section 3.1 is that in the following chapters we do not consider qubits but qutrits,

thus the jump operator cannot be just proportional to Z . The jump operator
√

2/T E
φ

a†a

produces a quadratic dependence of T E
φ on the level number, e.g. |2〉 dephases with time

constant T E
φ /22, whereas the jump operators given in Eqs. (6.16) to (6.18) produce a linear

dependence. As 1/ f flux noise gives a linear dependence, in Chapters 6 and 8 we use that
set of jump operators.

Regarding the quasi-static components, we model them as a stochastic constant
shift∆Φ of the applied fluxΦ(t ). We assume that∆Φ follows a Gaussian distribution pσ(∆Φ)
centered in 0 and with a certain standard deviation σ. We choose σ such that the combi-
nation of fast (quantified by T E

2 ) and quasi-static components produces the measured T ∗
2

when simulating a Ramsey experiment (see Fig. 6.9). For each ∆Φwe integrate the Lind-
blad equation ρ̇ =L (ρ) to compute the time-evolution superoperator

PTg :=T e
∫ Tg

0 d t ′Lt ′ , (3.19)

where T is the time-ordering operator. Then we average this as

P av
Tg

=
∫ +∞

−∞
d(∆Φ) pσ(∆Φ) ·PTg (∆Φ). (3.20)

In practice, we discretize this integral and cut it at ±5σ. Furthermore, to compute
each PTg we discretize the time evolution as

PTg ' eδtLTg −δt eδtLTg −2δt . . . eδtL2δt eδtLδt eδtL0 , (3.21)

where δt is chosen to be sufficiently small to approximate the exact evolution well. Note
that in the numerics with this method one has to compute matrix exponentials, which in
practice requires to diagonalize the exponent. In terms of physical time required by the
numerics, we have found this method to outperform qutip-based methods that directly
solve the differential equation ρ̇ =L (ρ), as long as the required δt is not too small. The
discretization in Eq. (3.21) can be made smarter by an adaptive method that varies δt
depending on the speed at which the flux changes, however, we have not explored this.

DISTORTIONS

The distortions are taken into account by distorting Φtarget(t) with the experimentally
measured impulse response h̃−1∗h(t ) that takes into account pre-distortions (see Fig. 6.8).
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LEAKAGE

As we consider qutrits (or even more levels in Chapter 9), leakage is automatically included
in our simulations. Note that leakage can simply be due to the unitary dynamics, while
noise can enhance it further (or also diminish it in case of relaxation). In Sections 6.9
and 6.19 we study the dependence of leakage on noise.

CROSSTALK

Residual Z Z crosstalk is naturally included in the simulations of two transmons, however,
we do not really study crosstalk with respect to other neighboring systems (transmons,
resonators. . . ) since those are not included in the simulations. Only in Section 9.6.3 we
effectively account for residual Z Z crosstalk by shifting directly the transmon frequency,
rather than including neighboring transmons in the simulations.

3.3.2. DENSITY-MATRIX SIMULATIONS
Here we discuss the simulations [35, 36] of the density matrix of a full chip. In this
thesis we have considered Surface-17, that is, the distance-3 rotated surface code under
development in the DiCarlo lab (see Fig. 9.3 and Ref. [37]). We consider relaxation (T1),
dephasing (Tφ) and we introduce an effective model for the CZ that reproduces the main
features observed in the Lindblad simulations, including leakage.

SIZE OF THE DENSITY MATRIX

As the cost of these simulations scales exponentially with the number of qubits, Surface-17
is the maximum we could study with the aid of a few GPUs. Of the 17 qubits in total, the
density matrix keeps track of only 10 at any point, that is, the 9 data qubits and 1 ancilla
qubit at the time. This is possible thanks to the fact that stabilizers commute and that we
assume that each ancilla qubit is perfectly projected onto a computational state by the
measurement. The latter allows to store the post-measurement ancilla-qubit state in a
classical register rather than the density matrix (because the ancilla qubit is in a product
state with the rest of the system). If nqb transmons are actual qubits and nqt are qutrits,
the density matrix has size 4nqb ⊗9nqt . We further reduce this to 4nqb ⊗5nqt by considering
a model for leakage (see below) where the leakage subspace is decohered with respect to
the computational subspace, in which case four off-diagonal matrix elements are 0. This
model is motivated by the fact that stabilizer measurements tend to decohere leakage
relatively fast (see Chapter 8).

In the numerics we also store the density matrix at the end of each quantum error-
correction cycle so that we can analyze this data at any point later. The main quantities
we extract are the evolution of the leakage population and of the logical fidelity. However,
only the diagonal entries of this density matrix are necessary for these purposes, so we
store only those entries to save a considerable amount of space.

PAULI TRANSFER MATRIX

We use the Pauli Transfer Matrix formalism (PTM) to represent states and operations
(superoperators). This is numerically convenient because PTMs compose multiplicatively.
The density matrix ρ can be written as a vector ~ρ with entries given by

ρi = Tr(Piρ), (3.22)
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where {Pi } are n-qubit Pauli operators in the case of qubits (d = 2) or Gell-Mann matrices
in the case of qutrits (d = 3). Gates, characterized in general by a superoperator R, can be
represented as a PTM matrix R with entries

Ri j = 1

d
Tr

(
P j R(Pi )

)
. (3.23)

Measurements can also be implemented by applying a different PTM depending on the
measurement outcome, which is sampled with probability determined by Born’s rule
from the current density matrix.

RELAXATION AND DEPHASING

In the case of a transmon idling for a period t , we apply the PTM R↓,t obtained by inte-
grating the Lindblad equation (Eq. (3.1)) for a time t . As Hamiltonian we use the bare
transmon Hamiltonian

H =ωb†b + α

2
(b†)2b2, (3.24)

where ω is the frequency, α is the anharmonicity and b is the annihilation operator,
restricted to 2 levels if the transmon is modeled as a qubit or 3 as a qutrit (α = 0 for
qubits). The jump operators are Lamp = b/

p
T1 for relaxation (also called amplitude

damping), and {Ldeph,i } given in Eqs. (6.16) and (6.18) for dephasing (or phase damping).
Furthermore, we vary Tφ based on the frequency at which a transmon is fluxed compared

to its sweetspot frequency, using Eq. (3.10) with
p

A = 4 µΦ0. To make this concrete, we
set Tφ = 30 µs at the sweetspot, which then decreases up to 6-8 µs during a CZ gate.

In the case of a gate, amplitude and phase damping are accounted for by symmet-
rically applying two periods of idling around the unitary operation Rgate (modeled as
instantaneous):

R↓,tgate/2RgateR↓,tgate/2. (3.25)

We note that Rgate can either be the ideal operation (as we do for single-qubit gates)
or a parametrized model including unitary errors (as we do for the CZ, see below). We
choose this modeling in which gates are parametrized directly by their performance
parameters, rather than simulating the full Lindblad evolution, because we want to study
the performance of the surface code versus the imperfections of its constituents. All the
system and pulse variables, which one would need to specify in a Lindblad simulation,
are unnecessary for this purpose. Furthermore, a parametrized model easily allows to
perform scans over those performance parameters.

In the case of measurements we proceed similarly by applying

R↓,tm/2RprojR↓,tm/2, (3.26)

where Rproj is the ideal projector on either |0〉, |1〉 or |2〉 depending on which is the
measurement outcome. The latter is sampled from the current density matrix according
to Born’s rule.
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CZ MODEL

We develop a parametrized error model for Rgate for the CZ gate, that reproduces the
features observed from the Lindblad simulations. As discussed in general above, the
usefulness of the parametrized model is that one can specify e.g. how much leakage the CZ
has without having to specify all the system parameters (frequencies, pulse parameters. . . )
and having to simulate the full dynamics until one gets the desired result. The parameters
of the model are the phases acquired by the basis states and the CZ average leakage
probability L1 (see below).

For a two-qutrit gate there are 9 phases that can be imparted to the 9 basis states, mean-
ing one applies the unitary matrix U = exp[i diag(φ00,φ01,φ02,φ10,φ11,φ12,φ20,φ21,φ22)].
One is always a global phase, so we can set φ00 = 0. For a CZ, φ01 =φ10 = 0 and φ11 =π.
In particular, in this way the conditional phase φ2Q = φ11 −φ01 −φ10 +φ00 (defined
in Eq. (2.83)) is φ2Q =π, as desired for a CZ. We discuss the other phases below.

In these simulations, leakage is generated by applying the unitary V such that

|11〉 7→
√

1−4L1 |11〉+e iφ
√

4L1 |02〉 , (3.27)

|02〉 7→
√

1−4L1 |02〉−e−iφ
√

4L1 |11〉 , (3.28)

where L1 is the average leakage probability (or rate), which by definition [38] (see also Eq. (3.43))
is averaged over the 4 computational states. Since there is almost no leakage from |00〉, |01〉
and |10〉, the leakage population escaping from |11〉 is equal to 4L1, as given in Eq. (3.27).
Thus in total for the CZ we apply the PTM Rgate corresponding to the unitary V U .

If leakage states tend to decohere fast (which we observe to be the case due to the
stabilizer measurements; see Section 8.10.2), then we can set the coherences between
the computational and leakage subspaces to 0 after a CZ. As a result, φ in Eqs. (3.27)
and (3.28) is irrelevant and three of the five phases involving a leaked state (φ02, φ20, φ21,
φ12, φ22) are global phases, whereas only two linear combinations affect the dynamics
of the system. These two, that we call leakage conditional phases, are φL

stat :=φ02 −φ12

and φL
flux

:=φ20 −φ21, i.e. they are the phases acquired by the lower and higher frequency
qubit of the pair, respectively, when interacting with a leaked qubit. These are relevant
(after a qubit has leaked) because, for example, if a data qubit in (|0〉+ |1〉)/

p
2 performs

a CZ with a lower-frequency ancilla qubit in |2〉, the state becomes

1p
2
|2〉⊗ (|0〉+ |1〉) 7→ e iφ20

p
2

|2〉⊗ (|0〉+e−iφL
flux |1〉). (3.29)

Thus φ20 is a global phase, whereas φL
flux corresponds to a Z -rotation error on a data

qubit.
If instead an ancilla qubit in (|0〉+ |1〉)/

p
2 performs a CZ with a higher-frequency data

qubit in |2〉, the state becomes

1p
2

(|0〉+ |1〉)⊗|2〉 7→ e iφ02

p
2

(|0〉+e−iφL
stat |1〉)⊗|2〉 . (3.30)

Thus φ02 is a global phase, whereas the measurement outcome (after a Hadamard) is
partially randomized depending onφL

stat. Anticipating some results in Chapter 8, the mea-
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Method Detailed information SPAM-resistant Scalability
Process tomography Yes No No

Randomized benchmarking No Yes Yes
Spectral tomography Yes Yes No

Table 3.1: Summary of the main features of the gate-benchmarking methods described in Section 3.4 (process
tomography and randomized benchmarking) and in Chapter 7 (spectral tomography). Detailed information
refers as to whether only few quantities, such as the average gate fidelity, can be extracted, compared to
specific information about errors in the gate. SPAM-resistant refers to insensitivity to State-Preparation and
Measurement errors (SPAM). Scalability is about the practical applicability to gates acting on an increasing
number of qubits.

surement outcome is fully randomized anyway by the anti-commutation effect (see Sec-
tion 8.11.2), however, the parity of the superchecks is indeed partially randomized by φL

stat
(see Fig. 8.10).

3.4. GATE-BENCHMARKING TOOLS
In this section we discuss the advantages and disadvantages of a few of the most widespread
methods to evaluate the performance of quantum gates (summarized in Table 3.1). Pro-
cess tomography and randomized benchmarking are compared to spectral tomography
in Chapter 7, whereas randomized benchmarking with leakage modification is used
in Chapter 6 to characterize the controlled-phase gate.

3.4.1. PROCESS TOMOGRAPHY
We begin this section with state tomography, because process tomography can be reduced
to state tomography with an extra constraint (see below).

PRELIMINARY: STATE TOMOGRAPHY

The most straightforward way to measure a quantum stateρ is to measure an (over)complete
set of observables, from which the density matrix can be fully reconstructed. Here we
consider qubits. A typical choice is to measure all the Pauli operators (except the identity).
For example, for a qubit it means measuring it in the X ,Y and Z basis (of course, one
choice of basis per preparation of ρ), as one gets the Bloch vector in this way. In general,
recall that in the Pauli Transfer Matrix formalism (PTM; see after Eq. (3.22)) one can write

ρ = 1

2n

2n−1∑
i=0

ρi Pi (3.31)

for n qubits, where ρi = Tr(Piρ) = 〈Pi 〉 as in Eq. (3.22). In other words, the average
values {〈Pi 〉} of the Pauli operators provide a representation of ρ.

Recall that a density matrix ρ is defined by the properties Tr(ρ) = 1 and ρ ≥ 0, which
we refer to as the physicality constraints. In practice, the issue is that experimental
measurements always have a statistical uncertainty, potentially leading to unphysical
density matrices. Ensuring only the constraint Tr(ρ) = 1 would be easy since one could
simply divide the measured ρ by its trace. However, ensuring ρ ≥ 0 is more involved.
Here we consider the maximum likelihood method [39] that searches for the physical



3

58 3. NOISE IN SUPERCONDUCTING QUBITS

density matrix ρph that is closest to the measured one, in the sense of best reproducing
the measurement results. Thus one solves the optimization problem

min
2n−1∑
i=0

∣∣ρmeas
i −Tr(Piρph)

∣∣2

subject to Tr(ρph) = 1

ρph ≥ 0. (3.32)

An implementation of an algorithm solving this convex problem can be found in Qiskit [40]
via the function cvx-fit, based on the convex-optimization Python package cvxpy.

FROM STATE TO PROCESS TOMOGRAPHY

A quantum gate is ideally a unitary, whereas a noisy implementation is a superoperator R

in general. As given in Eq. (3.23), one can associate a PTM R to such a gate. By definition,
one can measure the PTM by measuring the average values of all Paulis after “preparing”
each Pauli. The latter means that half of the time one prepares the +1-eigenstate of that
Pauli, the other half the −1-eigenstate, and subtracts the two average values at the end for
each output Pauli.

A superoperator R is defined by the properties of trace preservation and complete
positivity (TPCP). In the PTM representation, the TP condition is easy to express as R0 j =
(1,0, . . . ,0), however the CP condition is not straightforward. It is thus convenient to use
the Choi representation. The Choi state ρR is defined as

ρR = 1

22n

∑
i j

Ri j P T
j ⊗Pi . (3.33)

Note that we have introduced an auxiliary subsystem of the same dimension as the origi-
nal one. The TPCP conditions imply that ρR is a density matrix (so Tr(ρR) = 1 and ρR ≥ 0)
with the additional constraint that Tr1(ρR) = I2/2n , where Tr1 denotes the trace over the
first, auxiliary subsystem. Similarly to state tomography, the statistical uncertainty in
the measurements might lead to an unphysical Choi state. The maximum-likelihood
physical ρR

ph can then be found by solving the optimization problem in Eq. (3.32) with the

extra constraint that Tr1(ρR
ph) = I2/2n , using the same methods [39–41].

AVERAGE GATE FIDELITY

Let R be an (arbitrary) quantum channel and U a unitary quantum channel. The average
fidelity F (R,U ) between the two channels is defined as

F (R,U ) =
∫

Haar
dψ

(
U (|ψ〉〈ψ|))†

R(|ψ〉〈ψ|). (3.34)

As unitary channels are invertible, it holds that F (R,U ) = F (U †R,I ) =: F (U †R), where I

is the identity channel. When U is an ideal target gate and R is a noisy implementation,
we refer to F as the average gate fidelity. One can show [42] that

F (R) = 1

d1 +1

(Tr(R)

d1
+1

)
, (3.35)
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where R can be either the PTM or Liouville representation of R, and where d1 is the
Hilbert-space dimension. Here d1 = 2n for n qubits. In the presence of leakage, the
definition of F is generalized in Eq. (3.47).

PROS AND CONS OF PROCESS TOMOGRAPHY

Process tomography can be used to extract the average gate fidelity as

F =
2n +Tr(R†

idealRph)

2n(2n +1)
, (3.36)

where Rideal is the PTM of the ideal unitary gate and Rph is the PTM corresponding to
the Choi state found by the optimization above. However, process tomography provides
much more information since it provides indeed the whole PTM of the gate, which allows
one to evaluate its effect on any state. For example, in the case of single-qubit gates, as
they correspond to rotations, one can estimate deviations from the intended angle or axis
of rotation.

Process tomography has, however, two main disadvantages. The first is that it is
sensitive to state-preparation and measurement errors (SPAM). Indeed, one cannot really
discern whether the gate is faulty, or whether the state preparation or the measurement
used to evaluate the PTM are faulty. As a consequence, in experiment one cannot decide
which of these operations need to be improved the most.
The second disadvantage is that process tomography is not scalable. The number of
Paulis that need to be “prepared” and measured (and thus the time to do that) scales
exponentially with the number of qubits. While 4-qubit tomography was implemented in
Ref. [23], it is not practically feasible to consider systems with a larger number of qubits.

3.4.2. RANDOMIZED BENCHMARKING
In its standard version, randomized benchmarking [43, 44] is not a tool to characterize
the performance of a single gate, but rather of a set of gates forming a group (technically,
it needs to be a 2-design). Typically one considers the Clifford group, getting an average
fidelity for all the gates in this group.

The randomized-benchmarking protocol prescribes as follows:

1. Randomly choose m Clifford gates C1, . . . ,Cm and construct the sequence Gm =
Cm+1 ◦Cm ◦ . . .◦C1, where Cm+1 :=C †

1 ◦ . . .◦C †
m ;

2. Prepare the qubit(s) in a fixed initial state ρ0 (assume that ρ0 = |0. . .0〉〈0. . .0| as
it is usually the case). Apply the gates in the sequence one by one, obtaining
ρm =Gm(ρ0);

3. Perform a measurement to estimate the recovery probability p0(ρm) := Tr(M0ρm)
up to a suitable precision, where the measurement operator is M0 = |0. . .0〉〈0. . .0|.
Note that if all gates are ideal ρm = ρ0 and p0 = 1;

4. Repeat steps 1-3 for N times for different random sequences to obtain the empirical
average p0(m) := EGm [p0(ρm)];

5. Repeat steps 1-4 for different m’s;
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6. Perform a fit to the decay model p0(m) = A0 +C0λ
m
2 .

Then the average gate fidelity over the group can be estimated as

F = 1+ (d1 −1)λ2

d1
, (3.37)

where d1 is the dimension of the (multi-)qubit Hilbert space.

ASSUMPTIONS ON THE NOISE

The validity of Eq. (3.37) hangs on a few assumptions. The most important is that the
noise is gate-independent, i.e. that all noisy gates C̃ j can be written as

C̃ j = E ◦C j (3.38)

for the same noise channel E . This assumption is not really expected to be satisfied in
practice, although some weak gate dependence can be allowed [44]. Other assumptions
are Markovianity (implicit in Eq. (3.38) since we have assumed that noise was a TPCP map),
the fact that the quality of the measurement is independent of the sequence (length),
and the fact that there is no leakage. In Section 3.4.3 we review a modified protocol that
removes the last assumption and even gives an estimate for leakage.

INTERLEAVED RANDOMIZED BENCHMARKING

Interleaved randomized benchmarking [45] was introduced to evaluate the average gate
fidelity of a specific Clifford gate C̄ , rather than an average over the whole group. One
first executes the standard randomized-benchmarking protocol as given above, getting
a certain value for λ2. Then one executes the same protocol except for replacing the
sequences in step 1 by G Int

m =Cm+1 ◦ C̄ ◦Cm ◦ C̄ ◦ . . .◦ C̄ ◦C1, where now Cm+1 is chosen
to invert all the previous Cliffords and not only the random ones. One then gets a value
for λInt

2 . Under the assumption that the average error channel is depolarizing, the average
gate fidelity of C̄ is then estimated as

F =
1+ (d1 −1)

λInt
2
λ2

d1
. (3.39)

The error E on this estimation should not be extracted from the fit routine but it is

E = min


(d1−1)

∣∣∣∣λ2−
λInt

2
λ2

∣∣∣∣+(1−λ2)

d1

2(d 2
1−1)(1−λ2)

λ2d 2
1

+ 4
p

1−λ2

√
d 2

1−1

λ2
.

(3.40)

In other words, the ‘true’ average gate fidelity of C̄ lies in [F −E ,F +E ].

PROS AND CONS OF RANDOMIZED BENCHMARKING

With respect to process tomography (see Section 3.4.1), randomized benchmarking has
two main advantages. First, the repetition of many gates (between the preparation and
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measurement steps) magnifies the gate errors, compared to the SPAM errors that remain
fixed. This makes randomized benchmarking SPAM-resistant (similarly to how spectral
tomography in Chapter 7 is SPAM-resistant as well). The second main advantage is that
randomized benchmarking is efficient with respect to the number of qubits and thus
scalable. Furthermore, it is also efficient in terms of real time required to perform a
randomized-benchmarking experiment (see Section 7.3.2 for an estimate of the required
resources).

The downside is that randomized benchmarking provides only average information
about a gate, namely the average gate fidelity over the whole group or for a specific gate,
as well as the average leakage rate in the modified protocol presented in Section 3.4.3
below. However, no specific error diagnosis is possible.

3.4.3. RANDOMIZED BENCHMARKING WITH LEAKAGE MODIFICATION

The modified randomized-benchmarking protocol to characterize leakage as well was
introduced in Ref. [38].

DEFINITIONS

We divide the overall Hilbert space of the qudits involved in the gate into the computa-
tional subspace X1 and the leakage subspace X2 (denoted as C and L , respectively,
in the rest of this thesis), with projectors Π1 and Π2, respectively. Let d1 = dimX1

and d2 = dimX2. We define the leakage of a density matrix as

L(ρ) = Tr(Π2ρ) = 1−Tr(Π1ρ). (3.41)

For a superoperator R, we define the average leakage rate L1 and the average seepage
rate L2 as

L1 :=
∫
|ψ1〉∈X1

dψ1L
(
R(|ψ1〉〈ψ1|)

)= L(R(Π1

d1

))
(3.42)

= 1− 1

d1

d1−1∑
i=0

Tr
(
Π1R(|i 〉〈i |)), (3.43)

L2 :=
∫
|ψ2〉∈X2

dψ2L
(
R(|ψ2〉〈ψ2|)

)= 1−L(R(Π2

d2

))
(3.44)

= 1

d2

d1+d2−1∑
i=d2

Tr
(
Π1R(|i 〉〈i |)). (3.45)

Thus, in particular L1 is the leakage averaged over the basis states in the computational
subspace.

The average gate fidelity in the computational subspace is then defined as

F (R) :=
∫
|ψ1〉∈X1

dψ1 〈ψ1|R(|ψ1〉〈ψ1|)|ψ1〉 . (3.46)



3

62 3. NOISE IN SUPERCONDUCTING QUBITS

One can also express it as [38]

F (R) = 1

d1 +1

(Tr(RΠ1 R)

d1
+1−L1

)
. (3.47)

= 1

d1 +1

(∑
k |Tr(Π1Kk )|2

d1
+1−L1

)
, (3.48)

where RΠ1 is the PTM of the projectorΠ1 and where the {Kk } are the Kraus operators of R.

PROTOCOL

The randomized-benchmarking protocol with leakage modification prescribes as follows:

1. Randomly choose m Clifford gates C1, . . . ,Cm and construct the sequence Gm =
Cm+1 ◦Cm ◦ . . .◦C1, where Cm+1 :=C †

1 ◦ . . .◦C †
m ;

2. Prepare the qubit(s) in a fixed initial state ρ0 (assume that ρ0 = |0. . .0〉〈0. . .0| as
it is usually the case). Apply the gates in the sequence one by one, obtaining
ρm =Gm(ρ0);

3. Measure the probabilities p j (ρm) := Tr(M jρm) up to a suitable precision, where
the measurement operators {M j } correspond to a projective measurement over
computational states, with j ∈ {0, . . . ,d1 −1}.

Obtain an estimate of the population in X1 as pX1 (ρm) =∑d1−1
j=0 p j (ρm) = Tr(Π1ρm);

4. Repeat steps 1-3 for N times for different random sequences to obtain the empirical
averages p0(m) := EGm [p0(ρm)] and pX1 (m) := EGm [pX1 (ρm)];

5. Repeat steps 1-4 for different m’s;

6. Perform a fit to the decay model pX1 (m) = A+Bλm
1 and p0(m) = A0+B0λ

m
1 +C0λ

m
2 .

Then the average gate fidelity and the average leakage and seepage rates over the group
can be estimated as

L1 = (1− A)(1−λ1) (3.49)

L2 = A(1−λ1) (3.50)

F = 1+ (d1 −1)λ2 −L1

d1
. (3.51)

Compared to the standard randomized-benchmarking protocol in Section 3.4.2, this
protocol differs in step 3, in the fact that in step 4 one estimates not only p0(m) but
also pX1 (m), and in the fit model. The crucial difference lies in step 3, in which one
does not measure only the population in |0〉, but also in all other computational states.
Implicitly, step 3 assumes that the measurement distinguishes these states from the
leakage subspace, i.e. that there is a measurement operator MX2 that returns a distinct
value for “leaked”. However, measurements in transmons (see Sections 2.6.2 and 8.11.1)
typically provide the readout |0〉→“0”, |1〉→“1” and |2〉→“1”, thus one cannot distinguish
a |1〉 from the leaked state |2〉 (assume that this is the only state in the leakage subspace).
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In either way, this does not allow one to perform step 3. To go around this issue, one
can use the procedure introduced in Ref. [46] and reviewed in Section 6.11.7. In short, in
this procedure one doubles the number of experiments, performing half of them in the
normal way, and performing the other half by appending a π pulse (X gate) just before
the measurement. The π pulse maps |0〉 to |1〉 and vice versa, but leaves |2〉 invariant.
Roughly speaking, this leads to differences in the measurement statistics that allow one
to estimate p2(ρm) = 1−pX1 (ρm).

ASSUMPTIONS ON LEAKAGE

Beside the other assumptions outlined in Section 3.4.2 for randomized benchmarking,
the results in this section require that averaging over Clifford sequences also averages
out coherences between the computational and leakage subspace. If this assumption is
violated, one might observe oscillations in pX2 (m), however, for small amounts of leftover
coherence, one does not observe oscillations but tends to overestimate L1 [38].

In Chapter 6 we use this protocol (in its interleaved version) to characterize the CZ.
Recall that the CZ is a Clifford gate. Furthermore, as it is the primary two-qubit gate
in a transmon architecture, random Cliffords are compiled out of CZs and single-qubit
Clifford gates, with an average of 1.5 CZs per Clifford [47, 48]. Leakage during the CZ
(see Section 2.8.2) is coherent, thus per se the coherences are not 0. However, away from
the interaction point (during single-qubit gates or idling steps) the phase of |2〉 evolves
fast and it is not tracked, leading to depolarization of the leakage subspace. We expect
that averaging over Cliffords leads to a further suppression of these coherences. This
is corroborated by the fact that in experiment we do not observe oscillations of pX2 (m)
(see Figs. 6.5 and 6.18 and more plots in Ref. [49]). Based on the considerations above,
in Chapter 6 we assume that the amount of leftover coherence is negligible.
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4
QUANTUM ERROR CORRECTION

As discussed in Chapter 3, many noise sources affect the quality of superconducting
qubits and operations performed on them. Improving their quality is of fundamental
importance towards building a functional quantum computer. Running a quantum
computation for a few days or weeks will require error rates below ∼ 10−12. However, it
seems unlikely that the field of quantum computing will manage to implement a qubit
with such a low physical error rate, at least in the next few years. This might have been
the thought also at the beginning of the classical-computing era, before the invention of
nowadays trustworthy transistors, but we do not know if quantum computing will ever
follow the same course. Thus, large quantum processors will likely need to use quantum
error correction (QEC) [1–4] , discussed in this chapter, to implement logical qubits with
very low logical error rates.

In short, in QEC the logical information is spread redundantly across many physical
qubits to help protecting it, assuming that the noise acts locally. Then information about
errors is extracted without destroying the encoded state and is used to try to correct these
errors. We comment on the fact that QEC can be interpreted as a process that lowers the
entropy of the system by collecting information about the errors, while the entropy tends
to increase over time due to the accumulation of errors. If the entropy is kept low enough,
even accounting for the entropy added by imperfect error correction, one can extend the
quantum computation.

Except for Section 4.6, in the following we consider qubits and an independent Pauli
error model.

4.1. QUANTUM ERROR CORRECTING CODES
For a system with Hilbert space H , a quantum error correcting code is defined as a
subspace HL ⊆H , also called the logical subspace. A QEC code is characterized by three
main parameters:

• the number of physical qubits n = log2(dimH );

• the number of logical qubits k = log2(dimHL);
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• the code distance d , defined as the minimum weight of a logical operator, i.e. the
minimum number of qubits which non-trivially support an operator OL 6=ΠL such
that [OL,ΠL] = 0, whereΠL is the projector onto HL (and is thus the logical identity
within HL).

One of the difficult parts in defining a useful QEC code is to find a logical subspace
such that the distance is large. Even more importantly, one wants to identify a family of
QEC codes {H (n)

L } such that d grows substantially with n (and k remains at least fixed or
rather grows too).

We note that these are subspace quantum error correcting codes, but one can also
define subsystem codes, in which HL =HL,sys ⊗HG . There, HL,sys is the logical subsys-
tem, whereas HG contains logical qubits that have been “sacrificed” and are referred to
as gauge qubits. Errors on the gauge qubits are irrelevant, so this might help protecting
the remaining logical qubits.

4.2. STABILIZER CODES
The most studied type of QEC codes are stabilizer codes. The n-qubit Pauli group Gn

is the group of tensor products of n Pauli operators (I , X ,Y , Z ), each multiplied by ei-
ther {1,−1, i ,−i }. A subgroup Sn of Gn is a stabilizer group if it is abelian and does not
contain −I⊗n . Sn can be characterized by a set of independent generators {S1, . . . ,Sn−k }.
This set is not unique but it is usually chosen as the set where each generator has at most
a certain weight. Each element of Sn is a stabilizer (although one often uses the word
stabilizer to specifically refer to the generators, also called parity checks). A stabilizer code
is the simultaneous +1-eigenspace of all the stabilizers. In particular,ΠL can be written as

ΠL = (I +S1) . . . (I +Sn−k )/2n−k . (4.1)

Stabilizer codes are built to deal with Pauli errors. While these errors are not neces-
sarily the most common per se, the Knill-Laflamme conditions [5] ensure that any linear
combination of correctable errors is also correctable. Thus, in particular, if all Pauli errors
up to a certain weight are correctable, then any error up to that weight is correctable as
well. However, if there are more levels above the qubit levels and the state can leak to
those levels, then the correctability of Pauli errors does not imply that leakage errors are
correctable as well (see Section 4.6).

Any given (multi-qubit) Pauli P satisfies either [P,S j ] = 0 or {P,S j } = 0 for each S j .
Thus if we were to measure S j we would find either the measurement outcome s j =+1
or s j =−1, respectively, since

S j (P |ψL〉) =±PS j |ψL〉 =±P |ψL〉 = s j (P |ψL〉). (4.2)

The collection of all s j is called the syndrome~s. Since different Paulis might give a different
syndrome, measuring stabilizers provides some information about errors. However, any
two Paulis that differ by the application of a stabilizer, or of a logical operator, lead to the
same syndrome~s, thus it is not immediate what should be the best correction Pc to be
applied given a certain syndrome. This is the task of the decoder (see Section 4.4). In
general, what might go wrong is that Pc P is a logical operator, different from the identity,
which is undetectable by definition and leads to corruption of the logical information.
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Figure 4.1: The surface code. (a) A small (distance-3) instance of the (rotated) surface code. Larger distances
can be obtained by extending the pattern of X -type (blue) and Z -type (green) stabilizers. We comment that, in
the scheme in Ref. [8], data qubits (red) have two different frequencies (see Fig. 8.2). Two representatives of the
logical operators are displayed via either a vertical line (XL = X0 X3 X6) or horizontal line (ZL = Z6 Z7 Z8). Other
representatives are obtained by multiplying these two with stabilizers. (b,c) Parity-check units for Z (b) and
X (c) ancilla qubits with fault-tolerant ordering of the CZ gates.

In practice, one uses some extra qubits on the chip, called ancilla qubits, to measure
the stabilizers. While in principle one could engineer a multi-qubit interaction (between
> 2 qubits), this is challenging in experiment. Thus the stabilizers are generally measured
by performing a series of two-qubit gates between the ancilla and one data qubit at the
time. These gates are designed to collect the syndrome bit onto the ancilla qubit, which is
subsequently measured to reveal it. To perform these gates, the ancilla qubits need to have
a physical connection to the data qubits. Since long-distance connections are not really
implementable in many quantum-computing platforms, including superconducting
qubits (but not trapped ions [6]), this requirement poses locality constraints on the
stabilizer codes that one may consider. It has been proven [7] that local 2-dimensional
stabilizer codes (in Euclidean space) have a distance limited to d ∼O (

p
n/k). Thus it is

not linear in n as it would ideally be (see Section 4.1). However, this does not preclude
the existence of a threshold (see Section 4.5) for e.g. the surface code, for which d =p

n,
although this limits k to be a constant in that case.

4.2.1. SURFACE CODE

One of the most well-known stabilizer codes is the surface code [9] (see Fig. 4.1), which
is the flat version of Kitaev’s toric code [10]. The surface code is the privileged choice
in many experimental groups due to the 2D layout with nearest-neighbor interactions,
which makes it straightforwardly amenable to implementation. Each ancilla qubit is
connected to 4 data qubits in the bulk and to 2 at the boundary. In its original version,
the stabilizers are products of only either X ’s or Z ’s. In this way one uses half of the
stabilizers to correct for Z errors and the other half for X errors. Since Y ∼ X Z , Y errors
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are handled by correcting X and Z independently. We note that a recent version of the
surface code, the so-called X Z Z X code [11], considers only one kind of stabilizer which
is made of half X ’s and half Z ’s. The impact of such a relatively simple modification leads
to significant advantages whenever the noise is biased towards X or Z errors and if the
two-qubit gates preserve the bias [12].

The logical operators of the surface code correspond to a product of X ’s along a full
vertical edge for XL (see Fig. 4.1(a)), and to a product of Z ’s along a full horizontal edge
for ZL (as well as any other representation obtained by multiplying these with a stabilizer).
Note that upon multiplication by X -type stabilizers, XL continues to connect the upper
and lower boundaries is a snake-like form (similarly for ZL). Because of this invariant
feature upon deformation, the surface code falls within the class of topological codes.
One could say that the protection provided by the surface code originates precisely from
this topological property: a logical operator must cross the lattice from one side to the
other, leading to a distance d =p

n for a square grid of n qubits.

4.3. FAULT TOLERANCE

QEC aims at achieving a logical error rate that is lower than the physical error rate. To
do so, it introduces more qubits, gates and measurements. Since in practice each of
these building blocks is error-prone itself, the question is whether QEC removes more
errors than it introduces. The aim of the theory of fault tolerance [13] is to develop
circuits that are resilient to each component being faulty, whether that component is
(logical) initialization, gates, measurements or the QEC circuit itself. If a component is
implemented in a non-fault-tolerant way, there is no point in coding because the logical
operation will be at least as faulty as at the physical level. Instead, if all operations are
fault tolerant, there is a chance that the logical fidelity is better than at the physical level,
provided that the physical error rates are low enough (i.e. below threshold, or at least
pseudo-threshold; see Section 4.5). That means that there is enough redundancy and
capability for correcting errors in each step, in such a way that errors do not spread
excessively and a computation can be carried on for as long as needed. Furthermore,
fault tolerance is generally an asymptotic statement, meaning that it is still possible that,
if the QEC code is too small, a fault-tolerant operation might perform worse than the
corresponding physical one.

This notion of fault tolerance is rather ambitious and constitutes a long-term goal for
quantum computing. Because of this, one often finds restrictive notions of fault tolerance
in papers and talks, in such a way that we can claim that some fault tolerance has been
reached. Many times fault tolerance is defined as: a single fault should not lead to a logical
error. In that case, it is important that a single fault does not equate to a single-qubit error.
Indeed, for two-qubit gates a single fault should refer to any two-qubit error following
the two-qubit gate. This is relevant because a typical failure mode for a two-qubit gate
corresponds to errors on the entangling part of the operation. Hence, considering only
single-qubit errors after a two-qubit gate would be too optimistic.
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4.4. DECODING
Focusing on stabilizer codes (see Section 4.2), the syndrome history collected in the
QEC cycles constitutes the information that one can use to correct for errors. Note that
a syndrome bit might be faulty itself, e.g. if a readout error can occur when measuring
the ancilla qubit. Below we outline the decoding process, where we discuss first the
maximum-likelihood decoder and then other decoders.

MAXIMUM-LIKELIHOOD DECODER

The general idea of a decoder is to find the (best) correction such that the error is corrected
without producing a logical error. To make the assessment of this task (numerically)
meaningful, one assumes that the last syndrome measurement ~s f is noiseless (even
though this is never the case in experiment), such that the state after correction is in the
logical subspace. Otherwise, if the state is not in the logical subspace, one cannot decide
whether a logical error has occurred or not. The maximum-likelihood decoder is the
decoder which for each syndrome history s = {~s1, . . . ,~s f } finds a correction P∗

c (s) where

P∗
c (s) = argmax

Pc

∑
P :ΠLPc PΠL=ΠL

P(P |s), (4.3)

with Pc being compatible with~s f . The condition ΠLPc PΠL = ΠL means that Pc P acts
as the logical identity on the logical subspace, i.e. it is a product of stabilizers. The
computation of P(P |s) requires knowledge of the error model. Since there are 2n−k

stabilizers in the stabilizer group, the fact that the sum runs over an exponential number
of terms implies that it might be inefficient to compute the most-likely correction P∗

c (s).

MWPM DECODER AND OTHERS

Because of the inefficiency of the maximum-likelihood decoder, many other decoders [14–
16] have been proposed, where the algorithm is computationally efficient. Each of these
decoders is generally tailored to a certain class of QEC codes. Here we focus on the
surface code. The question then is how good such a decoder is, particularly compared
to the maximum-likelihood one. Thus, a good QEC code does not only possess a large
distance, as discussed in Section 4.1, but should also admit an efficient decoder with
good performance. Here the performance is defined in terms of minimizing the logical
infidelity EL = 1−FL (or maximizing the logical fidelity FL), i.e. the probability that
the correction leads to a logical error, computed as a weighted average over all possible
syndromes.

In theoretical works the error model is often chosen to be an independent Pauli
error model, in which Pauli errors of possibly any type occur for each qubit or gate
independently with a certain probability p. In this case one can define a logical error
rate εL, where here we consider the definition in Ref. [17]. In particular, FL evolves as a
function of the QEC-cycle number nc as [17]

FL[nc ] = 1

2

(
1+ (1−2εL)nc

)
. (4.4)

Roughly speaking, in an independent model the weight of errors follows a binomial
distribution, peaked around pnq , where nq is the number of qubits. If pnq is low enough,
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most errors have a relatively low weight and they constitute the largest contribution
to the sum in Eq. (4.3). For the surface code, the Minimum-Weight Perfect-Matching
decoder (MWPM) [14, 17, 18] is a decoder which precisely approximates that sum by
just the probability of the lowest-weight error. The latter can be found using Edmond’s
algorithm, which has polynomial complexity in the number of qubits and is thus effi-
cient. MWPM has been shown to perform well for the surface code, and we use it as well
in Chapters 8 and 9 (see Refs. [17, 18] for more information about our specific implemen-
tation). Other decoders either use more complex strategies to better approximate the sum
in Eq. (4.3) or use a simple algorithm that runs faster (e.g. the Union-Find decoder [15])
while maintaining good performance.

In the density-matrix simulations of the surface code (see Section 3.3.2) we also con-
sider the Upper-Bound decoder (UB). In this case we directly draw information about
errors from the density matrix. Since an actual decoder is only allowed to access the syn-
drome measurements, UB provides an upper bound to the performance of any decoder.
For a detailed description see Section 9.7.1.

REAL-TIME DECODING

A major, somewhat unexplored issue is that decoders will need to run in real time, in
parallel with the computation, such that errors can be corrected on the fly. While this
can in principle be avoided for computations that only use Clifford operations, useful
universal computations are not purely made of Cliffords [1]. In particular, Clifford circuits
can be simulated classically in an efficient way (Gottesman-Knill theorem). Thus decoders
do not need to be only “efficient” in a theoretical computer-science way, but they need to
be efficient in real time as well. We discuss this further in Section 10.2.

4.5. THRESHOLD

We have mentioned in Section 4.1 that it is good if a family of QEC codes {H
(nq )
L } has

a distance d that grows significantly with nq . It is even better if there exists a so-called
(error) threshold (see below). For simplicity, in this exposition we do not distinguish
between errors in e.g. the gates or measurements, but we assume a single overall p that
parametrizes all error probabilities. The threshold pth is the physical error rate such that,

for a given decoder, the logical infidelity E
(nq )
L [nc ] after nc QEC cycles satisfies

lim
nq→+∞E

(nq )
L [nc ] = 0 (4.5)

for every p < pth, where one takes nc = d for the surface code, and in particular

E
(nq )
L [nc = d ] ∼ poly(d)e−cd , (4.6)

where c ∼ log(pth/p). The reason for taking nc = d is that, when measurements can be
faulty, one needs to repeat them for at least a certain number of times to correct for
those errors. Note that the threshold is a combined property of the code and the decoder.

Regarding the logical error rate ε
(nq )
L , defined via Eq. (4.4), its dependence on d must be

ε
(nq )
L ∼ poly(d)

d
e−cd (4.7)
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to give Eq. (4.6). Indeed, based on Eq. (4.4), one has E
(nq )
L [nc ] = 1

2

(
1− (

1−2ε
(nq )
L

)d
)
∼

dε
(nq )
L ∼ poly(d)e−cd .
Typically, three kinds of error models are considered: incoming noise (Pauli errors

inserted on data qubits at the beginning of each QEC cycle), phenomenological noise
(classical readout errors on top of incoming noise), and circuit-level noise (Pauli errors
inserted after each gate on both data and ancilla qubits). Regarding the surface code, for
incoming noise the threshold is about 10.9% [14] for the maximum-likelihood decoder
and 10.3% for MWPM [19]. Instead for phenomenological noise it drops to about 2.9% [20]
and for circuit-level noise to 0.9% for MWPM [19], although the threshold has been found
to vary in the range 0.5-1.1% for different variations of circuit-level noise [21]. Because
of this, one needs to be careful when comparing thresholds across different papers
and numerics (as well as the possible different definitions of logical fidelity and logical
error rate). Nevertheless, 1% is generally taken as the minimum error probability that

each operation is required to reach in experiment. Even though E
(nq )
L [nc ] decreases

exponentially with p for p < pth (see Eq. (4.6)), to really reap the benefits of QEC one
needs at least p = 0.1% or even 0.01% or less. Then nq does not need to be unreasonably
large to lower the logical infidelity below a desired level.

One of the holy grails of current intermediate-scale processors is thus to get all error
rates below threshold. If this continues to hold when scaling up the system, then one can
increase the system size until the logical infidelity drops below any desired value.

Pseudo-threshold. We briefly mention that one can also define the notion of pseudo-
threshold, which is not a property of a family of codes but of a code with a fixed size
within the family. In that case, the pseudo-threshold ppseu is defined as the physical error
probability such that the corresponding physical error rate ε satisfies ε(p = ppseu) = εL.
Hence, for p < ppseu, ε(p) < εL and coding is advantageous at the given code size.

4.6. BEYOND (INDEPENDENT ) PAULI ERRORS
So far we have considered QEC codes that assume qubits and we have assumed that the
errors are all Paulis and in particular that they are independent for each location. If the
independence assumption is not fulfilled, i.e. if errors can be correlated, the performance
of the decoder can be undermined. This can be due to a more difficult estimation ofP(P |s)
(see Section 4.4), as well as due to high-weight errors being relatively more likely than if
errors were independent. As a consequence, an efficient decoder like MWPM might not
perform so well anymore because the lowest-weight correction is less of a good guess.
Correlated errors can be due to e.g. crosstalk between qubits, especially Z Z crosstalk
(see Section 3.2.7), or due to leakage lasting for many QEC cycles (see Chapters 5, 8 and 9).
Data-qubit leakage effectively reduces the code distance and spreads Z -rotation errors
onto neighboring ancilla qubits, while ancilla-qubit leakage temporarily disables parity
checks and spreads Z -rotation errors onto neighboring data qubits (see Section 8.4).

If the qubit assumption is not fulfilled and specifically if there can be leakage to higher
levels, it is a priori unclear whether the threshold does not become unreasonably low and
fault tolerance cannot be achieved in practice. In particular, while protecting against Pauli
errors (up to a certain weight) guarantees protection against any error within the qubit
subspace (see Section 4.2), it does not necessarily mean that the protection is extended
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to leakage errors. In Chapter 8 we study the dynamics of leakage in a transmon-based
surface code. We have indeed seen that leakage severely affects the logical infidelity
(see Fig. 8.2), even though we still expect that a threshold should exist and even though
the use of leakage-reduction units can restore a good amount of the lost performance
(see Section 9.1 for a broader discussion). Previous work about the presence of leakage in
QEC and how to remove it is reviewed in Chapter 5.
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5
LEAKAGE AND QUANTUM ERROR

CORRECTION

5.1. PREVIOUS WORK
In this chapter we review the papers that have studied the impact of leakage on quantum
error correction and how to deal with it. A summary of the relevant features of the
considered models and results can be found in Table 5.1.

5.1.1. LEAKAGE-REDUCTION UNITS (LRUS)
Below we define, on the one hand, “proper” Leakage-Reduction Units (LRUs) and, on the
other hand, ancilla-qubit reset schemes that serve the same purpose of leakage reduction,
even though the rest of this section focuses mostly on LRUs.

Consider a quantum system with Hilbert space H = C ⊕L , where C denotes the
computational subspace and L the leakage subspace. LetΠC andΠL be the projectors
on the respective subspaces. An (ideal) LRU is a quantum channel ELRU on density
matrices ρ in H , with the following properties:

1. if ρ =ΠC ρΠC (i.e. ifΠL ρΠL = 0), then ELRU(ρ) = ρ;

2. ifΠL ρΠL 6= 0, thenΠL ELRU(ρ)ΠL = 0.

A non-ideal LRU fulfills either one or both of these conditions in an approximate way.
Condition 1 above can be relaxed either by requiring that ρ′ =: ELRU(ρ) ≈ ρ while still ρ′ =
ΠC ρ

′ΠC , or the LRU might mistakenly induce some leakage itself, i.e. Tr(ΠL ρ′ΠL ) ≡ ε¿
1. Condition 2 above can be relaxed by requiring that Tr

(
ΠL ELRU(ρ)ΠL

)< Tr(ΠL ρΠL ),
since this leads to an exponential reduction of the leakage population upon repeated
applications of the LRU.
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A reset scheme (see Section 2.5 for examples in superconducting qubits) is an opera-
tion where a qubit is mapped to (usually) the ground state |0〉, independently of its initial
state in a given subspace. The subspace can be only C , but it can also include L [12–15].
In the latter case the reset also removes leakage, although it is not a LRU according to the
definition above, since it does not fulfill condition 1 at all. While data qubits are reset
at the beginning of a quantum computation, generally only ancilla qubits can be reset
mid-circuit without destroying encoded information. Specifically, ancilla qubits can be
reset only right after being measured, since e.g. in QEC the parity-check information has
already been extracted and the ancilla qubit is in a product state with respect to the rest
of the system (assuming that measurements are projective to a good approximation).

5.1.2. THRESHOLD THEOREM FOR CONCATENATED CODES WITH LRUS

The foundational work on LRUs has been done by Aliferis and Terhal [1], who considered
concatenated codes. In this work, the only assumption on leakage is that it is local,
which is generally the case for current quantum-computing platforms. They have shown
that fault-tolerant quantum computation is still possible in the presence of leakage, if
appropriate LRUs are employed, even if they are non-ideal.

Since a leaked state generally does not contain any logical information (except if
leakage is generated by a unitary that maps C to L ), a LRU converts a leakage error
into a regular error in the computational subspace. By using LRUs, it is shown in Ref. [1]
that a concatenated code with a certain threshold in the no-leakage case still possesses a
threshold if leakage is present. However, this threshold is lower because the regular error
rate is effectively higher due to the combination of leakage and LRUs.

We remark that to realize a LRU it is not necessary to know whether the state is
supported on the leakage subspace or not. However, leakage detection, i.e. having the
possibility to experimentally distinguish a leaked state, would be beneficial [2].

5.1.3. TOPOLOGICAL CODES AND LRUS

The threshold theorem proved by Aliferis and Terhal holds for concatenated codes,
whereas topological codes were not considered. A similar threshold theorem for topo-
logical codes has not been proven so far. Suchara, Cross and Gambetta [2] numerically
showed that a threshold does exist for topological codes in the presence of leakage, in
the case of the toric code. Of course this holds with respect to the specific noise and
leakage models that they considered (described below). In particular, certain (reasonable)
assumptions are made on leakage to keep the simulation efficient. However, these models
are still insightful about a threshold for a fully realistic noise model. In this section we
first focus on the leakage model and the steps to efficient simulations in general, and then
we provide specific details on the error models in Ref. [2].

Step 1. Efficiency-wise it is necessary to consider only states that are mixtures of
computational and leakage states, i.e. no superpositions between the two should be
allowed by the leakage noise model. In this way, in a Pauli error model for regular errors,
one can track the Pauli frame (which is efficient) and a “leakage frame” as described
in Ref. [2], which is also shown to be efficient. Hence, a stochastic leakage model is
considered. Let p↑ be the probability of leakage and p↓ the probability of seepage. We
consider qutrits here, i.e. L is one-dimensional and corresponds to |2〉. The stochastic
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leakage and seepage channels are respectively defined as:

E↑(ρ) = (1−p↑)ρ+p↑ |2〉〈2| , (5.1)

E↓(ρ) = (1−p↓)ρ+p↓
(
ΠC ρΠC +〈2|ρ|2〉 ΠC

2

)
, (5.2)

where ρ is a single-qubit (reduced) density matrix. In Ref. [2] E↑ is applied on each
qubit after a two-qubit gate, whereas E↓ is applied after both single- and two-qubit gates.
Technically, E↓ is a LRU, even though it is very poor since p↓ is usually quite low. In
particular, E↓ resembles T1 relaxation, except for the fact that relaxation brings |2〉 down
to |1〉, rather than to the maximally mixed stateΠC /2 as in this model. It is also clear that
the leakage mechanism given by E↑ does not generate superpositions of computational
and leaked states, as required for efficient simulations.

Step 2. Next, one needs to specify how gates act on leaked qubits. Specifically, as in
Ref. [2], one requires that the (ideal) gates are “sealed”. Roughly speaking, a sealed gate is
defined as a quantum channel Un acting on n-qubit density matrices, such that

• it does not generate superpositions between computational and leaked states of
any individual qubit;

• non-leaked incoming qubits remain non-leaked after the ideal gate.

Note that only the first condition is required to make the simulation efficient. The second
one is chosen because potentially there is no threshold or it is very low if two-qubit gates
spread leakage, meaning that two qubits are leaked after the ideal gate when only one
was leaked before.
More precisely, a sealed single-qubit gate U1 takes the form U1(ρ) =U1ρU †

1 , i.e. it acts as
a unitary U1, such that

U1 =UC ⊕UL . (5.3)

A sealed two-qubit gate U2 is a probabilistic mixture of unitaries U (i )
2 , i.e. it has Kraus

operators {
p

piU (i )
2 } where pi is the probability of applying U (i )

2 , such that

U (i )
2 =UC⊗C ⊕U (i )

C⊗L
⊕U (i )

L⊗C
⊕UL⊗L . (5.4)

That is, U2 fulfills the conditions for a sealed gate by not mixing the four subspaces in
this equation.

Step 3. To complete the construction of this leakage model, one only has to give a
specific expression for U1 and U2, especially with respect to the behavior when a qubit
is leaked. In Ref. [2], for single-qubit gates they pick UC (see Eq. (5.3)) to be the ideal
operation, whereas UL = IL , i.e. it acts as the identity on L .
For two-qubit gates, they pick UC⊗C (see Eq. (5.4)) to be the ideal operation, whereas UL⊗L

is just a global phase for qutrits, so it is irrelevant. Furthermore, they choose U (i )
C⊗L

=√
1
4 P (i )

C
⊗ IL (and similarly for U (i )

L⊗C
), where P (i )

C
∈ {I , X ,Y , Z }. In other words, a non-

leaked qubit interacting with a leaked one is completely depolarized, since applying
uniformly random Pauli errors is equivalent to complete depolarization. Here we refer
to this kind of sealed gates as SealedDepo gates. Note that if SealedDepo gates involving
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one leaked qubit are applied to multiple non-leaked qubits, the spread Pauli errors are
uncorrelated. In particular, then, SealedDepo gates produce the worst-case uncorre-
lated noise on non-leaked qubits. However, sealed gates producing correlated noise (if
e.g. U (i )

C⊗L
≡UC⊗L is a fixed unitary for all gates) can have a more detrimental effect than

SealedDepo gates on the performance of a QEC code (but not necessarily [8]).

OVERALL NOISE MODEL

Here we discuss the noise locations for both regular and leakage errors in Ref. [2]. If
a two-qubit gate acts on two non-leaked qubits, it acts as the ideal operation and it is
followed by a Pauli channel with overall probability pP of applying any two-qubit Pauli. If
a two-qubit gate acts on a leaked and on a non-leaked qubit, a certain U (i )

C⊗L
is sampled

according to the {pi } and applied to the non-leaked qubit. In the relatively unlikely case
in which the two-qubit gate acts on two leaked qubits, the gate does nothing. In any case,
E↑ and E↓ are applied on both qubits after applying the Pauli errors (if any).

Single-qubit gates are followed by a Pauli channel if they act on a non-leaked qubit,
with the same probability pP of applying any single-qubit Pauli. Then only E↓ is applied.
The same applies to idling steps.

Measurements are either supposed to declare a |2〉 as a |1〉, or to be able to distinguish
these two states (in which case an increase in performance of the QEC code is observed).
Furthermore, the measurement can report an incorrect outcome with probability pm ≡
pP .

LRU SCHEMES

Suchara, Cross and Gambetta [2] also introduced various schemes for applying LRUs in
quantum error correction, and they found non-zero thresholds for all of them in the case
of the toric code. The threshold is then a function of both the leakage probability p↑ and
the regular error probability pP (and weakly depends on p↓).
We note that they found a zero threshold if LRUs are not used. Furthermore, with respect
to their model in Eq. (5.2), we expect that a threshold would exist if p↓ is large enough,
but in Ref. [2] p↓ is relatively small (as it is expected for relaxation).

• Full-LRU scheme: this is the scheme where LRUs are applied to both qubits (so
either data or ancilla qubits) after each two-qubit gate, as in Ref. [1].
In Ref. [2], the specific LRU considered consists of preparing a “fresh” qubit q f in |0〉,
then performing a SWAP with the target qubit qt to which the LRU is conceptually
applied (note that this scheme requires many extra qubits on the chip, as well as
a non-trivial connectivity potentially); after this, qt is reset to |0〉, independently
of its state being |0〉 , |1〉 or |2〉, while q f continues to be used in the quantum
computation. We note that the SWAP is compiled in terms of three CNOTs, where
the first one can be dropped since the control is on q f (in |0〉) and thus this CNOT
acts as the identity.
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Assume that the action of the SWAP is ideally

|00〉 7→ |00〉 (5.5)

|01〉 7→ |10〉 (5.6)

|10〉 7→ |01〉 (5.7)

|11〉 7→ |11〉 (5.8)

|2 j 〉 7→ |2 j 〉 (5.9)

| j 2〉 7→ | j 2〉 , (5.10)

i.e. in particular that it does not swap leakage. If qt was not leaked, after the SWAP
it is in state |0〉 (thus the reset effectively does nothing), while its state has been
correctly swapped onto q f . If instead qt was leaked, after the SWAP the “fresh”,
outgoing qubit qo ≡ q f is still non-leaked, while the leakage on qt is removed by
the reset. If the SWAP is prone to regular or possibly leakage errors, qo has a chance
to be leaked. However, if the error rates are low, the LRU still reduces leakage in the
system with high probability.
We note that this LRU does not rely on a stochastic leakage model to be effective.
That is, even if qt is in a superposition of computational and leaked states, qo is
fully non-leaked (modulo imperfections in the operations involved). However, the
latter does not mean that qo is error free. In the worst case that qt was fully in |2〉,
qo is in |0〉, thus when it is re-entangled with the rest of the data qubits by the
subsequent parity-check measurements, it is affected by a uniformly random Pauli
error. If qt was only partially leaked, qo is still affected by some Pauli error but with
a distribution that depends on the leakage.

• Partial-LRU scheme: LRUs are only applied to data qubits at the end of each QEC cy-
cle, whereas ancilla qubits are reset after being measured (thus still removing
leakage from the ancilla qubits).
The less frequent use of these LRUs (described above) reduces the number of ex-
tra qubits and operations required, compared to the Full-LRU scheme, but it still
requires one extra qubit per data qubit (although one could actually use only one
extra qubit at the cost of serializing the application of the LRUs, as long as the
connectivity allows for it).

• Quick-LRU scheme: data and ancilla qubits are swapped at the end of each QEC cy-
cle, then the qubits taking the role of ancilla qubits are reset. Note that in this way
one does not need any extra qubits. The SWAP is also compiled as three CNOTs,
where here the first one cancels with the last one of the parity-check unit [2], so that
overall only one CNOT is effectively added to the ones in the parity-check unit.
As each qubit takes the role of ancilla qubit every two QEC cycles, leakage can
last for at most two QEC cycles, again assuming that the SWAP does not swap the
leakage as well. Specifically, if leakage is on the qubit taking the role of ancilla qubit,
then leakage is removed immediately by the reset. If instead leakage is on the qubit
taking the role of data qubit, then one needs to wait until the following QEC cycle
(in which, then, the qubit takes the role of ancilla qubit) for the reset to remove this
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leakage from the system.
We refer to the Quick-LRU also as the swap-LRU.

Reference [3] followed similar lines as in Ref. [2], considering a Quick-LRU scheme
with respect to a stochastic leakage model and SealedDepo gates. In this case, the code
being studied was the repetition code, whose performance was found to be similarly
damaged by leakage, but a threshold still existed when using the Quick-LRU.

5.1.4. STUDIES OF COHERENT LEAKAGE IN SUPERCONDUCTING QUBITS

Ghosh and Fowler [4, 5] considered a coherent leakage model rather than a stochastic
one. The CZ in superconducting qubits is modeled in a realistic way, taking into account
the avoided crossings in the spectrum of two coupled transmons (see Section 2.8.2), as
well as the functioning of a baseband flux-based CZ (see Section 2.8.3). In particular, the
coherent exchange between |11〉 and |02〉 is considered. Higher excited states, namely |3〉,
are not included in the description.

In Ref. [4] the simple case of a single data qubit measured by an ancilla qubit is
considered (no other qubits). They find that the leakage conditional phases (defined
in Section 3.3.2) affect the capability to detect leakage. In particular, when the leakage
conditional phase is ≈ 0, they observe that the ancilla qubit does not detect leakage
at all since it always reports the same measurement outcome, as if there was no error.
This effect is nicknamed “leakage paralysis”. However, the authors fail to notice that this
effect disappears if there is more than one data qubit in the parity-check unit (due to the
anticommutation effect; see Section 8.11.2). In Ref. [5] weight-2 stabilizers of a surface
code are considered, but no larger-scale study is carried out.

5.1.5. STUDIES OF STOCHASTIC LEAKAGE IN TRAPPED IONS

A series of papers by N. and K. Brown et al. [6–8] has studied the effect of leakage on QEC
based on trapped-ion qubits. They consider Quick-LRUs with respect to a stochastic
leakage model with sealed gates (so their numerical simulations are efficient). The only
aspect of the leakage error model that is tailored to trapped ions is the fact that the gates
are not SealedDepo, but a realistic set of {U (i )

C⊗L
,U (i )

L⊗C
} and {pi } is used for the Mølmer-

Sørensen gate (MS) for a non-leaked qubit interacting with a leaked qubit. Those are
extracted via a Pauli-twirl approximation of the coherent action of the Mølmer-Sørensen
gate.

References [6, 7] considered two different species of trapped ions and studied a surface
(or toric) code made up of either one or both of these species. One species cannot leak
but has low coherence times, whereas the other one can leak but has long coherence
times. If the surface code is made up of only one species, they find that leakage is so
detrimental that it is preferable to use the non-leakage-prone ions, despite their higher
susceptibility to regular errors. However, the best solution is a mixed-species surface code,
where the non-leakage-prone ions are used as data qubits and the leakage-prone ions as
ancilla qubits. In this way, regular ancilla-qubit errors are less frequent and ancilla-qubit
leakage is removed by the reset. Hence, there is no need to swap data and ancilla qubits
or develop any other LRU for the data qubits.
The authors comment that the superiority of the mixed-species scheme holds only for
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Sealed MS gates but not for SealedDepo gates (even though this is less relevant for trapped
ions). In the latter case, they find (surprisingly) that ancilla-qubit leakage is particularly
damaging, even more than data-qubit leakage, presumably because of the errors spread
by a leaked ancilla qubit. Thus these errors counterbalance the benefits, described above,
of the mixed-species scheme.

Reference [8] studied subsystem codes, specifically Bacon-Shor codes and the subsys-
tem surface code, finding that they are somewhat more resistant to leakage compared to
subspace codes, specifically the surface code. This result is attributed to the fact that the
parity checks of those subsystem codes have lower weight than in the subspace surface
code, thus limiting the spread of correlated errors. Some improvements in the threshold,
especially for Bacon-Shor codes, are found for Sealed MS gates, compared to the case of
complete depolarization (SealedDepo gates).

5.1.6. DATA- VERSUS ANCILLA-QUBIT LEAKAGE AND CRITICAL LEAKAGE LO-
CATIONS

N. Brown, A. Cross and K. Brown [9] further studied leakage in the toric code with respect
to a stochastic leakage model with SealedDepo gates and Quick-LRUs. First, as in Ref. [7],
they found that ancilla-qubit leakage has a worse impact on the performance than data-
qubit leakage. The second main finding was that leakage in the first CNOT of the parity-
check unit is significantly more damaging than in the following CNOTs.

To my understanding, the fact that ancilla-qubit leakage is more damaging is related to
the fact that in a SealedDepo gate the leaked qubit can spread errors of any type (X ,Y , Z ).
Specifically, the point is that e.g. a Z -type ancilla qubit can spread X errors to nearby
data qubits (i.e. the error of type opposite to the parity check). Based on the circuits
in Fig. 4.1(b,c), one can get convinced that this is not possible when only regular errors are
present. An issue with opposite-type errors is, for example, that if a Z -type ancilla qubit
spreads 3 or 4 Z errors, by multiplication with a stabilizer these are respectively equivalent
to 1 or 0 Z errors. However, this weight reduction is not possible when a Z -type ancilla
qubit spreads 3 or 4 X errors. The first CNOT is then particularly problematic because
there is no scheduling that can avoid spreading many errors.

In superconducting qubits we have found that a leaked qubit spreads Z rotations that
depend on the leakage conditional phases (see Section 3.3.2). Parity checks of Z type thus
spread Z -like errors and checks of X type spread X -like errors thanks to the Hadamard
gates. That is, only same-type errors are spread and we do not observe data- or ancilla-
qubit leakage to be significantly worse than the other in our error model. Indeed, in Fig. 9.5
one can see that using LRUs for only the data or ancilla qubits lowers the logical error rate
by a comparable amount.

5.2. COMPARISON WITH WORK IN THIS THESIS
In Chapters 8 and 9 we consider the distance-3 instance of the (rotated) surface code
(Surface-17), based on superconducting transmons. In particular, for the CZ we consider
the coherent error model we developed (see Sections 3.3.2 and 8.2) based on the full
Lindblad simulations of the gate (see Section 3.3.1). This model for the CZ is inserted
in density-matrix simulations of Surface-17, where we include also T1 and frequency-



REFERENCES

5

87

dependent T2 (see Section 3.3.2).
The main advantage of density-matrix simulations is that we can accurately study

the evolution of leakage and how it interacts with stabilizer quantum error correction.
We observe the anticommutation of parity checks in the presence of a leaked data qubit
(see Section 8.11.2), as well as the effect of coherent Z rotations spread by a leaked
ancilla qubit (see Section 8.4). Furthermore, we can test leakage detection via Hidden
Markov Models in a realistic setting (see Chapter 8), as well as the benefits of LRUs
(see Chapter 9). In particular, we introduce the res-LRU and π-LRU for data and ancilla
qubits, respectively, where the res-LRU (see Section 9.2) consists of a microwave pulse
applied on a data transmon and the π-LRU (see Section 9.3.2) consists of a |1〉 ↔ |2〉
π-pulse on the ancilla qubit conditioned on the readout declaration of a |2〉. Compared to
the Quick-LRU (or swap-LRU), these LRUs do not require additional qubits or hardware
elements, nor extra QEC-cycle time (see Section 9.1 for a broader discussion).

We note that in the density-matrix simulations we decohere the leakage states after
the CZs, motivated by the fact that stabilizer measurements tend to decohere leakage
relatively fast (see Section 8.10.2). While this means that the leakage error model in
the density-matrix simulations is not completely coherent, the spread Z -rotation errors
are coherent in the computational subspace of the non-leaked qubit (regular relaxation
errors are coherent as well), allowing us to observe the effects above and speeding up the
simulations.

The disadvantage of the density-matrix simulations is that, despite our optimization
efforts, they are intrinsically inefficient as the size of the density matrix grows exponen-
tially with the number of transmons. It follows that with these methods we cannot study
the threshold of the surface code in the presence of our leakage model and LRUs. We leave
to future work the development of stochastic simulations that incorporate the realistic
elements we studied as much as possible (see Section 9.4 for more details).
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6
NET ZERO CONDITIONAL-PHASE

GATES

Conditional-phase (CZ) gates in transmons can be realized by flux pulsing computational
states towards resonance with non-computational ones. In the first part of this chapter
we present a 40 ns CZ gate based on a bipolar flux pulse suppressing leakage (0.1%) by
interference and approaching the speed limit set by exchange coupling. This pulse harnesses
a built-in echo to enhance fidelity (99.1%) and is robust to long-timescale distortion in
the flux-control line, ensuring repeatability. Numerical simulations matching experiment
show that fidelity is limited by high-frequency dephasing and leakage by short-timescale
distortion.

Simple tuneup of fast two-qubit gates is essential for the scaling of quantum processors.
In the second part of this chapter, we introduce the sudden variant (SNZ) of the Net Zero
scheme realizing controlled-Z (CZ) gates by flux control of transmon frequency. SNZ CZ
gates realized in a multi-transmon processor operate at the speed limit of transverse cou-
pling between computational and non-computational states by maximizing intermediate
leakage. Beyond speed, the key advantage of SNZ is tuneup simplicity, owing to the reg-
ular structure of conditional phase and leakage as a function of two control parameters.
SNZ is compatible with scalable schemes for quantum error correction and adaptable to
generalized conditional-phase gates useful in intermediate-scale applications.

The first part of this chapter has been published in Phys. Rev. Lett. 123, 120502 (2019) [1]. The second part of
this chapter has been published in Phys. Rev. Lett. 126, 220502 (2021) [2]. F. B. realized the simulations and
contributed to the presented concepts and the development of the error model. Furthermore, F. B. contributed
extensively to the writing of the first part and provided input and feedback on the writing of the second part.
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6.1. PART 1: FAST, HIGH-FIDELITY CONDITIONAL-PHASE GATE

EXPLOITING LEAKAGE INTERFERENCE IN WEAKLY ANHAR-
MONIC SUPERCONDUCTING QUBITS

6.2. INTRODUCTION

A steady increase in qubit counts [3–6] and operation fidelities [7–11] allows quantum
computing platforms using monolithic superconducting quantum hardware to target
outstanding challenges such as quantum advantage [12–14], quantum error correction
(QEC) [15–19], and quantum fault tolerance (QFT) [20, 21]. All of these pursuits require
two-qubit gates with fidelities exceeding 99%, fueling active research.

There are three main types of two-qubit gates in use for transmon qubits (see also Sec-
tion 2.8.3), all of which harness exchange interactions between computational states
(|i j 〉 , i , j ∈ {0,1}) or between computational and non-computational states (i or j ≥ 2),
mediated by a coupling bus or capacitor. Cross-resonance gates [10, 22] exploit the ex-
change interaction between |01〉 and |10〉 using microwave-frequency transversal drives.
Parametric gates [9, 23] employ radio-frequency longitudinal drives, specifically flux
pulses modulating the qubit frequency, to generate sidebands of resonance between
|01〉 and |10〉 for iSWAP or between |11〉 and |02〉 or |20〉 for conditional phase (CZ). The
oldest approach [24, 25] uses baseband flux pulses to tune |11〉 into near resonance
with |02〉 to realize CZ. Either because they explicitly use non-computational states, or
because of frequency crowding and the weak transmon anharmonicity, the three ap-
proaches are vulnerable to leakage of information from the computational subspace.
Leakage is very problematic in applications such as QEC, complicating the design of
error decoders and/or demanding operational overhead to generate seepage [26–30],
generally reducing the error thresholds for QFT. This threat has motivated the design of
fast-adiabatic pulses [31] to mitigate leakage and architectural choices in qubit frequency
and coupler arrangements [32] to explicitly avoid it. Surprisingly, many recent demon-
strations [9, 10, 33] of two-qubit gates place emphasis on reaching or approaching 99%
fidelity without separately quantifying leakage.

Although baseband flux pulsing produces the fastest two-qubit gates to date (30−
45 ns), two challenges have kept it from becoming the de facto two-qubit gating method.
First, because the pulse displaces one qubit 0.5−1 GHz below its flux-symmetry point, i.e.,
the sweetspot, the sensitivity to flux noise increases dephasing and impacts fidelity. The
second challenge is non-atomicity. If uncompensated, distortions in the flux-control lines
originating from limited waveform-generator bandwidth, high-pass bias tees, low-pass
filters, impedance mismatches, on-chip response, etc., can make the action of a pulse
depend on the history of flux pulses applied. To date, predistortion corrections have
been calculated in advance, requiring prior knowledge of the timing of all the flux-pulse-
based operations required by the quantum circuit, and significant waveform memory.
This standard practice is incompatible with real-time determination and execution of
operations, as is required for control flow and feedback in a fully programmable quantum
computer [34, 35].

In this Letter, we introduce a fast (40 ns), low-leakage (0.1%), high-fidelity (99.1%),
and repeatable flux-pulse-based CZ gate suitable for a full-stack quantum computer
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Figure 6.1: (a) Schematic representation of unipolar and NZ pulses that tune into resonance with (b) |11〉↔ |02〉
in order to perform CZ gates. Repeated applications of unipolar (c) and NZ (d) CZ pulses showing the target
(orange), predistorted (blue), and actual (red) waveforms for an imperfect distortion correction. The insets in (c)
and (d) show the differing accumulation in the required predistortion correction.

executing operations in real time on transmon-based quantum hardware. These attractive
characteristics are enabled by a zero-average bipolar flux-pulsing method, nicknamed
Net-Zero (NZ), which uses the |11〉↔ |02〉 avoided crossing twice. Harnessing the analogy
to a Mach-Zehnder interferometer, NZ exploits destructive interference to minimize
leakage to |02〉 while approaching the speed limit set by the exchange coupling in the
two-excitation manifold. The flux symmetry of the transmon Hamiltonian makes the
phases acquired by the pulsed qubit first-order insensitive to low-frequency flux noise,
increasing fidelity relative to a unipolar pulse. Crucially, the zero-average characteristic
makes NZ insensitive to long-timescale distortions remaining in the flux-control line
after real-time pre-compensation, making the CZ gate repeatable. Detailed numerical
simulations supplied with calibrated experimental parameters and direct measurement
of short-timescale distortions show an excellent match to experiment, and indicate that
fidelity is limited by high-frequency flux noise while leakage is dominated by remaining
short-timescale distortions.

6.3. NET-ZERO CONCEPT
The ideal CZ gate (see also Section 2.8.3) is described by the transformation:

U =


1 0 0 0
0 e iφ01 0 0
0 0 e iφ10 0
0 0 0 e iφ11

 , (6.1)

in the computational basis {|00〉 , |01〉 , |10〉 , |11〉}, where the single-qubit phases φ01 and
φ10 are even multiples of π and the conditional phase defined by φ2Q =φ11 −φ01 −φ10 is
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an odd multiple of π. A CZ gate of total duration TCZ = T2Q +T1Q can be realized in two
steps. First, a strong flux pulse on the higher frequency qubit moves |11〉 into the avoided
crossing with |02〉 and back to acquire φ2Q . Next, simultaneous weaker pulses on both
qubits adjust the single-qubit phases. We compare two types of flux pulses, the (unipolar)
pulse introduced in [31] and the NZ pulse [Fig. 6.1(a)]. The NZ pulse consists of two
back-to-back unipolar pulses of half the duration and opposite amplitude. Experiments
are performed on a pair of flux-tunable transmons described in Section 6.11.1.

Because of distortions (see also Section 3.2.5), the waveform VAWG(t ) specified in an
arbitrary waveform generator (AWG) does not result in the qubit experiencing the targeted
fluxΦtarget(t ). These distortions can be described as a linear time-invariant system that
transduces voltage to flux and is characterized by its impulse response h(t ). To measure
h(t) at the qubit, we employ the Cryoscope technique that we introduce in [36]. We
then use it to construct an inverse filter h̃−1, known as a predistortion correction, to
compensate the distortions. By performing a convolution of the desired signalΦtarget(t )
with h̃−1, the qubit experiences the pulse

Φ(t ) = h ∗VAWG(t ) = h ∗ (h̃−1 ∗Φtarget)(t ). (6.2)

The predistortion corrections are performed using a combination of real-time filters
implemented in a Zurich Instruments HDAWG and a short (20 ns) FIR filter implemented
offline.

By eliminating the DC component of the pulse, NZ CZ gates are resilient to long-
timescale distortions [37]. Because the transmon Hamiltonian is symmetric with respect
to the sweetspot, it is possible to use both positive and negative amplitudes to perform a
CZ gate [Fig. 6.1(b)] while satisfying the zero-average condition∫ TCZ

0
Φtarget(t ′)d t ′ = 0. (6.3)

If Eq. (6.3) holds, the DC component is zero and the components in the Fourier transform
Φtarget(ω) at frequencies ω. 2π

TCZ
are suppressed. Writing Eq. (6.2) in the Fourier domain:

Φ(ω) =H (ω) ·H̃ −1(ω) ·Φtarget(ω), it follows that ifΦtarget(ω) does not contain any compo-
nents at ω< 2π

TCZ
, thenΦ(ω) does not depend on any components of H (ω) at frequencies

ω< 2π
TCZ

. As a consequence, the required corrections for NZ pulses do not accumulate,
eliminating the need for accurate long-timescale distortion corrections and the resulting
history-dependent errors [Fig. 6.1(d)].

6.4. REPEATABILITY
To measure the repeatability of CZ gates, the phase (φ01) acquired by the pulsed qubit dur-
ing a CZ gate is measured as a function of the separation time TSep between pulses (Fig. 6.2).
Because of the detuning from the sweetspot, a small change in amplitude during the
pulse leads to a significant change in frequency. This makes the acquired phase sensitive
to distortions. We observe that not correcting distortions leads to significant phase er-
rors (∼ 80 deg). Correcting distortions using a predistortion filter keeps the error small
(< 10 deg) for the first 500 ns but shows history-dependent behavior for longer timescales.
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Figure 6.2: History dependence of flux pulses. Circuit (a) and pulses (b) used to measure the phase acquired
during a pulse as a function of separation time TSep to another pulse. Pulses are calibrated to correspond to
CZ gates. (c) Acquired single-qubit phase for unipolar pulses without (red), and with (purple) predistortion
corrections and NZ pulses with predistortion corrections (green).

Using NZ pulses in combination with a predistortion filter eliminates all history depen-
dence. Hence, we conclude that NZ pulses are robust against remaining long-timescale
distortions.

6.5. ECHO EFFECT
We next investigate a built-in echo effect that provides protection against flux noise.
Because the derivative of the flux arc is equal and opposite in sign at the positive and
negative halves of the NZ pulse, we expect φ01 and φ2Q to be first-order insensitive to
low-frequency flux noise. As a test, we measure the dependence of φ2Q on an applied
DC flux offset for both a unipolar and NZ CZ gate [Fig. 6.3]. As shown in Fig. 6.3(b), φ2Q

is first-order (second-order) sensitive for a unipolar (NZ) pulse. We have also measured
how the dephasing time depends on the detuning for both a square flux pulse and two
half-square flux pulses with opposite sign (see Section 6.11.3). We find that the dephasing
rate is significantly reduced when the opposite-sign flux pulses are used, confirming that
NZ pulses have a built-in echo effect.

6.6. EXPERIMENT-SIMULATION MATCH
The pulse shape is intended to minimize leakage and is described by two parameters
(see Section 6.11.2). Parameter θ f is a measure of the flux at the middle of the unipolar
pulse, and at the middle of each half of NZ. States |11〉 and |02〉 are resonant at θ f =π/2.
Parameter λ2 tunes the sharpness of the pulse rise and fall. We follow [38] in defining the
leakage (L1) of an operation as the average probability that a random computational state
leaks out of the computational subspace.
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Figure 6.3: Echo effect in NZ pulses. (a) Level diagram showing the effect of a drift in flux on a NZ pulse: a
NZ pulse will move to the interaction point on both sides (red); when the bias is offset (green), one side will
overshoot while the other side will undershoot the interaction point, canceling the acquired extra phase. (b)
Measured dependence of conditional phase on applied DC flux offset for both NZ (diamond) and unipolar
(circles) TCZ = 60 ns pulses (T2Q = 40 ns). Solid lines correspond to simulation (see Section 6.11.3), dashed line
indicates 180 deg. The unipolar (NZ) is first-order (second-order) sensitive to the applied offset.

In order to gain insight into how φ2Q and L1 depend on the pulse shape, we perform
an experiment and compare this to simulations. The conditional oscillation experi-
ment (Fig. 6.4) consists of a Ramsey-like experiment that allows us to measure φ2Q and
estimate L1. This experiment measures the phase acquired during an (uncalibrated) CZ
gate by the target qubit (qtarg.) while either leaving the control qubit (qcontr.) in the ground
state, or adding an excitation to qcontr.. The difference between the phase acquired when
qcontr. is in |0〉 and when qcontr. is in |1〉 gives φ2Q . If leakage from |11〉 to |02〉 occurs,
qcontr. is in |0〉 when the second π pulse is applied, adding, instead of removing, an ex-
citation to qcontr.. The leakage probability L1 can be estimated as L̃1 = m/2, where m is
the population difference on the control qubit between both variants of the experiment.
Because of relaxation effects, L̃1 slightly overestimates L1.

The simulations model the system realistically and allow us to extract φ2Q , L1 and the
average gate fidelity F for a single application of the gate (see Section 6.11.3). The pulse
is modeled as a trajectory in a two-qutrit Hamiltonian. The noise model accounts for
relaxation and dephasing effects as well as the effect of remaining distortions. The latter
are measured using the Cryoscope technique [36]. For the dephasing we take into account
the different timescales on which flux noise acts as well as the measured dependence on
the flux bias.

6.7. LEAKAGE INTERFERENCE
Both experiment and simulation show a fringe of low leakage [Fig. 6.4(b,d)]. This fringe
can be understood as “leakage interference” between |11〉 and |02〉 by analogy to a Mach-
Zehnder interferometer (see Section 6.11.6). Such analogy has been exploited in a variety
of platforms [39–43] to demonstrate coherent control of a single qubit by showing Stück-
elberg oscillations [44] as a consequence of periodic driving of the qubit into an avoided
crossing. Here we pulse in-and-out of |11〉↔ |02〉 twice to realize low-leakage two-qubit
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Figure 6.4: Conditional phase (a, c) and leakage (b, d) for a TCZ = 60 ns (T2Q = 40 ns) NZ flux pulse as a function
of pulse parameters θ f and λ2 for both experiment (a, b) and simulation (c, d). The conditional phase increases
with θ f and λ2, since both of these have the effect of making the pulse spend more time close to the interaction
point. Leakage tends to increase significantly with larger values of θ f with the exception of a diagonal fringe.

gates. The states |11〉 and |02〉 correspond to two paths of the interferometer. The first
part of the NZ pulse (red in Fig. 6.1) corresponds to the first (imbalanced) beamsplitter.
In general, after the first beamsplitter most of the population remains in |11〉 but part is
transferred to |02〉. Pulsing through the sweetspot (green in Fig. 6.1) corresponds to the
arms of the interferometer. The two paths are detuned by ∼ 800 MHz, causing a phase to
be acquired before the paths are recombined at the second half of the NZ pulse (blue in
Fig. 6.1) corresponding to the second beamsplitter. The phase difference between the two
paths will cause interference that either enhances or suppresses the leakage to |02〉.

6.8. PERFORMANCE
Given the good correspondence between experiment and simulation (Fig. 6.4), we can use
simulations to explore the parameter space (θ f ,λ2,T2Q ) to find the shortest T2Q enabling
a high-fidelity, low-leakage CZ gate. The minimum CZ gate duration is fundamentally lim-
ited by the coupling strength J2 as the time required to acquire 180 degrees of conditional
phase at the avoided crossing: T2Q ≥ π

J2
= 25 ns. We find a T2Q = 28 ns NZ pulse using

leakage interference to achieve low leakage. The use of interference is demonstrated
by the fact that the corresponding half pulse displays high leakage (see Section 6.11.5).
We append T1Q = 12 ns flux pulses on both qubits to correct the single-qubit phases,
making the total duration of the phase-corrected CZ gate TCZ = 40 ns. We ensure that
these phase-correction pulses satisfy Eq. (6.3) and have a sufficiently low amplitude to
not affect φ2Q and L1 significantly.

We characterize the performance of the CZ gate using an interleaved randomized
benchmarking protocol [7, 45] with modifications that allow us to quantify leakage [38, 46]
(see also Sections 3.4.3 and 6.11.7). The randomized benchmarking sequences are based
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on 300 random seeds. For each seed, every data point is measured 104 times. We measure
an average gate fidelity F = 99.10%±0.16% and leakage L1 = 0.10%±0.07% for the NZ
pulse with TCZ = 40 ns [Fig. 6.5(a,b)]. We could not perform similar measurements for the
unipolar pulse since this gate is not repeatable, as demonstrated in Fig. 6.2.

6.9. LIMITING NOISE SOURCES
It is possible to investigate the limits to the performance of the NZ CZ using simulation
(see Section 6.11.3) and compare to the unipolar CZ, even though this is not possible in
experiment since the unipolar CZ lacks the required characteristic of being repeatable.
We simulate these gates for a range of different error models [Fig. 6.5(c,d)]. For each we
optimize over θ f and λ2 to find the lowest ε and the corresponding L1. A first observation
is that the infidelity (ε= 1−F ) of the NZ gate does not significantly increase when the
low-frequency flux-noise components are included, whereas this does affect the unipolar
pulse. It appears that the difference in ε between the unipolar and NZ pulses for the full
model can be attributed completely to this effect. This observation is consistent with
the echo effect demonstrated in Fig. 6.3. Looking at the L1 error budgets, L1 is limited by
short-timescale distortions. This is understandable as minimizing L1 requires the pulse
to follow a precise trajectory. Distortions also increase ε through L1 (see Section 6.11.3).
The simulations also indicate that dephasing causes leakage. This can be understood as
dephasing effectively corresponds to an uncertainty in the energy levels. The simulated
L1 is larger than the measured L1. This could be explained in two ways, either the
distortions are less severe than our estimate, or the simulations, only concerned with a
single application of the gate, do not take into account all the relevant effects. Specifically,
because the population in the leakage subspace does not completely decohere, this
population can seep back into the computational subspace due to an interference effect
(similar to that in the NZ pulse itself) at subsequent applications of the gate. Because the
first CZ gate cannot benefit from this coherence, the simulations, which only deal with a
single CZ gate, slightly overestimate the effective leakage.

6.10. CONCLUSIONS
In summary, we have demonstrated a flux-based CZ gate for transmon qubits that is fast,
low-leakage, high-fidelity and repeatable. The gate is realized using a bipolar Net-Zero
flux pulse that harnesses leakage interference to achieve speed while maintaining low
leakage. The NZ pulse exploits the flux symmetry of the pulsed transmon to build in
an echo effect on its single-qubit phase and the conditional phase, increasing fidelity
relative to a unipolar pulse. Finally, the action of the NZ pulse is robust to long-timescale
distortions in the flux-control line remaining after real-time pre-compensation, enabling
the repeatability of the CZ gate. These features make the realized NZ CZ gate immediately
useful in high-circuit-depth applications of a full-stack quantum computer in which a con-
troller issues operations to execute on the quantum hardware in real time. For example,
Ref. [18] uses NZ CZ gates to stabilize two-qubit entanglement by multi-round indirect
parity measurements. Future work will incorporate NZ CZ gates into our scheme [32] to
realize a surface-code-based logical qubit [20] with monolithic transmon-cQED quantum
hardware.
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Figure 6.5: Interleaved randomized benchmarking with leakage modification and simulated performance using
different error models for a TCZ = 40 ns NZ CZ gate (T2Q = 28 ns), schematically shown in the diagram. (a)
Survival probability M0 of recovering |00〉 for reference and interleaved two-qubit randomized benchmarking
sequence. (b) Population in the computational subspace X1. Simulated ε (c) and L1 (d) for different error
models (see Section 6.11.3) for TCZ = 40 ns unipolar and NZ pulses (T2Q = 28 ns). The error models (A to E)
contain: no noise (A), relaxation (B), all Markovian noise components (C ), Markovian and quasi-static flux
noise components (D) and all noise components including distortions (E).
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6.11. METHODS
This section contains detailed information on the experimental protocols and the simula-
tions performed in the first part of this chapter. Section 6.11.1 provides relevant device
parameters. Section 6.11.2 describes the parametrization used for the unipolar and NZ
pulses. Section 6.11.3 describes the simulations in detail. Section 6.11.4 and Section 6.11.7
describe protocols used to characterize the flux pulses. Section 6.11.5 investigates the
limitations of the CZ gate. Section 6.11.6 discusses the Mach-Zehnder interferometer
analogy in detail.

6.11.1. DEVICE PARAMETERS

All experiments were performed on a circuit-QED quantum chip containing three starmon-
type [32] transmon qubits, labeled qH, qM, and qL. Pairs qH-qM and qM-qL are coupled
by separate bus resonators. Each qubit has a microwave drive line for single-qubit gating,
a flux-bias line for local and ns-timescale control of the qubit frequency, and dedicated,
fast readout resonators with Purcell protection for the qubits. The readout resonators
are coupled to a common feedline, allowing independent readout of the three qubits by
frequency multiplexing.

In the first part of this chapter we focus on the transmon pair qH-qM. We have achieved
similar performance (fidelity, leakage and gate time) for the pair qM-qL. Relevant device
parameters are given in Table 6.1.

Parameter qL qM qH

ω/2π operating point (GHz) 5.02 5.79 6.87
ω/2π sweetspot (GHz) 5.02 5.79 6.91

α/2π (MHz) -300 -300 -331
J1/2π avoided crossing (MHz) 17.2 14.3

T1 (µs) 31.8 15.2 19.2
T ∗

2 operating point (µs) 14.0 14.8 3.2
T E

2 operating point (µs) 33.8 19.4 14.7
∼ωbus/2π (GHz) 8.5 8.5

Table 6.1: Parameters of the three-transmon device: qubit frequency (ω), anharmonicity (α), exchange coupling
between |01〉 and |10〉 (J1), dephasing times (T1,T∗

2 ,T E
2 ) and bus-resonator frequency (ωbus). Experiments in

the first part of this chapter are performed with the pair qH-qM. qH is operated 40 MHz below its sweetspot to
minimize interaction with a spurious two-level system right at the sweetspot frequency.

6.11.2. FLUX PULSE PARAMETRIZATION

Unipolar and NZ pulses are based on the Martinis-Geller parametrization for fast-adiabatic
gates [31]. This parametrization is determined by the Hamiltonian [Eq. (6.11)] projected
onto a two-dimensional subspace. In the case of the CZ gate, this subspace is spanned by
the states |11〉 and |02〉. The projected Hamiltonian, Hsubspace, takes the form

Hsubspace =
( ε

2 J2

J2 − ε
2

)
, (6.4)
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where ε=ω|02〉−ω|11〉 is the bare detuning between |11〉 and |02〉 and J2 is their coupling.
The detuning ε is controlled by flux whereas J2 is considered to be constant. We define
the angle θ as

θ ≡ arctan

(
2J2

ε

)
. (6.5)

Note that θ =π/2 at ε= 0.
The waveform is expressed as a series

θ(τ(t )) = θi +
N∑

j=1
λ j

(
1−cos

(
2π · j ·τ(t )

T2Q

))
, (6.6)

where T2Q is the pulse duration, θi corresponds to the detuning at the operating point
and τ is proper time, which is related to real time t through t (τ) = ∫ τ

0 dτ′ sin
(
θ(τ′)

)
.

We truncate the series to N = 2. We make use of the relation between the angle at the
middle of the unipolar pulse (θ f ) and the odd λ coefficients

θ f ≡ θ(T2Q /2) = θi +2
N∑

j odd
λ j , (6.7)

to define the entire waveform using three parameters: θ f ,λ2, and T2Q . A NZ pulse is a
sequence of two concatenated unipolar pulses, each lasting T2Q /2 time and with the same
θ f and λ2.

There are a few more transformations required in order to have a waveform in terms
of the fluxΦtarget(t ) [Fig. 6.6]:

θ(t ) 7→ ε(t ) 7→ωqH (t ) 7→Φtarget(t ). (6.8)

The first transformation uses Eq. (6.5): ε(t ) = 2J2/tanθ(t ). The second one uses the fact
that by definition ε(t) = ω|02〉(t)−ω|11〉(t) = ωqH (t)+αqH −ωqM . The qubit frequency
depends on flux according to the formula

ωqH (Φ) = (ω0
qH

−αqH )

√∣∣∣∣cos
( Φ
Φ0

π
)∣∣∣∣+αqH , (6.9)

where ω0
qH

is the sweetspot frequency and αqH the anharmonicity, reported in Table 6.1.
We refer to this relation between frequency and flux as the flux arc. The flux arc has
been measured in the experiment and we find that it matches well with Eq. (6.9). We
invert Eq. (6.9) to convert ωqH (t ) 7→Φtarget(t ). Since ωqH (Φ) =ωqH (−Φ), there is a positive
and a negative solution for every value of ωqH . In the case of a unipolar pulse, we always
consider the positive solution, whereas, in the case of a NZ pulse, the first and second
half of the pulse use the positive and negative solutions, respectively. Changes that are
clearly visible in the θ parametrization correspond to only a small change in the applied
flux. This provides intuition why even a small distortion of the applied flux can have a
relatively large effect on the gate quality.
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Figure 6.6: Unipolar (a-c) and NZ pulses (d-e) represented in terms of θ (a, d), bare detuning ε (b, e) and fluxΦ
(c, f). The center of the unipolar pulse is controlled by θ f , while λ2 controls the sharpness of rise and fall of the
pulse.

6.11.3. SIMULATION STRUCTURE
The simulations model the system, consisting of two coupled transmons, using a two-
qutrit Hamiltonian. One of the two transmons, namely qH, is actively pulsed into reso-
nance according to the pulse parametrization described in Section 6.11.2. The simula-
tions (Fig. 6.7) include distortions, relaxation and flux-dependent dephasing effects. The
error model also includes a distinction between Markovian (fast) and non-Markovian
(slow) noise in order to accurately model dephasing effects. The simulations are used to
calculate the propagator or time-evolution superoperator, from which the quantities of
interest - fidelity, leakage and conditional phase - are extracted.

SYSTEM HAMILTONIAN

The system is composed of two transmons coupled via a bus resonator. We exclude the
resonator from the model by making the assumption that it always remains in its ground
state (it is excited only “virtually”). We restrict each transmon to its first three energy
levels. In the dispersive regime, in the rotating-wave approximation, the Hamiltonian is
given by

H(t ) = ωqM a†
qM

aqM + αqM

2
(a†

qM
)2a2

qM
+ωqH (Φ(t )) a†

qH
aqH + αqH

2
(a†

qH
)2a2

qH
(6.10)

+ J1(Φ(t )) (aqM a†
qH

+a†
qM

aqH ), (6.11)

where only the higher-frequency transmon (qH) is actively fluxed. Here aqi is the an-
nihilation operator restricted to the first three energy levels, ωqi and αqi are the qubit
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Figure 6.7: The parameters θ f ,λ2 and the gate time T2Q determine either a unipolar pulse or a NZ pulse
in terms of θ(t), see Eq. (6.6). θ(t) is converted into Φtarget(t) thorough various transformations described
in Section 6.11.2. Pulse distortions are applied by convolution to compute Φ(t) experienced by the qubit.
The solution of the Lindblad equation is the time-evolution superoperator PTCZ . Averaging over a Gaussian
distribution for the quasi-static flux bias∆Φ, we obtain the average superoperator P av

TCZ
. From that any quantity

of interest can be computed, in particular the conditional phase φ2Q , the average gate infidelity ε and the
leakage L1.

frequency and anharmonicity, respectively, and J1 is the coupling. The coupling is weakly

flux-dependent since J1(Φ) ≈ gqM gqH
2 (∆−1

qM
+∆−1

qH
(Φ)), with gqi the coupling of qi to the

bus resonator and ∆qi ≈ ωbus −ωqi À gqi given the parameters in Table 6.1. When we
generate the flux pulse according to Section 6.11.2, we consider J2 =

p
2J1 to be constant

and J2 equal to its measured value at the |11〉 ↔ |02〉 avoided crossing, whereas in the
simulations we take into account the dependence of J1 and J2 onΦ.

DISTORTIONS

The flux pulse at the qubit is subject to distortions altering the shape of the waveform
as experienced by the qubit. Distortions are described as a linear time-invariant system
fully characterized by the impulse response h of the system. We best compensate such
distortions by predistorting the desired pulse Φtarget(t) with an impulse response h̃−1

designed to invert h. Then, the actual pulseΦ(t ) experienced by the qubit is given by

Φ(t ) = (h ∗VAWG)(t ) = (h ∗ (h̃−1 ∗Φtarget))(t ) = ((h̃−1 ∗h)∗Φtarget)(t ), (6.12)

where ∗ denotes convolution. The distortions remaining after applying h̃−1 are de-
termined by measuring the step response s(t) = ∫ t

0 d t ′ (h̃−1 ∗h)(t ′) (Fig. 6.8) using the
Cryoscope technique [36]. The impulse response extracted from these data is used to
distort the pulses in simulations.
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Figure 6.8: Step response at the qubit after applying distortion corrections, measured using the Cryoscope
technique [36]. The impulse response extracted from this experiment is used to distort the pulses in the
simulations. In the case of perfect distortion corrections, the normalized amplitude would have value 1 for all
times larger than zero.

NOISE MODEL

There are two major error sources in superconducting qubits: relaxation and flux noise.
The latter has a power spectral density S f ∼ A/ f , where f is frequency and

p
A is a

constant of the order of 10 µΦ0, with Φ0 the flux quantum. S f contains both high-
frequency and low-frequency components: we phenomenologically distinguish high and
low frequencies depending on whether they are larger or smaller than 1/TCZ. Relaxation
and high-frequency flux-noise components are Markovian noise processes since they
act on a timescale shorter than the gate time. On the other hand, the low-frequency
flux-noise components determine a non-Markovian noise process, since they induce
correlations across different gates.

We perform two experiments to quantify the strength of the dephasing affecting qH: a
Ram-Z and an Echo-Z experiment [Fig. 6.9]. In these experiments, the dephasing times

T ∗
2,qH

(Φ) and T E
2,qH

(Φ), respectively, at different flux sensitivities 1
2π

∂ωqH
∂Φ are measured

while applying a flux pulse. In the Ram-Z experiment, this flux pulse is square. In the
Echo-Z experiment, the flux pulse consists of two square half pulses that detune the qubit
by the same amount in magnitude but with opposite-sign sensitivity. We perform these
experiments for a range of fluxes. The experimental data for qH is represented in Fig. 6.9.
On the other hand, the static qubit qM is always operated at the sweetspot. Therefore,
we only use the measured Ramsey and Echo dephasing times at the sweetspot, reported
in Table 6.1. The relaxation times T1,qH and T1,qM , are also reported in this table.

We assume that the low-frequency flux-noise components are echoed out in an Echo-
Z experiment. In other words, we assume that T1,qi , T E

2,qi
(Φ) quantify the strength of

the Markovian noise. On the other hand, we assume that T1,qi , T ∗
2,qi

(Φ) quantify the
strength of the overall noise (both Markovian and non-Markovian). The strength of the
non-Markovian noise alone cannot be extracted directly from the experiment. However,
in the following we explain the model that we use fitting the experimental data (Fig. 6.9).
In this way we can simulate separately both the Markovian and non-Markovian noise,
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and obtain a realistic simulation of the system.
Model of Markovian noise.

A Markovian evolution is modeled with the Lindblad equation

ρ̇(t ) =−i [H(t ),ρ(t )]+ ∑
j ,qi

(
c j ,qi (t )ρ(t )c†

j ,qi
(t )− 1

2
{c†

j ,qi
(t )c j ,qi (t ),ρ(t )}

)
=: Lt

(
ρ(t )

)
,

(6.13)

where Lt is the time-dependent Lindbladian defined by the Hamiltonian [Eq. (6.11)] and
by the jump operators {c j ,qi (t )} specified in Eqs. (6.14) and (6.16) to (6.18) below.

To model relaxation, we use the jump operator

c0,qi =
√

1

T1,qi

aqi . (6.14)

To model pure dephasing, we first define a pure-dephasing time

T E
φ,qi

(Φ) =
(

1

T E
2,qi

(Φ)
− 1

2T 1,qi

)−1

, (6.15)

Ignoring relaxation-induced dephasing in this paragraph, the coherence 〈0|ρqi (Φ)|1〉
decays as e

−t/T E
φ,qi

(Φ)
, where ρqi is the qutrit reduced density matrix. In Fig. 6.9 we see

that the decay rates have a linear dependence on the flux sensitivity. Ignoring the anhar-
monicity, the frequency of the |2〉 state is twice the frequency of the |1〉 state, therefore,
the sensitivity of the |2〉 state is twice as high. Given these two observations, we assume

that 〈0|ρqi (Φ)|2〉∝ e
−t/(T E

φ,qi
(Φ)/2)

and 〈1|ρqi (Φ)|2〉∝ e
−t/T E

φ,qi
(Φ)

. We find that such decay
rates can be realized by the following jump operators

c1,qi (Φ(t )) =
√√√√ 8

9T E
φ,qi

(Φ(t ))

1 0 0
0 0 0
0 0 −1


qi

, (6.16)

c2,qi (Φ(t )) =
√√√√ 2

9T E
φ,qi

(Φ(t ))

1 0 0
0 −1 0
0 0 0


qi

, (6.17)

c3,qi (Φ(t )) =
√√√√ 2

9T E
φ,qi

(Φ(t ))

0 0 0
0 1 0
0 0 −1


qi

. (6.18)

Instead, if one would use only

c ′1,qi
(Φ(t )) =

√√√√ 2

T E
φ,qi

(Φ(t ))

1 0 0
0 0 0
0 0 −1


qi

, (6.19)
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which produces the same Lindbladian as c ′′1,qi
(Φ(t)) =

√
2/T E

φ,qi
(Φ(t )) a†

qi
aqi , then one

would get 〈0|ρqi (Φ)|2〉 ∝ e
−t/(T E

φ,qi
(Φ)/4)

and 〈1|ρqi (Φ)|2〉 ∝ e
−t/T E

φ,qi
(Φ)

. This means that
Eq. (6.19) would be the correct modeling if the decay rates in Fig. 6.9 would depend
quadratically on the sensitivity, but they do not.

The formal solution of Eq. (6.13) is given by

ρ(t ) =T e
∫ t

0 d t ′Lt ′
(
ρ(0)

)
, (6.20)

where T is the time-ordering operator. We call PTCZ :=T e
∫ T2Q

0 d t ′Lt ′ the propagator or
time-evolution superoperator, evaluated up to the gate time TCZ, which includes an idling
time T1Q to account for the noise during the single-qubit phase correction pulses. The
propagator PTCZ can be computed by solving the differential Eq. (6.13), or as

PTCZ ' eδtLTCZ−δt eδtLTCZ−2δt . . . eδtL2δt eδtLδt eδtL0 , (6.21)

for a sufficiently small δt . In the simulations we use δt = 0.1 ns. In the Liouville repre-
sentation, this equation is a product of matrices. We find that this method is an order of
magnitude faster than using the qutip [47] differential equation solver.

Model of non-Markovian noise.
We model the low-frequency flux-noise components as quasi-static. Since the static
qubit qM is always operated at the sweetspot, where the sensitivity to flux noise is zero,
we apply this model only to qH. We assume that the qubit experiences a random, fixed
flux offset ∆Φ during the execution of a gate, but that ∆Φ varies across different gates.
For ∆Φ¿ 1, the effect of such offset on the pulse trajectory can be approximated at first

order asωqH (Φ(t )+∆Φ) ≈ωqH (Φ(t ))+ ∂ωqH (Φ(t ))
∂Φ ∆Φ, where 1

2π
∂ωqH (Φ)

∂Φ is the flux sensitivity.

Using Eq. (6.9) we can see that
∂ωqH (Φ)

∂Φ =− ∂ωqH (−Φ)
∂Φ . In the case of a NZ pulse, this implies

that first-order frequency variations in the first half of the pulse are canceled by an equal
and opposite variation in the second half, resulting in an echo effect.

We take the probability distribution pσ of ∆Φ to be Gaussian

pσ(∆Φ) = e−(∆Φ)2/(2σ2)/(
p

2πσ), where σ is the standard deviation of the Gaussian. Aver-
aging over this distribution, we get the final propagator

P av
TCZ

=
∫ +∞

−∞
d(∆Φ) pσ(∆Φ) ·PTCZ (∆Φ), (6.22)

which gives the time evolution including all the noise sources in the model, both Marko-
vian and non-Markovian.

The standard deviation σ is not directly measured in the experiment. Instead, we fit
this model to the experiment simulating a Ram-Z and Echo-Z experiment for qH (Fig. 6.9).
We vary the value of σ while keeping the Markovian noise model described above fixed.
We find that the value σ= 55 µΦ0 best fits both the Ram-Z and Echo-Z data at the same
time. This is the value we use in all the simulations in the first part of this chapter.

QUANTITIES OF INTEREST

To quantify the quality of the CZ gate, we are interested in computing the conditional
phase, the leakage and the average gate fidelity from the propagator P av

TCZ
. In the following,

we summarize their definitions for a generic superoperator P .
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Figure 6.9: Comparison of experimental data and simulation (c) for the Ram-Z (a) and Echo-Z (b) experiments.
In the Ram-Z (Echo-Z) experiment, the dephasing time is measured using a (two-half) square flux-pulse(s).
All simulated curves include the effects of both the Markovian and non-Markovian noise. Only the strength
of the non-Markovian noise [Eq. (6.22)], quantified by σ, is varied, while the strength of the Markovian noise,
quantified by T1,qH and T E

φ,qH
(Φ), is kept fixed. We see that the value σ= 55µΦ0 best fits the Ram-Z data. It

fits the Echo-Z data as well, given that the simulated curves are equal even for σ’s that differ by an order of
magnitude. This agrees with the intuition that the non-Markovian noise is echoed-out in an Echo-Z experiment.

We call X1 the computational subspace, spanned by the 2-qubit energy levels |00〉,
|01〉, |10〉 and |11〉 at the operating point. The phases acquired by those states under the
action of P are computed as

e iφi j = 〈i j |P (|i j 〉〈00|) |00〉∣∣〈i j |P (|i j 〉〈00|) |00〉∣∣ , (6.23)

where i , j ∈ {0,1}. If P is unitary, that is, P (ρ) =UρU † for some unitary U , then Eq. (6.23)

reduces to e iφi j = 〈i j |U |i j 〉
|〈i j |U |i j 〉| , and, if U is diagonal, then we simply have U |i j 〉 = e iφi j |i j 〉.

The phase φ00 of the ground state can be set to 0. The single-qubit phases are given by
φ01 and φ10. The conditional phase φ2Q is defined as the phase acquired by the target
qubit conditional on the state of the control qubit and it is given by

φ2Q =φ11 −φ10 −φ01. (6.24)

Note that φ2Q is invariant under single-qubit Z rotations.
We follow the definitions in [38] for leakage, seepage and average gate fidelity (see

also Section 3.4.3). The leakage of a superoperator P is defined as

L1 = 1−
∫
ψ1∈X1

dψ1 TrX1

(
P

(|ψ1〉〈ψ1|
))

(6.25)

= 1− 1

dimX1

∑
i , j∈{0,1}

TrX1

(
P

(|i j 〉〈i j |)).

The quantity L1 represents the average probability that a random computational state
leaks out of X1.

The seepage of a superoperator P is defined as

L2 = 1−
∫
ψ2∈X2

dψ2 TrX2

(
P

(|ψ2〉〈ψ2|
))

, (6.26)
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where X2 is the leakage subspace.
The average gate fidelity, evaluated in the computational subspace, between P and a

target unitary U is defined as

F =
∫
ψ1∈X1

dψ1 〈ψ1|U †P
(|ψ1〉〈ψ1|

)
U |ψ1〉 (6.27)

= dimX1(1−L1)+∑
k

∣∣TrX1 (U † Ak )
∣∣2

dimX1(dimX1 +1)
,

where the {Ak } are the Kraus operators of P . The average gate infidelity is defined as
ε= 1−F . We can see from Eq. (6.27) that F is affected by L1. There are two contributions:
one is explicit in the first term at the numerator, the other is implicit in the second term
and is due to the fact that the Kraus operators of a leaky superoperator are in general
different from the ones of a non-leaky superoperator. For a two-qubit gate, the explicit
contribution to ε is equal to L1/5, whereas the implicit one is evaluated numerically.

6.11.4. CONDITIONAL OSCILLATION EXPERIMENT
The conditional oscillation experiment (Fig. 6.10) can be used to measure the single-qubit
phases (φ01 and φ10) and the conditional phase (φ2Q ), and to estimate the leakage (L1)
defined in Eq. (6.25). In the conditional oscillation experiment, two variants of the same
experiment are performed. In the first variant (Off), the target qubit (qtarg.) is rotated
onto the equator of the Bloch sphere by a π/2 pulse and the control qubit (qcontr.) is left
in the ground state. After that, a flux pulse is applied that is intended to perform a CZ
gate. A recovery π/2 rotation, performed around an axis in the equatorial plane forming
an angle φ with the X axis, is applied to qtarg. before measuring the state of both qubits
simultaneously. In the second variant (On), qcontr. is rotated into the excited state before
applying the CZ gate. Then, qcontr. is pulsed back to the ground state before measuring
both qubits.

The conditional phase φ2Q can be extracted directly from the phase of the oscillations
and corresponds to the difference in phase between the oscillations (Figure 6.10). The
single-qubit phase φ10 (φ01) can be measured by letting qM (qH) take the role of qtarg. and
correspond directly to the measured phase of qtarg. in the Off variant.

The quantity denoted by m in Figure 6.10 is called the missing fraction. In the
idealized case in which there is no noise and no leakage to other levels, we calculate
L1 = midealized/2. We see numerically that such relation approximately holds in the com-
plete modeling with noise. Therefore, we define a leakage estimator L̃1 = m/2, where
m is the measured value. Due to relaxation effects, L̃1 generally overestimates L1. The
advantage of estimating the leakage with L̃1 rather than with a randomized benchmarking
experiment (Section 6.11.7) is that it is much faster. In this way we can quickly acquire
a scan of the leakage landscape to find pulse parameters giving a low-leakage CZ gate.
Further characterization is then carried out with randomized benchmarking.

6.11.5. OPTIMAL PERFORMANCE
Using simulations, it is possible to find the optimal parameters (θ f and λ2) for a given T2Q

in order to perform a CZ gate. We optimize over the infidelity ε. In Fig. 6.11, the minimal
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Figure 6.10: The conditional oscillation experiment described in Section 6.11.4.

infidelity ε and the corresponding leakage L1 are shown as a function of T2Q . Contrary
to all the other figures in the first part of this chapter, the simulations shown in Fig. 6.11
do not include the effect of distortions. The shortest duration for which a NZ pulse with
low leakage and high fidelity can be performed is T2Q = 28 ns, close to the speed limit of
T2Q = 25 ns, set by the interaction strength. The difference in minimal infidelity between
the unipolar and the NZ pulse is attributed to the built-in echo effect that makes the
NZ pulse resilient to low-frequency flux-noise components. Unipolar pulses with good
performance could in principle be realized slightly faster (T2Q = 26 ns) than NZ pulses,
due to the fact that NZ needs ∼ 2 ns to sweep from one avoided crossing to the other in
the middle of the pulse, during which no conditional phase is accumulated. We remark
that we can study the performance of a single application of the unipolar CZ gate in
simulation, but that this is not representative of the performance in the experiment since
the unipolar pulse is not repeatable as demonstrated in Section 6.4.

The simulated landscape of the shortest duration (T2Q = 28 ns) high-fidelity low-
leakage NZ pulse is compared to experiment in Fig. 6.12. There is a relatively large
region of low leakage at high θ f (90-130 deg) that can be found in both simulation and
experiment. The T2Q = 28 ns pulses described in Section 6.8 are operated at the marked
point (θ f = 125 deg, λ2 =−0.1).

6.11.6. NET-ZERO PULSES AS A MACH-ZEHNDER INTERFEROMETER

To better understand the working of a NZ pulse, it is helpful to draw an analogy to a
Mach-Zehnder interferometer [39–44]. In a NZ pulse, the trajectory first approaches
the |11〉↔ |02〉 avoided crossing at positive flux amplitude, then it sweeps through the
sweetspot, and it finally goes in and out of the |11〉↔ |02〉 avoided crossing at negative
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Figure 6.11: Minimal infidelity (ε), optimized over θ f and λ2 for a fixed T2Q (T1Q = 12 ns for all T2Q ), and
leakage (L1) evaluated at the minimal infidelity. Contrary to all other figures in the first part of this chapter,
the simulations shown here do not include distortions because we want to quantify the intrinsic optimal
performance of unipolar and NZ pulses against Markovian and non-Markovian noise. We see that both ε and L1
decrease fast approaching the speed limit π/J2 ∼ 25 ns. Then NZ achieves lower infidelity and we can attribute
this to the echo effect. We can use these simulations to find that the minimal T2Q to realize a high-fidelity,
low-leakage NZ pulse is T2Q = 28 ns.

Figure 6.12: Matching of experimental (a,b;e,f) and simulated (c,d;g,h) landscapes of conditional phase and
leakage as a function of the parameters θ f and λ2 of a T2Q = 14 ns unipolar (a,b,c,d) pulse and of a T2Q = 28 ns
NZ (e,f,g,h) pulse. The T2Q = 28 ns NZ pulse consists of two concatenated T2Q = 14 ns unipolar pulses with
opposite polarity. Phase corrections are appended to get a total length TCZ = 40 ns. We find that the matching
is excellent in both cases. The star (green) marks the point (θ f = 125 deg, λ2 =−0.1) used in the interleaved
randomized benchmarking experiment described in Section 6.8. A transparent diamond (green) marks the
corresponding point for the T2Q = 14 ns unipolar pulse. Given that the T2Q = 14 ns unipolar pulse does not
show regions of low leakage, we conclude that the broad area of low leakage for the T2Q = 28 ns NZ pulse is a
fringe of destructive leakage interference. We have verified this also by varying the interference condition and
observing this fringe move across the landscape, similarly to Fig. 6.14 and as described in Section 6.11.6.
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flux amplitude. We argue that those three parts of the pulse correspond respectively to an
(unbalanced) beamsplitter, to the arms of an interferometer, and to another (identical)
beamsplitter. We make a few idealizations in this analysis. Namely, we ignore the weak
coupling to other states and we consider a purely unitary process. Moreover, there is not
a clear-cut separation between the beamsplitters, where the qubits are strongly coupled,
and the arms of the interferometer, where they are effectively uncoupled. However, since
the sweep in the middle is very fast, for the sake of this model it does not really matter
where the line is drawn.

In general, a unipolar pulse has the following effect on the |11〉 state

|11〉 7→ e iφhalf
2Q

√
1−α2 |11〉+α |02〉 , (6.28)

where α ∈R and α2 = 4Lhalf
1 (assuming no leakage to other states). In other words, during

the first half of a NZ pulse, |11〉 acquires a certain conditional phase φhalf
2Q and it can also

leak to |02〉, for example if the parameters of the pulse are not properly chosen or if the
pulse is too short.

Unitarity implies that |02〉 7→ α |11〉− e−iφhalf
2Q

p
1−α2 |02〉. Overall, modulo a global

phase, this amounts to the unitary

B1 =
(

e iφhalf
2Q

p
1−α2 α

α −e−iφhalf
2Q

p
1−α2

)
, (6.29)

which is a beamsplitter that also imparts a conditional phase.
During the sweep across the sweetspot, |11〉 and |02〉 quickly acquire a relative phase

ϕ due to the large energy gap between them (∼ 800 MHz). We can formalize this with the
unitary

Pϕ =
(
1 0
0 e iϕ

)
, (6.30)

which is a phase shifter.
The second beamsplitter, B2, is equal to B1 due to the symmetry of the pulse. The

total evolution is given by

B2PϕB1 = B1PϕB1 =
e i 2φhalf

2Q

(
(1−α2)+α2e i ϕ̃

)
α
p

1−α2e iφhalf
2Q (1−e i ϕ̃)

α
p

1−α2e iφhalf
2Q (1−e i ϕ̃) α2 + (1−α2)e i ϕ̃

 , (6.31)

where ϕ̃ :=ϕ−2φhalf
2Q . We are interested in the first matrix element because it gives the

leakage LNZ
1 and conditional phase φNZ

2Q at the end of a NZ pulse. Explicitly

LNZ
1 = (

α4 + (1−α2)2 +2α2(1−α2)cosϕ̃
)
/4, (6.32)

φNZ
2Q = 2φhalf

2Q +arctan

(
α2 sinϕ̃

(1−α2)+α2 cosϕ̃

)
.. (6.33)

There are two cases in which LNZ
1 can be made zero. The first one is when α2 = 0. This is

when the half pulse has zero leakage in the first place. We refer to this case as the adiabatic
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Figure 6.13: Simulation of conditional phase and leakage landscapes as a function of the parameters θ f , λ2
of a half (a,b) and full (c,d) T2Q = 48 ns NZ pulse (TCZ = 60 ns). The half pulse consists of only the first part of
the NZ pulse, which is effectively a T2Q = 24 ns unipolar pulse (TCZ = 60 ns). Naively one may expect both the
conditional phase and the leakage of the full pulse to be approximately twice that of the half-pulse. However,
this is not the case for the leakage. In (b) we see a low-leakage area due to the adiabaticity of the pulse. We find
this low-leakage area in (d) as well. However, an interference fringe is visible that does not occur for the half
pulse.

condition. The second case is when α2 6= 0 but ϕ̃= (2k +1)π, with k an integer. We refer
to this second case as the interference condition. We point out that, in either case, the
second term in Eq. (6.33) is zero, which implies that φNZ

2Q = 2φhalf
2Q whenever LNZ

1 = 0. As
a consequence, the speed limit to do a NZ CZ with low leakage is the same as for the
unipolar pulse (π/J2). We also note that if Lhalf

1 =α2/4 is large and if LNZ
1 is low, it follows

that the latter must result from destructive interference of leakage.
It is possible to explore both the adiabatic and interference conditions for low leakage

in the simulations (Fig. 6.13). When performing a T2Q = 24 ns unipolar (Half NZ) pulse,
only the adiabatic condition can be used to achieve a low leakage. This condition is visible
as the dark region in [Fig. 6.13(b)]. When simulating a T2Q = 48 ns (Full) NZ pulse, a
low-leakage fringe is visible [Fig. 6.13(d)] corresponding to the interference condition.

The position of the interference fringe should depend on the time between the two
halves of the pulse. This can be explored by adding a buffer time ∆t between the two
halves of the pulse in simulation. For a T2Q = 40 ns+∆t pulse, the fringe can be seen
to move over the leakage landscape (Fig. 6.14). The period corresponds to the expected
period of ∼ 1/800 MHz = 1.25 ns.

6.11.7. LEAKAGE MODIFICATION FOR RANDOMIZED BENCHMARKING

Leakage out of the computational subspace is determined using the protocol introduced
in [38], which constitutes a modification of the randomized benchmarking protocol (see
also Section 3.4.3).

To determine the populations in the ground (g ), first-excited (e), and second-excited
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Figure 6.14: Moving interference fringes. To observe the effect of changing the length of the arms of the
interferometer, a buffer (∆t ) is added between the first and second part of the strong NZ pulse (T2Q = 40 ns+∆t ,
T1Q = 20 ns) in simulation. The low-leakage fringe can clearly be seen to move over the landscape.
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( f ) states we follow the procedure described in [46]. In this procedure, a given experiment
is performed in two different variants: once in the normal way, giving signal SI, and once
with a π pulse on the g −e transition appended at the end of the sequence just before the
measurement, giving signal SX. When the respective reference signals V0, V1, and V2 of a
transmon qubit prepared in the g , e and f state are known, the respective populations of
the g and e states, P0 and P1, can be extracted using[

V0 −V2 V1 −V2

V1 −V2 V0 −V2

][
P0

P1

]
=

[
SI −V2

SX −V2

]
, (6.34)

under the assumption that higher-excited levels are unpopulated (in other words, P0 +
P1 +P2 = 1, where P2 is the population in the f state).

Following [38], we fit the population PX1 in the computational subspace X1 to a single
exponential

PX1 (NCl.) = A+BλNCl.
1 , (6.35)

where NCl. is the number of Cliffords. The average leakage (L1) and seepage (L2) rates
[Eqs. (6.25) and (6.26)] per Clifford can then be estimated as

LCl.
1 = (1− A)(1−λ1), (6.36)

LCl.
2 = A(1−λ1). (6.37)

Using the fitted value of λ1, the survival probability M0 is then fitted to a double exponen-
tial of the form

M0(NCl.) = A0 +B0λ
NCl.
1 +C0λ

NCl.
2 . (6.38)

The average gate infidelity per Clifford εCl. is given by

εCl. = 1− 1

d1
[(d1 −1)λ2 +1−L1] , (6.39)

with d1 = dimX1. We note that if the leakage is weak (λ1 ¿λ2 and B ¿ A), this reduces
to the conventional randomized benchmarking formula. We refer to this experiment as
the reference sequence.

This method is used in combination with interleaved randomized benchmarking [45]
to extract the average gate infidelity (εCZ) and leakage (LCZ

1 ) per CZ gate

εCZ = 1− 1−εInt.

1−εCl.
, (6.40)

LCZ
1 = 1− 1−LInt.

1

1−LCl.
1

, (6.41)

where εInt. (LInt.
1 ) stands for the average gate fidelity (leakage) in the interleaved sequence

of the interleaved randomized benchmarking experiment.
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6.12. PART 2: HIGH-FIDELITY CONTROLLED-Z GATE WITH MAX-
IMAL INTERMEDIATE LEAKAGE OPERATING AT THE SPEED

LIMIT IN A SUPERCONDUCTING QUANTUM PROCESSOR

6.13. INTRODUCTION

Superconducting quantum processors have recently reached important milestones [48],
notably the demonstration of quantum supremacy on a 53-transmon processor [49]. On
the path to quantum error correction (QEC) and fault tolerance [20], recent experiments
have used repetitive parity measurements to stabilize two-qubit entanglement [18, 19]
and to perform surface-code quantum error detection in a 7-transmon processor [50].
These developments have relied on two-qubit controlled-phase (CPhase) gates realized
by dynamical flux control of transmon frequency, harnessing the transverse coupling J2

between a computational state |11〉 and a non-computational state such as |02〉 [24, 25].
Compared to other implementations, e.g., cross-resonance using microwave-frequency
pulses [10] and parametric radio-frequency pulsing [9], baseband flux pulses achieve the
fastest controlled-Z (CZ) gates (a special case of CPhase), operating near the speed limit
tlim =π/J2 [51].

Over the last decade, baseband flux pulsing for two-qubit gating has evolved in an
effort to increase gate fidelity and to reduce leakage and residual Z Z coupling. In particu-
lar, leakage became a main focus for its negative impact on QEC, adding complexity to
error-decoder design and requiring hardware and operational overhead to seep [26–30].
To reduce leakage from linear-dynamical distortion in flux-control lines and limited time
resolution in arbitrary waveform generators (AWGs), unipolar square pulses [25, 52] have
been superseded by softened counterparts [7, 15] based on fast-adiabatic theory [31].
In parallel, coupling strengths have reduced to J2/2π∼ 10−20 MHz to mitigate residual
Z Z coupling, which affects single-qubit gates and idling at bias points, and produces
crosstalk from spectator qubits [53]. Many groups are actively developing tunable cou-
pling schemes to suppress residual coupling without incurring slowdown [54–58].

A main limitation to the fidelity of flux-based CPhase gates is dephasing from flux
noise, as one qubit is displaced 0.5−1 GHz below its flux-symmetry point (i.e., sweetspot [59])
to reach the |11〉-|02〉 resonance. To address this limitation, in Section 6.3 introduced
a bipolar variant [termed Net Zero (NZ)] of the fast-adiabatic scheme, which provides
a built-in echo reducing the impact of low-frequency flux noise. The double use of the
transverse interaction also reduces leakage by destructive interference, as understood by
analogy to a Mach-Zehnder interferometer (MZI). Finally, the zero-average characteristic
avoids the buildup of long-timescale distortions in the flux-control lines, significantly
improving gate repeatability. NZ pulsing has been successfully used in several recent ex-
periments [18, 50, 60], elevating the state of the art for CZ gate fidelity to 99.72±0.35% [48].
However, NZ suffers from complicated tuneup, owing to the complex dependence of
conditional phase and leakage on fast-adiabatic pulse parameters. This limits the use of
NZ for two-qubit gating as processors grow in qubit count.

In this Letter, we introduce the sudden variant (SNZ) of the NZ scheme implementing
CZ, which offers two advantages while preserving the built-in echo, destructive leak-
age interference, and repeatability characteristic of conventional NZ (CNZ). First, SNZ
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operates at the speed limit of transverse coupling by maximizing intermediate leakage
to the non-computational state. The second and main advantage is greatly simplified
tuneup: the landscapes of conditional phase and leakage as a function of two pulse
parameters have regular structure and interrelation, easily understood by exact analogy
to the MZI. We realize SNZ CZ gates among four pairs of nearest neighbors in a seven-
transmon processor and characterize their performance using two-qubit interleaved
randomized benchmarking (2QIRB) with modifications to quantify leakage [38, 61]. The
highest performance achieved from one 2QIRB characterization has 99.93±0.24% fidelity
and 0.10±0.02% leakage. SNZ CZ gates are fully compatible with scalable approaches
to QEC [32]. The generalization of SNZ to arbitrary CPhase gates is straightforward and
useful for optimization [62], quantum simulation [63], and other noisy intermediate-scale
quantum (NISQ) applications [64].

6.14. SUDDEN NET ZERO CONCEPT
A flux pulse to the |11〉-|02〉 interaction implements the unitary

UCPhase=


1 0 0 0 0
0 e iφ01 0 0 0
0 0 e iφ10 0 0
0 0 0

p
1−4L1e iφ11

p
4L1e iφ02,11

0 0 0
p

4L1e iφ11,02
p

1−4L1e iφ02


in the {|00〉 , |01〉 , |10〉 , |11〉 , |02〉} subspace, neglecting decoherence and residual inter-
action between far off-resonant levels. Here, φ01 and φ10 are the single-qubit phases,
φ11 = φ01 +φ10 +φ2Q, where φ2Q is the conditional phase, and L1 is the leakage, The
ideal CZ gate simultaneously achieves φ01 =φ10 = 0 (mod 2π), φ2Q =π (mod 2π) (phase
condition PC), and L1 = 0 (leakage condition LC), with arbitrary φ02.

The SNZ CZ gate is realized with two square half pulses with equal and opposite ampli-
tude ±A and duration tp/2 each. To understand its action, consider first the ideal scenario
with perfectly square half pulses (infinite bandwidth), infinite time resolution, tp = tlim,
and A = 1 (corresponding to |11〉 and |02〉 on resonance). The unitary action of each
complete half pulse (rising edge, steady level, and falling edge combined) implements
one of two beamsplitters in the MZI analogy: BS1 fully transmits |11〉 to −i |02〉 (producing
maximal intermediate leakage), and BS2 fully transmits −i |02〉 to −|11〉, yielding an ideal
CZ gate. SNZ adds an idling period tφ between the half pulses to perfect the analogy
to the MZI, allowing accrual of relative phase φ between |02〉 and |11〉 in between the
beamsplitters.

6.15. EASINESS OF TUNE-UP: THEORY
The key advantage of SNZ over CNZ is the straightforward procedure to simultaneously
meet PC and LC. To appreciate this, consider the landscapes ofφ2Q and L1 as a function of
A and tφ [Fig. 6.15(c, d)] in this ideal scenario. The landscapes have a clear structure and
link to each other. The L1 landscape shows a vertical leakage valley at A = 1 arising from
perfect transmission at each beamsplitter (LC1), and also two vertical valleys arising from
perfect reflection (LC2). Leakage interference gives rise to additional diagonal valleys
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Figure 6.15: Numerical simulation of an ideal SNZ pulse (infinite bandwidth and time resolution) using
parameters for pair QL-QM2 (see Table 6.2). (a) Schematic of the ideal SNZ flux pulse, with tp = tlim and variable
A and tφ. The amplitude A is normalized to the |11〉-|02〉 resonance. Inset: MZI analogy for A = 1. (b) Transition
frequency from |00〉 to levels |i j 〉 in the two-excitation manifold as a function of instantaneous pulse amplitude.
(c, d) Landscapes of conditional phase φ2Q (b) and leakage L1 (c) as a function of A and tφ.
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(LC3). Crucially, juxtaposing the φ2Q = 180◦ contour shows that PC is met periodically,
at the crossing of LC1 and LC3 valleys, where ∆max

02 tφ = 0 (mod 2π) (∆max
02 is the detuning

between |02〉 and |11〉 at the bias point). This regular leakage landscape therefore provides
useful crosshairs for simultaneously achieving PC and LC. We note that φ2Q(tφ) changes
monotonically along the LC1 valley, allowing for CPhase gates with arbitrary φ2Q. We
leave this generalization for future work.

There are practical reasons to include tφ in experiment: any flux-pulse distortion
remaining from the first half pulse (e.g., due to finite pulse decay time) will break the
symmetry between BS1 and BS2. Due to the time resolution ts of the AWG used for flux
control, φ can only increment in steps of −∆max

02 ts. Typically ∆max
02 /2π= 0.5−1 GHz and

ts ∼ 1 ns, so the number of intermediate sampling points only provides coarse control.
For fine control, we propose to use the amplitude ±B of the first and last sampling points
during tφ (see Section 6.21.1).

6.16. EASINESS OF TUNE-UP: EXPERIMENT

We now turn to the experimental realization of SNZ CZ gates between nearest-neighbor
pairs among four transmons. High- and low-frequency transmons (QH and QL, respec-
tively) connect to two mid-frequency transmons (QM1 and QM2) using bus resonators
dedicated to each pair [connectivity diagram shown in Fig. 6.18(a) inset]. Each transmon
has a flux-control line for two-qubit gating, a microwave-drive line for single-qubit gating,
and dedicated readout resonators [11, 18] (see Section 2.2.2 for details). Table 6.3 provides
a summary of measured parameters for the four transmons. Each transmon is statically
flux-biased at its sweetspot to counter residual offsets. Flux pulsing is performed using a
Zurich Instruments HDAWG-8 (ts = 1/2.4 ns). Following prior work [36], we compensate
the bandwidth-limiting effect of attenuation in the flux-control coaxial line (skin effect)
and cryogenic reflective and absorptive low-pass filters using real-time digital filters in
the AWG. In this way, we produce on-chip flux waveforms with rise time trise on par with
that of the AWG (0.5 ns).

We exemplify the tuneup of SNZ using pair QL-QM2 (Fig. 6.16). We first identify tlim

for the |11〉-|02〉 interaction and amplitude A bringing the two levels on resonance. Both
are extracted from the characteristic chevron pattern of |2〉-population P|2〉 in QM2 as a
function of the amplitude and duration of a unipolar square flux pulse acting on |11〉
[Fig. 6.16(a)]. The symmetry axis corresponds to A = 1. The difference in consecutive
pulse durations achieving P|2〉 maxima along this axis gives an accurate estimate of tlim

unaffected by initial transients. We set tp ≡ 2nts, where n is the number of sampling points
achieving the first P|2〉 maximum. Using the measured positive difference tp − tlim and
numerical simulation (data not shown), we estimate trise ≈ 0.5 ns. Next, we use standard
conditional-oscillation experiments (see also Section 6.11.4) to measure the landscapes
of φ2Q and leakage estimate L̃1 for SNZ pulses over amplitude ranges A ∈ [0.9,1.1] and
B ∈ [0, A], keeping tφ & 3trise. As expected, the landscape of L̃1 [Fig. 6.16(c)] reveals a
vertical valley at A = 1 and a diagonal valley. Juxtaposing the φ2Q = 180◦ contour from
Fig. 6.16(b), we observe the matching of PC at the crossing of these valleys, in excellent
agreement with a numerical two-qutrit simulation [Fig. 6.16(d)].
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Figure 6.16: Calibration of the SNZ pulse for pair QL-QM2 and comparison to simulation. (a) |2〉-state population
of QM2 as a function of the amplitude and duration of a unipolar square pulse making |11〉 interact with |02〉.
(b,c) Landscapes of conditional phase φ2Q and leakage estimate L̃1 as a function of SNZ pulse amplitudes
A and B , with tφ = 1.67 ns. The juxtaposed φ2Q = 180◦ contour runs along the opposite diagonal compared
to Fig. 6.15(b,c) because increasing B (which decreases ∆02) changes φ in the opposite direction from tφ.
Data points marked with dots are measured with extra averaging for examination in Fig. 6.17. (d) Numerical
simulation of leakage L1 landscape and φ2Q = 180◦ contour with parameters and flux-pulse distortions from
experiment. All landscapes (also in Fig. 6.17) are sampled using an adaptive algorithm based on [65].
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6.17. ROBUSTNESS TO PULSE DISCRETIZATION
Experimentally, due to the discreteness of ts, it is unlikely to precisely match tp/2 to
the half-pulse duration that truly maximizes P|2〉. To understand the consequences, we
examine the φ2Q and L̃1 landscapes for SNZ pulses upon intentionally changing tp by
±6ts (Fig. 6.17). While the PC contour remains roughly unchanged in both cases, there
are significant effects on L̃1. In both cases, we observe that L̃1 lifts at the prior crossing of
LC1 and LC3 valleys where φ2Q = 180◦. For too-short pulses [Fig. 6.17(a)], there remain
two valleys of minimal L̃1, but these are now curved and do not cross φ2Q = 180◦. For
too-long pulses [Fig. 6.17(b)], there are also two curved valleys. Crucially, these cross the
φ2Q = 180◦ contour, and it remains possible to achieve PC and minimize leakage at two
(A,B) settings. Extracting L̃1 along the φ2Q = 180◦ contours [Fig. 6.17(c)] confirms that
too-long pulses can achieve the same minimal L̃1 as when using the nominal tp. The
impossibility to achieve minimal leakage at φ2Q = 180◦ for too-short pulses manifests the
speed limit set by J2. In turn, the demonstrated possibility to do so for too-long pulses
(even overshooting by several sampling points) proves the viability of the SNZ pulse in
practice.

6.18. PERFORMANCE
With these insights, we proceed to tune the remaining SNZ CZ gates following similar
procedures. We use final weak bipolar pulses of total duration t1Q = 10 ns to null the
single-qubit phases in the frame of microwave drives. Since our codeword-based control
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Parameter QM1-QH QM2-QH QL-QM1 QL-QM2

tlim (ns) 31.0 27.6 38.4 33.8
tp, tφ (ns) 32.50, 2.92 29.10, 3.75 40.83, 1.25 35.83, 1.67
ttotal (ns) 45.42 42.91 52.08 47.50
Interaction |11〉-|02〉 |11〉-|02〉 |11〉-|20〉 |11〉-|02〉
Parked qubit QM2 QM1 – –
Avg. F (%) 98.89±0.35 99.54±0.27 93.72±2.10 97.14±0.72
Avg. L1 (%) 0.13±0.02 0.18±0.04 0.78±0.32 0.63±0.11
Max. F (%) 99.77±0.23 99.93±0.24 99.15±1.20 98.56±0.70
Min. L1 (%) 0.07±0.04 0.10±0.02 0.04±0.08 0.41±0.10

Table 6.2: Summary of SNZ CZ pulse parameters and achieved performance for the four transmon pairs. Single-
qubit phase corrections are included in ttotal. Gate fidelities and leakage are obtained from 2QIRB keeping the
other two qubits in |0〉. Statistics (average and standard deviation) are taken from repeated 2QIRB runs (see [2]
for technical details). The maximum F and minimum L1 quoted are not necessarily from the same run.

electronics has a 20 ns timing grid, and 40 ns < ttotal = tp + tφ+ t1Q < 60 ns for all pairs, we
allocate 60 ns to every CZ gate. Some pair-specific details must be noted. Owing to the
frequency overlap of QM1 and QM2, implementing CZ between QH and QM1 (QM2) requires
a bipolar parking flux pulse on QM2 (QM1) during the SNZ pulse on QH [32, 50]. For most
pairs, we employ the |11〉-|02〉 interaction, which requires the smallest flux amplitude
(reducing the impact of dephasing from flux noise) and does not require crossing any
other interaction. However, for QL-QM1, we cannot reliably use this interaction as there
is a flickering two-level system (TLS) overlapping with the |0〉-|1〉 transition in QM1 at
this amplitude [2]. For this pair, we therefore employ the |11〉-|20〉 interaction. Here,
SNZ offers a side benefit: it crosses the QM1-TLS, |11〉-|02〉, and |01〉-|10〉 resonances as
suddenly as possible, minimizing population exchange.

Table 6.2 summarizes the timing parameters and performance attained for the four
SNZ CZ gates. The CZ gate fidelity F and leakage L1 are extracted using a 2QIRB proto-
col [38]. For each pair, we report the average and standard deviation of both based on at
least 10 repetitions of the protocol spanning more than 8 h [2]. Several observations can
be drawn. First, CZ gates involving QH perform better on average than those involving QL.
This is likely due to the shorter tlim and correspondingly longer time 60 ns− tp spent near
the sweetspot. Additionally, the frequency downshifting required of QH to interact with
the mid-frequency transmons is roughly half that required of the latter to interact with QL.
This reduces the impact of dephasing from flux noise during the pulse. Not surprisingly,
performance is worst for QL-QM1. Here, the pulse must downshift QM1 the most to reach
the distant |11〉-|20〉 interaction, increasing dephasing from flux noise. Also, there may
be residual exchange at the crossed resonances. Overall, there is significant temporal
variation in performance as gleaned by repeated 2QIRB characterizations. We believe this
reflects the underlying variability of qubit relaxation and dephasing times and flux offsets,
which however were not tracked simultaneously. In addition to having the best average
performance, pair QM2-QH displays the maximum F of 99.93±0.24% (Fig. 6.18) extracted
from a single 2QIRB characterization. To the best of our knowledge, this is the highest CZ
fidelity extracted from one 2QIRB characterization in a multi-transmon processor.
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Figure 6.18: Best SNZ CZ gate performance achieved from a single run of 2QIRB. (a) Reference and CZ-
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6.19. LIMITING NOISE SOURCES
To understand the dominant sources of infidelity ε= 1−F and leakage, we run numerical
simulations (similarly to Section 6.11.3), for both SNZ and CNZ, with experimental input
parameters for pair QM2-QH. We dissect an error budget versus various models finding
similar contributions for both gates (see Section 6.21.2). Nevertheless, the results suggest
that SNZ slightly outperforms CNZ, likely due to a shorter time spent away from the
sweetspot during the fixed 60 ns allocated for both variants. This confirms that the
temporary full transfer from |11〉 to |02〉 does not compromise the gate fidelity.

6.20. CONCLUSION
In summary, we have proposed and realized high-fidelity CZ gates using the sudden
version of the Net Zero bipolar fluxing scheme. SNZ CZ gates operate ever closer to
the speed limit of transverse coupling by maximizing intermediate leakage to the non-
computational state. Control architectures without a timing grid will benefit most from
the speedup of SNZ over CNZ by reducing total gate time and thereby minimizing the
impact of decoherence. A demonstrated second key advantage of SNZ over CNZ is
ease of tuneup, owing to the simple structure of error landscapes as a function of pulse
parameters. Harnessing the tuning simplicity, we already employ SNZ CZ gates in the
Starmon-5 processor publicly available via the QuTech Quantum Inspire platform [66].
Moving forward, the compatibility of SNZ with our scalable scheme [32] for surface
coding makes SNZ our choice for CZ gates for quantum error correction. Finally, the
straightforward extension of SNZ to arbitrary conditional-phase gates will find immediate
use in NISQ applications.

Data availability: Interested readers can reproduce our figures by using the pro-
cessed data of the figures. The processed data can be found at https://github.com/
DiCarloLab-Delft/High_Fidelity_ControlledZ_Data/.

https://github.com/DiCarloLab-Delft/High_Fidelity_ControlledZ_Data/
https://github.com/DiCarloLab-Delft/High_Fidelity_ControlledZ_Data/
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6.21. METHODS

6.21.1. COMPARISON OF CONVENTIONAL NZ PULSES AND SNZ PULSES

This section highlights the main differences between CNZ pulses and the SNZ pulses
introduced here. For reference, Fig. 6.19 illustrates the relevant energy-level structure
for a pair of coupled transmons (here QL and QM2) as a function of magnetic flux on the
higher-frequency transmon (here QM2). CNZ and SNZ CZ gates both exploit the avoided
crossing in the two-excitation manifold between the computational state |11〉 and a non-
computational state. Most often this non-computational state is |02〉 as reaching the
avoided crossing requires the smallest flux-pulse amplitude and does not require passing
through any other avoided crossings. In contrast, reaching the |11〉-|20〉 avoided crossing
requires passing through the |01〉-|10〉 avoided crossing in the one-excitation manifold.

CNZ implements a CZ gate based on two back-to-back half strong flux pulses [Fig. 6.20(a)]
of duration tp/2 each, applied on the higher-frequency transmon. Typically, tp/tlim ∼
1.1−1.6. The strong half pulses are formally parametrized as in [31]. For the purposes of
illustration, here we can loosely lump this parametrization as affecting the amplitude
(±A) and curvature (A′) of the strong half pulses. Immediately following the strong pulse,
weak bipolar pulses of duration t1Q are applied on both the higher- and lower-frequency
transmons with amplitudes ±C and ±D, respectively, in order to null the single-qubit
phases acquired by each. Typically, t1Q = 10 ns. In CNZ there is no intermediate idling
period between the strong half pulses, so the analogy to the MZI is not exact [Fig. 6.20(c)].
During tuneup, one searches the (A, A′) space to achieve a conditional phase (PC) of
π by only affecting the unitary action of the two beamsplitters. Because for typical tp

CNZ produces significant leakage at the first strong pulse, achieving minimal leakage
relies on meeting LC3 (leakage interference). The structure of the φ2Q(A, A′) and L1(A, A′)
landscapes and especially their interrelation are not straightforward, so the search for an
(A, A′) setting satisfying both PC and LC3 is not easily guided.

The SNZ pulses introduced here [Fig. 6.20(b)] differ in two key ways. First, the strong



6

122 NET ZERO CONDITIONAL-PHASE GATES

(a)

(b)

(c)

(d)

Conventional NZ

SNZ

Figure 6.20: Comparison of conventional NZ and SNZ pulses for CZ gates. (a) Conventional NZ CZ pulses
consist of two back-to-back strong half pulses of duration tp/2 each, followed by two weak back-to-back half
pulses of duration t1Q/2 each on the higher-frequency qubit. The amplitude (±A) and curvature (A′) of the
strong pulses are jointly tuned to set the conditional phase φ2Q at minimal leakage L1, while the amplitude
±C of the weak pulses is used to null the single-qubit phase on the higher-frequency transmon. Weak pulses
(amplitude ±D) on the lower-frequency qubit (not shown here) are also used to null its single-qubit phase. (b)
In SNZ, the strong pulses are replaced by square pulses with tp as close as possible to tlim but not shorter. Also,
an intermediate idling period tφ is added to accrue relative phase φ between |02〉 and |11〉. The amplitude ±B
of the first and last sampling points in tφ and the number of intermediate zero-amplitude points provide fine
and coarse control of this relative phase, respectively. SNZ CZ gates also use weak bipolar pulses (now square)
of total duration t1Q to null single-qubit phases. (c) The MZI analogy for conventional NZ pulses is incomplete.
Each strong half pulse implements a beamsplitter (ideally identical) with scattering parameters affected by A
and A′. However, there is no possibility to independently control the relative phase in the two arms between the
beamsplitters. (d) The MZI analogy is exact for SNZ pulse. The scattering at the beamsplitters is controlled by A
and the relative phase φ is controlled finely using B and coarsely using tφ.
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Figure 6.21: Schematic comparison of the trajectory of level populations in the two-excitation manifold for CNZ
and SNZ strong pulses acting on |11〉. Note that in both cases, most of the time is spent close or at the |11〉-|02〉
avoided crossing. (a) Trajectory for a CNZ pulse. (b) Trajectory for an SNZ pulse.

half pulses are replaced by square half pulses each with duration tp/2 maximizing the
transfer from |11〉 to |02〉 and vice versa. Second, an intermediate idling period tφ is
added to accrue relative phase φ between |02〉 and |11〉, perfecting the analogy to the MZI
[Fig. 6.20(d)]. We use the amplitude ±B of the first and last sampling points in tφ and
the number of intermediate zero-amplitude points to achieve fine and coarse control
of φ, respectively. As in CNZ, we use weak bipolar pulses on both transmons (also with
t1Q = 10 ns) to null the single-qubit phases. During tuneup, we search the (A,B) space
to achieve φ2Q = 180◦. As shown in the main text, the SNZ pulse design gives a very
simple structure to the φ2Q(A,B) and L1(A,B) landscapes. Crucially, the crossing point
of LC1 and LC3 leakage valleys matches φ2Q = 180◦. This simplicity of tuneup is the key
advantage of SNZ over CNZ.

Another advantage of SNZ over CNZ is the reduced total time ttotal = tp + tφ + t1Q

required to achieve a CZ gate. However, due to the 20 ns timing grid of our control
electronics and the transverse coupling strengths in our device, this speedup is insufficient
to reduce the total time allocated per CZ gate from 60 to 40 ns. Nonetheless, in SNZ, the
fluxed transmon spends more time at its sweetspot, which reduces the dephasing due to
flux noise.

Figure S3 illustrates the qualitative difference in the trajectory of level populations
in the two-excitation manifold implemented by strong CNZ and SNZ pulses acting on
the |11〉 state. A CNZ pulse [Fig. 6.21(a)] uses the interaction point fast-adiabatically,
keeping most population in |11〉 after the first strong half pulse. In contrast, a SNZ pulse
[Fig. 6.21(b)] uses the interaction suddenly to transfer most (ideally all) of the population
to |02〉 with the first strong half pulse.

6.21.2. SIMULATION RESULTS FOR SNZ AND CONVENTIONAL NZ CZ GATES

VERSUS DIFFERENT ERROR MODELS

To identify the dominant sources of infidelity ε= 1−F and leakage for SNZ CZ gates, we
perform a two-qutrit numerical simulation for pair QM2-QH with incremental addition of
measured error sources [Fig. 6.22], as in Section 6.9. The simulation incrementally adds:
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QH QM1 QM2 QL

Qubit frequency at sweetspot, ωq/2π (GHz) 6.4329 5.7707 5.8864 4.5338

Transmon anharmonicity, α/2π (MHz) -280 -290 -285 -320

Readout frequency, ωr/2π (GHz) 7.4925 7.2248 7.0584 6.9132

Relaxation time, T1 (µs) 37±1 40±1 47±1 66±1

Ramsey dephasing time, T ∗
2 (µs) 38±1 49±1 47±1 64±1

Echo dephasing time, T2 (µs) 54±2 68±1 77±1 94±2

Residual qubit excitation, (%) 1.4 1.2 4.3 1.7

Best readout fidelity, FRO (%) 99.1 98.5 99.4 97.8

Table 6.3: Summary of frequency, coherence, residual excitation, and readout parameters of the four transmons.
The statistics of coherence times for each transmon are obtained from 30 repetitions of standard time-domain
measurements [67] taken over ∼4 h. The residual excitation is extracted from double-Gaussian fits of single-
shot readout histograms with the qubit nominally prepared in |0〉. The readout fidelity quoted is the average
assignment fidelity [68], extracted from single-shot readout histograms after mitigating residual excitation by
post-selection on a pre-measurement.

(A) no noise; (B) relaxation; (C) Markovian dephasing; (D) dephasing from quasi-static
flux noise; and (E) flux-pulse distortion. The experimental inputs for models B, C and D
combine measured qubit relaxation time T1 at the bias point, and measured echo and
Ramsey dephasing times (T2 and T ∗

2 ) as a function of qubit frequency. The input to E
consists of a final Cryoscope measurement of the flux step response using all real-time
filters. The simulation suggests that the main source of ε is Markovian dephasing (as
in Section 6.9), while the dominant contribution to L1 is low-frequency flux noise. The
latter contrasts with Section 6.9, where simulation identified flux-pulse distortion as
the dominant leakage source. We identify two possible reasons for this difference: in
the current experiment, the 1/ f low-frequency flux noise is ∼4 times larger (in units of
Φ0/

p
Hz) and the achieved flux step response is noticeably sharper. Finally, we use the

simulation to compare performance of SNZ to conventional NZ CZ. For the latter, we fix
tφ = 0, t1Q = 60 ns− tp, and use the fast-adiabatic pulse shape and tp = 45.83 ns optimized
by simulation. Overall, the error sources contribute very similarly to the error budget for
both cases. The marginally higher overall performance found for SNZ is likely due to the
increased time spent at the sweetspot during the gate time.

We emphasize that our two-qutrit simulation includes 9 energy levels (from |00〉 to
|22〉). Therefore, it also captures leakage to |20〉 (|02〉) when using the |11〉-|02〉 (|11〉-|20〉)
avoided crossing. For pair QM2-QH, for which we use |11〉-|02〉, the simulation gives a final
|20〉-population of 0.005%, merely 4% of the total leakage L1.

Finally, we use this numerical simulation with full error model E to illustrate that
the SNZ pulse preserves the resilience of the conventional NZ scheme to low-frequency
(quasi-static) flux offsets. Figure S10 shows that the single-qubit phase of the fluxed
higher-frequency qubit (QH) and leakage L1 are second-order sensitive to the offset. The
conditional phaseφ2Q shows a very weak first-order dependence at zero offset. Numerical
simulations with model D (not shown) show that the negative shift of the local maximum
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Figure 6.22: Error budgets for infidelity ε (a) and leakage L1 (b) obtained by a numerical simulation (similarly
to Section 6.9) of the QM2-QH SNZ CZ gate with parameters in Fig. 6.18 and for a conventional NZ gate with
optimized parameters (see text for details). The simulation incrementally adds errors using experimental input
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in φ2Q originates from the finite flux-pulse rise time.
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7
SPECTRAL QUANTUM

TOMOGRAPHY

We introduce spectral quantum tomography, a simple method to extract the eigenvalues of
a noisy few-qubit gate, represented by a trace-preserving superoperator, in a SPAM-resistant
fashion, using low resources in terms of gate sequence length. The eigenvalues provide
detailed gate information, supplementary to known gate-quality measures such as the gate
fidelity, and can be used as a gate diagnostic tool. We apply our method to one- and two-
qubit gates on two different superconducting systems available in the cloud, namely the
QuTech Quantum Infinity and the IBM Quantum Experience. We discuss how cross-talk,
leakage and non-Markovian errors affect the eigenvalue data.

This chapter has been published in npj Quantum Inf. 5, 74 (2019) [1]. F. B. contributed to the development
of the theoretical concepts presented and performed the simulations on non-Markovianity. Furthermore,
F. B. contributed to the writing, especially in Sections 7.2.2, 7.5 and 7.7.3.
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7.1. INTRODUCTION
A central challenge on the path towards large-scale quantum computing is the engineering
of high-quality quantum gates. To achieve this goal, many methods which accurately and
reliably characterize quantum gates have been developed (see also Section 3.4). Some of
these methods are scalable, meaning that they require an effort which scales polynomially
in the number of qubits on which the gates act. Scalable protocols, such as randomized
benchmarking [2–9] necessarily give a partial characterization of the gate quality, for
example an average gate fidelity. Other protocols such as robust tomography [10] or
gate-set tomography [11, 12] trade scalability for a more detailed characterization of
the gate. A desirable feature of all the above protocols is that they are resistant to state-
preparation and measurement (SPAM) errors. The price of using SPAM-resistant (scalable)
methods is that these protocols have significant experimental complexity and/or require
assumptions on the underlying hardware to properly interpret their results.

In this work we present spectral quantum tomography, a simple non-scalable method
that extracts spectral information from noisy gates in a SPAM-resistant manner. To
process the tomographic data and obtain the spectrum of the noisy gate, we rely on the
matrix-pencil technique, a well-known classical signal processing method. This technique
has been advocated in [9] in the context of randomized benchmarking and has also been
used in [13] for processing data in the algorithm of quantum phase estimation. It has
also been used, under the phrase ‘linear systems identification’, in [14] to predict the time
evolution of quantum systems. While the matrix pencil technique leads to explicitly useful
estimates of eigenvalues and their amplitudes, we note that the same underlying idea is
used in the method of “delayed vectors" which has been proposed in [15] to assess the
dimensionality of a quantum system from its dynamics. This “delayed vectors" approach
has been applied to assess leakage in superconducting devices in [16].

The spectral information of a noisy gate S , which approximates some target unitary
U , is given by the eigenvalues of the so-called Pauli transfer matrix representing S . These
eigenvalues, which are of the form λ= exp(−γ)exp(iφ), contain information about the
quality of the implemented gate. Intuitively, the parameter γ captures how much the
noisy gate deviates from unitarity due to entanglement with an environment, while the
angle φ can be compared to the rotation angles of the targeted gate U . Hence φ gives
information about how much one over- or under-rotates. The spectrum of S can also be
related to familiar gate-quality measures such as the average gate fidelity and the unitarity.
Moreover, in the case of a noisy process modeled by a Lindblad equation, the spectrum
can be easily related to the more familiar notions of relaxation and dephasing times.

The main advantage of spectral quantum tomography is its simplicity, requiring only
the (repeated) application of a single noisy gate S , as opposed to the application of
a large set of gates as in randomized benchmarking, gate-set tomography and robust
tomography. Naturally, simplicity and low-cost come with some drawback, namely the
method does not give information about the eigenvectors of the noisy gate, such as
the axis around which one is rotating. However, information about the eigenvectors is
intrinsically hard to extract in a SPAM-resistant fashion since SPAM errors can lead to
additional rotations [17]. Another feature of spectral quantum tomography is that it can
be used to extract signatures of non-Markovianity, namely the phenomenon where the
noisy gate S depends on the context in which it is applied (e.g. time of application,
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whether any gates have been applied before it). As we show in this chapter, our method
can be used to detect various types of non-Markovian effects such as coherent revivals,
parameter drifts, and Gaussian-distributed time-correlated noise. It is also possible to
distinguish non-Markovian effects from qubit leakage. For these reasons we believe that
spectral quantum tomography adds a useful new tool to the gate-characterization toolkit.
The method could also have future applications in assessing the performance of logical
gates in a manner which is free of logical state preparation and measurement errors, see
the Discussion Section 7.6.1.

7.2. EIGENVALUES OF TRACE-PRESERVING COMPLETELY POSI-
TIVE ( TPCP) MAPS

Take a unitary gate U on a d-dimensional space with U |ψ j 〉 = e iφ j |ψ j 〉. The correspond-
ing TPCP map SU (ρ) =UρU † has one trace-full eigenvector, namely I with eigenvalue 1,
as well as d 2 −1 traceless eigenvectors. In particular, there are d 2 −d traceless eigenvec-
tors of the form |ψ j 〉〈ψl | for j 6= l with eigenvalues exp(i (φ j −φl )), and d −1 traceless
eigenvectors of the form |ψ1〉〈ψ1|− |ψ j 〉〈ψ j | for j = 2, . . . ,d with eigenvalue 1.

For general TPCP maps it is convenient to use the Pauli transfer matrix formalism.
For an n-qubit system (d = 2n) consider the normalized set of Pauli matrices Pµ for

µ= 0, . . . , N with N +1 = 4n = d 2, where P0 = I /
p

2n and the normalization is chosen such
that Tr

[
PµPν

]= δµν. For a TPCP map S acting on n qubits, the Pauli transfer matrix is
then defined as

Sµν = Tr
[
PµS (Pν)

]
, µ,ν= 0, . . . , N . (7.1)

The form of the Pauli transfer matrix S is [18]

S ↔ S =
(

1 0
s T S

)
, (7.2)

where T S is a real N ×N matrix and s is a N -dimensional column vector. The 1 and 0’s in
the top row of the Pauli transfer matrix are due to the fact that S is trace-preserving. For
a unital S which obeys S (I ) = I , the vector s = 0.

A few properties are known of the eigenvalue-eigenvector pairs of S, i.e. the pairs (λ,~v)
with Sv =λv:

• The eigenvalues of S are 1 and the eigenvalues of T S since the solutions of the
equation det(S −λI ) = 0 are the solutions of the equation (1−λ)det(T S −λI ) = 0.

• The eigenvalues of S, and thus the eigenvalues of T S , come in complex-conjugate
pairs. This is true because T S is a real matrix.

• The eigenvalues of T S (or S for that matter) have modulus less than 1, i.e. |λ| ≤ 1
(see e.g. Proposition 6.1 in [19]).

If T S is diagonalizable as a matrix, it holds that T S =V DV −1 where D is a diagonal
matrix and V a similarity transformation. Generically, T S will be diagonalizable, in
which case there are N eigenvalue-eigenvector pairs for T . A sufficient condition for
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diagonizability is, for example, that all the eigenvalues of T S are distinct. In Section 7.7.1
we give examples and discuss what it means if T S is not diagonalizable.

For some simple single-qubit channels we can explicitly compute the spectrum. For in-
stance, for a single-qubit depolarizing channel with depolarizing probability p, the eigen-
values of the sub-matrix T S of the Pauli transfer matrix are {1−p,1−p,1−p}. For a single
qubit amplitude-damping channel with damping rate p they are {

√
1−p,

√
1−p,1−

p} [12].

7.2.1. RELATION TO GATE-QUALITY MEASURES
The eigenvalues of the Pauli transfer matrix of a noisy gate S can be related to several
other known measures of gate quality such as the average gate fidelity F (S ,U ), the gate
unitarity u(S ) and, for a single qubit (n = 1), the gate unitality.

The average gate fidelity is defined as F (S ,U ) = ∫
dφ〈φ|U †S (|φ〉〈φ|)U |φ〉. This

fidelity relates directly to the entanglement fidelity Fent(S ,U ) via F = Fentd+1
d+1 [20], where

the entanglement fidelity is defined as

Fent(S ,U ) = Tr
[
I ⊗U |Ψ〉〈Ψ| I ⊗U †(I ⊗S )(|Ψ〉〈Ψ|)],

where |Ψ〉 = 1p
d

∑d
i=1 |i , i 〉 is a maximally entangled state. Using that |Ψ〉〈Ψ| = 1

d

∑N
µ=0 Pµ⊗

Pµ and U PµU † =∑
κT U †

µκ Pκ we can write

Fent(S ,U ) = 1

d 2

∑
µ

Tr
[
U PµU †S (Pµ)

]= 1

d 2

(
1+Tr

[
T U †

T S
])

.

Thus for the (entanglement) fidelity of a noisy gate S with respect to the identity channel
U = I , one has Fent(S , I ) = 1

d 2 (1+∑
i λi ), implying a direct relation to the spectrum {λi }

of T S . A more interesting relation is how the eigenvalues of T S bound the fidelity with
respect to a targeted gate U . In Section 7.7.2 we prove that the entanglement fidelity can
be upper bounded as

Fent(S ,U )≤ 1

d 2

1+(d 2−1)

√
1−

∑
j |λ j |2

d 2 −1
+ξmax

 , (7.3)

where ξmax = 1
d 2−1

|∑ j λ
ideal
j λ∗

j | with λideal
j the eigenvalues of T U with U the targeted

unitary, ordered such that the sum |∑ j λ
ideal
j λ∗

j | is maximal.

This upper bound is not particularly tight, but for the case of a single qubit we can
make a much stronger numerical statement, see Section 7.7.2.

Another measure of gate quality, namely the unitarity or the coherence of a channel [6]
on a d-dimensional system, is defined as

u(S ) = d

d −1

∫
dφTr

[
[S ′(|φ〉〈φ|)]†S ′(|φ〉〈φ|)], (7.4)

where S ′(ρ) :=S (ρ)−Tr[S (ρ)]I /
p

d . A more convenient but equivalent definition is

u(S ) = 1

d 2 −1
Tr

[
T S †

T S
]= 1

d 2 −1

∑
i
σi (T S )2, (7.5)
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where {σi } are the singular values of the matrix T S . The unitarity captures how close the
channel is to a unitary gate. A lower bound on the unitarity is given by Proposition 2 in
Ref. [17]:

u(S ) ≥ 1+∑d 2−1
i=1 |λi |2 −d

d(d −1)
, (7.6)

where {λi } are the eigenvalues of T S . For a single qubit, an upper bound on the unitarity
can also be given in terms of a non-convex optimization problem, see Section 7.7.2.

The unitality of a TPCP map is defined as 1−||s||2 with s in Eq. (7.2). Specifically, for
single-qubit channels one can derive the bound [17]

||s||2 ≤ 1−|λ1|2 −|λ2|2 −|λ3|2 +2λ1λ2λ3. (7.7)

7.2.2. RELATION TO RELAXATION AND DEPHASING TIMES
We consider the eigenvalues of a superoperator induced by a simple Lindblad equa-
tion modeling relaxation and decoherence of a driven qubit, as an example. We have a
Lindblad equation with time-independent Lindbladian L :

ρ̇ =L (ρ). (7.8)

The formal solution of Eq. (7.8) is given by ρ(t) = e tL (ρ(t = 0)), where e tL is a TPCP
map for every t . We are interested in the total evolution after a certain gate time τ

and set Sτ = eτL . We assume a simple model in which a qubit evolves according to a
Hamiltonian H = (hx X +hy Y +hz Z )/2 and is subject to relaxation and pure dephasing
processes, according to the Lindbladian:

L (ρ) =−i [H ,ρ]+ 1

T1

(
σ−ρσ+− 1

2
{σ+σ−,ρ}

)
+ 1

2Tφ
(ZρZ −ρ).

We define the relaxation respectively dephasing rates Γ1 = 1/T1 and Γ2 = 1/T2 = 1/(2T1)+
1/Tφ. The Pauli transfer matrix LL of L then takes the form

LL =


0 0 0 0
0 −Γ2 hz hy

0 −hz −Γ2 hx

Γ1 −hy −hx −Γ1

 . (7.9)

We will denote the eigenvalues of LL by Ω j for j ∈ {0, . . . ,3} and the eigenvalues of Sτ

by λ j for j ∈ {0, . . . ,3}. As expected, Ω0 = 0 implying that λ0 = e0 = 1 is an eigenvalue of
Sτ. The other three eigenvalues of LL can be found from the 3×3 sub-matrix in the
lower-right corner. Here we consider some simple cases.

Case 1: hx = hy = hz = 0. In this case, for j = 1,2,3 the three eigenvalues of L and Sτ

are clearly

Ω j ∈ {−Γ2,−Γ2,−Γ1},

λ j ∈ {e−Γ2τ,e−Γ2τ,e−Γ1τ},
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thus relating directly to the relaxation and dephasing rates.
Case 2: hx = hy = 0. In this case we have

Ω j ∈ {−Γ2 + i hz ,−Γ2 − i hz ,−Γ1},

λ j ∈ {e−Γ2τe i hzτ,e−Γ2τe−i hzτ,e−Γ1τ},

where we have separated the decaying part of the λ j (corresponding to the real part of
theΩ j ) and their phases (corresponding to the imaginary part). If we work in the rotating
frame of the qubit, hz can be understood as an over-rotation along the Z -axis, which
would appear in the spectrum as an extra phase imparted to two of the eigenvalues. Again
we see that the decaying part of the eigenvalues directly relates to the relaxation and
dephasing rates.

Case 3: hy = hz = 0. This case shows that over-rotations can also modify the decay
strength of the eigenvalues. We analyze the eigenvalues as a function of hx . From LL in
Eq. (7.9) we see thatΩ1(hx ) =−Γ2 for all hx . For the other eigenvalues we have

Ω2,3(hx ) =−1

2

(
Γ1 +Γ2 ±

√
(Γ1 −Γ2)2 −4h2

x

)
. (7.10)

We see that if |hx | < |Γ1−Γ2|/2 ≡ hcr
x , only the moduli ofλ2 andλ3 are affected as compared

to Case 1, in other words, λ2 and λ3 only decay with no extra phases. On the contrary, the
phases of these eigenvalues becomes non-zero when the driving is sufficiently strong:
|hx | > hcr

x . It implies that if we look at the dynamics induced by the Lindblad equation, real
oscillations, not only decay, will be present as a function of τ. Hence these two scenarios
represent respectively the overdamped (|hx | < hcr

x ) and underdamped regime (|hx | > hcr
x ),

similar to the dynamics of a vacuum-damped qubit-oscillator system, see e.g. Ref. [21]. At
|hx | = hcr

x , the system is critically damped and LL does not have 4 linearly-independent
eigenvectors, meaning that the Pauli transfer matrix of Sτ is not diagonalizable. In this
case the dynamics also has a linear dependence on t besides the exponential decay with
t , see the discussion in Section 7.7.1.

7.3. SPECTRAL TOMOGRAPHY
In this section we describe the spectral tomography method, which estimates the eigen-
values of S , where S is a TPCP implementation of a targeted unitary gate.

We model state-preparation errors as a perfect preparation step followed by an un-
known TPCP map Nprep. Similarly, measurement errors are modeled by a perfect mea-
surement preceded by an unknown TPCP map Nmeas. We assume that when we apply
the targeted gate k times, an accurate model of the resulting noisy dynamics is S k . The
spectral tomography method can be applied without this assumption but the interpreta-
tion of its results is more difficult, see Section 7.5 for a discussion. The method works by
constructing the following signal function, for k = 0,1, . . . ,K for some fixed K :

g (k) =
N∑
µ=1

Tr
[
PµNmeas ◦S k ◦Nprep(Pµ)

]
. (7.11)

Gathering the data to estimate g (k) requires (1) picking a traceless n-qubit Pauli Pµ, (2)
preparing an n-qubit input state in one of the 2n basis states corresponding to this chosen
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Pauli, (3) applying the gate k times and measuring in the same chosen Pauli basis, and (4)
repeating (1-3) over different Pauli’s, basis states and experiments to get good statistics.
As in standard process tomography [22], one takes linear combinations of the estimated
probabilities for the outcomes to construct an estimator of a Pauli operator on a Pauli
input. This gives an estimate of g (k) for a fixed k. Repeating this process for k ∈ {0, . . . ,K }
we reconstruct the entire signal function. In Section 7.3.2 we discuss the cost of doing
these experiments as compared to randomized benchmarking.

Let us now examine how g (k) depends on the eigenvalues of the matrix T . When
there are no SPAM errors, that is, Nmeas and Nprep are identity channels, we have

g NO SPAM(k) =
N∑
µ=1

(T k )µµ = Tr
[
T k]= N∑

j=1
λk

j , (7.12)

where {λ j } are the eigenvalues of T . The last step in this equality follows directly when T
is diagonalizable, but it can alternatively be proved using the so-called Schur triangular
form of T (we give this proof in Section 7.7.1).

When Nmeas and Nprep are not identity channels, we have

g (k) = Tr
[
TmeasT k Tprep

]= Tr
[

ASPAMDk]= N∑
j=1

A jλ
k
j , (7.13)

where Tmeas and Tprep are respectively the T -submatrices of the Pauli transfer matrix
of Nmeas and Nprep. Here we assume that T =V DV −1 is diagonalizable and the matrix
ASPAM =V −1TprepTmeasV captures the SPAM errors. One may expect that ASPAM is close
to the identity matrix in the typical case of low SPAM errors, in particular one may expect
that A j 6= 0 for all j so that all eigenvalues of T are present in the signal g (k).

In principle, one could take more tomographic data and consider a full matrix-valued
signal cµν(k) = Tr

[
PµNmeas ◦S k ◦Nprep(Pν)

]
instead of only Eq. (7.11). This requires

doing many more experiments and there is no clear advantage in terms of the ability to
determine the spectrum.

7.3.1. SIGNAL ANALYSIS OR MATRIX-PENCIL METHOD FOR EXTRACTING EIGEN-
VALUES

In this section we review the classical signal-processing method which reconstructs, from
the (noisy) signal g (k) = ∑N

j=1 A jλ
k
j for k = 0, . . . ,K , an estimate for the eigenvalues λ j

and the amplitudes A j . Note that we have g (k) ∈R due to Eq. (7.11). Not surprisingly, this
signal-processing method has been employed and reinvented in a variety of scientific
fields. We implement the so-called ESPRIT analysis described in Ref. [23], but see also
Ref. [24]. In the context of spectral tomography we know that the signal g (k) will in
principle contain N eigenvalues (which are possibly degenerate). However, we can vary
the number of eigenvalues we use to fit the signal to see whether a different choice than
N gives a significantly better fit. This is relevant in particular when the implemented gate
contains leakage or non-Markovian dynamics, see Section 7.5.

We require at least K ≥ 2N −2 in order to determine the eigenvalues accurately. This
implies that for a single-qubit gate with N = 3 we need at least K = 4 and for a two-qubit
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Figure 7.1: Preliminary study of the numerical accuracy of the matrix-pencil method as a function of L, K and
Nsamples. (Left) We use the matrix-pencil method with different L’s and K ’s to estimate the eigenvalues of a
random single-qubit channel, for Nsamples = 1000. On the vertical axis we give the variance in the estimate of

the eigenvalues: ∆2 = 1
3 (

∑N=3
j=1 |λ j −λest

j |2). We see that, as long as the matrix-pencil parameter L is chosen

away from 0 or K , the accuracy of the reconstructed signal is nearly independent of L. Furthermore, we see
that higher K ’s can achieve a lower ∆2. (Right) We generate a random single-qubit channel and set L = K /2.
We plot ∆2 as a function of K for two different values of Nsamples = 1000 and Nsamples = 5000, showing how a
larger Nsamples suppresses the total variance. We see that for constant Nsamples the accuracy of the method
increases rapidly at first when K is increased, but it increases more slowly if K is already large. This can be
explained by the fact that the signal decreases exponentially in K and so data points for large K have much
lower signal-to-noise ratio. For both figures, random channels were generated using QuTip’s random TPCP map
functionality, and measurement noise was approximated by additive Gaussian noise with standard deviation

equal to 1/
√

Nsamples.

gate with N = 15 we need at least K = 28. However, the signal g (k) has sampling noise due
to a bounded Nsamples and in practice it is good to choose K larger than strictly necessary
to make the reconstruction more robust against noise. We study the effect of varying K in
Fig. 7.1 (left panel).

The method goes as follows and relies on picking a so-called pencil parameter L.

Let us assume for now that each g (k) is learned without sampling noise. One con-
structs a (K −L+1)× (L+1)-dimensional data matrix Y as

Y =



g (0) g (1) . . . g (L)
g (1) g (2) . . . g (L+1)

g (2)
...

...
...

...
g (K −L) . . . . . . g (K )

=
N∑

j=1
A j



1 λ j . . . λL
j

λ j λ2
j . . . λL+1

j

λ2
j

...
...

...
...

λK−L
j . . . . . . λK

j


. (7.14)

Note that rank(Y ) ≤ N since Y is a sum of at most N rank-1 matrices when there are N
eigenvalues. Consider two submatrices of Y : the matrix G0 is obtained from Y by deleting
the last column of Y , while the matrix G1 is obtained by deleting the first column of Y .
When L = K

2 , the matrices G0 and G1 are square matrices of dimension M = K
2 +1. For

this choice of L, the smallest value of K so that M = N is 2N −2. We seek a time-shift
matrix T such that TG0 =G1. When M ≥ N , there certainly exists a matrix T such that for
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all j ∈ {1, . . . , N }:

T


1
λ j
...
λM

j

=λ j


1
λ j
...
λM

j

 . (7.15)

Furthermore, if G−1
0 exists, which is the case when rank(G0) = M , this matrix T will be

uniquely given as G1G−1
0 . Hence, in this case there is a unique matrix T, obtained by

constructing G1G−1
0 from the data, which is guaranteed to have {λ j } as eigenvalues. When

the pencil parameter L > K
2 , one needs to ensure that there are at least N rows of the

matrix Y : if not, T would be of dimension less than N , not giving N eigenvalues. This
implies K ≥ N +L−1.

The general method for a non-square Y which includes an additional sampling-noise
reduction step then goes as follows. The choice for N in the procedure can be varied from
its minimal value equal to d 2 −1 to a larger value, depending on a goodness-of-fit.

1. Construct a singular-value decomposition of the matrix Y , i.e. Y = R1ΣRT
2 and

replace the diagonal matrix Σ by a diagonal matrix Σclean with only the largest N
singular values. Let Yclean = R1ΣcleanRT

2 . This step is to reduce sampling noise.

2. Take the submatrices G0 and G1 of Yclean.

3. Compute T=G1G+
0 where G+

0 is the Moore-Penrose pseudo-inverse of the matrix
G0 so that T is a matrix with at most N non-zero eigenvalues.

4. Compute the eigenvalues of T: these will be the estimates λest
j of λ j for all j ∈

{1, . . . N }. Formally, the linear matrix pencil is G0 −λG1 and the eigenvalues of this
matrix pencil, i.e. the values where det(G0 −λG1) = 0, are the λest

j .

We have first applied this method on the signal g (k) of a randomly chosen single-
qubit channel: by varying K and L we want to understand the role of the matrix-pencil
parameter L and the choice for a larger K . The results are shown in Fig. 7.1 (left panel).
Note that the chosen K ’s are quite far above the bound K ≥ N+L−1 to effectively suppress
sampling noise. For each K there is a flat region in L where ∆2 is roughly constant. In the
remainder we will choose L = K /2, putting ourselves in the middle of this region. Fig. 7.1
(right panel) shows how increasing Nsamples lowers the total variance of the estimated
eigenvalues.

An additional processing step is the determination of the (complex) amplitudes {A j }.
Viewing g (k) as a set of K +1 inner products between the vector (A1, . . . , AN ) and the
linearly-independent vectors (λk

1 ,λk
2 , . . . ,λk

N ), it is clear that, given perfect knowledge
of g (k), the {A j } are uniquely determined when K + 1 ≥ N . Since g (k) is known with
sampling noise, the {A j } can be found by solving the least-squares minimization problem
minA j

∑
k |g (k)−∑

j A j (λest
j )k |2. The optimal values in this minimization Aest

j and λest
j

together form the reconstructed signal g est(k) and the error is given by

εrms
N =

(
1

K +1

K∑
k=0

|g (k)− g est
N (k)|2

)1/2

. (7.16)
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Figure 7.2: (Left) Spectral footprints for single-qubit Rx (π/4) gates on the ibmqx4 (IBMQ) and the Quantum
Infinity (QI) chips at K = 50, L = 30 and Nsamples = 8192. The modulus of the eigenvalues is plotted in the radial
direction and in particular it decreases from the center to the outside and it is equal to 1 on the (most inner)
black circumference. The angular coordinate corresponds to the phase of the eigenvalues. (Right) Precise value
of the deviation of the phases of the three eigenvalues from the ideal ones.

7.3.2. RESOURCES
It is interesting to consider the amount of experiments that must be done to perform
spectral quantum tomography. One must estimate the function g (k) defined in Eq. (7.13).
This reconstruction process requires running 2n ×N × (K +1) different experiments and
repeating each experiment Nsamples times. For a single-qubit gate we need 6(K + 1)
experiments, while for a two-qubit gate we need 60(K +1). Note that while the number of
experiments scales exponentially with qubit number (not surprising for a tomographic
protocol), the number of experiments needed for performing spectral tomography on
single and two-qubit gates is comparable to the number of experiments that must be
performed in randomized benchmarking on one or two qubits (which provides only
average gate information). In randomized benchmarking one must sample M random
sequences for each sequence length k ∈ [0 : K ], yielding M × (K +1) experiments. This M
is independent of the number of qubits [25]. In experiments M is often chosen between
M ≈ 40 [26, 27] at the low end and M ≈ 150 at the higher end [28]. Values of K reported
in randomized benchmarking experiments are also comparable to (or even higher than,
see [26] where K ≈ 300 is considered) the values of K used for single and two qubit spectral
tomography (see Section 7.4).

7.4. SPECTRAL TOMOGRAPHY ON TWO SUPERCONDUCTING CHIPS
We have executed the spectral tomography method on a single-qubit π/4 rotation around
the X -axis: Rx (π/4) = exp(−iπX /8). For this gate the ideal matrix T Rx (π/4) should have
eigenvalues 1, exp(iπ/4) and exp(−iπ/4). We execute this gate on two different systems
available in the cloud: the two-qubit Quantum Infinity provided by the DiCarlo group at
QuTech (for internal QuTech use) and the ibmqx4 (IBM Q5 Tenerife) available at https:
//quantumexperience.ng.bluemix.net/qx/editor. The results of this experiment

https://quantumexperience.ng.bluemix.net/qx/editor
https://quantumexperience.ng.bluemix.net/qx/editor
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are shown in Fig. 7.2 (left panel) in a polar plot which we refer to as the ‘spectral footprint’
of the gate. For clarity, in Fig. 7.2 (right panel) we have also plotted the phase deviation
from ideal for the implemented gates.

On the two-qubit (q0 and q1) Quantum Infinity chip, we perform the single-qubit
gate experiment on q0 twice to study cross-talk: in one case the undriven qubit q1 on
the chip is in state |0〉, in the other case q1 is in state |1〉. Since the residual off-resonant
qubit coupling, mediated through a common resonator, is non-zero, we observe a small
difference between these two scenarios, see Fig. 7.2. For the Quantum Infinity chip,
when q1 is |0〉 we estimate λest

j ∈ {0.691+0.719i ,0.691−0.719i ,0.997}, while λest
j ∈ {0.687+

0.7239i ,0.687−0.724i ,0.998} when q1 is |1〉. Using the single-qubit fidelity bound given
in Section 7.7.2, we can compute that the fidelity with respect to the targeted gate Rx (π/4)
can be no more than 0.999 regardless of the state of q1. We can also compute upper and
lower bounds on the unitarity (see Section 7.2 and Section 7.7.2) which yields 0.994 ≤ u ≤
0.996 regardless of the state of q1.

Regarding the ibmqx4 chip, the data are taken when all other qubits are in state |0〉.
The reconstructed eigenvalues λest

j ∈ {0.735+0.671i ,0.735−0.671i ,0.996} turn out to be

lower in magnitude. From these numbers we can conclude that the fidelity to the target
gate is no higher than 0.998 and the unitarity lies between 0.988 and 0.991.

For all these numbers a two-way 95% confidence interval (for both real and imaginary
parts) deviates by less than 0.005 from the quoted values. The confidence intervals are
obtained through a Wild resampling bootstrap with Gaussian kernel [29].

We have considered whether the data can be better fitted with more than N = 3
eigenvalues. For each experiment we fit the data using N eigenvalues with N ∈ {4, . . .15}
and we test whether there is a significant increase in goodness-of-fit using a standard
F-test [30, Section 2.1.5]. For no experiment and value of N does the resultant p-value
drop below 0.05, leading us to conclude that increasing the number of eigenvalues does
not significantly increase the accuracy of the fit.

We have also executed a two-qubit CNOT gate on ibmqx4 (Fig. 7.3). The T matrix of
the ideal CNOT gate has 15 eigenvalues and a very degenerate spectrum: 6 eigenvalues
are equal to −1 and 9 eigenvalues are equal to 1, but our data, taking K = 50, shows that
a best fit is obtained using 4 instead of 2 eigenvalues. Using an F-test shows that the
goodness-of-fit is significantly improved using 4 eigenvalues rather than 2 or 3, whereas
adding more eigenvalues beyond 4 does not significantly improve the goodness-of-fit
(p > 0.05). We have not tried using larger K (which may lead to a resolution of more
eigenvalues) since this would break the requirement that our experiments are executed
as a single job performed in a short amount of time on the IBM Quantum Experience.
The eigenvalues are λest

j ∈ {0.939+0.059i ,0.938−0.059i ,−0.961+0.067i ,−0.961−0.067i },

all with a 95% confidence interval smaller than ±3×10−3 for both real and imaginary
parts. It is important to note that these 4 eigenvalues, coming in 2 complex-conjugate
pairs, cannot be the spectrum of a two-qubit TPCP map S , for the following reasons. As
observed in Section 7.2, the submatrix T S of the Pauli transfer matrix of S is a real matrix
of odd (42 −1 = 15) dimension. Since any complex eigenvalues of a real matrix come in
conjugate pairs, T S must have at least one real eigenvalue. Moreover, the data cannot
be explained by allowing for leakage, as any eigenvalues associated to a small amount of
leakage must have small associated amplitude, as we discuss in Section 7.5. This is not
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Figure 7.3: Spectral footprint of the CNOT gate for K = 50 and Nsamples = 8192. Even though the CNOT gate has
only two (degenerate) eigenvalues, we find that the spectrum of the noisy gate can be best described using 4
distinct eigenvalues. The fact that none of them are real suggests that the data cannot be due to the repeated
execution of the same noisy gate. In Section 7.7.3 we propose a simple coherent non-Markovian model that
offers a possible mechanism for the absence of real eigenvalues.

the case for the eigenvalues plotted in Fig. 7.3 as all their amplitudes have comparable
magnitude Aest ∈ {3.34−1.70i ,3.34+1.70i ,1.57+0.91i ,1.57−0.91i }. In Section 7.7.3 we
propose a simple model based on a frame mismatch accumulation that qualitatively
reproduces these eigenvalues. This model is not stochastic but coherent, and it violates
the assumption that the applied CNOT gate can be fully modeled as a TPCP map. A
possible physical mechanism producing a frame mismatch accumulation can be a drift
in an experimental parameter.

We do not compute bounds on the fidelity or unitarity of the CNOT gate since the
bounds in Section 7.2.1 do not apply when the evolution is non-Markovian.

7.5. LEAKAGE AND NON-MARKOVIAN NOISE
In this section we consider how spectral tomography behaves under error models that
violate the assumptions that go into Eq. (7.13).

Three common mechanisms for gate inaccuracy are (1) cross-talk, meaning the gate
depends on or affects the state of other “spectator" qubits, (2) leakage, meaning that
the dynamics of the gate acts outside of the computational qubit subspace and (3) non-
Markovian dynamics, meaning that the assumption that k applications of the noisy gate
are equal to S k for some TPCP map S is incorrect. Characterizing gates with respect to
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these features is important for assessing their use in multi-gate/multi-qubit devices for
the purpose of quantum error correction or plainly reliable quantum computing [5].

One can see that all three scenarios are due to the dynamics taking place in a larger
Hilbert space than the targeted computational qubit space. In the case of leakage, the
larger space is an extension of the computational space, while in the other cases the larger
space is the tensor product of the computational space with the state space of spectator
qubits (1), as explored in Section 7.4, or other quantum or classical degrees of freedom in
the environment (3).

7.5.1. LEAKAGE
Let us consider how gate leakage affects the signal g (k), making the analysis for one or
two qutrits. One can choose an operator basis for the qutrit space such as the basis of
the 8 traceless (normalized) Gell-Mann matrices σGM

µ for µ= 1, . . . ,8, together with the

normalized identity σGM
0 = 1p

3
I3. For a single qutrit, we can consider the ‘Pauli’ transfer

matrix in this Gell-Mann basis, i.e. SGM
µν = Tr[σGM

µ S (σGM
ν )] and its submatrix T GM.

For a single qutrit, the signal g NO SPAM(k) in Eq. (7.12) then equals Trcomp[(T GM)k ] where
Trcomp[A] represents the trace over a 3×3 submatrix of A, corresponding to the Gell-Mann
matrices which act like X, Y, and Z in the two-dimensional computational space. In other
words, we can see the matrix T GM as being composed of blocks:

T GM =
(

Tcomp Tseep

Tleak Tbeyond

)
, (7.17)

where the upper-left block is the sub-matrix whose trace we take in g NO SPAM(k). In the
absence of other noise sources, T GM corresponds to the evolution of a unitary gate and
(assuming it is diagonalizable) it can be diagonalized by a rotation V as T GM =V DV −1,
where D is a diagonal matrix with all the eigenvalues {λ j }. If we assume that leakage
is low, meaning that Tleak and Tseep have small norm of O(ε), then at lowest order in
ε the diagonalizing transformation V will be block-diagonal, i.e. V ≈ Vcomp ⊕Vbeyond.

This means that g NO SPAM(k) = Trcomp
[
(T GM)k

]= Trcomp
[
V DkV −1

]≈∑3
j=1λ

k
j +O(ε). Thus,

at lowest order, the signal will have large amplitude on 3 relevant eigenvalues of the
spectrum of T GM and these eigenvalues could have been perturbatively shifted from their
ideal location by low leakage. If the leakage is stronger, we can more generally write

g NO SPAM, LEAK(k) =
8∑

j=1
Ã jλ

k
j , Ã j = 〈σ j |V −1ΠcompV |σ j 〉 . (7.18)

Here |σ j 〉 is a vector notation for one of the 8 Gell-Mann matrices σ j and Πcomp is the
projector onto the basis spanned by the 3 Gell-Mann matrices which are the Paulis in
the computational space. From this expression we see that the effect of leakage is the
contribution of more eigenvalues to the signal g (k). For low leakage we may expect three
dominant eigenvalues with relatively large amplitude Ã j and five eigenvalues with small
amplitude.

For a gate on two qutrits, identical remarks apply, except that an additional basis
transformation is required from the orthogonal Gell-Mann basis to the computational
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qubit Pauli basis in order to keep the same division of T GM as in Eq. (7.17). If we have two
qutrits, the 80-dimensional traceless subspace is spanned by the matrices σGM

µ ⊗σGM
ν for

µ,ν= 0, . . . ,8 except µ= ν= 0. The issue is related to terms such as σGM
0 ⊗σGM

ν6=0 since the

normalization of the qutrit identity (σGM
0 = 1p

3
I3) is different from the normalization of

the qubit identity (P0 = 1p
2

I2). This suggests that for two qutrits it is better to write T GM

in a basis which includes the Pauli matrices in the computational subspace (Pµ⊗Pν for
µ,ν= 0, . . . ,3 except µ= ν= 0) as a sub-basis. For two qutrits, the signal may then contain
up to 80 eigenvalues of which all but 15 are expected to have small amplitude in case of
low leakage.

7.5.2. NON-MARKOVIANITY: TIME-CORRELATED NOISE
Non-Markovian behavior of a gate can be due to temporal correlations in the classical or
quantum environment of the driven qubit(s). Abstractly, we can include the environment
in the gate action so that the evolution for each gate application is a unitary given by
some Utotal acting on system and environment. We can expand the Pauli transfer matrix
of Utotal in a Pauli basis for system and environment and view Tcomp as a sub-block of
Ttotal, similar as in the case of leakage. Diagonalizing Ttotal and taking the trace over
the computational space will result in an expression such as Eq. (7.18). For example, an
additional spectator or environment qubit can lead to a signal g (k) of a single-qubit gate
having contributions from 15 eigenvalues. Choosing a sufficiently large K may allow one
to resolve these eigenvalues, even those with small amplitude.

A more malicious, but physically reasonable, form of classical non-Markovian noise
makes gate-parameters temporally correlated. In order to numerically study the effect of
non-Markovian noise, we consider a toy example in which a perfect CZ gate is followed
by a rotation around the X axis on one qubit. For a series of k repetitions of a perfect CZ
gate, we assume that each one is followed by the same rotation Rx (φ) acting always on
the same qubit. We assume that the angle φ is Gaussian-distributed with mean 0 and
standard deviation σ: Pσ(φ) = exp(−φ2/2σ2)/

p
2πσ. The time evolution for k repetitions

is then given by

Sk (ρ) =
∫ +∞

−∞
dφPσ(φ)

(
Rx (φ)CZ

)k
ρ
(
CZRx (φ)†)k . (7.19)

Note that Sk 6= (S1)k since this noise is correlated across multiple repetitions of the gate.
Furthermore, we assume perfect state-preparation and measurement. In this case, one
can represent the noisy gate by some unitary Utotal acting on the two qubits and on a
classical state in a Gaussian stochastic mixture of angles φ. The continuous nature of this
classical environment state leads to a lack of a hard cut-off on the number of eigenvalues
in g (k).

We apply the matrix-pencil method to the corresponding signal g NO SPAM(k) and we
use an F-test to determine the optimal number of eigenvalues for each σ (Fig. 7.4).
Forσ= 22.9◦ and K = 50 we find eigenvalues with modulus clearly larger than 1. Those are
unphysical but not excluded by the matrix-pencil method. We expect that such |λest| > 1
disappear when considering a longer signal, since g (k) does not increase exponentially
in k. In other words, this is a sign that the signal contains more spectral content than
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Figure 7.4: Spectral footprint of a simulated CZ gate affected by non-Markovian noise quantified by σ, see
Eq. (7.19). For eachσwe use an F-test (p-value 0.01) to find the number of eigenvalues that best fit the simulated
g NO SPAM(k) with K = 50. We find respectively 7, 12 and 11 eigenvalues for σ= 5.7◦,22.9◦,40.1◦ (here we show
only the eigenvalues with modulus greater than 0.9). We observe eigenvalues with modulus larger than 1 if σ is
sufficiently large. These results are qualitatively stable if we add a small amount of sampling noise.
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Figure 7.5: Study of the reviving signal given in Eq. (7.20) for k ·Ωδt = k ·0.05, n̄ = 5 and K = 900. We find that
the reviving signal is well reconstructed by a fit with 15 eigenvalues, some of which are distinctly separated as
can be seen in the spectral footprint. Some of the eigenvalues are estimated to be larger than 1. This is another
example in which the matrix-pencil method gives unphysical eigenvalues in the presence of non-Markovian
behavior (revivals here, time-correlated parameters in Fig. 7.4).

can be resolved from the time scale set by K . Indeed, for σ = 22.9◦ we have made the
same analysis for larger K ’s up to K = 200 and we find that those eigenvalues get closer
and closer to 1. If instead we fix K = 50 and consider different σ’s, we find that for a
low σ (e.g. 5.7◦) unphysical eigenvalues are not present (Fig. 7.4), whereas for σ> 22.9◦
(e.g. 40.1◦) they get again closer and closer to 1. This latter fact can be understood by
noting that increasing σ is analogous to enlarging the time scale set by K , as the charac-
teristic time scale of dephasing gets shorter for a fixed K . Based on these observations, we
conclude that there is a certain intermediate time scale at which eigenvalues larger than 1
are extrapolated from the data in the presence of sufficiently-strong non-Markovian noise
of the kind described in this section. Section 7.7.3 discusses a model with a different kind
of time-correlation leading to a spectral footprint which is incompatible with that of a
TPCP map.

7.5.3. NON-MARKOVIANITY: COHERENT REVIVALS

In order to better understand the occurrence of eigenvalue estimates |λest| > 1, we apply
the matrix-pencil method on a signal (of a somewhat different physical origin), which has
a revival over the time period set by K .

It is well-known that in the exchange of energy between a two-level atom with a
bosonic mode, the Rabi oscillations of the two-level atom are subject to temporal revivals.
These revivals are due to the fact that the bosonic driving field is not purely classical, but
rather gets entangled with the state of the qubit via the Jaynes-Cummings interaction. In
particular, for a coherent driving field with coherent amplitude α with average photon
number n̄ = |α|2, the probability for the atom to be excited equals (see Section 3.4.3
in [21]):

Pe (t ) = 1

2
+ 1

2

∞∑
n=0

pα(n)cos(Ωt
p

n +1), (7.20)
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with pα(n) = exp(−|α|2) |α|
2n

n! . We consider n̄ = 5 and sample the damped oscillatory

function Pe (t)− 1
2 at regular intervals kΩδt withΩδt = 0.05 and k = 0, . . . ,K = 900. The

signal function g (t) = Pe (t)− 1
2 contains eigenvalues equal to λn = exp(±i 0.05

p
n +1)

with amplitudes according to the Poisson distribution pα(n) with mean photon number
n̄.

We observe that the matrix-pencil method finds eigenvalues larger than 1, see Fig. 7.5,
which contribute significantly (p < 0.01 via F-test) to the reconstructed signal. We can
understand this feature of eigenvalues exceeding 1 as a way in which the matrix-pencil
method handles revivals: the signal has more spectral content than what can be resolved
from the window of time given by K , in particular there is no hard cut-off on the number
of eigenvalues which contribute. We have observed that an analysis of the signal over a
longer period of time, that is, a larger K up to K = 5000, gives eigenvalues whose norm
converges to at most 1.

7.6. DISCUSSION
We have introduced spectral quantum tomography, a simple method that uses tomo-
graphic data of the repeated application of a noisy quantum gate to reconstruct the spec-
trum of this quantum gate in a manner resistant to SPAM errors. We have experimentally
validated our method on one- and two-qubit gates and have also numerically investigated
its behavior in the presence of temporally-correlated non-trivial error models.

The effective upshot of leakage and non-Markovian noise is that the signal will have
more spectral content than what can be resolved given a chosen sequence length K ,
leading to unphysical features in the spectrum such as an eigenvalue estimate larger
than 1, or the absence of a real eigenvalue. Even though we have seen in our examples
that a physical spectrum can be regained by going to larger K , depending on the noise
model, this convergence may be very slow requiring much data-taking time. Hence these
unphysical features are useful markers for deviations from our model of repeated TPCP
qubit maps S k . We view it as an open question how well one can reliably distinguish
different sources of deviations.

7.6.1. LOGICAL SPECTRAL QUANTUM TOMOGRAPHY

An interesting application of the spectral tomography method could be the assessment of
logical gates on encoded quantum information in a SPAM-resistant fashion. In this logical
scenario (for, say, a single logical qubit), one first prepares the eigenstates of the logical
Pauli operators X ,Y and Z . One then applies a unit of error-correction k = 0, . . . ,K times:
a single unit could be, say, the repeated error correction for L rounds of a distance-L
surface code. Or a unit is the application of a fault-tolerant logical gate, e.g. by means of
code-deformed error correction or a transversal logical gate followed by a unit of error
correction. After k units one measures the logical Pauli operators fault-tolerantly, and
repeats experiments to obtain the logical signal g (k). Studying the spectral features
of such logical channel will give information about the efficacy of the quantum error
correction unit and/or the applied logical gate while departures from the code space or a
need to time-correlate syndrome data beyond the given QEC unit can show up as leakage
and non-Markovian errors.
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7.7. METHODS

7.7.1. SINGLE-QUBIT CASE WITH NON-DIAGONALIZABLE MATRIX T
In general, a matrix T can be brought to Jordan normal form by a similarity transformation,
i.e. T =V JV −1 with J =⊕i Ji where each Jordan block Ji is of the form

Ji =


λi 1

λi
. . .
. . . 1

λi

 , (7.21)

see e.g. Theorem 3.1.11 in Ref. [31]. T is diagonalizable when each Jordan block is fully
diagonal.

An example of a non-diagonalizable Lindblad superoperator on a single qubit has
been constructed in Ref. [32]. Using this, one can easily get a single-qubit superoperator
S for which the traceless block of the Pauli transfer matrix is a non-diagonalizable ma-

trix T as follows. Let S (ρ) = exp(L ε)(ρ) ≈ ρ+ εL (ρ)+O(ε2) with L (ρ) = −i [ y Z
2 ,ρ]+

D[(2x)1/2σ−](ρ) +D[y1/2X ](ρ) with D[A](ρ) = AρA† − 1
2 {A† A,ρ} and real parameters

x, y ≥ 0. This implies that S has the 4×4 Pauli transfer matrix

S =


1 0 0 0
0 1−εx −εy 0
0 εy 1−ε(x +2y) 0

2εx 0 0 1−2ε(x + y)

+O(ε2).

Taking some small ε and x 6= 0, one can check that the submatrix T does not have 3
eigenvectors and it has a pair of degenerate eigenvalues, so T is not diagonalizable. When
we take x = 0, S is unital, that is S (I ) = I , and the submatrix T is not diagonalizable
either.

Even though a matrix T is not always diagonalizable, there still exists the so-called
Schur triangular form for any matrix T [31]. This form says that T =W (D +E )W † with W
a unitary matrix, D a diagonal matrix with the eigenvalues of T , and E a strictly upper-
triangular “nilpotent" matrix with non-zero entries only above the diagonal. Since the
N ×N matrix E is strictly upper-triangular, one has Tr

[
D i E j

]= 0 for all j 6= 0. If we use
this form in Eq. (7.12), one obtains for any k

g NO SPAM(k) = Tr
[
T k]= Tr

[
(D +E)k]= Tr

[
Dk]

, (7.22)

since any product of the form D l1 E l2 D l3 . . .E lm with some non-zero li > 0 is a matrix with
zeros on the diagonal. In case of SPAM errors and non-diagonalizable T we consider

g (k) = Tr
[
W †TprepTmeasW (D +E)k]

, (7.23)

where W †TprepTmeasW is not the identity matrix due SPAM errors, implying that g (k) can
depend on E and have a non-exponential dependence on k. Thus, in the special case of
a non-diagonalizable matrix T , the signal g (k) would not have the dependence on the
eigenvalues as in Eq. (7.13).
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In particular, we can examine the physically-interesting non-diagonalizable Case 3
in Section 7.2.2 in this light, taking hy = hz = 0 and a critical hcr

x = Γ1−Γ2
2 . The dynamics

of the Lindblad equation after time t induces a superoperator St which will have the
following action on the Pauli operators:

St (X ) = exp(−Γ2t )X ,

St (Y ) = exp(−(Γ1 +Γ2)t/2)
[
(1+ thcr

x )Y −hcr
x Z

]
,

St (Z ) = exp(−(Γ1 +Γ2)t/2)
[
hcr

x tY + (1−hcr
x t )Z

]
.

Here we can note the linear dependence on t due to the system being critically damped.
If we consider the signal g (t ) =∑

µTr[PµSt (Pµ)] we see that this linear dependence on t
drops out in accordance with Eq. (7.22), i.e. this trace only depends on the eigenvalues
and has an exponential dependence on t . In the presence of SPAM errors, some of
the linear dependence could still be observable for such critically-damped system. In
addition, coefficients such as cµν(t) = Tr[PµSt (Pν)] can depend linearly on t , making
such tomographic data less suitable to extract eigenvalue information.

7.7.2. UPPER BOUND ON THE ENTANGLEMENT FIDELITY WITH THE TAR-
GETED GATE

In this section we show how to relate the eigenvalues of the Pauli transfer matrix of a
TPCP map S to an upper bound on the entanglement fidelity (and hence the average
gate fidelity) with the targeted unitary gate U . Naturally, one can only expect to obtain an
upper bound on the gate fidelity, since the eigenvalues do not provide information about
the eigenvectors of S . If the actual eigenvectors deviate a lot from ideal, the actual gate
fidelity could be very low, so one can certainly not derive a lower bound on the fidelity
based on the eigenvalues.

Lemma 1. Let the eigenvalues of the N ×N matrix T S be {λi }N
i=1 with N = d 2 −1 for a

d-dimensional system. Let U be the targeted gate with eigenvalues {λideal
i }N

i=1 and let there

be permutation π of i -th eigenvalue λi which maximizes |∑i λ
∗
π(i )λ

ideal
i | so that 0 ≤ ξmax =

maxπ
1
N |∑i λ

∗
π(i )λ

ideal
i | ≤ 1. The entanglement fidelity Fent(U ,S ) = 1

N+1 (1+Tr
[
T U †

T S
]
)

is upper bounded as

Fent(U ,S ) ≤ 1

N +1

1+N

√
u(S )−

∑
j |λ j |2
N

+Nξmax

 , (7.24)

where u(S ) is the unitarity of S .

Proof. We write T S in Schur triangular form as T S =W (DS +E)W † with W a unitary
matrix, DS a diagonal matrix with the eigenvalues of T S , and E a strictly upper-triangular
“error" matrix with non-zero entries only above the diagonal [31]. Using the Cauchy-
Schwartz inequality one has

Tr
[
T U †

T S
]≤ Tr

[
T U †

W DS W †]+
(Tr

[
E †E

]
)1/2(Tr

[
T U †

T U ]
)1/2. (7.25)
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Note that for a unitary gate U , T U † = (T U )T = (T U )† and T U †
T U = I implying that T

is an orthogonal matrix with unit singular values. We thus have (Tr
[
T U †

T U
]
)1/2 =p

N .

One has Tr
[
T S †

T S
] = Tr

[
(DS +E)†(DS +E)

] = Tr
[
(DS †

DS +E †E)
]
, using the strict

upper-triangularity of E . In other words, Tr
[
E †E

]= Tr
[
T S †

T S
]−∑

i |λi |2 where λi are

the eigenvalues of T S . Recognizing that 1
N Tr

[
T S †

T S
] = u(S ), we obtain an upper

bound on the second term in Eq. (7.25).
Now let’s upper bound the first term in Eq. (7.25) for unknown unitary W . Assume

w.l.o.g. that T U and DS are diagonal in the same basis (the additional rotation between
these eigenbases can be absorbed into W ). Let T U = ∑

i λ
ideal
i Pi and DS = ∑

i λi Pi

with orthogonal projectors Pi and
∑

i Pi = I . Define the matrix M with entries Mi j =
Tr

[
Pi W P j W †

]
. The matrix M is doubly-stochastic, since

∑
i Mi j = 1 = ∑

j Mi j which
implies that M =∑

m qmπm with qm ≥ 0,
∑

m qm = 1 (Birkhoff-von Neumann theorem [31])
with permutation matrix πm . With these facts and the convention 〈i |λS 〉 = λi we can
bound

|Tr
[
T U †

W DS W †]| ≤∑
m

qm | 〈λideal|πm |λS 〉 | ≤ Nξmax.

These bounds together then lead to Eq. (7.24).

An immediate corollary of Theorem 1 is

Fent(U,S )≤ 1

N+1

1+N

√
1−

∑
j |λ j |2
N

+Nξmax

 , (7.26)

since u(S ) ≤ 1 for TPCP maps. However, this is in general not a very strong upper bound
on the fidelity.

We can do better in the single-qubit case by realizing that there are strong relations
between the singular values σi of T S and the absolute values of the eigenvalues |λi | of
T S . Ordering both the singular values and the eigenvalue magnitudes in descending
order, we have the following (weak Majorization) inequalities for arbitrary matrices

N∏
i=1

σi =
N∏

i=1
|λi |, (7.27)

F∑
i=1

σi ≥
F∑

i=1
|λi |, F ∈ {1, . . . , N −1}. (7.28)

For single-qubit channels we can also impose TPCP constraints to the singular values of
the channel. In particular we have [33, Eq. (4)]

σi ≤ 1, ∀i ∈ {0,1,2,3}, (7.29)

σ1 +σ2 ≤ 1+σ3. (7.30)

Using these relations we can upper bound the unitarity of a single-qubit channel S , given
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its eigenvalues, using the optimization:

minimize
σ1,σ2,σ3

u(S ) = 1

3
(σ2

1 +σ2
2 +σ2

3)

subject to σ1σ2σ3 = |λ1||λ2||λ3|,
1 ≥σ1 ≥σ2 ≥σ3 ≥ 0,

σ1 +σ2 ≤ 1+σ3,

σ1 +σ2 ≥ |λ1|+ |λ2|,
σ1 +σ2 +σ3 ≥ |λ1|+ |λ2|+ |λ3|.

This is a non-convex optimization problem in three variables, for which a global minimum
can be numerically computed given λ1,λ2,λ3. This gives an upper bound on the unitarity
of S and hence on the entanglement fidelity of S to the target unitary U . In the main text
we use this optimization to give non-trivial upper bounds on the fidelities of single-qubit
gates realized on superconducting chips and analyzed using the spectral tomography
method.

7.7.3. FRAME MISMATCH ACCUMULATION

In Section 7.4 we noted that the data gathered for the CNOT gate cannot be explained by
a model of a noisy TPCP map S repeated k times. Here we propose a simple coherent
model that qualitatively reproduces the features observed in Fig. 7.3 and we call this the
frame mismatch accumulation model. Let S0 be a TPCP map that is a good approximation
of the targeted gate applied exactly once (in the main text this was the CNOT) and let V be
some unitary. In the frame mismatch accumulation model we assume that k consecutive
applications of the gate are equal to:

Sk =
k∏

i=0

(
V †)i

S0V i = (V †)k+1(V S0)k . (7.31)

Intuitively, this can be interpreted as an increasing mismatch between the frame in which
S0 was defined and the frame in which the gate was implemented at the i -th repetition,
up to i = k.

We apply this model to a CNOT gate, choosing S0 to be an ideal CNOT gate and
choosing V = exp(−i θ2 I ⊗ Y ) with θ = 0.05 deg. In the case of the cross-resonance CNOT
gate performed on ibmqx4, this may correspond to an imperfect cancellation of the I ⊗Y
term [34]. In Fig. 7.6 we see that this example closely reproduces the eigenvalues shown
in Fig. 7.3. At the same time, we note that the qualitative features observed in Fig. 7.6
do not depend on the choice of the rotation axis of V (for either qubit), as long as the
rotation does not commute with S0 (which would leave the gate unaffected by the frame
mismatch).

Experimental data gathered for Figs. 7.2 and 7.3, as well as an implementation of the
matrix pencil algorithm can be found online at https://doi.org/10.5281/zenodo.
2613856.

https://doi.org/10.5281/zenodo.2613856
https://doi.org/10.5281/zenodo.2613856
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Figure 7.6: Spectral footprint of a simulated CNOT gate affected by frame mismatch accumulation, for K = 50.
The shown eigenvalues are {0.9636+0.03276i ,0.9636−0.0327i ,−0.9804+0.0495i ,−0.9804−0.0495i }, qualitatively
matching the experimentally-measured eigenvalues shown in Fig. 7.3 and, critically, matching the lack of real
eigenvalues observed in Fig. 7.3.
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8
LEAKAGE DETECTION FOR A

TRANSMON-BASED SURFACE CODE

Leakage outside of the qubit computational subspace, present in many leading experi-
mental platforms, constitutes a threatening error for quantum error correction (QEC) for
qubits. We develop a leakage-detection scheme via Hidden Markov models (HMMs) for
transmon-based implementations of the surface code. By performing realistic density-
matrix simulations of the distance-3 surface code (Surface-17), we observe that leakage is
sharply projected and leads to an increase in the surface-code defect probability of neigh-
boring stabilizers. Together with the analog readout of the ancilla qubits, this increase
enables the accurate detection of the time and location of leakage. We restore the logical
error rate below the memory break-even point by post-selecting out leakage, discarding less
than half of the data for the given noise parameters. Leakage detection via HMMs opens the
prospect for near-term QEC demonstrations, targeted leakage reduction and leakage-aware
decoding and is applicable to other experimental platforms.

This chapter has been published in npj Quantum Inf. 6, 102 (2020) [1]. F. B. performed full-trajectory simula-
tions and theoretical derivations and contributed to the development of the theoretical concepts presented.
Furthermore, F. B. contributed extensively to the writing.
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8.1. INTRODUCTION
Recent advances in qubit numbers [2–5], as well as operational [6–14] and measure-
ment [15–17] fidelities have enabled leading quantum computing platforms, such as
superconducting and trapped-ion processors, to target demonstrations of quantum
error correction (QEC) [18–24] and quantum advantage [3, 25–27]. In particular, two-
dimensional stabilizer codes, such as the surface code, are a promising approach [24, 28]
towards achieving quantum fault tolerance and, ultimately, large-scale quantum com-
putation [29]. One of the central assumptions of textbook QEC is that any error can be
decomposed into a set of Pauli errors that act within the computational space of the qubit.
In practice, many qubits such as weakly-anharmonic transmons, as well as hyperfine-
level trapped ions, are many-level systems which function as qubits by restricting the
interactions with the other excited states. Due to imprecise control [13, 30, 31] or the
explicit use of non-computational states for operations [6, 7, 10, 12, 32–36], there exists a
finite probability for information to leak from the computational subspace. Thus, leakage
constitutes an error that falls outside of the domain of the qubit stabilizer formalism. Fur-
thermore, leakage can last over many QEC cycles, despite having a finite duration set by
the relaxation time [37]. Hence, leakage represents a menacing error source in the context
of quantum error correction [18, 37–44], despite leakage probabilities per operation being
smaller than readout, control or decoherence error probabilities [7, 9, 10, 45].

The presence of leakage errors has motivated investigations of its effect on the code
performance and of strategies to mitigate it. A number of previous studies have fo-
cused on a stochastic depolarizing model of leakage [39, 41–44], allowing to explore
large-distance surface codes and the reduction of the code threshold using simulations.
These models, however, do not capture the full details of leakage, even though a specific
adaptation has been used in the case of trapped-ion qubits [42–44]. Complementary
studies have considered a physically realistic leakage model for transmons [37, 40], which
was only applied to a small parity-check unit due to the computational cost of many-
qutrit density-matrix simulations. In either case, leakage was found to have a strong
impact on the performance of the code, resulting in the propagation of errors, in the
increase of the logical error rate and in a reduction of the effective code distance. In
order to mitigate these effects, there have been proposals for the introduction of leakage
reduction units (LRUs) [38, 40, 41, 46] beyond the natural relaxation channel, for modifi-
cations to the decoding algorithms [18, 39, 41], as well as for the use of different codes
altogether [43]. Many of these approaches rely on the detection of leakage or introduce
an overhead in the execution of the code. Recently, the indirect detection of leakage in a
3-qubit parity-check experiment [21] was realized via a Hidden Markov Model (HMM),
allowing for subsequent mitigation via post-selection. Given that current experimental
platforms are within reach of quantum-memory demonstrations, detailed simulations
employing realistic leakage models are vital for a comprehensive understanding of the
effect of leakage on the code performance, as well as for the development of a strategy to
detect leakage without additional overhead.

In this work we demonstrate the use of computationally efficient HMMs to detect
leakage in a transmon implementation of the distance-3 surface code (Surface-17) [47].
Using full-density-matrix simulations [28, 48] we first show that repeated stabilizer mea-
surements sharply project data qubits into the leakage subspace, justifying the use of
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classical HMMs with only two hidden states (computational or leaked) for leakage de-
tection. We observe a considerable increase in the surface-code defect probability of
neighboring stabilizers while a data or ancilla qubit is leaked, a clear signal that may be
detected by the HMMs. For ancilla qubits, we further consider the information available
in the analog measurement outcomes, even when the leaked state |2〉 can be discrimi-
nated from the computational states |0〉 and |1〉 with limited fidelity. We demonstrate that
a set of two-state HMMs, one HMM for each qubit, can accurately detect both the time
and the location of a leakage event in the surface code. By post-selecting on the detected
leakage, we restore the logical performance of Surface-17 below the memory break-even
point, while discarding less than half of the data for the given error-model parameters.
Finally, we outline a minimal set of conditions for our leakage-detection scheme to apply
to other quantum-computing platforms. Although post-selection is not scalable due
to an exponential overhead in the number of required experiments, these results open
the prospect for near-term demonstrations of fault tolerance even in the presence of
leakage. Furthermore, HMM-based leakage detection enables the possibility of scalable
leakage-aware decoding [18, 41] and real-time targeted application of LRUs [38, 40, 41].

8.2. LEAKAGE ERROR MODEL
We develop an error model for leakage in superconducting transmons, for which two-
qubit gates constitute the dominant source of leakage [6, 7, 10, 12, 13, 30–35], while
single-qubit gates have negligible leakage probabilities [9, 45]. We thus focus on the
former, while the latter is assumed to induce no leakage at all. We assume that single-
qubit gates act on a leaked state as the identity. Measurement-induced leakage is also
assumed to be negligible.

We use full-trajectory simulations to characterize leakage in the Net-Zero imple-
mentation (see Section 6.3) of the controlled-phase gate (CZ), considered as the native
two-qubit gate in a transmon-based Surface-17, with experimentally targeted parameters
(see Table 8.1 and Table 8.2). This gate uses a flux pulse such that the higher frequency
qubit (Qflux) is fluxed down from its sweetspot frequency ωmax to the vicinity of the in-
teraction frequency ωint =ωstat −α, where ωstat is the frequency of the other qubit (Qstat),
which remains static, and α is the transmon anharmonicity. The inset in Fig. 8.1 a shows
a schematic diagram of the frequency excursion taken by Qflux. A (bipolar) 30 ns pulse
tunes twice the qubit on resonance with the |11〉↔ |02〉 avoided crossing, corresponding
to the interaction frequency ωint. This pulse is followed by a pair of 10 ns single-qubit
phase-correction pulses. The relevant crossings around ωint are shown in Fig. 8.1 a and
are all taken into account in the full-trajectory simulations. The two-qubit interactions
give rise to population exchanges towards and within the leakage subspace and to the
phases acquired during gates with leaked qubits, which we model as follows.

The model in Fig. 8.1 b considers a general CZ rotation, characterized by the two-qubit
phase φ11 for state |11〉 and φ= 0 for the other three computational states. The single-
qubit relative phases φ01 and φ10 result from imperfections in the phase corrections. The
conditional phase is defined asφ2Q =φ11−φ01−φ10+φ00, which for an ideal CZ isφ2Q =π.
In this chapter, we assume φ00 =φ01 =φ10 = 0 and φ2Q =φ11 = π. We set φ02 =−φ11 in
the rotating frame of the qutrit, as it holds for flux-based gates [36].

Interactions between leaked and non-leaked qubits lead to extra phases, which we call
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Figure 8.1: Schematic of the relevant interactions and the CZ error model for two transmons, a higher frequency
one Qflux and a lower frequency one Qstat. The inset of a shows the frequency excursion taken by Qflux from its
sweetspot frequency ωmax to the interaction frequency ωint, corresponding to the |11〉↔ |02〉 avoided crossing,
followed by weaker single-qubit phase-correction pulses. During this excursion, the frequency ωstat of Qstat
remains static at ωstat = ωint − |α|, where α is the anharmonicity. a Sketch of all the considered avoided
crossings, with the two-qubit system energy E on the vertical axis versus the frequency ωflux of Qflux on the
horizontal axis. b The parametrized CZ error model. An ideal CZ is constructed with the two-qubit phase φ11
and the single-qubit phases φ01 and φ10. It is followed by single-qubit rotations with phases φL

flux and φL
stat,

conditioned on the other transmon being leaked, and by the SWAP-like exchanges with leakage probability L1
and leakage-mobility probability Lm (see Section 8.2 for precise definitions). Relaxation and decoherence,
indicated by the orange arrows, are taken into account as well.
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leakage conditional phases. We consider first the interaction between a leaked Qflux and a
non-leaked Qstat. In this case the gate restricted to the {|02〉 , |12〉} subspace has the effect
di ag

(
e iφ02 ,e iφ12

)
, which up to a global phase corresponds to a Z rotation on Qstat with an

angle given by the leakage conditional phase φL
stat :=φ02 −φ12. Similarly, if Qstat is leaked,

then Qflux acquires a leakage conditional phase φL
flux

:= φ20 −φ21. These rotations are

generally non-trivial, i.e., φL
stat 6=π and φL

flux 6= 0, due to the interactions in the 3-excitation
manifold which cause a shift in the energy of |12〉 and |21〉 (see Section 8.11.6). If the
only interaction leading to non-trivial φL

stat, φ
L
flux is the interaction between |12〉 and |21〉,

then it can be expected that φ12 = −φ21 in the rotating frame of the qutrit, leading to
φL

stat =π−φL
flux.

Leakage is modeled as an exchange between |11〉 and |02〉, i.e., |11〉 7→p
1−4L1 |11〉+

e iφp4L1 |02〉 and |02〉 7→ −e−iφp4L1 |11〉 +p
1−4L1 |02〉, with L1 the leakage probabil-

ity [49]. We observe that the phase φ and the off-diagonal elements |11〉〈02| and |02〉〈11|
do not affect the results presented in this work, so we set them to 0 for computational
efficiency (see Section 8.10.2). The SWAP-like exchange between |12〉 and |21〉 with proba-
bility Lm, which we call leakage mobility, as well as the possibility of further leaking to |3〉,
are analyzed in Section 8.11.6.

The described operations are implemented as instantaneous in the quantumsim
package (introduced in Ref. [48]), while the amplitude and phase damping experienced
by the transmon during the application of the gate are symmetrically introduced around
them, indicated by light-orange arrows in Fig. 8.1 b. The dark-orange arrows indicate
the increased dephasing rate of Qflux far away from ωmax during the Net-Zero pulse.
The error parameters considered in this work are summarized in Section 8.10.2. In
particular, unless otherwise stated, L1 is set to 0.125% and φL

flux and φL
stat are randomized

for each qubit pair across different batches consisting of 2×104 or 4×104 runs of 20 or 50
QEC cycles, respectively. This choice is motivated by our expectation that these phases
are determined by the frequencies and anharmonicities of the two transmons as well
as by the parameterization of the flux pulse implementing each CZ between the pair,
which is fixed when tuning the gate experimentally. Since φL

flux and φL
stat have not been

characterized in experiment, we instead choose to randomized them in order to capture
an average behavior.

Some potential errors are found to be small from the full-trajectory simulations of
the CZ gate and thus are not included in the parametrized error model. The population
exchange between |01〉↔ |10〉, with coupling J1, is suppressed (< 0.5%) since this avoided
crossing is off-resonant by one anharmonicity α with respect to ωint. While |12〉↔ |21〉
is also off-resonant by α, the coupling between these two levels is stronger by a factor
of 2, hence potentially leading to a larger population exchange (see Section 8.11.6). The
|11〉↔ |20〉 crossing is 2α away from ωint and it thus does not give any substantial phase
accumulation or population exchange (< 0.1%). We have compared the average gate
fidelity of CZ gates simulated with the two methods and found differences below ±0.1%,
demonstrating the accuracy of the parametrized model.
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Figure 8.2: a Schematic overview of the Surface-17 layout [47]. Pink (resp. red) circles with D labels represent
low- (high-) frequency data qubits, while blue (resp. green) circles with X (Z ) labels represent ancilla qubits of
intermediate frequency, performing X -type (Z -type) parity checks. b Dependence of the logical error rate εL on
the leakage probability L1 for a MWPM decoder (green) and for the decoding upper bound (red). The black
solid line shows the physical error rate of a single transmon qubit. The dashed line corresponds to the recently
achieved L1 in experiment (see Section 6.8). Logical error rate εL for MWPM (c) and upper bound (d) as a
function of the leakage conditional phasesφL

flux andφL
stat (for L1 = 0.5%). Here, these phases are not randomized

but fixed to the given values across all runs. The logical error rates are extracted from an exponential fit of the
logical fidelity over 20 QEC cycles and averaged over 5 batches of 2×104 runs for b and one batch of 2×104

runs for c,d. Error bars correspond to 2 standard deviations estimated by bootstrapping (not included in b due
the error bars being smaller than the symbol size).
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8.3. EFFECT OF LEAKAGE ON THE CODE PERFORMANCE
We implement density-matrix simulations [48] to study the effect of leakage in Surface-
17 (Fig. 8.2). We follow the frequency arrangement and operation scheduling proposed in
Ref. [47], which employs three qubit frequencies for the surface-code lattice, arranged as
shown in Fig. 8.2 a. The CZ gates are performed between the high-mid and mid-low qubit
pairs, with the higher frequency qubit of the pair taking the role of Qflux (see Fig. 8.1).
Based on the leakage model in Section 8.2, only the high and mid frequency qubits
are prone to leakage (assuming no leakage mobility). Thus, in the simulation those
qubits are included as three-level systems, while the low-frequency ones are kept as
qubits. Ancilla-qubit measurements are modeled as projective in the {|0〉 , |1〉 , |2〉} basis
and ancilla qubits are not reset between QEC cycles. As a consequence, given the ancilla-
qubit measurement m [n] at QEC cycle n, the syndrome is given by m [n]⊕m [n −1] and
the surface-code defect d [n] by d [n] = m [n]⊕m [n −2]. For the computation of the
syndrome and defect bits we assume that a measurement outcome m [n] = 2 is declared
as m [n] = 1. The occurrence of an error is signaled by d [n] = 1. To pair defects we use
a minimum-weight perfect-matching (MWPM) decoder, whose weights are trained on
simulated data without leakage [28, 50] and we benchmark its logical performance in the
presence of leakage errors. The logical qubit is initialized in |0〉L and the logical fidelity is
calculated at each QEC cycle, from which the logical error rate εL can be extracted [28].

Figure 8.2 b shows that the logical error rate εL is sharply pushed above the memory
break-even point by leakage. We compare the MWPM decoder to the decoding upper
bound (UB), which uses the complete density-matrix information to infer a logical error.
A strong increase in εL is observed for this decoder as well. Furthermore, the logical error
rate has a dependence on the leakage conditional phases for both decoders, as shown
in Fig. 8.2 c,d.

8.4. PROJECTION AND SIGNATURES OF LEAKAGE
We now characterize leakage in Surface-17 and the effect that a leaked qubit has on its
neighboring qubits. From the density matrix (DM), we extract the probability pL

DM (Q) =
P(Q ∈L ) = 〈2|ρQ |2〉 of a qubit Q being in the leakage subspace L at the end of a QEC cy-
cle, after the ancilla-qubit measurements, where ρQ is the reduced density matrix of Q.

In the case of data-qubit leakage, pL
DM (Q) sharply rises to values near unity, where it

remains for a finite number of QEC cycles (on average 16 QEC cycles for the considered
parameters, given in Table 8.1). We refer to this sharp increase of pL

DM (Q) as projection
of leakage. An example showing this projective behavior (in the case of qubit D4), as
observed from the density-matrix simulations, is reported in Fig. 8.3 a. This is the typical
behavior of leakage, as shown in Fig. 8.3 b by the bi-modal density distribution of the
probabilities pL

DM (Q) for all the high-frequency data qubits Q. As data-qubit leakage is
associated with defects on the neighboring ancilla qubits (due to the use of the |02〉↔
|11〉 crossing by the CZ gates) and with the further propagation of defects in the following
QEC cycles (as shown below), we attribute the observed projection to a back-action
effect of the repetitive stabilizer measurements (see Section 8.11.3). Given this projective
behavior, we identify individual events by introducing a threshold pL

th (Q), above which
a qubit is considered as leaked. Here we focus on leakage on D4, sketched in Fig. 8.3 c.
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Figure 8.3: Projection and signatures of data-qubit leakage (a-e) and ancilla-qubit leakage (f-h). a Example
realization of a data-qubit leakage event, extracted from the density-matrix simulations. b Density histogram of
all data-qubit leakage probabilities over 20 bins, extracted over 4×104 runs of 50 QEC cycles each. c-e Signatures
of data-qubit leakage. c Sketch of how leakage on a data qubit, e.g. D4, alters the interactions with neighboring
stabilizers, leading to their anti-commutation (see Section 8.11.2). d The average projection of the leakage
probability pL

DM of D4 over all events, where this probability is first below and then above a threshold of pL
th = 0.5

for at least 5 and 8 QEC cycles, respectively. e The average number of defects on the neighboring stabilizers of D4
over the selected rounds, showing a jump when leakage rises above pL

th . f-h Signatures of ancilla-qubit leakage.
f Sketch of how leakage on an ancilla qubit, e.g. Z1, effectively disables the stabilizer check and probabilistically
introduces errors on the neighboring data qubits. g We select realizations where Z1 was in the computational
subspace for at least 5 QEC cycles, after which it was projected into |2〉 by the readout and remained in that
state for at least 5 QEC cycles. h The corresponding defect rate on neighboring stabilizers during the period of
leakage. The error bars, which were estimated by bootstrapping, are smaller than the symbol sizes.
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Based on a threshold pL
th (D4) = 0.5, we select leakage events and extract the average

dynamics shown in Fig. 8.3 d. Leakage grows over roughly 3 QEC cycles following a
logistic function, reaching a maximum probability of approximately 0.8. We observe this
behavior for all three high-frequency data qubits D3,D4,D5.

We observe an increase in the defect probability of the neighboring ancilla qubits
during data-qubit leakage. We extract the probability pd of observing a defect d = 1
on the neighboring stabilizers during the selected data-qubit leakage events, as shown
in Fig. 8.3 e. As pL

DM (D4) reaches its maximum, pd goes to a constant value of approxi-
mately 0.5. This can be explained by data-qubit leakage reducing the stabilizer checks it
is involved in to effective weight-3 anti-commuting checks, illustrated in Fig. 8.3 c and
as observed in Ref. [21]. This anti-commutation leads to some of the increase in εL for
the MWPM and UB decoders in Fig. 8.2 b. Furthermore, we attribute the observed sharp
projection of leakage (see Fig. 8.3 d) to a back-action effect of the measurements of the
neighboring stabilizers, whose outcomes are nearly randomized when the qubit is leaked
(see Section 8.11.2 and Section 8.11.3). The weight-3 checks can also be interpreted as
gauge operators, whose pairwise product results in weight-6 stabilizer checks, which can
be used for decoding [51–54], effectively reducing the code distance from 3 to 2.

We also find a local increase in the defect probability during ancilla-qubit leakage. For
ancilla qubits, pL

DM is defined as the leakage probability after the ancilla projection during

measurement. Since in the simulations ancilla qubits are fully projected, pL
DM (Q) =

0,1 for an ancilla qubit Q, allowing to directly obtain the individual leakage events, as
shown in Fig. 8.3 g. We note that an ancilla qubit remains leaked for 17 QEC cycles on
average for the considered parameters (given in Table 8.1). We extract pd during the
selected events, as shown in Fig. 8.3 h. In the QEC cycle after the ancilla qubit leaks,
pd abruptly rises to a high constant value. We attribute this to the Z rotations acquired by
the neighboring data qubits during interactions with the leaked ancilla qubit, as sketched
in Fig. 8.3 f and described in Section 8.2. The angle of rotation is determined by φL

flux
or φL

stat, depending on whether the leaked ancilla qubit takes the roles of Qstat or Qflux,
respectively (see Section 8.10.1 for the scheduling of operations). In the case of Z -type
parity checks, these phase errors are detected by the X -type stabilizers. In the case of
X -type checks, the phase errors on data qubits are converted to bit-flip errors by the
Hadamard gates applied on the data qubits, making them detectable by the Z -type
stabilizers. Furthermore, while the ancilla qubit is leaked, the corresponding stabilizer
measurement does not detect any errors on the neighboring data qubits, effectively
disabling the stabilizer, as sketched in Fig. 8.3 f. This, combined with the spread of errors,
defines the signature of ancilla-qubit leakage and explains part of the observed increase
in εL for the MWPM and UB decoders in Fig. 8.2 b.

For both data and ancilla qubits, a leakage event is correlated with a local increase in
the defect rate, albeit due to different mechanisms. However, interpreting the spread of
defects as signatures of leakage suggests the possible inversion of the problem, allowing
for effective leakage detection.
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Figure 8.4: Schematic representation of an HMM for leakage detection. For both ancilla and data qubits only
two hidden states are considered, corresponding to the qubit being either in the computational (teal) or leakage
subspace (orange). Transitions between these states occur each QEC cycle, depending on the leakage and
seepage probabilities. The state-dependent observables are the defects d (Q) on the neighboring stabilizers. For
ancilla qubits, the in-phase component Im of the analog measurement is also used as an observable.

8.5. HIDDEN MARKOV MODELS
We use a set of HMMs, one HMM for each leakage-prone qubit, to detect leakage. This ap-
proach is similar to what recently demonstrated in a 3-qubit parity-check experiment [21],
but we use simpler HMMs to make them computationally efficient. In general, an HMM
(see Fig. 8.4 and Section 8.10.3) models the time evolution of a discrete set of hidden
states, the transitions between which are assumed to be Markovian. At each time step a
set of observable bits is generated with state-dependent emission probabilities. Depend-
ing on the observed outcomes, the HMM performs a Bayesian update of the predicted
probability distribution over the hidden states.

We apply the concept of HMMs to leakage inference and outline their applicability for
an accurate, scalable and run-time executable leakage-detection scheme. This is made
possible by two observations. The first is that both data- and ancilla-qubit leakage are
sharply projected (see Section 8.4) to high pL

DM (Q). This justifies the use of classical HMMs
with only two hidden states, corresponding to the qubit being in the computational or
leakage subspace.

The second observation is the sharp local increase in pd associated with leakage (see Sec-
tion 8.4), which we identify as the signature of leakage. This allows us to consider only the
defects on the neighboring stabilizers as relevant observables and to neglect correlations
between pairs of defects associated with qubit errors. In the case of ancilla-qubit leakage,
in addition to the defects, we consider the state information obtained from the analog
measurement as input to the HMMs. Each transmon is dispersively coupled to a dedi-
cated readout resonator. The state-dependent shift in the single-shot readout produces
an output voltage signal, with in-phase and quadrature components (see Section 8.11.1).

The transition probabilities between the two hidden states are determined by the leak-
age and seepage probabilities per QEC cycle, which are, to lowest order, a function only of
the leakage probability L1 per CZ gate and of the relaxation time T1 (see Section 8.10.3).
We extract the state-dependent emission probabilities from simulation. When a qubit is
not leaked, the probability of observing a defect on each of the neighboring stabilizers is
determined by regular errors. When a data qubit is leaked, the defect probability is fixed to
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Figure 8.5: a Average response in time of the HMMs (diamonds) to leakage, in comparison to the actual leakage
probability extracted from the density-matrix simulations (dashed lines). The average is computed by selecting
single realizations where pL

DM (Q) was below a threshold pL
th = 0.5 for at least 5 QEC cycles and then above it for 5

or more rounds. Error bars, estimated by bootstrapping, are smaller than the symbol sizes. b Precision-recall
curves for the data qubits over 4×104 runs of 50 QEC cycles each using the HMM predictions (solid) and the
leakage probability from the density matrix (dashed). The dotted line corresponds to a random guess classifier
for which P is equal to the fraction of leakage events (occurring with probability given by the density matrix)
over all QEC cycles and runs.

a nearly constant value by the stabilizer anti-commutation, while when an ancilla qubit is
leaked, this probability depends onφL

flux andφL
stat. Furthermore, the analog measurement

outcome can be used to extract a probability of the transmon being in |0〉 , |1〉 or |2〉 using
a calibrated measurement (see Section 8.7 and Section 8.11.1).

8.6. DATA-QUBIT LEAKAGE DETECTION
We assess the ability of the data-qubit HMMs to accurately detect both the time and the
location of a leakage event. We recall that these HMMs take the defects on neighboring
stabilizers as input. The average temporal response pL

HMM (Q) of the HMMs to an event

is shown in Fig. 8.5 and compared to the leakage probabilities pL
DM (Q) extracted from

the density-matrix simulation. Events are selected when crossing a threshold pL
th , as

described in Section 8.4, and the response is averaged over these events. For the data-
qubit HMMs, the response pL

HMM (Q) closely follows the probability pL
DM (Q) from the

density matrix, reaching the same maximum leakage probability but with a smaller logistic
growth rate. This slightly slower response is expected to translate to an average delay of
about 1 QEC cycles in the detection of leakage.

We now explore the leakage-detection capability of the HMMs. The precision P of
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an HMM tracking leakage on a qubit Q is defined as

PHMM (Q) =P
(
Q ∈L | pL

HMM (Q) > pL
th (Q)

)
(8.1)

and can be computed as

PHMM (Q) =
∑

i pL
DM (Q, i )θ

[
pL

HMM (Q, i )−pL
th (Q)

]
∑

i θ
[
pL

HMM (Q, i )−pL
th (Q)

] , (8.2)

where i runs over all runs and QEC cycles and θ is the Heaviside step function. The preci-
sion is then the fraction of correctly identified leakage events (occurring with probability
given by the density matrix), over all of the HMM detections of leakage. The recall R of
an HMM for a qubit Q is defined as

RHMM (Q) =P
(
pL

HMM (Q) > pL
th (Q) |Q ∈L

)
, (8.3)

and can be computed as

RHMM (Q) =
∑

i pL
DM (Q, i )θ

[
pL

HMM (Q, i )−pL
th (Q)

]
∑

i pL
DM (Q, i )

. (8.4)

The recall is the fraction of detected leakage by the HMM over all leakage events (occurring
with probability given by the density matrix). The precision-recall (PR) of an HMM
(see Fig. 8.5 b) is a parametric curve obtained by sweeping pL

th (Q) and plotting the value

of P and R. Since the PR curve is constructed from pL
HMM (Q) over all QEC cycles and

runs, it quantifies the detection ability in both time and space. The detection ability of
an HMM manifests itself as a shift of the PR curve towards higher values of P and R

simultaneously. We define the optimality O (Q) of the HMM corresponding to qubit Q as

O (Q) = AUCHMM (Q)/AUCDM (Q) , (8.5)

where AUCHMM (Q) is the area under the PR curve of the HMM and AUCDM (Q) is the
area for the optimal model that predicts leakage with probability pL

DM (Q), achieving the
best possible PDM and RDM. An average optimality of O (Q) ≈ 67.0% is extracted for the
data-qubit HMMs. Given the few QEC-cycle delay in the data-qubit HMM response to
leakage, the main limitation to the observed HMM optimality O (Q) is false detection
when a neighboring qubit is leaked (see Section 8.11.4).

8.7. ANCILLA-QUBIT LEAKAGE DETECTION
We now assess the ability of the ancilla-qubit HMMs to accurately detect both the time
and the location of a leakage event. These HMMs take as observables the defects on the
neighboring stabilizers at each QEC cycle as well as the analog measurement outcome of
the ancilla qubit itself.

We first consider the case when the HMMs rely only on the increase in the defect
probability pd and show their PR curves in Fig. 8.6 a,b. Given that projective measure-
ments are used in the simulations, AUCDM (Q) = 1 for ancilla qubits. Bulk ancilla qubits



8.7. ANCILLA-QUBIT LEAKAGE DETECTION

8

171

0.0

0.5

1.0

P
re

ci
si

o
n
P

a

without Im

X0

X1

X2

X3

b

without Im

Z0

Z1

Z2

Z3

0.0 0.2 0.4 0.6 0.8 1.0

Recall R

0.0

0.5

1.0

P
re

ci
si

o
n
P

c

with Im

X0

X1

X2

X3

0.0 0.2 0.4 0.6 0.8 1.0

Recall R

d

with Im

Z0

Z1

Z2

Z3

0 2 4 6

QEC cycle n

0.0

0.5

1.0

L
ea

k
a
g
e

p
ro

b
.
p
L e

with Im
X0

X1

X2

X3

0 2 4 6

QEC cycle n

f

with Im
Z0

Z1

Z2

Z3

0.5 0.6 0.7 0.8 0.9 1.0

Discrimination fid. FL

0.0

0.5

1.0

O
p
t.
O

0.5 0.6 0.7 0.8 0.9 1.0

Discrimination fid. FL

0.0

0.5

1.0

O
p
t.
O

Figure 8.6: a-d Precision-recall curves for the ancilla-qubit HMMs over 4×104 runs of 50 QEC cycles each.
In a,b the HMMs rely only on the observed defects on the neighboring stabilizers. In c-f the HMMs further
get the in-phase component Im of the analog readout as input, from which pL

m is extracted. The dotted line
corresponds to a random guess classifier for which P is equal to the fraction of leakage events over all QEC cycles
and runs. As ancilla-qubit leakage is directly measured, PDM = 1 for all values of R (not shown). Insets in c,d:
the HMM optimality O as a function of the discrimination fidelity F L between |1〉 and |2〉. The corresponding
error bars (extracted over 2×104 runs of 20 QEC cycles each) are smaller than the symbol size. The vertical
dashed line corresponds to the experimentally measured F L = 88.4%. e,f Average response in time of the
ancilla-qubit HMMs (diamonds) to leakage, in comparison to the actual leakage probability extracted directly
from the readout (dashed), extracted over 4×104 runs of 50 QEC cycles each. The average is computed by
selecting single realizations where the qubit was in the computational subspace for at least 3 QEC cycles and
then in the leakage subspace for 5 or more.
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have a moderate O (Q) ≈ 47%, while boundary ancilla qubits possess nearly no ability
to detect leakage. We attribute this to the boundary ancilla qubits having only a single
neighboring stabilizer, compared to bulk ancilla qubits having 3 in Surface-17. The HMMs
corresponding to pairs of same-type (X or Z ) bulk ancilla qubits exhibit visibly different
PR curves (see Fig. 8.6 a,b), despite the apparent symmetry of Surface-17. This symmetry
is broken by the use of high- and low-frequency transmons as data qubits, leading to
differences in the order in which an ancilla qubit interacts with its neighboring data qubits
(see Ref. [47] and Fig. 8.8), together with the fact that CZs with L1 6= 0 do not commute
in general. In addition to a low O (Q), the errors propagated by the leaked ancilla qubits
(and hence the signatures of ancilla-qubit leakage) depend onφL

stat andφL
flux (randomized

in the simulations). The values of these phases generally lead to different pd than the
ones parameterizing the HMM. The latter is extracted based on the average pd observed
over the runs (see Section 8.10.3). In the worst-case (for leakage detection), these phases
can lead to no errors being propagated onto the neighboring data qubits, resulting in
the undetectability of leakage. The mismatch between the fluctuating pd (over φL

stat
and φL

flux) and the average value hinders the ability of the ancilla-qubit HMMs to detect
leakage. Even if these phases were individually controllable, tuning them to maximize the
detection capability of the HMMs would also lead to an undesirable increase in εL of a
(leakage-unaware) decoder (see Fig. 8.2).

To alleviate these issues, we consider the state-dependent information obtained from
the analog measurement outcome. The discrimination fidelity between |1〉 and |2〉 is
defined as

F L = 1− P (1 | 2)+P (2 | 1)

2
, (8.6)

where P
(
i | j

)
is the conditional probability of declaring the measurement outcome i

given that the qubit has been prepared in state | j 〉, assuming that no excitation or re-
laxation occur during the measurement (accounted for in post-processing). Here we
assume that P (0 | 2) =P (2 | 0) = 0, as observed in experiment (see Fig. 8.9). We focus on
the discrimination fidelity as in our simulations relaxation is already accounted for in
the measurement outcomes (see Section 8.10.1). We extract F L from recent experimen-
tal data [21], where the readout pulse was only optimized to discriminate between the
computational states. By taking the in-phase component of the analog measurement,
for each state | j 〉 a Gaussian distribution N j is obtained, from which we get F L = 88.4%
(see Section 8.11.1).

In order to emulate the analog measurement in simulation, given an ancilla-qubit
measurement outcome m ∈ {0,1,2}, we sample the in-phase response Im from the corre-
sponding distribution Nm . The probability of the ancilla qubit being leaked given Im is
computed as

pL
m = N2 (Im)∑

j∈{0,1,2} N j (Im)
. (8.7)

The ancilla-qubit HMMs use the sampled responses Im , in combination with the observed
defects, to detect leakage.

The PR curves of the HMMs using the analog readout are shown in Fig. 8.6 c,d, from
which an average O (Q) ≈ 97% can be extracted for the ancilla-qubit HMMs. The temporal
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Figure 8.7: Improvement in the logical error rate εL via post-selecting on the detection of leakage for a
MWPM decoder (green) and the decoder upper bound (red). The post-selection is based on the probabilities
predicted by the HMMs (solid) or on those extracted from the density-matrix simulation (dashed), for 2×104 runs
of 20 QEC cycles each. The physical error rate of a single transmon qubit under decoherence is also given (solid
black). Detection of leakage allows for the restoration of the performance of the MWPM decoder, reaching
the memory break-even point by discarding about ≈ 28% of the data. The logical error rates obtained from
simulations without leakage (and without post-selection) are indicated by diamonds.

responses of the HMMs to leakage are compared to the leakage probabilities extracted
from measurement in Fig. 8.6 e,f, showing a relatively sharp response to a leakage event,
with an expected delay in the detection of at most 2 QEC cycles. While F L = 88.4%
might suggest an even sharper response, this is not the case as the HMM update depends
on both the prior pL

HMM (which is low when the qubit is not leaked) and on the likeli-
hood of the sampled Im together with the observed defects on the neighboring ancilla
qubits (Section 8.10.3). While the initial response is not immediately high, given a (not
too) low threshold, corresponding to a high R, the HMMs still achieve a high P , leading
to the high O observed (see Fig. 8.6 c, d). A further benefit of the inclusion of the analog-
measurement information is that the detection capability of the HMMs is now largely
insensitive to the fluctuations in φL

stat and φL
flux.

We explore O (Q) as a function of F L , as shown in the inset of Fig. 8.6 c,d. To do
this, we model N j for each state as symmetric and having the same standard deviation,
in which case F L is a function of their signal-to-noise ratio only (see Section 8.11.1).
At low F L

(
. 60%

)
the detection of leakage is possible but limited, especially for the

boundary ancilla qubits. On the other hand, even at moderate values of F L (≈ 80%), cor-
responding to experimentally achievable values, ancilla-qubit leakage can be accurately
identified for both bulk and boundary ancilla qubits. Furthermore, relying solely on the
analog measurements would allow for the potential minimization of the error spread
associated with ancilla-qubit leakage, given controllability over φL

stat and φL
flux, without

compromising the capability of the HMMs to detect leakage.
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8.8. IMPROVING CODE PERFORMANCE VIA POST-SELECTION
We use the detection of leakage to reduce the logical error rate εL via post-selection on
leakage detection, with the selection criterion defined as

max
Q,n

pL (Q,n) ≥ pL
th (Q) . (8.8)

We thus post-select any run for which the leakage probability of any qubit exceeds the
defined threshold in any of the QEC cycles. We note that post-selection is not scalable for
larger-scale QEC, due to an exponential overhead in the number of required experiments,
however, it can be useful for a relatively small code such as Surface-17. Furthermore, note
that, while the criterion above is insensitive to overestimation of the leakage probabil-
ity due to a leaked neighboring qubit (see Section 8.11.4), it is sensitive to the correct
detection of leakage in the first place and to the HMM response in time (especially for
short-lived leakage events).

We perform the multi-objective optimization

min
pL

th (Q)

(
f ,εL

)
,

subject to 0.02 ≤ pL
th (Q) ≤ 1,

where f is the fraction of discarded data. The inequality constraint on the feasible space
is helpful for the fitting procedure, required to estimate εL. This optimization uses an
evolutionary algorithm (NGSA-II), suitable for conflicting objectives, for which the out-
come is the set of lowest possible εL for a given f . This set is known as the Pareto front
and is shown in Fig. 8.7 for both the MWPM and UB decoders. In Fig. 8.7 we also compare
post-selection based on the HMMs against post-selection based on the density-matrix
simulation. Here we use the predictions of the HMMs which include the analog mea-
surement outcome with the experimentally extracted F L (see Section 8.7). The observed
agreement between the two post-selection methods proves that the performance gain
is due to discarding runs with leakage instead of runs with only regular errors. The per-
formance of the MWPM decoder is restored below the quantum memory break-even
point by discarding f ≈ 28%. The logical error rates extracted from simulations without
leakage are achieved by post-selection of f ≈ 44% of the data for both the MWPM and
UB decoders, when leakage is included.

8.9. DISCUSSION
We have investigated the effects of leakage and its detectability using density-matrix
simulations of a transmon-based implementation of Surface-17. Data and ancilla qubits
tend to be sharply projected onto the leakage subspace, either indirectly by a back-action
effect of stabilizer measurements for data qubits or by the measurement itself for ancilla
qubits. During leakage, a large, but local, increase in the defect rate of neighboring
qubits is observed. For data qubits we attribute this to the anti-commutation of the
involved stabilizer checks, while for ancilla qubits we find that it is due to an interaction-
dependent spread of errors to the neighboring qubits. We have developed a low-cost and
scalable approach based on HMMs, which use the observed signatures together with the
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analog measurements of the ancilla qubits to accurately detect the time and location of
leakage events. The HMM predictions are used to post-select out leakage, allowing for the
restoration of the performance of the logical qubit below the memory break-even point
by discarding less than half of the data (for such a relatively small code and for the given
noise parameters), opening the prospect of near-term QEC demonstrations even in the
absence of a dedicate leakage-reduction mechanism.

A few noise sources have not been included in the simulations. First, we have not in-
cluded readout-declaration errors, corresponding to the declared measurement outcome
being different from the state in which the ancilla qubit is projected by the measurement
itself. These errors are expected to have an effect on the performance of the MWPM de-
coder, as well as a small effect on the observed optimality of the HMMs. We have also
ignored any crosstalk effects, such as residual couplings, cross-driving or dephasing
induced by measurements on other qubits. While the presence of these crosstalk mech-
anisms is expected to increase the error rate of the code, it is not expected to affect the
HMM leakage-detection capability. We have assumed measurements to be perfectly
projective. However, for small deviations, we do not expect a significant effect on the
projection of leakage and on the observation of the characteristic signatures.

We now discuss the applicability of HMMs to other quantum-computing platforms
subject to leakage and determine a set of conditions under which leakage can be efficiently
detected. First, we assume single- and two-qubit gates to have low leakage probabilities,
otherwise QEC would not be possible in general. In this way, single- and two-qubit
leakage probabilities can be treated as perturbations to block-diagonal gates, with one
block for the computational subspace C and one for the leakage subspace L . We focus
on the gates used in the surface code, i.e., CZ and Hadamard H (or RY (π/2) rotations or
equivalent gates). We consider data-qubit leakage first. We have observed that it is made
detectable by the leakage-induced anti-commutation of neighboring stabilizers. The only
condition ensuring this anti-commutation is that H acts as the identity in L or that it
commutes with the action of CZ within the leakage block (see Section 8.11.2), regardless
of the specifics of such action. Thus, data-qubit leakage is detectable via HMMs if this
condition is satisfied. In particular, it is automatically satisfied if L is 1-dimensional. We
now consider ancilla-qubit leakage. Clearly, ancilla-qubit leakage detection is possible if
the readout discriminates computational and leakage states perfectly or with high fidelity.
If this is not the case, the required condition is that leaked ancilla qubits spread errors
according to non-trivial leakage conditional phases, constituting signatures that can be
used by an HMM. If even a limited-fidelity readout is available, it can still be used to
strengthen this signal, as demonstrated in Section 8.7. An issue is the possibility of the
readout to project onto a superposition of computational and leakage subspaces. In that
case, the significance of ancilla-qubit leakage is even unclear. However, for non-trivial
leakage conditional phases, we expect a projection effect to the leakage subspace by a
back-action of the stabilizer measurements, due to leakage-induced errors being detected
onto other qubits, similarly to what observed for data qubits.

The capability to detect the time and location of a leakage event demonstrated by
the HMMs could be used in conjunction with leakage-reductions units (LRUs) [38]. These
are of fundamental importance for fault tolerance in the presence of leakage, since in
Ref. [41] a threshold for the surface code was not found if dedicated LRUs are not used to
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reduce the leakage lifetime beyond the one set by the relaxation time. While the latter
constitutes a natural LRU by itself, we do not expect it to ensure a threshold since, together
with a reduction in the leakage lifetime, it leads to an increase in the regular errors due to
relaxation. A few options for LRUs (see also Chapter 5) in superconducting qubits are the
swap scheme introduced in Ref. [37], or the use of the readout resonator to reset a leaked
data-qubit into the computational subspace, similarly to Refs. [55, 56] [which developed
into the res-LRU in Chapter 9]. An alternative is to use the |02〉↔ |11〉 crossing to realize
a “leakage-reversal” gate that exchanges the leakage population in |02〉 to |11〉. An even
simpler gate would be a single-qubit π pulse targeting the |1〉 ↔ |2〉 transition [which
developed into the π-LRU in Chapter 9]. All these schemes introduce a considerable
overhead either in hardware (swap, readout resonator), or time (swap, readout resonator,
leakage-reversal gate), or they produce leakage when they are applied in the absence
of it (leakage-reversal gate, π pulse). Thus, all these schemes would benefit from the
accurate identification of leakage, allowing for their targeted application, reducing the
average circuit depth and minimizing the probability of inadvertently inducing leakage.
We also note that the swap scheme, in conjunction with a good discrimination fidelity
for |2〉, could be used for detecting leakage not only on ancilla qubits but also on data
qubits by alternatively measuring them. Still, this scheme would require 5 extra qubits for
Surface-17 and would make the QEC-cycle time at least ∼ 50% longer, together with more
gate and idling errors, thus requiring much better physical error rates to achieve the same
logical error rate in near-term experiments.

We discuss how decoders might benefit from the detection of leakage. Modifications to
MWPM decoders have been developed for the case when ancilla-qubit leakage is directly
measured [18, 41], and when data-qubit leakage is measured in the LRU circuits [41].
Further decoder modifications might be developed to achieve a lower logical error rate
relative to a leakage-unaware decoder, by taking into account the detected leakage and
the probability of leakage-induced errors, as well as the stabilizer information that can
still be extracted from the superchecks (see Section 8.11.2). In the latter case, a decoder
could switch back and forth from standard surface-code decoding to e.g. the partial
subsystem-code decoding in Refs. [51–53]. Given control of the leakage conditional
phases, the performance of this decoder can be optimized by settingφL

stat =π andφL
flux = 0,

minimizing the spread of phase errors on the neighboring data qubits by a leaked ancilla
qubit, as well as the noise on the weight-6 stabilizer extraction in the case of a leaked data
qubit (see Section 8.11.2). Given a moderate discrimination fidelity of the leaked state,
this is not expected to compromise the detectability of leakage, as discussed in Section 8.7.
At the same time, for such a decoder we expect the improvement in the logical error rate
to be limited in the case of low-distance codes such as Surface-17, as single-qubit errors
can result in a logical error. This is because leakage effectively reduces the code distance,
either because a leaked data qubit is effectively removed from the code, or because of
the fact that a leaked ancilla qubit is effectively disabled and in addition spreads errors
onto neighboring data qubits. Large codes, for which leakage could be well tolerated
(depending on the distribution of leakage events), cannot be studied with density-matrix
simulations, as done in this work for Surface-17. However, the observed sharp projection
of leakage and the probabilistic spread of errors justify the stochastic treatment of this
error [41]. Under the assumption that amplitude and phase damping can be modeled
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Figure 8.8: The quantum circuit for a single QEC cycle employed in simulation, for the unit-cell scheduling
defined in [47]. The qubit labels and frequencies correspond to the lattice arrangement shown in Fig. 8.2. Gray
elements correspond to operations belonging to the previous or the following QEC cycle. The X -type parity
checks are performed at the start of the cycle, while the Z -type parity checks are executed immediately after the
Z -type stabilizer measurements from the previous cycle are completed. The duration of each operation is given
in Table 8.1. The arrow at the bottom indicates the repetition of QEC cycles.

stochastically as well, we expect that the performance of decoders and LRUs in large
surface codes can be well approximated in the presence of leakage.

8.10. METHODS

8.10.1. SIMULATION PROTOCOL

For the Surface-17 simulations we use the open-source density-matrix simulation package
quantumsim [28], available at [48]. For decoding we use a MWPM decoder [28], for which
the weights of the possible error pairings are extracted from Surface-17 simulations via
adaptive estimation [50] without leakage (L1 = 0) and an otherwise identical error model
(described in Section 8.10.2).

The logical performance of the surface code as a quantum memory is the ability to
maintain a logical state over a number of QEC cycles. We focus on the Z -basis logical |0〉L,
but we have observed nearly identical performance for |1〉L. We have not performed
simulations for the X -basis logical states |±〉L = 1p

2
(|0〉L ±|1〉L), as previous studies did

not observe a significant difference between the two bases [28]. The state |0〉L is prepared
by initializing all data qubits in |0〉, after which it is maintained for a fixed number of
QEC cycles (maximum 20 or 50 in this work), with the quantum circuit given in Fig. 8.8.
The first QEC cycle projects the logical qubit into a simultaneous eigenstate of the X - and
Z -type stabilizers [29], with the Z measurement outcomes being +1 in the absence of
errors, while the X outcomes are random. The information about the occurred errors is
provided by the stabilizer measurement outcomes from each QEC cycle, as well as by a Z -
type stabilizer measurements obtained by measuring the data qubits in the computational
basis at the end of the run. This information is provided to the MWPM decoder, which
estimates the logical state at the end of the experiment by tracking the Pauli frame. For
decoding, we assume that the |2〉 state is measured as a |1〉, as in most current experiments.
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Parameter Value

Relaxation time T1 30 µs
Sweetspot dephasing time Tφ,max 60 µs
High-freq. dephasing time
at interaction point Tφ,int 8 µs
Mid-freq. dephasing time
at interaction point Tφ,int 6 µs
Mid-freq. dephasing time
at parking point Tφ,park 8 µs
Low-freq. dephasing time
at parking point Tφ,park 9 µs
Single-qubit gate time tsingle 20 ns
Two-qubit interaction time tint 30 ns
Single-qubit phase-correction time tcor 10 ns
Measurement time tm 600 ns
QEC-cycle time tc 800 ns

Table 8.1: The parameters for the qubit decoherence times and for the gate, measurement and QEC-cycle
durations used in the density-matrix simulations.

In Section 8.7 we considered the discrimination of |2〉 in readout, which can be used for
leakage detection. While this information can be also useful for decoding, we do not
consider a leakage-aware decoder in this work.

The logical fidelity FL (n) at a final QEC cycle n is defined as the probability that the
decoder guess for the final logical state matches the initially prepared one. The logical
error rate εL is extracted by fitting the decay as

FL (n) = 1

2

[
1+ (1−2εL)n−n0

]
, (8.10)

where n0 is a fitting parameter (usually close to 0) [28].

8.10.2. ERROR MODEL AND PARAMETERS
In the simulations we include qubit decoherence via amplitude-damping and phase-
damping channels. The time evolution of a single qubit is given by the Lindblad equation

dρ

d t
=−i

[
H ,ρ

]+∑
i

LiρL†
i −

1

2

{
L†

i Li,ρ
}

, (8.11)

where H is the transmon Hamiltonian

H =ωa†a + α

2
(a†)2a2, (8.12)

with a the annihilation operator, ω and α the qubit frequency and anharmonicity, respec-
tively, and Li the Lindblad operators. Assuming weak anharmonicity, we model amplitude
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damping for a qutrit by

Lamp =
√

1

T1
a. (8.13)

The |2〉 lifetime is then characterized by a relaxation time T1/2. Dephasing is described by

Ldeph,1 =
√

8

9Tφ

1 0 0
0 0 0
0 0 −1

 , (8.14)

Ldeph,2 =
√

2

9Tφ

1 0 0
0 −1 0
0 0 0

 , (8.15)

Ldeph,3 =
√

2

9Tφ

0 0 0
0 1 0
0 0 −1

 , (8.16)

leading to a dephasing time Tφ between |0〉 (resp. |1〉) and |1〉 (|2〉), and to a dephasing
time Tφ/2 between |0〉 and |2〉 (see Section 6.11.3). The Lindblad equation is integrated
for a time t to obtain an amplitude- and phase-damping superoperator R↓,t , expressed in
the Pauli Transfer Matrix representation. For a gate Rgate of duration tgate, decoherence is
accounted by applying R↓,tgate/2RgateR↓,tgate/2. For idling periods of duration tidle, R↓,tidle is
applied.

For single-qubit gates we only include the amplitude and phase damping experienced
over the duration tsingle of the gate. These gates are assumed to not induce any leakage,
motivated by the low leakage probabilities achieved [9, 45], and to act trivially in the
leakage subspace. For two-qubit gates, namely the CZ, we further consider the increased
dephasing rate experienced by qubits when fluxed away from their sweetspot. In super-
conducting qubits, flux noise shows a typical power spectral density S f = A/ f , where f is

the frequency and
p

A is a constant. In this chapter we consider
p

A = 4 µΦ0, whereΦ0 is
the flux quantum. Both low- and high-frequency components are contained in S f , which
we define relative to the CZ gate duration tCZ. Away from the sweetspot frequency ωmax,

a flux-tunable transmon has first-order flux-noise sensitivity Dφ = 1
2π

∣∣∣ ∂ω∂Φ ∣∣∣. The high-

frequency components are included as an increase in the dephasing rate Γφ = 1/Tφ
(compared to the sweetspot), given by Γφ = 2π

p
ln2ADφ [57], while the low-frequency

components are not included due to the built-in echo effect of Net-Zero pulses (see Sec-
tion 6.5). High- and mid-frequency qubits are fluxed away to different frequencies, with
dephasing rates computed with the given formula. Furthermore, during a few gates
low-frequency qubits are fluxed away to a “parking” frequency in order to avoid unwanted
interactions [47]. The computed dephasing times at the interaction point are given in Ta-
ble 8.1. For the CZ gates, we include this increased dephasing during the time tint spent at
the interaction point, while for the phase-correction pulses of duration tcor we consider
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the same dephasing time as at the sweetspot. We do not include deviations in the ideal
single-qubit phases of the CZ gate φ01 = 0 and φ10 = 0 and the two-qubit phase φ11 =π,
under the assumption that gates are well tuned and that the low-frequency components
of the flux noise are echoed out (see Section 6.4).

We now consider the coherence of leakage in the CZ gates, which in the rotating frame
of the qutrit is modeled as the exchanges

|11〉 7→
√

1−4L1 |11〉+e iφ
√

4L1 |02〉 , (8.17)

|02〉 7→
√

1−4L1 |02〉−e−iφ
√

4L1 |11〉 , (8.18)

with L1 the leakage probability [49]. The phase φ can lead to an interference effect
between consecutive applications of the CZ gate across pairs of data and ancilla qubits. In
terms of the full density matrix, the dynamics of Eqs. (8.17) and (8.18) leads to a coherent
superposition of computational and leaked states

ρ =
(
ρC ρcoh

ρcoh ρL

)
, (8.19)

where ρC (resp. ρL ) is the density matrix restricted to the computational (leakage) sub-
space, while ρcoh are the off-diagonal elements between these subspaces. We observe
that varying the phase φ does not have an effect on the dynamics of leakage or on the
logical error rate. We attribute this to the fact that each ancilla qubit interacts with a
given data qubit only once during a QEC cycle and it is measured at the end of it (and as
such it is dephased). Thus, the ancilla-qubit measurement between consecutive CZ gates
between the same pair prevents any interference effect. Furthermore, setting ρcoh = 0,
does not affect the projection and signatures of leakage nor the logical error rate (at least
for the logical state prepared in the Z basis), leading to an incoherent leakage model.
We attribute this to the projection of leakage itself, which leaves the qubit into a mostly
incoherent mixture between the computational and leakage subspaces. In the harmonic
rotating frame, |2〉 is expected to acquire an additional phase during periods of idling,
proportional to the anharmonicity. However, following the reasoning presented above,
we also believe that this phase is irrelevant.

An incoherent leakage model offers significant computational advantage for density-
matrix simulations. For the case where ρcoh 6= 0, the size of the stored density matrix
at any time is 46 ×94 (6 low-frequency data qubits, 3 high-frequency data qutrits plus
1 ancilla qutrit currently performing the parity check). Setting ρcoh = 0 reduces the size of
the density matrix to 46 ×54, since for each qutrit only the |2〉〈2| matrix element is stored
in addition to the computational subspace. Thus, for the simulations in this work we rely
on an incoherent model of leakage.

Measurements of duration tm are modeled by applying R↓,tm/2RprojR↓,tm/2, where
R↓,tm/2 are periods of amplitude and phase damping and Rproj is a projection operator.
This projector is chosen according to the Born rule and leaves the ancilla qubit in ei-
ther |0〉, |1〉 or |2〉. We do not include any declaration errors, which are defined as the
measurement outcome being different from the state of the ancilla qubit immediately
after the projection. Furthermore, we do not include any measurement-induced leakage,
any decrease in the relaxation time via the Purcell effect or any measurement-induced de-
phasing via broadband sources. We do not consider non-ideal projective measurements
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(leaving the ancilla in a superposition of the computational states) due to the increased
size of the stored density matrix that this would lead to.

8.10.3. HMM FORMALISM
An HMM describes the time evolution of a set S = {s} of not directly observable states s
(i.e., “hidden”), over a sequence of independent observables o = {oi }. At each time step n
the states undergo a Markovian transition, such that the probability p s [n] of the system
being in the state s is determined by the previous distribution p s [n −1] over all s ∈ S.
These transitions can be expressed via the transition matrix A, whose elements are the
conditional probabilities As,s′ := P

(
s [n] = s | s [n −1] = s′

)
. A set of observables is then

generated with state-dependent probabilities Boi [n],s :=P (oi [n] = oi | s [n] = s). Inverting
this problem, the inference of the posterior state probabilities p s [n] from the realized
observables is possible via

p s [n] =P (s [n] | o [n] ,o [n −1] , . . . ,o [1]) (8.20)

=
P (o [n] | s [n]) p s

prior [n]

P (o [n])
(8.21)

=
∏

i P (oi [n] | s [n]) p s
prior [n]∏

i P (oi [n])
(8.22)

=
∏

i Boi [n],s p s
prior [n]∑

s′
∏

i Boi [n],s′p
s′
prior [n]

, (8.23)

where p s
prior [n] is the prior probability

p s
prior [n] =

∑
s′

As,s′p
s′ [n −1] . (8.24)

We define Bo[n],s = ∏
i Boi [n],s , which for discrete oi constitute the entries of the emis-

sion matrix B . In addition to the transition and emission probabilities, the initial state
probabilities p s [n = 0] are needed for the computation of the evolution.

In the context of leakage detection, we consider only two hidden states, S = {C ,L },
namely whether the qubit is in the computational (C ) or the leakage subspace (L ). The
transition matrix is parameterized in terms of the leakage and seepage probabilities
per QEC cycle. The leakage probability is estimated as ΓC→L ≈ NfluxL1 (for low L1),
where Nflux is in how many CZ gates the qubit is fluxed during a QEC cycle and L1 is
the leakage probability per CZ gate. The seepage probability is estimated by ΓL→C ≈
NfluxL2+

(
1−e

tc
T1/2

)
, where tc is the QEC cycle duration and T1 the relaxation time (see Ta-

ble 8.1), while L2 is the seepage contribution from the gate, where L2 = 2L1 due to the
dimensionality ratio between C and L for a qubit-qutrit pair [49]. The transition matrix A
is then given by

A =
(
1−ΓC→L ΓL→C

ΓC→L 1−ΓL→C

)
. (8.25)

We assume that all qubits are initialized in C , which defines the initial state distribu-
tion pC [n = 0] = 1 used by the HMMs.



8

182 8. LEAKAGE DETECTION FOR A TRANSMON-BASED SURFACE CODE

The HMMs consider the defects d (Qi ) ≡ di on the neighboring ancilla qubits Qi at
each QEC cycle, occurring with probability pdi , as the observables for leakage detection.
Explicitly, the emission probabilities are parameterized in terms of the conditional prob-
abilities Bdi [n],s = P (di [n] | s) of observing a defect when the modeled qubit is in s =C

or s =L . We extract Bdi [n],C directly from simulation, by averaging over all runs and all
QEC cycles, motivated by the possible extraction of this probability in experiment. While
this includes runs when the modeled qubit was leaked, we observe no significant differ-
ences in the HMM performance when we instead post-select out these periods of leakage,
which we attribute to the low L1 per CZ gate. We extract Bdi [n],L from simulation over the
QEC cycles when the leakage probability pL

DM (Qi ) as observed from the density matrix is

above a threshold of pL
th = 0.5. In the case of ancilla-qubit leakage, Bdi [n],L depends on

the values of the leakage conditional phases φL
stat and φL

flux. Thus, in the case of random-
ized leakage conditional phases, the HMMs are parameterized by the average Bdi [n],L .
In the case of data-qubit leakage, the extracted Bdi [n],L is ≈ 0.5 regardless of the leakage
conditional phases, as expected from the anti-commuting stabilizers (see Section 8.4).

For ancilla-qubit leakage detection, the analog measurement outcome Im can be
additionally considered as an observable, in which case o = {di , Im}. In this case, the state-
dependent probability is further parametrized by BIm [n],C =P (Im [n] |C ) =N0 (Im [n])+
N1 (Im [n]) and by BIm [n],L = P (Im [n] |L ) = N2 (Im [n]), where Ni are the Gaussian
distributions of the analog responses in the IQ plane, projected along a rotated in-phase
axis I , following the same treatment as in Section 8.11.1.

8.11. SUPPLEMENTAL MATERIAL

8.11.1. TRANSMON MEASUREMENTS IN EXPERIMENT
We consider the measurements of transmons in experiment [21], which is enabled by
the dispersive coupling between a transmon and a dedicated readout resonator. The res-
onator is connected to a common feedline via a dedicated Purcell filter [17]. Measurement
is performed by applying a readout pulse to the feedline, populating the resonator with
photons. Each transmon induces a state-dependent shift of the frequency of the readout
resonator, changing the amplitude and phase of the outgoing photons. This outgoing
signal is amplified and the in-phase (I ) and quadrature (Q) components are extracted.
For calibration of the single-shot readout, the transmon is prepared in either |0〉, |1〉
or |2〉 and subsequently measured. Repeating this experiment characterizes the spread
of the I and Q components of each state |i 〉, which typically follow a two-dimensional
Gaussian distribution Ni with mean~µi and standard deviation~σi in the IQ plane [17, 58],
as exemplified in Fig. 8.9 a.

Given an analog measurement of I and Q, the probability of a transmon being in
state |i 〉 can be expressed as

P (i | I ,Q) = P (I ,Q | i )P (i )

P (I ,Q)
, (8.26)

where

P (I ,Q) =
∑

j∈{0,1,2}
P

(
I ,Q | j

)
P

(
j
)

. (8.27)
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Figure 8.9: The analog measurement of transmons as extracted from experiment. a Histograms of the in-
phase I and quadrature Q components of the measured readout for a transmon prepared in |0〉, |1〉 or |2〉.
b The histograms of the responses for the transmon initially prepared in |0〉 or |1〉, projected along the rotated
quadrature maximizing the discrimination fidelity F 01 = 99.6%. c The histograms of the responses for the
transmon initialized in |1〉 or |2〉, projected along the I axis, in which case discrimination is achieved with a
fidelity F 12 = 88.4%.

We assume that the prior state probabilities are equally likely. Furthermore, given the
typically observed Gaussian distributions, it holds that P (I ,Q | i ) =Ni (I ,Q), which leads
to

P (i | I ,Q) = Ni (I ,Q)∑
j∈{0,1,2} N j (I ,Q)

. (8.28)

In experiment, one is typically interested in discriminating between pairs of states |i 〉
and | j 〉, for which the discrimination fidelity is defined as

F i j = 1−P(
j | i

)
P (i )−P(

i | j
)
P

(
j
)

, (8.29)

where P
(
i | j

)
is the probability of declaring a measurement outcome i given a prepared

state | j 〉, under the assumption of no excitation or relaxation during the measurement (ac-
counted for in post-processing), and where P (i ) is the prior probability of the qubit being
in state |i 〉. Hence, the discrimination fidelity corresponds to the probability of correctly
declaring the projected state. We focus on the discrimination fidelity as in our simulations
relaxation is already accounted for in the measurement outcomes (see Section 8.10.1).
We assume P (i ) =P(

j
)= 1

2 , which leads to

F i j = 1− P
(

j | i
)+P(

i | j
)

2
. (8.30)

This can be related to the signal-to-noise ratio SNR = ∣∣~µi −~µ j
∣∣/2σ, assuming symmetric
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Gaussian distributions, as

F i j = 1− 1

2
erfc

(
SNRp

2

)
. (8.31)

The IQ response can be projected onto the axis joining the centers of a pair of two-
dimensional Gaussian distributions, allowing to consider a single quadrature while maxi-
mizing the discrimination fidelity. Without loss of generality, we consider this optimal
axis to be along I . This allows to express Eq. (8.28) as

P (i | I ) = Ni (I )∑
j∈{0,1,2} N j (I )

, (8.32)

where Ni (I ) is the marginal of Ni (I ,Q). In experiment, in order to declare a binary
measurement outcome, a threshold value for I is introduced, separating the regions for
declaring either outcome. Following this approach, for a 3-outcome measurement, three
projection axes are needed in general. However, since the Gaussian distributions for |1〉
and |2〉 are typically well-separated from the one for |0〉, it is possible to use only two
axes, i.e., one to discriminate |0〉 from |1〉, and one to further discriminate |2〉 from the
rest. For the measurement calibration from experiment [21], shown in Fig. 8.9 a, the
discrimination between |0〉 and |1〉 can be achieved by projecting the analog responses
along a rotated quadrature axis which maximizes the discrimination fidelity F 01 = 99.6%.
Discriminating between |1〉 and |2〉 is performed with F 12 = 88.4% by projecting along a
rotated in-phase axis, maximizing this fidelity.

8.11.2. LEAKAGE-INDUCED ANTI-COMMUTATION
We study the behavior of neighboring stabilizers in the presence of a leaked data qubit.
We focus on a parity-check operator in the bulk of the surface code. For the frequency
scheme of Fig. 8.2, this involves two leakage-prone high-frequency transmons and two
low-frequency transmons, modeled as qutrits and qubits, respectively. The ancilla qubit
used to perform the parity checks is leakage prone as well. However, here we do not
consider this possibility, given the low probability of a pair of neighboring data and ancilla
qubits to be leaked simultaneously.

We consider the CZ for transmons described in Section 8.2, without including any
decoherence. In the limit of the leakage probability L1 → 0 (and leakage mobility Lm → 0),
for an ancilla qubit A and a high-frequency data qubit D , the CZ can be decomposed as

|0〉〈0|A ⊗
1 0 0

0 1 0
0 0 −1


D

+|1〉〈1|A ⊗
1 0 0

0 −1 0

0 0 −e−iφL
stat


D

(8.33)

=: |0〉〈0|A ⊗ ĨD +|1〉〈1|A ⊗ Z̃D . (8.34)

Note that Ĩ |C = I and Z̃ |C = Z , where I and Z are the standard identity and Pauli Z
operators, respectively, and C is the qubit computational subspace. For a CZ between an
ancilla qubit and a low-frequency data qubit, it simply holds |0〉〈0|A ⊗ ID +|1〉〈1|A ⊗ZD .
Small values of L1, as observed in experiment (see Section 6.8), can be treated as a
perturbation to this.
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Figure 8.10: The effects of data-qubit leakage on the stabilizers of the code. a Sketch of how data-qubit
leakage in the bulk (e.g. on D4) effectively defines weight-3 gauge operators, whose product forms a weight-6
X -type (purple) or Z -type (teal) “supercheck” stabilizer, in addition to the standard weight-2 X -type (blue) and
Z -type (green) stabilizers. b,c The average probability pd of observing a defect on the supercheck stabilizers
during leakage on D4 (defined by the leakage probability being above a threshold of 0.5) as a function of the
leakage conditional phase φL

stat.

For a parity-check measurement, the back-action on the state of the data qubits is
given by either one of two operators, depending on the outcome. In the case of a Z -type
parity-check unit, these operators are given by

M Z
± = Ĩabcd ± Z̃abcd

2
, (8.35)

where Ĩabcd := Ĩa Ĩb Ic Id and Z̃abcd := Z̃a Z̃b Zc Zd . Under the assumption that single-qubit
gates, namely the Hadamard gate, do not induce any leakage and act trivially on the
leakage subspace, for the X -type parity-check unit these operators are instead given by

M X
± = Ĩabcd ± X̃abcd

2
, (8.36)

where X̃abcd := X̃a X̃b Xc Xd and

X̃ =
0 1 0

1 0 0

0 0 −e−iφL
stat

 , (8.37)

in which case X̃ |C = X with X the standard Pauli operator.
The X -type and Z -type parity checks commute if and only if M Z

± and M X
± commute,

as it holds

[
M Z

± , M X
±

]= 1

4

[
Z̃abcd , X̃abcd

]
(8.38)
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(and also
[
M Z

± , M X
±

]=−[
M Z

± , M X
∓

]
). To compute the commutator we first evaluate

[
Z̃ , X̃

]= 2i

0 −i 0
i 0 0
0 0 0

 , (8.39)

{
Z̃ , X̃

}= 2

0 0 0
0 0 0

0 0 e−2iφL
stat

 . (8.40)

It follows that {
Z̃ , X̃

}∣∣∣
C
= {Z , X } = 0, (8.41)[

Z̃ , X̃
]∣∣∣

L
= 0, (8.42)

when restricted to the computational and leakage subspaces, respectively. Notice that,
when all data qubits are in the computational subspace, it holds{

Z̃abcd , X̃abcd
}∣∣∣

C
= {Zabcd , Xabcd } = 0 (8.43)

as in the standard qubit case, where Zabcd = Za Zb Zc Zd and Xabcd = Xa Xb Xc Xd . Further-
more, we note that Eq. (8.42) holds solely because H acts trivially in L (as we assume)
and it would continue to hold as long as H commutes with CZ on L .

We now consider the case in which one of the high-frequency data qubits is in L

(say a) and the remaining ones are in C . In this case{
Z̃abcd , X̃abcd

}∣∣∣
La

=
{
−e−iφL

stat Zbcd ,−e−iφL
stat Xbcd

}
= e−iφL

stat {Zbcd , Xbcd } = 0. (8.44)

This shows that, in the presence of data-qubit leakage, M Z
± and M X

± do not commute. In
particular, Z̃abcd and X̃abcd anti-commute and this result is independent of the leakage
conditional phase. Furthermore, it holds

M Z
± |La = Ibcd ±e−iφL

stat Zbcd

2
(8.45)

and similarly for M X
± |La .

For φL
stat = 0,π, M X

± |La are projectors onto the ±-eigenspaces of Zbcd or Xbcd , con-
stituting effective weight-3 parity checks. In this case the anti-commutation [Eq. (8.44)]
leads to fully randomized ancilla-qubit measurement outcomes, corresponding to a
probability pd = 50% of observing a defect each QEC cycle on each of the neighboring
stabilizers. However, the product of two weight-3 same-type checks is a weight-6 stabilizer
of the surface code, thus the product of the two ancilla-qubit measurement outcomes
corresponds to the parity of the 6 data qubits involved. In particular, the stabilizer group
can be redefined as including the standard weight-4 checks which do not involve the
leaked qubit, together with the defined weight-6 “superchecks”, while the weight-3 checks
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are gauge operators [51–54], as illustrated in Fig. 8.10 a. For the superchecks to be cor-
rectly obtained, both X -type gauge operators need to be measured before any of the two
Z -type gauge operators (or viceversa), which already holds true for the circuit schedule
we consider [47]. In the case of a leaked qubit on the boundary, only one supercheck op-
erator can be defined (for a rotated surface code, this is a weight-4 X - or Z -type boundary
supercheck), while the other one must be ignored for decoding [51–53]. In the case of one
leaked data-qubit in Surface-17, the minimum weight of a dressed logical operator is 2,
reducing the code distance by 1. For example, if D4 is leaked, two X errors on D2 and D7

constitute a logical X . In a larger surface code, the reduction of the distance depends on
the number of leaked qubits, as well as their distribution on the lattice [51].

In the general case where φL
stat 6= 0,π, while the anti-commutation still holds, M Z

± |La

and M X
± |La are not projectors and thus the ancilla-qubit measurement outcomes are not

fully randomized, which is expected to have an effect on the observed pd . However, in the
simulations pd ≈ 50% for both the case when φL

stat is randomized across runs (see Fig. 8.3)
or when it is fixed, independently of the specific value. Since the defects d are computed
as d [n] = m [n]⊕m [n −2], where m [n] is the measurement outcome at QEC cycle n, even
a moderate imbalance between the probabilities of measuring m [n] = 0 and m [n] = 1
(fluctuating across QEC cycles) can lead a defect probability pd ≈ 50%. Furthermore, the
phase rotations depending on φL

stat affect the measurement of each of the two weight-
3 gauge operators independently, which in turn undermines the correct extraction of
the weight-6 stabilizer parity. This effect is observed in Fig. 8.10 b,c, where in the case
of φL

stat = 0,π the observed defect probability roughly corresponds to the expected one
from a weight-6 check (relative to the observed one for the standard weight-4 and weight-2
checks in the absence of leakage), while a higher defect probability is observed otherwise,
reaching up to 50%. Hence, the control of φL

stat in experiment would be beneficial for
decoding in the presence of data-qubit leakage whenever the superchecks are considered.

8.11.3. PROJECTION OF DATA-QUBIT LEAKAGE BY STABILIZER-MEASUREMENT

BACK-ACTION

In this section we discuss how leakage is projected by the stabilizer measurements and
in particular by the observed defects. First, we consider a simple 3-qubit parity-check
circuit, for which an analytical formula can be derived for the projection of leakage after
the observation of a single defect. We consider the circuit in Fig. 8.11 a. An ancilla qubit A
is used to measure the stabilizer Z Z on two data qubits Q1,Q2. This is the same circuit
as for one of the boundary Z -type ancilla qubits in Surface-17. Here we consider the
initial state of the two qubits to be the Bell state |Φ+〉Q1Q2 = (|00〉+|11〉)/

p
2, that is, the +1-

eigenstate for both Z Z and X X . For simplicity, the CZs are considered ideal apart from
the one between A and Q1 which has a leakage probability L1 for Q1, hence only this qubit
can leak. To emulate relaxation in the actual system, we consider an incoming X error
occurring with probability p on Q1 (Z errors are not detected by a Z Z measurement, so
we do not consider them here). Prior to the measurement, the system can be either in
state

|ψ1〉Q1Q2 A = 1

2
p

2

([
2 |00〉+ (1+a) |11〉+b |21〉] |0〉+ [

(1−a) |11〉+b |21〉] |1〉), (8.46)
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Figure 8.11: Projection of data-qubit leakage. a Inset: an ancilla qubit A, initialized in |0〉, measures Z Z on
two data qubits Q1,Q2, initialized in the Bell state |Φ+〉, and we assume that the measurement projects A
onto |1〉 (thus resulting in a defect here). All operations are noiseless except for a leakage probability L1
in the first CZ. A Pauli X error occurs with probability p on Q1. Main plot: post-measurement leakage
probability pL

DM (Q1) versus p. The black vertical line corresponds to the physical error rate of a transmon in
the Surface-17 simulations. b Schematic overview of the Surface-17 layout, where pairs of high-frequency data
qubits share two ancilla qubits as nearest neighbors. c-d Example realizations of data-qubit leakage projections,
extracted from the density-matrix simulations. For each run we plot pL

DM for all three high-frequency data

qubits. e The average projection of the leakage probability pL
DM of all three high-frequency data qubits in the

absence of relaxation and decoherence (D3 and D4 are mostly obscured by D5). This average is computed by
selecting realizations where pL

DM (Q) was below a threshold pL
th = 0.5 for at least 5 QEC cycles and then above

it for 8 or more cycles. f Density histogram of all data-qubit leakage probabilities over 20 bins, in the absence
of relaxation and decoherence, extracted over 2×104 runs of 20 QEC cycles each. Error bars, estimated by
bootstrapping, are smaller than the symbol sizes.
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with probability 1−p, where a =p
1−4L1 and b =p

4L1, or in state

|ψ2〉Q1Q2 A = 1

2
p

2

([
(1−a) |10〉+b |20〉] |0〉+ [

(1+a) |10〉+2 |01〉+b |20〉] |1〉), (8.47)

with probability p.
Here the measurement of the ancilla qubit in |1〉 leads to the observation of a defect.

In that case, the back-action of this measurement gives the overall density-matrix:

ρ||1〉 = 1

2(1−a)+4p(1+a)

(
(1−p)

[
(1−a)2 |11〉〈11|+b2 |21〉〈21|]

p
[
(1+a)2 |10〉〈10|+4 |01〉〈01|+b2 |20〉〈20|
+2(1+a)(|10〉〈01|+ |01〉〈10|)]), (8.48)

where we have set the off-diagonal terms containing a |2〉 to 0, consistently with the
simulations in this work (in any case, they do not matter for the present discussion),
see Section 8.10.2. Tracing out Q2, the leakage probability of Q1 is

pL
DM (Q1) = 4L1

2(1−p
1−4L1)+4p(1+p

1−4L1)
, (8.49)

where the denominator is just the probability of observing a defect. Thus, the product of
this probability and of pL

DM (Q1) is a constant equal to 4L1. This means that the average
leakage probability of Q1, sampled over many measurements, is expected to grow towards
the steady state proportionally to L1, as observed in Section 8.11.8 for Surface-17. However,
Eq. (8.49), plotted in Fig. 8.11 a, shows that pL

DM (Q1), conditioned on the observation of
a defect, can be much higher than L1. In particular, when p → 0, Q1 becomes (almost)
fully leaked. This is due to the fact that, if there are no regular Pauli errors causing defects,
but leakage is possible and leads to defects (here due to the use of the |11〉↔ |02〉 avoided
crossing), then the observation of a defect indicates that the qubit is leaked. When p is
larger, the projection of leakage is less sharp since it is more likely that a defect is caused
by a regular error rather than by leakage. For example, for p equal to the physical error
rate considered in the Surface-17 simulations (T1 = T2 = 30 µs), indicated by a black line
in Fig. 8.11 a, pL

DM (Q1) = 4.5%, which is still much larger than L1 = 0.125%.
Since the error model we consider for Surface-17 is more realistic and there are more

leakage-prone interactions between qubits, we further analyze the data-qubit leakage
projection using numerics. We first focus on the behavior observed across individual
realizations, where pL

DM (Q) of any of the data qubits sharply increases. An example of a

leakage event of D3 is shown in Fig. 8.11 c, where pL
DM (D3) is sharply projected to a high

value. However, during the initial projection, pL
DM (D4) simultaneously rises to values

around 0.5, where it remains for a few QEC cycles. We attribute this uncertainty to the
fact that ancilla qubits X1 and Z2 are nearest neighbors of both data qubits, as illustrated
in Fig. 8.11 b. The observation of defects on either one or both of these ancilla qubits
can be roughly equally likely to be due to either data qubit being leaked. As leakage
is projected via a back-action effect of the observation of defects, unambiguous defect
observations lead to finite pL

DM (Q) of both data qubits. A second example of a realization
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of data-qubit leakage is shown in Fig. 8.11 d, where both D3 and D4 exhibit sharp and
brief projections to pL

DM (Q) ≈ 0.5 at different QEC cycles. These jumps can be either
due to very short-lived leakage events, or due to the observations of multiple defects,
which can eventually be attributed to one or more regular errors, but which also have
a significant overlap with the signatures of leakage of D3 or D4, respectively. We note
that we have observed multiple instances of the example realizations discussed above.
Thus across individual realizations of leakage, pL

DM (Q) for the high-frequency data qubits
is not always monotonically increasing (resp. decreasing) to high (low) probabilities in
the case of a qubit leaking outside of (relaxing back to) the computational subspace.
Similarly, there are fluctuations in pL

DM (Q) throughout leakage events across individual
realizations. The observed bi-modal density distribution shown in Fig. 8.3 b shows that
these small jumps and fluctuations are relatively rare, which we attribute to the repetitive
stabilizer measurements and the observed strong signatures of leakage (see Section 8.4).
To make the selection of leakage events (in Fig. 8.3 d, 8.5 a, 8.10 b, c 8.11 e, 8.12 a, b)
less sensitive to such fluctuations, we apply a Savitzky-Golay filter with a window length
of 5 QEC cycles and a first-order polynomial for the sample fitting. This filter smooths out
the traces, to which we then apply our selection criterion. However, when computing the
average projection from the selected realizations, we do not use the smoothed leakage
probabilities, but directly the values extracted from simulation.

We finally analyze how the projection of data-qubit leakage in Surface-17 is affected by
the physical error rates considered in this work. Figure 8.11 e shows that, in the absence
of relaxation and decoherence (T1 = T2 = ∞), the average pL

DM (Q) of any of the high-
frequency data qubits is projected to near unity in two QEC cycles whenever a qubit
leaks. This projection is sharper than in the case with relaxation and decoherence, shown
in Fig. 8.3 d, in agreement with the expectation based on Fig. 8.11 a for p = 0 and Eq. (8.49).
The density distribution of all pL

DM (Q) of the three high-frequency data qubits, shown
in Fig. 8.11 f, while highly bi-modal is still supported on intermediate values between 0
and 1 of pL

DM (Q), contrarily to what Fig. 8.11 a would suggest for p = 0. We attribute this
to the uncertainty associated with the observations of ambiguous defects through the
leakage events, as suggested by Fig. 8.11 c-d.

8.11.4. HMM ERROR BUDGET

In this section we explore the limiting factors behind the remaining suboptimality of
the HMMs presented in this chapter. The HMMs consider the probability of observing
a defect at a given QEC cycle on each stabilizer independently, thus they do not take
into account the correlations between defects due to regular errors. Data-qubit errors
or hook errors (which are data-qubit errors propagated due to a single ancilla-qubit
error during the parity-check circuit) give rise to a pair of correlated defects on different
stabilizers either in the same QEC cycle or in two consecutive ones. Ancilla-qubit errors
or measurement-declaration errors instead give rise to pairs of correlated defects on
the same stabilizer and for one or two QEC cycles, respectively. As the HMMs take an
increase in the defect probability as a signature of leakage, this is expected to result in the
HMMs overestimating the probability of the tracked qubit being leaked. In addition, each
HMM only takes the defects on the neighboring stabilizers as observables. Despite each
HMM sharing observables with the neighboring ones, the probability of leakage at each
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Figure 8.12: The crosstalk between the HMMs. a Average responses of all HMMs 1 QEC cycle after a given
qubit leaks. We select individual realizations where the leakage probability pL is first below and then above
a threshold pL

th = 0.5 for 5 and 8 QEC cycles, respectively. b The extracted data-qubit HMM optimality O .
A: optimality of the HMMs including all error sources. B: runs where ancilla-qubit leakage was present (according
to density matrix) are discarded. C: leakage on any of the other data qubits (not tracked by the given HMM) is
discarded as well.



8

192 8. LEAKAGE DETECTION FOR A TRANSMON-BASED SURFACE CODE

QEC cycle is estimated independently by each HMM. While this choice minimizes the
computational overhead, as a result each HMM is additionally prone to overestimating the
probability of leakage when a neighboring qubit is leaked instead (leading to an increased
defect probability observed on only a subset of the stabilizers taken as observables by the
HMM). The HMMs can be expanded to account for these limitations, either by increasing
the number of hidden states to model regular errors [21] or by expanding the set of
observables to include next-nearest neighbor stabilizers, in order to account for leakage
on neighboring qubits, in which case the HMMs would be still local and hence scalable.
As either solution would increase the complexity and overhead of the models, we evaluate
the contributions of each of these limitation to the detection capabilities of the HMMs.

We first focus on the overestimation of the leakage probability predicted by the HMMs
in the presence of leakage on a neighboring qubit, which we refer to as “HMM crosstalk”.
We consider the detection scheme taking into account the analog measurements (with
the currently achieved experimental discrimination fidelity F L , see Section 8.7). The
average responses of all HMMs to leakage events on any qubit and the predicted leakage
probability 1 QEC cycle after detection (defined by the predicted probability crossing
a threshold of 0.5) are shown in Fig. 8.12 b. The responses of the neighboring HMMs
immediately (1-2 QEC cycles) after crossing this threshold is indicative of the likelihood of
leakage being declared on a neighboring qubit (based on the extracted HMM responses
shown in Figs. 8.5 and 8.6). Across individual runs, these parasitic responses can lead
to false detections. Ancilla-qubit HMMs are insensitive to leakage on other data or
ancilla qubits (see Fig. 8.12). We attribute this to the use of the analog measurement
outcomes which discriminate between |1〉 and |2〉 with moderate fidelity and between |0〉
and |2〉) with very high fidelity. Instead, data-qubit HMMs are prone to overestimating
the response in the case of leakage on other qubits. The crosstalk is proportional to the
number of shared observables between the pairs of HMMs and depends on the expected
defect probabilities during leakage by each model.

We further break down the relative contributions to the optimality O (defined in Sec-
tion 8.6) of each of the data-qubit HMMs due to the crosstalk, shown in Fig. 8.12 b.
Post-selecting out runs where ancilla-qubit leakage is detected from the density matrix
increases the average O of the three data-qubit HMMs from O ≈ 67.0% to O ≈ 83.3%. Fur-
ther post-selecting out events where leakage is detected on any of the other data qubits
(which are not tracked by the given HMM) increases the average optimality to O ≈ 95.9%.
The larger contribution from neighboring data-qubit leakage is consistent with the higher
crosstalk (see Fig. 8.12 a) between data-qubit HMMs relative to the ancilla-qubit ones
and constitutes the dominant limitation behind the HMM optimality. We attribute the
remaining suboptimality to the presence of regular errors, caused by qubit relaxation and
dephasing, and to the parametrization of the transition and output probabilities.

8.11.5. AN ALTERNATIVE SCHEME FOR ENHANCING ANCILLA-QUBIT LEAK-
AGE DETECTION

We consider an alternative scheme (to the one considering the analog measurement
outcomes) allowing for enhancing ancilla-qubit leakage detection beyond that achievable
by only considering the increase in the defect probability on neighboring stabilizers. In
this scheme a π pulse is applied to each ancilla qubit every other QEC cycle, accounted
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Parameter D low Dmid Dhigh

ω/2π at sweet spot (GHz) 4.9 6.0 6.7
α/2π (MHz) −300 −300 −300

J1/2π at int. point (MHz) 15 15

Table 8.2: Parameters used in the CZ full-trajectory simulations, with α the anharmonicity and J1 the coupling.
We follow the frequency scheme of [47] with the arrangement shown in Fig. 8.2.

for in post-processing. Under the assumption that a π rotation has a trivial effect on a
leaked qubit, the post-processed measurement outcomes (in the absence of errors) would
show a flip every other QEC cycle during the period of leakage, which corresponds to a
defect every QEC cycle. This scheme would require minimal overhead, as these rotations
can be integrated with the existing single-qubit gates applied to the ancilla qubits at the
start of each QEC cycle. A downside is that ancilla qubits would spend more time in the
first excited state on average, increasing the effect of amplitude damping. We have not
simulated this scheme, but we have investigated it entirely in post-processing by only
applying flips to the measurement outcomes during periods of ancilla-qubit leakage (as
extracted from the density matrix). Although this does not capture the increase in the
ancilla-qubit error rate due to amplitude damping, we expect that it captures the effect of
the scheme on the detection of leakage.

The average HMM optimality for the bulk X and Z ancilla qubits is O (X ) ≈ 64.9%
and O (Z ) ≈ 50.3%, respectively. For the boundary X and Z ancilla qubits, it is O (X ) ≈
73.9% and O (Z ) ≈ 46.4%, respectively. This constitutes an increase in optimality relative
to the scheme relying only on the observed defects (see Fig. 8.6 a,b). However, the
artificially induced defects on leaked ancilla qubits lead to the increase in the crosstalk
between ancilla- and data-qubit HMMs. This has the effect of lowering the average data-
qubit HMM optimality from O (D) ≈ 67.0% (see Section 8.6) to O (D) ≈ 31.2%. While such
scheme may be beneficial for the post-selection-based scheme defined in Section 8.8
(as in that case leakage detected on any qubits leads to discarding the run), it would be
detrimental for leakage-aware decoding or targeted leakage-reduction units as these rely
on the accurate detection in both time and space.

8.11.6. SECOND-ORDER LEAKAGE EFFECTS

In this section we consider exchanges between states in the leakage subspace as a result
of a CZ gate acting on an already leaked qubit. We focus on the exchange between |12〉
and |21〉, referred to as “leakage mobility” in Section 8.2. We also expand the model to
include |3〉 on the fluxing qubit and consider the exchange between |03〉 and |12〉, which
we call “superleakage”.

The Hamiltonian of two transmons dispersively coupled via a bus resonator in the
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rotating-wave approximation is given by

H(t ) = ωstata†
statastat + αstat

2
(a†

stat)
2a2

stat

+ωflux(Φ(t )) a†
fluxaflux +

αflux

2
(a†

flux)2a2
flux

+ J1(Φ(t )) (astata†
flux +a†

stataflux), (8.50)

where a is the annihilation operator, ω and α are the qubit frequency and anharmonic-
ity, respectively, and J1 is the effective coupling mediated by virtual excitations through
the bus resonator. We assume that this Hamiltonian is a valid approximation up to
the included states. For this Hamiltonian, multiple avoided crossings are found when
sweeping ωflux, as schematically shown in Fig. 8.1. We perform full-trajectory simulations
(following the same structure as in Section 6.11.3, excluding distortions and quasi-static
flux noise) using the parameters reported in Table 8.1 and Table 8.2. Note that extending
these simulations to |3〉 does not affect the leakage probability L1 from the computa-
tional (C ) to the leakage subspace (L ), nor the fidelity within C .

We define the superleakage probability L3 as

L3 := |〈03|SCZ(|12〉〈12|)|03〉|2 , (8.51)

where SCZ is the superoperator corresponding to the simulated noisy CZ. L3 can be high
depending on the specific parameters of the flux pulse and of the system, as Fig. 8.13 b
shows for the high-mid qubit pair, even when φ2Q = π (see Fig. 8.13 a). We attribute
this to the avoided crossing between |12〉↔ |03〉 occurring at ωint +|α|, where ωint is the
fluxing-qubit frequency at the interaction point. For fast-adiabatic flux pulses [34] (with
respect to the |11〉 ↔ |02〉 avoided crossing), pulsing the higher frequency qubit to the
interaction point results in the near-diabatic passage through |12〉 ↔ |03〉, inducing a
Landau-Zener transition in which a small but finite population is transferred from |12〉
to |03〉. At the CZ interaction point, the off-resonant interaction between |12〉 and |03〉
leads to a further population exchange, with a coupling strength

p
3J1. Compared to the

off-resonant exchange between |01〉 and |10〉, this interaction is stronger by a factor
p

3,
which can lead to large values of L3 when combined with the initial population transfer
to |03〉 on the way to the avoided crossing. Furthermore, the phases acquired during
the two halves of a Net-Zero pulse can lead to interference Section 6.11.6, increasing or
decreasing the |12〉↔ |03〉 exchange population. Including the |12〉↔ |03〉 crossing leads
also to differences in the values of the leakage conditional phases.

We now focus on leakage mobility, which occurs with probability Lm, defined as

Lm := |〈21|SCZ(|12〉〈12|)|21〉|2 . (8.52)

If |3〉 is not included, Lm takes small but non-negligible values, as shown in Fig. 8.13 c.
We attribute this to the off-resonant interaction between |12〉 and |21〉, with coupling
strength 2J1. Even though this coupling is stronger than for |12〉↔ |03〉, Lm is generally
smaller than L3 due to the fluxing qubit not passing through the |12〉 ↔ |21〉 avoided
crossing (located at ωint −|α|) on its way to the CZ interaction point. Including |3〉, Lm

can take higher values, as shown in Fig. 8.13, which we associate to a two-excitation
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exchange between |03〉 and |21〉, virtually mediated by |12〉. While this is a two-excitation
process, |21〉 and |03〉 are on resonance at the interaction point, in which case the effective
coupling can be estimated as the product of the bare couplings divided by the detuning
with |12〉, i.e.

1

2π

(2J1)(
p

3J1)

α
≈ 2.6 MHz, (8.53)

in analogy to the excitation exchange between a pair of transmons mediated virtually
via the bus resonator. Since |03〉 and |21〉 are on resonance exactly at the interaction
point only when αflux =αstat, differences in the anharmonicities affect the strength of this
exchange.

8.11.7. EFFECTS OF LEAKAGE MOBILITY AND SUPERLEAKAGE ON LEAKAGE

DETECTION AND CODE PERFORMANCE
We include leakage mobility in simulations, exploring the range of leakage-mobility
probabilities Lm ∈ [0,1.5%] for a fixed leakage probability L1 = 0.125% and randomized
leakage-conditional phases φL

stat and φL
flux (see Section 8.2). Due to constraints imposed

by the size of the density matrix, we only include leakage mobility between the high-
frequency data qubits and the ancilla qubits. Thus, we have neglected the possibility of
leakage being transferred to the low-frequency data qubits.

Leakage mobility has a negligible effect on the logical performance of the code and
the optimality of the HMMs. This is because leakage mobility is only significant in the
case of an already leaked qubit, which occurs with a low probability across QEC cycles,
given the low L1 per CZ gate. Thus, the leakage swapping between neighboring qubits
can be considered as a second-order effect and has a negligible impact on the logical
error rate and HMM optimality extracted from the simulations. We also observe that the
average duration of a leakage event on a given qubit is reduced in the presence of leakage
mobility.

We now consider the effect of superleakage (see Section 8.11.6) on the logical fidelity
and the detection of leakage. We have not performed Surface-17 simulations including |3〉
on any qubit, since this increases the simulation cost prohibitively. Superleakage is a result
of the coherent exchange between |03〉 and |12〉, thus individual events are accompanied
by a bit flip on a neighboring qubit. The frequency of these events is proportional to the
superleakage probability L3. Superleakage can result in an increase in the observed defect
probabilities, increasing the logical error rate of the code, especially without modifications
of the decoder to take this into account [18]. However, we do not expect superleakage to
significantly affect the detection of leakage. This is because in the case of a leaked data
qubit, the anti-commutation of the neighboring stabilizers still holds, leading to a defect
probability of 0.5 regardless of the qubit being in |2〉 or |3〉 (under the assumption that
single-qubit gates act trivially on the leakage subspace). In the case of a leaked ancilla
qubit, the propagated bit flips due to superleakage can be considered as a signature of
leakage, in addition to the phase errors due to the leakage conditional phases.

8.11.8. LEAKAGE STEADY STATE IN THE SURFACE CODE
Given leakage and seepage probabilities per QEC cycle, it is expected that each qubit in
the surface code equilibrates to a steady-state leakage population after many QEC cycles.



8.11. SUPPLEMENTAL MATERIAL

8

197

Here we do not consider leakage mobility, which is generally small (see Section 8.11.6),
allowing to consider a model for a single qubit. We construct a Markovian model to
estimate the steady-state populations pC (resp. pL ) in the computational subspace C

(leakage subspace L ).
We define Γi→ j as the population-transfer probabilities per QEC cycle. The popula-

tions are subject to the constraint pC +pL = 1. The rate of change of these populations is
given by the exchanges from and to each subspace:

ṗC =−pC ΓC→L +pL ΓL→C ,

ṗL = pC ΓC→L −pL ΓL→C . (8.54)

The steady-state condition is ṗ i = 0 for i = C ,L , resulting in the steady-state popula-
tions p i

ss :

pC
ss =

ΓL→C

ΓC→L +ΓL→C
,

pL
ss = ΓC→L

ΓC→L +ΓL→C
. (8.55)

Considering the CZ error model in Section 8.2, for a qubit it approximately holds that

ΓC→L ≈ NfluxL1, (8.56)

ΓL→C ≈ NfluxL2 + (1−e
− tc

T1/2 ), (8.57)

where Nflux is in how many CZ gates the qubit is fluxed during a QEC cycle, tc is the
duration of a QEC cycle and L1 (resp. L2) is the average leakage (seepage) probability
between C and L [49]. The use of the average leakage and seepage probabilities per
gate is justified for the surface code because, in the case of data-qubit leakage, ancilla
qubits are put in an equal superposition during the parity checks, while, in the case of
ancilla-qubit leakage, data qubits are in simultaneous entangled eigenstates of the code
stabilizers. The seepage probability [Eq. (8.57)] has one contribution from the unitary
CZ-gate interaction and one from relaxation during the entire QEC cycle. Regarding the
gate contribution, one has L2 = 2L1 due to the dimensionality ratio between C and L for
a qubit-qutrit pair [49].

The expected steady-state populations in the simulations can be now computed. We
focus on high-frequency data qubits since the low-frequency ones cannot leak without
leakage mobility. We have NCZ = Nflux = 4 (for D4) or 3 (for D3,D5), L1 = 0.125%, tc =
800 ns and T1 = 30 µs. The result is pL

ss (D4) = 7.5% and pL
ss (D3) = pL

ss (D5) = 5.9%.
Furthermore, Eq. (8.54) can be solved to find that the time evolution of pL towards the
steady state is

pL (n) = ΓC→L

ΓC→L +ΓL→C
(1−e−(ΓC→L +ΓL→C )n), (8.58)

where n is the QEC cycle number, shown in Fig. 8.14 for the three high-frequency data
qubits. We find a good agreement (within error bars) between these predictions and the
average leakage population extracted from the density matrix (see Fig. 8.14).
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Figure 8.14: Evolution of the average leakage population pL towards the steady state over 50 QEC cycles
for the high-frequency data qubits in Surface-17. The leakage populations extracted from the density-matrix
simulation (dots) agree well with the predicted one (black lines). The extracted populations are averaged over
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We now extend the model to the |3〉 state, despite the fact that we have not included
it in simulation due to computational constraints. To do this, we divide the leakage
subspace L into the sub-parts L2 and L3 corresponding to leakage in |2〉 and |3〉, respec-
tively. The rate equations [Eq. (8.54)] are extended to

ṗC =−pC ΓC→L2 +pL2ΓL2→C ,

ṗL2 = pC ΓC→L2 −pL2 (ΓL2→C +ΓL2→L3 )+pL3ΓL3→L2 ,

ṗL3 = pL2ΓL2→L3 −pL3ΓL3→L2 . (8.59)

The steady-state populations {p i
ss } then become:

pC
ss =

ΓL2→C ΓL3→L2

ΓC→L2ΓL3→L2 +ΓL2→C ΓL3→L2 +ΓC→L2ΓL2→L3

,

pL2
ss = ΓC→L2ΓL3→L2

ΓC→L2ΓL3→L2 +ΓL2→C ΓL3→L2 +ΓC→L2ΓL2→L3

,

pL3
ss = ΓC→L2ΓL2→L3

ΓC→L2ΓL3→L2 +ΓL2→C ΓL3→L2 +ΓC→L2ΓL2→L3

. (8.60)

In addition to Eqs. (8.56) and (8.57), in this model we have

ΓL2→L3 ≈ NfluxL3/2, (8.61)

ΓL3→L2 ≈ NfluxL3/2+ (1−e
− tc

T1/3 ). (8.62)

The factor of 1/2 in Eq. (8.61) comes from the fact that superleakage from L2 to L3 is pos-
sible only when the qubit pair performing the CZ is in |12〉 and not in |02〉. For L3 = 10%,
for example, the expected steady-state populations are pL2

ss (D4) = 7.1%, pL3
ss (D4) = 5.1%



REFERENCES

8

199

and pL2
ss (D3) = pL2

ss (D5) = 5.7%, pL3
ss (D3) = pL3

ss (D5) = 3.8%. While pL2
ss is almost un-

changed with respect to the case without superleakage, pL3
ss has a comparable magnitude

to pL2
ss , suggesting that superleakage needs to be taken into account in optimizing the

surface-code performance over many QEC cycles.
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9
HARDWARE-EFFICIENT

LEAKAGE-REDUCTION SCHEME

FOR QUANTUM ERROR

CORRECTION WITH

SUPERCONDUCTING TRANSMON

QUBITS

Leakage outside of the qubit computational subspace poses a threatening challenge to quan-
tum error correction (QEC). We propose a scheme using two leakage-reduction units (LRUs)
that mitigate these issues for a transmon-based surface code, without requiring an over-
head in terms of hardware or QEC-cycle time as in previous proposals. For data qubits we
consider a microwave drive to transfer leakage to the readout resonator, where it quickly
decays, ensuring that this negligibly disturbs the computational states for realistic system
parameters. For ancilla qubits we apply a |1〉↔ |2〉 π pulse conditioned on the measure-
ment outcome. Using density-matrix simulations of the distance-3 surface code we show
that the average leakage lifetime is reduced to almost 1 QEC cycle, even when the LRUs are
implemented with limited fidelity. Furthermore, we show that this leads to a significant
reduction of the logical error rate. This LRU scheme opens the prospect for near-term
scalable QEC demonstrations.

This chapter has been published in PRX Quantum 2, 030314 (2021) [1]. F. B. performed the study and the writing
with input from all co-authors.
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9.1. INTRODUCTION
Quantum computing has recently reached the milestone of quantum supremacy [2]
thanks to a series of improvements in qubit count [3, 4], gate fidelities [5–16] and mea-
surement fidelities [17–19]. The next major milestones include showing a quantum
advantage [20–23] and demonstrating quantum error correction (QEC) [4, 24–32]. Errors
accumulate over time in a quantum computer, leading to an entropy increase which
severely hinders the accuracy of its output. Thus QEC is necessary to correct errors and
remove entropy from the computing system. If the overall physical error rate is below
a certain noise threshold for a given QEC-code family, the logical error rate decreases
exponentially with the code distance d at the price of a poly(d) overhead, thus allowing to
extend the computational time. Recently, small-size instances of error-detecting [30, 31]
and error-correcting [4] codes have been experimentally realized. To further demonstrate
fault tolerance it is crucial to scale up these systems and show that larger distance codes
consistently lead to lower logical error rates than smaller distance codes [32].

Leakage outside of the computational subspace [9–11, 13, 33–38], present in leading
quantum-computing platforms such as superconducting qubits and trapped ions, poses
a particularly threatening challenge to fault tolerance [24, 39–49]. Leakage can increase
entropy by making measurement outcomes no longer point to the underlying errors and
can effectively reduce the code distance (see Section 8.11.2). Furthermore, leakage can last
for many QEC cycles [41], making operations on a leaked qubit fail and possibly spread
correlated errors through the code [32, 40, 47]. In particular, leakage falls outside the
stabilizer formalism of QEC as it cannot be decomposed in terms of Pauli errors. Stabilizer
codes [50, 51] and their decoders are thus typically ill-suited to deal with leakage, leading
to a significant increase of the logical error rate [43, 46] (see also Fig. 8.2). If the average
leakage lifetime lL

avg, that is, the average number of QEC cycles that a qubit stays leaked

(after leaking in the first place), fulfills lL
avg =O (1) QEC cycles and lL

avg ¿ d , then for low-
enough error rates a threshold is likely to exist [40] as leakage would have a relatively local
effect in space and time. Due to a finite energy-relaxation time, leakage does indeed last
for lL

avg =O (1) QEC cycles. However, in practice it is important how large lL
avg is, since if

it is low the noise threshold is expected to be higher. Shortening the relaxation time to
reduce lL

avg is not effective as this increases the physical error rate as well.
A leakage-reduction unit (LRU) [39, 40, 42, 43, 48, 49, 52, 53] is an operation introduc-

ing a seepage mechanism besides that of the relaxation channel. A LRU converts leakage
into regular (Pauli) errors and shortens the average leakage lifetime, ideally to 1 QEC cycle.
As discussed above, this is expected to lead to a higher noise threshold, but not as high as
for the case without leakage, since the leakage rate effectively adds to the regular error rate
thanks to the LRU. As an alternative to the use of LRUs, post-selection based on leakage
detection has been adopted (see Section 8.8) as a near-term method to reduce the logical
error rate. While leakage detection could also be used to apply LRUs in a targeted way,
post-selection is not scalable. By shortening the lifetime to lL

avg = O (1) ¿ d , the use of
LRUs is instead a scalable approach.

In its imperfect experimental implementation a LRU can either introduce extra Pauli
errors or mistakenly induce leakage on a non-leaked qubit. Furthermore, in the context of
the surface code the LRUs investigated so far [42, 43, 48] introduce an overhead in terms
of hardware and QEC-cycle time. Specifically, these LRUs are variants of the swap-LRU,
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in which the qubits are swapped at the end of each QEC cycle, taking alternatively the
role of data and ancilla qubits. In this way every qubit is measured every 2 QEC cycles.
The core of the swap-LRU is the fact that the measured qubits are reset to the computa-
tional subspace after the measurement. This can be accomplished by a scheme which
unconditionally maps |1〉 and |2〉 (and possibly |3〉 [49]) to |0〉 [54–56], or conditionally
using real-time feedback [29, 57]. Under the standard assumption that the SWAP gates
swap the states of two qubits only if none of them is leaked (which does not necessarily
hold in experiment [49]), lL

avg is ideally shortened to 2 QEC cycles. On the downside, for
the pipelined surface-code scheme in [58], the pipeline is disrupted as qubits cannot
be swapped until the measurement and reset operations are completed, leading overall
to an increase up to 50% of the QEC-cycle time depending on the reset time. The extra
CZ gates, needed to implement the SWAPs, can cause additional errors or leakage as
the CZ is the major source of leakage in transmons [9–11, 13, 33–36]. Moreover, in the
surface code an extra row of qubits is needed to perform all the SWAPs [42], which is a
non-negligible overhead in the near term. All these issues increase the physical error rate
by a considerable amount, thus requiring to increase the system size to compensate for
that (assuming that the error rates are still below threshold).

In this chapter we propose two separate LRUs for data and ancilla qubits which use
resources already available on chip, namely the readout resonator for data qubits (res-
LRU) and a |1〉 ↔ |2〉 π pulse conditioned on the measurement outcome for ancilla
qubits (π-LRU). In particular, the use of the res-LRU avoids the necessity to swap data and
ancilla qubits to be able to reset the data qubits. The res-LRU is a modification of the two-
drive scheme in [54–56] to a single drive to deplete only the population in |2〉 but not |1〉,
making it a LRU rather than a reset scheme. We additionally show that this negligibly
affects the coherence within the computational subspace in an experimentally accessible
regime, with a low probability of mistakenly inducing leakage as long as the thermal
population in the readout resonator is relatively small. This allows us to unconditionally
use res-LRU in the surface code in every QEC cycle. In the pipelined scheme [58] the
res-LRU easily fits within the time in which the data qubits are idling while the ancilla
qubits are finishing to be measured. As the π-LRU can be executed as a short pulse at the
end of the measurement time with real-time feedback, our LRU scheme overall does not
require any QEC-cycle time overhead. Using density-matrix simulations [47, 51, 59] of the
distance-3 surface code (Surface-17), we show that the average leakage lifetime is reduced
to almost 1 QEC cycle when res-LRU and π-LRU with realistic performance are employed.
Furthermore, compared to the case without LRUs, the logical error rate is reduced by up
to 30%. The proposed res-LRU and π-LRU can be straightforwardly adapted to QEC-code
schemes other than [58] and the res-LRU is potentially applicable to superconducting
qubits with higher anharmonicity than transmons. The demonstrated reduction serves
as evidence of scalability for our LRU scheme, even though we cannot estimate a noise
threshold as we have simulated only one size of the surface code. To explore larger codes
it is necessary to use less computationally expensive simulations [24, 40, 43] that use a
simplified version of our error model at the cost of losing some information contained in
the density matrix. Furthermore, to optimize the noise threshold the LRUs can be supplied
with a leakage-aware decoder [24, 40, 43, 60–62] that uses measurement information
about leakage to better correct leakage-induced correlated errors.
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9.2. READOUT-RESONATOR LRU
The readout resonator has been used [54–56] to reset a transmon qubit to the |0〉 state,
depleting the populations in |1〉 and |2〉. Targeting the |20〉 ↔ |01〉 transition, with the
notation |transmon,resonator〉, those populations are swapped onto the readout res-
onator, where they quickly decay due to the strong coupling to the transmission-line
environment. Ref. [54] uses two drives simultaneously while Refs. [55, 56] use these drives
in a three-step process. Here we adapt these techniques to use a single drive in a single
step to deplete the population in |2〉 only.

A LRU is defined [39] as an operation such that 1) the incoming leakage population
is reduced after the application of the LRU, 2) the induced leakage when applied to a
non-leaked state is ideally 0 (see also Section 5.1.2). We thus ensure below that not only
leakage is reduced but also that the effect that the drive has on a non-leaked transmon is
as small as possible.

9.2.1. TRANSMON-RESONATOR HAMILTONIAN
We consider a transmon capacitively coupled to a resonator and to a dedicated microwave
drive line. The resonator possibly employs a Purcell filter which we do not include
explicitly. In a frame rotating at the transmon-drive frequency ωd for both the resonator
and the transmon, the Hamiltonian is time-independent and is given by

H = H0 +Hc +Hd (9.1)

H0 = δr a†a +δq b†b + α

2
(b†)2b2 (9.2)

Hc = g (ab† +a†b) (9.3)

Hd = Ω
2

(e iφb +e−iφb†) (9.4)

where a and b are the creation operators for the resonator and the transmon, respectively;
δr =ωr −ωd and δq =ωq −ωd with ωr and ωq the resonator and transmon frequencies,
respectively; α < 0 is the transmon anharmonicity; g corresponds to the capacitive
coupling;Ω and φ are the transmon-drive amplitude and phase, respectively. The phase
is not relevant for the results in this chapter and we fix it to φ= 0.

We can qualitatively understand (see Fig. 9.1(a)) that H contains an effective cou-
pling g̃ between |20〉 and |01〉. If ωd matches the transition frequency between the
“bare” |20〉 and |01〉, these two states are degenerate in the rotating frame and they are con-
nected by two paths (at lowest order) via either |11〉 or |10〉. If ∆ :=ωq −ωr À g and δq À
Ω, then |11〉 and |10〉 are occupied only “virtually” and one gets purely an effective
|20〉↔ |01〉 coupling. Modulo a constant term, in the 2D subspace S = span{|20〉 , |01〉}
we can write H in Eq. (9.1) as H |S ≡ −η(ωd )Z /2 + g̃ (ωd )X for an appropriate func-
tion η (an approximation can be extracted from Eq. (9.62)). As a function of ωd this
Hamiltonian gives rise to a |20〉 ↔ |01〉 avoided crossing centered at a frequency ω∗

d
(see Fig. 9.1(b)) where η(ω∗

d ) = 0. The energy separation at the center of the avoided
crossing is then 2g̃ (ω∗

d ).
In order to quantitatively study the action of H , we unitarily transform it using

a Schrieffer-Wolff transformation eS [63–66]. Let {|i j 〉D } be the basis of eigenvectors
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Figure 9.1: Concept of the readout-resonator LRU. (a) The state |20〉 (with the notation |transmon,resonator〉)
is connected to |01〉 by two main paths via either |11〉 or |10〉, due to the capacitive coupling g or the transmon-
drive amplitudeΩ, respectively. This generates an effective coupling g̃ which can be used to swap |20〉↔ |01〉.
The latter quickly decays to |00〉 due to the typically high coupling κ of the readout resonator to the transmission-
line environment, overall removing leakage from a leaked transmon. (b) In the rotating frame of the drive,
|20〉 and |01〉 show an avoided crossing as a function of the drive frequency ωd , centered at ω∗

d . The effective

coupling g̃ (ω∗
d ) is equal to half the energy separation at that point. (c),(e) ∆ω∗

d
:=ω∗

d − (2ωq +α−ωr ) and g̃ (ω∗
d )

are respectively evaluated either exactly by full numerical diagonalization of H in Eq. (9.1), or by approximate
analytical formulas (see Section 9.2.1 and Section 9.5) for the parameters in Table 9.1. The absolute errors with
respect to the exact curves are shown in (d),(f) respectively.
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of H0 +Hc (the transmon-resonator “dressed” basis). In the dispersive regime (g ¿∆),
with respect to a 1st-order Schrieffer-Wolff transformation S1 in the perturbation parame-
ter g /∆, such that e−S1 |ml〉 ≈ |ml〉D , we get (see Section 9.5)

H D := eS He−S ≈ eS1 He−S1 (9.5)

= H D
0 +H D

d1 +H D
d2 (9.6)

with

H D
0 =

(
δr −

∞∑
m=0

g 2∆−1

∆m∆m−1
|m〉〈m|

)
a†a

+
∞∑

m=1

(
mδq + α

2
m(m −1)+ g 2m

∆m−1

)
|m〉〈m| (9.7)

H D
d1 =

Ωe iφ

2
b +h.c. (9.8)

H D
d2 =

Ωe iφ

2

(
a

∞∑
m=0

g∆−1

∆m∆m−1
|m〉〈m|

+a†
∞∑

m=0

gα
p

m +1
p

m +2

∆m∆m+1
|m〉〈m +2|

)
+h.c., (9.9)

where ∆m := ∆+αm and {|m〉} are transmon states. H D
0 is diagonal and contains the

dispersive shifts, H D
d1 is the transmon drive now in the unitarily transformed frame,

H D
d2 contains an indirect resonator drive and couplings of the kind a† |m〉〈m +2|. In

particular, for m = 0 in Eq. (9.9) we get a lowest order approximation of g̃ :

g̃ ≈ Ωgαp
2∆(∆+α)

. (9.10)

Notice that at this order there is no dependence on ωd . Furthermore, g̃ would vanish
forα= 0, since the two paths in Fig. 9.1(a) fully destructively interfere in that case. Sinceα
is low for transmons, one can expect that Ω needs to be relatively large for g̃ to be
substantial.

For the drive to be most effective it is important that ωd matches ω∗
d . If g = 0 =Ω,

there is no avoided crossing but |20〉 and |01〉 simply cross atω∗
d ,0 ≡ 2ωq +α−ωr as can be

straightforwardly computed from H0 in Eq. (9.2). This value is shifted due to the capacitive
coupling (as can be seen from Eq. (9.7)), as well as due to the possibly strong drive.
For g 6= 0 andΩ 6= 0 one can either computeω∗

d by full numerical diagonalization of H and
find the avoided crossing as a function of ωd , or one can find an (approximate) analytical
expression. For the latter we use another Schrieffer-Wolff transformation (rather than the
resolvent method in Ref. [55], which does not give the full Hamiltonian) to account for the
effect of the transmon drive H D

d1 and to compute ω∗
d up to orderΩ4/(δq )3, see Section 9.5.

We also use this transformation to compute g̃ up to order Ω3/(δq )2. Figures 9.1(c),(e)
compare the analytical approach with the exact numerical results for ∆ω∗

d =ω∗
d −ω∗

d ,0
and g̃ (ω∗

d ), respectively, given the parameters in Table 9.1. We consider 6 energy levels for
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Parameter Transmon Readout resonator

Frequency ω/2π 6.7 GHz 7.8 GHz
Anharmonicity α/2π −300 MHz n.a.

Coupling g /2π 135 MHz
Avg. photon number n̄ n.a. 0.005

Relaxation time T1 30 µs 16 ns
(κ/2π= 10 MHz)

Dephasing time T2 30 µs 32 ns
(flux noise)

Table 9.1: Parameters used both in the analysis and Lindblad simulations of the readout-resonator LRU, similar
to the experimental ones in Ref. [28]. The transmon parameters correspond to the target parameters of a
high-frequency data qubit in Section 9.3.

the transmon and 3 for the resonator as we see that the exact curves converge for such
choice. In Fig. 9.1(c)(d) we see that the two approximations are both pretty good, while
in Fig. 9.1(e)(f) we see that Eq. (9.10) deviates by up to 1 MHz from the exact value at
highΩ and that the absolute error with respect to the exact g̃ (ω∗

d ) scales in a seemingly
quadratic way. Instead, the higher order approximation stays closer to the exact curve
and the error scales linearly. We expect that the remaining gap would be mostly filled
by considering also higher orders in g /∆ in the first Schrieffer-Wolff transformation,
since increasing only the order of approximation inΩ/δq does not provide a significant
improvement in Fig. 9.1(d).

9.2.2. PERFORMANCE OF THE READOUT-RESONATOR LRU
Given the theoretical understanding of the transmon-resonator system, we devise a pulse
to minimize the population in |2〉 on a leaked transmon. We consider the pulse shape

Ω(t ) =


Ω sin2(π t

2trise
) for 0 ≤ t ≤ trise

Ω for trise ≤ t ≤ tp − trise

Ω sin2(π
tp−t
2trise

) for tp − trise ≤ t ≤ tp

(9.11)

similarly to Ref. [55], where tp is the total pulse duration, at a fixed frequency ωd (t ) =ωd .
Hence, there are four parameters to optimize over, i.e. Ω,ωd , tp and trise. We fix trise =
30 ns since we observe that this strongly suppresses non-adiabatic transitions out of the
manifold of interest: for example, |20〉 is coupled to |10〉 by the drive but they are quite off-
resonant, so only a fast pulse can cause “non-virtual” transitions between them. Indeed,
for trise . 10 ns there appear ripples (for an example see Ref. [55]) in e.g. the |20〉 and |10〉
populations when the drive is turned on and off, leading to a reduction in performance.
We expect that an improved pulse shape can shorten trise. However, we do not explore
this given the long maximum tp allowed in our surface-code scheme (tp ≤ Tslot = 440 ns,
see Section 9.3.1).

We use Lindblad simulations of the transmon-resonator system to optimize overΩ,ωd
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Figure 9.2: Lindblad simulations of the transmon-resonator system for the readout-resonator LRU. In (a),(b) the
initial state is |2〉〈2|⊗σth, while in (c),(d) it is |0〉〈0|⊗σth, where σth is the resonator thermal state. (a),(c) Trans-
mon leakage population p |2〉 = 〈2|Trr (ρ(Tslot))|2〉 at the end of the time slot of Tslot = 440 ns. For each choice
of (Ω,ωd ) we optimize the total pulse duration tp ≤ Tslot to minimize p |2〉 given the initial state |2〉〈2|⊗σth, for
fixed trise = 30 ns. The white star indicates the chosen operating point (Ω/2π≈ 204 MHz, ωd /2π≈ 5.2464 GHz,

tp = 178.6 ns) with p |2〉
op. ≈ 0.5% in (a). The induced leakage in (c) is p |2〉 ≈ 0.48% at the operating point. The

purple line corresponds to the higher order estimate of the optimal drive frequency ω∗
d as a function of Ω

(see Fig. 9.1(c)). The heatmaps are sampled using the adaptive package [67]. (b),(d) Time evolution of the
populations in a few selected states for the operating point. The vertical dashed line indicates the used tp. The
inset in (d) shows a schematic of the pulseΩ(t ).
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and tp. The Lindblad equation is given by

ρ̇ =−i
[
H D ,ρ

]+∑
j

(
L jρL†

j −
1

2
{L†

j L j ,ρ}
)

(9.12)

with {L j } the quantum jump operators. We express (and solve) this equation in the
exact unitarily transformed frame. That is, while in Section 9.2.1 we have used a first-
order Schrieffer-Wolff transformation eS1 (see Eq. (9.5)), in the numerics we compute
the full transformation eS (see also Eq. (9.5)). In this way we find the basis that exactly
diagonalizes H0 +Hc and express Hd in this basis as well, without any further Schrieffer-
Wolff transformation like in Section 9.2.1. In other words, the simulations reproduce the
dynamics under the Hamiltonian in Eqs. (9.1) to (9.4) without any approximation.

The Hamiltonian parameters are the same as in Section 9.2.1 and are reported in Ta-
ble 9.1, including the noise parameters. In particular, while we neglect the transmon
thermal population, we include it for the resonator since it determines the leakage that
the pulse induces when the transmon was not leaked, as we discuss below. The resonator
thermal state is given by [68]

σth ≈
(
1− n̄

1+2n̄

)
|0〉〈0|+ n̄

1+2n̄
|1〉〈1| (9.13)

for low average photon number n̄. We consider dressed relaxation and dephasing, as
given below, assuming that this is a good model in the dispersive regime. In the unitarily
rotated frame, the employed jump operators {L j } are explicitly given by

1√
T r

1

a =p
κa,

√
n̄

1+ n̄

p
κa†,

√
2

T r
φ

a†a, (9.14)

1√
T q

1

b,

√√√√ 2

T q
φ

b†b, (9.15)

where Tφ = (1/T2 −1/2T1)−1 and where we consider 6 energy levels for the transmon
and 3 for the resonator. Note that e.g. for a, going back to the original frame it holds
that e−S aeS =∑1

l=0

p
l +1 |l〉D 〈l +1|D = aD by definition of eS , corresponding indeed to

relaxation in the dressed basis. By considering dressed relaxation and dephasing, the
effective relaxation time T q

1 of the transmon is not shortened by the fact that it is coupled
to a lossy resonator (Purcell effect). We assume that this is a good approximation also
during driving as the drive couples eigenstates which mostly have the same number of
excitations in the resonator (except for |20〉 and |01〉 when the drive is near-resonant with
this transition and causes a strong mixing of these states). We thus mimic the use of a
Purcell filter but without including it in the simulations since that would increase the
Hilbert-space dimension in a computationally expensive way.

For each choice of (Ω,ωd ) we optimize tp such that, given the initial state |2〉〈2|⊗σth,
the leakage population p |2〉 = 〈2|Trr (ρ(Tslot))|2〉 at the end of the available time slot is
minimized (see Fig. 9.2(a)). The states |20〉 and |01〉 approximately form a two-level
system with additional damping from |01〉 to |00〉, thus the drive effectively induces
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damped Rabi oscillations [69] between them. Oscillations occur only for g̃ > κ/4 [69]
(underdamped regime), while for g̃ = κ/4 (critical regime) or g̃ < κ/4 (overdamped regime)
the populations in |20〉 and |01〉 simply decay in an exponential-like way without forming
any minimum. For the parameters in Table 9.1 the critical drive amplitude that gives g̃ =
κ/4 isΩcr/2π≈ 143 MHz. Thus forΩ≤Ωcr the best strategy is to drive until p |2〉 reaches
a (low) practically-stable value (which is in general not 0 when the full system is taken
into account). Here with the given κ we find that this occurs in a time comparable
to Tslot only from about Ω = Ωcr, so for Ω ≤ Ωcr we drive for the entire Tslot. For Ω >
Ωcr the optimization has many local minima as a function of tp, corresponding to the
minima of the |20〉 ↔ |01〉 oscillations induced by the drive. Here we choose to target
the first minimum as in Refs. [55, 56] since it is the fastest approach. For a sudden
pulse this minimum would occur around π/2g̃ for sufficiently small κ, whereas we find
heuristically that a good initial guess for the optimization is π/2g̃damp with g̃damp :=√

g̃ 2 − (κ/4)2 e−κ/7g̃ for larger κ. Then for the optimization over tp we use the bounds tp−
2trise ∈ [0,1.1×π/2g̃damp] (using the bounded Brent method in scipy; we provide the code
at https://doi.org/10.4121/14762052). While using a longer tp in the underdamped
regime (possibly even greater than the allotted Tslot) would eventually lead to an even
lower leakage population [54], it is not necessarily desirable as a longer tp may mean that
the disturbance to a non-leaked transmon is greater as well (see Section 9.6.2).

While the procedure above optimizes tp given a certain pair (Ω,ωd ), we use the
package adaptive [67] to choose the next pair to sample and we iterate this process.
This package searches a given parameter space (here Ω/2π ∈ [0,500 MHz], ωd /2π ∈
[5.19,5.26 GHz]) in a finer way where the given cost function changes faster. Here we
use (log p |2〉)2 as the cost function since it changes faster where p |2〉 is small, allowing us
to get both a high-resolution heatmap (see Fig. 9.2) and a good first estimation of the
p |2〉 minima in a single run. Then we run a local optimization with tight bounds around
some of these candidate points for fine tuning.

In Fig. 9.2(a) one can observe a band with low p |2〉 as desired. This band occurs at
drive frequencies slightly above ω∗

d (Ω), which one would expect to be optimal based
on Section 9.2.1. We attribute this to the fact that a significant share of the time is taken by
the rise and fall of the pulse, whereΩ(t ) is smaller than the maximum. We find that one
can choose a broad range ofΩs to achieve a p |2〉 & 0.5%, from 130 MHz (slightly below the
critical point) to deep in the underdamped regime. However, other considerations apply,
namely, on the high end using a very high Ω poses strong experimental requirements
on the drive, while on the low end the pulse takes much longer and it is not a priori
given that driving at the critical point would be best. Actually, notice that driving at
the critical point with good performance is possible only due to the relatively high Tslot

for the given κ. In the following we choose the point marked by a star in Fig. 9.2 as
the operating point (Ω/2π ≈ 204 MHz, ωd /2π ≈ 5.2464 GHz, tp = 178.6 ns). This point

reaches p |2〉
op. ≈ 0.5% while affecting the least the coherence within the computational

subspace (see Section 9.6.1). We attribute the fact that this minimum does not reach 0 to
re-heating from |00〉 to |01〉, as well as transmon decoherence (resonator pure dephasing
would contribute as well but here T r

φ =∞) and interactions with higher energy levels. We

note that in Fig. 9.2(a) we find good p |2〉 . 5% up to Ω/2π& 100 MHz, which could be
used to further ease the requirements on the drive (see Section 9.3).

https://doi.org/10.4121/14762052
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The time evolution for a few selected states is shown in Fig. 9.2(b) for the operating
point, given the initial state |2〉〈2|⊗σth. The first few ns make |20〉 rotate into |01〉, while
the latter decays relatively fast to |00〉 due to the large relaxation rate κ of the readout
resonator. Already after ≈ 220 ns the remaining |01〉 population has practically returned to
the thermal state. The repetition of the pulse, such as in the surface code (see Section 9.3)
at every QEC cycle, thus does not lead to heating of the resonator with these system
parameters (see Section 9.4 for a discussion about other parameter regimes).

We now evaluate the effect of the pulse on a non-leaked transmon (see Fig. 9.2(c),(d)).
There should ideally be no effect, except for an acquired single-qubit phase which can
easily be determined and corrected by either a real or virtual Z rotation. First, if the
transmon is in |0〉 and there is some thermal population in the resonator, part of the state
is supported on |01〉, which rotates into |20〉 in the same way as the opposite process by
unitarity. Figure 9.2(c) shows that indeed the induced leakage is greater where p |2〉 is
lower in Fig. 9.2(a). However, due to the low n̄ = 0.005, the induced leakage is also overall
low (p |2〉 ≈ 0.48% in Fig. 9.2(c) at the operating point, which is comparable to state-of-the-
art CZ leakage rates, see Section 9.3.2) and can be made even lower by engineering colder
resonators. If the initial state is |1〉〈1|⊗σth there is little induced leakage (p |2〉 ≈ 0.02%
at the operating point and p |2〉 . 0.04% across the whole landscape) as the drive is off-
resonant with transitions from this state. Second, the pulse might affect the coherence
times of the transmon by driving transitions within or outside the computational subspace
(and back), as the small but non-negligible transitory population in |10〉 in Fig. 9.2(b),(d)
seems to suggest. However, we find that both the effective T q

1 and T q
2 are only marginally

affected as a function of Ω (see Section 9.6.1). This is because stronger pulses cause a
somewhat stronger disturbance to the qubit, but they are shorter so that in total the effect
is small.

9.3. SURFACE CODE WITH LRUS

9.3.1. LAYOUT AND OPERATION SCHEDULING

We study the distance-3 rotated surface code (see Fig. 9.3(a)), nicknamed Surface-17,
in the presence of leakage and LRUs. We follow the frequency and pipelined scheme
in Ref. [58], in which the 9 data qubits are subdivided into 3 high- and 6 low-frequency
ones. The 4 X and the 4 Z ancilla qubits have an intermediate frequency. We consider the
flux-pulse implementation of the CZs [10, 11, 33–35] for tunable-frequency transmons, in
which the transmon with the greater frequency is lowered towards the other one with a
flux pulse. With this technique fluxed transmons are prone to leakage. This means that
the high-frequency data qubits and all the ancilla qubits can leak. As shown in Section 8.4,
leakage can last for many QEC cycles and be quite detrimental to the logical performance
of the code. Here we address these issues with the res-LRU for high-frequency data
qubits and with the π-LRU for ancilla qubits, as described below. If due to a different
implementation of the CZs (or due to leakage mobility [49]; see Section 8.11.6) also the
low-frequency data qubits can leak, one can apply the res-LRU to them as well but we do
not explore this here.

The circuit executed for each QEC cycle is shown in Fig. 9.3(b). The X -type and Z -type
parity-check units are implemented in an interleaved way, with the CZs for one unit being
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Figure 9.3: (a) Schematic overview of the Surface-17 layout [58]. Pink (resp. red) circles with D labels represent
low- (high-) frequency data qubits, while blue (resp. green) circles with X (Z ) labels represent ancilla qubits,
which have an intermediate frequency. Ancilla qubits and high-frequency data qubits are prone to leakage
during the CZ gates. (b) The quantum circuit for a single QEC cycle employed in simulation, for the unit-cell
scheduling defined in Ref. [58], in which we insert the LRUs. The res-LRUs (orange) are applied unconditionally
on the high-frequency data qubits after the CZs, while the π-LRUs (teal) are applied on the ancilla qubits
depending on the measurement outcome. Gray elements correspond to operations belonging to the previous
or the following QEC cycle. The duration of each operation is given in Section 9.7.1. The arrow at the bottom
indicates the repetition of QEC cycles.
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applied while the other ancilla-qubit type is measured. The duration of each operation is
summarized in Section 9.7.1, with a total QEC-cycle duration of 800 ns. The data qubits
are idling for a considerable amount of time, namely Tslot = 440 ns, while the ancilla
qubits are measured. We choose this time slot as the ideal place to apply the res-LRUs,
introduced in Section 9.2, to the high-frequency data qubits. Notice that the optimal
pulse selected in Section 9.2.2, which was simulated for the target parameters of the
high-frequency data qubits, takes about tp = 180 ns and thus easily fits within this time
slot (see Section 9.4 for a discussion about other parameter regimes).

For the ancilla qubits there is no available time slot to apply the res-LRU. A possibility
would be to make the QEC-cycle time longer by inserting these LRUs when the measure-
ment is completed. However, this approach would lower the logical error rate of the code
by a non-negligible amount. On the other hand, ancilla qubits are measured and the (ana-
log) measurement outcome contains information about leakage (see Section 8.11.1). We
choose to use a different type of LRU altogether which uses this information. Specifically,
we consider a |1〉↔ |2〉 π pulse, conditioned on the measurement outcome reporting a |2〉.
Below we discuss further details of the implementation of this π-LRU.

9.3.2. IMPLEMENTATION OF THE LRUS IN THE DENSITY-MATRIX SIMULA-
TIONS

We use density-matrix simulations [51] using the open-source package quantumsim [59]
to study Surface-17 with res-LRUs and π-LRUs. We include relaxation and dephasing (T1

and T2), as well as flux-dependent T2 and leakage rate L1 during the CZs, following the
same error model as in Sections 8.10.1 and 8.10.2. L1 is defined as the average leakage
from the computational to the leakage subspace [70]. The state of the art is L1 ≈ 0.1%
(see Sections 6.8 and 6.18), although the actual L1 is expected to be higher when operating
a multi-transmon processor [31, 71], thus here we consider up to L1 = 0.5%. We assume
that single-qubit gates do not induce any leakage as their leakage rates are typically
negligible compared to the CZs [6, 37, 38]. The noise parameters used are reported
in Section 9.7.1. Furthermore, during a CZ with a leaked transmon, the non-leaked
transmon acquires a phase called the leakage conditional phase (see Section 8.2). We
select these phases uniformly at random (see Section 9.7.3) and, in contrast to Chapter 8,
we then keep them fixed for every Surface-17 simulation in this chapter. This makes it
easier to recognize trends as a function of the LRU parameters. In Section 9.7.3 we discuss
the variability of the logical error rate depending on the leakage conditional phases. We
do not consider further leakage from |2〉 to |3〉 in subsequent CZ gates (see Section 8.11.6)
as we expect it to be negligible when LRUs make |2〉 short-lived.

RES-LRU FOR DATA QUBITS

In the simulations, leakage-prone transmons are modeled as 3-level systems and non-
leakage-prone ones as 2-level systems, leading to an already computationally expensive
size for the density matrix. As a consequence, we do not include the readout resonator
explicitly in these simulations. The resonator is initially in the ground state and is returned
to it at the end of the time slot, approximately. We can thus trace the resonator out
and model the res-LRU on the transmon qubit as an incoherent |2〉 7→ |0〉 relaxation
(see Section 9.7.1 for details). Furthermore, in Section 9.2.2 we have observed that the
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res-LRU can also cause a non-leaked transmon to partially leak, so we include that as an
incoherent |0〉 7→ |2〉 excitation.

Calling p | j 〉
i , p | j 〉

f the populations before and after the res-LRU, we define the leakage-

reduction rate 0 ≤ R ≤ 1 as R = 1−p |2〉
f conditioned on an initially fully leaked transmon,

i.e. for p |2〉
i = 1. Furthermore, we define the average res-LRU leakage rate LLRU

1 as the aver-
age of the induced leakage starting from either |0〉 or |1〉 (consistently with the definition
for CZ [70]), with probability 1/2 each. Since almost all induced leakage comes from |0〉
(see Section 9.2.2), this means that p |2〉

f ≈ 0 for p |1〉
i = 1 and that p |2〉

f ≈ 2LLRU
1 for p |0〉

i = 1

(neglecting relaxation effects as the used T1 = 30 µs is relatively long). Combining these
two definitions one gets the expression

p |2〉
f ≈ (1−R) p |2〉

i +2LLRU
1 p |0〉

i (9.16)

for an arbitrary incoming state. Notice that, given these definitions, Fig. 9.2(a),(c) re-
spectively show a heatmap of 1−R and 2LLRU

1 for the considered transmon-resonator
parameters. In particular, the operating point achieves R ≈ 99.5% and LLRU

1 ≈ 0.25%. The
achieved leakage reduction can be compared with the one given purely by relaxation
during Tslot, namely RT1 = 1−e−Tslot/(T1/2) = 2.9%, which shows that the LRU provides a
much stronger additional seepage channel.

π-LRU FOR ANCILLA QUBITS

The dispersive readout of a transmon qubit is in general performed by sending a pulse to
the readout resonator, integrating the reflected signal to obtain a point in the IQ plane
and depleting the photons in the resonator (either passively by relaxation or actively with
another pulse) [17–19]. The measured point is compared to one or more thresholds to
declare the measurement outcome. These thresholds are determined as to optimally
separate the distributions for the different outcomes, which have a Gaussian(-like) form.
Here we assume that the distribution for |2〉 is sufficiently separated from |0〉 and |1〉 [17].
This is generally expected to be possible thanks to the different dispersive shift. Then one
uses three thresholds in the IQ plane to distinguish between |0〉, |1〉 and |2〉 (or two if |2〉 is
well-separated from e.g. |0〉). We also assume that an outcome can be declared during
photon depletion, thus enabling real-time conditional feedback. This is challenging to
perform in 200-300 ns in experiment due to the classical-postprocessing requirements,
but it has been previously achieved [29, 57]. We can then apply the π-LRU right at the
end of the depletion time. The |1〉 ↔ |2〉 π pulse is expected to be implementable as a
simple pulse in the same way and time as single-qubit gates (20 ns) and with comparable,
coherence-limited fidelity.

If conditional feedback is not possible in the allotted time, one can either increase the
QEC-cycle duration (at the cost of extra decoherence for all qubits, scaling as 1−e−textra/T2

per qubit per QEC cycle) or postpone the conditional gate to the next QEC cycle. In the
latter case, one source of error corresponds to the ancilla qubit already seeping before
the application of the π-LRU, which then causes it to leak instead. The probability of
this error is already low and is expected to become even lower with longer T1s and lower-
leakage CZs. The other errors are the Z rotations (depending on the leakage conditional
phases) that the leaked ancilla qubit spreads for at least 1 extra QEC cycle, as well as the
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fact that the parity-check stays disabled. We do not simulate these variants and we expect
a relatively low logical-performance loss, corresponding to an average leakage lifetime of
about 2 QEC cycles (see Figs. 9.4 and 9.9).

Readout-declaration errors are expected to affect the performance of the π-LRU. On
one hand, an incorrect declaration of |1〉 as a |2〉 makes the π pulse induce leakage. On the
other hand, declaring a |2〉 as a |1〉would lead to leakage not being corrected and lasting for
at least one extra QEC cycle. We define the readout matrix M with entries Mi j =: pM (i | j )
being the probability that the actual state | j 〉 resulting from the projective measurement
is declared as an |i 〉. In the simulations we use

M =
1 0 0

0 pM (1|1) 1−pM (1|1)
0 1−pM (2|2) pM (2|2)

 . (9.17)

In particular, this means that we do not consider declaration errors within the compu-
tational subspace. While that would change the value of the logical error rate since the
error syndrome gets corrupted, it is not relevant for evaluating the performance of the
π-LRU since a |0〉 mistaken for a |1〉 or vice-versa does not trigger the π-LRU anyway. Fur-
thermore, we assume that a |0〉 cannot be mistaken as a |2〉 since their readout signals are
often much more separated than the signals of |1〉 and |2〉. Note that if a |0〉 (rather than
a |1〉, as we assume in this work) could be mistakenly declared as a |2〉, then a |1〉↔ |2〉
π pulse does not induce leakage, so here we consider the worst-case scenario for the
π-LRU.

9.3.3. AVERAGE LEAKAGE LIFETIME AND STEADY STATE
Once a qubit leaks, it tends to remain leaked for a significant amount of time, up to 10-15
QEC cycles on average (see Section 8.4). Starting from an initial state with no leakage,
the probability that a qubit is in the leaked state tends towards a steady state within a
few QEC cycles. It was shown in Section 8.11.8 that this evolution is well captured by a
classical Markov process with leakage (resp. seepage) rate ΓC→L (ΓL→C ) per QEC cycle,
where C (resp. L ) is the computational (leakage) subspace. Note that here L is 1-
dimensional, corresponding to |2〉. In our error model, without accounting for LRUs,
these rates are approximately given by

ΓC→L ≈ NfluxL1, (9.18)

ΓL→C ≈ NfluxL2 + (1−e
− tc

T1/2 ), (9.19)

where Nflux is in how many CZ gates the transmon is fluxed during a QEC cycle, tc is the
duration of a QEC cycle and L1 (resp. L2) is the average leakage (seepage) probability of
a CZ [70]. Thus the two native mechanisms that generate seepage are the CZs themselves
and relaxation.

The major effect of a LRU is to effectively increase ΓL→C in Eq. (9.19) by introducing
an extra seepage mechanism. Hence we expect that ΓLRU

L→C
∼ ΓL→C +R for data qubits

and ΓLRU
L→C

∼ ΓL→C +pM (2|2) for ancilla qubits, preventing leakage from accumulating
and lasting long for large R or pM (2|2).
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The average leakage lifetime lL
avg is the average duration of leakage and for a Markov

process it is calculated as

lL
avg =

∞∑
n=1

nP(stay in L for n QEC cycles) (9.20)

=
∞∑

n=1
n(1−ΓL→C )n−1ΓL→C = 1

ΓL→C
, (9.21)

thus assuming that the qubit starts in L . The evolution of the leakage probability p̄L (n),
averaged over surface-code runs, as a function of the QEC-cycle number n is well-
approximated by (see Section 8.11.8)

p̄L (n) = ΓC→L

ΓC→L +ΓL→C
(1−e−(ΓC→L +ΓL→C )n). (9.22)

The steady state is the long-time limit and is given by

p̄L
ss = lim

n→∞ p̄L (n) = ΓC→L

ΓC→L +ΓL→C
. (9.23)

For ancilla qubits p̄L (n) can be computed directly from the “true” measurement out-
comes (i.e. without declaration errors on top). For data qubits it can be computed from
the density matrix. Specifically, for data qubits we evaluate p̄L (n) right after the CZs.

Figure 9.4 shows lL
avg and p̄L

ss extracted from the Surface-17 simulations by fitting p̄L (n)
to Eq. (9.22) for each qubit. We can indeed observe that these quantities drop substantially
for both data and ancilla qubits. The decays follow an inverse proportionality as e.g. for
data qubits

lL
avg =

1

ΓLRU
L→C

∼ 1

ΓL→C +R
∼ 1

R
(9.24)

p̄L
ss = ΓLRU

C→L

ΓLRU
C→L

+ΓLRU
L→C

∼ Γ
LRU
C→L

ΓLRU
L→C

∼ Γ
LRU
C→L

R
(9.25)

for sufficiently large R and smallΓLRU
C→L

. For ancilla qubits we expect, similarly, a 1/pM (2|2)
dependence. The lifetime drops from values & 10 to ≈ 1, which is the minimum value
it can achieve (some points drop below 1 within error bars as it is difficult for the fit
to estimate such a short lifetime). As of course the LRUs do not prevent leakage from
occurring during the CZs in the first place, one cannot expect the steady state to reach 0
even for a perfect LRU (R = 1), but rather p̄L

ss ∼ ΓLRU
C→L

≈ NfluxL1 (+LLRU
1 if the LRU can

mistakenly induce leakage). Figures 9.4(b),(d) show that this is indeed the case.
Figure 9.4 also demonstrates that both lL

avg and p̄L
ss get close to their minimum values

already for R, pM (2|2)& 80%. This suggests that res-LRU and π-LRU may not necessarily
need to be perfect to provide a good logical performance in Surface-17. This means that
one could use e.g. a weaker pulse to implement the res-LRU or that the readout of |2〉 may
not need to be particularly optimized in practice.
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Figure 9.4: Average leakage lifetime lL
avg [(a),(c)] and leakage steady state p̄L

ss [(b),(d)] as a function of the
leakage-reduction rate R for data qubits [(a),(b)] and as a function of the readout probability pM (2|2) for
ancilla qubits [(c),(d)]. Here we fix the CZ leakage rate to L1 = 0.5%. The insets in (b),(d) show that p̄L

ss tends
to ≈ NfluxL1 (Nflux = 4 for D4, 3 for D3,D5, 1 for Z0, Z3 and 2 for the remaining ancilla qubits). The vertical
dashed lines correspond to the values used in Section 9.3.4. These results are extracted from 2×104 runs of
20 QEC cycles each per choice of parameters. Error bars are estimated using bootstrapping and are mostly
smaller than the symbol size.

9.3.4. LOGICAL PERFORMANCE

In the simulations the logical qubit is initialized in |0〉L and the logical fidelity FL(n) is
computed at the end of each QEC cycle as the probability that the decoder correctly
determines whether a logical error has occurred or not. We do not perform a similar
analysis with initial state |+〉L or other states as the density-matrix simulations are com-
putationally expensive and we expect a similar performance. The logical error rate εL per
QEC cycle can be extracted by fitting FL(n) = [1+ (1−2εL)n−n0 ]/2, where n0 is a fitting
parameter (usually close to 0) [51]. We evaluate εL for the upper bound decoder (UB)
which uses the complete density-matrix information to infer a logical error, and for the
minimum-weight perfect-matching decoder (MWPM). Detailed information about these
decoders can be found in [51, 72] and an overview is given in Section 9.7.1.

By mapping a leaked qubit back to the computational subspace, a LRU does not fully
remove a leakage error but can at most convert it into a regular (Pauli) error. Hence,
it is not to be expected that εL in the presence of leakage can be restored to the value
at L1 = 0. We consider realistic parameters for the LRUs. Specifically, we use R = 95%,
LLRU

1 = 0.25%, pM (2|2) = 90% and pM (1|1) = 99.5%. We have shown in Section 9.2.2
that the first two parameters can be attained with realistic parameters for the transmon-
readout system, while the last two are close to be achievable in experiment [15, 54]. In
particular, while the operating point has R = 99.5%, we conservatively choose R = 95%
here. Notice that pM (1|1) = 99.5% is quite high. We argue that the state of the art can
be squeezed as the threshold to distinguish between |1〉 and |2〉 in the IQ plane could be
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Figure 9.5: Logical error rate εL per QEC cycle for the upper bound (UB, red) and minimum-weight perfect-
matching (MWPM, green) decoders versus the CZ leakage rate L1, in the cases with: no LRUs, only res-LRU,
only π-LRU and both LRUs (the point without leakage at L1 = 0 is always without LRUs as well). These results
are extracted from 2×104 runs of 20 QEC cycles each per choice of parameters. Error bars are estimated using
bootstrapping and are smaller than the symbol size.

moved towards |2〉, rather than placing it in the middle as is common practice. In this
way one would slightly reduce pM (2|2) in favor of pM (1|1) if pM (1|1) is not high enough.
A broader study of the logical performance as a function of the LRU parameters can be
found in Section 9.7.2.

Figure 9.5 shows the reduction in εL as a function of the CZ leakage rate L1 when
LRUs with the given parameters are employed. Using only the res-LRU or the π-LRU low-
ers εMWPM

L by basically the same amount, while εUB
L is lower for the π-LRU than for the

res-LRU. We attribute this to the fact that UB directly uses the information in the density
matrix, while MWPM relies on the measured syndrome, thus being more susceptible to
ancilla-qubit leakage. When both LRUs are used, we see that εL is reduced by an amount
which is close to the sum of the reductions when only one kind of LRU is used. As ex-
pected, εL is not restored to the value at L1 = 0, but the reduction is overall significant and
can reach up to 30% for both MWPM and UB compared to the case without LRUs.

9.4. DISCUSSION
In this chapter we have introduced a leakage-reduction scheme using res-LRUs and π-
LRUs which does not require any additional hardware or a longer QEC cycle. Furthermore,
while the scheme in Ref. [49] is applicable only to ancilla qubits, our combination of res-
LRU for data qubits and π-LRU for ancilla qubits enables to significantly reduce leakage
in the whole transmon processor. We have shown with detailed simulations using realistic
parameters that the reset scheme in [54–56] can be adapted to be a LRU without signifi-
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cantly affecting the states in the computational subspace, allowing to unconditionally
apply the res-LRU in the surface code. The use of the res-LRU for data qubits, as well as the
use of the π-LRU for ancilla qubits, leads to a substantial reduction of the average leakage
lifetime and leakage steady state, preventing leakage from lasting more than ≈ 1 QEC cy-
cles on average, even when the LRUs are imperfect and can introduce leakage themselves.
Using full density-matrix simulations of Surface-17 we have demonstrated that this leads
to a significant reduction of the logical error rate for both the UB and MWPM decoders.

Regarding the practical implementation of the res-LRU, the required drive amplitude
is relatively strong, similarly to the one used in the experiments in [54–56]. It is thus impor-
tant that the microwave crosstalk is minimized by careful engineering of the drive lines.
Furthermore, in a multi-transmon processor it is relevant that the drive frequency does
not accidentally match any two-qubit or neighboring single-qubit transitions. E.g., in the
original scheme in Ref. [58] that we followed, the target frequencies are 6.7, 6.0 and 4.9 GHz
for high-, mid- and low-frequency qubits, respectively, and 7.8 GHz for the readout
resonator [28]. In particular, the mid-frequency qubits (the ancilla qubits) are parked
around 5.4-5.5 GHz during measurement, with their |1〉 ↔ |2〉 transition around 5.1-
5.2 GHz. This is close to the optimal drive frequency found in Section 9.2.2 (≈ 5.25 GHz),
which can lead to an indirect ancilla-qubit drive mediated by the bus resonator, albeit
weaker. The difficulty of precise frequency targeting in fabrication can further lead to
undesired frequency collisions. These issues can be alleviated by choosing slightly dif-
ferent transmon/resonator frequencies and anharmonicities to make the drive more
off-resonant with that transition (combined with better frequency targeting [73]), or they
can be mitigated altogether by using tunable couplers [2, 12, 15]. The res-LRU is com-
patible with tunable-coupler schemes and their possibly different operation scheduling
than in Ref. [58], as well as potentially applicable to superconducting qubits which use a
resonator for dispersive readout other than the transmon. Tunable couplers would also
be advantageous to fully protect the res-LRU performance from residual Z Z crosstalk,
even though we find that a cumulative Z Z interaction up to ∼ 2 MHz can be tolerated
with fixed couplers (see Section 9.6.3). Beside this, if the low-frequency data qubits can
leak depending on the implementation of the CZ, the res-LRU can be applied to them in
the same time slot as the high-frequency ones. If the thermal population in the readout
resonator is relatively high in a given experiment, the effect of a correspondingly high LLRU

1
can potentially be mitigated by applying res-LRU conditionally on the detection of leakage
by a set of hidden Markov models (see Section 8.5).

Regarding the viability of inserting the res-LRU in the surface-code time scheduling,
the necessary condition is that tp ≤ Tslot. We can express Tslot as Tslot = tm−4tCZ, where tm

is the measurement time for the ancilla qubits. Slower CZs might make Tslot too short,
although CZs even faster than 40 ns (as assumed here) have been realized in 15 ns [13].
The measurement time can be further broken down into readout-pulse time and photon-
depletion time, tm = tread + tdepl. Both of these would be reduced by a larger κ, however,
assuming that the κ’s of ancilla- and data-qubit resonators are comparable, tp would
be reduced as well. Even if we keep tp and tCZ fixed to the values in this chapter, we
get tm ≥ 340 ns, which is significantly lower than tm = 580 ns as considered here. A
desirable, additional condition to the necessary one is that Tslot − tp ≥ 4/κ, i.e. that there
is enough leftover time in Tslot to allow for the data-qubit resonator to return the thermal
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state, where we estimate that 4 decay constants would suffice (together with the fact that
the resonator was already relaxing during tp). Assuming similar depletion time for data-
and ancilla-qubit resonators, this roughly means that the res-LRU is easily applicable
if tp is smaller or similar to tread. Note that in this chapter we have Tslot − tp ∼ 16/κ and
tp < tread. If the additional condition above is not satisfied, one could demand that at
least the resonator has returned to the thermal state before the res-LRU in the following
QEC cycle, i.e. Tslot − tp +8tCZ +2tH ≥ 4/κ. In this case the disadvantage would be that
the presence of a fraction of a photon in the resonator would cause additional data-qubit
dephasing especially during the first few CZs. As the extra photon is present only when
the qubit was previously leaked, we expect this disadvantage to be small as long as the
overall leakage rate is small. If even the relaxed additional condition is violated, on top
of the additional dephasing the resonator would also heat up, effectively leading to a
higher LLRU

1 in the QEC cycle(s) following the one in which the qubit leaked. As also this
effect scales with L1, we expect that it would not be an issue as long as κ is not very low
(allowing for at most 1 extra QEC cycle to thermalize we get κ/2π≥ 1 MHz). Otherwise,
leakage would not really be removed from the system but would be largely moved back
and forth from the transmon to the resonator.

The demonstrated reduction in the average leakage lifetime and in the logical error
rate is expected to lead to a higher noise threshold for the surface code in the presence of
leakage, compared to the case without LRUs. Furthermore, for error rates below threshold
(both regular and leakage) we believe that the logical error rate would be exponentially
suppressed with increasing code distance when employing LRUs. Without LRUs this
might hold only when the code distance is sufficiently larger than the average leakage
lifetime (d À lL

avg). For smaller distances the relatively long correlated error chains
induced by leakage might lead to a sub-exponential scaling. To study the noise threshold
and sub-threshold behavior it is necessary to implement simulations of large code sizes
which use a simplified error model, such as a stochastic error model for leakage and
Pauli errors [24, 40, 43]. We expect that the demonstrated MWPM logical error rate can
be further lowered by the use of decoders [24, 40, 43, 60–62] that use information about
leakage extracted directly or indirectly (e.g. with hidden Markov models; see Section 8.5)
from the measurement outcomes.

The data underlying this chapter, as well as the code to analyze it, are available at
https://doi.org/10.4121/c.5320331. The code used to generate the data is avail-
able upon request to the corresponding author.

9.5. APPROXIMATE TRANSMON-RESONATOR HAMILTONIAN

9.5.1. SCHRIEFFER-WOLFF TRANSFORMATION
In this section we explain the concept of the Schrieffer-Wolff transformation (SWT) [63–
65] and derive the equations that we use in the following sections.

Consider a Hamiltonian
H = H0 +εV (9.26)

expressed in a certain basis {|ψn〉}, where H0 is block diagonal with respect to this basis
and the perturbation V can be taken as block off-diagonal without loss of generality (block-

https://doi.org/10.4121/c.5320331
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diagonal terms can be included in the definition of H0). Furthermore, we assume ||V || =
O (1) and ε¿∆i j , where we set ∆i j as the minimum energy separation between blocks i
and j .

The SWT corresponds to finding an anti-hermitian matrix S such that

H ′ := eS He−S (9.27)

is block diagonal. In other words, calling {|ψ̄n〉} the basis of eigenstates of H , eS =∑
n |ψn〉〈ψ̄n |. The matrix S can be expanded in a series

S =
∞∑

k=1
εk Sk (9.28)

where each Sk is block off-diagonal. If ε¿ ∆i j one can expect the first order (S1) to
provide a good approximation, otherwise one needs to consider higher orders depending
on ε (although the series does not always converge for extensive systems [64]). Using the
Baker-Campbell-Hausdorff formula one gets

H ′ = eS He−S =
∞∑

k=0

1

k !
[S, [S, . . . [S,︸ ︷︷ ︸

k times

H ] . . . ]]. (9.29)

The procedure for the SWT is to group terms of the same order in ε in this formula and
set the block off-diagonal part of H ′ to 0, thus getting equations for {Sk }, in the usual case
with two blocks [64]. One uses the relationships

[
diagonal,diagonal

]= diagonal, (9.30)[
diagonal,off-diagonal

]= off-diagonal, (9.31)[
off-diagonal,off-diagonal

]= diagonal. (9.32)

However, the last line only holds for the case with two blocks. In the following we consider
the generalization of the SWT to the case with an arbitrary number of blocks [65]. We use
the notation OD and OOD for the block diagonal and off-diagonal parts of an operator O =
OD +OOD, respectively.

Here we expand H and S up to k = 3 in Eq. (9.29), assuming that the 4th-order block
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off-diagonal term is negligible. We get the following pieces:

0th order : H0 (9.33)

1st order : V + [S1, H0] (9.34)

2nd order : [S1,V ]+ 1

2
[S1, [S1, H0]]+ [S2, H0] (9.35)

3rd order : [S2,V ]+ 1

2

(
[S2, [S1, H0]]+ [S1, [S1,V ]]+ [S1, [S2, H0]]

)
+ 1

6
[S1, [S1, [S1, H0]]]+ [S3, H0] (9.36)

4th order : [S3,V ]+ 1

2

(
[S1, [S3, H0]]+ [S2, [S2, H0]]+ [S3, [S1, H0]]+ [S1, [S2,V ]]

+ [S2, [S1,V ]]
)

+ 1

6

(
[S1, [S1, [S1,V ]]]+ [S2, [S1, [S1, H0]]]+ [S1, [S2, [S1, H0]]]

+ [S1, [S1, [S2, H0]]]
)

+ 1

24
[S1, [S1, [S1, [S1, H0]]]] . (9.37)

Setting the block off-diagonal parts at 1st, 2nd and 3rd order to 0 we get

[H0,S1] =V (9.38)

[H0,S2] = 1

2
[S1,V ]OD (9.39)

[H0,S3] = 1

2
[S2,V ]OD + 1

3
[S1, [S1,V ]D]OD + 1

12

[
S1, [S1,V ]OD

]
OD , (9.40)

where we have used the first equation to simplify the following ones. These equations can
be solved iteratively for Sk (given knowledge of the eigenstates of H0). The Hamiltonian H ′
is then block diagonal up to 4th order and is explicitly given by

H ′ =H0 + ε2

2
[S1,V ]D

+ε3
(1

2
[S2,V ]D + 1

12

[
S1, [S1,V ]OD

]
D

)
+ε4

(1

2
[S3,V ]D − 1

24

[
S1, [S1, [S1,V ]D]OD

]
D

− 1

6

[
S2, [S1,V ]OD

]
D + 1

12

[
S1, [S2,V ]OD

]
D

)
. (9.41)

This expression has been simplified using Eqs. (9.38) to (9.40), together with the fact that
e.g. [Sk , [. . . , . . .]D]D = 0 since Sk is block off-diagonal.

9.5.2. SWT OF THE CAPACITIVE COUPLING
We consider the Hamiltonian H = H0+Hc +Hd of a driven transmon capacitively coupled
to a resonator, as given in Eqs. (9.1) to (9.4).
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The SWT of Hc up to 1st order in the perturbation parameter ε = g /∆, where ∆ =
ωq −ωr , is implemented using the matrix [66]

S1 = g
∞∑

m=1

p
m

∆+α(m −1)

(
a |m〉〈m −1|−h.c.

)
, (9.42)

where {|m〉} are transmon states and where we have absorbed ε in the definition of S1.
The Hamiltonian in the unitarily transformed frame as defined in Section 9.2.1 is then
given by

H D ≈ eS1 He−S1 = eS1 (H0 +Hc )e−S1 +eS1 Hd e−S1 (9.43)

with

eS1 (H0 +Hc )e−S1 = H0 + 1

2
[S1, Hc ] (9.44)

≈ δr a†a +
∞∑

m=1

(
mδq + α

2
m(m −1)+ g 2m

∆m−1

)
|m〉〈m|

−a†a
∞∑

m=0

g 2∆−1

∆m∆m−1
|m〉〈m| (9.45)

:= H D
0 (9.46)

where we define ∆m = ∆+αm = ∆− |α|m as α < 0 for transmons. The second term
above contains a Stark shift of the transmon frequency and the last term is the state-
dependent dispersive shift. The approximation in Eq. (9.45) is due to the fact that we have
ignored a double-excitation exchange term coming from [S1, Hc ], since it is proportional
to gα/(∆m∆m−1). This is negligible for low anharmonicity and, secondly, for ωr > ωq

as then ∆ < 0 and |∆m | increases with m. If instead ωr < ωq , ∆ > 0 and |∆m | decreases
with m, so even if the approximation is good for the two lowest levels, there can be some
higher level which does not sit well within the dispersive regime. However, in this work
we consider a system with ωr >ωq , hence we do not need to take this into account.

The drive Hamiltonian in the unitarily transformed frame takes the form

eS1 Hd e−S1 = H D
d1 +H D

d2, (9.47)

where

H D
d1 := Ωe iφ

2
b +h.c. (9.48)

H D
d2 := Ωe iφ

2

(
a

∞∑
m=0

g∆−1

∆m∆m−1
|m〉〈m|+a†

∞∑
m=0

gα
p

m +1
p

m +2

∆m∆m+1
|m〉〈m +2|

)
+h.c.

(9.49)

The last term contains a 1st-order approximation in g /∆ of the |20〉 ↔ |01〉 effective
coupling g̃ , which is linear inΩ. However, the “pure” drive term H D

d1 can be quite strong,
so we need to evaluate how it affects g̃ and the rest of the Hamiltonian.
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9.5.3. SWT OF THE PURE DRIVE HAMILTONIAN
Summarizing, in the unitarily transformed frame the original Hamiltonian H takes (ap-
proximately) the form

H D ≈ H D
0 +H D

d1 +H D
d2, (9.50)

where H D
0 is given in Eq. (9.45) and H D

d1, H D
d2 are given in Eqs. (9.48) and (9.49), respec-

tively.
We now want to find an additional SWT transformation S′ = S′

1 +S′
2 +S′

3, with H D
d1

taking the role of V in Section 9.5.1, defining a “double-dressed” Hamiltonian

H DD := eS′
H D e−S′

(9.51)

= eS′
(H D

0 +H D
d1)e−S′︸ ︷︷ ︸

=:H DD
0

+eS′
H D

d2 e−S′︸ ︷︷ ︸
=:H DD

d

(9.52)

such that H DD
0 is fully diagonal up to 3rd order in the perturbation parameter ε=Ω/δq .

Then H DD
d gives the couplings within the manifold of interest (|20〉 , |01〉) and outside of it.

We absorb εk in the definition of S′
k so it does not explicitly appear below.

Following Section 9.5.1, to find S′
1 we need to solve Eq. (9.38), i.e.[

H D
0 ,S′

1

]= H D
d1 (9.53)

in this specific case. Bracketing it with the eigenstates {|ml〉} of H D
0 , with the notation

|transmon,resonator〉, we get the matrix elements of S′
1 as

〈ml |S′
1|nk〉 = 〈ml |H D

d1|nk〉
E D

ml −E D
nk

, (9.54)

where {E D
ml } are the eigenenergies of H D

0 , which can be easily inferred from Eq. (9.45). We
neglect the dispersive shift since it is proportional to α/∆. Then

〈ml |S′
1|nk〉 =Ω

2

(
−
p

m +1δm,n−1δl ,k

δq +αm + g 2∆−1
∆m−1∆m

e iφ+
p

mδm,n+1δl ,k

δq +α(m −1)+ g 2∆−1
∆m−2∆m−1

e−iφ
)
, (9.55)

where δi , j is the Kronecker delta. From this equation one can infer that

S′
1 =−Ω

2
e iφ

∞∑
m=0

p
m +1

δ
q
m

|m〉〈m +1|−h.c., (9.56)

where we have defined δq
m = δq +αm + g 2∆−1

∆m−1∆m
.

Having derived S′
1, we can compute S′

2 from Eq. (9.39), i.e.

[
H D

0 ,S′
2

]= 1

2

[
S′

1, H D
d1

]
OD (9.57)
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with

[
S′

1, H D
d1

]=− Ω
2

2

∞∑
m=0

δ̃
q
m

δ
q
mδ

q
m−1

|m〉〈m|

− Ω
2

4

∞∑
m=0

p
m +1

p
m +2

( 1

δ
q
m

− 1

δ
q
m+1

)
(e2iφ |m〉〈m +2|+h.c.), (9.58)

where δ̃q
m = δq −α+ g 2∆−1∆3m

∆m∆m−1∆m−2
. Clearly the first term is the diagonal part while the

second term is the off-diagonal one. With a similar procedure as the one used for S′
1, it

follows that

S′
2 =

Ω2

8
e2iφ

∞∑
m=0

p
m +1

p
m +2

δ
q
m +δq

m+1

( 1

δ
q
m

− 1

δ
q
m+1

)
|m〉〈m +2|−h.c. (9.59)

We can then compute S′
3 from Eq. (9.40), i.e.

[
H D

0 ,S′
3

]= 1

2

[
S′

2, H D
d1

]
OD + 1

3

[
S′

1,
[
S′

1, H D
d1

]
D

]
OD

+ 1

12

[
S′

1,
[
S′

1, H D
d1

]
OD

]
OD

. (9.60)

The result is

S′
3 =Ω3e iφ

∞∑
m=0

|m〉〈m +1|
(

1

12

p
m +1

(δq
m)3

( δ̃q
m+1

δ
q
m+1

− δ̃
q
m

δ
q
m−1

)
+ 1

96δq
m

(
(m +2)

p
m +1

δ
q
m +4δq

m+1

δ
q
m+1(δq

m +δq
m+1)

( 1

δ
q
m

− 1

δ
q
m+1

)
−p

m +1m
4δq

m−1 +δ
q
m

δ
q
m−1(δq

m−1 +δ
q
m)

( 1

δ
q
m−1

− 1

δ
q
m

)))
−h.c.

+ Ω
3

96
e3iφ

∞∑
m=0

|m〉〈m +3|
p

m +1
p

m +2
p

m +3

δ
q
m +δq

m+1 +δ
q
m+2(

3δq
m+2 −δ

q
m+1 −δ

q
m

δ
q
m+2(δq

m +δq
m+1)

( 1

δ
q
m

− 1

δ
q
m+1

)
− 3δq

m −δq
m+1 −δ

q
m+2

δ
q
m(δq

m+1 +δ
q
m+2)

( 1

δ
q
m+1

− 1

δ
q
m+2

))
−h.c.

(9.61)

We can eventually use Eqs. (9.56), (9.59) and (9.61) together with Eq. (9.41) to ob-
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tain H DD
0 (defined in Eq. (9.52)):

H DD
0 = δr a†a +

∞∑
m=0

|m〉〈m|
(
mδq + α

2
m(m −1)+ g 2m

∆m−1

− Ω2δ̃
q
m

4δq
mδ

q
m−1

− Ω
4

32

(
m +1

(δq
m)3

( δ̃q
m+1

δ
q
m+1

− δ̃
q
m

δ
q
m−1

)
− m

(δq
m−1)3

( δ̃q
m

δ
q
m

− δ̃
q
m−1

δ
q
m−2

))

− Ω4

192

(
1

δ
q
m

(
(m +2)(m +1)

δ
q
m +5δq

m+1

δ
q
m+1(δq

m +δq
m+1)

( 1

δ
q
m

− 1

δ
q
m+1

)
− (m +1)m

5δq
m−1 +δ

q
m

δ
q
m−1(δq

m−1 +δ
q
m)

( 1

δ
q
m−1

− 1

δ
q
m

))

− 1

δ
q
m−1

(
(m +1)m

δ
q
m−1 +5δq

m

δ
q
m(δq

m−1 +δ
q
m)

( 1

δ
q
m−1

− 1

δ
q
m

)
−m(m −1)

5δq
m−2 +δ

q
m−1

δ
q
m−2(δq

m−2 +δ
q
m−1)

( 1

δ
q
m−2

− 1

δ
q
m−1

)))

+ Ω
4

96

(
(m +2)(m +1)

δ
q
m +δq

m+1

( 1

δ
q
m

− 1

δ
q
m+1

)2 − m(m −1)

δ
q
m−2 +δ

q
m−1

( 1

δ
q
m−2

− 1

δ
q
m−1

)2
))

−a†a
∑
m

g 2∆−1

∆m∆m−1
|m〉〈m| . (9.62)

We note that this expression implicitly contains all cross terms between the perturbative
parameters g /∆ andΩ/δq up to the chosen orders. The approximate coupling Hamilto-
nian H DD

d (defined in Eq. (9.52)) up to 2nd order inΩ/δq is instead given by

H DD
d = H D

d2 +
[
S′

1, H D
d2

]+ [
S′

2, H D
d2

]+ 1

2

[
S′

1,
[
S′

1, H D
d2

]]
(9.63)

=: H DD
eff.coupl. +H DD

resid., (9.64)

where

H DD
eff.coupl. = e iφa†

∞∑
m=0

|m〉〈m +2|
(

g̃m

(
1− Ω

2

8

( m +3

(δq
m+2)2

+ m +2

(δq
m+1)2

+ m +1

(δq
m)2

+ m

(δq
m−1)2

))
+ Ω

2

4

(pm +1
p

m +3

δ
q
mδ

q
m+2

g̃m+1 +
p

m
p

m +2

δ
q
m−1δ

q
m+1

g̃m−1

)
+ Ω

2

4

p
m +1

p
m +2

(
g ′

m+2

δ
q
m(δq

m +δq
m+1)

− g ′
m+1

δ
q
mδ

q
m+1

+ g ′
m

δ
q
m+1(δq

m +δq
m+1)

))
+h.c.

(9.65)

with

g̃m := gαΩ
p

m +1
p

m +2

2∆m∆m+1
(9.66)

g ′
m := gΩ∆−1

2∆m∆m−1
, (9.67)
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and

H DD
resid. = (e iφa +h.c.)

∞∑
m=0

|m〉〈m|
(

g ′
m

(
1− Ω

2

4

( m +1

(δq
m)2

+ m

(δq
m−1)2

))
+ Ω

2

4

( m +1

(δq
m)2

g ′
m+1 +

m

(δq
m−1)2

g ′
m−1

)
+ Ω

2

4

(pm +1
p

m +2g̃m

δ
q
m(δq

m +δq
m+1)

+
p

m
p

m +1g̃m−1

δ
q
mδ

q
m−1

+
p

m −1
p

mg̃m−2

δ
q
m−1(δq

m−2 +δ
q
m−1)

))

− Ω
2

e2iφa
∞∑

m=0
|m〉〈m +1|

p
m +1

δ
q
m

(g ′
m+1 − g ′

m)+h.c.

− Ω
2

a†
∞∑

m=0
|m〉〈m +1|

(pm +1

δ
q
m

(g ′
m+1 − g ′

m)+
p

m +2

δ
q
m+1

g̃m −
p

m

δ
q
m−1

g̃m−1

)
+h.c.

+ Ω
2

4
e3iφa

∞∑
m=0

|m〉〈m +2|pm +1
p

m +2

(
g ′

m+2

δ
q
m(δq

m +δq
m+1)

− g ′
m+1

δ
q
mδ

q
m+1

+ g ′
m

δ
q
m+1(δq

m +δq
m+1)

)
+h.c.

− Ω
2

e2iφa†
∞∑

m=0
|m〉〈m +3|

(pm +1

δ
q
m

g̃m+1 −
p

m +3

δ
q
m+2

g̃m

)
+h.c.

+ Ω
2

4
e3iφa†

∞∑
m=0

|m〉〈m +4|
(p

m +1
p

m +2g̃m+2

δ
q
m(δq

m +δq
m+1)

−
p

m +4
p

m +1g̃m+1

δ
q
mδ

q
m+3

+
p

m +3
p

m +4g̃m

δ
q
m+3(δq

m+3 +δ
q
m+2)

)
+h.c. (9.68)

All terms in H DD
resid. are relatively small and off-resonant with the |20〉↔ |01〉 transition so

we expect them to have a small effect and we do not proceed with higher orders of SWTs.

9.5.4. ANALYSIS OF THE |20〉↔ |01〉 AVOIDED CROSSING
In this section we give the methods used to calculate the curves in Fig. 9.1(c),(e).

We define ω∗
d as the drive frequency corresponding to the center of the |20〉 ↔ |01〉

avoided crossing of the full Hamiltonian H as given in Eq. (9.1). Then the exact value of
the effective |20〉 ↔ |01〉 coupling g̃ is given by half the energy separation at that point.
The avoided crossing can be found numerically by exact diagonalization as a function
of ωd .

In the subspace S = span{|20〉 , |01〉} we can write H as H |S ≡−η(ωd )Z /2+g̃ (ωd )[cos(φ)X+
sin(φ)Y ] =−η(ωd )Z /2+ g̃ (ωd )X for φ= 0 as in Section 9.2.1. As we want to implement a
|20〉↔ |01〉 π rotation, we notice that the choice of φ, i.e. the choice of rotation axis in the
equator of the Bloch sphere, is irrelevant. We have also ignored a term proportional to the
identity I , which gives a phase difference with respect to states outside of S , in particular
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Figure 9.6: Effective T1 (a) and T2 (b) which account for the extra decoherence caused by the drive during the
time slot Tslot = 440 ns. We can see that the variation is small as a function of the drive amplitude compared to
the values atΩ= 0. The white star indicates the chosen operating point (Ω/2π≈ 204 MHz, ωd /2π≈ 5.2464 GHz,
tp = 178.6 ns, see Section 9.2.2). The purple line corresponds to the higher order estimate of the optimal drive
frequency ω∗

d as a function ofΩ (see Fig. 9.1(c)). The heatmaps are sampled using the adaptive package [67].

between the computational and leakage subspaces of the transmon. However, this phase
is irrelevant if |20〉 is swapped entirely onto |01〉 since the latter decays and dephases fast,
thus suppressing any phase coherence. As demonstrated in Section 9.2.2 the res-LRU
can reach a very high R, for which the effect of this phase is then minimal. Assuming
that H DD

resid. in Eq. (9.68) is negligible, an analytical approximation of η is given by

η(ωd ) ≈ 〈20|H DD
0 (ωd )|20〉−〈01|H DD

0 (ωd )|01〉 , (9.69)

where we have made the dependence of H DD
0 in Eq. (9.62) on ωd explicit. This holds

since then H DD
0 accounts for all the Stark shifts of |20〉 and |01〉 due to the capacitive

coupling and the drive (up to the given orders). The center of the avoided crossing
is found by imposing the condition η(ωd ) = 0. As the explicit expression that can be
extracted from Eq. (9.62) is not analytically solvable, we use the secant method available
in scipy to find ω∗

d that fulfills this condition in Eq. (9.69). It is then straightforward
to compute the (approximate) analytical estimate for the effective coupling as g̃ (ω∗

d ) =
|〈01|H DD

eff.coupl.(ω
∗
d )|20〉 | from Eq. (9.65), which is plotted in Fig. 9.1(e).

9.6. FURTHER CHARACTERIZATION OF THE READOUT-RESONATOR

LRU
9.6.1. EFFECTIVE T1 AND T2 DUE TO THE DRIVE
In this section we discuss the effects of the readout-resonator LRU within the com-
putational subspace when applied to a non-leaked transmon. As pulses at different
(ωd ,Ω) points have a different duration tp, it would not be fair to report an effective T1

and T2 during tp. That is, stronger pulses potentially produce lower T1 and T2, but they
also take less time to implement the LRU. However, the overall disturbance to the qubit is
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a combination of these two factors. We thus report an effective T1 and T2 during the whole
time slot of Tslot = 440 ns, leading to a uniform metric for the whole (ωd ,Ω) landscape.
Specifically, to estimate T1 we prepare the state |1〉〈1| ⊗σth, we simulate the Lindblad
equation in Eq. (9.12) and we evaluate the remaining population p |1〉 in |1〉 at the end
of the time slot after tracing out the resonator. Assuming that p |1〉 = e−Tslot/T1 we then
compute T1 by inverting this formula. To estimate T2 we prepare |+〉〈+|⊗σth and we
evaluate the decay of the off-diagonal transmon matrix element |0〉〈1| as this is directly
available in simulation (rather than simulating a full Ramsey experiment). We then invert∣∣〈0|Trr (ρ(Tslot))|1〉∣∣= e−Tslot/T2 /2 to get T2.

Figure 9.6 shows the resulting effective T1 and T2. In Fig. 9.6(a) one can see that T1

decreases by at most 15% as a function of Ω, showing that a short tp mostly counter-
balances the effect of a strong Ω. In particular, T1 ≈ 27.1 µs at the operating point. On
the other hand, one can notice that T1 dips aroundΩcr/2π= 143 MHz, where the pulses
are very long, suggesting that driving slightly into the underdamped regime is favorable.
In Fig. 9.6(b) one can see that the value of T2 is about 7.7 µs atΩ= 0, i.e. when no pulse is
applied. This has to be contrasted with the input T2 parameter of 30 µs inserted in the
Lindblad equation (see Table 9.1). We assume that that implicitly accounts for dephasing
caused by flux noise only. Photon-shot noise from the resonator is a further dephasing
source which is explicitly included in these simulations. The combination of flux and
photon-shot noise leads to the actual effective T2 reported in Fig. 9.6(b). We note that
if n̄ = 0 then the effective T2 atΩ= 0 would exactly match the input of 30 µs. While the
effective T2 can be restored from 7.7 µs to 30 µs with colder resonators or by engineering
different system parameters altogether, the important information from Fig. 9.6(b) is
that T2 barely changes as a function ofΩ. Combined with the similar result for T1, this
means that the drive causes only a marginal effect within the computational subspace.
Notice that in the region where the readout-resonator LRU is most effective (just above
the purple line in Fig. 9.6(b)), T2 is even slightly higher than atΩ= 0 (7.9 versus 7.7 µs). We
attribute this to the fact that the pulse temporarily reduces the excited-state population in
the resonator (see Fig. 9.2(d)). In this way photon-shot noise is reduced until the resonator
re-thermalizes, however at the cost of some leakage of the transmon.

In Fig. 9.2(d) one can notice that a non-negligible amount of population ends up
in |10〉 from the initial state |0〉〈0|⊗σth. This corresponds to an excitation rate T ↑

1 ≈ 256 µs
at the operating point. We backtrack this source of error to a combination of the drive
and the jump operator a†, corresponding to the drive inducing a transmon excitation
rate based on the resonator excitation rate. However, as here T ↑

1 À max{T1,T2}, it is not a
limiting factor and we have not included it in the Surface-17 simulations.

9.6.2. LONG-DRIVE LIMIT IN THE UNDERDAMPED REGIME AND ITS DRAW-
BACKS AS A LRU

In this section we compare the reset schemes in Refs. [55, 56] versus Ref. [54] in terms of
their performance as a LRU in the underdamped regime. The approach of Refs. [55, 56],
which we have adopted in Section 9.2.2, aims at swapping |20〉 and |01〉 by targeting the
first minimum of the oscillations induced by the drive (switching the drive off afterwards).
As shown in Section 9.2.2, this approach allows for a residual leakage population p |2〉

op. ≈
0.5% at the operating point (see Fig. 9.2(a)), given our parameters (see Table 9.1). While
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Figure 9.7: Time evolution from the initial state |2〉〈2|⊗σth for trise = 30 ns and for an otherwise always-on drive
during Tslot. This is simulated with the same Ω/2π ≈ 204 MHz and ωd /2π ≈ 5.2464 GHz as at the operating
point in Fig. 9.2.

this already reaches thermal-state levels (here n̄ = 0.5%) with the considered system
parameters, the approach in Ref. [54] could be used in general to achieve an even lower
or similar p |2〉 (in particular for lower κ’s).

The approach in Ref. [54] keeps the drive on for a much longer period of time (at least
one more oscillation) allowing both the populations in |20〉 and |01〉 to decay to almost 0,
modulo thermal excitations. Figure 9.7 shows that it is indeed possible to suppress these
populations to thermal-state levels, where we use the same (Ω,ωd ) as at the operating
point (see Section 9.2.2). However, we see that for the operating point there is almost no
gain by using this approach. Furthermore, this approach costs much more time and could
exceed Tslot = 440 ns if κ is not as high as assumed here. In particular, in that case the first
few minima after the first one could be slightly higher, due to transmon decoherence, and
one would need to wait even longer to overcome this effect.

Another disadvantage of the approach in Ref. [54] is that the disturbance to the qubit
is stronger as the drive is kept on for a longer period of time. E.g., in Fig. 9.7 one can
see that |00〉 and |10〉 reach an equilibrium thanks to the drive (even in the presence of
relaxation), where the population in |10〉 is higher than in Fig. 9.2(b). By evaluating T1 we
find T1 ≈ 23 µs instead of 27 µs (see Section 9.6.1). Furthermore, if one would have to use
a tp > Tslot when κ is lower than here, then the QEC cycle would get longer, affecting the
coherence of all qubits, not only of the high-frequency data qubits to which the res-LRU is
applied.

9.6.3. SENSITIVITY TO RESIDUAL Z Z CROSSTALK
In a multi-transmon chip, each transmon is coupled to one or more neighbors. In general,
if the coupling is not tunable there can be some residual Z Z crosstalk (see Section 3.2.7),
i.e. a shift of the transmon frequency by an amount ζ based on whether each neighboring
transmon is in |1〉 instead of |0〉. In this section we study the effect of this Z Z coupling
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Figure 9.8: Sensitivity of the leakage-reduction rate R of the readout-resonator LRU as a function of the
overall residual Z Z coupling ζ. (a) Underdamped regime, specifically at the operating point (Ω/2π≈ 204 MHz,
ωd /2π≈ 5.2464 GHz, tp = 178.6 ns, see Section 9.2.2). (b) Critical regime (Ω/2π≈ 143 MHz, ωd /2π≈ 5.252 GHz,
tp = 440 ns).

on the readout-resonator LRU, which we assume being tuned up when all neighbors are
in |0〉. We do not include neighboring transmons in our simulations, so we mimic it by
shifting the transmon frequency (while keeping the drive parameters fixed).

In Fig. 9.8 we perform the analysis for the operating point (see Section 9.2.2), which
resides in the underdamped regime, and for the critical point. In both cases the leakage-
reduction rate R scales seemingly quadratically. In the underdamped regime the pulse tar-
gets the first minimum of the damped Rabi oscillations, so it is more sensitive to a variation
in frequency than in the critical regime. However, we can observe that for |ζ|/2π. 2 MHz
(note that this is the cumulative Z Z coupling over all neighbors) R stays above 95%,
which is the conservative value we have used in Section 9.3.4 and for which the logical
error rate was already close to optimal in Surface-17 (see Section 9.7.2). Regarding other
performance parameters of the LRU, we find that LLRU

1 scales in the same relative way

as R by unitarity, whereas T1,T2 and T ↑
1 vary by . 1%.

9.7. FURTHER SURFACE-17 CHARACTERIZATION

9.7.1. DETAILS ABOUT THE DENSITY-MATRIX SIMULATIONS

The parameters used in this work are reported in Table 9.2.

RES-LRU IN quantumsim
A comprehensive review of the density-matrix simulations and the use of the quantumsim
package [59] is available in Refs. [47, 51] (see also Section 3.3.2). In this section we explain
the specific implementation of the newly introduced res-LRU, expressed in the Pauli
Transfer Matrix formalism.

We construct a “phenomenological” Lindblad model with input parameters R,LLRU
1

and tres-LRU. We use the Pauli Transfer Matrix Sres-LRU = S↑S↓, where S↓ is the Pauli Transfer
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Parameter Value

Relaxation time T1 30 µs
Sweetspot pure-dephasing time Tφ,max 60 µs
High-freq. pure-dephasing time
at interaction point Tφ,int 8 µs
Mid-freq. pure-dephasing time
at interaction point Tφ,int 6 µs
Mid-freq. pure-dephasing time
at parking point Tφ,park 8 µs
Low-freq. pure-dephasing time
at parking point Tφ,park 9 µs
Single-qubit gate time tsingle 20 ns
Two-qubit interaction time tint 30 ns
Single-qubit phase-correction time tcor 10 ns
Readout-resonator LRU time tres-LRU 100 ns
|1〉↔ |2〉 π-pulse time tπ-LRU 20 ns
Measurement time tm 580 ns
QEC-cycle time tc 800 ns

Table 9.2: The parameters for the qubit coherence times and for the gate, LRU, measurement and QEC-cycle
durations used in the density-matrix simulations. The interaction point corresponds to the frequency to which
a transmon is fluxed to implement a CZ, whereas the parking point to the frequency at which the ancilla qubits
are parked during measurement [58].
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Figure 9.9: Logical error rate εL per QEC cycle as a function of various LRU parameters. (a),(b) use only the res-
LRU, while (c),(d) the π-LRU. We fix L1 = 0.5% for all. Vertical dashed lines indicate the values considered
in Section 9.3.4. These results are extracted from 2×104 runs of 20 QEC cycles each per choice of parameters.
Error bars are estimated using bootstrapping and are smaller than the symbol size.
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Matrix of the superoperator S↓ = e tres-LRUL↓ and the Lindbladian L↓ has the quantum
jump operator

L↓ =
1√

tres-LRU
− log(1−Rsim)

|0〉〈2| (9.70)

with Rsim to be determined. Besides this, L↓ has the standard qutrit jump operators for
relaxation and dephasing [10, 47]. On the other hand, S↑ is the Pauli Transfer Matrix of
the superoperator S↑ = eL↑ and the Lindbladian L↑ has a single jump operator

L↑ =
1√

1
− log(1−2LLRU

1 )

|2〉〈0| (9.71)

since relaxation and dephasing during tres-LRU are already accounted for by S↓. In this way,

calling p | j 〉
i , p | j 〉

f the populations before and after the res-LRU, if we apply Sres-LRU on a non-

leaked transmon we get p |2〉
f = 2LLRU

1 p |0〉
i , consistently with Section 9.3.2. Instead, if we

apply Sres-LRU to a leaked transmon (p |2〉
i = 1) we get p |2〉

f ≈ 1−Rsim+2LLRU
1 . By fixing Rsim =

R +2LLRU
1 we match the definition of R in Section 9.3.2 as well. The approximation is very

good for large R and low LLRU
1 , which is precisely the interesting regime for res-LRU that

we have explored.

DECODING

In this section we provide additional information on the UB and MWPM decoders [51, 72].
UB considers the 32 computational states that differ by a purely X error on top of |0〉L

and that are independent (i.e. they cannot be obtained from each other by multiplication
with an X -type stabilizer). At the end of each QEC cycle n, each possible final Z syndrome
is compatible with a pair of these states, where one can be associated with |0〉L and
the other with |1〉L as they differ by the application of any representation of XL. The
largest overlap of these two states with the diagonal of the density matrix at QEC cycle n
corresponds to the maximum probability of correctly guessing whether a XL error has
occurred or not upon performing a logical measurement of ZL. The latter is assumed
to be performed by measuring all data qubits in the {|0〉 , |1〉 , |2〉} basis and computing
the overall parity. To compute the parity we assume that a |2〉 is declared as a |1〉 since
decoders usually do not use information about leakage (and since measurements often
declare |2〉 as a |1〉 rather than as a |0〉). Then UB computes FL(n) by weighing this
probability with the chance of measuring the given final Z syndrome (conditioned on the
density matrix) and by summing over all possible syndromes. In other words, UB always
finds the correction that maximizes the likelihood of the logical measurement returning
the initial state, here |0〉L. As UB uses information generally hidden in the density matrix,
it gives an upper bound to the performance of any realistic decoder, which can at most
use the syndrome information extracted via the ancilla qubits.

MWPM tries to approximate the most likely correction by finding the lowest weight
correction, which is a good approximation when physical error rates are relatively low. As
the ancilla qubits can be faulty, the decoding graph is three dimensional. In particular,
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we allow for space-like edges corresponding to data-qubit errors, time-like edges corre-
sponding to ancilla-qubit errors and spacetime-like edges corresponding to data-qubit
errors occurring in the middle of the parity-check circuit. The weights are extracted with
the adaptive algorithm in Ref. [74] from a simulation (105 runs of 20 QEC cycles each)
without leakage and an otherwise identical error model. Similarly to UB, for decoding
we assume that a |2〉 is declared as a |1〉 since the standard MWPM does not account for
leakage.

9.7.2. LOGICAL ERROR RATE AS A FUNCTION OF THE LRU PARAMETERS

We study the variation in the logical error rate εL per QEC cycle as a function of the perfor-
mance parameters of the LRUs. Here we fix L1 = 0.5% as it is easier to visualize variations
in εL with a relatively large L1. The leakage-reduction rate R and the readout probabil-
ity pM (2|2) play similar roles for the res-LRU and π-LRU, respectively. In Fig. 9.9(a),(c)
one can see that this is the case and that the values of εL at the parameters used in Sec-
tion 9.3.4 (R = 95% and pM (2|2) = 90%) are very close to their best values (at least for
this system size). This shows that the advantages of a larger R or pM (2|2) are marginal.
We attribute this to the fact that leakage is exponentially suppressed with an already
quite large exponent. Furthermore, the parameters LLRU

1 and 1−pM (1|1) = pM (2|1), reg-
ulating the induced leakage, play similar roles as well, as Fig. 9.9(b),(d) show. We see
that εL is more sensitive to LLRU

1 and 1−pM (1|1) compared to R and pM (2|2). In particular
we see that εL is slightly larger at the parameters used in Section 9.3.4 (LLRU

1 = 0.25%
and 1−pM (1|1) = 0.5%) rather than at 0, although the difference is small.

9.7.3. EFFECT OF THE LEAKAGE CONDITIONAL PHASES ON THE LOGICAL

ERROR RATE

As defined in the main text the leakage conditional phases are the phases that a non-leaked
transmon acquires when interacting with a leaked one during a CZ. Here we denote them
asφL

flux andφL
stat depending on whether the lower or the higher frequency transmon of the

pair is leaked, respectively, and we use φL to indicate either of them. Furthermore, in this
section we use the notation |low-f. transmon,high-f. transmon〉. Note that for a CZ be-
tween two qutrits in principle there are 9 phases (φ00,φ01,φ10,φ11,φ02,φ20,φ21,φ12,φ22),
where the first 4 are fixed to 0,0,0,π, respectively. Of the 5 phases containing a |2〉 we
consider only two of them here, i.e.φL

stat =φ02−φ12 andφL
flux =φ20−φ21 as defined above.

This is because in our leakage model (see Section 8.10.2) we set to 0 the coherence be-
tween the computational and leakage subspace of each qutrit, motivated by the fact that
leakage is projected relatively fast and that the stabilizer measurements ideally prevent
any interference effect. This means that the individual phases are global phases, whereas
their difference cannot be gauged away when the non-leaked qubit is in a superposition
of |0〉 and |1〉.

For a flux-based CZ with conditional phase π for |11〉, ideally one should haveφL
flux = 0

and φL
stat =π as |02〉 acquires a conditional phase equal and opposite to |11〉 (see also Sec-

tion 8.2). If only |12〉 and |21〉 are coupled in the 3-excitation manifold, it holds φL
stat =

π−φL
flux. The strength of the repulsion times the CZ duration gives e.g. φL

flux ∼ π/4 for
the parameters in Table 8.2. However, |03〉 interacts with |12〉 and |21〉 and breaks the
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Figure 9.10: Variation of the logical error rate εL for different choices of leakage conditional phases φL . (a) εL
per QEC cycle for UB (shades of red) and MWPM (shades of green) versus L1, in the cases with: no LRUs
and both LRUs, each for all φL set to 0, π/2 or uniformly random in [0,π]. These results are extracted from
2×104 runs of 20 QEC cycles each per choice of parameters. Error bars are estimated using bootstrapping and
are mostly smaller than the symbol size. (b) The random values for φL used across this chapter. These values
are extracted from a uniform distribution in [0,π]. We have excluded negative values as ±φL corresponds to
the same chance of spreading a Z error under the twirling action of the parity-check measurements.

relationship above, for which we can consider φL
flux and φL

stat as effectively unconstrained.
The randomized values used across the main text are reported in Fig. 9.10(b). We use
14 values, of which 3 for φL

stat and 3 for φL
flux when each high-frequency data qubit is

leaked or interacts with a leaked ancilla qubit, respectively, and 8 only for φL
stat when each

ancilla qubit is leaked and interacts with a low-frequency data qubit (as low-frequency
data qubits cannot leak themselves).

In this section we study the dependence of the logical error rate εL on the leakage
conditional phases, without discussing how one would engineer the system to tune them
to certain values. The best-case scenario to minimize εL is to set all φL = 0, since no
Z rotations are spread then. Instead, the worst-case scenario corresponds to allφL =π/2,
since under the twirling effect of the parity-check measurements this corresponds to
spreading a Z error with 50% chance. Notice that, if all φL =π, overall the spread errors
amount to a stabilizer (except in the QEC cycle in which leakage occurs), so it is close to
the best-case scenario.

Figure 9.10(a) compares the logical performance for both UB and MWPM in the cases
where φL = 0, φL =π/2 and when they are random as in Fig. 9.5 and in the rest of this
chapter. First, one can notice that the performance of random φL is very close to the
worst-case scenario (φL =π/2). This is due to the fact that it is not necessary to spread an
error on every qubit with 50% chance each to cause a logical error with high probability.
Second, one can see that just tuning all φL = 0 without implementing LRUs is almost
as good (or even better) as using the LRUs when φL are random. We attribute this to
the fact that one of the major effects of the LRUs is to prevent correlated errors being
spread by a leaked qubit for many QEC cycles. Tuning φL = 0 achieves this as well, but it
still does not address the fact that the code distance is effectively reduced if a data qubit
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stays leaked and that the full stabilizer information is not accessible as long as an ancilla
qubit is leaked. Indeed, using LRUs even when φL = 0 always allows for a lower logical
error rate (see Fig. 9.10(a)). Furthermore, the reduction in distance and the corruption of
the stabilizer information suggest that a threshold would still likely be low without using
LRUs.

REFERENCES
[1] F. Battistel, B. Varbanov, and B. Terhal, Hardware-efficient leakage-reduction scheme

for quantum error correction with superconducting transmon qubits, PRX Quantum
2, 030314 (2021).

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo,
F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins,
W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann,
T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly,
P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,
D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov,
J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger,
V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White,
Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Quantum supremacy using
a programmable superconducting processor, Nature 574, 505–510 (2019).

[3] P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, I. Lauer, D. F. Bogorin, M. Brink, L. Capelluto,
O. Günlük, T. Itoko, N. Kanazawa, A. Kandala, G. A. Keefe, K. Krsulich, W. Landers, E. P.
Lewandowski, D. T. McClure, G. Nannicini, A. Narasgond, H. M. Nayfeh, E. Pritchett,
M. B. Rothwell, S. Srinivasan, N. Sundaresan, C. Wang, K. X. Wei, C. J. Wood, J.-B. Yau,
E. J. Zhang, O. E. Dial, J. M. Chow, and J. M. Gambetta, Demonstration of quantum
volume 64 on a superconducting quantum computing system, Quantum Science and
Technology 6, 025020 (2021).

[4] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D. Biswas, M. Newman, M. Li,
K. R. Brown, M. Cetina, and C. Monroe, Fault-tolerant operation of a quantum
error-correction code, (2020), arXiv:2009.11482 [quant-ph] .

[5] M. A. Rol, C. C. Bultink, T. E. O’Brien, S. R. de Jong, L. S. Theis, X. Fu, F. Luthi, R. F. L.
Vermeulen, J. C. de Sterke, A. Bruno, D. Deurloo, R. N. Schouten, F. K. Wilhelm, and
L. DiCarlo, Restless tuneup of high-fidelity qubit gates, Phys. Rev. Applied 7, 041001
(2017).

[6] Z. Chen, J. Kelly, C. Quintana, R. Barends, B. Campbell, Y. Chen, B. Chiaro,
A. Dunsworth, A. G. Fowler, E. Lucero, E. Jeffrey, A. Megrant, J. Mutus, M. Nee-
ley, C. Neill, P. J. J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C.
White, A. N. Korotkov, and J. M. Martinis, Measuring and suppressing quantum state
leakage in a superconducting qubit, Phys. Rev. Lett. 116, 020501 (2016).

http://dx.doi.org/10.1103/PRXQuantum.2.030314
http://dx.doi.org/10.1103/PRXQuantum.2.030314
http://dx.doi.org/ 10.1038/s41586-019-1666-5
http://dx.doi.org/ 10.1088/2058-9565/abe519
http://dx.doi.org/ 10.1088/2058-9565/abe519
http://arxiv.org/abs/2009.11482
http://dx.doi.org/10.1103/PhysRevApplied.7.041001
http://dx.doi.org/10.1103/PhysRevApplied.7.041001
http://dx.doi.org/ 10.1103/PhysRevLett.116.020501


9

242 REFERENCES

[7] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G.
Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M.
Martinis, Superconducting quantum circuits at the surface code threshold for fault
tolerance. Nature 508, 500 (2014).

[8] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, Procedure for systematically
tuning up cross-talk in the cross-resonance gate, Physical Review A 93, 060302 (2016).

[9] S. S. Hong, A. T. Papageorge, P. Sivarajah, G. Crossman, N. Didier, A. M. Polloreno,
E. A. Sete, S. W. Turkowski, M. P. da Silva, and B. R. Johnson, Demonstration of a
parametrically activated entangling gate protected from flux noise, Physical Review A
101 (2020).

[10] M. A. Rol, F. Battistel, F. K. Malinowski, C. C. Bultink, B. M. Tarasinski, R. Vollmer,
N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal, and L. DiCarlo, Fast, high-
fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic
superconducting qubits, Phys. Rev. Lett. 123, 120502 (2019).

[11] V. Negîrneac, H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira,
J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno,
and L. DiCarlo, High-fidelity controlled-Z gate with maximal intermediate leakage
operating at the speed limit in a superconducting quantum processor, Phys. Rev. Lett.
126, 220502 (2021).

[12] F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, Tunable Coupling Scheme for Implementing High-Fidelity Two-
Qubit Gates, Physical Review Applied 10, 054062 (2018).

[13] B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Z. Chen,
K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, S. Boixo,
D. Buell, B. Burkett, Y. Chen, R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina,
R. Graff, M. Harrigan, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi,
P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, M. McEwen,
X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman, M. Neeley, M. Niu, A. Petukhov, C. Quin-
tana, N. Rubin, D. Sank, V. Smelyanskiy, A. Vainsencher, T. C. White, Z. Yao, P. Yeh,
A. Zalcman, H. Neven, J. M. Martinis, and Google AI Quantum, Demonstrating a
continuous set of two-qubit gates for near-term quantum algorithms, Physical Review
Letters 125 (2020).

[14] M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O’Keeffe,
C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz, M. Marvian, A. Melville, B. M.
Niedzielski, Y. Sung, R. Winik, J. Yoder, D. Rosenberg, K. Obenland, S. Lloyd, T. P.
Orlando, I. Marvian, S. Gustavsson, and W. D. Oliver, Programming a quantum
computer with quantum instructions, (2020), arXiv:2001.08838 [quant-ph] .

[15] Y. Sung, L. Ding, J. Braumüller, A. Vepsäläinen, B. Kannan, M. Kjaergaard, A. Greene,
G. O. Samach, C. McNally, D. Kim, A. Melville, B. M. Niedzielski, M. E. Schwartz, J. L.

http://www.nature.com/nature/journal/v508/n7497/abs/nature13171.html
http://dx.doi.org/10.1103/PhysRevA.93.060302
http://dx.doi.org/10.1103/PhysRevA.101.012302
http://dx.doi.org/10.1103/PhysRevA.101.012302
http://dx.doi.org/ 10.1103/PhysRevLett.123.120502
http://dx.doi.org/10.1103/PhysRevLett.126.220502
http://dx.doi.org/10.1103/PhysRevLett.126.220502
http://dx.doi.org/ 10.1103/PhysRevApplied.10.054062
http://dx.doi.org/10.1103/PhysRevLett.125.120504
http://dx.doi.org/10.1103/PhysRevLett.125.120504
http://arxiv.org/abs/2001.08838


REFERENCES

9

243

Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Realization of high-fidelity CZ
and ZZ-free iSWAP gates with a tunable coupler, Phys. Rev. X 11, 021058 (2021).

[16] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N.
Stacey, and D. M. Lucas, High-fidelity preparation, gates, memory, and readout of a
trapped-ion quantum bit, Phys. Rev. Lett. 113, 220501 (2014).

[17] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen,
B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, Fast accurate state
measurement with superconducting qubits, Phys. Rev. Lett. 112, 190504 (2014).

[18] C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. C. S. Dikken, C. Dickel, R. F. L. Ver-
meulen, J. C. de Sterke, A. Bruno, R. N. Schouten, and L. DiCarlo, Active resonator
reset in the nonlinear dispersive regime of circuit QED, Phys. Rev. Appl. 6, 034008
(2016).

[19] J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti,
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10
CONCLUSION

10.1. SUMMARY AND DISCUSSION
In Section 1.1 we have identified lowering the error rates, scaling up, and keeping error
rates low while scaling up as the three encompassing challenges for quantum computing.
Focusing on superconducting quantum computing, in this thesis we have contributed
towards the first challenge, while keeping the other challenges in perspective for the
techniques that we introduced.

− In Chapter 6 we have demonstrated a high-fidelity, low-leakage controlled-phase
gate (Net Zero). This two-qubit gate can serve as a building block in a fully pro-
grammable quantum computer since it is history independent, thanks to its insen-
sitivity to long-timescale distortions. The Sudden Net Zero variant allows for easy
tuneup and conditional-phase tunability. The former is important for automatized
routines that are being implemented to tune up increasingly large processors [1, 2],
the latter can allow for the compilation of quantum algorithms with a lower gate
count [3]. Numerical simulations matched to experiment show that the gate perfor-
mance can be further improved by lowering flux-noise levels, as well as lowering
relaxation rates.

− In Chapter 7 we have discussed a gate-diagnostic method (Spectral Tomography)
that can be used to collect detailed information about the errors affecting a gate. In
particular, this method is resistant to state-preparation and measurement errors
thanks to the prescription of repeating the gate multiple times, which magnifies
gate errors while the other errors remain the same. The collected information
can be then used to address the most relevant noise sources identified. As the
method is non-scalable, it can reasonably be applied only to single- and two-qubit
gates. However, it is straightforwardly applicable to single- and two-qubit logical
gates, making it a tool to characterize logical noise channels even in large-scale
processors.
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− In Chapters 8 and 9 we have studied leakage in relation to quantum error correction
and improving the logical fidelity by either detecting leakage or removing it via
leakage-reduction units (LRUs).

In Chapter 8 we have first shown that even a small amount of remaining leakage
from the controlled-phase gate can have a profound impact on the logical perfor-
mance, taking the distance-3 rotated surface code as a case study in our numerical
simulations. We could attribute this to the fact that data-qubit leakage effectively
reduces the code distance and ancilla-qubit leakage corrupts the syndrome and
leads to a spread of correlated errors. To mitigate the effect of leakage on the code,
we developed Hidden Markov Models (HMMs) that detect leakage using the char-
acteristic syndromes that are likely the result of a qubit being leaked. In particular,
we highlighted the importance of measuring the |2〉 state, even with limited fidelity,
to be able to accurately detect ancilla-qubit leakage. By post-selecting out the
surface-code runs where the HMMs detect leakage, we could restore the logical
error rate below the memory break-even point.

While leakage detection can be used for the targeted application of LRUs or leakage-
aware decoding [4–9], post-selection is non-scalable. By bringing a leaked qubit
back to the computational subspace, LRUs are instead a scalable approach.

In Chapter 9 we proposed a scheme with two separate LRUs for data and ancilla
qubits. The res-LRU for data qubits uses the readout resonator, already available on
chip, as an energy sink onto which excitations are swapped from a leaked transmon.
The π-LRU for ancilla qubits is a conditional operation that brings |2〉 back to |1〉
based on the detection of a |2〉. We showed that the use of these LRUs significantly
restores the logical performance even when the LRUs are implemented with lim-
ited fidelity. The experimental requirements are a strong microwave drive for the
res-LRU and fast conditional feedback for the π-LRU. Implementing the former
with good performance will require a careful choice of qubit and resonator frequen-
cies (as well as tunable couplers potentially); implementing the latter will require
low-latency control electronics capable of applying conditional operations based
on the readout of either |0〉, |1〉 and |2〉 (in particular, this requires that operations
can be conditioned on more than one bit, as this can represent only two states).

To study the threshold of the surface code in the presence of LRUs in a realistic
setting, as an extension of this work, it will be necessary to implement efficient
simulations on the line of the ones described in Section 5.1.3 (see also Refs. [4–6]).

10.2. OUTLOOK
Let us now turn our attention towards some of the specific problems within the domain
of the three main challenges outlined in Section 1.1 (and recalled above). I think that
the following problems are the most critical and could eventually constitute a roadblock
towards building a useful superconducting quantum computer.

• Crosstalk and tunable couplers. As discussed in Section 3.2.7, crosstalk encom-
passes many different aspects. Here I focus on residual Z Z coupling. I believe that
tunable couplers are indispensable for mitigating this kind of crosstalk. Being able
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to isolate at will a qubit from other qubits and treating it as an atomic unit is key to
systematically scale up a quantum processor. Furthermore, tunable coupling al-
lows for a much more flexible choice of qubit frequencies and operation scheduling
(versus all the requirements in e.g. Ref. [10], determined by a fixed-coupling archi-
tecture). Many designs for tunable couplers have shown promising performance
and high on-off ratios [11–16]. However, the problem of the current generation of
tunable couplers is that, in a large processor with many qubits and tunable couplers
between them, the tuning of one coupler can affect the Hamiltonian of the circuit
and in turn affect the optimal tuning of the other. This makes it hard to achieve
the zero-coupling condition across all pairs simultaneously [17]. A possible avenue
is to use more than one control knob (usually the flux) per tunable coupler, even
though this is experimentally challenging since it is already hard to introduce a
single knob per tunable coupler (on top of all the control lines for the qubits).

Next to this, it is important to raise the accuracy and yield in fabrication [18], to
ensure that the fabricated qubits and couplers achieve their target parameters with
good-enough precision. Otherwise, qubits and couplers might not work as well as
intended.

• Real-time decoding and feedback. From a theoretical point of view, quantum er-
ror correction has been mostly studied by simulating a code and later passing the
syndrome data to a decoder to identify the most likely correction. In this way the
decoding algorithm can run for as long as needed. However, eventually the decoder
needs to run in real time, collecting syndrome information every QEC cycle and
providing a correction (or a Pauli-frame update) before the next logical (non-Pauli)
gate is applied. Note that simply the syndrome information amounts to 100 Mb/s
for a distance-10 surface code for a QEC-cycle time of 500 ns. Furthermore, while
decoding can be done per e.g. surface-code patch, interpatch communication is re-
quired to perform logical two-qubit gates (e.g. the CNOT via lattice surgery [19, 20]).
Decoding cannot even use all the available time since signals need to travel up and
down the fridge, although this takes at most a few tens of nanoseconds at the speed
of light (30 cm/ns). As a consequence, low latency, an efficient decoding algorithm
and a fast implementation of such an algorithm are all needed.

While many efficient decoding algorithms have been developed [21–23], convinc-
ing implementations are still lacking. Preliminary studies were conducted in
Refs. [24, 25] for the minimum-weight perfect-matching decoder (MWPM). Re-
cently, concrete micro-architectures have been proposed for the repetition code [26]
and the surface code [27] in the case of a lookup-table decoder, and for the Union-
Find decoder [28], mostly aimed at the surface code. Furthermore, a lookup-table
decoder and MWPM have been implemented in an FPGA in the DiCarlo lab [29],
with the potential to run in real time for at most the distance-3 surface code. Further
demonstrations on actual hardware are needed, with the potential to scale up to
higher-distance codes.

• Relaxation errors in large devices and scalability of the chip. In few-qubit (<
10) devices, transmons regularly reach relaxation times (T1) on the order of 50-
100 µs [30], and relaxation times beyond 100 µs are not so uncommon. However,
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in a 50+ qubit device like Google’s Sycamore [17], on average T1 = 15 µs, which
is a major issue (although this decrease in T1 does not seem to occur in IBM’s
processors [31], which use fixed-frequency transmons). Clearly, it is fundamental
to bring the T1 values (and also T2 values) found in small chips to the bigger ones,
otherwise the overall performance may get worse.

Apart for T1, which captures an average behavior, cosmic rays (see Section 3.2.3)
have been shown to be a devastating error source [32] causing chip-wide correlated
errors [33]. These cannot be dealt with error correction (unless the chip is really
large and the correlation length is smaller than the system size, or the system
is modular with multiple chips). Since these events occur every 10 seconds on
average [33], this severely restricts the extent of a quantum computation. Shielding
methods, a more modular design and, possibly, moving fridges to underground
facilities [34] might become necessary.

Furthermore, with the growing number of qubits in quantum processors, space
and heat load in a dilution refrigerator will become a limiting factor. This can be
partially compensated by better cable technology, multi-layer chips or a bigger
dilution refrigerator. Eventually, it might be necessary to connect multiple dilution
refrigerators with some kind of quantum links [35].

These are not the only problems that need to be addressed. In particular, optimizing
quantum algorithms to require less resources, as well as developing new qubits with
better isolation and insensitivity to errors [36], might be key steps. Furthermore, training
new students at the graduate and undergraduate levels is of paramount importance
since the quantum-computing field is evolving at a fast pace, with a high demand for
qualified people. Finally, lowering physical error rates as much as possible with control or
hardware techniques will of course continue to be beneficial to reduce the overhead for
quantum error correction. This thesis has contributed to this effort, hoping that quantum
computers will fulfill their promise of solving useful computational tasks.
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