

Delft University of Technology

The quadrature method
A novel dipole localisation algorithm for artificial lateral lines compared to state of the art
Bot, Daniël M.; Wolf, Ben J.; van Netten, Sietse M.

DOI
10.3390/s21134558
Publication date
2021
Document Version
Final published version
Published in
Sensors

Citation (APA)
Bot, D. M., Wolf, B. J., & van Netten, S. M. (2021). The quadrature method: A novel dipole localisation
algorithm for artificial lateral lines compared to state of the art. Sensors, 21(13), Article 4558.
https://doi.org/10.3390/s21134558

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/s21134558
https://doi.org/10.3390/s21134558

sensors

Article

The Quadrature Method: A Novel Dipole Localisation
Algorithm for Artificial Lateral Lines Compared to State of
the Art

Daniël M. Bot 1,* , Ben J. Wolf 2,3 and Sietse M. van Netten 3,*

����������
�������

Citation: Bot, D.M.; Wolf, B.J.;

van Netten, S.M. The Quadrature

Method: A Novel Dipole Localisation

Algorithm for Artificial Lateral Lines

Compared to State of the Art. Sensors

2021, 21, 4558. https://doi.org/

10.3390/s21134558

Academic Editor: Enrico Meli

Received: 10 May 2021

Accepted: 28 June 2021

Published: 2 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 I-BioStat, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium
2 Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands;

b.j.wolf@rug.nl
3 Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, Faculty of Science and

Engineering, University of Groningen, 9747 AG Groningen, The Netherlands
* Correspondence: jelmer.bot@uhasselt.be (D.M.B.); s.m.van.netten@rug.nl (S.M.v.N.)

Abstract: The lateral line organ of fish has inspired engineers to develop flow sensor arrays—
dubbed artificial lateral lines (ALLs)—capable of detecting near-field hydrodynamic events for
obstacle avoidance and object detection. In this paper, we present a comprehensive review and
comparison of ten localisation algorithms for ALLs. Differences in the studied domain, sensor
sensitivity axes, and available data prevent a fair comparison between these algorithms from their
original works. We compare them with our novel quadrature method (QM), which is based on a
geometric property specific to 2D-sensitive ALLs. We show how the area in which each algorithm
can accurately determine the position and orientation of a simulated dipole source is affected by (1)
the amount of training and optimisation data, and (2) the sensitivity axes of the sensors. Overall,
we find that each algorithm benefits from 2D-sensitive sensors, with alternating sensitivity axes as the
second-best configuration. From the machine learning approaches, an MLP required an impractically
large training set to approach the optimisation-based algorithms’ performance. Regardless of the
data set size, QM performs best with both a large area for accurate predictions and a small tail of
large errors.

Keywords: hydrodynamic imaging; dipole localisation; artificial lateral line; neural networks

1. Introduction

Artificial lateral lines (ALLs) are sensor arrays inspired by the biological lateral line
organ found in fish and amphibians. This organ enables fish to detect and locate moving
objects such as prey, predators, or social partners [1]. The ability to sense one’s environment
using a lateral line is sometimes called hydrodynamic imaging [2,3]. Two types of hydro-
dynamic imaging are distinguished: active hydrodynamic imaging, where fish use their
movement’s flow field to detect stationary obstacles; and passive hydrodynamic imaging,
where fish detect fluid flows generated externally. Both types of hydrodynamic imaging
have applications for ALLs. Active hydrodynamic imaging is useful for obstacle avoidance
of autonomous underwater vehicles (AUVs) [4]. Here, ALLs provide a complementary
sense for AUVs because—unlike cameras—they do not rely on visibility and—unlike
sonar—they do not actively emit a signal. Passive hydrodynamic imaging can be used for
tracking the location of objects—for instance, ships in a harbour—or detecting disturbances
near underwater installations.

Several dipole localisation algorithms have been developed for ALLs in the last
15 years [5–14]. These algorithms attempt to locate objects that move underwater using
the water flow pattern their movement generates. This process is analogous to solving the
inverse problem of hydrodynamic source localisation [15]. It is challenging to compare
these algorithms’ performance from their original works due to differences in experimental

Sensors 2021, 21, 4558. https://doi.org/10.3390/s21134558 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5495-4502
https://orcid.org/0000-0002-8024-5352
https://orcid.org/0000-0001-8855-8022
https://doi.org/10.3390/s21134558
https://doi.org/10.3390/s21134558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134558
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134558?type=check_update&version=3

Sensors 2021, 21, 4558 2 of 51

designs and conditions. For instance, some algorithms were evaluated for 2D localisa-
tion [5–10], whereas others localised sources in 3D [11–13]. Additionally, some algorithms
were evaluated in simulations [5,9], while other studies used physical sensors [6–8,10–14].
In particular, differences in the (simulated) sensor sensitivity and the areas in which sources
are located prevent the comparison of average or median prediction errors between studies
because the number of inaccurate predictions depends heavily on sensor sensitivity and
increases with the area’s size.

The present research compares ten dipole localisation algorithms via their ability to
determine an object’s state from velocity measurements simulated using potential flow [16].
In our study, this state refers to the 2D position and movement direction relative to an
array of flow sensors. The quality of these state estimates is compared using two analyses.
First, we determine the size of the area in front of the array in which these algorithms
accurately estimate an object’s state. This analysis allows an intuitive comparison of the
effective range of each algorithm. Secondly, we determine each algorithm’s distribution of
prediction errors, i.e., the differences between the actual and estimated state. This analysis
better indicates the reliability of each algorithm and provides a median error metric.

As our baseline, we use two localisation methods: a random predictor (RND) and an
off-the-shelf least square curve fit (LSQ) algorithm. The remaining algorithms are divided
into three categories. The first category contains three template-based algorithms. Template
matching [6] and linear constraint minimum variance (LCMV) beamforming [11,12] use a
set of velocity measurements of a single source at different known positions and movement
directions to locate a source. The continuous wavelet transform (CWT)—introduced for
dipole localisation by Ćurčić-Blake and van Netten [5]—is also a template-based algo-
rithm. This algorithm is based on the observation that a set of wavelets fully describes
the potential flow [16] velocity generated by a dipole source. The second category con-
tains artificial neural networks. A multi-layer perceptron (MLP) was used by Abdulsadda
and Tan [7] and Boulogne et al. [9]. The latter showed that an extreme learning ma-
chine (ELM) performed better than their MLP implementation in high signal-to-noise
conditions. The third category contains model-based algorithms. The first two, Gauss–
Newton (GN) and Newton–Raphson (NR), fit a potential flow model to measured velocity
values to predict a dipole’s position and movement direction [8]. Abdulsadda and Tan [8]
showed that GN consistently performed slightly better than NR, and both algorithms
outperformed LCMV beamforming.

There are several novel aspects of the present study. Firstly, all localisation algorithms
are extended to use various combinations of the velocity field’s parallel and perpendicular
components with respect to the sensor array. Several 2D sensitive fluid flow sensors
exist in the literature [17–20], which provide the orthogonal fluid flow component that is
not yet used by most dipole localisation algorithms. In addition, hair cells with varying
orientations in close proximity have been observed in the ear of fish [21] and on the body of
the Xenopus laevis frog (as cited in [1]). These varying orientations are thought to contribute
to the localisation of stimuli. Secondly, not only are both the position and direction of
movement of the source varied, their mutual effects on the prediction error are analysed
as well. Thirdly, we use a novel approach to compare the performance of the dipole
localisation algorithms, quantified by the area in which they correctly predict the position
and direction of movement of an object with a predefined accuracy. Fourthly, we extend
the template matching algorithm to a k-nearest neighbours (KNN) generalisation, where
k = 1 is equivalent to the template matching algorithm as referenced earlier [6]. Finally, we
introduce a novel model-based dipole localisation algorithm coined the quadrature method
(QM), which exploits geometric properties of a 2D-projection of a velocity field. We show
that the QM has state-of-the art localisation performance and how the movement direction
of a dipole can be estimated directly from velocity measurements and its estimated location.

The remainder of the present paper is structured as follows: Section 2 explains the
fluid flow simulation, our methods of analysis, and the dipole localisation algorithms.
Section 3 presents the results of both analysis methods, providing error distributions of the

Sensors 2021, 21, 4558 3 of 51

algorithms as well as the total area with median errors below predefined levels of accuracy.
Section 4 places our findings in the context of previous work. Section 5 summarises our
contributions and conclusions.

2. Materials and Methods

In the following subsections, we describe the dipole flow field, the simulation environ-
ment, the conditions used for our analyses, each dipole localisation algorithm, and their
hyperparameter optimisation strategy.

2.1. The Dipole Flow Field

Fluid flows were computed for a small sphere (radius a = 1 cm) vibrating with a
fraction of its size (amplitude A = 2 mm), which generates a dipole field [16]. The dipole
is the most informative component of a hydrodynamic stimulus for source localisation
with ALLs because the higher terms of a multipole expansion decay with distance more
quickly [22]. The lower term—the monopole—is measurable at larger distances. However,
it is driven by changes in an object’s size, so it is less relevant for localising moving objects.
The dipole stimulus has become a popular source for studies with ALLs [5–9,13,14,23–28].

A potential flow model was used to simulate fluid flows produced by a sphere, usually
referred to as a dipole field. This model was utilised in several other studies [9,13,25,28]
and its usefulness is supported by experimental findings in fish lateral line research [5,25].
Potential flow velocity v is computed by [16]:

v =
a3

2||r||3

(
−w + 3r

(w× r)
||r||2

)
, (1)

where a is the radius of the sphere, w =
〈
wx, wy

〉
are the instantaneous velocity components

of the moving sphere in 2D, and r = s− p is the location of the sensor s = 〈x, y〉 relative
to the source p = 〈b, d〉. The dipole’s position p(t) and velocity w(t) over time were
computed as:

p(t) = p0 + A
[

cos (ϕ)
sin (ϕ)

]
sin (2π f t), (2)

and

w(t) =
dp(t)

dt
= 2π f A

[
cos (ϕ)
sin (ϕ)

]
cos (2π f t), (3)

where A is the amplitude and f the frequency of the oscillation, p0 is the average position
of the source, ϕ is the azimuth angle of the motion, and t indicates time.

We treat localisation as recovering the source’s average position p0 from ALL ve-
locity measurements over a period of time. The source’s movement during this period
did not influence our results because there were an integer number of oscillations in
each period. In other words, p0 corresponded precisely with the average position in the
measurement segments.

Even though a unique mapping exists between source states and their velocity profiles—
i.e., the patterns an infinite continuous linear array of flow sensors would measure—the
inverse problem is challenging because sensor arrays only capture a discrete segment
of the velocity profile, which may not contain the informative zero-crossings or peaks.
Figure 1 shows the parallel (vx) and perpendicular (vy) velocity profiles relative to the
sensor array. These velocity profiles broaden and their amplitude decays with the distance
of the source, reducing the information captured by a fixed-sized ALL. 2D sensitive sensors
increase the chance of capturing one of the velocity profile’s more informative points
because the zero-crossings of one velocity component are located near the peaks of the
other velocity component.

Sensors 2021, 21, 4558 4 of 51

−2 −1 0 1 2

𝑥 − 𝑏 (m)

−1.0

−0.5

0.0

0.5

1.0

𝑣𝑥
(n

or
m
al
is
ed

)

0∘

80∘ 160∘
240∘

320∘

(a)

−2 −1 0 1 2

𝑥 − 𝑏 (m)

−1.0

−0.5

0.0

0.5

1.0

𝑣𝑦
(n

or
m
al
is
ed

)

0∘

80∘

160∘

240∘ 320∘

(b)
Figure 1. Normalised continuous velocity profiles for five movement directions (indicated) of a source at d = 1 m from the
sensor array’s centre: (a) vx and (b) vy. The sensors are located along the x axis and b is the source sphere is x position in m.

Another challenge arises in the movement direction estimation. The velocity profiles
of objects in the same place but moving in opposite directions differ only in their sign. Con-
sequently, some of the dipole localisation algorithms struggle to differentiate between these
source states. We employ a post-processing step to improve these algorithms’ movement
direction estimation (see Section 2.5).

2.2. Simulation Environment

Eight sensors were simulated, based on the configuration of Wolf et al. [10]. The sen-
sors were placed on the x-axis, centred around x = 0. The length of the sensor array was
L = 40 cm, with 5.71 cm between sensors. The source sphere had a radius of a = 10 mm
and moved with an amplitude of A = 2 mm at a fixed frequency of f = 45 Hz. Similar fre-
quency values have been used in the literature: 40 Hz in [7,8,23], 45 Hz in [13,27], and 50 Hz
in [26,29]. The source’s radius and vibration amplitude are comparable to the work of
Abdulsadda and Tan [7,8,24] (a = 9.5 mm and A = 1.91 mm). Figure 2 shows a schematic
view of the present configuration. The source sphere was located between x = ±0.5 m and
from y = 0.025 m to y = 0.525 m, ensuring its edge was always at least 15 mm away from
the closest sensor’s centre. The orientation of the source oscillation ranged from ϕ = 0 rad
to ϕ = 2π rad. For each measurement, the fluid velocity at the sensors was simulated for
a duration of T = 1 s and sampled at 2048 Hz, comparable to the values used by Pandya
et al. [6] (T = 0.5 s at 2048 Hz). The simulated sensors had a Gaussian sampled velocity-
equivalent noise of σ = 1.0× 10−5 m s−1. This value was chosen to be in the top five most
sensitive sensors reported by Jiang et al. [30]: 2.5× 10−6 m s−1 [31], 5× 10−6 m s−1 at reso-
nance [20], 8× 10−6 m s−1 [32], 8.2× 10−6 m s−1 [33] and 2× 10−4 m s−1 [34]. The resulting
signal to noise ratios (SNRs) are shown for the fifth sensor from the left in Figure 3.

Sensors 2021, 21, 4558 5 of 51

500 mm

1000 mm

400 mm

d

b

ϕ

vy

vx

Figure 2. A schematic view of the simulated environment. The source sphere (green) has a radius
of 1 cm and is shown to scale. A possible movement direction is shown by the arrow (not in scale).
The sensor locations are shown in blue. Parallel vx and perpendicular vy velocity components are
indicated at the right-most sensor (not to scale). The area in which the source sphere is positioned is
offset by 25 mm from the array location, ensuring a minimal distance of 15 mm between the source’s
edge and closest sensor’s centre.

−0.5 −0.2 0 0.2 0.5
𝑥 (m)

0
0.1

0.3

0.5

𝑦
(m

)

𝑣𝑥

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

𝜑 (rad)

0.2
0.4

𝑦
(m

)

−0.5 −0.2 0 0.2 0.5
𝑥 (m)

0
0.1

0.3

0.5

𝑦
(m

)

𝑣𝑦

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

𝜑 (rad)

0.2
0.4

𝑦
(m

)

10

30

50

70

90

SN
R
(d

B)

10

30

50

70

90

SN
R
(d

B)

Figure 3. The signal to noise ratio (SNR) of both velocity components measured by the fifth sensor
(x = 2.86 cm). The top row shows contours of the median SNR in cells of 2× 2 cm2. The bottom
row shows the median SNR’s polar contours in cells of 0.02π rad × 2 cm for source states with an
x-coordinate between x = −7.14 cm and x = 12.86 cm, indicating how the movement direction of a
dipole ϕ influences the SNR. Simulated potential flow measurements (Equation (1)) and the same
measurements with additive Gaussian distributed noise values (σ = 1.5× 10−5 m s−1, µ = 0 m s−1)
were used to compute the SNR. Specifically, the SNR was computed as the frequency power ratio
between the noisy measurements and noise floor at the source frequency (f = 45 Hz). The frequency
power was computed by a discrete Fourier transform (DFT) using a Hamming window.

Sensors 2021, 21, 4558 6 of 51

2.3. Performance Analyses

Two methods of analysis were employed in this research to compare the performance
of the dipole localisation algorithms. Analysis Method 1 varied the number of measure-
ments the algorithms could use to train and optimise their hyperparameters. Not every
algorithm requires training or has hyperparameters to optimise. For the algorithms that do
not have a training phase, we expect a consistent performance regardless of the amount of
data. The other algorithms are expected to improve as the amount of training data increases.
In this analysis method, all sensors were sensitive to both the parallel and perpendicular
velocity component. Analysis Method 2 varied which velocity components were measured
by the sensors: (x + y) both components on all sensors, (x|y) alternating vx and vy for
subsequent sensors, (x) only vx by all sensors, (y) only vy by all sensors. In this analysis
method, the largest training and optimisation set was used.

The best performing algorithms based on the two analysis methods were also evaluated
using higher velocity-equivalent noise levels to show how they perform on sensors with
a lower SNR. The increased noise levels (σ) were: 1.0× 10−3 m s−1 and 1.8× 10−2 m s−1

based on [35,36], respectively, as cited in [30]. 1.0× 10−4 m s−1 was added to bridge the
gap with the analysis methods’ noise-level, which was 1.0 × 10−5 m s−1. All sensors
were sensitive to both the parallel and perpendicular velocity component, and the largest
training set was used in this comparison.

In all analysis methods, the algorithms’ predictions were recorded for each measure-
ment in the test set. A source state with a unique combination of position p = 〈b, d〉 and
movement direction ϕ was used to generate each measurement. The error of the predicted
position Ep (m) and movement direction Eϕ (rad) were computed as:

Ep(P̂, P) =
√
(b̂− b)

2
+ (d̂− d)

2
, (4)

and
Eϕ(P̂, P) = |atan2 (sin (ϕ̂− ϕ), cos (ϕ̂− ϕ))|, (5)

where P = 〈b, d, ϕ〉 are the actual properties of a test state and P̂ =
〈

b̂, d̂, ϕ̂
〉

is the predic-
tion based on the test state’s velocity measurements. The areas in which the localisation
algorithms’ median position errors were lower than 1 cm, 3 cm, 5 cm, and 9 cm were com-
puted by discretising the simulated domain in 2× 2 cm cells. The areas for the movement
direction error were computed similarly with 0.01π rad, 0.03π rad, 0.05π rad, 0.09π rad.

The training and test sets contained randomly sampled source states. Poisson Disc
sampling [37] was used to ensure an even spread of states over the simulated domain.
The minimum distance between states Ds controlled the number of source states in each set.
This distance was computed as the Euclidean distance in the x–y–ϕ/2π space containing
all possible source states. It can be interpreted as follows: when two states have the same
position, their movement direction differs by at least 2πDs rad; when they have the same
movement direction, their position differs by at least Ds m. The orientation dimension was
divided by 2π to balance the number of positions and orientations considered. Table 1
shows the minimum sampling distance, the resulting number of states, and the average
minimum distances in terms of position and orientation for each data set. The values of Ds
were chosen in terms of the source radius and correspond to the thresholds applied to the
position and movement direction errors.

Sensors 2021, 21, 4558 7 of 51

Table 1. An overview of the data sets used in this study. The minimum distance between samples
Ds controls the number of source states. A source state is specified by a position p and orientation
ϕ. The distance between two states was computed as the Euclidean distance in the combined
x–y–ϕ/2π space containing all possible combinations of source positions and movement directions.
The orientation dimension was divided by 2π to balance the number of positions and orientations.
The testing data set has a different number of source states than the training set with Ds = 0.01, due
to the randomness of Poisson Disc sampling [37]. The average distance to the closest neighbour
within each data set is indicated for both the position and orientation to support the interpretation
of Ds.

Type Min. Sample
Distance (Ds) Num. States Avg. Min Ds,p (m) Avg. Min |2πDs,ϕ| (rad)

training 0.09 169 2.76× 10−2 1.81× 10−2

training 0.05 874 1.21× 10−2 3.55× 10−3

training 0.03 3796 5.72× 10−3 8.28× 10−4

training 0.01 90,435
testing 0.01 90,502

2.4. Parameter Optimisation Approach

Several of the dipole localisation algorithms have hyperparameters, which can be
varied to fine-tune their performance. A single error metric that combines and balances
both the position and movement direction is required to optimise these parameters. Given
that we compare the dipole localisation algorithms based on the area in which they can
accurately predict an object’s state, the hyperparameter optimisation process should pri-
oritise perfecting accurate predictions over reducing the error of inaccurate predictions.
Therefore, we used a normalised absolute error metric Enorm:

Enorm(P̂, P) =
|b̂− b|

1 m
+
|d̂− d|
0.5 m

+
|Eϕ(P̂, P)|

2π rad
, (6)

where P = 〈b, d, ϕ〉 are the properties of the test state and P̂ =
〈

b̂, d̂, ϕ̂
〉

is the prediction.
Compared to an error metric based on the Euclidean distance, the minimisation of Enorm is
less sensitive to predictions with a large error.

Algorithms that required training were optimised using 5-fold cross-validation (80%
training/20% validation split). The other algorithms used the entire training set for a single
validation pass. The hyperparameter values that minimised the mean validation error
Enorm were used in the evaluation with the withheld test set.

Appendix A provides the optimal values of all hyperparameters for each condition
of the first two analysis methods. In Analysis Method 3, the algorithms used the optimal
values of Analysis Method 1’s Ds = 0.01 condition.

2.5. Dipole Localisation Algorithms

Each dipole localisation algorithm had access to a training set T = {
〈
V i, Pi〉}N

i , where
V i

(sensors×time) are the velocity measurements over time and Pi =
〈
bi, di, ϕi〉 the state of the

ith training dipole. The velocity measurements contain values for vx and vy depending on
analysis variation. The to-be-predicted velocity profile is denoted as Ṽ(sensors×time).

Not every algorithm explicitly used the time component of the velocity measurements.
When required, the time dimension was averaged out by computing a DFT of the signal at
each sensor. The magnitude of the 45 Hz components multiplied by the sign of their phase
reconstructs the velocity signal over the sensors v(sensors×1). Abdulsadda and Tan [24] used
this method—without multiplying the sign of the phase—to reduce the influence of noise.
A Hamming window was used for computing the DFT.

In the following subsections, each dipole localisation algorithm is described. Table 2
provides a summary of their properties.

Sensors 2021, 21, 4558 8 of 51

Table 2. Properties of the dipole localisation algorithms. The ‘Limited to domain’ column indicates whether the algorithm
can produce predictions outside the simulated domain (see Figure 2). The ‘Limited to sample’ column indicates whether the
algorithm is able to produce a prediction that is not present in the training set.

Algorithm Type Training Hyperparameters Limited to Domain Limited to Sample

RND — no no yes no
LCMV [12,13] template-based yes no yes yes

KNN template-based yes yes yes no
CWT [5] template-based yes yes yes no

ELM [9,10] neural network yes no no no
MLP [7,9] neural network yes no no no

GN [8] model-based no yes yes no
NR [8] model-based no yes yes no
LSQ model-based no yes yes no
QM model-based no yes yes no

2.5.1. The Random Predictor (RND)

The random predictor is used as a baseline for comparing performance. The algorithm
does not use the training set T nor the to-be-predicted velocity measurement Ṽ . Instead,
it generates a uniform random position and movement direction within the simulated
domain (see Figure 2) for every test state.

2.5.2. Linear Constraint Minimum Variance (LCMV) Beamforming

LCMV beamforming was introduced for dipole localisation by Yang et al. [12] and
Nguyen et al. [13]. The algorithm computes a prediction by evaluating an energy value Ei

of each source state in the training set T [12,13]:

Ei =
1

viT R−1vi
, (7)

where R = Ṽ Ṽ T is the covariance of the to-be-predicted source state, and vi is the ith train-
ing source’s velocity measurement with the time dimension averaged-out. The position
and movement direction of the training source with the highest energy value is used as
prediction P̂ =

〈
b̂, d̂, ϕ̂

〉
. LCMV is not able to differentiate between sources at the same

position but with opposite orientations. To solve this issue, we computed the predicted
state’s expected potential flow values for both the predicted and opposite movement direc-
tion. The movement direction with the smallest difference to the measured velocity was
used as the final estimate.

2.5.3. K-Nearest Neighbours (KNN)

The KNN algorithm generalises the template matching approach used by Pandya et al. [6].
KNN computes a prediction by finding the k training states with the most similar velocity
measurements V i compared to the to-be-predicted source’s measurements Ṽ . Before
computing the Euclidean distance between the velocity measurements, the time dimension
was averaged out from both the training measurements and the measurement of the to-be-
predicted source (see Section 2.5). Then, all velocity measurements were normalised by
their maximum absolute value. Finally, the average position and movement direction of
the k closest training states were computed and used as prediction P̂ =

〈
b̂, d̂, ϕ̂

〉
. The value

of k was optimised, ranging from k = 1 to k = 20.

2.5.4. The Continuous Wavelet Transform (CWT)

The CWT was introduced for dipole localisation by Ćurčić-Blake and van Netten [5].
The algorithm is based on the observation that potential flow and the pressure gradient
along a lateral line can be expressed as wavelets. As in Wolf and van Netten [14], we extend

Sensors 2021, 21, 4558 9 of 51

the family of wavelets to include the perpendicular velocity component. Note, the coordi-
nate system used here is slightly different. Deriving the wavelets from the potential flow
formula (Equation (1))—using the approach of Ćurčić-Blake and van Netten [5]—finds (see
Appendix B for the derivations):

vx =
a3||w||

2|y− d|3 (ψe cos (ϕ) + ψo sin (ϕ)),

vy =
a3||w||

2|y− d|3 (ψo cos (ϕ) + ψn sin (ϕ)),
(8)

with

ψe =
2ρ2 − 1

(ρ2 + 1)(5/2)
, (9)

ψo =
3ρ

(ρ2 + 1)(5/2)
, (10)

ψn =
2− ρ2

(ρ2 + 1)(5/2)
, (11)

ρ =
rx

ry
=

x− b
y− d

, (12)

where a = 1 cm is the radius of the source, w =
〈
wx, wy

〉
is the movement velocity of the

source, r = s− p is the relative location of the sensor s = 〈x, y〉 from the perspective of the
source p = 〈b, d〉, and ϕ is the azimuth angle of the motion relative to the sensor array.

To compute a prediction, the CWT uses the to-be-localised velocity measurement with
the time dimension averaged out ṽ (see Section 2.5) and the source positions pi = 〈b, d〉
in the training set T . Note that the CWT does not use the training dipoles’ velocity mea-
surements or movement directions. Instead, it computes the values of the wavelets for
each position in the training set. These values were evaluated for an extended sensor
array matching the simulation domain’s width and normalised by their maximum abso-
lute value. Only the values at the eight sensors were kept after the normalisation step.
From these values, a vector was constructed for each position pi = 〈b, d〉 in the training set
T , containing four CWT coefficients: one for each combination of velocity component and
wavelet. The peak of a Gaussian surface fitted to this vector’s magnitude Wv(pi) was used
to estimate the sources’ position p̂ = 〈b, d〉. This fit was constrained to have a peak within
the simulated domain (see Figure 2), and only Wv’s values between a factor tmin and tmax
of its maximum were used for the fit. The values of tmin and tmax were optimised, ranging
from 0 to 1 under the constraint that tmin < tmax. The movement direction was estimated
as the circular mean of:

ϕ̂x = − atan cx
Wvo

x(p̂)
Wve

x(p̂)
,

ϕ̂y = − atan cy
Wvn

y(p̂)
Wvo

y(p̂)
,

(13)

where Wvm
n (p̂) is the CWT coefficient of ṽn=(x or y) with ψm=(e, o, or n). Appendix C shows

how these equations were derived and provides the analytical values of cx and cy. Unfor-
tunately, the values of cx and cy can be shown to depend on the source position for our
simulated finite and discontinuous sensor array. Therefore, we optimised the values of
cx (between 0.5 and 1) and cy (between 0.3 and 0.9). Consequently, the estimation of the
movement direction was optimised for the positions where the CWT is accurate.

In total, four hyperparameters were optimised for the CWT (tmin, tmax, cx, cy). The best
combination of values was determined in 30 iterations of the Bayesian optimisation algo-
rithm provided by MATLAB [38].

Sensors 2021, 21, 4558 10 of 51

2.5.5. The Extreme Learning Machine (ELM)

The ELM is a neural network designed to provide “the best generalisation perfor-
mance at extremely fast learning speed” [39]. An ELM is a single layer feed-forward
network with randomly initialised weights on the hidden layer. These weights are not
changed during training. To find the optimal weights for the output layer, the ELM can
be treated as a linear system because the input weights and activation function are fixed.
The online sequential ELM variant (OS-ELM) [40] was used to support iterative training.
Random initial weights were generated, and the network was trained on the training set
T . The velocity measurements were pre-processed by averaging out the time dimension
and normalising with their maximum absolute value. Rectified linear units were used
as hidden nodes, as recommended in Goodfellow et al. [41] (p. 168). The layer size n̄ of
the ELM was optimised using 101 values spaced logarithmically ranging from n̄ = 10 to
n̄ = N, where N is the number of training measurements in the training set T (see Table 1).
The parameter sweep was terminated for the first value of n̄ for which the ELM could not
be trained due to a singular matrix inversion.

2.5.6. The Multi-Layer Perceptron (MLP)

An MLP was implemented to determine how much better a high capacity network
performs compared to the ELM. Rectified linear units were used as hidden nodes, as rec-
ommended in Goodfellow et al. [41] (p. 168). Linear activation functions were used
on the input and output nodes. The weights of the network were initialised using nor-
malised initialisation, introduced by Glorot and Bengio [42]. Bias-weights were initialised
to zero and kept constant during training, essentially disabling them. The network was
trained to minimise the mean absolute error (MAE) between the predicted source states
P̂i =

〈
b̂i, d̂i, ϕ̂i

〉
and actual states Pi =

〈
bi, di, ϕi〉. This error metric differs from Enorm

(Equation (6)) because the MAE does not normalise the individual dimensions and does
not consider the circular nature of ϕ.

As indicated earlier, 80% of the training set T was used for training, the remainder
for validation. Each velocity measurement was pre-processed by averaging out the time
dimension and normalising by its maximum absolute value. The Adam [43] optimisation
algorithm was used with the recommended values for the gradient decay factor ρ1 = 0.9,
the squared gradient decay factor ρ2 = 0.999, and denominator offset δ = 10−8 [41] (p. 301).
Weight decay was applied with a factor of 10−4. A decay factor of 0.1 was applied to the
learning rate ε every 10 epochs. The remaining 20% of the training set was used to compute
a validation error every 50 iterations. The validation set and training set were each shuffled
every epoch. The training was stopped when the validation error did not reach a new
minimum in the last 5 evaluations, or the number of epochs exceeded 500. The minibatch
size was 2048. The network was pre-trained in three stages to improve the performance
on source states close to the sensors, first using states within 20 cm, then 40 cm, and finally
60 cm of the origin.

Three hyperparameters were optimised: the learning rate ε ranging from ε = 10−4

to ε = 10−1, the number of layers n ranging from n = 1 to n = 4, and the layer sizes n̄
ranging from n̄ = 16 to n̄ = 1024. Each layer had the same number of nodes to simplify
the optimisation. The best combination of parameters was determined in 30 iterations of
the Bayesian optimisation algorithm provided by MATLAB [38].

2.5.7. The Gauss–Newton (GN) Algorithm

GN was implemented for dipole localisation by Abdulsadda and Tan [8]. The algo-
rithm does not use the training set T . Instead, it iteratively fits a potential flow model to
the absolute value of the to-be-predicted source state’s velocity measurements with the
time dimension averaged out |v̂|. Let θ0 = 〈b0, d0, ϕ0〉 be an initial estimate. Then the next
iteration is given by [8]:

Sensors 2021, 21, 4558 11 of 51

θk+1 = θk + λ
(
∇|v(θk)|T∇|v(θk)|

)−1
∇|v(θk)|T(|v̂| − |v(θk)|), (14)

where λ is a step size parameter, and v(θk) is the potential flow of a source state θk
computed using Equation (1). The algorithm terminates when the change in θ is smaller
than ε = 1× 10−3, the number of iterations exceeds 100, or the matrix inversion could not
be computed due to a singular matrix. The gradient of |v(θk)| was estimated numerically
using a step size of δ = 1× 10−3. The step size was λ = 1, because every iteration solves a
linearised version of the fitting problem (see [8]).

The simulated domain’s centre was used as the initial estimate (b0 = 0 m and
ϕ0 = π rad). However, the centre of the d-domain may not be the optimal value for d0
because states close to the sensors are typically localised more accurately, and the distance
between the actual source position and the initial estimate influences the convergence of
GN [8]. Therefore, the value of d0 was optimised and chosen from the range d0 = 0.025 m
to d0 = 0.525 m, with a step size 0.025 m. Differently from Abdulsadda and Tan [8],
we applied an upper and lower bound on θk. After every iteration, the values of bk and
dk were clipped to the simulated domain (see Figure 2), and a modulo 2π operation was
applied to ϕk.

A single post-processing step was performed to improve the movement direction
estimation. GN is not able to differentiate between sources at the same position with
opposite orientations because it uses the absolute velocity measurements to fit a potential
flow. To solve this issue—as with the LCMV beamforming algorithm—we computed
the predicted state’s expected potential flow values for both the predicted and opposite
movement direction. The movement direction with the smallest difference to the measured
velocity was used as the final estimate.

2.5.8. The Newton–Raphson (NR) Algorithm

NR was also introduced for dipole localisation by Abdulsadda and Tan [8]. The algo-
rithm is very similar to GN; only the hyperparameter optimisation and update step are
different. Let θ0 = 〈b0, d0, ϕ0〉 be an initial estimate. Then, the next iteration is given by [8]:

θk+1 = θk − λG(θk)
−1g(θk), (15)

with
g(θ) = ∇|v(θ)|T(|v̂| − |v(θ)|), (16)

and

G(θ) =
∂g(θ)

∂θ
, (17)

where λ is a step size parameter, v(θk) is the potential flow of a source θk computed using
Equation (1), and |v̂| is the absolute value of the to-be-predicted source state’s velocity
measurements with the time dimension averaged out. The gradient g(θ) and Hessian G(θ)
were estimated numerically with a step size of δ = 1× 10−3. The step size λ, stopping
conditions, bounds check, and initial estimate were the same as for GN. Different from GN,
a norm limit l was applied to the change in θ in each iteration. The value of l was optimised,
ranging from l = 0.1 to l = 1. The best combination of d0 and l was determined in
30 iterations of the Bayesian optimisation algorithm provided by MATLAB [38]. The same
post-processing step was applied as in GN, to improve the movement direction estimation.

2.5.9. The Least Square Curve Fit (LSQ) Algorithm

The LSQ predictor was implemented as another baseline for comparing performance.
The algorithm does not require training and does not have hyperparameters to optimise.
As a result, the training set T is not used by LSQ. Therefore, the number of training states
does not influence the performance of LSQ. Consequently, the algorithm is only used in
the second analysis method.

Sensors 2021, 21, 4558 12 of 51

LSQ computes a prediction using the lsqcurvefit function from MATLAB [38]. The algo-
rithm fits a potential flow model v(θ) (Equation (1)) to v̂: the to-be-predicted source state’s
velocity measurement with the time dimension averaged out. The lsqcurvefit function
implements the trust-region-reflective algorithm (see [44]). Lower and upper bounds were
provided for all elements of θ = 〈b, d, ϕ〉, to limit their values to the simulated domain
(see Section 2.2). Gradients were estimated numerically by lsqcurvefit, using a step size of
δ = 1× 10−3. The algorithm terminated when the number of iterations exceeded 100 or the
change in θ was smaller than ε = 1× 10−3. The function and optimality tolerance checks
were set to machine-precision. The initial estimate θ0 is identical to GN.

2.5.10. The Quadrature Method (QM) Algorithm

QM is a newly proposed localisation algorithm that takes advantage of 2D sensitive
sensors. The algorithm combines measurements of vx and vy to construct a curve, ψquad,
that has characteristics that are nearly independent of the orientation of a source:

ψquad =

√
v2

x +
1
2

v2
y. (18)

Combining vx and vy in this way is somewhat analogous to computing the overall ampli-
tude of two quadrature time signals. Appendix D explains the properties of the quadrature
curve in more detail. Summarising, the factor 1/2 can be shown to negate the influence
of the orientation ϕ at the maximum of the curve, allowing for an estimate of the lateral
position b that is virtually independent of the orientation ϕ. The distance of the source d is
linearly related to a measure of the width of ψquad. Two so-called anchor points ρ±anch are
used to measure this width. These anchor points are located where ψquad takes a value of
about 0.458 times the curve’s maximum and their location is almost independent of the
dipole’s orientation. Note, ρ (Equation (12)) describes a source state’s location along the
sensor array normalised by its distance. Practically, though, the locations of these anchor
points are estimated in terms of x. Given the location of the anchor points, the source
distance d is computed as:

d =
1

1.79
(ρ+anch − ρ−anch). (19)

In practice, the locations of the anchor points were estimated by linearly interpolating
ψquad between the two sensors where ψquad intersected with 0.458 times its maximum value.

An accurate estimate of the movement direction ϕ can be computed directly from the
measured velocity values once the source state’s position p = 〈b, d〉 is known. For this pur-
pose, the measured velocity is analysed using the wavelets from the CWT (see Section 2.5.4).
Figure 4 visualises the wavelets and their form in a 3D ψe–ψo–ρ space. The movement direc-
tion can be recovered from ψe–ψo slices of this 3D space at the sensor locations (Figure 4c).
In these slices, the wavelets and the measured velocity are vectors (~ψe, ~ψo, and ~vx) with
lengths corresponding to their values at the sensor. Note that all these values are known
because the wavelets can be computed from the estimated position. The angle between ~vx
and ~ψe corresponds to the to-be-predicted movement direction ϕ. To compute ϕ, we use the
vector combination of the wavelets ~ψenv = ~ψe + ~ψo, which has a length ψenv =

√
ψ2

e + ψ2
o .

The angle between ~ψenv and ~ψe is ϕ′ = atan ψo/ψe. The difference between ϕ and ϕ′ is
α = acos vx/ψenv because vx is a linear combination of the two wavelets. Consequently,
the movement ϕ can be estimated using:

ϕ = ϕ′ ± α, (20)

Depending on the source’s position and movement direction and the sensors’ location,
α should be added or subtracted from ϕ′. Therefore, two estimates were computed for each
sensor’s vx measurement. The circular median of all sixteen estimates was used as final
prediction. This estimation approach also works for vy when using ψo and ψn in place of
ψe and ψo.

Sensors 2021, 21, 4558 13 of 51

The predictions based on the anchor points’ estimated locations are limited because
the spatial resolution of the sensor array limits the accuracy of the anchor point location
estimation. In addition, one or both anchor points may not be within the measurable range
of the ALL.

A refinement step was introduced to improve the predictions. First, the estimate of
the position was improved by fitting a potential flow model to ψquad. The fit was computed
using the lsqcurvefit function from MATLAB [38]. The position and orientation estimates
computed using the anchor points were used as starting estimate θ0 = 〈b0, d0, ϕ0〉. Lower
and upper bounds were provided for all elements of θ. Gradients were estimated numeri-
cally by lsqcurvefit, with a step size of δ = 1× 10−3. The fit procedure terminated when
the number of iterations exceeded 10, or the change in θ was smaller than ε = 1× 10−3.
The function and optimality tolerance checks were set to machine precision. Then, the ori-
entation was re-estimated using the improved position estimate. The complete refinement
step was repeated four times, each iteration using the previous estimated position and
orientation as the starting point.

𝜌

𝜓𝑒

−𝜓𝑜

(a)

𝜌𝜓𝑒

−
𝜓

𝑜

⃗𝜓𝑒𝑛𝑣

(b)

~ψo

~ψe

~vx

~ψenv

ϕ

ϕ
α ϕ′

(c)

Figure 4. Graphical illustration of the movement direction estimation from the measured velocity and the source’s position
p = 〈b, d〉. (a) A view of ψe(ρ) and ψo(ρ) along the sensor array. (b) The values of the wavelets can be interpreted as vectors
(~ψe and ~ψo) in a 3D ψe–ψe–ρ space. Their vector combination ~ψenv = ~ψe + ~ψo is a fixed 3D wavelet structure that can be

constructed solely from the source’s previously determined position p. This vector ~ψenv has a magnitude ψenv =
√

ψ2
e + ψ2

o

and angle ϕ′ = atan ψo/ψe. The measured velocities—which are linear combinations of ψe and ψo—can be viewed as a 2D
projection of this 3D wavelet. For instance, a projection on the ρ–ψe plane (bottom plane) yields ψe for ϕ = 0 rad. For a
general angle ϕ, the measured velocity profile is a projection on a plane through the ρ axis subtending an angle ϕ with
the ρ–ψe plane. (c) Diagram illustrating the geometric relation between a measured vx, the angles α and ϕ′ which are
constrained via ψenv, and the movement orientation ϕ. We show a slice of ~ψenv (green) in the ψe–ψo plane for a fixed value
of ρ. The velocity value at this fixed ρ is a vector ~vx (black) in this space. It has a length vx ∝ ψe cos ϕ + ψo sin ϕ and has
angle ϕ. The contributions of ~ψe (blue) and ~ψo (orange) to vx are shown in yellow and purple. The angle ϕ′ of ~ψenv can
be computed directly from an estimated source position. Given that the difference between ϕ and ϕ′ is α = acos vx/ψenv,
we can compute an estimate of ϕ at every sensor using only measured velocity values and a position estimate.

3. Results

In this research, ten dipole localisation algorithms were compared by the area in which
they accurately estimate the position and movement direction of an object. Specifically,
the area with a median position error Ep below 1 cm, 3 cm, 5 cm, and 9 cm, and the area
with a median orientation error Eϕ below 0.01π rad, 0.03π rad, 0.05π rad, and 0.09π rad are
reported. Section 3.1 presents the first analysis’ results, where we varied the available data
set size, and Section 3.2 presents the second analysis’ results, where the sensor sensitivity
direction was varied. Section 3.3 provides additional results to compare the localisation
algorithms, including the performance of the best three algorithms on simulated sensors
with lower SNRs.

Sensors 2021, 21, 4558 14 of 51

3.1. Analysis Method 1: Amount of Training and Optimisation Data

This analysis method varied the number of measurements the algorithms could use
to train and optimise their hyperparameters to show how that influences the algorithms’
performance. LSQ was not included in this analysis because it does not require training
nor has hyperparameters to optimise. However, LSQ’s results from the comparable (x + y)
condition of Analysis Method 2 are shown to allow for a comparison of the performance of
all algorithms.

The results of this analysis are summarised in Figures 5 and 6. These figures visualise
the total area in which the median position error and median orientation error were below
their respective thresholds. There are several observations of note. Firstly, as expected,
the model-based algorithms’ areas did not increase with the amount of training and
optimisation data. With Ds = 0.09, we found 0.21 m2 for QM, 0.22 m2 for GN, and 0.11 m2

for NR at Ep ≤ 1 cm. In contrast, the template-based algorithms’ and the neural networks’
areas did increase with the training and optimisation sets. Using the largest data set
Ds = 0.01, these algorithms achieved a position error lower than 1 cm in areas of 0.18 m2

for MLP, 0.14 m2 for KNN, 0.12 m2 for LCMV, 0.1 m2 for ELM, and 0.00 m2 for CWT.
Only the random predictor had a median position error larger than 9 cm everywhere.

Secondly, only QM, GN, and NR had a median orientation error below 0.01π rad
in some part of the simulated domain with Ds = 0.09, with areas of 0.06 m2, 0.06 m2,
and 0.02 m2, respectively. With the largest training and optimisation set (Ds = 0.01),
the MLP and KNN reached the 0.03π rad threshold in 0.09 m2 and 0.02 m2, respectively,
whereas LCMV only reached 0.05π rad in an area of 0.04 m2. The other predictors had a
median orientation error larger than 0.09π rad everywhere.

The predictors’ performance is not only characterised by the area in which they work
well; it is also important to show how accurate predictions were in areas where they did
not work well. To provide a complete picture of the predictor performance, Figures 7 and 8
visualise the distributions of the position and orientation errors, respectively.

1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1

algorithm / sample distance (𝐷𝑠) (×0.01)

0.0

0.1

0.2

0.3

0.4

0.5

ar
ea

(m
2)

(h
ig
he

ri
sb

et
te
r)

LSQ∗ QM GN MLP KNN ELM NR LCMV CWT RND

Med. 𝐸𝑝

≤0.01m
≤0.03m
≤0.05m
≤0.09m

Figure 5. Total areas with a median position error Ep (Equation (4)) below 1 cm, 3 cm, 5 cm, and 9 cm for the training and
optimisation sets with a varying minimum distance between source states Ds (see Section 2.3 and Table 1) and the (x + y)
sensor configuration at the σ = 1.0× 10−5 m s−1 noise level. The median position error was computed for 2× 2 cm2 cells.
Note, the bar for LSQ* is based the (x + y) condition in Analysis Method 2.

Sensors 2021, 21, 4558 15 of 51

1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1 9 5 3 1

algorithm / sample distance (𝐷𝑠) (×0.01)

0.0

0.1

0.2

0.3

0.4

0.5

ar
ea

(m
2)

(h
ig
he

ri
sb

et
te
r)

LSQ∗ QM GN MLP KNN ELM NR LCMV CWT RND

Med. 𝐸𝜑

≤0.01𝜋 rad
≤0.03𝜋 rad
≤0.05𝜋 rad
≤0.09𝜋 rad

Figure 6. Total areas with a median movement direction error Eϕ (Equation (5)) below 0.01π rad, 0.03π rad, 0.05π rad for
the training and optimisation sets with a varying minimum distance between source states Ds (see Section 2.3 and Table 1)
and the (x + y) sensor configuration at the σ = 1.0× 10−5 m s−1 noise level. The median movement direction error was
computed for 2× 2 cm2 cells. Note, the bar for LSQ* is based on the (x + y) condition in Analysis Method 2.

Figure 7. Boxplots of the position error distributions for all dipole localisation algorithms in each condition of first analysis
method. This analysis varied the minimum distance Ds between source states in the training and optimisation set (see
Section 2.3 and Table 1) and used the (x + y) sensor configuration at the σ = 1.0× 10−5 m s−1 noise level. The whiskers of
the boxplots indicate the 5th and 95th percentiles of the distributions. Predictions with errors outside these percentiles are
shown individually. LSQ* is based on the (x + y) condition in Analysis Method 2.

Sensors 2021, 21, 4558 16 of 51

Figure 8. Boxplots of the movement direction error distributions for all dipole localisation algorithms in each condition
of first analysis method. This analysis varied the minimum distance Ds between source states in the training and optimi-
sation set (see Section 2.3 and Table 1) and used the (x + y) sensor configuration at the σ = 1.0× 10−5 m s−1 noise level.
The whiskers of the boxplots indicate the 5th and 95th percentiles of the distributions. Predictions with errors outside these
percentiles are shown individually. LSQ* is based on the (x + y) condition in Analysis Method 2.

Firstly, note that all dipole localisation algorithms had lower median position errors
than the random predictor with all training and optimisation sets. This difference was
smaller for the median orientation error. In particular, ELM’s orientation error distribution
with the smallest training and optimisation set was similar to that of the random predictor.
Secondly, the position error distribution of NR had a large tail; the 75th and 95th percentiles
were 0.81 m and 0.98 m with Ds = 0.09, respectively. The GN predictor also had a higher
95th percentile (0.32 m) than the otherwise similarly performing QM predictor (0.14 m)
with Ds = 0.09. The same relation was also present in the orientation error distributions.
The 95th percentile of GN (2.28 rad) was larger than that of QM (0.92 rad) with Ds = 0.09.

Another interesting observation is the difference between the development of the
orientation error distributions of MLP and KNN. The errors of KNN decreased gradually
with each increase in training and optimisation data, whereas the errors of the MLP
decreased drastically between Ds = 0.03 and Ds = 0.01. Note that the MLP used four
layers with Ds = 0.01 and one layer with all the other training and optimisation sets (see
Table A1). Finally—unlike the position error—the CWT’s orientation errors were larger
with the largest optimisation set compared to the smaller sets.

3.2. Analysis Method 2: Sensor Sensitivity Axes

This analysis method varied which velocity components were measured by the sensors
to determine how that influences the algorithms’ performance. The QM predictor was not
included in this analysis because it requires both velocity components to be measured by
all sensors. However, QM’s results from the comparable Ds = 0.01 condition of Analysis
Method 1 are shown to allow for a comparison of the performance of all algorithms.

The results of this analysis are summarised in Figures 9 and 10. These figures visualise
the total area in which the median position error and median movement direction error
were below their respective thresholds. In configuration (x + y)—which measured both
velocity components at all sensors—the GN predictor had the largest area with median
position error lower or equal to 1 cm (0.22 m2). The MLP and LSQ predictors followed
with 0.19 m2 and 0.18 m2, respectively. The NR predictor (0.11 m2) performed worse than
KNN (0.14 m2) and LCMV (0.12 m2). The ELM did not perform well at the 1 cm threshold
(0.01 m2). However, the areas at the higher thresholds were similar to those of the MLP.

Sensors 2021, 21, 4558 17 of 51

The CWT and RND predictors had a median position error larger than 1 cm in the entire
simulated domain.

In the other configurations, LSQ performed the best; the median position error was
lower or equal to 1 cm in 0.12 m2 in configuration (x), and 0.15 m2 in configuration (y) and
(x|y). In general, the areas with median position errors lower or equal to 3 cm were larger
with the alternating configuration (x|y) compared to configurations (x) or (y). The CWT
predictor is an exception; it performed the best in configuration (x) at all position error
thresholds. For GN and NR, the larger area at the 3 cm threshold in configuration (x|y)
went along with a smaller area at the 1 cm threshold compared to configuration (x).

The movement direction errors, shown in Figure 10, indicate a slightly different pat-
tern. The LSQ predictor had the largest areas with a median movement direction error
below 0.01π rad in all configurations (0.05 m2 in (x) and (x|y), 0.07 m2 in (y), and 0.08 m2 in
(x + y)). The GN predictor performed better than LSQ at the higher thresholds in configura-
tion (x + y) (0.19 m2 to 0.15 m2 at Eϕ ≤ 0.05π rad and 0.26 m2 to 0.18 m2 at Eϕ ≤ 0.09π rad).
Interestingly, the MLP performed better than KNN, especially in configuration (x|y) and
(x + y) (see Figure 10).

Similar to the first analysis (Section 3.1), we also show the error distributions in
Figures 11 and 12. The benefit of using both vx and vy (x + y) is visible in the lower median,
75th, and 95th percentiles. The alternating configuration (x|y) also resulted in lower
median, 75th, and 95th percentile values compared to configurations (x) and (y), except for
the NR, CWT and RND predictors. Similar to the results in Analysis Method 1, the MLP,
KNN, and ELM predictors have lower 95th percentiles in the position error distribution
in configuration (x + y) (0.13 m, 0.17 m, and 0.16 m, respectively) than the model-based
algorithms (0.32 m for GN, 0.82 m for LSQ, 0.98 m for NR).

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y)

algorithm / sensor sensitivity

0.0

0.1

0.2

0.3

0.4

0.5

ar
ea

(m
2)

(h
ig
he

ri
sb

et
te
r)

QM∗ GN MLP KNN ELM LSQ NR LCMV CWT RND

Med. 𝐸𝑝

≤0.01m
≤0.03m
≤0.05m
≤0.09m

Figure 9. Total area with a median position error Ep (Equation (4)) below 1 cm, 3 cm, 5 cm, and 9 cm for varying sensitivity
axes of the sensors: (x + y) measured both velocity components at all sensors, (x|y) alternated measuring vx and vy for
subsequent sensors, (x) measured only vx at all sensors, (y) measured only vy at all sensors. This analysis method used the
Ds = 0.01 training and optimisation set and the σ = 1.0× 10−5 m s−1 noise level. The median position error was computed
in 2× 2 cm2 cells. Note, the bar for QM* is based on the Ds = 0.01 condition in Analysis Method 1.

Sensors 2021, 21, 4558 18 of 51

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y) (x
)

(y
)

(x
|y
)

(x
+
y)

algorithm / sensor sensitivity

0.0

0.1

0.2

0.3

0.4

0.5

ar
ea

(m
2)

(h
ig
he

ri
sb

et
te
r)

QM∗ GN MLP KNN ELM LSQ NR LCMV CWT RND

Med. 𝐸𝜑

≤0.01𝜋 rad
≤0.03𝜋 rad
≤0.05𝜋 rad
≤0.09𝜋 rad

Figure 10. Total area with a median movement direction error Ep (Equation (4)) below 1 cm, 3 cm, 5 cm, and 9 cm for varying
sensitivity axes of the sensors: (x + y) measured both velocity components at all sensors, (x|y) alternated measuring vx and
vy for subsequent sensors, (x) measured only vx at all sensors, (y) measured only vy at all sensors. This analysis method
used the Ds = 0.01 training and optimisation set and the σ = 1.0× 10−5 m s−1 noise level. The median movement direction
error was computed in 2× 2 cm2 cells. Note, the bar for QM* is based on the Ds = 0.01 condition in Analysis Method 1.

Figure 11. Boxplots of the position error distributions for all algorithms in the second analysis method. This analysis varied
the sensitivity axes of the sensors: (x + y) measured both velocity components at all sensors, (x|y) alternated measuring
vx and vy for subsequent sensors, (x) measured only vx at all sensors, (y) measured only vy at all sensors. The Ds = 0.01
training and optimisation set and σ = 1.0× 10−5 m s−1 noise level were used. The whiskers of the boxplots indicate the 5th
and 95th percentiles of the distributions. Predictions with errors outside these percentiles are shown individually. QM* is
based on the Ds = 0.01 condition in Analysis Method 1.

Sensors 2021, 21, 4558 19 of 51

Figure 12. Boxplots of the movement direction error distributions for all algorithms in the second analysis method. This
analysis varied the sensitivity axes of the sensors: (x + y) measured both velocity components at all sensors, (x|y) alternated
measuring vx and vy for subsequent sensors, (x) measured only vx at all sensors, (y) measured only vy at all sensors. The
Ds = 0.01 training and optimisation set and σ = 1.0× 10−5 m s−1 noise level were used. The whiskers of the boxplots
indicate the 5th and 95th percentiles of the distributions. Predictions with errors outside these percentiles are shown
individually. QM* is based on the Ds = 0.01 condition in Analysis Method 1.

3.3. Additional Results

This section presents additional results of the two analysis methods and the perfor-
mance of the three best algorithms on simulated sensors with lower SNRs. The algorithms’
training and prediction times are reported, and spatial and polar maps of the median errors
are shown, visualising the areas in which the predictors performed well and the effect of
the source’s orientation on the prediction accuracy.

Table 3 shows each localisation algorithms’ average prediction time using both velocity
components and total training time for the largest training set (Ds = 0.01). All algorithms
were evaluated on a high performance computing cluster, using 12 cores of an Intel Xeon
2.6 GHz processor and 64 GB RAM. The run-time performance of the implementations
was optimised for computing many predictions simultaneously. As a result, the average
prediction times may not be representative of the single-source prediction time. The random
predictor had the shortest prediction time, followed by the MLP and ELM. KNN was
also one of the quicker algorithms, about three times slower than the MLP. The model-
based predictors were slower: the MLP could compute roughly four, eight and nine
predictions in the time it took for GN, LSQ and QM to compute a prediction. The remaining
algorithms were considerably slower than the MLP (36 times for LCMV, 175 times for
NR, and 300 times for CWT). Most of the CWT’s prediction time came from fitting the
Gaussian to the coefficients. It should be noted that the computational aspects of our
implementations have not been extensively optimised, and the degree of optimisation
between algorithms may have varied.

Sensors 2021, 21, 4558 20 of 51

Table 3. Training and prediction time measurements of all dipole localisation algorithms. The (x + y)
sensor configuration was used combined with the largest training and optimisation set Ds = 0.01.

Algorithm Avg. Prediction Time Relative to MLP Total Training Time

RND 3.2× 10−4 s 0.9
MLP 3.6× 10−4 s 1.0 12 min 0 s
ELM 4.3× 10−4 s 1.2 1 min 52 s
KNN 9.7× 10−4 s 2.7
GN 1.4× 10−3 s 3.9
LSQ 2.8× 10−3 s 7.8
QM 3.4× 10−3 s 9.6

LCMV 1.3× 10−2 s 37.1
NR 6.3× 10−2 s 176.3

CWT 1.1× 10−1 s 311.1

Figure 13 shows the spatial contours of the median position error Ep and median
movement direction error Eϕ. These figures show in which areas the algorithms were
able to compute an accurate prediction. Both QM and GN had a median position error
within 1 cm up to roughly 35 cm from the sensor array. The GN predictor was better at
locating source states in the lower corners of the simulated domain than LSQ and QM.
However, its predictions directly in front of the sensors were worse. The MLP and KNN
also performed well in the lower corners of the simulated domain. However, their median
position error was lower than 1 cm up to only roughly 25 cm. For the LSQ and LCMV
predictors, the median position errors were smaller than 1 cm up to 30 cm and 20 cm,
respectively. These algorithms showed a quick drop in performance as the distance of a
source state increases. Their median position errors were larger than 9 cm from 30 cm and
45 cm of the sensor array, respectively. QM, GN and the MLP had a median position error
lower than 9 cm at least up to 50 cm. The contours in the orientation errors were similar.
Comparing the two neural networks, the MLP had more accurate movement direction
predictions than the ELM and also covered a larger area of the simulated domain.

Polar contours of the median position and median movement direction errors are
shown in Figure 14, indicating the effect of source movement direction ϕ and distance d on
the predictions. QM and GN performed similarly in the (x + y) configuration; both algo-
rithms had accurate position and movement directions predictions for all source orienta-
tions ϕ. In configuration (x + y), QM’s movement direction prediction was slightly more
accurate at longer distances for parallel and perpendicular movement directions. Closer
to the sensors, QM’s movement direction prediction was more accurate for source states
with a parallel orientation. GN had accurate movement direction predictions for parallel
source states at all distances in configuration (x + y). The difference in movement direction
estimation between QM and GN shown in Figure 14 can be explained by GN’s wider range
of accurate predictions visible in Figure 13. LSQ had trouble predicting the position and
movement direction of source states with orientations between ϕ = ± 1

4 π rad—except
for parallel sources ϕ = 0 rad—in configurations (x + y) and (y). GN’s localisation per-
formance in configurations (x) and (y) is interesting as well, as it favoured perpendicular
source states. On the other hand, GN’s movement direction predictions in configuration
(y) were inaccurate regardless of the source state’s orientation ϕ and distance d.

Figure 15 shows how QM, GN, and the MLP perform using sensors with lower
SNRs. Only the position error is shown. Appendix E contains a similar figure for the
movement direction errors, as well as the spatial and polar projections. QM has the
largest area with median position errors below 1 cm at the higher noise levels. However,
from σ = 1× 10−4 m s−1 and up, the MLP has lower median and 75 percentile values.

Sensors 2021, 21, 4558 21 of 51

0.0

0.15
0.25
0.35

0.5
𝑦
(m

)
QM QM

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

GN GN

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

MLP MLP

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

KNN KNN

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

ELM ELM

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

LSQ LSQ

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

NR NR

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

LCMV LCMV

−0.5 −0.2 0.0 0.2 0.5

𝑥 (m)

0.0

0.15
0.25
0.35

0.5

𝑦
(m

)

CWT

−0.5 −0.2 0.0 0.2 0.5

𝑥 (m)

CWT

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)
0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure 13. Spatial contours of the median position error Ep (blue) (Equation (4)) and median movement direction error Eϕ

(orange) (Equation (5)) of the predictors using the largest training and optimisation set (Ds = 0.01) and 2D sensitive sensors
(x + y) at the σ = 1.0× 10−5 m s−1 noise level. The algorithms are ordered with an increasing overall median position error.
The median errors were computed in 2× 2 cm2 cells.

Sensors 2021, 21, 4558 22 of 51

QM | (x+y) QM | (x+y)

GN | (x+y) GN | (x+y)

GN | (x) GN | (x)

GN | (y) GN | (y)

LSQ | (x+y) LSQ | (x+y)

LSQ | (y) LSQ | (y)

0.01

0.03

0.05

0.09

𝐸
𝑝
(m

)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝑝
(m

)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝑝
(m

)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝑝
(m

)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝑝
(m

)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝑝
(m

)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01

0.03

0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

Figure 14. These figures indicate how the movement direction ϕ and distance d of a source state influence the median
position error Ep (blue) (Equation (4)) and median movement direction error Eϕ (orange) (Equation (5)). The quadrature
method (QM), Gauss–Newton (GN), and least square curve fit (LSQ) predictors were used with three sensor configurations:
(x + y), (x), (y) at the σ = 1.0× 10−5 m s−1 noise level. The median errors were computed in cells of 0.01π rad × 1 cm.

Sensors 2021, 21, 4558 23 of 51

Q
M G
N

M
LP Q
M G
N

M
LP Q
M G
N

M
LP Q
M G
N

M
LP

noise level (ms−1) / algorithm

0.00

0.05

0.10

0.15

0.20

0.25

ar
ea

(m
2)

(h
ig
he

ri
sb

et
te
r)

1.0 ⋅ 10−5∗ 1.0 ⋅ 10−4 1.0 ⋅ 10−3 1.8 ⋅ 10−2

Med. 𝐸𝑝

≤0.01m
≤0.03m
≤0.05m
≤0.09m

(a) (b)
Figure 15. An overview of the position error Ep (Equation (4)) of QM, GN, and MLP using simulated sensors with
higher velocity equivalent noise levels. (a) Total areas with a median position error Ep below 1 cm, 3 cm, 5 cm, and 9 cm.
(b) Boxplots of the position error distributions, whiskers indicate the 5th and 95th percentiles of the distributions. Predictions
with errors outside these percentiles are shown individually. The values for σ = 1.0× 10−5 m s−1 are based on the Ds = 0.01
condition in Analysis Method 1. The (x + y) sensor configuration was used. The MLP was re-trained for each noise level.
Both the MLP and GN used the optimal hyperparameter values from the Ds = 0.01 condition of Analysis Method 1.

4. Discussion

In Analysis Method 1, we confirmed that (1) the total area in which the model-based
algorithms produce accurate predictions does not depend on the amount of training and
optimisation data, and (2) the template-based algorithms’ and neural networks’ areas
with accurate predictions increase with the amount of training and optimisation data
(Figures 5 and 6). The MLP, in particular, benefits from large amounts of training data.
However, only with our largest training and optimisation set (90,435 states) are the MLP
and KNN able to approach QM’s and GN’s performance. Even in that case, their movement
direction predictions are no match for those of QM and GN. Whether the MLP or KNN
provides the better performance depends on the amount of training and optimisation data.
The MLP performed better with our smallest and largest sets (Section 3.1). In the other
cases, KNN performed better.

In Analysis Method 2, we demonstrated the benefit of 2D sensitive sensors compared
to 1D sensitive sensors. Improved position and movement direction estimation of ELMs
using 2D sensors compared to using only vx was previously shown by Wolf and van
Netten [45]. In the present study, we showed that other localisation algorithms also
benefit from using both velocity components. In addition, we demonstrated that the
alternating sensor configuration (x|y) used by Yang et al. [12] and Nguyen et al. [13] is not
an adequate substitute for 2D sensitive sensors at the used spatial resolution. However,
it does improve performance compared to measuring a single velocity component along the
entire sensor array. We speculate that the performance difference between the alternating
sensor configuration and 2D sensitive sensors diminishes as the sensor array’s spatial
resolution increases.

Finally, we showed that the newly introduced QM provided the best overall perfor-
mance with 2D sensors, regardless of the data set size. Its areas with a median position
error below 1 cm and median movement direction error below 0.01π rad were as large

Sensors 2021, 21, 4558 24 of 51

as that of GN (Figures 5 and 6). However, the tails of the error distributions of QM were
shorter than those of GN (Figures 7 and 8). In other words, the less-accurate predictions of
QM were better than those of GN. With 1D sensors, LSQ performed the best, except for
source states with an orientation close to ϕ = 0 rad.

It should be noted that the model-based algorithms depend on an accurate forward
model. Fitting a potential flow model only works when it accurately describes the actual
velocity measurements. When more complicated hydrodynamic phenomena are present in
the measurements, a forward model may become quite complex. In that case, the MLP and
KNN may be good alternatives. However, these algorithms require a lot of training and
optimisation data to reach a similar performance as the model-based algorithms.

We continue the discussion with remarks specific to the used algorithms in the follow-
ing subsections.

4.1. The Gauss–Newton (GN) Algorithm

GN’s performance in this work was mostly in line with the results presented by Ab-
dulsadda and Tan [8]. They showed that GN has a superior localisation performance
compared to LCMV beamforming and template matching. In addition, they highlighted
that the convergence behaviour of GN heavily depends on the initial estimate. In their
simulation, the largest region of convergence had a radius of 1.5 cm, depending on the
source’s position [8]. In the current study, we did not estimate the region of convergence.
Instead, we showed that—based on the median position and movement direction errors
in the simulated domain—GN can be used in a larger area, especially when 2D sensitive
sensors are used. However, there is no guarantee of convergence in that larger area, as is
evident from the large tail in the error distributions (Figures 11 and 12). To improve the
convergence rate, one could potentially use the estimated position and movement direction
of another prediction method as the initial estimate of GN.

A difference in our results compared to Abdulsadda and Tan [8], is the effect of the
source state’s orientation on the prediction accuracy when only vx or only vy are used
(Figure 14). We found that parallel source states are localised less accurately than other
orientations when only vx is used. Abdulsadda and Tan [8] did not report such an effect.
In their results, of the 19 states reported, four had a roughly parallel orientation. Due to
those state’s positions it is difficult to determine how much their movement direction
influenced the prediction accuracy. So, this effect may not have been observable with their
experimental setup.

Another difference compared to Abdulsadda and Tan [8] were our step tolerance
and maximum number of iteration hyperparameters. Both parameters determine the
accuracy and computational cost of the algorithm. For our experiments, a prediction
within 1 mm and 0.001π rad was sufficient. The maximum number of iterations was
reduced to 100 compared to the 2500 used by Abdulsadda and Tan [8]. We found that the
limit of 100 iterations did not prevent a prediction from reaching the outer edges of the
simulated domain. Depending on the use case, these parameters can be tuned to provide
the best performance.

Finally, unlike Abdulsadda and Tan [8], we applied a bounds check on each iteration’s
estimated position and movement direction, to keep the estimates within the simulated
domain (Figure 2). Since we did not compare GN’s performance with and without the
bounds check, we cannot draw conclusions about its effect. However, we expect that
the bounds check has two advantageous effects. Firstly, it may cause non-converging
predictions to terminate earlier because—depending on their trajectory—the difference
between estimates in subsequent iterations may become smaller than ε = 1.0 × 10−3.
Secondly, it may cause some otherwise non-converging predictions to converge. Instead
of continuing on their trajectory, these estimates move along the simulated domains
boundaries and find a path towards the solution.

Sensors 2021, 21, 4558 25 of 51

4.2. The Newton–Raphson (NR) Algorithm

Unlike the results of Abdulsadda and Tan [8], NR did not perform similar to GN in
our analyses. Computing NR’s predictions took more than 40 times as long as for GN
(Table 3). The increased run-time cost of NR in our implementation is probably due to the
numerical estimation of the Hessian. The difference in localisation performance may also
be due this numerical estimation. The Newton method (Equation (15)) requires that the
Hessian is positive definite; otherwise, it may move the prediction towards a saddle point
instead of a minimum [41] (p. 279,304). Manual inspection of the Hessian found negative
eigenvalues in all iterations for the inspected source states, regardless of the prediction
accuracy. A preliminary hyperparameter validation showed that the regularisation strategy
suggested by Goodfellow et al. [41] (p. 304) to solve this issue did not improve the
performance of NR. From their publication, it is not clear whether Abdulsadda and Tan [8]
computed the Hessian analytically. Alternatively, this difference in performance may be
explained if their initial estimates were within NR’s region of convergence.

In our implementation of NR, we applied the same bounds check as for GN. Since we
did not compare the performance of NR with and without the bounds check, we cannot
draw conclusions about its effect. However, we expect the same improvements as with GN.

4.3. The Multi-Layer Perceptron (MLP) and Extreme Learning Machine (ELM)

We showed that an MLP performs quite a lot better than an ELM when a large amount
of training data is available (90,435 source states) (Figures 9 and 10). The main differences
between these neural networks are the training procedure and the higher capacity of the
MLP. The MLP was trained to minimise the mean absolute error (MAE), whereas the
ELM minimises the mean squared error (MSE). The difference in capacity was especially
large when the largest training and optimisation set was used with 2D sensitive sensors.
In that case, the MLP had roughly ten times more weights than the ELM and roughly sixty
times more trainable weights. When the smaller training and optimisation sets were used,
the MLP performed more similar to the ELM and used only a single layer.

The comparison of QM, GN and the MLP on simulated sensors with lower SNRs
showed the robustness of the MLP against noise (Figure 15). This finding is in line with
Boulogne et al. [9], who showed that the MLP was more robust to noise than ELMs and
echo state networks (ESNs).

The performance of the MLP may be improved further by also training bias-weights.
Bias-weights serve as an activation-offset for each node in a layer, providing additional
flexibility in the activation function. Bias-weights increase the capacity of the network
and enable nodes to output non-zero values when their input is zero. We expect that
the network’s prediction of, in particular, the source distance benefits from bias-weights
because the distances are not centred around the same value as the input.

4.4. The Quadrature Method (QM) Algorithm

In this study, we introduced the QM dipole localisation algorithm. The algorithm is
designed for 2D sensitive sensors and provides state-of-the-art performance. Compared to
GN, the algorithm produces more accurate predictions close to the sensor array (Figure 13)
and has less skewed error distributions (Figures 7 and 8). These results indicate that the
iterative refinement procedure of QM converges better than the non-linear optimisation of
GN. In addition, the effective area of QM was larger than that of GN when using simulated
sensors with lower SNRs (Figure 15).

Aside from its performance, QM has several attractive attributes. For instance, the ori-
entation estimation procedure is very quick—with a computational complexity in the order
of sensors—and only depends on the measured velocity and an estimate of the source’s
position. As a result, any algorithm that estimates a source’s position can use QM’s orien-
tation estimation. In addition, QM is able to compute an initial position estimate directly
from the measured velocity (also with a computational complexity in the order of sensors).
Consequently, QM does not require a hyperparameter specifying an arbitrary initial esti-

Sensors 2021, 21, 4558 26 of 51

mate. It should be noted that this initial estimate is accurate only in a limited area, as it
depends on anchor-points on ψquad that have to fall within the sensor array (Appendix D).
Finally, the run-time of QM is easily tuned using two simple hyperparameters: the number
of refinement iterations and the number of iterations used to fit the potential flow model.
The hyperparameters values used in this study resulted in an average prediction time that
was roughly two and a half times slower than GN.

Several interesting research questions about QM remain unanswered. For instance, we
did not analyse the QM’s performance using only its initial estimate. Especially for higher
resolution sensor arrays, these estimates may perform quite well compared to the other
algorithms. In addition, other algorithms may benefit from using QM’s initial estimate.
For example, GN’s performance close to the sensor array may improve when QM’s initial
estimate is used as the starting point for fitting the potential flow model. Other two-stage
combinations of algorithms may also be interesting to develop.

4.5. Future Research Directions and Possible Applications

In the present research, ten dipole localisation algorithms were compared using a
stationary ALL in a 2D environment. Applications of ALLs typically operate in more
complex environments that are embedded in 3D and may include self-motion. The shape
and movement of a sensing platform itself would have a significant impact on the flow fields
which were omitted in this analysis (see, for instance, Windsor et al. [46] for an analysis
of flow fields around gliding blind cave fish). Localising sources in 3D requires different
sensor configurations. Yang et al. [12] used a sensor array consisting of two orthogonal
lines on a cylinder to demonstrate LCMV beamforming’s 3D localisation performance.
Wolf et al. [15] used two parallel ALLs to localise multiple simultaneous sources in 3D.
Analysing QM’s performance on 3D localisation tasks would be an interesting future
research project.

Other interesting future research directions include using more realistic fluid flow
simulations. For instance, Lin et al. [47] used a Navier–Stokes equation solver to predict
the ratio of a source’s distance and size based on the measured velocity amplitude range.
Additionally, it remains unclear how well the algorithms’ performances transfer to localis-
ing differently shaped or self-propelled objects. Finally, the algorithms could be compared
on their performance locating moving objects instead of stationary dipoles.

5. Conclusions

In the present study, we compared a wide range of algorithms for determining a
dipole’s position and orientation in the vicinity of a flow sensor array. To demonstrate the
effect of the amount of available data to optimise or tune each algorithm, we sampled a
bounded domain with four levels of granularity. To demonstrate the effects of sensitivity
directions of the flow sensors, we extended the implementation of existing algorithms to
support data from four different sensor configurations: sensitivity parallel to the array,
sensitivity at a right angle to the array, sensors with alternating sensitivity directions, and fi-
nally an array of 2D-sensitive sensors. These effects on the algorithms were quantified by
the area in which an algorithm can correctly determine a dipole’s position and orientation
relative to the array with predefined degrees of accuracy. For further comparisons, we also
disclosed box plots to indicate the distribution of errors, as well as visual representations
of these errors in the 2D spatial domain and source orientation domain.

We demonstrated the benefit of 2D-sensitive sensors compared to 1D sensitive sensors
for a dipole localisation task. All considered algorithms benefited from using information
from 2D-sensitive sensors, although the amount of improvement varies. The extension
to 2D-sensitive sensors allowed the introduction of a novel dipole localisation algorithm
coined the quadrature method (QM). This algorithm is designed to take advantage of
geometric properties that result from 2D-sensitive flow measurements. We showed that
QM provides state-of-the-art performance and produces more accurate predictions than the
Gauss–Newton (GN) algorithm [8], especially for source positions close to the sensor array.

Sensors 2021, 21, 4558 27 of 51

Finally, we analysed how dipole localisation algorithms’ performance depends on
the amount of training and optimisation data. We find that template-based algorithms
and neural-networks require large amounts of training data to approach the performance
of model-based algorithms that require only a small training and optimisation set in a
simulation setting.

Since the simulation’s assumptions are all based on the potential flow of a vibrating
sphere, the resulting flow fields can be used for all dipole fields. Such fields are not
restricted to those generated by submerged moving objects. Exactly the same dipole field
equations are associated with acoustic, electric, and magnetic phenomena. Therefore,
the comparisons made in the present work may also be of interest in other applications
than hydrodynamic imaging.

Author Contributions: Conceptualisation, D.M.B., B.J.W. and S.M.v.N.; Data curation, D.M.B.; For-
mal analysis, D.M.B. and S.M.v.N.; Funding acquisition, S.M.v.N.; Investigation, D.M.B.; Methodology,
D.M.B. and B.J.W.; Project administration, B.J.W. and S.M.v.N.; Resources, B.J.W.; Software, D.M.B.;
Supervision, B.J.W. and S.M.v.N.; Validation, B.J.W. and S.M.v.N.; Visualisation, D.M.B.; Writing—
original draft, D.M.B.; Writing—review & editing, B.J.W. and S.M.v.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research has been partly supported by the Lakhsmi project (B.J.W., S.M.v.N.) that has
received funding from (1) the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 635568 and (2) the SeaClear project (B.J.W.) that has received funding from
the European Union’s Horizon 2020 research and innovation programme under grant agreement No
871295 and (3) the Flemish Government programme “Onderzoeksprogramma Artificiële Intelligentie
(AI)” (D.M.B.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated in this study, including the algorithms’ predictions
and the training and test source states, are available from Zenodo [48]. Our implementation of the
algorithms in MATLAB R2018a [38] as used in this publication are also available from Zenodo [49].

Acknowledgments: We would like to thank the Center for Information Technology of the University
of Groningen for providing access to the Peregrine high performance computing cluster.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ALL artificial lateral line
AUV autonomous underwater vehicle
CNN convolutional neural network
CWT continuous wavelet transform
DFT discrete Fourier transform
ELM extreme learning machine
ESN echo state network
GN Gauss–Newton
KNN k-nearest neighbours
LCMV linear constraint minimum variance
LSQ least square curve fit
MAE mean absolute error
MSE mean squared error
MLP multi-layer perceptron
NR Newton–Raphson
OS-ELM online sequential extreme learning machine

Sensors 2021, 21, 4558 28 of 51

QM quadrature method
RND random
SLFN single layer feed-forward network
SNR signal to noise ratio

Appendix A. Final Hyperparameter Values

This appendix lists the final hyperparameter values as used in the analyses.
Tables A1 and A2 provide the optimal hyperparameter values for Analysis Methods 1
and 2, respectively. Analysis Method 3 used the optimal values of Analysis Method 1’s
Ds = 0.01 condition. Section 2.4 explains the general approach used to find the hyperpa-
rameters’ optimal values and Section 2.5 explains how each hyperparameter influences the
dipole localisation algorithms.

Table A1. All hyperparameter values for the first analysis optimised using the training set. This analysis varied the
minimum distance Ds between source states in the training and optimisation sets to show how the amount of training
and optimisation data influences the dipole localisation algorithms’ performance. The (x + y) sensor configuration at the
σ = 1.0× 10−5 m s−1 noise level was used in this analysis. Table 1 describes the respective data sets in more detail.

KNN Ds k neighbours

0.09 3
0.05 3
0.03 3
0.01 5

CWT Ds threshold tmin threshold tmax ϕ factor cx ϕ factor cy

0.09 0.36 1.0 1.0 0.30
0.05 0.18 0.92 0.89 0.89
0.03 0.21 0.74 0.98 0.35
0.01 0.26 0.57 0.82 0.38

ELM Ds n̄ nodes Analytical cx = 0.6 (higher value tunes

0.09 120 estimation for longer distances)
0.05 75 Analytical cy ≈ 0.366 (lower value tunes
0.03 1383 estimation for longer distances)
0.01 11,169

MLP Ds learning rate ε n layers n̄ nodes per layer

0.09 3.5× 10−3 1 990
0.05 3.4× 10−3 1 798
0.03 3.7× 10−3 1 1015
0.01 1.2× 10−3 4 993

GN Ds initial distance d0 (cm)

0.09 5.0
0.05 5.0
0.03 2.5
0.01 5.0

NR Ds initial distance d0 (cm) norm limit l

0.09 2.5 0.14
0.05 2.9 0.10
0.03 2.5 0.10
0.01 2.5 0.10

Sensors 2021, 21, 4558 29 of 51

Table A2. All hyperparameters for the second analysis optimised using the training set. This analysis varied the sensor
sensitivity axes to show how the velocity components contribute to the predictions while keeping Ds constant. The config-
urations were: (x + y) both components on all sensors, (x|y) alternating vx and vy for subsequent sensors, (x) only vx on
all sensors, (y) only vy on all sensors. The σ = 1.0× 10−5 m s−1 noise level was used and with the Ds = 0.01 training and
optimisation set.

KNN sensor k neighbours

(x + y) 5
(x|y) 5
(x) 6
(y) 6

CWT sensor threshold tmin threshold tmax ϕ factor cx ϕ factor cy

(x + y) 0.23 0.60 0.71 0.33
(x|y) 0.22 0.40 0.76 0.64
(x) 0.21 0.53 0.61 0.40
(y) 0.12 0.79 0.58 0.87

ELM sensor n̄ nodes Analytical cx = 0.6 (higher value tunes

(x + y) 11,169 estimation for longer distances)
(x|y) 5165 Analytical cy ≈ 0.366 (lower value tunes
(x) 5579 estimation for longer distances)
(y) 5579

MLP sensor learning rate ε n layers n̄ nodes per layer

(x + y) 1.4× 10−3 4 1014
(x|y) 2.3× 10−3 4 982
(x) 2.0× 10−3 4 1024
(y) 2.0× 10−3 4 1016

GN sensor initial distance d0 (cm)

(x + y) 5.0
(x|y) 2.5
(x) 7.5
(y) 2.5

NR sensor initial distance d0 (cm) norm limit l

(x + y) 2.5 0.10
(x|y) 7.8 0.13
(x) 9.3 0.10
(y) 2.5 0.10

Appendix B. Potential Flow Wavelets

In this appendix, we derive the three wavelets used in Wolf and van Netten [14] from
the potential flow formula [16] (Equation (1)):

v =
a3

2||r||3

(
−w + 3r

(w× r)
||r||2

)
, (A1)

where a is the radius of the sphere, w =
〈
wx, wy

〉
are the velocity components of the

moving sphere in 2D, and r = s− p is the position of the sensor s = 〈x, y〉 as seen from the
source p = 〈b, d〉.

Appendix B.1. The Even Wavelet

The even wavelet ψe occurs in vx when a source moves parallel to the sensor ar-
ray [5,14]. Let w = 〈wx, 0〉, then the parallel velocity component is given by:

Sensors 2021, 21, 4558 30 of 51

vx =
a3

2||r||3

(
−wx +

3wx(x− b)2

||r||2

)
, (A2)

vx =
a3wx

2||r||3

(
−1 +

3(x− b)2

||r||2

)
, (A3)

vx =
a3wx

2||r||3

(
3(x− b)2 − ||r||2

||r||2

)
. (A4)

To find the wavelet, ||r|| is rewritten as:

||r|| =
√
(x− b)2 + (y− d)2 =

√
(y− d)2

√
ρ2 + 1, (A5)

with
ρ =

x− b
y− d

. (A6)

Substituting this in the formula for vx results in:

vx =
a3wx

2
(√

(y− d)2√ρ2 + 1
)3

3(x− b)2 − (y− d)2(ρ2 + 1
)(√

(y− d)2√ρ2 + 1
)2

, (A7)

vx =
a3wx

2
(√

(y− d)2
)3

3 (x−b)2

(y−d)2 −
(y−d)2(ρ2+1)

(y−d)2(√
ρ2 + 1

)5

, (A8)

vx =
a3wx

2|y− d|3

(
3ρ2 − ρ2 − 1

(ρ2 + 1)(5/2)

)
. (A9)

So, finally:

ψe =
2ρ2 − 1

(ρ2 + 1)(5/2)
. (A10)

Appendix B.2. The Odd Wavelet

The odd wavelet ψo occurs in vx when a source moves perpendicular to the sensor
array [5,14]. Let w =

〈
0, wy

〉
, then the parallel velocity component is given by:

vx =
a3

2||r||3

(
−0 +

3wy(x− b)(y− d)
||r||2

)
, (A11)

vx =
a3wy

2||r||3

(
3(x− b)(y− d)

||r||2

)
. (A12)

Rewriting and substituting ||r|| in the same way as in Appendix B.1, yields:

vx =
a3wy

2
(√

(y− d)2√ρ2 + 1
)3

 3(x− b)(y− d)(√
(y− d)2√ρ2 + 1

)2

, (A13)

Sensors 2021, 21, 4558 31 of 51

vx =
a3wy

2
(√

(y− d)2
)3

 3 (x−b)(y−d)
(y−d)2(√
ρ2 + 1

)5

, (A14)

vx =
a3wx

2|y− d|3

(
3ρ

(ρ2 + 1)(5/2)

)
. (A15)

So, finally:

ψo =
3ρ

(ρ2 + 1)(5/2)
. (A16)

Appendix B.3. The Navelet

The navelet (Not-A-waVELET) ψn occurs in vy when a source moves perpendicular
to the sensor array [14]. Let w =

〈
0, wy

〉
, then the perpendicular velocity component is

given by:

vy =
a3

2||r||3

(
−wy +

3wy(y− d)2

||r||2

)
, (A17)

vy =
a3wy

2||r||3

(
−1 +

3(y− d)2

||r||2

)
, (A18)

vy =
a3wy

2||r||3

(
3(y− d)2 − ||r||2

||r||2

)
. (A19)

Rewriting and substituting ||r|| in the same way as in Appendix B.1, results in:

vy =
a3wy

2
(√

(y− d)2√ρ2 + 1
)3

3(y− d)2 − (y− d)2(ρ2 + 1
)(√

(y− d)2√ρ2 + 1
)2

, (A20)

vy =
a3wy

2
(√

(y− d)2
)3

3 (y−d)2

(y−d)2 −
(y−d)2(ρ2+1)

(y−d)2(√
ρ2 + 1

)5

, (A21)

vy =
a3wy

2|y− d|3

(
3− ρ2 − 1

(ρ2 + 1)(5/2)

)
. (A22)

So, finally:

ψn =
2− ρ2

(ρ2 + 1)(5/2)
. (A23)

Appendix C. Movement Direction Estimation with the Continuous Wavelet
Transform (CWT)

In this appendix, we show how the CWT can be used to estimate the direction of
movement of a dipole source. In Section 2.5.4, we showed that potential flow (Equation (1))
can be expressed in terms of wavelets:

vx =
a3||w||

2|y− d|3 (ψe cos (ϕ) + ψo sin (ϕ)),

vy =
a3||w||

2|y− d|3 (ψo cos (ϕ) + ψn sin (ϕ)),
(A24)

Sensors 2021, 21, 4558 32 of 51

with

ψe =
2ρ2 − 1

(ρ2 + 1)(5/2)
, (A25)

ψo =
3ρ

(ρ2 + 1)(5/2)
, (A26)

ψn =
2− ρ2

(ρ2 + 1)(5/2)
, (A27)

ρ =
rx

ry
=

x− b
y− d

, (A28)

where a = 1 cm is the radius of the source, w =
〈
wx, wy

〉
is the movement velocity of the

source, r = s− p is the relative position of the sensor s = 〈x, y〉 as seen from the source
p = 〈b, d〉, and ϕ is the azimuth angle of the motion. In general, the CWT coefficients
W f (u, s) are computed using [50]:

W f (u, s) =
∫ +∞

−∞
f (t)ψu,s(t)dt, (A29)

where f (t) is the signal that is analysed and ψu,s(t) is a scaled s and translated u version of
a mother wavelet ψ [50]:

ψu,s(t) =
1√

s
ψ

(
t− u

s

)
. (A30)

In the case of dipole localisation, four sets of CWT coefficients are computed:

Wve
x(p) =

1√
|y− d|

∫ +∞

−∞
vx(x)ψe(s− p)dx, (A31)

Wvo
x(p) =

1√
|y− d|

∫ +∞

−∞
vx(x)ψo(s− p)dx, (A32)

Wvn
y(p) =

1√
|y− d|

∫ +∞

−∞
vy(x)ψn(s− p)dx, (A33)

Wvo
y(p) =

1√
|y− d|

∫ +∞

−∞
vy(x)ψo(s− p)dx, (A34)

where vx(x) and vy(x) are the velocity components measured at a sensor s = 〈x, y〉 for a
source at p = 〈b, d〉. Since the sensor array has a finite length, the information used by
the CWT is in practice limited to sources that have most part of their significant nonzero
excitation profile projected on the array. An important property of the wavelets is that
they do not form a global orthonormal or orthogonal set of base functions. This renders
the method less vulnerable to possible noise contributions on the measurements of the
sensor array. On the other hand, different scales and shifts of the mother wavelets are
mixed, so that especially in the case of closely spaced multiple sources, crosstalk over the
reconstructed wavelets will occur. Consequently, the estimated spatial map formed by
the maxima of the reconstruction functions may be distorted in such cases. In addition,
the contributions of the individual wavelets to the measured velocity are only separated
at the source’s position because the CWT of ψe with ψo and ψn with ψo produces zero
coefficients only at that position. Consequently, the movement direction of a dipole source
depends on an accurate position estimate. In the following subsections, the movement
direction estimation is discussed for vx and vy, respectively.

Sensors 2021, 21, 4558 33 of 51

Appendix C.1. Movement Direction Estimation with the Parallel Velocity Component

The formulas for the CWT coefficients using the measurements of vx (Equations (A31)
and (A32)) can be rewritten to show the influence of both wavelets on the coefficients,
using Equation (A24):

Wve
x(p) =

a3||w||
2|y− d|3 (Wxee(p) cos (ϕ) + Wxeo(p) sin (ϕ)), (A35)

Wvo
x(p) =

a3||w||
2|y− d|3 (Wxoe(p) cos (ϕ) + Wxoo(p) sin (ϕ)), (A36)

with
Wxee(p) =

1√
|y− d|

∫ +∞

−∞
ψe(s− p̄) ψe(s− p)dx, (A37)

Wxeo(p) =
1√
|y− d|

∫ +∞

−∞
ψo(s− p̄) ψe(s− p)dx, (A38)

Wxoe(p) =
1√
|y− d|

∫ +∞

−∞
ψe(s− p̄) ψo(s− p)dx, (A39)

Wxoo(p) =
1√
|y− d|

∫ +∞

−∞
ψo(s− p̄) ψo(s− p)dx, (A40)

where a = 1 cm is the radius of the source sphere, w is the velocity vector of the source,
ϕ is the azimuth angle of w with respect to the sensor array, and s = 〈x, y〉 is the location
of the sensor. In these equations, we differentiate between the position of the source which
generated the measured velocity (p̄) and the position of a source for which the CWT is
evaluated (p).

Suppose that the position of the dipole is known p = p̄. Then, Wxeo(p) and Wxoe(p)
are both zero, and Equations (A35) and (A36) reduce to:

Wve
x(p) =

a3||w||
2|y− d|(7/2)

(
cos (ϕ)

∫ +∞

−∞
ψe(s− p̄)2dx

)
, (A41)

Wvo
x(p) =

a3||w||
2|y− d|(7/2)

(
sin (ϕ)

∫ +∞

−∞
ψo(s− p̄)2dx

)
. (A42)

So, Wve
x(p) and Wvo

x(p) have to be normalised to estimate the direction of movement:

ϕ = − atan

(
cx

sin ϕ
∫ +∞
−∞ ψo(s− p̄)2dx

cos ϕ
∫ +∞
−∞ ψe(s− p̄)2dx

)
, (A43)

with:

cx =

∫ +∞
−∞ ψe(s− p̄)2dx∫ +∞
−∞ ψo(s− p̄)2dx

=

∫ +∞
−∞ ψe(ρ)

2dρ∫ +∞
−∞ ψo(ρ)

2dρ
=

27
128 π
45

128 π
=

3
5

. (A44)

To conclude, in order to estimate the movement direction, a scaling as to be applied to
the CWT coefficients at the estimated source position (p̂):

ϕ̂x = − atan cx
Wvo

x(p̂)
Wve

y(p̂)
. (A45)

Appendix C.2. Movement Direction Estimation with the Perpendicular Velocity Component

Using the same steps as for vx, we find:

Wvo
y(p) =

a3||w||
2|y− d|(7/2)

(
cos (ϕ)

∫ +∞

−∞
ψo(s− p̄)2dx

)
, (A46)

Sensors 2021, 21, 4558 34 of 51

Wvn
y(p) =

a3||w||
2|y− d|(7/2)

(
sin (ϕ)

∫ +∞

−∞
ψn(s− p̄)2dx

)
. (A47)

So, Wvn
y(p) and Wvo

y(p) have to be normalised to estimate the direction of movement:

ϕ = − atan

(
cy

sin ϕ
∫ +∞
−∞ ψn(s− p̄)2dx

cos ϕ
∫ +∞
−∞ ψo(s− p̄)2dx

)
, (A48)

with:

cy =

∫ +∞
−∞ ψo(s− p̄)2dx∫ +∞
−∞ ψn(s− p̄)2dx

=

∫ +∞
−∞ ψo(ρ)

2dρ∫ +∞
−∞ ψn(ρ)

2dρ
=

45
128 π
123
128 π

=
15
41

. (A49)

To conclude, in order to estimate the movement direction, a scaling as to be applied to
the CWT coefficients at the estimated source position (p̂):

ϕ̂y = − atan cy
Wvn

y(p̂)
Wvo

y(p̂)
. (A50)

Appendix D. The Quadrature Method (QM)

Here, we provide some more details about the quadrature method (QM). Some pre-
vious attempts have been made to analytically determine a 2D position p = 〈b, d〉 and
movement direction ϕ of a dipole source from its generated fluid flows [5,25]. This task
is called the inverse problem of hydrodynamic source localisation [15]. An intrinsic dif-
ficulty of the inverse problem using the dipole field is that both vx and vy consist of a
directional-dependent combination of two of the three basis wavelets (see Section 2.5.4):

vx =
a3||w||

2|y− d|3 (ψe cos (ϕ) + ψo sin (ϕ)),

vy =
a3||w||

2|y− d|3 (ψo cos (ϕ) + ψn sin (ϕ)),
(A51)

with

ψe =
2ρ2 − 1

(ρ2 + 1)(5/2)
, (A52)

ψo =
3ρ

(ρ2 + 1)(5/2)
, (A53)

ψn =
2− ρ2

(ρ2 + 1)(5/2)
, (A54)

ρ =
rx

ry
=

x− b
y− d

, (A55)

where a = 1 cm is the radius of the source, w =
〈
wx, wy

〉
is the movement velocity of the

source, r = s− p is the relative position of the sensor s = 〈x, y〉 from the perspective of the
source p = 〈b, d〉, and ϕ is the azimuth angle of the motion.

The contribution of the basis functions depends on this ϕ. A series of velocity profiles—
simultaneous measurements of flow velocity by a series of sensors arranged in a linear
array—from a source at the same instantaneous position (b = 0, d = 1, so ρ = −x) are
shown in Figure A1 for five different source directions (ϕ = 0°, 80°, 160°, 240° and 320°).
A continuous ϕ-sequence of such profiles, presented in a time-lapse series, can be inter-
preted as a travelling wave moving within the envelopes indicated in green in Figure A1:

Sensors 2021, 21, 4558 35 of 51

ψx,env(ρ) =
√

ψ2
e (ρ) + ψ2

o(ρ),

ψy,env(ρ) =
√

ψ2
o(ρ) + ψ2

n(ρ).
(A56)

This travelling wave may be thought of as a 2D projection of a single 3D line structure,
which rotates along the x-axis in synchrony with the angle ϕ (see Figure 4b). Different
snapshots of such a projected travelling wave correspond to a velocity profile produced
by a source at the same position but moving in different directions. Obviously, the green
envelope is independent from the angle ϕ and is solely and completely determined by the
source’s position p = 〈b, d〉.

−2 −1 0 1 2
𝜌

−1.0

−0.5

0.0

0.5

1.0

𝑣𝑥
(n

or
m
al
is
ed

)

0∘

80∘ 160∘
240∘

320∘

(a)

−2 −1 0 1 2
𝜌

−1.0

−0.5

0.0

0.5

1.0

𝑣𝑦
(n

or
m
al
is
ed

)

0∘

80∘

160∘

240∘ 320∘

(b)
Figure A1. Velocity profiles of a continuous sensor array for five source movement directions ϕ: (a) vx and (b) vy.
The envelopes of the velocity profiles ψx,env(ρ) and ψy,env(ρ) are shown in green.

When it could be distilled from the measurements, these envelopes’ shape would
indicate the source’s x-position b with its top and yield the source distance d through its
width, according to the definitions given in Equations (A52)–(A55). A necessary final step
then would be to recover the movement angle ϕ from a measured velocity profile.

Reconstructing such an angle-independent envelope directly from a (measured) ve-
locity profile has so far been proven impractical because it is difficult to separate the
contributions of the wavelets in a single velocity profile without prior knowledge about the
angle ϕ. However, a practical approach is provided by measurement of the two orthogonal
velocity components vx and vy directed in a single plane through the array. This allows for
the reconstruction of a virtually orientation-independent curve somewhat equivalent to
the envelopes discussed above. This newly proposed method uses both vx and vy. As can
be seen in comparing Figure A1a,b, vx and vy share a useful property: where one velocity
profile has a local maximum, the other is close to a zero-crossing and vice versa, as has been
previously noted in Wolf and van Netten [45]. We can effectively utilise this property to
construct a curve, similar to the envelope discussed above, and show that it is only slightly
dependent on the direction angle ϕ. The method is somewhat analogous to constructing
an overall amplitude from two time-signals, as f.i. a sine and a cosine, which are 90° out of
phase by taking a ‘quadrature’ combination of the two velocity components.

Here, we will construct the quadrature curve by using a specific weighting of the
two measured quadratic velocity components, which will later be argued to minimise its
dependency on the angle ϕ:

ψquad(ρ, ϕ) =

√
v2

x(ρ, ϕ) +
1
2

v2
y(ρ, ϕ), (A57)

with (using 2 sin ϕ cos ϕ = sin 2ϕ):

v2
x(ρ, ϕ) =

(
4ρ4 − 13ρ2 + 1

)
cos(ϕ)2 +

(
6ρ3 − 3ρ

)
sin(2ϕ) + 9ρ2

(1 + ρ2)5 , (A58)

Sensors 2021, 21, 4558 36 of 51

v2
y(ρ, ϕ) =

(
6ρ− 3ρ3) sin(2ϕ) +

(
13
2 ρ2 − 1

2 ρ4 − 2
)

cos(2 ϕ) + 5
2 ρ2 + 1

2 ρ4 + 2

(1 + ρ2)5 . (A59)

Arranging the terms per angle dependence and then normalising with 1 + sin(ϕ)2 at
ρ = 0 yields the ‘normalised quadrature’ ψquad,norm(ρ, ϕ):

ψquad,norm(ρ, ϕ) =
√

Φsym(ρ, ϕ) + Φskew(ρ, ϕ), (A60)

with an even (symmetric) and odd (skewed) component:

Φsym(ρ, ϕ) =

(
7
4 ρ4 − 13

4 ρ2 − 1
2

)
cos(2ϕ) + 9

4 ρ4 + 15
4 ρ2 + 3

2

(1 + ρ2)5(1 + sin(ϕ)2)
, (A61)

Φskew(ρ, ϕ) =
9
2 ρ3 sin(2ϕ)

(1 + ρ2)5(1 + sin(ϕ)2)
. (A62)

Figure A2 gives examples of ψquad,norm for the same values of ϕ as shown in Figure A1.
Note that Φsym is even with respect to ρ irrespective of the angle ϕ, while Φskew is odd only
with a third-order term (ρ3) rather than also with a first-order term. This is a result of the
factor 1/2 applied to v2

y in Equation (A57), which effectively cancels the first-order terms.
This cancellation has the desirable property that Φskew is flat around ρ = 0, which leads
to ψquad,norm having a single maximum at ρ = 0, rather than two possible local maxima.
Consequently, the maximum of ψquad,norm acts as a prime ‘anchor point’, pointing exactly
to the source’s x-position (b).

−2 0 2
𝜌

0.0

0.5

1.0

𝜓𝑞
𝑢𝑎

𝑑,
𝑛

𝑜𝑟
𝑚

𝜑 = 0° 𝜑 = 80° 𝜑 = 160° 𝜑 = 240° 𝜑 = 320°

−2 0 2
𝜌

0.0

0.5

1.0

Φ
𝑠𝑦

𝑚

+𝜌𝑎𝑛𝑐ℎ−𝜌𝑎𝑛𝑐ℎ
−2 0 2

𝜌

−0.5

0.0

0.5

Φ
𝑠𝑘

𝑒𝑤

Figure A2. Quadrature profiles ψquad,norm (left panel) of a continuous sensor array for five source directions ϕ (same as
Figure A1). Furthermore, the two constituting functions Φsym(ρ, ϕ) (middle panel) and Φskew(ρ, ϕ) (right panel) are shown.
These functions are, respectively, even and odd in ρ. At the secondary anchor points±ρanch the function Φsym(ρ, ϕ) provides
angle independent values which may be employed to determine the source distance d before the source direction of motion
ϕ is known.

It should be noted from Figure A2 and Equations (A61) and (A62) that—apart from
ρ = 0—both Φsym and Φskew still have a dependency on the source direction ϕ. However,
as suggested by Figure A2, Φsym has two additional ‘secondary anchor points’ at ±ρanch,
which have no dependencies on angle ϕ and therefore provide convenient locations for a
determination of an exact and invariable width measure of Φsym. This width measurement
provides a good estimate of a ‘representative width’ of ψquad,norm. The addition of Φskew
shifts the overall curve almost equally at these secondary anchor points because of its
odd property. As a result, the relative distance between the secondary anchor points is
hardly dependent on the angle ϕ and therefore almost linearly scales with the distance d of
the source.

Sensors 2021, 21, 4558 37 of 51

The exact locations of the secondary anchor points ±ρanch of Φsym can be calculated
analytically. Because the anchor points should be independent of the angle ϕ, solving for
the condition ∂Φsym

∂ϕ = 0 defines their location. For this, we may treat the factor
(
1 + ρ2)5 in

the denominator as a constant C:

0 =
∂Φsym

∂ϕ
=
−3ρ2(5ρ2 − 4

)
sin(2ϕ)

2C
(

cos(ϕ)2 − 2
)2 . (A63)

The right-hand side of Equation (A63) has three solutions, corresponding to all three
anchor points:

ρ = 0 and ρ = ± 2√
5
≈ ±0.894. (A64)

The width between ±ρanch equals 4/
√

5 ≈ 1.789. Determination of the resulting
function value at the secondary anchor points Φsym(±ρanch, ϕ) leads via substitution to the
angle-independent value:

Φsym(±ρanch, ϕ) =

(
7
4 ρ4

anch −
13
4 ρ2

anch −
1
2

)
cos(2ϕ) + 9

4 ρ4
anch +

15
4 ρ2

anch +
3
2

(1 + ρ2
anch)

5
(1 + sin(ϕ)2)

≈ 0.210.

(A65)

The distance between the two values of ρ where ψquad,norm reaches
√
(0.210) has been

numerically determined for a range of angles ϕ, and indeed shows a slight variation around
1.78, as shown in Figure A3. This confirms the almost ϕ-independent way for determining
the width and therefore the distance (d) of the source to the array.

0 50 100 150 200 250 300 350

𝜑 (°)

0.0

0.5

1.0

1.5

2.0

2.5

w
id
th

at
𝜓𝑞

𝑢𝑎
𝑑,

𝑛
𝑜𝑟

𝑚
=

√
0.

21
0

Figure A3. The width between the secondary anchor points ±ρanch of the normalised quadrature
curve ψquad,norm are almost constant 1.78± 0.011 with respect to the movement direction angle ϕ and
is well approximated by the analytically determined value 4/

√
5.

Sensors 2021, 21, 4558 38 of 51

Appendix E. Additional Figures

This appendix provides additional figures for both analyses. For the first analysis
method (Section 3.1), Figures A4 and A5 show the spatial contours of the median position
error (Equation (4)) and median movement direction error (Equation (5)), respectively.
Each column corresponds to the minimum sampling distance Ds of the training and
optimisation set (Table 1). Figures A6 and A7 show the polar contours, indicating how a
source’s movement direction influences the errors.

For the second analysis method (Section 3.2), Figures A8 and A9 provide the spatial
contours and Figures A10 and A11 the polar contours for this analysis. Each column
corresponds to a configuration of sensor sensitivity axes: (x + y) both velocity components
are measured by all sensors, (x|y) subsequent sensors measure vx and vy alternatingly,
(x) all sensors measure only vx, (y) all sensors measure only vy.

Finally, Figures A12–A16 show the spatial and polar contours of the position and
movement direction error for the comparison of the quadrature method (QM), the Gauss–
Newton (GN) algorithm, and the multi-layer perceptron (MLP) using simulated sensors
with lower signal to noise ratios (SNRs) as well as the movement direction error distribu-
tions and the total area with accurate movement direction predictions.

Sensors 2021, 21, 4558 39 of 51

0
0.1
0.3
0.5

𝑦
(m

)

QM | 𝐷𝑠 = 0.09 QM | 𝐷𝑠 = 0.05 QM | 𝐷𝑠 = 0.03 QM | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

GN | 𝐷𝑠 = 0.09 GN | 𝐷𝑠 = 0.05 GN | 𝐷𝑠 = 0.03 GN | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

MLP | 𝐷𝑠 = 0.09 MLP | 𝐷𝑠 = 0.05 MLP | 𝐷𝑠 = 0.03 MLP | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

KNN | 𝐷𝑠 = 0.09 KNN | 𝐷𝑠 = 0.05 KNN | 𝐷𝑠 = 0.03 KNN | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

ELM | 𝐷𝑠 = 0.09 ELM | 𝐷𝑠 = 0.05 ELM | 𝐷𝑠 = 0.03 ELM | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

NR | 𝐷𝑠 = 0.09 NR | 𝐷𝑠 = 0.05 NR | 𝐷𝑠 = 0.03 NR | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

LCMV | 𝐷𝑠 = 0.09 LCMV | 𝐷𝑠 = 0.05 LCMV | 𝐷𝑠 = 0.03 LCMV | 𝐷𝑠 = 0.01

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

0
0.1
0.3
0.5

𝑦
(m

)

CWT | 𝐷𝑠 = 0.09

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | 𝐷𝑠 = 0.05

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | 𝐷𝑠 = 0.03

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | 𝐷𝑠 = 0.01

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)
0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

Figure A4. Spatial contours of the median position error (Equation (4)) for each localisation algorithm in all conditions of
Analysis Method 1. This analysis varied the minimum distance Ds between sources in the training and optimisation sets
(Table 1) while using the (x + y) sensor configuration at the σ = 1× 10−5 m s−1 noise level. The median position error was
computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 40 of 51

0
0.1
0.3
0.5

𝑦
(m

)

QM | 𝐷𝑠 = 0.09 QM | 𝐷𝑠 = 0.05 QM | 𝐷𝑠 = 0.03 QM | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

GN | 𝐷𝑠 = 0.09 GN | 𝐷𝑠 = 0.05 GN | 𝐷𝑠 = 0.03 GN | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

MLP | 𝐷𝑠 = 0.09 MLP | 𝐷𝑠 = 0.05 MLP | 𝐷𝑠 = 0.03 MLP | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

KNN | 𝐷𝑠 = 0.09 KNN | 𝐷𝑠 = 0.05 KNN | 𝐷𝑠 = 0.03 KNN | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

ELM | 𝐷𝑠 = 0.09 ELM | 𝐷𝑠 = 0.05 ELM | 𝐷𝑠 = 0.03 ELM | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

NR | 𝐷𝑠 = 0.09 NR | 𝐷𝑠 = 0.05 NR | 𝐷𝑠 = 0.03 NR | 𝐷𝑠 = 0.01

0
0.1
0.3
0.5

𝑦
(m

)

LCMV | 𝐷𝑠 = 0.09 LCMV | 𝐷𝑠 = 0.05 LCMV | 𝐷𝑠 = 0.03 LCMV | 𝐷𝑠 = 0.01

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

0
0.1
0.3
0.5

𝑦
(m

)

CWT | 𝐷𝑠 = 0.09

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | 𝐷𝑠 = 0.05

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | 𝐷𝑠 = 0.03

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | 𝐷𝑠 = 0.01

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure A5. Spatial contours of the median movement direction error (Equation (5)) for each localisation algorithm in all
conditions of Analysis Method 1. This analysis varied the minimum distance Ds between sources in the training and
optimisation sets (Table 1) while using the (x + y) sensor configuration at the σ = 1× 10−5 m s−1 noise level. The median
movement direction error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 41 of 51

QM | 𝐷𝑠 = 0.09 QM | 𝐷𝑠 = 0.05 QM | 𝐷𝑠 = 0.03 QM | 𝐷𝑠 = 0.01

GN | 𝐷𝑠 = 0.09 GN | 𝐷𝑠 = 0.05 GN | 𝐷𝑠 = 0.03 GN | 𝐷𝑠 = 0.01

MLP | 𝐷𝑠 = 0.09 MLP | 𝐷𝑠 = 0.05 MLP | 𝐷𝑠 = 0.03 MLP | 𝐷𝑠 = 0.01

KNN | 𝐷𝑠 = 0.09 KNN | 𝐷𝑠 = 0.05 KNN | 𝐷𝑠 = 0.03 KNN | 𝐷𝑠 = 0.01

ELM | 𝐷𝑠 = 0.09 ELM | 𝐷𝑠 = 0.05 ELM | 𝐷𝑠 = 0.03 ELM | 𝐷𝑠 = 0.01

NR | 𝐷𝑠 = 0.09 NR | 𝐷𝑠 = 0.05 NR | 𝐷𝑠 = 0.03 NR | 𝐷𝑠 = 0.01

LCMV | 𝐷𝑠 = 0.09 LCMV | 𝐷𝑠 = 0.05 LCMV | 𝐷𝑠 = 0.03 LCMV | 𝐷𝑠 = 0.01

CWT | 𝐷𝑠 = 0.09 CWT | 𝐷𝑠 = 0.05 CWT | 𝐷𝑠 = 0.03 CWT | 𝐷𝑠 = 0.01

RND | 𝐷𝑠 = 0.09 RND | 𝐷𝑠 = 0.05 RND | 𝐷𝑠 = 0.03 RND | 𝐷𝑠 = 0.01

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09
𝐸

𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

Figure A6. Polar contours of the median position error (Equation (4)) for each localisation algorithm in all conditions of
Analysis Method 1. These figures indicate how the movement direction ϕ and distance d of a source influence the error. This
analysis varied the minimum distance Ds between sources in the training and optimisation sets (Table 1) while using the
(x + y) sensor configuration at the σ = 1× 10−5 m s−1 noise level. The median position error was computed in 2× 2 cm2

cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 42 of 51

QM | 𝐷𝑠 = 0.09 QM | 𝐷𝑠 = 0.05 QM | 𝐷𝑠 = 0.03 QM | 𝐷𝑠 = 0.01

GN | 𝐷𝑠 = 0.09 GN | 𝐷𝑠 = 0.05 GN | 𝐷𝑠 = 0.03 GN | 𝐷𝑠 = 0.01

MLP | 𝐷𝑠 = 0.09 MLP | 𝐷𝑠 = 0.05 MLP | 𝐷𝑠 = 0.03 MLP | 𝐷𝑠 = 0.01

KNN | 𝐷𝑠 = 0.09 KNN | 𝐷𝑠 = 0.05 KNN | 𝐷𝑠 = 0.03 KNN | 𝐷𝑠 = 0.01

ELM | 𝐷𝑠 = 0.09 ELM | 𝐷𝑠 = 0.05 ELM | 𝐷𝑠 = 0.03 ELM | 𝐷𝑠 = 0.01

NR | 𝐷𝑠 = 0.09 NR | 𝐷𝑠 = 0.05 NR | 𝐷𝑠 = 0.03 NR | 𝐷𝑠 = 0.01

LCMV | 𝐷𝑠 = 0.09 LCMV | 𝐷𝑠 = 0.05 LCMV | 𝐷𝑠 = 0.03 LCMV | 𝐷𝑠 = 0.01

CWT | 𝐷𝑠 = 0.09 CWT | 𝐷𝑠 = 0.05 CWT | 𝐷𝑠 = 0.03 CWT | 𝐷𝑠 = 0.01

RND | 𝐷𝑠 = 0.09 RND | 𝐷𝑠 = 0.05 RND | 𝐷𝑠 = 0.03 RND | 𝐷𝑠 = 0.01

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09
𝐸

𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure A7. Polar contours of the median movement direction error (Equation (4)) for each localisation algorithm in all
conditions of Analysis Method 1. These figures indicate how the movement direction ϕ and distance d of a source influence
the error. This analysis varied the minimum distance Ds between sources in the training and optimisation sets (Table 1)
while using the (x + y) sensor configuration at the σ = 1× 10−5 m s−1 noise level. The median movement direction error
was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 43 of 51

0
0.1
0.3
0.5

𝑦
(m

)

GN | (x) GN | (y) GN | (x|y) GN | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

MLP | (x) MLP | (y) MLP | (x|y) MLP | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

KNN | (x) KNN | (y) KNN | (x|y) KNN | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

ELM | (x) ELM | (y) ELM | (x|y) ELM | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

LSQ | (x) LSQ | (y) LSQ | (x|y) LSQ | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

NR | (x) NR | (y) NR | (x|y) NR | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

LCMV | (x) LCMV | (y) LCMV | (x|y) LCMV | (x+y)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

0
0.1
0.3
0.5

𝑦
(m

)

CWT | (x)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | (y)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | (x|y)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | (x+y)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)
0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

Figure A8. Spatial contours of the median position error (Equation (4)) for each localisation algorithm in all conditions of
Analysis Method 2. This analysis varied the sensitivity axes of the sensors: (x + y) measured both velocity components at all
sensors, (x|y) alternated measuring vx and vy for subsequent sensors, (x) measured only vx at all sensors, (y) measured
only vy at all sensors. The Ds = 0.01 training and optimisation set and σ = 1.0× 10−5 m s−1 noise level were used. The
median position error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 44 of 51

0
0.1
0.3
0.5

𝑦
(m

)

GN | (x) GN | (y) GN | (x|y) GN | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

MLP | (x) MLP | (y) MLP | (x|y) MLP | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

KNN | (x) KNN | (y) KNN | (x|y) KNN | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

ELM | (x) ELM | (y) ELM | (x|y) ELM | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

LSQ | (x) LSQ | (y) LSQ | (x|y) LSQ | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

NR | (x) NR | (y) NR | (x|y) NR | (x+y)

0
0.1
0.3
0.5

𝑦
(m

)

LCMV | (x) LCMV | (y) LCMV | (x|y) LCMV | (x+y)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

0
0.1
0.3
0.5

𝑦
(m

)

CWT | (x)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | (y)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | (x|y)

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

CWT | (x+y)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure A9. Spatial contours of the median movement direction error (Equation (5)) for each localisation algorithm in all
conditions of Analysis Method 2. This analysis varied the sensitivity axes of the sensors: (x + y) measured both velocity
components at all sensors, (x|y) alternated measuring vx and vy for subsequent sensors, (x) measured only vx at all sensors,
(y) measured only vy at all sensors. The Ds = 0.01 training and optimisation set and σ = 1.0× 10−5 m s−1 noise level
were used. The median movement direction error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed
between x = ±0.2 m.

Sensors 2021, 21, 4558 45 of 51

GN | (x) GN | (y) GN | (x|y) GN | (x+y)

MLP | (x) MLP | (y) MLP | (x|y) MLP | (x+y)

KNN | (x) KNN | (y) KNN | (x|y) KNN | (x+y)

ELM | (x) ELM | (y) ELM | (x|y) ELM | (x+y)

LSQ | (x) LSQ | (y) LSQ | (x|y) LSQ | (x+y)

NR | (x) NR | (y) NR | (x|y) NR | (x+y)

LCMV | (x) LCMV | (y) LCMV | (x|y) LCMV | (x+y)

CWT | (x) CWT | (y) CWT | (x|y) CWT | (x+y)

RND | (x) RND | (y) RND | (x|y) RND | (x+y)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09
𝐸

𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

Figure A10. Polar contours of the median position error (Equation (4)) for each localisation algorithm in all conditions
of Analysis Method 2. These figures indicate how the movement direction ϕ and distance d of a source influence the
error. This analysis varied the sensitivity axes of the sensors: (x + y) measured both velocity components at all sensors,
(x|y) alternated measuring vx and vy for subsequent sensors, (x) measured only vx at all sensors, (y) measured only vy at all
sensors. The Ds = 0.01 training and optimisation set and σ = 1.0× 10−5 m s−1 noise level were used. The median position
error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 46 of 51

GN | (x) GN | (y) GN | (x|y) GN | (x+y)

MLP | (x) MLP | (y) MLP | (x|y) MLP | (x+y)

KNN | (x) KNN | (y) KNN | (x|y) KNN | (x+y)

ELM | (x) ELM | (y) ELM | (x|y) ELM | (x+y)

LSQ | (x) LSQ | (y) LSQ | (x|y) LSQ | (x+y)

NR | (x) NR | (y) NR | (x|y) NR | (x+y)

LCMV | (x) LCMV | (y) LCMV | (x|y) LCMV | (x+y)

CWT | (x) CWT | (y) CWT | (x|y) CWT | (x+y)

RND | (x) RND | (y) RND | (x|y) RND | (x+y)

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2 0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09
𝐸

𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure A11. Polar contours of the median movement direction error (Equation (5)) for each localisation algorithm in all
conditions of Analysis Method 2. These figures indicate how the movement direction ϕ and distance d of a source influence
the error. This analysis varied the sensitivity axes of the sensors: (x + y) measured both velocity components at all sensors,
(x|y) alternated measuring vx and vy for subsequent sensors, (x) measured only vx at all sensors, (y) measured only vy

at all sensors. The Ds = 0.01 training and optimisation set and σ = 1.0× 10−5 m s−1 noise level were used. The median
movement direction error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 47 of 51

Q
M G
N

M
LP Q
M G
N

M
LP Q
M G
N

M
LP Q
M G
N

M
LP

noise level (ms−1) / algorithm

0.00

0.05

0.10

0.15

0.20

0.25

ar
ea

(m
2)

(h
ig
he

ri
sb

et
te
r)

1.0 ⋅ 10−5∗ 1.0 ⋅ 10−4 1.0 ⋅ 10−3 1.8 ⋅ 10−2

Med. 𝐸𝜑

≤0.01𝜋 rad
≤0.03𝜋 rad
≤0.05𝜋 rad
≤0.09𝜋 rad

(a) (b)
Figure A12. An overview of the movement direction error Ev (Equation (5)) of QM, GN, and MLP using simulated
sensors with higher velocity equivalent noise levels. (a) Total areas with a median movement direction error Eϕ below
1 cm, 3 cm, 5 cm, and 9 cm. (b) Boxplots of the movement direction error distributions, whiskers indicate the 5th and 95th
percentiles of the distributions. Predictions with errors outside these percentiles are shown individually. The values for
σ = 1.0× 10−5 m s−1 are based on the Ds = 0.01 condition in Analysis Method 1. The (x + y) sensor configuration was
used. The MLP was re-trained for each noise level. Both the MLP and GN used the optimal hyperparameter values from
the Ds = 0.01 condition of Analysis Method 1.

0
0.1
0.3
0.5

𝑦
(m

)

QM | 𝜎 = 1.0 ⋅ 10−5∗ QM | 𝜎 = 1.0 ⋅ 10−4 QM | 𝜎 = 1.0 ⋅ 10−3 QM | 𝜎 = 1.8 ⋅ 10−2

0
0.1
0.3
0.5

𝑦
(m

)

GN | 𝜎 = 1.0 ⋅ 10−5∗ GN | 𝜎 = 1.0 ⋅ 10−4 GN | 𝜎 = 1.0 ⋅ 10−3 GN | 𝜎 = 1.8 ⋅ 10−2

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

0
0.1
0.3
0.5

𝑦
(m

)

MLP | 𝜎 = 1.0 ⋅ 10−5∗

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

MLP | 𝜎 = 1.0 ⋅ 10−4

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

MLP | 𝜎 = 1.0 ⋅ 10−3

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

MLP | 𝜎 = 1.8 ⋅ 10−2

0.01
0.03
0.05
0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05
0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05
0.09

𝐸
𝑝
(m

)

Figure A13. Spatial contours of the median position error (Equation (4)) for QM, GN, and MLP using simulated sensors
with higher velocity equivalent noise levels. The Ds = 0.01 training and optimisation set and (x + y) sensor configuration
were used. The values for σ = 1.0× 10−5 m s−1 are based on the Ds = 0.01 condition in Analysis Method 1. The MLP
was re-trained for each noise level. Both the MLP and GN used the optimal hyperparameter values from the Ds = 0.01
condition of Analysis Method 1. The median position error was computed in 2× 2 cm2 cells. The sensors were equidistantly
placed between x = ±0.2 m.

Sensors 2021, 21, 4558 48 of 51

0
0.1
0.3
0.5

𝑦
(m

)

QM | 𝜎 = 1.0 ⋅ 10−5∗ QM | 𝜎 = 1.0 ⋅ 10−4 QM | 𝜎 = 1.0 ⋅ 10−3 QM | 𝜎 = 1.8 ⋅ 10−2

0
0.1
0.3
0.5

𝑦
(m

)

GN | 𝜎 = 1.0 ⋅ 10−5∗ GN | 𝜎 = 1.0 ⋅ 10−4 GN | 𝜎 = 1.0 ⋅ 10−3 GN | 𝜎 = 1.8 ⋅ 10−2

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

0
0.1
0.3
0.5

𝑦
(m

)

MLP | 𝜎 = 1.0 ⋅ 10−5∗

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

MLP | 𝜎 = 1.0 ⋅ 10−4

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

MLP | 𝜎 = 1.0 ⋅ 10−3

−0.5 −0.2 0 0.2 0.5

𝑥 (m)

MLP | 𝜎 = 1.8 ⋅ 10−2

0.01
0.03
0.05
0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05
0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05
0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure A14. Spatial contours of the median movement direction error (Equation (5)) for QM, GN, and MLP using simulated
sensors with higher velocity equivalent noise levels. The Ds = 0.01 training and optimisation set and (x + y) sensor
configuration were used. The values for σ = 1.0× 10−5 m s−1 are based on the Ds = 0.01 condition in Analysis Method 1.
The MLP was re-trained for each noise level. Both the MLP and GN used the optimal hyperparameter values from the
Ds = 0.01 condition of Analysis Method 1. The median movement direction error was computed in 2× 2 cm2 cells.
The sensors were equidistantly placed between x = ±0.2 m.

QM | 𝜎 = 1.0 ⋅ 10−5∗ QM | 𝜎 = 1.0 ⋅ 10−4 QM | 𝜎 = 1.0 ⋅ 10−3 QM | 𝜎 = 1.8 ⋅ 10−2

GN | 𝜎 = 1.0 ⋅ 10−5∗ GN | 𝜎 = 1.0 ⋅ 10−4 GN | 𝜎 = 1.0 ⋅ 10−3 GN | 𝜎 = 1.8 ⋅ 10−2

MLP | 𝜎 = 1.0 ⋅ 10−5∗ MLP | 𝜎 = 1.0 ⋅ 10−4 MLP | 𝜎 = 1.0 ⋅ 10−3 MLP | 𝜎 = 1.8 ⋅ 10−2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

0.01
0.03
0.05

0.09
𝐸

𝑝
(m

)

0.01
0.03
0.05

0.09

𝐸
𝑝
(m

)

Figure A15. Polar contours of the median position error (Equation (4)) for QM, GN, and MLP using simulated sensors with
higher velocity equivalent noise levels. These figures indicate how the movement direction ϕ and distance d of a source
influence the error. The Ds = 0.01 training and optimisation set and (x + y) sensor configuration were used. The values for
σ = 1.0× 10−5 m s−1 are based on the Ds = 0.01 condition in Analysis Method 1. The MLP was re-trained for each noise
level. Both the MLP and GN used the optimal hyperparameter values from the Ds = 0.01 condition of Analysis Method 1.
The median position error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between x = ±0.2 m.

Sensors 2021, 21, 4558 49 of 51

QM | 𝜎 = 1.0 ⋅ 10−5∗ QM | 𝜎 = 1.0 ⋅ 10−4 QM | 𝜎 = 1.0 ⋅ 10−3 QM | 𝜎 = 1.8 ⋅ 10−2

GN | 𝜎 = 1.0 ⋅ 10−5∗ GN | 𝜎 = 1.0 ⋅ 10−4 GN | 𝜎 = 1.0 ⋅ 10−3 GN | 𝜎 = 1.8 ⋅ 10−2

MLP | 𝜎 = 1.0 ⋅ 10−5∗ MLP | 𝜎 = 1.0 ⋅ 10−4 MLP | 𝜎 = 1.0 ⋅ 10−3 MLP | 𝜎 = 1.8 ⋅ 10−2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2
0𝜋

1
4 𝜋3

4 𝜋

1𝜋

1 1
4 𝜋 1 3

4 𝜋

0.2

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

0.01
0.03
0.05

0.09

𝐸
𝜑
(×

𝜋
ra
d)

Figure A16. Polar contours of the median movement direction error (Equation (5)) for each localisation algorithm in
all conditions of Analysis Method 2. These figures indicate how the movement direction ϕ and distance d of a source
influence the error. The Ds = 0.01 training and optimisation set and (x + y) sensor configuration were used. The values for
σ = 1.0× 10−5 m s−1 are based on the Ds = 0.01 condition in Analysis Method 1. The MLP was re-trained for each noise
level. Both the MLP and GN used the optimal hyperparameter values from the Ds = 0.01 condition of Analysis Method 1.
The median movement direction error was computed in 2× 2 cm2 cells. The sensors were equidistantly placed between
x = ±0.2 m.

References
1. Dijkgraaf, S. The Functioning and Significance of the Lateral-Line Organs. Biol. Rev. 1963, 38, 51–105. [CrossRef] [PubMed]
2. Coombs, S.; van Netten, S. The Hydrodynamics and Structural Mechanics of the Lateral Line System. In Fish Physiology; Elsevier:

Amsterdam, The Netherlands, 2005; Volume 23, pp. 103–139. [CrossRef]
3. Yang, Y.; Chen, J.; Engel, J.; Pandya, S.; Chen, N.; Tucker, C.; Coombs, S.; Jones, D.L.; Liu, C. Distant touch hydrodynamic imaging

with an artificial lateral line. Proc. Natl. Acad. Sci. USA 2006, 103, 18891–18895. [CrossRef] [PubMed]
4. Vollmayr, A.N.; Sosnowski, S.; Urban, S.; Hirche, S.; van Hemmen, J.L. Snookie: An Autonomous Underwater Vehicle with

Artificial Lateral-Line System. In Flow Sensing in Air and Water; Springer: Berlin/Heidelberg, Germany, 2014; pp. 521–562.
[CrossRef]

5. Ćurčić-Blake, B.; van Netten, S.M. Source location encoding in the fish lateral line canal. J. Exp. Biol. 2006, 209, 1548–1559.
[CrossRef] [PubMed]

6. Pandya, S.; Yang, Y.; Jones, D.L.; Engel, J.; Liu, C. Multisensor Processing Algorithms for Underwater Dipole Localization and
Tracking Using MEMS Artificial Lateral-Line Sensors. EURASIP J. Adv. Signal Process. 2006, 2006, 076593. [CrossRef]

7. Abdulsadda, A.T.; Tan, X. An artificial lateral line system using IPMC sensor arrays. Int. J. Smart Nano Mater. 2012, 3, 226–242.
[CrossRef]

8. Abdulsadda, A.T.; Tan, X. Nonlinear estimation-based dipole source localization for artificial lateral line systems.
Bioinspir. Biomim. 2013, 8, 026005. [CrossRef] [PubMed]

9. Boulogne, L.H.; Wolf, B.J.; Wiering, M.A.; van Netten, S.M. Performance of neural networks for localizing moving objects with an
artificial lateral line. Bioinspir. Biomim. 2017, 12, 56009. [CrossRef] [PubMed]

10. Wolf, B.J.; Warmelink, S.; van Netten, S.M. Recurrent neural networks for hydrodynamic imaging using a 2D-sensitive artificial
lateral line. Bioinspir. Biomim. 2019, 14, 055001. [CrossRef]

11. Nguyen, N.; Jones, D.; Pandya, S.; Yang, Y.; Chen, N.; Tucker, C.; Liu, C. Biomimetic Flow Imaging with an Artificial Fish Lateral
Line. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSIGNALS),
Madeira, Portugal, 19–21 January 2018; pp. 269–276. [CrossRef]

12. Yang, Y.; Nguyen, N.; Chen, N.; Lockwood, M.; Tucker, C.; Hu, H.; Bleckmann, H.; Liu, C.; Jones, D.L. Artificial lateral line with
biomimetic neuromasts to emulate fish sensing. Bioinspir. Biomim. 2010, 5, 016001. [CrossRef]

http://doi.org/10.1111/j.1469-185X.1963.tb00654.x
http://www.ncbi.nlm.nih.gov/pubmed/14027866
http://dx.doi.org/10.1016/S1546-5098(05)23004-2
http://dx.doi.org/10.1073/pnas.0609274103
http://www.ncbi.nlm.nih.gov/pubmed/17132735
http://dx.doi.org/10.1007/978-3-642-41446-6_20
http://dx.doi.org/10.1242/jeb.02140
http://www.ncbi.nlm.nih.gov/pubmed/16574811
http://dx.doi.org/10.1155/ASP/2006/76593
http://dx.doi.org/10.1080/19475411.2011.650233
http://dx.doi.org/10.1088/1748-3182/8/2/026005
http://www.ncbi.nlm.nih.gov/pubmed/23538856
http://dx.doi.org/10.1088/1748-3190/aa7fcb
http://www.ncbi.nlm.nih.gov/pubmed/28707626
http://dx.doi.org/10.1088/1748-3190/ab2cb3
http://dx.doi.org/10.5220/0001063002690276
http://dx.doi.org/10.1088/1748-3182/5/1/016001

Sensors 2021, 21, 4558 50 of 51

13. Nguyen, N.; Jones, D.L.; Yang, Y.; Liu, C. Flow Vision for Autonomous Underwater Vehicles via an Artificial Lateral Line.
EURASIP J. Adv. Signal Process. 2011, 2011, 806406. [CrossRef]

14. Wolf, B.J.; van Netten, S.M. Hydrodynamic Imaging using an all-optical 2D Artificial Lateral Line. In Proceedings of the 2019
IEEE Sensors Applications Symposium, Sophia Antipolis, France, 11–13 March 2019; pp. 1–6. [CrossRef]

15. Wolf, B.J.; van de Wolfshaar, J.; van Netten, S.M. Three-dimensional multi-source localization of underwater objects using
convolutional neural networks for artificial lateral lines. J. R. Soc. Interface 2020, 17, 20190616. [CrossRef]

16. Lamb, H. Hydrodynamics. Cambridge University Press: Cambridge, UK, 1924; p. 687.
17. Que, R.; Zhu, R. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation

Neural Network. Sensors 2013, 14, 564–574. [CrossRef]
18. Pjetri, O.; Wiegerink, R.J.; Krijnen, G.J.M. A 2D particle velocity sensor with minimal flow-disturbance. IEEE Sens. J. 2015, 16,

8706–8714. [CrossRef]
19. Lei, H.; Sharif, M.A.; Tan, X. Dynamics of Omnidirectional IPMC Sensor: Experimental Characterization and Physical Modeling.

IEEE/ASME Trans. Mechatron. 2016, 21, 601–612. [CrossRef]
20. Wolf, B.J.; Morton, J.A.S.; MacPherson, W.N.; van Netten, S.M. Bio-inspired all-optical artificial neuromast for 2D flow sensing.

Bioinspir. Biomim. 2018, 13, 026013. [CrossRef]
21. Lu, Z.; Popper, A. Neural response directionality correlates of hair cell orientation in a teleost fish. J. Comp. Physiol. A Sens. Neural

Behav. Physiol. 2001, 187, 453–465. [CrossRef]
22. Kalmijn, A.J. Hydrodynamic and Acoustic Field Detection. In Sensory Biology of Aquatic Animals; Springer: New York, NY, USA,

1988; pp. 83–130. [CrossRef]
23. Abdulsadda, A.T.; Tan, X. Underwater Tracking and Size-Estimation of a Moving Object Using an IPMC Artificial Lateral Line.

In Smart Materials, Adaptive Structures and Intelligent Systems; American Society of Mechanical Engineers: New York, NY, USA,
2012; pp. 657–665. [CrossRef]

24. Abdulsadda, A.T.; Tan, X. Underwater tracking of a moving dipole source using an artificial lateral line: Algorithm and
experimental validation with ionic polymer–metal composite flow sensors. Smart Mater. Struct. 2013, 22, 045010. [CrossRef]

25. Franosch, J.M.P.; Sichert, A.B.; Suttner, M.D.; Van Hemmen, J.L. Estimating position and velocity of a submerged moving object
by the clawed frog Xenopus and by fish—A cybernetic approach. Biol. Cybern. 2005, 93, 231–238. [CrossRef]

26. Goulet, J.; Engelmann, J.; Chagnaud, B.P.; Franosch, J.M.P.; Suttner, M.D.; van Hemmen, J.L. Object localization through the
lateral line system of fish: Theory and experiment. J. Comp. Physiol. A 2008, 194, 1–17. [CrossRef]

27. Pandya, S.; Yang, Y.; Liu, C.; Jones, D.L. Biomimetic Imaging of Flow Phenomena. In Proceedings of the 2007 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing—ICASSP ’07, Honolulu, HI, USA, 15–20 April 2007; Volume 2,
pp. II-933–II-936. [CrossRef]

28. Sichert, A.B.; Bamler, R.; van Hemmen, J.L. Hydrodynamic Object Recognition: When Multipoles Count. Phys. Rev. Lett. 2009,
102, 058104. [CrossRef]

29. Coombs, S.; Hastings, M.; Finneran, J. Modeling and measuring lateral line excitation patterns to changing dipole source locations.
J. Comp. Physiol. A 1996, 178, 359–371. [CrossRef]

30. Jiang, Y.; Ma, Z.; Zhang, D. Flow field perception based on the fish lateral line system. Bioinspir. Biomim. 2019, 14, 041001.
[CrossRef]

31. McConney, M.E.; Chen, N.; Lu, D.; Hu, H.A.; Coombs, S.; Liu, C.; Tsukruk, V.V. Biologically inspired design of hydrogel-capped
hair sensors for enhanced underwater flow detection. Soft Matter 2009, 5, 292–295. [CrossRef]

32. Asadnia, M.; Kottapalli, A.G.P.; Karavitaki, K.D.; Warkiani, M.E.; Miao, J.; Corey, D.P.; Triantafyllou, M. From Biological Cilia
to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance. Sci. Rep. 2016, 6, 32955.
[CrossRef] [PubMed]

33. Asadnia, M.; Kottapalli, A.G.P.; Miao, J.; Warkiani, M.E.; Triantafyllou, M.S. Artificial fish skin of self-powered micro-
electromechanical systems hair cells for sensing hydrodynamic flow phenomena. J. R. Soc. Interface 2015, 12, 20150322.
[CrossRef] [PubMed]

34. Yang, Y.; Pandya, S.; Chen, J.; Engel, J.; Chen, N.; Liu, C. Micromachined Hot-Wire Boundary Layer Flow Imaging Array.
In CANEUS: MNT for Aerospace Applications; American Society of Mechanical Engineers Digital Collection (ASMEDC): New York
City, NY, USA, 2006; pp. 213–218. [CrossRef]

35. Abdulsadda, A.T.; Tan, X. Underwater source localization using an IPMC-based artificial lateral line. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2719–2724. [CrossRef]

36. Kottapalli, A.G.P.; Bora, M.; Asadnia, M.; Miao, J.; Venkatraman, S.S.; Triantafyllou, M. Nanofibril scaffold assisted MEMS
artificial hydrogel neuromasts for enhanced sensitivity flow sensing. Sci. Rep. 2016, 6, 19336. [CrossRef] [PubMed]

37. Dunbar, D.; Humphreys, G. A spatial data structure for fast Poisson-disk sample generation. ACM Trans. Graph. 2006, 25, 503–508.
[CrossRef]

38. MATLAB. Version 9.4.0.813654 (R2018a); The MathWorks Inc.: Natick, MA, USA, 2018.
39. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks.

In Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest,
Hungary, 25–29 July 2004; Volume 2, pp. 985–990. [CrossRef]

http://dx.doi.org/10.1155/2011/806406
http://dx.doi.org/10.1109/SAS.2019.8706030
http://dx.doi.org/10.1098/rsif.2019.0616
http://dx.doi.org/10.3390/s140100564
http://dx.doi.org/10.1109/JSEN.2016.2570213
http://dx.doi.org/10.1109/TMECH.2015.2468080
http://dx.doi.org/10.1088/1748-3190/aaa786
http://dx.doi.org/10.1007/s003590100218
http://dx.doi.org/10.1007/978-1-4612-3714-3_4
http://dx.doi.org/10.1115/SMASIS2012-8129
http://dx.doi.org/10.1088/0964-1726/22/4/045010
http://dx.doi.org/10.1007/s00422-005-0005-0
http://dx.doi.org/10.1007/s00359-007-0275-1
http://dx.doi.org/10.1109/ICASSP.2007.366390
http://dx.doi.org/10.1103/PhysRevLett.102.058104
http://dx.doi.org/10.1007/BF00193974
http://dx.doi.org/10.1088/1748-3190/ab1a8d
http://dx.doi.org/10.1039/B808839J
http://dx.doi.org/10.1038/srep32955
http://www.ncbi.nlm.nih.gov/pubmed/27622466
http://dx.doi.org/10.1098/rsif.2015.0322
http://www.ncbi.nlm.nih.gov/pubmed/26423435
http://dx.doi.org/10.1115/CANEUS2006-11046.
http://dx.doi.org/10.1109/ICRA.2011.5980545
http://dx.doi.org/10.1038/srep19336
http://www.ncbi.nlm.nih.gov/pubmed/26763299
http://dx.doi.org/10.1145/1141911.1141915
http://dx.doi.org/10.1109/IJCNN.2004.1380068

Sensors 2021, 21, 4558 51 of 51

40. Liang, N.-Y.; Huang, G.-B.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for
Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [CrossRef]

41. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
42. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256.
43. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
44. Constrained Nonlinear Optimization Algorithms—MATLAB & Simulink. Available online: https://www.mathworks.com/

help/optim/ug/constrained-nonlinear-optimization-algorithms.html (accessed on 13 April 2020).
45. Wolf, B.J.; van Netten, S.M. Training submerged source detection for a 2D fluid flow sensor array with extreme learning machines.

In Proceedings of the Eleventh International Conference on Machine Vision (ICMV 2018), Munich, Germany, 1–3 November 2018;
Nikolaev, D.P., Radeva, P., Verikas, A., Zhou, J., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA,
USA, 2019; Volume 11041, p. 2. [CrossRef]

46. Windsor, S.P.; Norris, S.E.; Cameron, S.M.; Mallinson, G.D.; Montgomery, J.C. The flow fields involved in hydrodynamic imaging
by blind Mexican cave fish (Astyanax fasciatus). Part I: Open water and heading towards a wall. J. Exp. Biol. 2010, 213, 3819–3831.
[CrossRef]

47. Lin, X.; Wu, J.; Qin, Q. A novel obstacle localization method for an underwater robot based on the flow field. J. Mar. Sci. Eng.
2019, 7, 437. [CrossRef]

48. Bot, D.; Wolf, B.; van Netten, S. Dipole Localisation Predictions Data Set. 2021. Available online: https://doi.org/10.5281/zenodo.
4973492 (accessed on 30 June 2021).

49. Bot, D.; Wolf, B.; van Netten, S. Dipole Localisation Algorithms for Simulated Artificial Lateral Line. 2021. Available online:
https://doi.org/10.5281/zenodo.4973515 (accessed on 30 June 2021).

50. Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999.

http://dx.doi.org/10.1109/TNN.2006.880583
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
http://dx.doi.org/10.1117/12.2522667
http://dx.doi.org/10.1242/jeb.040741
http://dx.doi.org/10.3390/jmse7120437
https://doi.org/10.5281/zenodo.4973492
https://doi.org/10.5281/zenodo.4973492
https://doi.org/10.5281/zenodo.4973515

	Introduction
	Materials and Methods
	The Dipole Flow Field
	Simulation Environment
	Performance Analyses
	Parameter Optimisation Approach
	Dipole Localisation Algorithms
	The Random Predictor (RND)
	Linear Constraint Minimum Variance (LCMV) Beamforming
	K-Nearest Neighbours (KNN)
	The Continuous Wavelet Transform (CWT)
	The Extreme Learning Machine (ELM)
	The Multi-Layer Perceptron (MLP)
	The Gauss–Newton (GN) Algorithm
	The Newton–Raphson (NR) Algorithm
	The Least Square Curve Fit (LSQ) Algorithm
	The Quadrature Method (QM) Algorithm

	Results
	Analysis Method 1: Amount of Training and Optimisation Data
	Analysis Method 2: Sensor Sensitivity Axes
	Additional Results

	Discussion
	The Gauss–Newton (GN) Algorithm
	The Newton–Raphson (NR) Algorithm
	The Multi-Layer Perceptron (MLP) and Extreme Learning Machine (ELM)
	The Quadrature Method (QM) Algorithm
	Future Research Directions and Possible Applications

	Conclusions
	Final Hyperparameter Values
	Potential Flow Wavelets
	The Even Wavelet
	The Odd Wavelet
	The Navelet

	Movement Direction Estimation with the Continuous Wavelet Transform (CWT)CWT
	Movement Direction Estimation with the Parallel Velocity Component
	Movement Direction Estimation with the Perpendicular Velocity Component

	The Quadrature Method (QM)
	Additional Figures
	References

