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Summary

Understanding and forecasting travel behavior is essential for sustainable transport planning, espe-
cially due to the fact that urban development is increasing and mobility needs are increasing with it.
Traditional trip-based models, which model trips as isolated events, fail to capture the complexity
and constraints of real-life travel behavior. As a result, there has been a shift toward more behav-
iorally realistic models, such as tour-based and activity-based models, which model travel demand
based on linked trip chains and daily activity schedules. Tour-based models stand in between the
aggregated simplicity of trip-based models and the disaggregated complexity of agent-based mod-
els. By modeling tours as sequences of trips that begin and end at home (or work), they reflect
spatial and temporal constraints better. One of the main components of a tour-based model is the
tour generation based on explanatory variables (e.g., age, occupation, income) for the population
input characterized by those attributes. The main motive behind travel is activity participation, so
constructing the tour patterns for different individuals requires a thorough understanding of the
factors that affect the participation of these individuals in different activities.

This research focuses on developing a tour generation tool by providing a robust model structure
and a set of explanatory variables that generate the daily tours taken by specific population seg-
ments, mimicking real-world behavior. The model is developed and validated using the Dutch
ODiN (Onderweg in Nederland) travel survey, aiming to better represent behavioral diversity be-
tween population segments. Given the complex transport behavior in the Netherlands, supported
by an advanced multimodal transport network, a robust tour generation model can serve as a valu-
able tool for making informed decisions and guide policy-making in the field by giving insights on
what affects the generation of travel for different individuals. The study investigates which demo-
graphic, socio-economic, and spatial attributes influence tour generation for enhanced predictive
capabilities. Furthermore, the working-from-home phenomenon is also explored, as it is becoming
an increasing trend after the COVID-19 pandemic.

The literature review provided a couple of modeling approaches commonly used for the generation
of tours from explanatory variables. These were mainly divided into two categories: regression-
based and discrete choice models. After reviewing these methods, a Discrete Choice Modeling
(DCM) approach was chosen for this research due to its strong behavioral foundation and ability to
represent individual-level decision-making processes. DCMs provide a clear and interpretable un-
derstanding of how different factors influence the choices made by travelers. To develop the model,
a choice structure with alternatives that the decision-maker can choose and a set of explanatory
attributes are required.

The ODIN data contains full daily travel records of the surveyed individuals, which are used to
form activity trip chains (tours) that start and end at home (e.g.,, Home-Work-Shop-Home) as a
reference location where individuals depart from and return to after carrying out certain activities.
The number of different trip-chains that appear in the data is very large due to the combinatorial
complexity. Therefore, based on the literature (Yagi and Mohammadian, 2008), a categorization
of the tours is carried out by assigning a primary activity for each of them based on a priority
order (Work-Education-Shop-Leisure-Escort-Other), assuming that the highest ranking activity in
each trip chain determines the nature of the tour, and the other activities are considered secondary.
This categorization is used to separate the choice structure into two stages to reduce the number
of alternatives and distinguish between the effects of different attributes in different tour types. In
the first stage, the choice is made for a daily pattern between staying at home and choosing the
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primary purposes for which a tour will be made, see Fig. S1. After that, in the second stage a
separate choice is modeled for each of the 6 primary purposes to choose the trip-chain (or multiple
trip chains) for the primary purposes that were chosen in the first stage. So, the final result of the
combined model for each individual characterized by certain attributes, is the full set of trip chains
that is modeled with the probability of choosing each of them. The set of explanatory attributes that
are used to form the utility functions of each alternative are: age, gender, occupation, household
income and size, car ownership, urban level (based on household density), and zone level (public
transport stops and population) of the place of residence. An alternative choice structure of nested
logit type is defined for each model to compare with the base multinomial structure to provide
conclusions on the best model structure. The nests for the first-stage model are home (stay at home
and work-from-home) and travel (all alternatives with tours). In the second stage for each primary
purpose, the 1-trip chain and 2+ trip chain alternatives are grouped in two different nests.
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Figure S1: Choice structure with alternative examples (Multinomial Logit)

The models are trained on data from 2022-2023 as the travel behavior after the pandemic changed
significantly, ensuring the validity of the model for the current and near-future behavior. The results
revealed important insights on the influence of different attributes in the generation of tours and
demonstrated high predictive accuracy when used to model the choices made in a validation dataset
that was not used for training. The first-stage model results showed that all attributes, except the
zone level, have a significant effect on choosing a daily pattern. The nested model outperformed
the multinomial logit for the first-stage model in terms of predictive capabilities. The second-stage
models results indicate that different attributes have an effect when choosing the trip chains for
different primary purposes, with age and occupation appearing most consistently. The multinomial
logit structure is chosen for all second-stage models as the nested models did not improve over any
of them.

The combined model is tested in the validation dataset to predict the choices that are then compared
to the observed trip-chain counts. The predictions were highly accurate at an aggregate level, but
significant over- or underestimations were revealed when looking at certain subgroups (students,
elderly). A respecification of the first-stage model with alternative-specific parameters for 7 alter-
natives to distinguish the effect of attributes across different alternatives significantly improved the
performance of the model within subgroups, while keeping the overall aggregated model perfor-
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mance high. Therefore, the final first-stage model is this respecified model with alternative-specific
parameters for 7 alternatives with an MNL structure (the nest coefficient for the nested structure
is not significantly different from 1), see Fig. S2 (green means positive and red negative effect on
utilities).
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Figure S2: The effect of parameters in the alternatives of the first stage model with alternative-
specific parameters

A case study compared the performance of the developed discrete choice model with a current
frequency-based method used in practice (de Romph, 2021) for estimating the frequencies of differ-
ent trip chains for an input population and comparing them with the observed counts in a validation
dataset not used for training any of the models. The discrete choice model consistently estimated
the observed tour counts quite well, while the frequency-based method tended to overpredict the
less frequent trip chains, see Fig. S3.
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Figure S3: Observed and estimated counts of trip chains modeled from both methods

In conclusion, the discrete choice model with a two-stage choice structure of multinomial logit type
provides a robust framework to explicitly model the trip chains that are generated by individuals
with different characteristics. All the selected explanatory attributes revealed significant effects on
the choices made on different parts of the model, except for the zone level attribute, suggesting that
public transit accessibility does not have a strong influence on tour generation. The validity of the
model across different regions or future time frames with varying travel behavior can be ensured
by re-estimating the model with data relevant to the desired context. Future research regarding
this topic can explore different approaches for modeling trip chains, instead of explicitly including
them as alternatives. Furthermore, the exploration of additional choice structures or the inclusion
of work-based tours as a separate category could further improve the explanatory power of these
models.
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1 Introduction

The prosperity and development of society throughout history have always depended on the effec-
tiveness of its transportation systems. Population growth and high urbanization rates, especially in
developed countries, increase the reliance on transportation systems, and transport policymakers
require deep insights into travel behavior to offer efficient solutions that ensure sustainable devel-
opment. Transport models are widely used instruments by transport experts to make informed
decisions about policies and investments in this important field (PTV Group, 2024). Travel demand
is shaped by the spatial and temporal distribution of the activities that individuals participate in,
and for that reason, it is a derived demand from the need to reach activity locations (Heggie and
Jones, 1978). The conventional 4-step trip-based approaches were developed to predict travel de-
mand with focus on providing the necessary transportation supply to support it. They model trips
as isolated events at an aggregate-level and do not take into consideration spatial and temporal
constraints, presenting several limitations with respect to travel behavior. Trip-based models also
present difficulties in modeling future situations that lack evidence from practice in the present due
to their limited behavioral realism (Dumbliauskas, 2019).

Transport planners have lately been shifting their focus from supply-oriented to demand-oriented
planning as continuously increasing the capacity of infrastructure is not a sustainable solution with
the rapidly growing mobility needs (Ipek Sener et al., 2009). Therefore, there is a growing inter-
est in more advanced disaggregate-level methods, such as tour-based modeling, that have tours as
their unit of travel and model travel demand driven by the activity participation principle. Tours
combine single trips in a trip chain that start and end at a specific location (usually home). This
family of models tackles the limitation of trip-based models that treat individual trips as indepen-
dent decisions and the effects of other activity decisions not being considered, by offering a more
realistic framework that imposes spatial and temporal constraints in trip chains (Rossi and Shiftan,
1997). However, most tour-based models still treat tours as independent, neglecting the interdepen-
dencies beyond tours (Bowman and Ben-Akiva, 2001). They follow a more disaggregate approach
than trip-based models (aggregated), usually macroscopic disaggregation at the level of population
segments (e.g., students, full-time workers, etc.) to simulate travel demand, allowing for behavioral
differentiation without the complexity of fully microscopic simulation. Tour-based models present
an advancement toward activity- and agent-based models characterized by further disaggregation.
Activity-based models simulate the demand at the individual or household level by constructing
their daily activity schedules and imposing time constraints (Dumbliauskas, 2019). Agent-based
models simulate microscopic travel demand at individual level making sure that all tours and trips
are feasible in time and space (Vovsha, 2019).

Constructing daily activity patterns of population segments by generating the activities and travel
demand (tours) needed to reach those locations is a crucial part of tour-based models. This is usually
carried out by a tour frequency module, in which different types of tours are generated by means
of explanatory variables (household information, land use, mobility). While tour-based models are
being actively explored, many limitations still arise in identifying and modeling a large range of
factors that influence the demand for different activities. These tour generation models are usually
constrained by limited demographic variables and overlook dynamic factors and accessibility effects.
The aim of this research is to develop and evaluate a model that predicts the frequencies of different
types of tours across population segments. By evaluating its performance, the study aims to assess
the effectiveness of the methodological approach and model structure for supporting travel demand
generation for a tour-based transport model.



The research focuses on the Dutch context. The Netherlands has a well-developed transportation
network with a diverse set of modes that provide many travel options, but at the same time, it
faces many challenges, especially in increasing the efficiency and reliability of multi-modal travel.
A reliable tour-based model that replicates and analyzes complex behavior can be a very useful tool
to investigate the critical points and guide the development of transport solutions. However, the
development of this model requires a reliable tour generation tool to model the travel demand as
close to reality as possible. People often combine several trips throughout the day (e.g., commuting
to work-grocery shopping-gym-home) and that affects mode, time choice, and travel frequency.
There are a large number of trip purpose combinations that can make up a tour and people have
different schedules and habits, making the demand modeling process quite complex.

The focus of this research is the enhancement of the explanatory power of a tour generation model
by exploring explanatory attributes and model structures. By analyzing the factors that influence
how often individuals undertake different types of tours, this study aims to develop a model that
captures behavioral variations across population segments. The model development and validation
will be supported by travel data sources collected in the Netherlands, primarily from the ODiN
(Onderweg in Nederland) travel survey conducted by the Central Bureau of Statistics (CBS) (Cen-
traal Bureau voor de Statistiek, 2024). Key demographic, socio-economic, and accessibility-related
attributes will be examined to model their effects on tour generation. The research questions to
achieve the aim of this research are described in section 1.1 and the contributions to the society in
section 1.2.

1.1 Research questions

The development and comparison of different model structures for tour generation and testing the
explanatory power of different attributes form the basis to achieve the aim of the study and answer
the main and sub-research question:

¢ Which model structure and predictors should be used to predict the frequencies of various
tour types across population segments for tour generation?

1. Which rules should be used to form tours from trip data and aggregate different types of
trip chains (travel purpose combinations)?

Subquestion 1 addresses the formation of tours from trip data and categorization of trip
chains (tours) by aggregating them into representative categories for analyzing and mod-
eling them. A framework will be developed in Chapter 3, supported by a literature
review in Chapter 2.

2. Which methodological approach is most suitable for estimating the frequencies of differ-
ent tour types taken by specific population segments?

Subquestion 2 focuses on identifying the most suitable modeling approach for estimating
tour frequencies across segments (e.g. regression-based or machine-learning methods),
which will be used to develop the models that will be assessed. Literature review (Chap-
ter 2) will be the foundation for exploring and choosing a suitable modeling approach
and possible modeling structures.

3. Which explanatory attributes available in the data can be used to supply the model de-
velopment?

Subquestion 3 explores explanatory variables that the available data can provide to ex-
plain travel generation behaviour. The output of this subquestion will serve as input for
the set of explanatory variables that are used and tested in the models. It is supported by
the literature review and mainly from the data analysis chapter (Chapter 4).



4. Which performance metrics should be utilized to measure the models’ abilities to predict
tour frequencies?

Subquestion 4 is critical in answering the main question by providing tools to measure
the performance of the developed models. By defining evaluation metrics and validation
techniques, this step determines how well the model predictions align with observed
travel patterns and is crucial in answering the main research question. Performance
indicators are supported by literature and defined in the methodology (Chapter 3).

1.2 Scientific and societal contribution

Significant advancements have been achieved in existing literature (see Chapter 2) about tour-based
demand models. However, a critical gap seems to remain in defining a robust framework and a set
of explanatory variables that accurately predict how often people perform certain types of tours.
Most of the state of art consists of models that predict tours primarily aimed at the primary activity
of a tour and limited in terms of secondary activities, often neglecting the need for estimating the
frequency of different trip chains by making a distinction in the order of activities. This research
aims to bridge this gap by increasing the predictive and explanatory power of tour generation
models by developing a tool that predicts the frequency of various tour types (trip chains) across
distinct population segments, moving beyond binary decisions or simplified explanatory variables.
Furthermore, the phenomenon of working from home will be explicitly modeled as it is becoming
more and more common and could lead to significant effects on traffic demand.

The outcome of this thesis is a crucial component for transport models, which are widely used in-
struments for evaluating the performance of transportation systems and aiding the decision-making
process in this field. Transport is essential in connecting people, goods, and services, making social
and economic development highly dependent on it. Therefore, instruments and frameworks that
support the development in this field affect a large range of entities.

The research community is interested in advancing knowledge in transportation modeling and
travel behavior. Providing an innovative framework that increases the predictive power of travel
demand models and analyzing factors that drive travel behavior strengthens the credibility of trans-
port models. The outcomes of this research or a transport model that might implement this tour
generation model might be used by policymakers in the future to analyze transport demand and
make decisions based on the model insights. Society can be impacted by this study if the trans-
port model that will be developed is used in designing and operating transportation infrastructure
and services. The quality of transport and accessibility has a direct effect on the quality of life of
the citizens. Therefore, maintaining high research standards and integrity is of great importance,
considering the wide impacts that this study can have on society.

1.3 Thesis QOutline

This thesis is structured into five chapters, each contributing to the development, application, and
evaluation of a tour generation model. Chapter 2 covers literature review on tour-based models,
existing approaches for estimating tours, and lays out the theoretical foundation for building the
methodology. The methodology chapter 3 follows by defining the modeling framework and per-
formance indicators, setting the path to answer the main and sub-research questions. Chapter 4
describes the data analysis and preparation process for model estimation. Chapter 5 presents the
results of model output, including performance analysis and validation. Furthermore, a case study
demonstrating the application of the model in a practical context is carried out at the end of this



chapter to further assess the model relevance and applicability by comparing it to an existing ap-
proach. Finally, chapter 6 provides the answers to the research questions, discusses the findings,
and lays out recommendations for future research and possible model improvements.



2 Literature review

This chapter discusses existing literature on different demand modeling approaches for tour-based
models. The structure of a tour-based model within the context of this research and its components
are discussed in Section 2.1. This review explores tour classification methods used in practice
to lower the complexity of trip chain combinations for efficient model development (Section 2.2).
Furthermore, current frameworks used for predicting tour frequencies are reviewed (Section 2.3)
and analyzed to identify current practices and gaps in the methodologies. The literature provides
the foundation for identifying the relevance of this research and supports the methodology that is
used to achieve the objective.

2.1 Tour-based model

Tour-based travel demand models use tours as their unit of travel, being a sequence of trips that
begin and end at the same location, usually home or work (Ipek Sener et al., 2009). The primary
purpose of the tour, usually being the longer-lasting activity, defines the type of the tour (e.g. work
or shopping tour), and the other activities within a tour are considered secondary. Tour-based
models follow a macroscopic disaggregate approach usually at the population segment level, to
simulate travel demand.

A tour-based model that can integrate the tour generation tool consists of several connected mod-
ules that model travel demand, see Fig. 2.1 (de Romph, 2021). The population of the study area
and its characteristics are a crucial stepping stone to simulate travel demand in tour-based models.
The population synthesizer generates a synthetic population for the study area based on demo-
graphic and socio-economic data for each zone, whose individuals contain several attributes (e.g.
age, occupation, car ownership) that influence their daily travel, and which are used for demand
generation in later stages. The synthetic population is used as input for the tour generation module
to simulate the daily tours performed by different population segments that individuals are part of,
which is one of the core building blocks of these models and has a detrimental effect on the quality
of the output. The tour frequency model predicts how often individuals of a certain population
segment undertake certain trip chains based on some explanatory attributes. Different tour types
are generated by different circumstances and therefore separate models per tour type are usually
used to estimate the frequency that an individual from a specific population segment, characterized
by specific attributes, takes a tour of a certain type. It is often modeled from household data, and
more advanced prototypes try to incorporate land-use and accessibility effects in the generation of
travel (Ida Kristoffersson and Algers, 2020). After the generation of tours, the destination choice is
carried out for the primary activity of each tour, followed by the tour-level mode choice based on
the destination of the primary activity. The destinations of the secondary activities are chosen in
the next step and the time of the day choice for each part (trip) of the tour is carried out in the last
step (de Romph, 2021).
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Figure 2.1: Haskoning’s Tour model structure (de Romph, 2021)

2.2 Tour classification

The aggregation of tours into categories is necessary to tackle the combinatorial complexity of trip
chains that can be formed of many combinations of trip purposes that travelers take. Primerano
et al. (2008) established a link between primary and secondary activities and explored the share
of different trip-chain types across distinct population segments. Yagi and Mohammadian (2008)
defined four main primary purposes with priorities to rank their importance in a tour in this or-
der: work, school, maintenance, and discretionary. Bowman and Ben-Akiva (2001) defined 9 tour
types by purpose, number, and sequence of stops, 5 being different configurations (presence of in-
termediate stops) of work-related tours, 2 school-related tours, and two categories (one with and
one without an intermediate stop) of tours with main activity other than school and work. The
SACSIM tour-based model (Ipek Sener et al., 2009) defined 7 main tour purposes (work, school,
personal business, escort, shopping, meal, social interaction) and a set of 2080 possible tours with
combinations of these purposes (characterized by the main purpose and intermediate stops).

Nowrouzian and Srinivasan (2012) categorized tours on four criteria: purpose representing the main
activity, number of stops (complexity), flexibility, and travel party composition (solo or joint travel).
Pirra and Diana (2016) carried out a tour classification for the U.S. using clustering techniques
and national travel survey data. The clusters that were defined considering activity types, travel
modes, and socio-demographic characteristics are: tours with long duration work activities, short



tours (usually secondary tours within the day), tours made by elders or retired people, and tours
performed by young people (usually school tours).

The concept of a primary activity for tours with multiple stops to categorize them in meaningful
categories is widely supported in literature and is therefore adopted and used in Chapter 3.

2.3 Existing tour frequency models

Literature documents different modeling approaches for the tour generation component of the
model. The vast majority of studies employ regression-based (Subsection 2.3.1) or discrete choice
(Subsection 2.3.2) methods, but innovative machine learning approaches have also been gaining
interest from researchers, even though literature on this family of models is quite limited.

2.3.1 Tour-based regression demand models

Regression models are widely used in literature to simulate tour generation by fitting a model
using explanatory attributes and travel survey data. Golob (2000) combined the trip generation and
time use to capture trip chaining (tours) and activity participation effects for demand modeling.
The methodology involved using endogenous (activity duration, work/nonwork tours, travel time,
etc.) and exogenous (car ownership, income, etc.) variables to build a structural equation model
and estimate it using the Maximum Likelihood method. It was one of the early alternatives that
included trip chaining and time constraints in demand forecasting, rather than treating trips as
isolated events. Krizek (2003) assessed the effect of land use mix and accessibility in the residential
neighborhood in the tour formation and frequency of certain tour types by using regression models.
The results showed that the neighborhood accessibility (easiness of reaching certain activities from
a residential location) was a significant variable for estimating the frequency of simple commuting
or maintenance (shopping, personal care, etc.) tours only.

Guzman et al. (2017) developed and validated a strategic travel demand model (LUTI model) for
the capital of Colombia, Bogota. The model involved tour generation and attraction by using regres-
sion models fed with data from a cross-sectional mobility survey. Spatial, socio-economic factors
and travel time budget were used as variables to estimate the amount of tours, which were simply
divided into two categories (commuting and non-commuting tours). The model included several
feedback loops, considering congestion effects, travel time, and costs. On the other hand, Dumb-
liauskas (2019) followed an empirical methodology by analyzing mobility survey data conducted
in the city of Vilnius. This framework involves calculating probabilities of many different trip se-
quences (tours) that were present in the collected data, being taken by different population segments
(by age and employment). These probabilities were then multiplied by the total number of residents
that fall in each population segment to get the total travel demand for each tour type. A similar
approach is followed by Hamad and Obaid (2022) by defining a mobility rate for a certain trip chain
performed by a certain population segment and multiplying it with the size of that population in a
specific zone to calculate the total production of that tour type.

Machine learning techniques have lately gained popularity in transportation modeling as data-
driven approaches with high predictive power and the potential to capture complex relations be-
tween variables. Pfibyl and Goulias (2005) utilized a decision tree algorithm (machine learning
method) to simulate the activity patterns of different individuals throughout the day on a disaggre-
gate level. Goel and Sinha (2008) developed a model that forecasts trip generation using an artificial
neural network architecture. Two separate neural networks were developed on the production and
attraction sides. Different input variables, such as population, number of cars, etc, made up the
input layer of the network that is used to estimate the model and later predict the generation of



tours. The results demonstrated high predictive power for this model due to its ability to capture
non-linear relationships.

2.3.2 Discrete choice tour frequency models

Discrete choice modeling has been lately in the mainstream of travel demand modeling. These types
of models make use of utility maximization theory to simulate the choice process of individuals by
evaluating different alternatives based on relevant explanatory attributes. Festa et al. (2006) modeled
the decision-making process of travelers (surveyed in a medium-sized urban area in South Italy)
using Binomial logit models for 4 tour types (shopping, recreation, escort, maintenance) to decide
if a person does that type of tour during a day or not (0/1+). Strong correlations were revealed
between explanatory variables and travel demand behavior, but some variables were not significant
for all types of tours. Yagi and Mohammadian (2008) proposed a two-tier nested logit model with
the choice to go out or not in the upper nest and choosing between daily activity-pattern alternatives
(defined by primary activity, tour type, and type and number of secondary tours) in the lower nest.
Each pattern included a primary tour and a choice between 0/1/2+ secondary tours (maintenance,
discretionary). The total choice set with different combinations of primary and secondary tours
resulted in 121 activity pattern alternatives.

Esmael et al. (2009) also developed a hierarchical discrete choice model for tour generation in a
nested logit form starting from the daily travel pattern (0, 1, 2 tours, tour with subtour) to tour type
choice: primary and secondary tour type choosing from the available 9 alternatives characterized by
three main tour purposes (work & school, maintenance, discretionary) and three intermediate stop
scenarios (0/1/2+). Shams et al. (2018) used binomial logit models to estimate the daily tour rate (1
or 2+ tours) for commute and shopping tours only. Ida Kristoffersson and Algers (2020) introduced
an upper limit to the number of tours that people make per day in the tour generation model of
nested logit type. In the upper level, the number of tours per day is determined (0/1/2/3/4), and
on the lower level, a tour pattern is chosen within the alternatives of tour categories. The number of
tour pattern alternatives generated was 86 (1 stay-at-home, 10 one-tour, 50 two-tour, 24 three-tour
and 1 four-tour patterns). It also included accessibility using a log-sum variable from lower nest
destination and mode choices as a factor, which came out important for non-mandatory tours, but
not significant for mandatory tours (work, school).

A prototype model for Boston developed by Bowman and Ben-Akiva (2001) carries out the tour
generation process through a nested logit model, whose upper nest decides if the person stays home
or travels and the lower nest under the travel option provides a set of 54 travel pattern alternatives to
choose from for the whole day. The activity patterns are characterized by the primary activity of the
day (home, work, school), primary tour type (9 alternatives explained in Section 2.2), and number
and purpose of secondary tours (6 alternatives). The combinations of these attributes resulted in 54
daily activity patterns that generate the disaggregate travel demand.

San Francisco Transportation Authority (SFCTA) developed a tour-based model (SF-CHAMP) that
contains a full-day tour pattern choice submodel of Nested Logit type (Ipek Sener et al., 2009). It
predicts several dimensions such as the purpose and trip-chain type of the main tour and frequen-
cies of home-based secondary tours (0, 1, 2+) and work-based sub tours (0, 1+). For intermediate
stops (secondary activities) it considers the accessibility to retail and service locations within 15 min-
utes from home or work. The data used included socio-economic, land-use (connectivity, parking,
school, area type), and transportation service level (accessibility, transit times).

The SACSIM tour-based model designed for the region of Sacramento in California employs an
activity simulator (DaySim) that generates daily travel (tours and trips within tours) for each indi-
vidual in the population (Ipek Sener et al., 2009). The pattern generation model predicts the number
of tours that a person takes from seven purposes (work, school, personal business, escort, shopping,



meal, social interaction) and intermediate stops from the same purposes, resulting in a set of 2080
feasible alternatives of combinations of 0/1+ tours and 0/1+ stops. The choice model is of multino-
mial logit type and the base alternative is staying at home. The output of this model is used from
a subsequent model to determine the exact number of tours (1, 2 or 3) from the seven purposes for
which a tour was predicted in the previous model. Accessibility to service locations and residence
neighborhood density are considered in shopping tours or intermediate stops.

The journey frequency module of the NYBPM (New York Best Practice Model) tour-based model
considers three person types (worker, non-worker, child) and six purposes (to work, to school, to
university, maintenance, discretionary, at work as a non-home based tour), resulting in a total of
thirteen tour-frequency sub-models tailored to the type of person and the main tour purpose. The
sub-models related to school, university, and discretionary activities are of binary logit type by
choosing between 0 or 1+ tours of that type. The journeys to work and maintenance activities are
predicted using multinomial logit models to choose between 0/1/2+ tours to work and 0/1/2/3+
tours for maintenance (Ipek Sener et al., 2009).

Dutch national transport model LMS also includes a discrete choice model to calculate tour frequen-
cies for 12 travel purposes that are used to construct the travel patterns of the population. For each
purpose, there is a two-step structure, the first being a choice between 0 and 1+ tours and a subse-
quent stop/repeat sub model that determines if exactly one or more tours of that type are made and
so on (de Jong et al., 2007). The utility functions are based on personal and household character-
istics (household composition, car ownership, age, gender, driving license, education, income, and
degree of urbanization). There are two utility functions defined, one for the 0/1+ sub-model and
one for the stop/repeat sub-model. The coefficients are estimated for the 0 and stop alternatives,
while utilities of 1+ and repeat alternatives are set to 0. Similarly, a transport model of the city of
London estimates the frequencies of different tour purposes with separate models that contain two
sub-models each (Patruni et al., 2021). The first sub-model decides if no tours or at least one tour
(0/1+) of a given purpose is made on an average weekday and the second one predicts how many
of those tours are made.

2.3.3 Modeling approach for this research

This research adopts a Discrete Choice Modeling (DCM) approach for predicting tour frequencies,
even though other methods were reviewed. DCMs are rooted in behavioral theory and are suited
for representing individual-level decision-making processes. They allow for probabilistic modeling
of choices among discrete alternatives, such as different types of daily tour patterns based on utility
maximization principles.

One key advantage of DCMs over regression-based methods is their ability to model the deci-
sions more explicitly, incorporating factors like relative utility, choice set composition, and nested
relationships between alternatives. Unlike machine learning techniques, which often operate as
black-box models, DCMs provide interpretable parameters, making it possible to understand the
impact of socio-demographic attributes, spatial and accessibility indicators on tour generation. In
transport planning, understanding the reasons behind travel behavior is just as important as fore-
casting outcomes. Therefore, DCMs seem to offer an effective balance between predictive capability
and behavioral insight, making them a suitable choice for this study.

2.4 Explanatory attributes

The explanatory attributes are used in the models to predict the daily tour patterns of population
segments. These attributes can be related to the socio-demographics of the population (household



composition, income, employment, age, gender, driving license availability etc.), land-use (urban
form), or accessibility (car availability, transit accessibility, etc.). They capture the activity participa-
tion of the population at a disaggregate level to construct their travel patterns. The reviewed models
usually utilize different attributes to predict different types of tours. However, the main attributes
present in literature and the studies or models in which they appear are summarized in Table 2.1.
As can be seen, household composition (number of adults and children), occupation (employment,
student), gender, age and car availability appear in most of the studies as significant attributes. The
income variable is also very common, sometimes appearing as household income and sometimes as
personal income. The urban form or density of the residential location has been included in a few
models, proving to be a significant attribute in tour frequency prediction. Accessibility logsums are
also found in the utility functions of tour frequencies in a few nested logit models to represent the
accessibility in terms of the effect of lower-level mode and destination alternatives on higher-level
tour pattern choices.

Table 2.1: Explanatory attributes used in existing models

HH HH | Emplo- | Stu- | Inc- | Gen- Lice- Residen-
. Age Car | ce urban

comp. | inc. | yment | dent | ome | der nce level

Yagi and Mohammadian X X X X X X X X

(2008)

Festa et al. (2006) X X X X X X

Ida Kristoffersson and X X X X X X X

Algers (2020)

Esmael et al. (2009) X X X X X

Bowman and Ben-Akiva X X X X X X

(2001)

SFCHAMP - Ipek Sener X X X X X X X

et al. (2009)

SACSIM - Ipek Sener X X X X X X X

et al. (2009)

NYBPM - Ipek Sener X X X X X X

et al. (2009)

LMS - Rijkswaterstaat X X X X X X X X

(2021)

2.5 Calibration & Validation

The models that are developed require calibration and validation to ensure the reliability and quality
of the predictions. The tour frequency models are trained on datasets collected from travel surveys.
Therefore, the model parameters can be calibrated based on the travel choices made by the survey
respondents. The parameters are estimated using the Maximum Likelihood method that maximizes
the probability predict the choices made by the participants of the survey (Festa et al., 2006). The
likelihood function is represented by the product of the probabilities that the model predicts in
choosing the right alternatives that are observed from the dataset, and the model parameters are
optimized to maximize this function. Additionally, formal and informal tests are applied to assess
the estimated parameters (Festa et al., 2006). Formal tests refer to the statistical significance of the
parameters as a measure of effectivity of the explanatory power of attributes on the predictions.
Informal tests on coefficients allow to check if they align with theoretical expectations in decreasing
or increasing the utility.
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The model predictions are usually validated by comparing them to the observed travel patterns
from the collected data (Ipek Sener et al., 2009) as a measure of accuracy. Internal validation is
carried out by splitting the dataset from the surveys into a training and validation subset to assess
the performance of the model in a similar setting (Groeneveld et al., 2023). On the other hand,
external validation is necessary to test the model on external datasets with a different setting to
evaluate how the model performs on unseen data and provide a measure of the transferability of
the model.

2.6 Conclusion literature

This chapter reviewed key concepts and methodologies from existing literature that form the foun-
dation for this research. First, an overview of the components of tour-based models was provided
to clarify how the developed model fits into the bigger picture and connects with other modules.
Various approaches for classifying trip chains were examined, with this study adopting the concept
of activity prioritization as the basis for tour formation and classification, (described in Section 3.2).
Two broad categories of modeling approaches, regression-based and discrete choice models were
discussed. While regression-based methods offer simplicity, discrete choice models are preferred in
this study due to their stronger behavioral foundation and flexibility in handling choice structures
(see section 2.3.3 for more details).

A set of explanatory attributes from previous studies helped identify commonly used socio-demographic
and accessibility factors influencing tour behavior. These will form the starting point for the set of
attributes in this model, which will be refined and expanded based on the structure and availability

of the data in the ODiN dataset. Finally, the review of validation techniques forms the basis for

the model performance evaluation methodology. This literature review forms the theoretical and
empirical foundation necessary to proceed with model development in the following chapters.
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3 Research methodology

This chapter describes the data sources and methodology that is followed to construct model pro-
totypes that will estimate the tour frequencies to generate the travel demand of a typical working
day (weekday) for the tour-based model. The methodology will provide a framework to answer the
research questions and choose the best model structure, see the flowchart in Fig. 3.1 for an overview
of the methodology. The data and tour definition are discussed in sections 3.1 and 3.2 respectively.
Furthermore, the model specification is explained in section 3.3, where important modeling choices
and structures are described in detail, while section 3.4 outlines the performance evaluation and a
case study.

3.1 Data

The main dataset used in this research is the Onderweg in Nederland (ODiN), the official Dutch na-
tional travel survey conducted annually by the Centraal Bureau voor de Statistiek (Centraal Bureau
voor de Statistiek, 2024). ODiN provides detailed insights into the travel behavior of the Dutch pop-
ulation and serves as a key input for transport planning and modeling studies in the Netherlands. It
is a cross-sectional household travel survey in which respondents are asked to report all trips made
on a specific day. The dataset includes both individual-level and household-level information, such
as:

* Socio-demographics: age, gender, education, income, household composition, employment
status.

* Mobility characteristics: car and bicycle ownership, driver’s license possession, access to pub-
lic transport.

¢ Trip details: purpose, mode, duration, start and end time, origin and destination zones.

e Population segment factor for the surveyed person: indicates the weight of that person in the
population as the sample is representative of the whole population of the Netherlands.

Each reported trip is associated with a specific travel purpose, allowing the reconstruction of tour
patterns for each individual. For this research, data from multiple years (2018-2023) is available
for use. The data will be processed and analyzed to identify trends and suitability for modeling.
The richness and consistency of ODiN make it suitable for disaggregate-level tour frequency mod-
eling.

3.2 Tour definition and classification

The formation and classification of tours (yellow box in Fig. 3.1) from the survey data is the first
step of the modeling phase. Tours are defined as a sequence of trips that start and end at a specific
location, usually home. There is a large number of tour types that can be constructed by combining
different activities that people perform during the day in trip chains. Therefore, a framework is
needed to define the types of tours that will be modeled and what characterizes them. The ODiN
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data consists of all the trips that an individual undertakes during a day and the reasons for making
those trips. For each trip reported from the data, a purpose is given based on the reason for the trip
(Work (W), Business (B), Education (E), Shopping (S), Leisure (L), Drop-off (D), Other (O), Home
(H)). These purposes summarize most of the trip reasons in these meaningful categories and still
keep the trip chain complexity acceptable as adding more detailed purposes results in additional
combinations of trip chains and a less efficient model.

Tours are formed as Home-based (HB) tours that start and end at home, because that is usually
the location where people initiate movements and return to at the end of a tour and the end of
the day. Tours with only one activity are straightforward to classify based on the purpose of their
only destination, but for tours with two or more visited activities, the primary purpose for the tour
should be determined. This choice assumes that in case individuals engage in multiple activities
within a tour, there is a primary activity which has a higher importance (e.g. work) and restricts
the other activities, so the rest of them come as secondary with respect to the primary one. This key
activity is used to classify tours into categories with similar behavior. Therefore, tours are given a
primary purpose based on a priority hierarchy of this order: work, business, education, shopping,
leisure, escort, and other (Patruni et al., 2021). Apart from the primary tour purpose, the number
and purpose of intermediate stops are important attributes for defining the tour types. In tours
with two or more visited destinations, the activities other than the main activity are considered
as secondary stops as they belong to a lower rank in the hierarchy of the purpose importance.
The intermediate stops can be made before or after the main activity and those are considered as
distinct types of tours (Home-Shop-Work-Home is different from Home-Work-Shop-Home). The
formed and categorized trip-chains are the output of this stage and are used for analysis and model
input into the next steps (see Fig. 3.1).

Tour definition and classification Discrete choice model
RO1: Tour
formation & RQ3: Review on RQ2: Review on
Travel survey aggregation factors affecting discrete choice
data (ODiN) review tour generation models
Attributes Model choice

Tour categories

Filter Weekdays (features) structure

Assign Purpose »

to trips (W, B, E, Faiimifzlbs Aggregate tours Prepare data Composr? utility
S.L D, 0 H) based on rules e TR

Estimate the

Descriptive
Analyse data . i
% il model (Biogeme)

Parameters

Legend significant ?
Action Product
Literature review Data input Performance & Validation
Model output Estimate tour Calibrate and RQ4: Performance
frequencies per validate model assessment
category X review

Figure 3.1: Research flowchart
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3.3 Discrete Choice model

This section addresses the model development phase (blue area in Fig. 3.1). Discrete choice models
will be used to estimate the frequencies of different types of tours by modeling the choice process of
individuals for daily travel decisions. Many different choice structures and model types can be used
for designing the model (Subsection 3.3.2). A discrete choice model requires alternatives to replicate
the decision process of a traveler. As the end goal is to estimate the rates of different trip-chains,
the model structure and choice set can become very complex. Therefore, to reduce the complexity
for estimation purposes and keeping in mind a few principles from Bowman and Ben-Akiva (2001),
the trip chains are first classified based on their primary activities (6 primary purposes) and a set of
alternatives is defined for choosing different daily patterns with combinations of these categories or
staying at home. However, this step does not model the choice between trip chains yet. Therefore,
the choice process will be modeled in two stages, see Fig. 3.2. In the first stage, a person chooses
a daily pattern between staying home, working from home or undertaking at least a tour out of
the primary purpose alternatives (work, shopping, etc., or combinations), see section 3.3.1 for a
detailed explanation of alternatives. In the second stage, the choice is made for the number and
type of trip-chains of a certain primary purpose category previously chosen in stage 1. A separate
model will be estimated for trip-chains of each primary purpose in the second stage sub-models
(work, education, shopping, leisure, other) as it is expected that different tours are generated by
different circumstances (see Section 2.3.2), and thus the parameters that might be significant in
predicting tour rates can vary per tour type. Ultility functions are determined for each alternative
that the decision-maker can choose from (Subsection 3.3.4). Explanatory attributes can be socio-
demographic or zonal variables that affect the choice of making different tours (see Section 4.4).

Model estimation is performed using travel diary (revealed preference data) and socio-demographic
data from the National Travel Survey (ODiN). It outputs the parameters for different attributes,
which can be used to predict the tour patterns for a given population input. Interpretability and
transferability are strong qualities of such models as it is easy to trace where a decision comes from
and interpret the influence of certain attributes.

3.3.1 Alternatives

A discrete choice model consists of alternatives that the decision-maker can choose from based on
utility functions and utility maximization theory. The chosen and non-chosen alternatives in the
models consist of tour patterns (how many and which types of tours a person does) in a weekday.
The model has a two-stage structure with separate sub-models, see Figure 4.2 with some example
alternatives. In the first stage, a choice is made whether a person stays home (base alternative with
0 utility), works from home or makes at least one tour from the available primary purposes. For
example, if a person makes only work tour(s) in a day, the Work alternative is chosen, or if he makes
at least a work and a leisure tour (at least one tour from each), the Work & Leisure alternative is
chosen. In the second stage, the number and trip chain for each primary purpose tours that were
chosen in the first stage are determined.

There will be a separate model in the second stage per primary purpose and the set of alternatives
(trip chains from each primary purpose) for each of them will be determined by analyzing the
available travel survey data from ODiN. The types of tours (trip chains) that can appear from the
data can be very large, but a set of significant alternatives needs to be determined from the tours that
appear by filtering only the tours that appear above a threshold of the observation number for each
submodel. The threshold is set to retain at least 95% of the total dataset in order to focus the model
on the most frequent and representative alternatives to model average travel behavior. Excluding
alternatives that occur less frequently, ensures that the number of alternatives is acceptable and
enough observations are available to estimate their parameters, making the model robust while still
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capturing the vast majority of the observed choices. Therefore, the rare tours are excluded from the
model estimation as outliers and not having enough data to estimate them.

The base alternative in the primary purpose models is the simplest tour in each of them (e.g. H-
W-H for the work model, H-L-H for the leisure model etc.), so the parameters are estimated for
making a tour different from those simple trip chains. Alternatives in the primary work tour model
(Stage 2) might contain only one work tour per day (e.g. H-W-5-H) or multiple work tours (e.g. 2
x H-W-H tours). Therefore, the choice process starts in the first stage, in which a person chooses
a daily pattern, for example Work & Leisure pattern. After that the choice proceeds to the second
stage Work model and second stage Leisure model, where a trip chain (or multiple) is chosen for
each of those primary purposes (e.g. H-W-H for the work purpose and 2 x H-L-H for the leisure
purpose).

Education&’
Stay at Work from Worké&Leisure Shopping& a
Work (W

(E-S-L)

First Stage

Work Tours (W) LeisureTours (L)

Second stage

Figure 3.2: Alternative examples at each stage (Multinomial Logit Structure)

3.3.2 Logit model structures

Different logit model types will be tested and compared to determine the best model structure for
estimating tour frequencies. Multinomial logit (MNL) will be the initial prototype model structure
with all alternatives (see Subsection 3.3.1) in the first stage of tour pattern choice and the second
stage of trip chain choice considered independent and mutually exclusive as in Fig. 3.2 . Multi-
nomial logit models assume the independence of irrelevant alternatives (IIA property) excluding
correlations between alternatives (Kenneth E. Train, 2009).

Nested logit structure, on the other hand, might be more appropriate if some alternatives are cor-
related and can logically be included in a nested structure. Therefore, similar alternatives can be
grouped into nests and tested if the nest is significant and if it improves the overall model quality
compared to the multinational logit model. For the first stage model, an alternative nested structure
will be tested and evaluated with a choice between staying at home (nest 1) with two alternatives
(staying at home and working from home) and going out (nest 2) with all other alternatives that
involve making at least one tour, presuming that the alternatives including and not including travel
are correlated within each group, see Fig. 3.3. For the second stage models (primary purpose mod-
els), the alternative choice structure will include two nests: one with one-tour alternatives and one

15



with two or more tours (2+) as most of the alternatives contain only one tour and a few of them
more tours of the same type in a single day, see Fig. 3.3. The alternative nested structures will
be compared with the simple multinomial logit structures to choose the best-performing for each

model.
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Figure 3.3: Nested choice structure with example alternatives
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3.3.3 Trip chain shortening

For the second stage models, the number of trip chains (alternatives) that appear in the data is very
large and some observations are filtered out as explained in Subsection 3.3.1 . To reduce the amount
of data that is excluded, a trip chain shortening is carried out for the trip chains that fall outside this
threshold aiming to get them within the threshold with a transformation that does not affect the
core of the trip chain and visited activities. The trip chains that have consecutive repeating activities
are transformed by removing one of the repeating activities (e.g. H-W-W-5-H to H-W-5-H) and the
P-factor (weight of the observation) of that observation is increased with a factor as in formula 3.1
to compensate for the reduced trip chain.

P |
initial_activities (3.1)

P, factor, modified — P, factor * 1
Nfinal_activities —

3.3.4 Utility functions

Existing literature and available data will support the choice of factors that might influence travel
behavior and activity patterns. There are multiple factors affecting the activity participation of
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people with socio-demographics (e.g. gender, income, household, culture etc.) expected to play a
crucial role in defining the preferences, constraints, and priorities that shape their travel behavior.
Accessibility is also expected to have an effect on the way people organize their travel, given that
the availability of modes, residential location, and activity density directly affect the feasibility and
convenience of accessing different activity locations. Therefore, the selection of factors for this study
will prioritize those that are commonly identified in existing research as significant predictors for
travel behavior, ensuring alignment with data availability and study’s objectives.

The utility functions of alternatives are composed of an alternative-specific constant (ASC) that
captures the effect on the utility of an alternative that is not explained by the attributes, and personal
attributes that might have an effect on the tour choice of individuals such as household size and
income, employment, age, gender, car ownership or urbanization level of residence zone, etc. The
available data on these attributes from the ODiN dataset will be used to test their significance in
explaining tour choices in different models of daily pattern (Ist stage) and primary purpose (2nd
stage). The personal attributes will be included in the utility functions as dummy variables (0/1)
that determine if a person makes part in that category or not, see Formula 3.2 for an example utility
function of a H-W-5-H tour. The categories of personal and zonal attributes will be determined in
Chapter 4.

The parameters that quantify the effect of attributes in the initial models will be the same for all
alternatives, so no alternative-specific parameters. This means that all parameters are estimated
to make a choice different from the base alternative (all parameters are 0). However, if differenti-
ating effects between alternatives are not captured well during model validation, the inclusion of
alternative-specific parameters in the utility functions is introduced.

Upw-sn = ASChw.sH + B1 - Agess_gy + B2 - Workpr + B3 - Incomepep, + B4 - ZoneLevely (3.2)

Where:

ASCryw.s.q is the alternative-specific constant for the H-W-5-H tour,

* Agess o, is a dummy variable equal to 1 if the individual is aged 35-64, 0 otherwise,

Workpr is a dummy variable equal to 1 for full-time workers,

* Incomep;g, is a dummy variable for individuals in the high-income category,

ZoneLevel; is a dummy variable equal to 1 for residents in Zone Level 1 (ZL1).

3.3.5 Estimation strategy & Software

The estimation strategy for the models is backward elimination, starting with all available attributes
and removing insignificant parameters one by one and re-estimating the model until all parameters
are significant. The significance of parameters is tested per model using the robust t-test at a 95%
confidence level (Eq. 3.3). The parameter to be removed is chosen based on correlation with other
parameters. The highest correlated pair from the correlation matrix is identified, and the parameter
with the highest p-value of those two is removed in the next iteration. The estimation of the models
is performed using Biogeme, an open-source software package specialized for the estimation of
discrete choice models that can be integrated in Python (Bierlaire, 2016). Biogeme offers capabilities
for model specification, statistical outputs, and handling of large datasets, making it well-suited for
this research.

[robust t-test| > 1.96 = significant parameter with 95% confidence (3.3)
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The model estimates the parameters to maximize the log-likelihood function (Equation 3.4, where
n represents each person choosing alternative j(n)), so maximizing the probabilities of choosing the
observed alternatives. The ODiN travel survey aims to be representative of the whole population by
surveying people from different groups. For each respondent a P-factor is given, representing the
number of people in the population that each person represents (see Section 3.1). Therefore, the P-
factors (w;) are used to scale the effect of an observation in the log-likelihood function. A weighted
log-likelihood function is then used as in formula 3.4, in which observations from individuals that
represent a bigger group in the population have a higher weight in the function and vice versa to
make the model representative of the whole population (Ortelli et al., 2023).

N
InL(B) = ) wnln Py (3.4)
n=1
Where P(i) for Multinomial logit:

eVi

= Z].er

P(i) (3.5)

And P(i) for i in nest m in Nested logit:

P(i)—P(i|m)-P(m)—( el )'(Zeu‘% ) (3.6)

Yitem eltm Vi m' et TV

where Inclusive Value of nest m is:

V=L In (2 ewf> (3.7)
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3.4 Performance & Validation

The methods for validating and evaluating the performance of the developed models are specified
in this section.

The p? (Rho-squared) value is a common goodness-of-fit measure in discrete choice models. Tt
indicates how well the model explains the observed choices compared to a baseline null model
(all parameters equal to 0, which assumes all alternatives are equally likely), by comparing the
likelihood of both models using formula 3.8 (Train, 2002). The p? (Rho-squared) can only be used to
compare two models that are estimated on the same data with the same set of alternatives. In that
case it can be said that the model with higher p? explains the choices better. However, to ensure
fair comparison between models with the same alternatives but different numbers of parameters, p2
(Rho-bar-squared, see formula 3.9) is a better measure as it accounts for differences in the number
of parameters p and sample size N.

pz —1_ L(B) (3.8)
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(1-p*) (N-1)

2 4
= N-p-1

(3.9)

The performance of each model is also tested on a validation dataset (unseen data). The available
dataset for each model is divided in a training (80%) and validation (20%) subset for this purpose.
The comparison between the observed choices and the predictions of the model for the validation
data that the model has not seen, will be the initial in-sample validation. For each individual, a
probability is calculated for choosing each alternative based on utility functions and the estimated
parameters from formula 3.5 for Multinomial Logit models (Train, 2002). Furthermore, calculating
the probabilities for a nested logit model is based in formulas 3.6 and 3.7 (first calculating the
probability for choosing a nest based on the inclusive value of the nest and then multiplying it by
the probability of choosing an alternative within the nest).

As a measure of performance, summing over probabilities of all individuals for each alternative
will provide an estimation of the amount of times that each alternative has been chosen from the
model to be compared with the observed frequency of each alternative, see formula 3.10. An out-
of-sample validation is also carried out by testing the model using data from a different temporal
setting (different years of ODiN from the ones used for training) and use again formula 3.10 to
compare observed and predicted choices on the external validation dataset.

P; (3.10)

O
I
M-

Il
—_

To evaluate the overall fit of the model to observed frequencies, the total normalized absolute error
is defined as the sum of absolute differences between estimated and observed counts divided by
the total observed count, see formula 3.11. This metric provides an intuitive measure of aggregate
model accuracy.

", |Estimated; — Observed,;|
i, Observed;

Normalized absolute error (NAE) = (3.11)

3.4.1 Likelihood ratio test

The likelihood ratio test is used to test hypotheses and compare models. This test is utilized in
testing whether an unrestricted model (more parameters or nests) is significantly better than a
restricted model. The test statistic is two times the difference between the constrained and uncon-
strained maximum log-likelihoods, see formula 3.12 . It is compared against the Chi-squared critical
value with degrees of freedom equal to the difference in the number of parameters. If it exceeds
the critical value, the null hypothesis is rejected and the unrestricted model is significantly better
(Train, 2002).

—2(LL(Bu) — LL(B)) ~ x} (3.12)
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3.4.2 Validation within subgroups

In addition to comparing the overall predicted and observed tour counts, the validation is also con-
ducted within specific population subgroups, such as students, the elderly, or other relevant demo-
graphic categories. This subgroup-level analysis allows for a more detailed evaluation of how well
the model captures distinct travel behavior associated with different population segments. Based on
the gathered insights about capturing these variations across segments, the need for further refine-
ment is evaluated. The refinement could include additional complexity (e.g., alternative-specific pa-
rameters) to better capture the heterogeneity in travel behavior and improve model performance.

3.4.3 Case study application

To evaluate the practical application of the developed tour generation model, a case study is con-
ducted in which the performance of the model is compared against the current method employed
by a tour-based model (Food Valley). The models are trained on the same ODiN datasets, and the
comparison is performed on a test dataset (population) that has not been used during the model
estimation phase of either model to ensure an unbiased evaluation. The results provide insights
into whether the developed model offers improvements over the existing method in representing
real-world travel behavior.

The models are not directly comparable, as there are several differences in the components of the
models, specifically the personal and zonal attributes that are used, and also the type of model
output. The tour frequency model from Food Valley operates at the level of personas, defined by
5 attributes: age, employment, household income, car ownership, and zone level, see Table 3.1 for
the categorization of attributes. The calculation of frequencies is simply based on the occurrences of
each tour within each Persona group. The tours are aggregated for each persona and the frequency
is derived from dividing the tour weight (sum of population segment factors (Factor P) of all people
in the persona group that made that tour) by the persona weight (sum of factors (Factor P) of all
individuals in the persona group, whether they made that tour or not), see formula 3.13.

The output of the tour frequency model is a frequency per tour type per persona, in contrast to
the developed discrete choice model, which outputs probabilities for each tour. Therefore, compar-
ing model results directly is not straightforward. Because of that, applying both methods in a test
dataset that is different from the training dataset is a suitable approach for evaluating their perfor-
mance. A full set of tours will be generated from both models, and they will be compared with the
tour occurrences from ODIiN to evaluate how well each model replicates the observed counts for
different tours. However, the set of tours that is modeled with the discrete choice model is slightly
different from the tour frequency model of the Food Valley project due to following different meth-
ods for eliminating rare trip chains from the set of modeled tours. Therefore, only the tours that are
modeled from both methods will be compared.

wt,p

ft,p: I

3.13
wp “p (3.13)

Where:
* ftp is the frequency of tour type t for persona p
* Wy is the total weight of people in persona p who made tour ¢
* wy, is the total weight of all people in persona p

* wy is the correction factor for shortened tours (persona increase factor)
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Table 3.1: Explanatory attributes used in the Food Valley model

Attribute Categories

Age 0-17 18-34 35-64 65+
Employment Unemployed | Part-time | Full-Time

Household income | 0-30 k 30k-50k 50k+

Car Ownership No Car 1 Car 2+ Cars

Zone Level ZL1 712 713 Z14 | ZL5
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4 Data Analysis and Preparation

In this chapter, a thorough analysis of the available ODiN data from 2018 to 2023 is conducted.
The purpose of this analysis is also to provide insights into the factors that can influence tour
generation and support modeling choices, which will form the foundation for the construction of
the tour frequency model. The formation of tours from trip data and variations in travel trends
throughout the different years of data are discussed in section 4.1, supporting the suitability of the
datasets for the modeling process. Some general trends of the data that is used for modeling are
discussed in section 4.2. The sets of alternatives for the models that are developed are defined in
section 4.3. By applying descriptive statistics to the tour dataset in section 4.4, the aim is to better
understand key trends and patterns in the daily travel behavior of different population segments.
This understanding is crucial for identifying potential relationships that may affect the frequency of
different types of tours within various population segments. The general format of the input data
is described in section 4.5.

4.1 Tour Formation and trends

The combined dataset of 6 years (2018-2023) from ODiN contains reports of the daily movements
of each person who responds to the survey. Socio-demographic and zonal information is provided
for the respondents apart from travel records to link their travel behavior to their background. The
trip records are processed to form tour sequences that will be used for data analysis and model
construction. Tours are generated as sequences of home-activities-home (joining activity purposes)
for the reports of each individual ID present in the data. Therefore, returning at home is the
indication for ending a tour and starting a new one if more trips are available for the same person.
The tours are forced to start and end at home, so if only outgoing trips (not coming back home)
are registered for a person, the home destination is added at the end of the sequence to complete
the tour (e.g. a home-work-shop is transformed into home-work-shop-home tour). The primary
purpose and the secondary activities are defined for each tour based on the hierarchy defined in
the section 3.2. The processed dataset resulted in a total of 315530 tours for 248181 respondents,
while 42649 additional respondents reported that they stayed at home for different reasons (no trip
records).

An analysis of yearly tour data from 2018 to 2023 reveals significant shifts in travel behavior, par-
ticularly during and after the COVID-19 pandemic, see Fig. 4.1a. The largest shifts occurred in
2020 and 2021, when a significant increase was observed in the number of individuals staying at
home, as well as in shopping and other tour categories. On the other hand, work, education, and
leisure-related tours experienced a substantial decline during the same period. These trends align
with the lockdowns due to the pandemic and remote work & study policies, see Fig. 4.1b for the
study and work from home occurrences through the years.

After the pandemic, from 2022 onward, travel behavior has shown signs of returning to pre-
pandemic levels. However, work and education tours have not yet fully recovered to their 2019
levels, likely due to the continued policies of hybrid work and remote learning options. On the
other hand, shopping and other discretionary tours have remained high compared to pre-pandemic
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years, suggesting a potential shift in travel behavior or lifestyle changes. The percentage of individ-
uals staying at home has been decreasing since 2021, indicating a recovery towards normal mobility
activity.

Given the significant anomalies in travel behavior during 2020 and 2021, these years are excluded
from model development to ensure that the estimated relationships between explanatory variables
and tour choices reflect long-term behavioral patterns rather than temporary disruptions. Including
these years could introduce biases, as the data during this period do not represent typical travel
demand. Furthermore, even though the behavior has more or less normalized, the effect of the
pandemic might have shifted some aspects of travel behavior permanently as more people have
normalized working from home and shopping activities have remained high. Therefore, focusing on
the recent 2022-2023 data for training and validation will lead to a more reliable and representative
model for predicting tour frequencies. The data from 2018-2019 can be used as an external validation
dataset for testing the model in a different temporal setting.

Number of Tours per Primary Purpose by Year Work and Study from Home Frequency per Year
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(a) Variation of tour occurrences through years (b) Variation of Work and Study from Home cate-
gories through years

Figure 4.1: Trends in the available data between 2018-2023

4.2 Tour Patterns

The tours from 2022-2023 that will be used for model training and validation are analyzed to identify
some trends to support modeling choices. The dataset consists of 111089 tours, and the distribution
of the number of tours that travelers reported in a day is shown in Fig. 4.2a with an average of 1.13
tours per day. One-tour daily patterns are the most occurring in the dataset with around 47% of the
respondents being part of that group, followed by two-tour patten with 29% and no-tour (staying at
home) pattern with 16%. Patterns with up to three daily tours cover 99% of the data, indicating that
undertaking more than three tours within a day is very rare. Figure 4.2b shows the distribution of
tours across different primary purposes. Primary work and shopping tours have the highest share,
followed by leisure, other, education, and escort tours, decreasing in share in that order.

The frequencies of different numbers of intermediate stops (including primary purpose) for the
tours and a cumulative distribution are shown in Fig. 4.2c. Around 76% of the tours only visit the
primary destination (1 intermediate stop) and return home, while 17% and 5% visit one and two
secondary stops respectively. These three categories make up for around 98% of the observations,
indicating that tours with more than three intermediate stops (2 secondary stops) are very rarely
observed.
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The percentage frequency plot in Fig. 4.2d shows the share of each primary purpose for each
number of intermediate stops to identify the types of tours that are more likely to visit only the
main destination or be combined with secondary activities. As can be seen, escort, education,
leisure, and other primary purpose tours visit usually the primary activity or combine it with
one additional stop, with very rare cases visiting more than one secondary stop (2+ intermediate
stops). On the other hand, work and shop tours are more likely than the other primary purposes
to include more than one secondary stops, but still the majority of tours fall under the one and
two-intermediate-stop categories.
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Figure 4.2: Tour data patterns

4.3 Filtered alternatives

The number of different trip chains that appear in the dataset of formed tours is very large, and not
every trip chain can be modeled as the choice set becomes enormous (see Section 3.3.1). Therefore,
a significant choice set has been defined for each primary purpose model based on the occurrence
of trip chains in the data to retain at least 95% of the data (97% retained) while keeping the number
of alternatives acceptable for capturing the majority of the tours. The number of filtered alternatives
and respective data counts for each primary purpose model are shown in Table 4.1. The trip chain
patterns (can also be two or more tours in a day) that make up the alternative sets for each model
in the second stage are shown in Table A.1 of Appendix A. The combined number of alternatives
of all second-stage models adds up to 158, with 119 trip chains (the remaining 39 alternatives are
combinations with two or more of these 119 chains).
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Table 4.1: Alternative counts for second stage models

Primary purpose | Alternatives | Data count
Work 47 25302
Education 22 10159

Shop 42 23600
Leisure 22 16892
Escort 18 4975

Other 7 16982

4.4 Explanatory attributes

Possible explanatory attributes that can have a significant effect on tour generation, which can be
retrieved from ODiN as personal or zonal attributes, but also supported by literature in Section 2.4
are analyzed in the plots in Fig. 4.3 which show the variation in tour rates of different primary
purposes for different categories of the given attributes.

Household income is a common predictor for tour generation as it is expected to affect the type of
activities that individuals from households with different incomes do. The income of households
in ODiN is represented by percentage groups (0-100). Given that information, three income groups
are defined: Low (0-40% income groups), Middle (40-80% groups) and High (80-100% groups).
The tour rates of primary purpose categories by income group are shown in Fig. 4.3a. The high
variation (higher slope of the lines) in some categories indicates a possible significant effect of the
predictor on tours of that primary purpose type. Work (W) tours seem to have the biggest variation
in rate from different income groups, indicating that higher-income households undertake more
work tours. The stay-at-home (H) alternative and shopping tours (S) seem to increase sharply for
households with low income.

The occupation of individuals can also be crucial in predicting tours of certain types. The occupation
is categorized as people that work part-time (PT), full-time (FT), don’t work or study (NW) and
students (St). The tour rates per category are shown in Fig. 4.3b, where work (W), shopping (S),
and education (E) tours seem to have a lot of variation by the occupation of individuals.

Age is also explored as a possible predictor with four age categories (0-17, 18-34, 35-64, 65+). As
can be seen from Fig. 4.3¢c, education (E) and leisure (L) rates seem to decrease when getting older,
while shopping (S) tours increase. The work tour rate increases up to the third category but sharply
decreases for people in the 65+ category mainly due to retirement.

Gender can also have an impact in certain tour types and is supported by literature as an important
factor in tour generation. The tour rates by gender are shown in Fig. 4.3d, where can be seen that
men take more work tours and fewer shopping tours compared to women. Females also have a
higher rate of drop-off (D) tours, indicating that the gender might have an influence in generating
escort tours.

The size of the household might be a significant attribute in estimating certain tours. Three size
groups are considered: Single (1 person), Medium (2 people), and Large (3+ people). There appears
to be a sharp increase in education (E) and escort (D) tour rates in the large households, most likely
due to the presence of children. On the other hand, the shopping tour rate seems to decrease with
increasing household size, probably due to sharing duties and household members shopping for
the whole family.

Car ownership is also a common predictor for generating tours as it affects the mobility access of a
household. The car ownership attribute is categorized in: no car (NCA), one car (CA1l) and at least
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two cars (CA2). Car ownership seems to increase the rate of work, education, and leisure tours, but
decrease the rate of shopping tours (Fig. 4.3f).

The urban level of the home address is also provided for each individual in ODiN with a rating from
1 (Strongly Urban) to 5 (Not Urban). It considers the number of addresses per postcode to classify
the level. The variation of tour rates within these urban levels are shown in Fig. 4.3g. As can be
seen, people living in rural areas undertake more work tours and fewer shopping tours compared
to those living in urban areas. The reason could be that rural residents combine work with more
activities (like shopping) and take longer tours as they live far from the activities, resulting in less
primary shopping tours and more primary work ones.

The zone level is another zonal attribute calculated from a combination of the number of households
and public transport stops in a postal code zone (PC4). The households and public transport stops
are considered in a radius of 2 km around the PC4 area. A factor (x125) is used to scale the public
transport stops to the magnitude of households (125 x OV stops/km? + HH/km? with a radius of
influence of 2 km). This attribute aims to quantify the level of activity and public transit accessibility
in the residential location of a person. It also has a scale from 1 (High level) to 5 (Low level). The
tour rates of different primary purposes per zone level seem very similar to the Urban level attribute,
which suggests a high correlation between the two.

The final set of attributes and categories for each of them, that will be tested in the developed
models is shown in Table 4.2.

Table 4.2: Set of attributes and categories tested in the models

Attribute Classes
Age 0-17 18-34 35-64 65+
Gender Male Female
HH income Low (0-40 %) | Medium (40-80%) High (80+ %)
Occupation Unemployed Student Part-time | Full-time
HH size Small (1) Medium (2) Large (3+)
Car ownership 0 1 2+
Urban level 1 2 3 4 5
Zone level 1 2 3 4 5
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4.5 Data preparation

The estimation of a discrete choice model requires transforming the data in the required format.
For each observation (person) in the filtered dataset, a set of attributes are assigned that determine
which category of the attributes that were suggested in section 4.4 the person is part of. For each
part of the model, the choice of that individual for one of the alternatives is also given. Each row
of the training data consists of the person ID, factor P, which is the weight of that person in the
log-likelihood function (see section 3.3.5), attributes as binary variables per category, and the choice
of alternative (Pattern). For the model in the first stage, the alternatives consist of daily patterns
of what primary purpose tours an individual chooses to do in a day, while the alternatives of the
models in the second stage consist of trip chains that people can choose for those tours for each
primary purpose. For an example of an input row for the work model that chooses the trip chain
see Fig. 4.4.

imiter: v
OPID FactorP Year TourCount Tour Tour_2 Tour_3 Age_1 Age_2

1 55834100372 220 2018 1 HWW-BH o 1

simiter: v
4] Age2 Age_3 Gender_1 HHisize_1 HHSize_2 Income_1 Income_2 Work_1 Work

10 1 0 0 0 0 0 1 0

Work 2 Work_3 CarGwnership_1 CarOunership_2 Sted_2 Sted_3 Sted 4 Sted_5 Patiem

1 1 0 1 0 0 0 1 0 HWW-B-H

Figure 4.4: Estimation example input

4.6 Conclusion

This chapter provided the foundation for the model development by exploring the patterns of tours,
analyzing trends in travel behavior across 2018-2023, and motivating the selection of 2022-2023 data
for estimation. Descriptive statistics on the selected data revealed key insights into tour patterns and
their variation across population groups. The selection of alternatives for each primary purpose is
crucial for model specification. Finally, a set of explanatory attributes with theoretical and empirical
relevance is chosen to be included in the model estimation process to explain choices made by
individuals. This data analysis supports the specification of the models that were defined in Chapter
3 for estimation, leading to the results that are presented in Chapter 5.
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5 Results

This chapter presents the outcomes of the estimated models and evaluates their performance to
provide an answer to the main research question about which model structure and predictors should
be used for tour generation. The results are presented for each part of the model (the first stage
and primary purpose submodels) as defined in the Methodology chapter. For each submodel, the
estimated parameters are examined to identify significant predictors that influence tour choices, so
addressing the research question regarding relevant explanatory variables. Model performance is
assessed using the evaluation metrics defined in Section 3.4, allowing for a comparison between the
developed model structures. These comparisons support the main research question on providing
the highest explanatory power for predicting tour frequencies.

The first step of the analysis involves analyzing the estimated parameters and performance metrics
(log-likelihood and p2) from Biogeme output. Secondly, the base Multinomial Logit (MNL) struc-
ture of each submodel is compared with an alternative Nested Logit (NL) structure as defined in
Section 3.3.2. A likelihood ratio test is performed to determine whether the nested model provides a
statistically significant improvement, guiding the selection of the most suitable model structure for
tour prediction. Thereafter, the validation of the models is carried out by comparing the predicted
and the observed choices in a validation dataset made of 20% of the ODiN data from 2022-2023,
which was excluded from the model training phase. The accuracy of the model predictions is as-
sessed using the normalized absolute error (NAE) to determine how well the estimated models
reflect real-world observed choices as explained in section 3.4. Additionally, the generalizability of
the models is tested on an external dataset from 2018-2019 to examine their performance in a differ-
ent temporal context. The final validation step is the assessment of the model performance within
subgroups (e.g. students) to detect any possible anomalies and suggest possible improvements in
the model specification. Finally, the validated model is compared with a current method used for
generating tours in a case study to evaluate their performance on unseen data.

The results provide insights into the effectiveness of the discrete choice model in capturing daily
activity patterns and evaluate how including various personal and zonal attributes improves pre-
dictive capability.

5.1 First stage daily pattern results

The first stage model has been estimated with all attributes as defined in section 4.4 with a set of 34
alternatives: stay at home, work from home and 32 combinations of different types of tours that a
person can do in a day (e.g. S means at least a shop tour, W-D-O means at least a work, drop-off and
other tour). The parameter estimation results for the multinomial logit and nested logit (2 nests,
stay at home and travel) model structures are shown in Table 5.1. The base alternative is staying
at home (alternative 9 with utility 0) and all the parameters are estimated for choosing a pattern
different from that. Only the significant parameters are shown, as the non-significant ones were
removed during model estimation.

The set of estimated parameters contains the beta parameters for each attribute class and an ASC for
each alternative, which is a constant that indicates the preference for a certain alternative relative
to staying at home (base alternative), regardless of the characteristics of the person making the
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choice. The ASC value quantifies the behavioral preference that is not explained by the explanatory
attributes. It can be seen that patterns that occur quite often in the data (especially the single tour
type patterns, e.g. W, S, O, etc.) have a higher ASC (less negative) compared to alternatives that
occur less often. This means that in a set of individuals with the same personal characteristics (age,
gender, occupation, etc.), the patterns with higher ASCs have a higher probability of getting chosen.
As expected, tour patterns involving only work tours (W) have the least negative constant (-0.57 in
MNL, -0.47 in NL), followed by patterns involving only shopping tours (S), indicating a relatively
high preference for work-based and shopping travel. In contrast, more complex patterns involving
combinations of escorting, leisure, shopping, or multiple purposes (e.g., E-D, W-D-O, S-L-O) have
strongly negative constants (up to —5.7), indicating these combinations are chosen less frequently if
the effect of individual-specific attributes is absent.

The results also reveal significant parameters (different from 0) for personal and zonal attributes.
They show that individuals aged 18-34 and 65+ have lower utility for engaging in a tour compared to
children (0-17, base), suggesting lower mobility needs, especially for seniors. Car ownership (either
1 or 2+) increase the probability of traveling compared to people that do not own a car, likely due to
increased accessibility. Similarly, medium and high income groups show an increased likelihood of
going out compared to low income groups, which can be explained by higher activity participation
and financial capacity. People in larger households (medium or large, vs. small) are less likely to
make tours, possibly reflecting coordination or household responsibility sharing. Furthermore, the
occupation plays a major role: individuals with part-time (B = 1.09), full-time (1.02) work, or who
are students (0.73) are significantly more likely to participate in activities compared to those who
are unemployed. This supports the assumption that mandatory activities are a strong driver of tour
formation (primary purpose assumption). Regarding urbanization, the coefficients show a slightly
positive effect for traveling while living in less urban areas (levels 2—4, with base level 1 being the
most urban), possibly indicating more reliance on motorized transport or less access to amenities.

The p2 shows improvement when introducing nests to the model (from 0.237 for MNL to 0.238 for
NL). The nest parameter for the home alternatives (stay at home and work from home) is significant
with a value of 3.3, indicating unobserved correlation among these alternatives. Furthermore, the
log-likelihood value shows improvement in the nested logit structure, so applying the likelihood
ratio test with 1 degree of freedom (one additional parameter), it can be concluded that the inde-
pendence of irrelevant alternatives (IIA) property is violated, and the nested model significantly
improves the model fit.
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Table 5.1: Estimation results for the first stage model (Multinomial and Nested)

Parameter Alternative MNL NL
ASC.0 D -3.06 -2.96
ASC_1 D-O -4.45 -4.35
ASC_10 L -1.76 -1.65
ASC_11 L-D -4.34 -4.24
ASC_12 L-O -3.49 -3.39
ASC_13 (@] -1.57 -1.47
ASC_14 S -0.97 -0.87
ASC_15 S-D -3.25 -3.15
ASC_16 S-D-O -4.85 -4.75
ASC_17 S-L -2.37 -2.26
ASC_18 S-L-D -4.56 -4.46
ASC_19 S-L-O -4.07 -3.97
ASC_2 E -1.65 -1.55
ASC_20 S-O -1.96 -1.86
ASC_ 21 W -0.57 -0.47
ASC_22 W-D -3.69 -3.59
ASC_23 W-D-O -5.48 -5.37
ASC_ 24 W-E -4.28 -4.18
ASC_25 W-L -2.21 -2.10
ASC_26 W-L-D -5.38 -5.28
ASC_27 W-L-O -4.84 -4.74
ASC_28 W-O -2.12 -2.01
ASC_29 W-S -2.45 -2.34
ASC3 E-D -5.70 -5.59
ASC_30 W-S-D -5.15 -5.05
ASC_31 W-S-L -4.50 -4.40
ASC_32 W-S-O -4.10 -3.99
ASC_33 Work from Home -2.80 -1.37
ASC 4 E-L -2.28 -2.18
ASC5 E-L-O -5.41 -5.31
ASC_6 E-O -3.60 -3.49
ASC7 E-S -3.63 -3.53
ASC_8 E-S-L -4.98 -4.87

B_Age_18_34 All -0.14 -0.09
B_Age_65 All -0.33 -0.26
B_CarOwnership_1 All 0.35 0.21
B_CarOwnership_2 All 0.40 0.21
B_HHSize_L All -0.30 -0.17
B_HHSize M All -0.18 -0.08
B_Income_H All 0.37 0.28
B_Income M All 0.37 0.26
B_UrbanLevel 2 All 0.09 0.06
B_UrbanLevel 3 All 0.10 0.03
B_UrbanLevel 4 All 0.08 0.05

B_Work_FT All 1.02 0.94

B_Work PT All 1.09 0.84

B_Student All 0.73 0.52

MU_no_tour Home alternatives 3.31

p? 0.237 0.238
Log-likelihood -181357 | -181035

Norm. abs. error 0.03 0.033
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The developed models are tested on the validation dataset, and the results of the observed and
estimated counts for each alternative are plotted in Fig. 5.1. Both model structures seem to predict
similarly and very well the observed choices in the validation data. A visible difference between
the results from the two structures is the allocation of home patterns; while the total number of
home patterns is almost the same from the two models, the allocation between stay at home (H)
and work from home (WFH) slightly differs as the nested structure estimates less stay at home and
more work from home patterns compared to the multinomial structure, likely due to accounting for
correlation between those two alternatives. As can be seen from Table 5.1, the normalized absolute
error of the multinomial model in the validation dataset is slightly smaller (3%) than the error of the
nested model (3.3%). An additional validation is performed in an external dataset (retrospectively
in 2018-2019), and the predicted choices are plotted against the observed ones in Fig. 5.2. As
can be seen, the stay-at-home and work-from-home alternatives are overestimated, while work and
education are underestimated, most likely due to a shift in travel behavior. As discussed in section
4.1, there is a downward trend in work and education tours after the pandemic, as more people
have normalized working and studying from home, so this overestimation of the stay-at-home and
work-from-home alternatives is expected. Based on the likelihood ratio test, the multinomial logit
is rejected, and the nested logit structure with parameters in Table 5.1 is the best model out of the
two, because the difference in normalized absolute error is deemed negligible.

Comparison of Observed and Estimated Counts per Alternative
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Figure 5.1: Observed and estimated counts of both model structures in the validation dataset

32



Comparison of Observed and Estimated Counts per Alternative
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Figure 5.2: Observed and estimated counts of both model structures in the external dataset from
2018-2019

5.2 Second stage primary purpose results

The second stage models are estimated for each of the 6 primary purposes with the set of alternatives
for each model as defined in Appendix A and attributes in section 4.4. The base alternative for each
model is the simplest trip chain in each of them (e.g. H-W-H, H-S-H, etc.) and all parameters are
estimated for choosing a trip chain different from the simple one or multiple trip chains from the
same primary purpose (e.g. 2 x H-S-H or H-S5-H & H-5-O-H).

For each primary purpose, the multinomial and nested structure (nest for alternatives with 2+ trip-
chains) are estimated, and final estimation indicators are compared in Table 5.2. The likelihood ratio
test has been applied to each primary purpose model to make the final choice for model structure,
and is shown in the same table. The final significant parameters for personal and zonal attributes
of each model (also the nest parameter for 2+ tour alternatives in each model) are shown in Fig. 5.3.
For the full set of parameters of each primary purpose model, including ASCs, see Appendix B.

The positive parameters (blue) indicate that the utility for making a tour different than the simple
one (e.g. H-W-H) is higher for that attribute. The negative parameters, on the other hand, decrease
the utility of alternatives other than the shortest tour. As can be seen in general for all primary
purpose models, the individuals aged 35-64, derive a higher utility for making a complex tour
combined with other lower-level activities or multiple tours of the same primary purpose in a
day compared to other age groups. This behavior could be due to the active lifestyle of this age
group and time constraints, making them chain multiple activities in a tour. Females also have a
higher likelihood in taking long tours in a few primary purpose categories (shop, education, escort),
possibly due to their traditional role in the household to carry out certain tasks such as shopping
and escorting kids to their activities. Car ownership increases the utility of combining shopping or
other primary purpose tours with other activities, as it provides convenience (storage for shopping)
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and flexibility, making it easy to visit multiple locations before returning home. Household size
parameters show that as size increases, the likelihood of making a complex tour in general decreases
as a result of possible coordination and task distribution among household members. High income
has a slightly positive impact on the utilities of the complex tours of work and education primary
purposes, likely due to higher financial capacity to carry out secondary activities throughout the
day. Individuals with an occupation (either working or a student) derive lower utility for making
complex tours in general compared to the unemployed population. This effect might be caused
by stricter time constraints for these occupied individuals. The urban level parameters have a key
role in the choice of the trip chain for primary escort tours. It can be seen that living in less urban
environments (other than base urban level 1) increases the likelihood of combining escort tours with
other activities, possibly due to lower accessibility of these areas, pushing people to carry out other
errands when escorting someone to a location for time and cost reasons. The zone level parameters
were not significant for any of the models, due to correlation with urban level, and it is therefore
removed as an explanatory attribute.

The estimation results in Table 5.2 show that p? of the primary purpose models varies between 0.5
and 0.65, improving explanatory power over a null model. The nest parameters were significantly
different from 1 for all second-stage models, except for the shop primary purpose. However, the
log-likelihood did not improve for any of them over the MNL structure. Therefore, the unrestricted
nested structure for all primary purpose models was rejected using the likelihood ratio test, making
MNL the final structure for these models. The normalized absolute errors between model structures
are also almost the same, ranging between 1.2% for other and 7.8% for escort primary purpose tours.
The models fit the observed data very well for the 20% of the internal validation dataset, but there
are some deviations in predicting observed choices in the external validation dataset (2018-2019),
most probably due to the change in travel behavior after the pandemic. For a detailed analysis of
parameters and validation plots for each primary purpose, see Appendix C.

Table 5.2: Estimation results for the second stage models (MNL & NL) and likelihood ratio test

Multinomial logit (MNL) Nested logit (NL) le?thOd

ratio test
Primary - Log- Norm. abs. | - Log- Norm. abs. Final

purpose p Likelihood error p Likelihood error structure
Work 0.53 -36553 0.057 0.53 -36553 0.057 MNL
Education | 0.65 -8713 0.057 0.65 -8713 0.058 MNL
Shop 0.52 -33664 0.051 - - - MNL
Leisure | 0.63 -15262 0.048 0.63 -15262 0.048 MNL
Escort 0.5 -5700 0.078 0.5 -5700 0.078 MNL
Other 0.64 -9467 0.012 0.64 -9467 0.012 MNL
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Parameters Work Shop Education |Leisure |Escort Other
Age 18-34 0.13 0.19
Age 35-64 0.20 0.21 0.21 0.12 0.16 0.48
Age 65+

Gender F 0.15 0.21 0.20

Car Ownership 1 0.26 -0.11 0.40
Car Ownership 2+ 0.23 0.46
HH Size M -0.10 -0.43

HH 5ize L -0.47 -0.36
Income M

Income H D.08 0.17

Work Full Time -0.14 -0.21 -0.41 -0.41
Work Part time -0.15 -0.37 -0.22
Student -0.48 -0.21 -0.24 -0.52
Urban Level 2 0.45 0.12
Urban Level 3 0.23

Urban Level 4 0.49

Urban Level 5 0.45

Zone Level 2

Zone Level 3

Zone level 4

Zone Level 5

Figure 5.3: Estimated parameters for the primary purpose models

5.3 Combined model validation and improvement

The combined model with two stages is tested in the 20% of unseen data to evaluate the complete
model fit by comparing the estimated and observed counts of all modeled trip chains. The final
normalized absolute error on the validation dataset is around 5%, and the estimated and observed
counts of 20 highest observed trip chains are shown in Fig. 5.6. As can be seen, the model (blue bars)
fits the observed data (orange bars) quite well. However, as stated in section 3.4, the performance
of the model in specific subgroups is also evaluated to detect possible irregular behavior. The
estimated counts (blue bars) of 6 simple trip-chains and the observed (orange bars) are shown
in Fig. 5.4a for students and in Fig. 5.4b for elderly subgroups. It can be seen that there are
significant mismatches between the counts for different trip chains. As students carry out more
education and leisure tours, those are underestimated by the model, and the other tours significantly
overestimated. Similarly, for the elderly, the shopping and other (O) tours are underestimated, while
the other ones overestimated (e.g. work, education). Even though the model fit at an aggregate level
seems very good, there seems to be compensation between underestimated and overestimated trip
chains across subgroups to achieve that final fit. This means that the current model specification
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would not perform well in an environment where some groups dominate (e.g., a student city like
Delft, where the population is not balanced as in the national level).

The good performance of the model at an aggregated level and poor performance in specific sub-
groups suggests that the model could be underspecified, highlighting the dominance of alternative-
specific constants (ASCs) in determining the overall fit. The parameters for the personal attributes in
the first stage model are the same for all alternatives and are estimated to choose a pattern different
from staying at home. However, no distinction is made in the effect of the elderly (65+) between
choosing a work or a shop pattern for example. The first-stage model is responsible for allocating
the tours to the primary purposes and can be adjusted to account for variation between the effects
of the parameters across different alternatives.

Comparison of Student Tour Frequencies Comparison of Elderly Tour Frequencies
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Figure 5.4: Comparison of simple tour frequencies within subgroups

5.3.1 First stage model respecification

For modeling the differences in the effects of attributes in different patterns, alternative-specific
parameters are defined for the 6 single tour type patterns (W, E, S, L, D, O) and work-from-home
(WFH) in the first stage as those are the most popular patterns and contain a single category of pri-
mary purpose allowing the parameters to distinguish the effect on each primary purpsose. For the
remaining pattern alternatives (combinations of these primary purposes, e.g. W-L), the parameters
are still the same for all of them to avoid overspecifying the model.

The estimated parameters for the attributes of the first-stage model with multinomial logit structure
and alternative-specific parameters for the 6 single-tour type patterns and working-from-home are
shown in Fig. 5.5 (see Table B.7 in Appendix B for the full set of parameters including ASCs). It
can be seen that being an adult increases the likelihood of doing only work, only shopping, or
only escort tours compared to being a child. Young (18-34) and middle-aged adults (35-64) are
significantly more likely to work from home. As individuals get older, the utility of choosing an
education only pattern sharply decreases, while the utility of leisure or complex patterns (multiple
tour types) slightly decreases as people tend to have less time for extra activities, especially in a
normal working day, for which this model is designed. Females derive less utility from work-only
(also from home) or leisure-only patterns, but higher utility than males for shopping-only patterns,
likely due to a higher preference and responsibility-taking for shopping activities. Car ownership
increases the utility of all patterns that involve going out of home as it increases the accessibility
and lowers travel resistance. Increasing household size decreases the likelihood of choosing an
out-of-home alternative in general, possibly due to responsibility sharing, except for escort patterns
for large households (3+ members), which can be due to the presence of children and dropping
off /picking them up from activities. Medium and high income groups are in general more likely

36



to choose a pattern involving traveling, as a result of additional occupations or more financial
capacity to carry out activities. Working full-time or part-time as expected significantly increases
the likelihood of choosing a work-only and or work-from-home pattern, and being a student or part-
time worker, the likelihood of an education pattern. Individuals with an occupation derive higher
utility for leisure-only or complex patterns, and lower utility for escort-only patterns, compared
to unemployed groups. Living in less urban areas, the utility of choosing a work-only pattern
increases, possibly due to the tendency to combine work tours with other lower-level activities
for efficiency purposes and avoid travelling long distances just to shop or do a leisure activity. As
expected, the utility of the least urban areas’ inhabitants for choosing a shopping, leisure or drop-off
only pattern decreases.

Parameters w E S L D 0 WFH Remaining alt.
Age 18-34 1.26 -0.79 0.58 1.77 0.39 1.96 -0.32
Age 35-64 1.33 -1.94 0.77 -0.38 2.20 0.40 2.25 -0.15
Age 65+ 0.64 -2.79 0.55 -0.34 1.64 1.56 -0.57
Gender F -0.27 0.22 -0.15 -0.37

Car Ownership 1 0.37 0.30 0.19 0.31 0.39 0.25 0.46
Car Ownership 2+ 0.51 0.31 0.14 0.36 0.23 0.50
HH Size M -0.23 -0.12 -0.13 -0.21
HH Size L -0.36 -0.44 -0.36 1.22 -0.51 -0.41 -0.30
Income M 0.34 0.40 0.27 0.49 0.56 0.31 0.46
Income H 0.23 0.34 0.23 0.66 0.46 0.31 0.71 0.52
Work Full Time 2.50 0.40 -0.41 - 1.11
Work Part time 2.36 1.26 0.38 0.65 -0.37 2.51 1.29
Student 0.68 2.57 0.46 -0.34 0.78 0.76
Urban Level 2 0.14 0.29 0.17 0.16
Urban Level 3 0.12 0.32 0.21
Urban Level 4 0.20 -0.16 -0.72 0.21
Urban Level 5 0.22 -0.25 -0.26 -0.33 0.36

Figure 5.5: Estimated parameters for the first stage model with alternative-specific parameters

This model specification improved on the previous restricted first-stage model by increasing the p2
from 0.238 to 0.291 and significantly improving the log-likelihood of the model. The normalized
absolute error for the complete model (first stage and second stage combined) on the 20% validation
dataset decreased from 5% to 3%, indicating a better fit. Furthermore, as can be seen from fig. 5.4,
the new model specification significantly improved the performance within subgroups (green bars
much closer to the observed orange bars) by distinguishing the effects of attributes across different
single-purpose tour patterns. This demonstrates the value of capturing heterogeneous preferences
across alternatives, especially for improving the behavioral realism of tour behavior in population
segments. In conclusion, based on these indicators and the likelihood ratio test, the new unrestricted
MNL model with alternative-specific parameters for 6 alternatives is significantly better than the
final restricted NL model from section 5.1, and is accepted as the final model for the first stage.

5.4 Case study

The case study is carried out based on the method provided in Section 3.4.3. A set of 16846 in-
dividuals (20 % of final tour data from 2022-2023) from ODiN and their respective attributes are
used to simulate the generation of tours using the developed 2-stage discrete choice model and the
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frequency-based method followed in the Food Valley project. There are in total 112 trip chains that
are modeled and compared from both models. The predicted counts for the 20 most observed trip
chains that are modelled from both methods are compared with the observed counts in Fig. 5.6. The
plot shows that the developed DCM predicts with high accuracy the observed trip chains, slightly
over- or under-estimating some of them, but closer to reality compared to the frequency-based
method. This is more obvious for the less occurring trip chains (more than one activity), which
the frequency-based method consistently overestimates. The normalized absolute error (NAE) of
the discrete choice model is also much lower (3%) than the other method (20%), indicating a strong
performance of the DCM in predicting trip-chain frequencies of different population segments.

The DCM outperforms the frequency-based method mainly due to its high flexibility and robust-
ness. The frequency-based method appears to overestimate the occurrence of longer trip chains that
include two or more activities. This bias is likely due to the way that method handles the long
tours by intensively shortening them and increasing the persona weights of the shortened tours to
account for that. This adjustment can inflate the weights of longer, less frequently observed tours,
leading to inaccurate estimations. On the other hand, the discrete choice model developed in this
research does not fully rely on weights for estimating the tour rates, but instead uses a behavioral
framework to estimate probabilities based on observed effects of attributes. Even though the dis-
crete choice model also adjusts the weights of some shortened tours (see section 3.3.3), this process
is much less intensive and has a reduced effect compared to the frequency-based method to avoid
introducing bias in the model. As a result, it provides a more accurate reflection of real-world
behavior, especially for complex trip chains.
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Figure 5.6: Observed and estimated counts of trip chains modeled from both methods

5.5 Results Conclusion

The estimation results for the first-stage pattern model and second-stage primary purpose models
revealed different sets of attributes affecting pattern and trip-chain choice for different types of pri-
mary purposes. The two-stage modeling framework provided insightful findings into individuals’
daily travel behavior. In the first-stage pattern model, which classifies complete tour patterns, the
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Nested Logit (NL) model (stay home or travel nests) slightly outperformed the Multinomial Logit
(MNL) model for the initial specification of utility functions and parameters, as concluded by the
likelihood ratio test. However, after significant discrepancies were identified during the valida-
tion of the model within subgroups (students, elderly), the first-stage model was respecified with
alternative-specific parameters for single tour-type patterns. The new MNL structure with the addi-
tional parameters significantly improved over the restricted NL model by increasing the likelihood,
02, and the performance within subgroups. Almost all attributes for the first stage model have a
significant effect on the utilities of different daily pattern alternatives, except for the zone level. The
multinomial logit structure with alternative-specific parameters is chosen to model the first-stage
pattern choice as the nest parameter for the respecified model was not significantly different from
1.

In the second-stage primary purpose models, the Multinomial Logit (MNL) structure was selected
for all tour purposes. Although some nested specifications showed statistically significant nest
coefficients, they did not provide improvements in model fit, and the likelihood ratio tests did not
support the added complexity of a Nested Logit (NL) structure. Among the explanatory variables,
age and occupation status appeared most consistently as significant attributes across the different
models. In contrast, urbanization level was only significant for escort and other tours, while zone
level variables did not appear as significant in any of the models. Overall, the models demonstrated
good explanatory power, as supported by their performance in estimating the counts of different
trip chains from the validation datasets, which seem to replicate well the observed tour counts.

The case study also demonstrated the high predictive power of the developed DCM compared to
a current frequency-based method. The high accuracy of the predictions of different trip chains
consistently outperformed the other method, especially for the long tours, mainly due to the behav-
ioral choice foundation that the DCM offers, tackling the drawbacks of intensively shortening trip
chains and fully relying on adjusted persona weights in the frequency-based method that results in
overerestimation of complex trip chains.
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6 Conclusion

This final chapter presents the conclusions of the study by answering the sub-research questions and
the main research question. It reflects on the key findings from the analysis, discusses their impli-
cations, and provides recommendations for future research to further improve tour-based modeling
and understanding of travel behavior.

The main research question aimed at identifying the model structure and predictors that provide
high explanatory power for the tour generation process of a transport model is answered in this
section. To support the main question, several subquestions were first defined and elaborated in
different parts of this research.

1. Which rules should be used to form tours from trip data and aggregate different types of trip
chains (travel purpose combinations)?

To address the first sub-question, a structured framework was developed based on insights
from the literature and characteristics of the ODiN dataset. Tours should be defined with a
base location where they usually start and end to form trip chains. The home, being the main
location where people depart and arrive, is used to form home-based trip chains, in line with
typical daily travel behavior. Each trip reported in the ODiN dataset should be categorized
into one of these purposes: Work, Business, Education, Shopping, Leisure, Escort, or Other,
covering most of the motives for which people travel daily. Then, the individual trips are
chained to form tours, based on the records of the surveyed individuals.

For tours involving multiple activities, a primary purpose should be assigned based on a hi-
erarchical priority order (Work-Education-Shop-Leisure-Escort-Other) that reflects the relative
importance of different activity types in shaping travel behavior. This allows the classifica-
tion of tours into behaviorally consistent categories, even when multiple stops were made,
assuming that each tour with multiple activities has a main activity, around which the other
activities are planned. This method ensures that the combinatorial complexity of the trip
chains is reduced into categories for aggregated data analysis and behaviorally grounded
model development.

2. Which methodological approach is most suitable for estimating the frequencies of different
tour types taken by specific population segments?

Literature review about existing methodological frameworks for estimating tour frequencies
in Section 2.3 revealed a few methods that are suitable for this purpose: classic regression
methods, machine learning regression, and discrete choice models. After comparing these
approaches, it was concluded that Discrete Choice Modeling (DCM) provides the most appro-
priate framework for the required model. Although other approaches like machine learning
and regression techniques were taken into consideration, DCMs are notable for their abilities
to represent decision-making processes at the individual level and their foundation in behav-
ioral theory. By associating utilities with different choice alternatives, they provide a solid
probabilistic and interpretable representation of travel behavior.

In contrast to black-box machine learning models, DCMs allow for transparency in parameter
interpretation, offering valuable insights into how socio-demographic and spatial character-
istics affect tour generation. Furthermore, compared to regression models, they provide the
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possibility to explicitly specify different choice structures and relationships between alterna-
tives using nests to group choice options sharing similarities. Specifically, multinomial logit
(MNL) and nested logit (NL) structures can be used to develop model alternatives for tour
generation. These advantages make DCMs well-suited not only for prediction but also for
understanding the underlying behavioral mechanisms that drive tour generation. For these
reasons, DCMs were selected as the modeling approach in this research.

. Which explanatory attributes available in the data can be used to supply the model develop-
ment?

A set of explanatory attributes is needed to form the utility functions of the alternatives that
explain the choices made by travelers. This study combined insights from the literature with an
exploratory analysis of the ODIN travel survey. A wide range of personal and zonal attributes
were considered, many of which are well-documented in previous research as important pre-
dictors for tour generation. These include age, gender, household income, household size,
occupation, car ownership, and urban level. All of these attributes are available in the ODiN
dataset and show meaningful variation in tour rates across different categories of primary
purposes (Section 4.4), supporting their relevance for inclusion in the model.

The only attribute considered that was not directly available in ODiN is the zone level, which
was developed in a separate study aiming to represent residential accessibility of postal code
areas using a combined index of household and public transport density. Overall, the explana-
tory attributes chosen provide a strong behavioral and empirical foundation for modeling tour
generation. For an overview of the selected attributes and their respective categories, see Table
4.2.

. Which performance metrics should be utilized to measure the models’ abilities to predict tour
frequencies?

The performance evaluation of the developed models makes use of a combination of met-
rics from discrete choice modeling and validation strategies to compare the developed model
structures and ensure their validity. The p2 (Rho-bar-squared) metric is used as a goodness-
of-fit indicator that compares the likelihood of the model with the selected parameters to a
null model where all parameters are 0. The p2 improves over the classic p? as it adjusts for
the number of parameters, making it more appropriate when comparing models with varying
complexity.

In addition, predictive validation is performed by splitting the data into training (80%) and
validation (20%) subsets. Model performance is then evaluated by comparing predicted and
observed tour frequencies on the validation data, using choice probabilities derived from
utility-based formulas for Logit models. Furthermore, an out-of-sample validation is con-
ducted using data from different years of the ODiN survey. This allows testing the gener-
alizability of the model across time. For a more intuitive evaluation, the total normalized
absolute error is used to measure aggregate model accuracy, representing the proportion of
total error (Estimated — Observed) relative to the observed total volume. To statistically assess
model improvements across different structures, the likelihood ratio test is applied. This test
determines whether a more complex (unrestricted) model significantly outperforms a simpler
(restricted) one by comparing their final log-likelihoods.

The practical performance of the final developed tour generation model is evaluated in a case
study by comparing it with the existing tour frequency model used by Haskoning in the Food
Valley project (see Section 3.4.3). Both models are trained on the same ODiN dataset, and
their predictive capabilities are evaluated on an unseen test population to ensure unbiased
comparison. The evaluation focuses on comparing how well each model replicates observed
trip chain frequencies in the validation data. A complete set of tours is generated from both
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models, and only the trip chains that are found in both approaches are included in the com-
parison. This case study provides insights into whether the new model offers improvements
in capturing real-world travel behavior.

The answers to the subquestions paved the way to construct a robust methodology for answering the
main question: Which model structure and predictors should be used to predict the frequencies
of various tour types across population segments for tour generation?

The number of different trip chains found in the data is very large (many alternatives), so based
on the principles from Bowman and Ben-Akiva (2001), the first part of the model chooses a daily
pattern with combinations of the primary purpose categories (6) that were previously defined or
staying at home (first stage). Furthermore, to model the choice between different trip chains, a
second-stage model should be used for each of the primary purpose categories, choosing a trip
chain (or multiple) for the primary purposes that were chosen in the previous stage. The results
of both model structures for the first stage revealed that most of the attributes have a significant
effect and should be used for choosing a daily pattern, except for the zone level (see Fig. 5.5).
The multinomial logit structure with alternative-specific parameters for 6 single tour-type patterns
(W, S, E, L, D, O) and working-from-home significantly improved the likelihood of the restricted
nested logit structure with a single set of parameters for all alternatives. Therefore, the MNL with
alternative specific parameters replicated very well the observed choices with a normalized absolute
error as low as 3% and reduced the discrepancies within subgroups, being chosen as the final model
for this stage. The second stage primary purpose models were also estimated with a MNL and a NL
structure with two nests (1: alternatives involving one tour and 2: alternatives with 2+ tours). Each
primary purpose model has a different set of significant parameters for the selected attributes (see
Fig. 5.2. The zone level attribute representing public transport accessibility and population density
did not significantly contribute to the choice of trip chain in any of the purposes. The multinomial
model is the final structure for all the second-stage models, as the nested models did not improve
the likelihood of any of them, even though for a few of them (education, escort, other) the nest
parameter was significantly higher than 1.

6.1 Discussion

The results present important findings about the effectiveness of the developed model. However,
there are several implications related to data sources and methodological choices. First of all, the
quality of the model heavily relies on the quality of the collected travel survey data (ODiN). The
survey is designed to be as representative as possible of the population, but a significant amount
of data, such as weekend records or individuals missing certain attributes (e.g. income), are ex-
cluded from the datasets, increasing the risk of bias and underrepresentation of certain groups.
Furthermore, the formation of tours is carried out based on trip reports, assuming that all trips
within a day were reported, the departure point of the next trip is always the arrival point of the
last trip, and enforcing everyone to return home as the last location if that is not reported. While
these assumptions are necessary for the modeling process, they can affect the validity of the model,
especially if trips are significantly underreported, pointing out the need for more robust travel data
in the future, such as GPS tracking.

An important methodological choice in this study was to categorize trip chains based on their
primary activity, typically defined by the most important stop in the tour (e.g., work, education),
assuming that it constrains the other less important activities. While this approach offers a practical
way to reduce complexity (number of alternatives) in the upper-level pattern choice, it also intro-
duces limitations that affect how well the model reflects real-world behavior. For example, tours
often involve multiple activities, and assigning a single label risks oversimplifying the characteris-
tics of the trip chain. This could lead to biases, particularly for tour patterns where non-primary
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activities can be important (like picking up children, play a significant role, even though they are
considered secondary in a tour with work or education activities for example).

The prediction capabilities of the model from the validation results seem quite high, as the model
replicates the observed tour patterns with high accuracy. The respecification of the first-stage model
with alternative specific parameters for single tour patterns, significantly improved the performance
on the specific groups (such as students or the elderly). This made possible the distinction of the
effects of attributes between different tour types. However, the patterns with two or more tour types
still share the non-specific parameters, so the attributes have the same effect on all the remaining
patterns (other than W, E, S, L, D, O single-tour patterns). This might still cause undesirable effects,
but making parameters specific to every alternative over-specifies the model, increasing the risk of
overfitting.

As the developed model is trained on recent Dutch data (2022-2023), its validity has some temporal
and geographical limitations. Travel behavior is known to vary significantly across regions and
countries, due to differences in spatial structure, transport infrastructure, or cultural differences.
Therefore, applying this model in geographical contexts that differ significantly compared to the
Netherlands would require re-estimation using data that represents local behavior to ensure its
validity. Similarly, temporal shifts in travel patterns were clearly observed in the data: behavior
in years before 2021 is very different from that in later years, mainly due to the effects of the
pandemic. The model, trained on post-2021 data, did not perform as well on earlier data as in the
current context, suggesting that travel patterns have evolved. This points out the importance of
periodic model re-estimation to maintain validity over time, especially in response to major societal
changes (economy or policy).

6.2 Recommendations

Based on the findings and limitations identified in this research, several recommendations can be
made to guide future work in improving the accuracy and robustness of tour-based travel demand
modeling. The process of forming tours from survey trip data could be improved by carrying
out additional validation checks that ensure the validity of the formed tours. Making sure that
continuity really exists between trip departure and arrival locations and verifying the completeness
of reported trips are crucial for building a dataset that reflects real behavior. Furthermore, future
data collection methods could explore using more accurate data sources, such as GPS tracking, to
construct movement patterns.

This study focuses only on home-based tours, assuming that all tours start and end at home. How-
ever, in the literature, a few studies model work-based tours, related to a common behavior of
carrying out activities from the workplace and returning there again. These tours are treated as
long trip-chains in this thesis that start and end at home, but future research could consider dis-
tinguishing between home-based and non-home-based tours, as the factors affecting those types of
tours could differ.

In this research, trip chains are modeled explicitly as alternatives in the discrete choice model,
resulting in a large number of possible combinations and excluding some rare patterns. Future
research could explore different modeling approaches, such as first modeling the primary activity
of the tour and then adding secondary activities sequentially to model tours. This would allow the
model to construct realistic trip chains while reducing the number of predefined alternatives.

Discrete choice models offer the advantage of modeling different steps of the decision-making pro-
cess explicitly. This thesis modeled the tour generation process in two stages, first choosing a pattern
with the main activities of the day (primary purposes) and then choosing the trip chains, including
secondary activities. This method tries to replicate the decision-making process that an individual
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goes through while deciding on daily travel. However, there can be different choice structures that
can be used to describe the generation of activities and formation of tours. Therefore, exploring
additional decision-making structures can help enrich insights on advantages and disadvantages of
the different approaches.

Finally, the current validation approach relies on summing choice probabilities to estimate tour fre-
quencies for each alternative that is modeled. Although effective for large samples, this method may
not reflect the variability present when simulating patterns from calculated probabilities for smaller
groups. An alternative to this could be applying Monte-Carlo simulation methods to generate
discrete choices from probability distributions, providing a more realistic evaluation of predictive
performance in future research. A deterministic approach like the frequency-based method that
was presented in the case study, might produce more robust results in those cases when variability
is not preferred.
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A Appendix - Filtered Alternatives

Table A.1: Filtered alternatives for each primary purpose model and counts from data

Work Shop Leisure
Pattern Count Pattern Count Pattern Count
H-W-H 16378 H-S-H 14091 H-L-H 12684
H-W-S-H 1175 H-O-S-H 1928 H-O-L-H 1066
H-B-H 1065 H-S-H&H-S-H 1725 H-L-H&H-L-H 852
H-O-W-H 659 H-S-S-H 1305 H-L-L-H 697
H-W-B-H 620 H-L-S-H 777 H-L-O-H 459
H-W-O-H 546 H-S-O-H 508 H-D-L-H 147
H-W-W-H 535 H-D-S-H 337 H-O-O-L-H 138
H-W-L-H 469 H-S-L-H 312 H-L-D-H 135
H-W-H&H-W-H | 378 H-O-O-S-H 227 H-O-L-O-H 131
H-D-W-H 361 H-S-S-S-H 181 H-L-L-L-H 92
H-W-B-B-H 349 H-S-H&H-S-H&H-S-H | 168 H-D-L-D-H 85
H-W-D-H 256 H-O-5-O-H 167 H-O-L-L-H 60
H-B-B-H 247 H-O-S5-S-H 158 H-L-H&H-L-L-H 50
H-D-W-D-H 236 H-5-S-H&H-S-H 158 H-O-L-H&H-L-H 49
H-W-W-W-H 177 H-S-H&H-S-S-H 154 H-L-H&H-O-L-H 44
H-S-W-H 175 H-O-S-H&H-S-H 142 H-L-H&H-L-H&H-L-H | 42
H-L-W-H 132 H-S-D-H 133 H-L-O-O-H 40
H-B-B-B-H 115 H-S-H&H-O-S-H 114 H-L-L-O-H 30
H-W-B-W-H 114 H-L-S-H&H-S-H 72 H-L-O-L-H 29
H-O-B-H 81 H-O-L-S-H 61 H-L-H&H-L-O-H 22
H-B-S-H 79 H-L-S-S-H 58 H-L-O-H&H-L-H 21
H-W-5-S-H 71 H-S-H&H-S-O-H 53 H-L-L-H&H-L-H 19
H-O-W-5-H 66 H-D-S-D-H 52
H-E-W-H 62 H-S-O-S-H 51
H-W-O-S-H 61 H-D-S-H&H-S-H 51
H-W-S-W-H 56 H-S-H&H-L-S-H 50
H-W-W-B-H 56 H-5-O-O-H 50
H-W-B-B-B-H 55 H-O-S-L-H 49
H-W-B-S-H 53 H-S-S-O-H 49
H-O-O-W-H 50 H-O-S-H&H-O-S-H 45
H-W-B-B-W-H | 48 H-L-S-L-H 43
H-W-L-L-H 46 H-S-O-H&H-S-H 41
H-O-W-B-H 46 H-S-L-S-H 37
H-O-W-O-H 46 H-L-S-O-H 35
H-B-O-H 42 H-S-H&H-S-L-H 29
H-W-W-S-H 37 H-D-D-S-H 29
H-W-5-O-H 37 H-L-O-S-H 28
H-B-L-H 37 H-D-S-S-H 28
H-S-W-S-H 34 H-S-O-L-H 27
H-D-W-S-H 34 H-L-L-S-H 26
H-W-O-L-H 33 H-S-H&H-D-S-H 26
H-W-O-O-H 33 H-S-L-H&H-S-H 26
H-D-B-H 32
H-W-E-H 31
H-B-W-H 31
H-B-H&H-B-H | 30
H-W-W-W-W-H | 28
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Education Escort Other
Pattern Count Pattern Count Pattern Count
H-E-H 7920 H-D-H 2945 H-O-H 13839
H-E-S-H 362 H-D-H&H-D-H 1022 H-O-O-H 1842
H-E-O-H 349 H-O-D-H 203 H-O-H&H-O-H | 611

H-E-H&H-E-H | 326 H-D-H&H-D-H&H-D-H 192 H-O-O-O-H 406
H-E-E-H 319 H-D-D-H 162 H-O-O-H&H-O-H | 118
H-E-L-H 298 H-D-H&H-O-D-H 96 H-O-O-0O-O-H 96
H-O-E-H 95 H-D-O-H 89 H-O-H&H-O-O-H | 70
H-L-E-H 60 H-D-H&H-D-D-H 41
H-E-L-E-H 50 H-D-O-D-H 39
H-S-E-H 47 H-D-D-D-H 34
H-E-D-H 44 H-D-D-H&H-D-H 28
H-E-E-E-H 41 H-O-O-D-H 27
H-E-O-L-H 37 H-O-D-H&H-D-H 22
H-D-E-H 34 H-D-H&H-D-O-H 16
H-E-S-E-H 33 H-D-D-H&H-D-D-H 16
H-E-L-L-H 26 H-O-D-D-H 16
H-E-E-L-H 25 H-D-D-H&H-D-H&H-D-H | 15
H-E-S-O-H 24 H-O-D-O-H 13
H-E-L-S-H 20
H-E-S-S-H 18

H-E-O-O-H 16
H-E-H&H-E-O-H | 15
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B Appendix - Estimated parameters and
results

Table B.1: Estimation results for the work primary purpose model (Multinomial and Nested)
Parameter Alternative MNL | NL

ASC0 H-B-B-B-H -479 | -4.79

ASC1 H-B-B-H -4.11 | -4.11
ASC_10 H-D-W-H -3.75 | -3.75
ASC 11 H-D-W-S-H -6.12 | -6.12
ASC_ 12 H-E-W-H -5.36 | -5.36
ASC_13 H-L-W-H -4.86 | -4.86
ASC_14 H-O-B-H -5.14 | -5.14

ASC_15 H-O-O-W-H -5.83 | -5.83
ASC_16 H-O-W-B-H -5.90 | -5.90
ASC17 H-O-W-H -3.14 | -3.14
ASC_18 H-O-W-O-H -5.74 | -5.74
ASC_19 H-O-W-5-H -5.43 | -5.43

ASC2 H-B-H -2.60 | -2.60
ASC20 H-S-W-H -4.62 | -4.62
ASC 21 H-S5-W-S-H -6.33 | -6.33

ASC.22 H-W-B-B-B-H -5.64 | -5.64
ASC.23 H-W-B-B-H -3.78 | -3.78
ASC 24 H-W-B-B-W-H | -5.75 | -5.75
ASC.25 H-W-B-H -3.22 | -3.22
ASC_26 H-W-B-S-H -5.70 | -5.70
ASC27 H-W-B-W-H -4.85 | -4.85

ASC_28 H-W-D-H -414 | -4.14
ASC29 H-W-E-H -6.10 | -6.10
ASC3 2 x H-B-H -6.24 | -5.78
ASC.31 2 x H-W-H -3.71 | -3.69
ASC_32 H-W-L-H -3.61 | -3.61
ASC_33 H-W-L-L-H -6.01 | -6.01
ASC_ 34 H-W-O-H -3.41 | -341

ASC_35 H-W-O-L-H -6.20 | -6.20
ASC_36 H-W-O-O-H -6.20 | -6.20
ASC_37 H-W-O-S-H -5.53 | -5.53

ASC_38 H-W-S-H -2.62 | -2.62
ASC_39 H-W-5-O-H -6.03 | -6.03

ASC 4 H-B-L-H -5.89 | -5.89
ASC_40 H-W-S-5-H -5.26 | -5.26

ASC 41 H-W-S-W-H -5.80 | -5.80
ASC_ 42 H-W-W-B-H -5.65 | -5.65
ASC_43 H-W-W-H -3.35 | -3.35
ASC 44 H-W-W-5-H -5.68 | -5.68
ASC_45 H-W-W-W-H -4.51 | -4.51
ASC46 | HHW-W-W-W-H | -6.24 | -6.24

ASC.5 H-B-O-H -5.79 | -5.79
ASC.6 H-B-S-H -5.32 | -5.32
ASC.7 H-B-W-H -6.36 | -6.36
ASCS8 H-D-B-H -5.91 | -5.91
ASC9 H-D-W-D-H -4.17 | -4.17
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Parameter Alternative MNL NL
B_Age 35_64 All 0.20 0.20
B_HHSize M All -0.10 -0.10
B_Income_H All 0.08 0.08

B_Work_FT All -0.14 -0.14

B_Work_St All -0.48 -0.48

B_ZoneLevel 3 All -0.10 -0.10
MU _two_tour 2+ tour alternatives 1.21
02 053 | 053

Log-likelihood -36553 | -36553
Norm. abs. error 0.057 0.057
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Table B.2: Estimation results for the shop primary purpose model (Multinomial and Nested)

Parameter Alternative MNL NL
ASC0 H-D-D-S-H -6.59 -6.54
ASC_1 H-D-S-D-H -5.81 -5.80
ASC_10 H-L-S-O-H -6.41 -6.38
ASC_11 H-L-S-S-H -5.92 -5.91
ASC_12 H-O-L-S-H -5.67 -5.66
ASC_13 H-O-O-S-H -4.42 -4.41
ASC_14 H-O-S-H -2.24 -2.23
ASC_15 2 x H-O-S-H -5.90 -5.89
ASC_16 H-O-S-H & H-S-H -4.90 -4.89
ASC_17 H-O-S-L-H -5.92 -5.91
ASC_18 H-O-S-O-H -4.57 -4.56
ASC_19 H-O-S-S-H -4.68 -4.67
ASC2 H-D-S-H -3.98 -3.97
ASC_20 H-S-D-H -4.89 -4.88
ASC_22 H-S-H & H-D-S-H -6.53 -6.52
ASC_23 H-S-H & H-L-S-H -6.04 -6.03
ASC_ 24 H-S-H & H-O-S-H -5.15 -5.14
ASC_25 2 x H-S-H -2.41 -2.40
ASC_26 3 x H-S-H -4.90 -4.89
ASC_27 H-S-H & H-S-L-S -6.36 -6.35
ASC_28 H-S-H & H-S-O-H -5.82 -5.81
ASC_29 H-S-H & H-S-S-H -4.77 -4.76
ASC_3 H-D-S-H & H-S-H -5.92 -5.91
ASC_30 H-S-L-H -4.11 -4.10
ASC_31 H-S-L-H & H-S-H -6.76 -6.76
ASC_32 H-S-L-S-H -6.11 -6.10
ASC_33 H-S-O-H -3.60 -3.59
ASC_34 H-S5-O-H & H-S-H -5.99 -5.98
ASC_35 H-S-O-L-H -6.66 -6.60
ASC_36 H-S-O-O-H -5.85 -5.84
ASC_37 H-5-O-S-H -5.97 -5.96
ASC_38 H-S-S-H -2.70 -2.69
ASC_39 H-S-S-H & H-S-H -4.91 -4.90
ASC 4 H-D-S-S-H -6.66 -6.61
ASC_40 H-S-5-O-H -6.14 -6.13
ASC 41 H-S-S-S-H -4.63 -4.62
ASC5 H-L-L-S-H -6.74 -6.68
ASC_6 H-L-O-S-H -6.28 -6.26
ASC7 H-L-S-H -3.24 -3.23
ASC_8 H-L-S-H & H-S-H -5.73 -5.72
ASC9 H-L-S-L-H -6.02 -6.01

B_Age_18_34 All 0.13 0.12
B_Age_35_64 All 0.21 0.21
B_CarOwnership-1 All 0.26 0.25
B_CarOwnership_2 All 0.23 0.23

B_Gender_F All 0.15 0.14

B_Work_FT All -0.21 -0.21

B_Work_PT All -0.15 -0.15

B_Work_St All -0.31 -0.31

MU _two_tour 2+ tour alternatives 1.00
02 0.522 | 0.522
Log-likelihood 51 -33664 | -33664

Norm. abs. error 0.05 0.05




Table B.3: Estimation results for the leisure primary purpose model (Multinomial and Nested)

Parameter Alternative MNL NL
ASC0 H-D-L-D-H -4.57 -4.57
ASC_1 H-D-L-H -4.12 -4.12
ASC_10 H-L-L-H & H-L-H | -6.72 -6.25
ASC_11 H-L-L-L-H -4.55 -4.55
ASC_12 H-L-L-O-H -5.58 -5.58
ASC_13 H-L-O-H -3.00 -3.00
ASC_14 H-L-O-H & H-L-H | -6.18 -5.76
ASC_15 H-L-O-L-H -5.84 -5.84
ASC_16 H-L-O-O-H -5.30 -5.30
ASC_17 H-O-L-H -2.21 -2.21
ASC_18 H-O-L-H & H-L-H | -5.27 -4.95
ASC_19 H-O-L-L-H -5.07 -5.07
ASC2 H-L-D-H -4.24 -4.24
ASC_20 H-O-L-O-H -4.13 -4.13
ASC_21 H-O-O-L-H -4.20 -4.20
ASC 4 2 X H-L-H -2.40 -2.37
ASC.5 3 X H-L-H -5.26 -4.94
ASC_6 H-L-H & H-L-L-H | -5.46 -5.12
ASC_7 H-L-H & H-L-O-H | -5.93 -5.54
ASC_8 H-L-H & H-O-L-H | -5.28 -4.96
ASC9 H-L-L-H -2.54 -2.54
B_Age_35_64 All 0.12 0.12
B_CarOwnership-1 All -0.11 -0.11
B_Work_FT All -0.41 -0.41
B_Work PT All -0.37 -0.37
B_Work _St All -0.34 -0.34
MU _two_tour 2+ tour alternatives 1.11
p? 0.627 | 0.627
Log-likelihood -15262 | -15262
Norm. abs. error 0.048 0.048
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Table B.4: Estimation results for the education primary purpose model (Multinomial and Nested)

Parameter Alternative MNL NL
ASC0 H-D-E-H -5.07 -5.07
ASC_1 H-E-D-H -4.67 -4.67
ASC_10 H-E-L-L-H -5.40 -5.40
ASC_11 H-E-L-S-H -5.90 -5.89
ASC_12 H-E-O-H -2.86 -2.86
ASC_13 H-E-O-L-H -5.13 -5.13
ASC_14 H-E-O-O-H -6.17 -6.15
ASC_15 H-E-S-E-H -5.59 -5.59
ASC_16 H-E-S-H -2.88 -2.88
ASC_17 H-E-S-O-H -5.40 -5.40
ASC_18 H-E-S-S-H -5.78 -5.77
ASC_19 H-L-E-H -4.72 -4.72
ASC_2 H-E-E-E-H -4.80 -4.80
ASC20 H-O-E-H -4.09 -4.09
ASC21 H-S-E-H -4.84 -4.84
ASC3 H-E-E-H -3.02 -3.02
ASC 4 H-E-E-L-H -5.72 -5.71
ASC_6 2 X H-E-H -2.92 -2.90
ASC_7 H-E-H & H-E-O-H -6.26 -4.05
ASC_8 H-E-L-E-H -4.74 -4.74
ASC9 H-E-L-H -3.00 -3.00

B_Age_35_64 All 0.31 0.31
B_Gender_F All 0.21 0.21
B_HHSize L All -0.47 -0.47
B_HHSize M All -0.43 -0.43
B_Income_H All 0.17 0.17
MU _two_tour 2+ tour alternatives 2.89
02 0.652 | 0.652
Log-likelihood -8713.7 | -8713.7
Norm. abs. error 0.057 0.058
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Table B.5: Estimation results for the escort primary purpose model (Multinomial and Nested)

Parameter Alternative MNL NL
ASC_.0 H-D-D-D-H -5.04 -5.04
ASC_1 H-D-D-H -3.57 -3.57
ASC_10 H-D-H & H-O-D-H -4.05 -2.95
ASC_11 H-D-O-D-H -4.76 -4.76
ASC_12 H-D-O-H -4.05 -4.05
ASC_13 H-O-D-D-H -5.85 -5.85
ASC_14 H-O-D-H -3.27 -3.27
ASC_15 H-O-D-H & H-D-H -5.40 -3.76
ASC_16 H-O-D-O-H -5.91 -5.91
ASC_17 H-O-O-D-H -5.44 -5.44
ASC_2 H-D-D-H & H-D-D-H -5.86 -4.03
ASC3 H-D-D-H & H-D-H -5.65 -3.91
ASC_4 H-D-D-H & 2X H-D-H | -6.16 -4.21
ASC_6 H-D-H & H-D-D-H -4.91 -3.47
ASC_7 2 X H-D-H -1.67 -1.53
ASC_8 3 X H-D-H -3.30 -2.51
ASC9 H-D-H & H-D-O-H -5.62 -3.89

B_Age_35_64 All 0.16 0.16
B_Gender_F All 0.30 0.30
B_Sted_2 All 0.45 0.45
B_Sted_3 All 0.33 0.33
B_Sted_4 All 0.49 0.49
B_Sted_5 All 0.45 0.45
MU _two_tour 2+ tour alternatives 1.68
0? 0.502 0.502
Log-likelihood -5700.4 | -5700.4
Norm. abs. error 0.078 0.078
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Table B.6: Estimation results for the other primary purpose model (Multinomial and Nested)

Parameter Alternative MNL NL
ASC_1 2 x H-O-H -3.38 -3.20
ASC2 H-O-H & H-O-O-H | -5.57 -3.82
ASC_3 H-O-O-H -2.35 -2.35
ASC 4 H-O-O-H & H-O-H | -5.17 -3.71
ASC5 H-O-0O-O-H -3.81 -3.81
ASC_6 H-O-0O-0O-O-H -5.34 -5.34

B_Age_18_34 All 0.19 0.19
B_Age_35_64 All 0.48 0.48
B_CarOwnership_1 All 0.40 0.40
B_CarOwnership_2 All 0.46 0.46
B_HHSize_L All -0.36 -0.36
B_Sted_2 All 0.12 0.12

B_Work_FT All -0.41 -0.41

B_Work PT All -0.22 -0.22

B_Work_St All -0.52 -0.52

MU _two_tour 2+ tour alternatives 3.53

02 0.641 | 0.641
Log-likelihood -9467.6 | -9467.6
Norm. abs. error 0.012 0.0126
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Table B.7: Estimation results for the first stage model with alternative specific parameters

Parameter Alternative | MNL
ASC.0 D -5.28
ASC_1 D-O -4.63
ASC_10 L -1.20
ASC_11 L-D -4.52
ASC_12 L-O -3.67
ASC_13 (@) -1.19
ASC_14 S -0.91
ASC_15 S-D -3.43
ASC_16 S-D-O -5.03
ASC_17 S-L -2.54
ASC_18 S-L-D -4.74
ASC19 S-L-O -4.25
ASC2 E -1.81
ASC20 S-O0 -2.14
ASC21 W -2.74
ASC22 W-D -3.87
ASC_23 W-D-O -5.65
ASC 24 W-E -4.46
ASC25 W-L -2.38
ASC26 W-L-D -5.56
ASC_27 W-L-O -5.02
ASC_28 W-O -2.30
ASC29 W-S -2.62
ASC3 E-D -5.87
ASC_30 W-5-D -5.33
ASC31 W-5-L -4.68
ASC_32 W-5-O -4.27
ASC_33 WFH -2.98
ASC 4 E-L -2.46
ASC5 E-L-O -5.59
ASC_6 E-O -3.77
ASC7 E-S -3.81
ASC.8 E-S-L -5.15

B_Age_ 1834 Remaining | -0.32
B_Age 1834 D D 1.77
B_Age_18_34_E E -0.79
B_Age_18.34.0 @) 0.39
B_Age 18.34.S S 0.58
B_Age 1834 W W 1.26

B_Age_ 3564 Remaining | -0.15
B_Age 35.64.D D 2.20
B_Age 3564 E E -1.94
B_Age_35.64_L L -0.38
B_Age 35640 @) 0.40
B_Age 35645 S 0.77
B_Age 3564 W \ 1.33
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Parameter Alternative | MNL
B_Age_65 Remaining | -5.28
B_Age_65_D D -4.63
B_Age_65_E E -1.20
B_Age 65_L L -4.52
B_Age_65_S S -3.67
B_Age_ 65_-W W -1.19
B_CarOwnership_1 Remaining | -0.91
B_CarOwnership_1.D D -3.43
B_CarOwnership_1_E E -5.03
B_CarOwnership_1_L L -2.54
B_CarOwnership_-1.O O -4.74
B_CarOwnership_1_S S -4.25
B_CarOwnership_1.W W -1.81
B_CarOwnership_2 Remaining | -2.14
B_CarOwnership_2_E E -2.74
B_CarOwnership_2_L L -3.87
B_CarOwnership 2_O (@) -5.65
B_CarOwnership_2_S S -4.46
B_CarOwnership 2. W W -2.38
B_Gender_F_L L -5.56
B_Gender_F_S S -5.02
B_Gender_.F.W W -2.30
B_HHSize_L Remaining | -2.62
B_HHSize LD D -5.87
B_HHSize L_L L -5.33
B_HHSize L_O O -4.68
B_HHSize_L_S S -4.27
B_HHSize LW W -2.98
B_HHSize M Remaining | -2.46
B_HHSize M_O O -5.59
B_HHSize M_S S -3.77
B_HHSize M_W W -3.81
B_Income H Remaining | -5.15
B_Income_H_D D -0.32
B_Income_H_E E 1.77
B_Income_H_L L -0.79
B_Income_ H_O O 0.39
B_Income_H_S S 0.58
B_Income_ H.-W W 1.26
B_Income_ M Remaining | -0.15
B_Income_ M _D D 2.20
B_Income_ M_E E -1.94
B_Income_M_L L -0.38
B_Income_ M_O O 0.40
B_Income_M_S S 0.77
B_Income_ M_W W 1.33
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Parameter Alternative | MNL
B_Sted 2 Remaining 0.16
B_Sted 2.W w 0.14
B_Sted_3 Remaining 0.21
B_Sted 3.W \ 0.12
B_Sted_4 Remaining 0.21
B_Sted 4_L L -0.16
B_Sted 4. W w 0.20
B_Sted 5.D D -0.33
B_Sted 5L L -0.26
B_Sted 5.5 S -0.25
B_Sted 5-W W 0.22
B_Work_FT Remaining 1.11
B_Work FT_D D 0.29
B_Work FT_L L 0.40
B_-Work FT_W \ 2.50
B_Work_PT Remaining 1.29
B_Work PT_D D 0.32
B_Work PT_E E 1.26
B_Work PT_L L 0.65
B_Work_PT_S S 0.38
B_-Work PT_-W 4 2.36
B_Work_St Remaining 0.76
B_Work_St_D D -0.72
B_Work_St_E E 2.57
B_Work_St_L L 0.46
B_Work St W \ 0.68
02 0.291

Log-likelihood -168406
Norm. abs. error 0.048
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C Appendix - Detailed results interpretation

The parameters and validation plots for each primary purpose model in the second stage are de-
scribed in detail in this appendix.

C.1 Work primary purpose model

The multinomial and nested models for the work primary purpose tours with 47 alternatives are
estimated, and the full set of parameters, including ASCs can be found in Table ??. Fig. 5.3 shows
the significant parameters for the personal attributes in making work tours and their effect in utility
(positive in blue and negative in red). Individuals aged 35-64 derive increased utility from making a
more complex work tour combined with other activities or multiple work tours on a day, compared
to other age groups. This behavior might be related to the high activity participation of this age
group and stopping to complete these activities on the way to/from work. Also high-income groups
are more likely to make a work tour different from the simple H-W-H, possibly due to higher
flexibility and financial capacity, or possible access to a car. On the other hand, individuals from a
medium-sized household have a lower utility for making additional stops on work tours compared
to single-person households, likely because of responsibility sharing and coordination with the
partner to run errands (e.g., shopping). Working full-time and being a student (given that they
make a work tour) also decrease the utility of combining work tours with other activities, as the
time constraints are stricter. Urban and zone level parameters were not significantly different from
0 for explaining the trip chain choice in work tours. The MU parameter of the nest with 2 or more
tours (2+) was estimated to be 1.2, which is very close to one, suggesting low correlation between
the nested alternatives and modelling the choice between the nested alternatives similarly to the
multinomial structure.

The estimation results in Table 5.2 show that p? and log-likelihood of both model structures is
the same, with a value of 0.53 for the p2, which is considered good a good fit as it significantly
improves over the likelihood of the null model (all parameters are 0). As the nested model does
not improve over the likelihood of the restricted model, it is directly rejected using the likelihood
ratio test. The normalized absolute error from the two structures is also the same at around 5%
as the nest parameter is very close to 1, and the choice between the nested alternatives is very
similar to the multinomial structure. The estimated and observed counts of each alternative from
both model structures are shown in Fig. 3.1 for the internal validation with 20% of the data not
used for training (from 2022-2023), and in Fig. 3.2 for the external validation (2018-2019) dataset.
The simulated choices of alternatives in the internal validation dataset reproduce well the observed
counts. There is a slight underestimation of H-W-H and a slight overestimation of H-B-H, but there
is no significant deviation from real-world behavior. On the other hand, testing the model on the
data from 2018-2019, there appear to be significant deviations from the observed tour counts for
certain alternatives, likely due to a significant shift in travel behavior after the pandemic. The work
tours combined the purpose other (O) or with multiple business (B) stops seem to be substantially
overestimated, and H-W-H tours underestimated (the bar for H-W-H in Fig. 3.2 is not fully shown
as figure is zoomed to visualize differences in lower count alternatives). This is mainly due to more
travelers combining work tours with other activities after the pandemic, rather than just doing a
direct tour to work and back. As the model is trained to data from 2022-2023, it does not generalize
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that well over the behavior before the COVID pandemic (2019-2021). The final model structure for

the work primary purpose model is the multinomial logit based on the likelihood ratio test, and no
significant difference in the estimation of observed choices between the restricted and unrestricted

(nested) models.
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Figure 3.1: Observed and estimated counts of work primary purpose tours in the validation dataset
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Comparison of Observed and Estimated Counts per Alternative
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Figure 3.2: Observed and estimated counts of work primary purpose tours in the external (2018-
2019) validation dataset

C.2 Education primary purpose model

The parameters of both model structures for the primary education purpose are shown in Table
B.4. The age group 35-64 derives a higher utility from making an education tour combined with
other lower-level activities (S, L, D, O), reflecting the high activity level of adults participating
in education activities, making them chain multiple activities in one tour. Females also have a
higher likelihood of making complex education tours, possibly due to their role in the household of
carrying out certain tasks, such as shopping. Being in a medium or large-sized household decreases
the probability of taking long education tours as the coordination and task sharing within the
household increase. High-income individuals seem to be more likely to combine education tours
with other activities, likely due to having more financial means to support additional activities such
as leisure and shopping. The nest parameter for the 2 or more tour alternatives (2 x H-E-H and H-
E-H & H-E-O-H) was estimated to be significant with a value of 2.9, revealing a strong correlation
between these alternatives.

As can be seen from Table 5.2, the p_2 of both model structures is the same with a value of 0.65,
the highest of all models. The log-likelihood of the restricted and unrestricted (nested) models
are also identical, pointing out that the nesting of the alternatives did not improve the model, so
the nested model is rejected using the likelihood ratio test, even though the nest parameter was
significantly different from 1. The normalized absolute error on the validation dataset are also
almost the same (5.7% for the multinomial structure and 5.8% for the nested). The predicted counts
for each alternative reproduce well the observed counts in the validation dataset, see Fig. 3.3. The
external validation plot in Fig. 3.4 reveals some discrepancies in the estimation of a couple of
alternatives. The alternatives with two eduction tours in a day (2 x H-E-H and H-E-H & H-E-O-H)
seem to be significantly underestimated in the data from 2018-2019. That can be related to the model
being estimated from data after the pandemic, when its effects might have reduced the likelihood
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of people doing two education tours in a day (more people study from home). Furthermore, the
alternatives that combine education with other activities (H-E-L-H, H-E-O-H, H-E-S-H) are slightly
overestimated, reflecting also a possible behavioral shift after the pandemic regarding increasing
non-mandatory activity levels. The final model for estimating the primary education trip chains is
the multinomial structure based on the likelihood ratio test and performance results.
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Figure 3.3: Observed and estimated counts of education primary purpose tours in the validation
dataset
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Comparison of Observed and Estimated Counts per Alternative
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Figure 3.4: Observed and estimated counts of education primary purpose tours in the external
(2018-2019) validation dataset

C.3 Shop primary purpose model

The full estimation results of both model structures for the shop primary purpose are shown in
Table B.2. For this purpose, the nested structure did not output a nest parameter significantly dif-
ferent than 1. Therefore, the nested model is invalid, and the multinomial structure is the only and
final model for the choice between shopping trip-chains. As seen from Fig. 5.2, the young (18-34)
and middle-aged (35-64) adults are more likely than the other age groups to combine shopping
tours with other activities (leisure, escort, other), likely due to the active lifestyle and stricter sched-
ules for these groups, forcing them to chain multiple activities in a tour for time efficiency. Car
ownership also significantly increases the likelihood of making a complex shopping tour, providing
convenience (storage) and flexibility to visit multiple destinations before returning home. Females
have a higher utility than males for making complex shopping tours, possibly related to their tra-
ditional role in household shopping or greater likelihood of combining errands. In contrast, having
an occupation (worker or student) decreases the probability of making long shopping tours.

The model seems to explain the observed choices well with p2 being 0.52 and the normalized ab-
solute error in the validation dataset around 5%. The validation plot in Fig. 3.5 shows that the
model fits the observed counts of alternatives very well. As there are no significant discrepancies
in the estimation of observed choices, the developed multinomial logit model for the shop primary
purpose can be used to estimate the trip chains in this category.
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Comparison of Observed and Estimated Counts per Alternative
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Figure 3.5: Observed and estimated counts of shop primary purpose tours in the validation dataset

C.4 Leisure primary purpose model

The model alternatives for the leisure primary purpose tours have been estimated, and the full set of
parameters can be found in Table B.3. The estimated parameters for the attributes in Fig. 5.3 show
that being in the age group 35-64 slightly increases the utility of making a longer leisure tour (com-
bined with escort or/and other) compared to children, possibly due to having more responsibilities,
such as dropping off or picking up kids. On the other hand, being employed or a student decreases
the preference for making a longer tour compared to unemployed groups, likely because of time
constraints. Car ownership also reduces the utility of making a complex leisure tour. The nest pa-
rameter of two or more tour alternatives (2+) was estimated with a value of 1.1, which suggests that
the alternatives under the nest are almost independent (MU=1 means they are independent and not
correlated). The other parameters were insignificant and are therefore not included in this table.

The estimation indicators in Table 5.2 show that base multinomial logit and the nested structure with
two nests (1 tour or 2+ tours) yield the same p? value of 0.63, which is quite high. The likelihood
of the MNL is again the same as the NL structure, so the NL model is directly rejected with the
likelihood ratio test, given that adding one parameter (nest) does not improve the likelihood. The
normalized absolute error on the validation dataset is also the same for both model structures,
as the value of MU close to 1 models the choice between the nested alternatives very similarly
to the multinomial logit. The observed and estimated counts of each alternative in the validation
dataset are shown in Fig. 3.6 and for the external validation in Fig.3.7. As can be seen both models
provide high predictive accuracy in the validation plot. However, in the external validation plot, the
model seems to be significantly overestimating leisure tours combined with the Other (O) purpose,
possibly due to a change in travel behavior after 2019, indicating that travelers participate in more
non-mandatory activities and combine them in longer tours.
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Comparison of Observed and Estimated Counts per Alternative
2500

mmm Observed Frequency
e Estimated Count MNL

mmm Estimated Count NL
2000 1

1500 4

Count

1000 +

500 +

Figure 3.6: Observed and estimated counts of the multinomial logit model in the validation dataset

Comparison of Observed and Estimated Counts per Alternative
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Figure 3.7: Observed and estimated counts of the nested logit model in the validation dataset
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C.5 Escort primary purpose model

The estimated parameters for the escort primary purpose show that the urban level has a significant
effect on choosing the trip chain for these tours. Individuals who live in less urban areas (different
from urban level 1) derive a higher utility for combining escort tours with other activities, likely for
cost efficiency. The multinomial and nested structure yield the same log-likelihood and normalized
absolute error, leading to the choice of MNL as the final structure for the escort primary purpose
model.

The validation plot in Fig. 3.8 (internal) shows that the escort primary purpose model predicts
quite well the observed counts for different alternatives. There are some slight variations from the
2018-2019 external validation in Fig. 3.9 between the observed and estimated counts, but the overall
fit is still quite representative of the behavior.
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Figure 3.8: Observed and estimated counts of escort primary purpose tours in the validation dataset
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Comparison of Observed and Estimated Counts per Alternative
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Figure 3.9: Observed and estimated counts of escort primary purpose tours in the external (2018-
2019) validation dataset

C.6 Other primary purpose model

The estimation results for the other primary purpose model in Fig. 5.2 show that car ownership
increases the utility of carrying out complex other tours (multiple stops with other activities), likely
due to the convenience that the car offers. On the contrary, individuals with an occupation are
much less likely to take long other tours, as they possibly combine these activities with work or
education tours. The normalized absolute error for the other primary purpose model is the lowest
of all models (1%). This can be due to the limited number of alternatives and the presence of only
other (O) activities in the trip chains. The nested model, even though with a significantly different
from 1 nest parameter (3.3), did not significantly improve the log-likelihood, resulting in MNL being
chosen as the final structure for this model too.

The validation plot in Fig. 3.10 shows almost perfect estimations of observed counts for all alter-
natives, pointing out high predictive abilities for this model. The complex alternatives (other than
H-O-H) are slightly overestimated in the external validation plot in Fig. 3.11, likely due to increased
activity levels of non-mandatory activities after the pandemic.
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Comparison of Observed and Estimated Counts per Alternative
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Figure 3.10: Observed and estimated counts of other primary purpose tours in the validation dataset
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Figure 3.11: Observed and estimated counts of other primary purpose tours in the external (2018-
2019) validation dataset
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