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Integer packing sets form a well-quasi-ordering

Alberto Del Pia ∗ Dion Gijswijt † Jeff Linderoth ‡ Haoran Zhu §

January 17, 2021

Abstract

An integer packing set is a set of non-negative integer vectors with the property that, if
a vector x is in the set, then every non-negative integer vector y with y ≤ x is in the set
as well. The main result of this paper is that integer packing sets, ordered by inclusion,
form a well-quasi-ordering. This result allows us to answer a recently posed question: the
k-aggregation closure of any packing polyhedron is again a packing polyhedron.

Key words: Well-quasi-ordering; k-aggregation closure; polyhedrality; packing polyhedra.

1 Introduction

In order theory, a quasi-order is a binary relation � over a set X that is reflexive: ∀a ∈ X, a � a,
and transitive: ∀a, b, c ∈ X, a � b and b � c imply a � c. A quasi-order � is a well-quasi-order
(wqo) if for any infinite sequence x1, x2, . . . of elements from X there are indices i < j such that
xi � xj .

A classic example of a quasi-order over the set of graphs is given by the graph minor relation.
The Robertson-Seymour Theorem (also known as the graph minor theorem) essentially states
that the set of finite graphs is well-quasi-ordered by the graph minor relation. This fundamental
result is the culmination of twenty papers written as part of the Graph Minors Project [14].
Interested readers may find more examples and characterizations in the comprehensive survey
paper by Kruskal [11]. The main result of this paper is that a quasi-order arising from Integer
Optimization is a well-quasi-order.

Let N = {0, 1, 2, . . .} denote the set of nonnegative integers and let [n] = {1, 2, . . . , n} for
any n ∈ N. We define an integer packing set in Rn as a subset Q of Nn with the property that:
if x ∈ Q, y ∈ Nn and y ≤ x, then y ∈ Q. Note that the relation ⊆ is a quasi-order over the set
of integer packing sets. We are now ready to state our main result.

Theorem 1. The set of integer packing sets in Rn is well-quasi-ordered by the relation ⊆.
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Integer packing sets appear naturally in Integer Optimization. A packing polyhedron is a set
of the form P = {x ∈ Rn | Ax ≤ b, x ≥ 0} where the data A ∈ Rn×m, b ∈ Rm is non-negative.
Clearly, for any packing polyhedron P , the set P ∩Zn, is an integer packing set. However, note
that not all integer packing sets are of this form. This connection between packing polyhedra
and integer packing sets allows us to employ Theorem 1 to answer a recently posed open question
in Integer Optimization.

In [3], the authors introduce the concept of k-aggregation closure for packing and covering
polyhedra. Given a packing polyhedron P = {x ∈ Rn | Ax ≤ b, x ≥ 0}, and a positive integer
k, the k-aggregation closure of P is defined by

Ak(P ) :=
⋂

λ1,...,λk∈Rm
+

conv({x ∈ Nn | (λj)TAx ≤ (λj)Tb, ∀j ∈ [k]}).

The set Ak(P ) is defined as the intersection of an infinite number of sets, each of which is the
convex hull of an integer packing set. A natural question, posed in [3], is whether the set Ak(P )
is polyhedral. The authors provide a partial answer to this question by showing that Ak(P ) is
a polyhedron, provided that every entry of A is positive. As a consequence of Theorem 1, we
give a complete answer to the posed question.

Theorem 2. For any packing polyhedron P and any k ≥ 1, the set Ak(P ) is a packing polyhe-
dron.

The generality of our proof techniques allows us to provide a generalization of Theorem 2
to the setting where the given set is a downset of Rn+ instead of a polyhedron. We recall that
a downset of Rn+ is a subset D of Rn+ with the property that, if x ∈ D, y ∈ Rn+ and y ≤ x,
then y ∈ D. Clearly, a packing polyhedron in Rn is a downset of Rn+, but not all downsets are
polyhedral. Our generalization relies on a natural extension of the definition of k-aggregation
closure to downsets of Rn+. For any downset D of Rn+, we denote by

Λ(D) := {f ∈ Rn | sup{fTx | x ∈ D} <∞}.

In particular, note that fTx ≤ β is valid for D if and only if f ∈ Λ(D) and β ≥ sup{fTx | x ∈ D}.
Then, the k-aggregation closure of D is defined by

Ãk(D) :=
⋂

f1,...,fk∈Λ(D)

conv({x ∈ Nn | (f j)Tx ≤ sup{(f j)Td | d ∈ D}, ∀j ∈ [k]}).

The next observation shows that Ãk is indeed a generalization of Ak.

Observation 1. For any packing polyhedron P and any k ≥ 1, we have Ãk(P ) = Ak(P ).

Proof. Let P = {x ∈ Rn+ | Ax ≤ b, x ≥ 0} be a packing polyhedron in Rn. It is simple to

show that Ãk(P ) ⊆ Ak(P ). To see this, consider an inequality λTAx ≤ λTb, for λ ∈ Rm+ , in the
definition of Ak(P ). Then λTAx ≤ λTb is valid for P . Thus λTA ∈ Λ(D), and sup{λTAd | d ∈
P} ≤ λTb. Hence, the inequality λTAx ≤ sup{λTAd | d ∈ P} in the definition of Ãk(P ) implies
the original inequality λTAx ≤ λTb.

Next, we show Ãk(P ) ⊇ Ak(P ). Consider an inequality fTx ≤ sup{fTd | d ∈ P}, for
f ∈ Λ(P ), in the definition of Ãk(P ). This inequality is valid for P . From Farkas’ lemma we
know that there exist some λ ∈ Rm+ and γ ∈ Rn+ such that λTA−γTI = fT and λTb ≤ sup{fTd |
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d ∈ P}. Note that the inequality λTAx ≤ λTb is valid for P . Furthermore, it dominates the
inequality fTx ≤ sup{fTd | d ∈ P} in the nonnegative orthant. This is because, whenever
x ≥ 0,

fTx = λTAx− γTIx ≤ λTAx ≤ λTb ≤ sup{fTd | d ∈ P}.

We have shown Ãk(P ) ⊇ Ak(P ), which completes the proof of the observation.

We now state our generalizations of Theorem 2 to downsets of Rn+.

Theorem 3. For any downset D of Rn+ and any k ≥ 1, the set Ãk(D) is a packing polyhedron.

In the special case k = 1, the k-aggregation closure is also known as the aggregation closure.
In the recent unpublished manuscript [13], the authors independently show that the aggregation
closure of a packing or covering rational polyhedron P is polyhedral. The main differences with
our Theorem 3 are the following: (i) The result in [13] holds for both packing and covering
polyhedra, while our Theorem 2 only deals with the packing case; (ii) The result in [13] requires
the given set to be a polyhedron, while in our case the given set can be a general downset of
Rn+; (iii) The proof in [13] is direct, while our Theorem 2 is a consequence of Theorem 1; (iv)
In [13] the authors only discuss in detail the aggregation closure, and claim that an analogous
proof can be obtained for the k-aggregation closure, while in this paper we directly consider the
k-aggregation closure.

Our techniques also allow us to obtain the following result.

Theorem 4. For any closed convex downset D of Rn+, the set conv(D ∩ Zn) is a packing
polyhedron.

Our work sheds light onto the connection between Order Theory and polyhedrality of clo-
sures in Integer Optimization. Only few papers so far have explored this connection. In [2],
Averkov exploits the Gordan-Dickson lemma to show the polyhedrality of the closure of a ra-
tional polyhedron obtained via disjunctive cuts from a family of lattice-free rational polyhedra
with bounded max-facet-width. In the paper [7], Dash et al. consider fairly well-ordered qosets
to extend the result of Averkov. In particular, the authors prove the polyhedrality of the closure
of a rational polyhedron with respect to any family of t-branch sets, where each set is the union
of t polyhedral sets that have bounded max-facet-width. Other recent polyhedrality results in
Integer Optimization include [1, 4, 9, 6, 5].

The organization of this paper is as follows: In Section 2 we present some preliminaries and
notations from Order Theory that will be used in our proofs. In Section 3 we show Theorem 1,
while in Section 4 we provide a proof of Theorem 2. In Section 5 we turn our attention to
non-polyhedral sets and prove Theorem 3 and Theorem 4.

2 Preliminaries in Order Theory

Recall that a quasi-order is a binary relation � over a set X that is reflexive and transitive. If
a � b, we also write b � a. If a � b or b � a, the elements a and b are said to be comparable.
If both a � b and b � a, then we write a ∼ b (which is an equivalence relation). A sequence
x1, x2, . . . of elements from X is said to be increasing if x1 � x2 � . . . and decreasing if
x1 � x2 � . . . .

Most quasi-orders in this paper will in fact be partial orders, that is, they are antisymmetric:
a � b and b � a imply a = b. In particular, we will consider the subset relation on Rn (and
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the induced partial order on integer packing sets), and the partial order on (Nn,≤) given by the
component-wise comparison: x ≤ y if and only if xi ≤ yi for all i ∈ [n].

A quasi-order (X,�) is a well-quasi-order (wqo) if for any infinite sequence of elements
x1, x2, . . . from X there are indices i < j such that xi � xj . A quasi-order (X,�) is said to have
the finite basis property if for all X ′ ⊆ X, there exists a finite subset B ⊆ X ′ such that for every
x ∈ X ′ there is a b ∈ B such that b � x. The next result provides us with characterizations of
well-quasi-orders.

Lemma 1 ([10, Theorem 2.1]). Let (X,�) be a quasi-order. The following statements are
equivalent:

(i) (X,�) is a wqo;

(ii) (X,�) has the finite basis property;

(iii) every infinite sequence of elements from X has an infinite increasing subsequence.

Given two quasi-orders (X1,�1) and (X2,�2), the product quasi-order is (X1×X2,�) where
(x1, x2) � (y1, y2) if and only if x1 �1 y1 and x2 �2 y2.

Lemma 2. Let (X1,�1) and (X2,�2) be wqo’s. Then the product quasi-order is a wqo.

The proof of this well-known fact follows easily from the equivalence of (i) and (iii) in
Lemma 1: given an infinite sequence of elements in X1×X2, we can find an infinite subsequence
for which the components in X1 form an increasing sequence, and then a further subsequence
in which also the components in X2 form an increasing sequence. The resulting subsequence is
an increasing subsequence in X1 ×X2.

Since (N,≤) is a wqo, the lemma implies that for any positive n the set Nn is a wqo under
the usual component-wise comparison.

Lemma 3 (Gordan-Dickson, [8]). The poset (Nn,≤) is a wqo.

Given a quasi order (X,�) we denote by X∗ the set of all finite sequences of elements from
X. We define a quasi order �∗ on X∗ by setting (x1, . . . , xn) �∗ (y1, . . . , ym) if and only if there
is a strictly increasing function f : [n]→ [m] such that xi � yf(i) for all i ∈ [n] (in particular, we
require n ≤ m). In this paper we will need the following generalization of the Gordon-Dickson
lemma.

Lemma 4 (Higman’s lemma, [10]). Let (X,�) be a wqo. Then (X∗,�∗) is a wqo as well.

3 Integer packing sets are well-quasi-ordered

In this section we prove our main result that integer packing sets in Rn form a wqo under
inclusion. The proof is based on the following lemma.

Lemma 5. Let (X,�) be a wqo. Define X∗∗ to be the set of decreasing sequences in X:

X∗∗ = {(x0, x1, . . .) ∈ XN : x0 � x1 � · · · }.

For x, y ∈ X∗∗ set x �∗∗ y if xi � yi for all i ∈ N. Then (X∗∗,≤∗∗) is a wqo.
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Proof. We start with the following claim.

Claim 1. Let x ∈ X∗∗. There is a k ∈ N such that xk ∼ x` for all ` ≥ k.

Proof of claim. Since X is a wqo, it follows by Lemma 1 that there is a finite subset I ⊆ N of
indices such that for any ` ∈ N there is an i ∈ I with x` � xi. Let k be the largest index in I.
Consider any ` ≥ k. Since x0, x1, . . . is decreasing, we have x` � xk, but also x` � xi � xk for
some i ∈ I. Hence, x` ∼ xk. �

We call the smallest k as in the claim the tail of x. By Higman’s lemma, it follows that the
product quasi-order �′ on X∗ × X is a wqo. Let φ : X∗∗ → X∗ × X be defined by φ(x) =
((x0, . . . , xk−1), xk), where k is the tail of x. Let x, y ∈ X∗∗ and suppose that φ(x) �′ φ(y). To
complete the proof, it suffices to show that x �∗∗ y.

Let k and ` be the tails of x and y, respectively. Since φ(x) �′ φ(y) we have a strictly
increasing function f : {0, . . . , k−1} → {0, . . . , `−1} such that xi � yf(i) for all i ∈ {0, . . . , k−1}.

Since y0 � y1 � · · · and f(i) ≥ i for all i ∈ {0, . . . , k − 1}, we have xi � yf(i) � yi for all
i ∈ {0, . . . , k − 1}. Since xk � y` and y` ≤ yj for all j ∈ N (as ` is the tail of y), it follows that
for all i ≥ k we have xi ≤ xk ≤ y` ≤ yi. We conclude that xi ≤ yi for all i ∈ N and therefore
that x �∗∗ y.

We will now prove Theorem 1: the set of integer packing sets in Rn is a wqo under inclusion.

Proof of Theorem 1. The proof is by induction on n. The case n = 1 follows directly from
the fact that (N,≤) is a wqo. For the induction step, we associate to any integer packing set
S ⊆ Rn+1 a sequence (S0, S1, . . .) of ‘slices’ by setting

Si = {(x1, . . . , xn) ∈ Nn : (x1, . . . , xn, i) ∈ S}.

As S is an integer packing set, it follows that the Si are integer packing sets in Rn and that
S0 ⊇ S1 ⊇ · · · . For two packing sets S, T in Rn+1 we have S ⊆ T if and only if for the
corresponding slices we have Si ⊆ Ti for all i ∈ N. Hence, the well-quasi-ordering of integer
packing sets in Rn+1 follows from that of integer packing sets in Rn by Lemma 5.

As a consequence to Theorem 1 we obtain the following structural result about integer
packing sets. An n-dimensional block is a set of the form X1× · · · ×Xn, where each Xi is equal
to N or to [m] for some m ∈ N.

Corollary 1. Let Q be an integer packing set in Rn. Then Q is the union of finitely many
n-dimensional blocks.

Proof. The proof is by induction on n. If n = 1, then any integer packing set in Rn is an n-
dimensional block. Now suppose that the statement holds for a given n and consider an integer
packing set Q in Rn+1. Define the n-dimensional slices Qi = {(x1, . . . , xn) : (x1, . . . , xn, i) ∈ Q}
for all i ∈ N. Then Q0, Q1, . . . is a decreasing sequence of integer packing sets in Rn. Hence, by
Theorem 1, there is a k ∈ N such that Qk = Q` for all ` ≥ k. By assumption, each set Qi is a
union of finitely many n-dimensional blocks. Hence Qi×{0, 1, . . . , i} is a union of finitely many
n+ 1-dimensional block for any i = 0, 1, . . . , k − 1, and also Qk × N is a union of finitely many
n+ 1-dimensional blocks. Since

Q = (Qk × N) ∪
k−1⋃
i=0

Qi × {0, 1, . . . , i},

the result follows.
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4 Polyhedrality of the k-aggregation closure

In this section we prove that the k-aggregation closure of a packing polyhedron is itself a packing
polyhedron (Theorem 2). We will use some standard notation from polyhedral theory. In
particular, given A ⊆ Rn, we denote by conv(A) the convex hull of A, and given a polyhedron
P ⊆ Rn, we denote by PI = conv(P ∩ Zn) the integer hull of P . Given a ∈ Rn, we define
a+ ∈ Rn by (a+)i := max{0, ai} for all i ∈ [n].

Lemma 6. Let D be a downset of Rn+ and let aTx ≤ β be a valid inequality for D. Then
aT+x ≤ β is valid for D.

Proof. Let x ∈ D and let x′ ∈ Rn be defined by x′i = xi if ai ≥ 0 and x′i = 0 if ai < 0. Since D
is a downset, we have x′ ∈ D. Hence, aT+x = aTx′ ≤ β.

Lemma 7. A polyhedron is a downset of Rn+ if and only if it is a packing polyhedron.

Proof. It is simple to see that every packing polyhedron is a downset of Rn+. For the converse
implication, let P be a polyhedron that is a downset of Rn+. Then P can be written in the form

P = {x ∈ Rn | x ≥ 0, (ai)Tx ≤ bi, i ∈ [m]}.

Consider any inequality (ai)Tx ≤ bi. Since P is a downset, it follows from Lemma 6 that
(ai+)Tx ≤ bi is valid for P . Moreover, the inequality (ai)Tx ≤ bi is implied by the inequalities
(ai+)Tx ≤ bi and x ≥ 0.

It follows that
P = {x ∈ Rn | x ≥ 0, (ai+)Tx ≤ bi, i ∈ [m]}.

Since 0 ∈ P , it follows that bi ≥ 0 for every i ∈ [m]. We conclude that P is a packing
polyhedron.

Lemma 8. Let P be a packing polyhedron. Then the integer hull PI is also a packing polyhedron.

Note that in Lemma 8 we do not require the polyhedron P to be rational.

Proof. We can write P = {x ∈ Rn | x ≥ 0, (ai)Tx ≤ bi, i ∈ [m]} where the ai and bi are
nonnegative. Consider any of the inequalities (ai)Tx ≤ bi. We claim that, for all i ∈ [m], there
exist a nonnegative rational vector ci ≤ ai and a rational number di ≥ bi such that

{x ∈ Nn | (ai)Tx ≤ bi} = {x ∈ Nn | (ci)Tx ≤ di}. (1)

To show the claim, we observe that since ai is nonnegative, the set {(ai)Tx | x ∈ Nn}∩(bi, bi+1)
is finite. Hence, there is a number b′ > bi such that for all x ∈ Nn we have either (ai)Tx ≤ bi or
(ai)Tx ≥ b′.

Let ε ∈ (0, 1) be such that (1 + ε)bi < b′(1− ε). We can choose ci to be a rational vector with
(1− ε)ai ≤ ci ≤ ai, and di to be a rational number with bi ≤ di ≤ (1 + ε)bi. Now, the inclusion
⊆ in equality (1) is clear. The converse inclusion follows since for any x ∈ Nn we have

(ci)Tx ≤ di =⇒ (1− ε)(ai)Tx ≤ (1 + ε)bi =⇒ (ai)Tx < b′ =⇒ (ai)Tx ≤ bi.

This concludes the proof of the claim.
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Let P ′ = {x ∈ Rn | x ≥ 0, (ci)Tx ≤ di, i ∈ [m]}. Then P ∩Nn = P ′∩Nn and hence PI = P ′I .
By Meyer’s theorem [12], the integer hull of a rational polyhedron is itself a polyhedron. Hence,
PI = P ′I is a polyhedron.

It is clear that the polyhedron PI is a downset of Rn+. Hence, by Lemma 7, PI is a packing
polyhedron.

Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2. Let P be a packing polyhedron defined by P = {x ∈ Rn | Ax ≤ b, x ≥ 0},
and let k be a positive integer. Denote by P the collection of polyhedra of the form

{x ∈ Rn | x ≥ 0, (λj)TAx ≤ (λj)Tb, ∀j ∈ [k]},

for all possible λ1, . . . , λk ∈ Rm+ .
Since A is nonnegative, for every Q ∈ P the set Q ∩ Nn is an integer packing set. By

Theorem 1, the set of integer packing sets in Rn is a wqo under inclusion. Hence, it follows from
the finite basis property that there is a finite subset P ′ ⊆ P such that for any Q ∈ P there is a
Q′ ∈ P ′ such that Q′ ∩ Nn ⊆ Q ∩ Nn, and hence also that Q′I ⊆ QI . We conclude that

Ak(P ) =
⋂{

QI : Q ∈ P
}

=
⋂{

QI : Q ∈ P ′
}
.

Since by Lemma 8 the integer hull QI is a packing polyhedron for every Q ∈ P ′, and the
intersection of finitely many packing polyhedra is again a packing polyhedron, it follows that
Ak(P ) is a packing polyhedron.

5 Generalization to non-polyhedral sets

In this section, we provide the proofs of our generalizations of Theorem 2 to non-polyhedral sets.
In particular, we give the proofs of Theorem 3 and of Theorem 4.

Proof of Theorem 3. Define Λ+(D) := Λ(D)∩Rn+. We first show that in the definition of Ãk(D)
we can replace Λ(D) with Λ+(D), i.e.,

Ãk(D) =
⋂

f1,...,fk∈Λ+(D)

conv({x ∈ Nn | (f j)Tx ≤ sup{(f j)Td | d ∈ D}, ∀j ∈ [k]}).

The containment ⊆ is trivial, thus we only need to show the containment ⊇. Let f ∈ Λ(D), and
consider the associated valid inequality for D given by fTx ≤ sup{fTd | d ∈ D}. Since D is a
downset of Rn+, we know from Lemma 6 that (f+)Tx ≤ sup{fTd | d ∈ D} is also valid for D,
and dominates the original inequality in Rn+. In particular, this implies that sup{(f+)Td | d ∈
D} ≤ sup{fTd | d ∈ D}, hence f+ ∈ Λ+(D) since the latter supremum is finite by assumption.
Hence, we have shown that (f+)Tx ≤ sup{(f+)Td | d ∈ D} dominates the original inequality
fTx ≤ sup{fTd | d ∈ D} in Rn+. We have therefore proven the containment ⊇.

Lastly, we follow almost the exact same argument as in the proof of Theorem 2, except now
we consider the collection P of polyhedra of the form

{x ∈ Rn | x ≥ 0, (f j)Tx ≤ sup{(f j)Td | d ∈ D}, ∀j ∈ [k]},

for all possible f1, . . . , fk ∈ Λ+(D).
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We now turn our attention to Theorem 4.

Proof of Theorem 4. For any f ∈ Λ(D) we denote βf := max{fTd | d ∈ D} and define Λ+(D) :=
Λ(D) ∩ Rn+ as in the previous proof. We obtain

D = {x ∈ Rn+ | fTx ≤ βf , ∀f ∈ Λ+(D)},
conv(D ∩ Zn) = conv({x ∈ Nn | fTx ≤ βf , ∀f ∈ Λ+(D)}).

For any f ∈ Λ+(D) let Sf := {x ∈ Nn | fTx ≤ βf}. Then Sf is an integer packing set in Rn. By
Theorem 1, the set of integer packing sets in Rn is a wqo under inclusion. Hence, it follows from
the finite basis property that there is a finite subset B ⊆ Λ+(D) such that for every f ∈ Λ+(D)
there is a f ′ ∈ B for which Sf ′ ⊆ Sf . It follows that

conv(D ∩ Zn) = conv({x ∈ Nn | fTx ≤ βf , ∀f ∈ B}).

By Lemma 8, it follows that conv(D ∩ Zn) is a packing polyhedron.

Theorem 4 can be used to prove the following result about the natural extension of Ãk to
k =∞ defined by

Ã∞(D) := conv({x ∈ Nn | fTx ≤ sup{fTd | d ∈ D}, ∀f ∈ Λ(D)}).

Corollary 2. For any downset D of Rn+, the set Ã∞(D) is a packing polyhedron.

Proof. From Lemma 6, conv(D) is a closed convex downset, and we can write

conv(D) = {x ∈ Rn+ | fTx ≤ sup{fTd | d ∈ D}, ∀f ∈ Λ(D)}.

Hence Ã∞(D) = conv(conv(D) ∩ Nn). The corollary then follows from Theorem 4.
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