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Abstract

Reorientation manoeuvres represent a major aspect of space missions. Due to the scarceness of resources
as time, energy and propellant in space, optimising these reorientation manoeuvres has received great re-
search interest. With the unprecedented rise of CubeSats, agile satellites, and satellite constellations, solving
these optimisation problems autonomously and onboard is considered to be a promising opportunity to
achieve further performance improvements. However, the spacecraft reorientation problem is characterised
by highly nonlinear dynamics, kinematics and constraints. Consequently, the nonlinear programming (NLP)
methods currently used to solve this problem are too computationally expensive to be implemented on-
board. Hence, developing a method to solve the optimal spacecraft reorientation problem in real time and
onboard would be an important step towards future autonomous satellite applications. Recently, a novel class
of so-called sequential convex programming (SCP) algorithms has shown promising performance regarding
onboard optimisation. These methods convert a problem that is originally non-convex into a sequence of
convex approximations that can be solved with state-of-the-art, highly efficient convex solving algorithms.
However, these methods have only been applied to the spacecraft reorientation problem to a limited extent
at this point in time.

Therefore, an SCP-based optimisation method to solve the spacecraft reorientation problem was developed
in this study. Compared to earlier studies, this method was extended to include challenging problem ele-
ments: a minimum-time objective function, time-dependent boundary conditions and conical attitude con-
straints. Furthermore, several techniques were implemented to enhance the performance of the algorithm.
Amongst others, a shape-based initialisation technique increased the computational efficiency by up to 40%.
Moreover, a novel method to enforce constraints on inter-nodal segments was developed and found to ef-
fectively tackle the challenge of inter-nodal constraint violations. Finally, to bridge the gap from research
to implementation, the convex solving algorithm was implemented directly from MATLAB, eliminating the
need for time-consuming modelling software.

An extensive Monte Carlo campaign was conducted to study the performance of the SCP algorithm regarding
six different formulations of the minimum-energy and minimum-time reorientation problems. In terms of
speed, the algorithm showed a median computational efficiency that was a factor of 4.2 to 6.1 higher than
a representative NLP benchmark algorithm. Furthermore, the algorithm delivered similar performance in
terms of optimality as the NLP benchmark, which is widely regarded as the standard for obtaining optimal
solutions for nonlinear optimisation problems. Finally, regarding robustness, 100% convergence rates were
obtained for four of the six problem formulations. For the remaining two problem types, (conservative) con-
vergence rates of 99.84% and 98.91% were observed. However, a strategy was identified that could potentially
increase these rates in future research.

It should be noted that for final conclusions on the potential of SCP-based methods for onboard applications,
tests will need to be executed on representative satellite hardware. Nevertheless, considering all results that
were obtained, it can be concluded that SCP-based optimisation algorithms are one of the most promising
candidates for onboard implementation, and could potentially pave the way for future autonomous applica-
tions.
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t f ,guess Initial guess for the manoeuvre duration [s]
u Control vector [Nm]
uellipse Ellipsoidal control constraint [Nm]
wt Weight factor for the minimum-time objective term [-]
wtr Weight factor for the trust-region objective term [-]
wu Weight factor for the minimum-energy objective term [-]
wvc Weight factor for the virtual-control objective term [-]
wη Weight factor for the minimum-time objective term [-]
x State parameter [-] or [rad s−1]
x0 Initial state boundary condition [-] or [rad s−1]
xB Instrument boresight vector (in the FB frame) [-]
xe Vector of ECOS optimisation parameters [-]
x f Final state boundary condition [-] or [rad s−1]
y I Central vector of a keep-out or keep-in cone [-]
z Vector of optimisation parameters [-] or [rad s−1] or [s]



xiii

Greek symbols

Symbol Description Unit
αtr,adap Update factor for the adaptive trust-region term [-]
αvc,adap Update factor for the adaptive virtual-control term [-]
δη Hard trust region for the time dilation factor [%]
ε Convergence criterion [-]
εvc Convergence criterion for the virtual control use [-]
εx Convergence criterion for the state deviation [-]
εη Convergence criterion for the time dilation factor [-]
η Time dilation factor [-]
η Pseudo time [-]
θsep,in Attitude keep-in maximum separation angle [rad]
θsep,out Attitude keep-out minimum separation angle [rad]
λ Trust region slack variable [-]
µ Trust region slack variable [-]
ν Virtual control parameter [-]
τ Normalised trajectory time [-]
Φ State transition matrix [-]
Φ Mayer objective term [-]
φ Euler angle [rad]
Ψ Lagrange objective term [-]
ω Angular rate vector [rad s−1]
ω0 Initial angular rate boundary condition [rad s−1]
ωbox Box angular rate constraint [rad s−1]
ω f Final angular rate boundary condition [rad s−1]
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1
Introduction

In this chapter, the topic of this research project is introduced. First, in Section 1.1, the problem around which
this study revolves is identified. Then, Section 1.2 presents the development that led to this research project.
Afterwards, in Section 1.3, the research (sub-)questions are introduced. Finally, Section 1.4 provides a short
overview of the structure of this report.

1.1. Problem and relevance
Reorientation manoeuvres are an important element of most space missions. These manoeuvres can be re-
quired for a large variety of purposes, ranging from establishing a data link with a ground station to observing
a target on Earth or tracking a passing comet for scientific reasons. However, the resources that are required
for these manoeuvres, such as time, propellant and energy, are extremely scarce in space. Therefore, optimis-
ing these attitude manoeuvres with respect to one or more of these variables has received a lot of attention
over the past decades.

In recent years, the rise of agile satellites, satellite constellations and small satellites has created a push to-
wards higher performance of space missions, resulting in a need for satellites to achieve further efficiency
improvements (Kjellberg, 2014). Performing optimised attitude manoeuvres autonomously would be a major
step towards answering this need (Aucoin and Zee, 2019), as this would have many advantages. For instance,
the workload on ground infrastructure could be reduced through a decreased need for contact regarding
manoeuvre planning purposes. Furthermore, this capability would enable spacecraft to be more adaptive
to certain mission elements, for instance, changing weather conditions (which can influence the collected
data), the need for responsive delivery of military information (Boyarko et al., 2011), or the unpredictable
nature of certain scientific phenomena (Preda et al., 2021). Moreover, it could increase the amount of useful
work (e.g., image collection capacity) a spacecraft could perform in a given period of time (observation win-
dow) compared to the sub-optimal methods that are currently used for onboard applications (Ventura et al.,
2015).

However, the optimal spacecraft reorientation problem is characterised by complex, nonlinear dynamics and
constraints. The pseudospectral nonlinear programming methods that are typically used to solve this opti-
misation problem show good performance in terms of robustness and optimality but suffer from low compu-
tational efficiency, rendering these methods unsuitable for onboard applications (Boyarko et al., 2011). As a
result, the corresponding optimisation process currently has to be performed using high-performance com-
puters located on Earth. Furthermore, previous methods proposed to solve the spacecraft reorientation prob-
lem in real time suffer from penalties with respect to robustness or optimality, and typically rely on certain
problem simplifications (Section 3.8). Consequently, there exists great interest in the development of novel
methods that could reliably solve the optimal spacecraft reorientation problem onboard and in real time,
thereby bringing the space community one step closer to autonomous applications (Ventura et al., 2015).
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1.2. Research trigger
Recent advances in the field of optimal control have spurred a wave of research into the development of
onboard guidance algorithms for a variety of space-related problems. A class of algorithms that shows par-
ticularly promising results, is composed of so-called convexification-based optimisation methods (Liu et al.,
2017). These methods convert an originally non-convex optimisation problem into either a single convex
problem (lossless convexification) or a sequence of convex sub-problems (sequential convex programming
or successive convexification), which can be solved extremely efficiently using state-of-the-art convex solv-
ing algorithms. Successful applications of this framework can be found in a wide range of space-related re-
search fields, such as powered descent, orbital rendezvous, and hypersonic re-entry. More recently, a limited
number of studies identified the sequential convex programming (SCP) framework as a promising option
for efficiently solving the optimal spacecraft reorientation problem. However, the effectiveness of SCP-based
optimisation methods regarding this problem has, at this point in time, only been investigated to a limited
extent.

1.3. Research question
The purpose of this study is to obtain a thorough understanding of the capabilities of a sequential convex
programming-based optimisation algorithm in terms of solving the spacecraft reorientation problem on-
board. In this section, the research question and sub-questions are presented that were investigated in this
study. These research (sub-)questions were formulated in close consultation with the research partner OHB.
The research question that is to be answered in this study is:

Could a sequential convex programming-based optimisation method be a candidate for solving the
optimal spacecraft reorientation problem in onboard applications?

Answering this question will directly contribute to the search for a solution to the problem identified in Sec-
tion 1.1. This research question was further split up into four sub-questions:

1. Could SCP-based optimisation methods be used to solve the complex minimum-time reorientation
problem with time-dependent boundary conditions and conical attitude constraints?

At the moment of writing, only a limited number of studies have focused on the application of the SCP frame-
work to the optimal spacecraft reorientation problem. These studies have considered reorientation problems
that were relatively simple in terms of formulation and enforced constraints. To be a promising candidate for
many autonomous applications, it is important to understand which problem types the SCP framework could
successfully solve. To that end, extending the application of SCP algorithms to include complex problem ele-
ments, specifically a free-final-time formulation, time-dependent boundary conditions and conical attitude
constraints, is a focus of this research project.

2. How could the performance of current SCP-based optimisation algorithms be improved?

In order to meet the rigorous demands for an onboard implementation, it would be interesting to identify
methods to improve the performance of SCP-based optimisation algorithms, compared to the algorithms
that have currently been proposed in literature. These methods can either be obtained from SCP-related
studies on other optimisation problems (e.g., the powered descent problem) or developed in this study from
scratch.

3. How could the first steps towards an onboard implementation of an SCP algorithm be executed?

Current studies on SCP-based optimisation algorithms typically rely on software such as a numerical comput-
ing environment (e.g., MATLAB) and an interfacing tool (e.g., CVX) which greatly simplify the development
of these optimisation methods. However, these tools are not available (from a software perspective) or too
computationally inefficient for onboard use. In order to bridge the gap between research and actual imple-
mentation, it would be interesting to explore how these tools could be eliminated and to which extent this
influences the performance of the algorithm.

4. What are the performance characteristics of an SCP-based optimisation algorithm in terms of com-
putational efficiency, optimality, and robustness?
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To assess the usability of SCP-based optimisation methods for onboard applications, it is crucial to obtain
a thorough understanding of their performance. To this end, the three most important criteria for onboard
implementation were identified and extensively studied. In Section 3.7, these three performance criteria
(computational efficiency, optimality and robustness) are introduced and defined.

1.4. Report structure
In this section, a brief overview of the structure of this report is provided. First, in Chapter 2, a theoretical
foundation is provided which is required to understand the problem at hand. Then, in Chapter 3, the optimal
spacecraft reorientation problem is introduced and discussed. Afterwards, Chapter 4 outlines the main de-
sign choices and theory behind the sequential convex optimisation algorithm developed in this study. Chap-
ter 5 discusses the way in which this algorithm and other relevant analysis tools were implemented for this
research project. Subsequently, in Chapter 6, the set-up of the Monte Carlo experiments that were conducted
is covered. Afterwards, Chapter 7 studies the performance of the SCP algorithm on a single-case level. In
Chapter 8, the influence of several important design choices and elements on the performance of the SCP
algorithm is analysed. Next, in Chapter 9, various Monte Carlo analyses are presented and discussed to draw
conclusions about the performance characteristics of the SCP algorithm. Finally, Chapter 10 presents the
main conclusions of this study and recommendations for further research.
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2
Theory

This chapter provides the theoretical background information which is required to understand the research
that was performed during this MSc thesis project and its context. In Section 2.1, the two reference frames
that are used in this study are introduced. Then, in Section 2.2, the quaternion attitude parameterisation
is introduced. Afterwards, a brief overview of optimal control theory is provided in Section 2.3. Finally, in
Section 2.4, an introduction is provided to convex optimisation and the convexification-based optimisation
methods that form the focus of this study.

2.1. Reference frames
Before spacecraft reorientation manoeuvres can be studied, first the reference frames that are used to de-
scribe the attitude and motion of a spacecraft, have to be defined. A reference frame is typically defined as
a set of three orthonormal physical basis vectors and an origin (Wertz, 1978). In space-related research, a
wide variety of different reference frames are encountered that can be used to describe complex problems.
However, the optimal spacecraft reorientation problem considered in this study only requires two relatively
basic and intuitive reference frames to fully describe the problem. This results from the fact that this study
only considers the attitude of a spacecraft and not its translational position and motion in space. The two
reference frames that are used in this study are the inertial reference frame FI (Subsection 2.1.1), in which
the boundary conditions and attitude constraints of the manoeuvres are usually specified, and the body-fixed
reference frame FB (Subsection 2.1.2), which is required to describe the attitude and the rotational dynamics
of a spacecraft.

2.1.1. Inertial frame
The inertial reference frame FI is inertially fixed, which means that the axes of this frame do not rotate or
change relative to distant stars (Wertz, 1978). For this study on the optimal spacecraft reorientation problem,
the location of the origin of this reference frame is irrelevant as the physical position of the spacecraft is not
considered and does not influence the problem formulation and dynamics. In a study of Virgili-Llop et al.
(2019), this reference frame is simply referred to as the inertial Cartesian coordinate system (CCS) FI . For
potential extensions of this study, where the origin of the inertial reference frame does become relevant, it
would be a logical choice to select the Earth-Centred Inertial (ECI) reference frame (Reynolds et al., 2021;
Tam and Glenn Lightsey, 2016). This frame could, for instance, be used to describe and specify the location
of observation targets relative to the spacecraft.

2.1.2. Body-fixed frame
The body-fixed reference frame FB is used to describe the orientation of a studied body, in this case, a space-
craft, often with respect to an inertial reference frame. The centre of mass of the spacecraft is often taken as
the origin of this reference frame, and its orientation is defined with respect to the geometrical features of the
spacecraft. A visual overview of both the inertial and body-fixed reference frames is provided in Figure 2.1.
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8 2. Theory

Figure 2.1: Overview of various reference frames, expressed in a generic way (Aucoin and Zee, 2019). The (Earth-centered) inertial
frame Fi and the body-fixed frame Fb are relevant for the spacecraft reorientation problem considered in this study, while the

Earth-fixed frame Fe and orbital frame Fo are not relevant for this study and, therefore, not introduced.

2.2. Attitude parameterisation
For the reorientation problem at hand, it is required to find a way to describe the attitude of the spacecraft.
This attitude represents the orientation of the body-fixed reference frame FB relative to the inertial reference
frame FI , which is used to define the boundary conditions and path constraints of the problem. Different
methods exist that can be used to describe the orientation of one reference frame relative to another reference
frame. These methods for expressing the attitude of a spacecraft are often referred to as attitude parameter-
isation methods (Diebel, 2006). In this section, the direction cosine matrix (DCM) and quaternion attitude
parameterisations, which were used in this study, are introduced in Subsection 2.2.1 and Subsection 2.2.2,
respectively. Subsection 2.2.3 outlines the main reasons for choosing the quaternion parameterisation for
the sequential convex programming (SCP) algorithm developed in this study.

2.2.1. Direction cosine matrix
The attitude of a reference frame FB relative to another reference frame FI can be fully described by a direction
cosine matrix (DCM) C B I ∈ SO(3), where SO(3) := {C ∈ R3×3, CC> = 1, det(C ) = 1

}
(Diebel, 2006). SO(3) is

known as the matrix Lie group (Walsh et al., 2018). A DCM C represents a matrix that rotates the orthonormal
basis of one reference frame to the orthonormal basis of another reference frame, under the assumption that
the origins of both frames are identical. This rotation can be represented as

E B =C B I E I (2.1)

where E B and E I denote, respectively, the orthonormal bases of reference frames FB and FI . The matrix
C B I is referred to as a DCM as each of its elements represents the angle between two coordinate axes from
both orthonormal bases (C B I ,i j = cos(αi j ), where αi j is the angle between the coordinate axes e I ,i and eB , j )
(Shuster, 1993). This relation can be formulated as (Bhagat, 2016)

C B I =
 cosα11 cosα12 cosα13

cosα21 cosα22 cosα23

cosα31 cosα32 cosα33

 (2.2)

A useful property of using the DCM attitude parameterisation is that it is straightforward to obtain the back-
ward transformation:

E I =C−1
B I E B =C T

B I E B (2.3)
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The main disadvantage of this attitude parameterisation is that it uses nine parameters to describe the relative
orientation of two reference frames, rendering it computationally expensive to use for numerical optimisa-
tion problems (Bhagat, 2016). Nevertheless, the DCM representation is arguably one of the most intuitive
attitude parameterisations, as a simple matrix-vector multiplication can be used to express any vector in any
frame or to rotate a vector over any angle (Terzakis et al., 2018).

2.2.2. Quaternions
The quaternion attitude parameterisation is one of the most popular methods to parameterise the attitude.
Conceptually, this attitude parameterisation is based on Euler’s theorem, which states that any rotation from
one reference frame to another reference frame can be described by a single rotation with a so-called Eu-
ler angle φ, around an axis which is known as the Euler axis (or eigenaxis) e. This rotation is visualised in
Figure 2.2.

Figure 2.2: Transformation between two reference frames with the Euler angle θ around the Euler axis e (Ridder, 2016).

A quaternion consists of four variables that are functions of the Euler angle φ and eigenaxis e.

q =
[

q
q4

]
=


q1

q2

q3

q4

 (2.4)

where

q = e sin
φ

2
(2.5)

q4 = cos
φ

2
(2.6)

where q = [q1, q2, q3]T and q4 are referred to, respectively, as the vector and scalar components of the quater-
nion (Shuster, 1993). This formulation, where q4 represents the scalar component, is used in this study and
often referred to as the scalar-last convention. Other studies adopt a scalar-first convention, where the scalar
component is represented by the q1 parameter (Tam and Glenn Lightsey, 2016). A key property of a quater-
nion is that its L2-norm is equal to 1, which can be represented as

‖q‖2 =
√

q2
1 +q2

2 +q2
3 +q2

4 = 1 (2.7)

This property is often referred to as the quaternion unit-norm. The DCM C B I , which describes the attitude
transformation from FI to FB , can be obtained from the quaternion parameters through (Wertz, 1978; Wie,
2008)

C B I (q) =
 1−2

(
q2

2 +q2
3

)
2
(
q1q2 +q3q4

)
2
(
q1q3 −q2q4

)
2
(
q2q1 −q3q4

)
1−2

(
q2

1 +q2
3

)
2
(
q2q3 +q1q4

)
2
(
q3q1 +q2q4

)
2
(
q3q2 −q1q4

)
1−2

(
q2

1 +q2
2

)
 (2.8)

One important advantage of the use of unit quaternions to parameterise the attitude is that the correspond-
ing kinematic equations do not contain any singularities (Andrle and Crassidis, 2013). A minor disadvantage
is the lack of an intuitive physical interpretation. Another disadvantage of the quaternion parameterisation
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is the fact that it is non-unique (Walsh et al., 2018). This property results from vector geometry, and states
that the rotations (e,φ) and (−e,2π−φ) are physically equivalent. Put differently, both q and −q produce
the identical rotation mapping (Lysandrou, 2019). When this problematic phenomenon is encountered dur-
ing an attitude manoeuvre, and an attitude controller commands the larger rotation instead of the (desired)
smaller rotation, it is spoken of the unwinding phenomenon. Strictly spoken, as this study only considers
attitude guidance, the unwinding phenomenon is not relevant for this work. However, for the SCP algorithm
presented in Chapter 4, the non-uniqueness of quaternions is taken into account to ensure that the obtained
guidance trajectories represent the shortest path.

A third problematic characteristic is the unit-norm constraint of the quaternion formulation. Due to the fact
that this is a quadratic equality constraint, several optimisation frameworks, for instance, the convex frame-
works considered in this study, cannot directly enforce it (Diebel, 2006). If an iterative optimisation method
is considered, one strategy to deal with this problem is to perform a re-normalisation of the unit quaternions
following each step. This approach, however, does unfortunately not work for the direct optimisation meth-
ods that are considered in this study.

The reader is referred to the work of Kuipers (1999) for more information on the quaternion parameterisation,
for instance regarding its mathematical properties.

2.2.3. Selection of the quaternion parameterisation

In the literature study that was part of this research project (Diercks, 2021), an extensive analysis of and com-
parison between the properties of different attitude parameterisations were performed. This subsection con-
tains a brief overview of the conclusions and reasons for selecting the quaternion attitude parameterisation
for solving the reorientation problem using an SCP-based optimisation method.

A range of methods is available to parameterise the attitude of a spacecraft, such as Euler angles, (Modi-
fied) Rodrigues Parameters, and rotation vectors. For the sequential convex programming framework stud-
ied in this project, it was concluded that using the quaternion attitude parameterisation was the most logical
choice. There are several reasons for this. To begin with, the quaternion parameterisation does not face the
challenge of having singularities. Although solutions have been proposed to deal with this challenge (e.g.,
reorienting the body-fixed frame (Virgili-Llop et al., 2018) to avoid the regions that have singularities), not
having to deal with this challenge simplifies the optimisation algorithm and could (potentially) improve its
robustness. Furthermore, its bilinear kinematics (Section 3.2) are only nonlinear in a limited sense. This
is helpful as the sequential convex programming framework relies heavily on linearisation techniques. In
addition, a convex formulation of the important conical attitude constraints is available for this parameteri-
sation (Section 3.4) (Kim and Mesbahi, 2004), which is not the case for other attitude parameterisations. Fi-
nally, earlier studies that apply the convex programming framework to the spacecraft reorientation problem
showed that the quaternion-norm constraint can be enforced to a sufficient extent through the linearised
norm-preserving kinematic differential equations (Jerez et al., 2017; McDonald et al., 2020; Reynolds et al.,
2021).

2.3. Optimal control

Optimal control can be defined as the search for solutions that maximise or minimise certain criteria while
satisfying differential constraints on dynamics (the equations of motion) and algebraic constraints on the
state and control variables of the problem (Sagliano, 2018). This section introduces the general formulation
of an optimal control problem and the methods that can be used to solve such problems.
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2.3.1. Problem formulation
The Bolza problem is a general representation of an optimal control problem (OCP), and can be formulated
as (Sagliano, 2018)

minimise J =Φ[
t f , x

(
t f

)
,u

(
t f

)]+∫ t f
t0
Ψ[x(t ),u(t )]dt

subject to ẋ = f (t , x ,u)
g L ≤ g (t , x ,u) ≤ g U
xL ≤ x(t ) ≤ xU

uL ≤ u(t ) ≤ uU

(2.9)

where J is the objective function (known as the cost function or performance index), which consists of the
Mayer term Φ and an integral term Ψ, which is referred to as the Lagrange term. The Lagrange term can be
used to optimise certain model elements over the entire problem duration. Moreover, t0 and t f represent,
respectively, the initial and final time, x(t ) ∈ Rnx the state parameters and u(t ) ∈ Rnu the control parameters.
(·)L and (·)U refer to lower and upper bounds on certain constraints. The control variable u(t ) is commonly
referred to as the decision variable, which is defined as the variable that can be changed in order to arrive at
the optimal solution that is desired. As can be seen in Equation 2.9, the problem can be subject to both state
and control path constraints g .

2.3.2. Numerical solving methods
Due to its complex, nonlinear dynamics, there are no analytic solutions to the optimal spacecraft reorien-
tation problem. Therefore, one has to resort to numerical solving methods to find optimal solutions. The
two main classes within this category of numerical solving methods for optimal control problems are indi-
rect methods (‘optimisation then discretisation’) and direct methods (‘discretisation then optimisation’) (Chai
et al., 2019). An overview of both of these classes and the main numerical solution methods that they consist
of is provided in Figure 2.3.

Figure 2.3: Common numerical solution approaches for optimal control problems (Chai et al., 2019).

Indirect methods
Indirect methods make use of elements of optimal control theory, primarily Pontryagin’s Maximum Principle
(Levskii, 2009; Liberzon, 2007; Pontryagin, 1987), and rely on the derivation of the necessary conditions of op-
timality, such as transversality conditions and adjoint equations (Lysandrou, 2019). Afterwards, a two-point
boundary value problem (TPBVP) is solved. This approach can also be interpreted as trying to find the point
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where the slope of the objective function is zero (Kelly, 2015). Indirect methods typically cannot be used to
solve the optimal spacecraft reorientation problem considered in this study, due to the complicated, non-
linear dynamics and constraints that are involved (Mao et al., 2018a). These cause the necessary conditions
to be relatively complicated, which makes it difficult to determine the switch points where the constraints
become active (Chai et al., 2019). Furthermore, the resulting TPBVP is known to be extremely sensitive to an
initial guess of the solution, which can be difficult or impossible to find (Bonalli et al., 2019).

Direct methods
Direct methods are usually favoured because these methods do not require the derivation and considera-
tion of the necessary conditions of optimality (Betts, 1998), but directly convert the continuous, infinite-
dimensional optimisation problem into a discrete, finite-dimensional optimal control problem. This process
is commonly referred to as the transcription or discretisation process (Section 4.5) (Sagliano, 2018). Direct
methods parameterise either the control or the state and control with a set of basis functions. These basis
functions can be, for instance, piecewise constant, linear, cubic or polynomial functions, and the coefficients
of these functions are then obtained through the actual parameter optimisation process. A variety of nu-
merical solving algorithms exists (f.i, nonlinear programming (NLP) methods) that can solve these discrete
problems relatively efficiently (Thomson, 1962). As the complexity of an optimisation problem increases, di-
rect methods are typically significantly easier to implement than indirect methods, making them the favoured
approach in engineering practice (Chai et al., 2019). However, the NLP methods that are commonly used to
solve spacecraft reorientation problems are typically too slow for real-time, onboard applications, as is fur-
ther discussed in Section 3.8.

2.4. Convex optimisation
In this section, the topics of convex optimisation and convexification-based optimisation techniques are in-
troduced. To this end, Subsection 2.4.1 covers the basics of convex optimisation, while Subsection 2.4.2 intro-
duces a specific type of convex problem that has a special interest for this study. Subsequently, Subsections
2.4.3 and 2.4.4 introduce the two main approaches that are used to convexify non-convex problems.

2.4.1. Introduction
Convex optimisation problems form a class of mathematical optimisation problems that are characterised by
convex objective functions, linear equality constraints, and inequality constraints that represent a convex ad-
missible set (Boyd and Vandenberghe, 2004). Figure 2.4 shows examples of the various subclasses that convex
programming (CP) consists of: linear programming (LP), quadratic programming (QP), second-order cone
programming (SOCP), and semidefinite programming (SDP). Of these subclasses, SOCP holds special inter-
est regarding the convexification-based optimisation method that is developed in this study, and is therefore
independently discussed in Subsection 2.4.2.

Figure 2.4: A hierarchy of convex optimisation subclasses.1

Earlier research has shown that for a variety of optimisation problems, in contrast to popular belief, the most
important characteristic is the convexity of the problem, not its linearity (Boyd and Vandenberghe, 2004). The
main advantages of convex programming problems in comparison to non-convex problems are:

1https://en.wikipedia.org/wiki/Convex_optimization (Cited: 23-11-2020).

https://en.wikipedia.org/wiki/Convex_optimization
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1. State-of-the-art, very efficient solving algorithms exist that can be used to solve convex programming
problems in real time (Wang and Grant, 2018b). The class of primal-dual interior-point methods (IPMs)
forms an example of such methods (Mattingley and Boyd, 2012).

2. In contrast to many NLP methods, these convex solving algorithms do not require an initial guess to
find a solution, if one exists.

3. Any minimum found by the convex solving algorithm is the global minimum by definition (Hindi, 2004;
Sagliano, 2019).

4. On the other hand, if the problem is infeasible, this can be reported in polynomial time using duality
theory (Boyd and Vandenberghe, 2004).

A general convex optimisation problem can be formulated as (Boyd and Vandenberghe, 2004; Lysandrou,
2019; Sagliano, 2018)

minimise f0(x)

subject to fi (x) ≤ ai , i = 1, . . . ,m
(2.10)

where x ∈ Rnx is the vector of optimisation parameters and the functions f0, . . . , fm are convex functions. In
order to be convex, these functions must satisfy the following relationship (Sagliano, 2018)

fi (αx +βy) ≤α fi (x)+β fi (y), ∀ α,β≥ 0, α+β= 1, α,β ∈R, i = 0, . . . ,m (2.11)

Put differently, in convex optimisation problems, all (in)equality constraints must define a convex set. An
intuitive definition of a convex set was provided by Boyd and Vandenberghe (2004), who defined a set as
convex ‘if every point in the set can be seen by every other point, along an unobstructed straight path between
them’. In order to illustrate and visualise the concept of a convex set, some examples of both convex and non-
convex sets are provided in Figure 2.5.

Figure 2.5: Examples of a convex set (left) and two non-convex sets (right) (Hindi, 2004). The thick lines on the sides of the square of the
third set are part of the defined set.

Historically seen, convex programming has been out-of-scope for complex optimisation problems, such as
the optimal spacecraft reorientation problem, which are characterised by nonlinear, non-convex dynamics
and constraints (Liu et al., 2017). However, in recent years, methods and techniques were developed that can
reformulate a variety of non-convex problems into a convex form, resulting in extremely fast optimisation
algorithms that exploit the power of the available convex IPM solvers. These studies apply either lossless
(Subsection 2.4.3) or sequential convex programming techniques (Subsection 2.4.4) to a wide range of (space-
related) problems that have challenging sources of non-convexity.

2.4.2. Second-order cone programming
As outlined in the previous subsection, a variety of subclasses of convex programming exist, of which second-
order cone programming (SOCP) is of special interest for the convexification-based optimisation methods
that are considered in this research project (Açikmeşe and Ploen, 2007; Liu et al., 2017). SOCP problems are
characterised by a linear objective function and can be subject to both linear equality and conical inequality
constraints (Liu et al., 2015). SOCP problems can be formulated as (Sagliano, 2018)

minimise c T
0 x

subject to A0x = b0

‖Ai x +bi‖2 ≤ c T
i x +di , i = 1,2, . . . , p

(2.12)
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where x ,c ∈ Rnx represent, respectively, the optimisation variables and the vector that defines the (linear)
cost. In addition, A0 ∈ Rm×nx , and b0 ∈ Rm describe a linear system of m equations. Furthermore, Ai ∈
Rmi×nx ,bi ∈ Rmi ,c i ∈ Rnx and di ∈ R represent a conic constraint of order mi . Figure 2.6 presents a visual
example of such a conic constraint with order mi = 2.

Figure 2.6: Example of 3-D cone. The volume of the cone satisfies the condition
∥∥Ai x +bi

∥∥
2 ≤ cT

i x +di for mi = 2 (Sagliano, 2018).

In line with Figure 2.4, the relation between LP, SOCP, and SDP, which represent three subclasses of CP that
are frequently applied to aerospace-related optimisation problems, can be expressed as (Liu et al., 2017)

LP ⊆ SOCP ⊆ SDP (2.13)

As mentioned, SOCP is of particular interest for real-time onboard guidance applications (Wang and Lu,
2020). The reason for this is that this subclass provides a balance between computational efficiency and
modelling power. To illustrate, while LP is typically too inaccurate to model complex guidance problems, the
algorithms currently available to solve SDP problems are often not computationally efficient enough for on-
board applications. In contrast, SOCP can model more complex problems than LP and can solve problems
faster than SDP methods, through the use of state-of-the-art IPMs (Song et al., 2020). An important property
of SOCP, which is used extensively in this study, is that convex quadratic constraints can be converted into an
SOCP formulation (Boyd and Vandenberghe, 2004; Lobo et al., 1998). This transformation is in accordance
with the relation provided in Equation 2.13.

2.4.3. Lossless convexification
The method of lossless convexification was the first method developed to convexify problems that were non-
convex in their original form. A lossless convexification method applies one or more convexification tech-
niques in order to produce a fully convex problem from a problem that is non-convex in its original form
(Lysandrou, 2019). The convexification process is referred to as lossless if it can be proven that the optimal
solution of the convexified problem is identical to the optimal solution of the original, non-convex prob-
lem (Açikmeşe and Blackmore, 2011). As a result, little or no approximation error is introduced through the
convexification procedure, which is a major advantage of this method. Ideally, in the lossless convexifica-
tion framework, the equivalence of the original and the convexified problem is theoretically proven through
the application of Pontryagin’s maximum principle (Reynolds et al., 2020b). However, establishing such a
proof requires rigorous analysis and is, most likely, not possible for all problem scenarios (Foust et al., 2020).
The lossless convexification framework was originally developed to solve the minimum-propellant, planetary
soft-landing problem, which is one of the benchmark problems of optimal control theory, in real time (Açik-
meşe and Ploen, 2007). In recent years, several guidance algorithms for the powered-descent problem that
are based on lossless convexification, have been experimentally validated in flight experiments (Açikmeşe
et al., 2013; Scharf et al., 2014, 2017).

However, it is frequently stated in literature that lossless convexification is not applicable to problems with
highly nonlinear dynamics and path constraints. To illustrate, Wang et al. (2019a) argued that this is the case
for the nonlinear hypersonic entry problem. Several studies that applied convexification-based optimisa-
tion algorithms to the spacecraft attitude reorientation problem confirmed the expectation that the lossless
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convexification framework cannot be applied to the spacecraft reorientation problem (Jerez et al., 2017; Mc-
Donald et al., 2020; Reynolds et al., 2021).

2.4.4. Sequential convex programming
The sequential convex programming (SCP) framework, also known as the successive convexification (SC) frame-
work, was developed with the aim to rapidly solve optimal control problems with nonlinear dynamics and
non-convex constraints that render a lossless convexification into a single convex problem impossible (Lysan-
drou, 2019). Instead, SCP-based optimisation methods transform a single, non-convex problem into a se-
quence of multiple convex sub-problems (Wang et al., 2019a). Each of these sub-problems is a convex ap-
proximation of the original, non-convex problem. This approximation is always based on a reference solu-
tion, which is in practice the solution that was obtained during a previous iteration of the sequential scheme
(Szmuk and Açıkmeşe, 2018). As a result, using a poor first guess that is sub-optimal or even dynamically in-
feasible, an SCP-based optimisation algorithm approaches an optimal solution in a step-by-step manner, as
is shown in Figure 2.7. Consequently, the SCP framework can be described as an iterative, local optimisation
framework (Wang and Lu, 2020). Although it cannot be guaranteed that its guidance solution is globally op-
timal, fast local methods are often preferred over slow global methods for a variety of real-time, autonomous
applications of optimal guidance algorithms (Lysandrou, 2019).

Figure 2.7: Example of the convergence process of an SCP algorithm. The initial reference solution (straight blue line) is iteratively
updated (progressively changing colour from blue to red) until a converged, locally optimal solution (red line) is obtained. In this

example, the figure shows a control (bank angle) profile as a function of time for the hypersonic entry problem (Wang and Lu, 2020).

The SCP framework was first developed in studies of Lu and Liu (2013) and Liu and Lu (2014). Since then,
SCP-based optimisation methods have been frequently studied and have been reported to show promising
performance in terms of computational efficiency (Sagliano, 2018). At the moment of writing, SCP-based
optimisation methods have been applied to a wide range of optimisation problems in aerospace-related re-
search fields. Collectively, the corresponding studies provide numerical evidence of the promising properties
of this class of optimisation methods (Liu et al., 2017). As an example, in a study of Malyuta et al. (2019),
convergence rates of 100% were obtained in a Monte Carlo analysis. In Figure 2.8, an illustration is provided
of a typical convergence history of an SCP algorithm, in this case for the 6 degree-of-freedom (DoF) powered
descent problem. In this figure, the dots represent the discretisation nodes of the numerical optimisation
problem, and the lines represent trajectories that were obtained by propagating the original, nonlinear dy-
namics using the control history that was obtained for the corresponding iteration of the iterative scheme. It
can be observed that the linearisation error decreases with subsequent iterations.

To further illustrate, SCP-based optimisation methods have, amongst others, been applied to the rendezvous
problem (Benedikter et al., 2019b; Lu and Liu, 2013), low-thrust orbital transfer problem (Bergin et al., 2020;
Wang and Grant, 2018b), the planetary entry problem (Liu et al., 2015; Wang and Grant, 2016; Wang and Lu,
2020; Zhou et al., 2020), the planetary soft-landing problem (Mao et al., 2017; Sagliano, 2019), the swarm
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Figure 2.8: Convergence history of an SCP algorithm for a powered descent optimisation problem (Mao et al., 2018a). The black,
straight lines represent a conical constraint above which the vehicle must remain during the descent manoeuvre.

trajectory optimisation problem (Morgan et al., 2016), and quadrotor motion planning problems (Szmuk
et al., 2017, 2019; Wang et al., 2018). In these and other studies, a variety of different algorithm features and
techniques have been developed to increase the performance of the algorithm, predominantly in terms of
robustness and computational efficiency.

In recent years, the first steps have been taken to turn SCP-generated optimal trajectories into a guidance
framework that can be implemented in real-world scenarios. For instance, an optimal feedback guidance law
was designed to track an optimal reference trajectory that is generated online using SCP (Wang and Grant,
2018a), and the real-time capability of an SCP method was tested in quadrotor flight experiments in the study
of Szmuk et al. (2017). The SCP framework has only been applied to the optimal spacecraft reorientation
problem in a small number of studies. Characteristics and results of these studies are provided in Section 3.8.

One should not confuse the SCP framework with the more mature sequential quadratic programming (SQP)
optimisation methods, which are used by many NLP solvers and typically require much more computational
effort to find locally optimal solutions (Szmuk et al., 2020). The main cause of this is that SQP methods
require second-order information when approximating the Hessian of the constraints that are imposed on the
problem, which requires the use of computationally demanding techniques such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update (Boggs and Tolle, 1995).



3
Optimal Spacecraft Reorientation

In this chapter, the optimal spacecraft reorientation problem that is considered in this research project is
introduced, formulated and discussed. In Sections 3.1 and 3.2, the equations of motions of the spacecraft re-
orientation problem are introduced. Afterwards, Sections 3.3, 3.4 and 3.5 introduce, respectively, the bound-
ary conditions, constraints and objectives of the reorientation problem. In Section 3.6, an overview of two
specific problems is provided, containing all elements from the previous sections. Then, Section 3.7 explores
which requirements an (ideal) reorientation guidance algorithm should fulfil to be eligible for onboard im-
plementation. Finally, in Section 3.8, a brief overview of the previous research into real-time optimisation
of spacecraft reorientation manoeuvres is provided, including an analysis of studies that are based on the
sequential convex programming framework.

3.1. Attitude dynamics
Euler’s rotational equations of motion form the foundation for describing the physical behaviour of a space-
craft during a reorientation manoeuvre. These equations can be represented as (Wertz, 1978)

Dynamic equations
I ω̇+ω× I ω= u (3.1)

where I ∈ R3×3 represents the inertia matrix of the spacecraft, ω= [ω1,ω2,ω3]T is the angular velocity vector
(angular rate vector) of the body-fixed reference frame FB relative to the inertial frame FI , and u = [u1,u2,u3]T

is the control (torque) vector. All problem elements that are introduced in this chapter that are included in the
formulation of the reorientation problems that were studied in this research project (Section 3.6), are shown
using a grey box for the sake of clarity.

Other formulations of the spacecraft dynamics are commonly used in literature. For instance, when the body-
fixed frame is aligned with the principal moments of inertia of the spacecraft, the attitude dynamics can be
represented in a simplified form as (Wertz, 1978)

I1ω̇1 − (I2 − I3)ω2ω3 = u1

I2ω̇2 − (I3 − I1)ω3ω1 = u2

I3ω̇3 − (I1 − I2)ω1ω2 = u3

(3.2)

where Ii is the rigid-body principal moment of inertia around axis i , for i = 1,2,3. It must be emphasised
that ω describes the angular motion of the rotating, body-fixed reference frame FB . Therefore, one cannot
describe the orientation of the spacecraft in the inertial frame FI using only these rotational dynamic equa-
tions. In Section 3.2, the kinematic relations are provided that relate these body-relative rotations to attitude
changes with respect to the inertial frame (Thomson, 1962). Another formulation of the spacecraft dynamics
considers the situation where a spacecraft is equipped with reaction or momentum wheels. Such a body is in
reality not a rigid body, as Equation 3.1 assumes. As a result, Equation 3.1 is only valid in this situation with a

17
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minor modification (Wertz, 1978), which can be formulated as

I ω̇+ω× (Iω+h)+ ḣ = u (3.3)

where h is the reaction wheel angular momentum, relative to the spacecraft. However, in most studies on
real-time attitude trajectory optimisation (Section 3.8), either Equation 3.1 or Equation 3.2 is used to describe
the spacecraft dynamics. For this study, it was decided, together with the research partner OHB, to make the
rigid-body assumption and use the dynamic equations of Equation 3.1. The first reason for this is that Euler’s
rotational equations are more often encountered in literature than the simplified form of Equation 3.2 or the
extended form of Equation 3.3. Furthermore, as OHB typically uses these equations of motion, this choice
could result in a higher usability of the research outcome, and enable easier comparisons to the optimisation
techniques that are currently being used.

3.2. Attitude kinematics
The study of kinematics concerns the motion of particles and rigid bodies without consideration of the mo-
ments and forces that are acting on these particles and bodies (Diebel, 2006). In Subsection 2.2.2, the quater-
nion attitude parameterisation was introduced that will be used during this study. In this section, the corre-
sponding kinematic differential equations are provided. These kinematics describe changes in the attitude
of a spacecraft as a function of time and the angular velocity, which is expressed in the body-fixed frame FB .
The kinematic differential equations for the quaternion attitude parameterisation can be formulated as (Kim
and Mesbahi, 2004)

Kinematic equations

q̇ = 1

2
Ω q (3.4)

whereΩ is the skew-symmetric matrix

Ω=


0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (3.5)

As mentioned in Subsection 2.2.3, no singularities are present in the kinematic equations of Equation 3.5,
which is one of the main advantages of using the quaternion attitude parameterisation. The differential equa-
tions from Equation 3.4 are norm-preserving, which means that the quaternion unit norm (Equation 3.6) is
preserved as long as the kinematics are properly enforced (Kim and Mesbahi, 2004).

‖q‖2 = 1, for t ∈ [
t0, t f

]
(3.6)

Another advantageous property of these quaternion kinematic differential equations is the fact that they are
bilinear (linear with respect to each of two sets of mathematical variables, in this case q and ω) (Schaub and
Junkins, 2009). This bilinearity is beneficial for problems where these differential equations are linearised,
which is the case for the SCP-based optimisation algorithm developed in this study (Lysandrou, 2019).

3.3. Boundary conditions
The solution space of the optimal spacecraft reorientation problem can be restricted in various ways. In this
study, a distinction is made between boundary conditions and constraints (Section 3.4). Boundary condi-
tions impose a set of constraints on the optimisation problem at specified boundaries, while the constraints
presented in Section 3.4 are enforced continuously during a manoeuvre. Regarding the the optimal reorienta-
tion problem, boundary conditions are used to specify the initial and final states of a reorientation manoeu-
vre. Two different types of boundary conditions were considered in this research project: time-independent
boundary conditions and time-dependent boundary conditions. Both are discussed in, respectively, Subsec-
tions 3.3.1 and 3.3.2. It is noted that the time-dependent boundary conditions can only be used in free-final-
time problems, for which the final time t f is an optimisation parameter.
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3.3.1. Time-independent boundary conditions
With time-independent boundary conditions, boundary conditions are referred to that are independent of
time and have a constant value. These boundary conditions can be defined for all state (q andω) and control
(u) variables. In this study, however, no boundary conditions were imposed on the control.

Time-independent boundary conditions

q(0) = q 0, q(t f ) = q f (3.7)

ω(0) =ω0, ω(t f ) =ω f (3.8)

As these constraints take the form of linear equality constraints, they are convex and can be included in the
SCP framework in their standard form (Section 4.10).

3.3.2. Time-dependent boundary conditions
In the problem specified by the research partner OHB, the optimisation problem is characterised by so-
called time-dependent final boundary conditions. In practice, this type of boundary condition typically orig-
inates from observation targets of some satellite instrument. These targets are often moving relative to
the spacecraft-centred inertial frame FI as a function of time. As stated before, these boundary conditions
can only be imposed on free-final-time problems, such as the minimum-time problem or a free-final-time,
minimum-energy problem. In this study, time-dependent boundary conditions are implemented for the
minimum-time reorientation problem. These boundary conditions can be formulated as

Time-dependent boundary conditions
q(t f ) = p q f

(t f ) (3.9)

ω(t f ) = pω f
(t f ) (3.10)

Boundary conditions of this type, p q f
(t f ) and pω f

(t f ), are, in industry, typically either computed analytically

or represented using high-order Lagrange polynomials. For the purpose of this study, it was decided to use
third-order Lagrange polynomials to represent these problem boundaries. The reasoning behind this is that
using third-order polynomials suffices to prove that the SCP framework could be able to incorporate time-
dependent boundary conditions in the form of non-convex, nonlinear equality constraints. To illustrate, the
final quaternion boundary condition is represented by a third-order polynomial as

p q f
(t f ) = p q f ,c,1 +p q f ,c,2 · t f +p q f ,c,3 · t 2

f +p q f ,c,4 · t 3
f (3.11)

The four coefficients p q f ,c,1 to p q f ,c,4 ∈ R4 thereby form the input variables that are used to specify the final

attitude boundary conditions of the minimum-time optimisation problem.

3.4. Constraints
During this research project, three common constraint types were considered: constraints on control, angular
rate and the attitude of the spacecraft. The latter can be further split up into two main types: attitude keep-
out and attitude keep-in constraints. The resulting four types of constraints are formulated and presented in
Subsections 3.4.1 to 3.4.4, respectively.

3.4.1. Control constraints
Control constraints are always present in attitude guidance problems because of the physical limitations of
the spacecraft attitude control system. The most common (and relatively straightforward) formulation of the
control constraints takes the shape of an axis-aligned cuboid (Reynolds et al., 2021). This constraint type is in
this study referred to as the so-called box constraint on the control, and can be formulated as

|ui | ≤ ubox,i , ∀ i ∈ 1,2,3, t ∈ [
t0, t f

]
(3.12)
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Other common control constraints typically describe convex shapes that form a boundary for the control vec-
tor in 3-D space. Together with research partner OHB, it was decided to implement an ellipsoidal constraint
on the control to study the capabilities and performance of the SCP optimisation algorithm in this regard.
This ellipsoidal constraint on the control can be formulated as

Ellipsoidal control constraint(
u1

uellipse,1

)2

+
(

u2

uellipse,2

)2

+
(

u3

uellipse,3

)2

≤ 1, for t ∈ [
t0, t f

]
(3.13)

A large range of alternative approaches to constrain the control torque exist. For instance, one could use
either the L1-norm or L2-norm. The latter, for illustration purposes, is formulated as

‖u‖2 ≤ umax, for t ∈ [
t0, t f

]
(3.14)

Both these options are convex, and can therefore be incorporated into a convex optimisation framework (Tam
and Glenn Lightsey, 2016).

Depending on the attitude control system of a specific satellite, the true 3-D volume of the control authority
can be even more complex than the constraints of Equations 3.12 or 3.13. However, even in these scenarios,
the control constraints are often modelled as simpler shapes in order to optimise computational efficiency.
For instance, in the study of Reynolds et al. (2021), a reaction-wheel array is considered that consists of four
wheels, which would require the enforcement of 12 half-space constraints to obtain the theoretical maximum
control volume. In that study, the simpler, more conservative box constraint (Equation 3.12) is implemented
to limit the number of constraints and, thereby, enhance the computational performance of the optimisation
process.

3.4.2. Angular rate constraints
Constraints that impose limits on the angular velocity of a spacecraft are also known as (slew) rate constraints.
These types of constraints are typically imposed on optimal spacecraft reorientation problems to ensure that
so-called rate-limited sensors keep functioning properly. These are sensors with maximum slew-rate con-
straints. Examples of rate-limited sensors are star trackers and sun sensors, which both have a bounded
slew-rate envelope to ensure that they are able to provide adequate attitude estimates to the attitude deter-
mination system of a spacecraft. In addition, rate constraints could be introduced to the problem of pre-
venting reaction-wheel saturation (Aucoin and Zee, 2019). The most general form of this constraint can be
represented in a component-wise fashion as

Box rate constraint
|ωi | ≤ωbox,i , ∀ i ∈ 1,2,3, t ∈ [

t0, t f
]

(3.15)

In consultation with the research partner OHB, the decision was made to study the box constraint on the
angular rate during this research project, but as for the control constraints, other practises exist. Examples
could be the enforcement of an L2-norm or L∞-norm (largest value in a vector). For an actual satellite, it
typically depends on the requirements of the rate-limited sensors which constraint type is chosen to impose
a limit on the angular rate (Reynolds et al., 2021).

3.4.3. Attitude keep-out constraints
Constraints on the permissible attitude of a satellite (or in general terms, path constraints) are common in lit-
erature on the spacecraft reorientation problem. These constraints typically take the form of exclusion cones
(Eren et al., 2015). Such an exclusion constraint could, for instance, follow from the need to protect certain
sensitive observation instruments, such as star trackers or cryogenically cooled telescopes (Walsh et al., 2018),
from the radiation of the Sun. A specific example of such a constraint is the 85 deg attitude exclusion cone of
the James Webb Space Telescope (JWST) towards the Sun (Wolfe and Osten, 2014). Such exclusion cones are
commonly referred to as attitude keep-out constraints or attitude forbidden zones (Aucoin and Zee, 2019). In
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Figure 3.1, a visual representation of a conical exclusion cone and two possible reorientation trajectories is
provided, as seen from two different perspectives.

Figure 3.1: Example of two possible reorientation trajectories (referred to as NCAC and SCAC in the figure) around a conical attitude
exclusion cone (red cone), as seen from two different perspectives (Hu et al., 2020). Showing the visualisation from two different

perspectives allows the reader to observe the entire reorientation manoeuvre.

Figure 3.2 provides an alternative, 2-D representation of the same reorientation manoeuvres and exclusion
cone that were shown in Figure 3.1.

Figure 3.2: Two-dimensional, cylindrical projection of the two reorientation trajectories (SCAC and NCAC) and exclusion cone of
Figure 3.1 (Hu et al., 2020).

In literature, several types of keep-out constraints can be encountered that are either static or dynamic, and
either hard or soft (Kim et al., 2010). However, in this study, the most common type is considered, which is
the so-called static, hard attitude keep-out constraint. For this constraint, the central vector that determines
the orientation of the exclusion cone y I is (assumed to be) inertially fixed, or static. This is generally the case
when a distant object should be avoided. Another example is the protection of important equipment against
incoming space debris. Furthermore, this type of constraint allows for no constraint violations, which is the
reason why it is described as a hard constraint. The static, hard exclusion constraint can be represented as

Attitude keep-out constraint
x I (t )T y I ≤ cos

(
θsep,out

)
, θsep,out ∈ [0,π] (3.16)

where x I (t ) and y I are unit vectors in the inertial frame FI that represent the direction of the boresight of the
instrument and the celestial object that should be avoided, respectively, and θsep,out is the required minimum
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angular separation between the boresight and the object (Kim et al., 2010).

3.4.4. Attitude keep-in constraints
Similar to the attitude keep-out constraint introduced in the previous subsection, another common con-
straint type is the so-called attitude keep-in constraint. In conical form this constraint is also referred to as
an attitude inclusion cone or attitude mandatory zone (Aucoin and Zee, 2019). An attitude keep-in constraint
could result from, for instance, a requirement to keep a constant communication link with a specific target
area on Earth during a certain reorientation manoeuvre (Frazzoli et al., 2001). Another example could be the
need for a sensor to continuously keep the Sun in its field of view (FoV) for navigation purposes (Tam and
Glenn Lightsey, 2016). An attitude keep-in constraint can be formulated as

Attitude keep-in constraint
x I (t )T y I ≥ cos

(
θsep,in

)
, θsep,in ∈ [0,π] (3.17)

where, again, both x I (t ) and y I are defined in the inertial reference frame and θsep,in is the maximum sepa-
ration angle.

3.5. Objective function
Multiple objective functions can be formulated for the optimal spacecraft reorientation problem. For this
study, it was decided to focus on two of the most important and commonly used ones: the minimum-energy
and the minimum-time objectives.

3.5.1. Minimum energy
This objective aims to keep the energy consumption of a specified attitude manoeuvre as low as possible. This
is highly desirable due to the extremely high cost associated with transporting propellant to and generating
energy in space. The following expression is commonly used for the minimum-energy problem (Ventura
et al., 2015):

Minimum-energy objective function

Ju = wu

∫ t f

t0

1

2
‖u‖2dt (3.18)

where wu is a positive weight factor that is defined by the user, which becomes important when an aug-
mented objective function takes multiple cost terms into account (which is the case for the SCP algorithm
presented in Chapter 4). Furthermore, the factor 1

2 is often omitted as it leads to an equivalent solution.

3.5.2. Minimum time
Minimum-time reorientation manoeuvres lead to improvements in the effective mission performance of a
spacecraft. To begin with, the resulting guidance trajectories can, for instance, increase the amount of data
an Earth observation satellite can collect in a given period of time (Ventura et al., 2015). Another application
could be a scientific mission that aims to capture a certain astronomical event of which the time of occur-
rence is difficult to predict. The objective of this type of spacecraft reorientation problem is to minimise
the manoeuvre time t f (assuming t0 = 0 s) that is needed to complete a manoeuvre between two spacecraft
states. The corresponding term in the objective function can be expressed as (Boyarko et al., 2011)

Minimum-time objective function

Jt = wt

∫ t f

0
dt = wt · t f (3.19)

where wt , similar to wu in Equation 3.18, is a user-defined weight factor that specifies the relative importance
of the minimum-time term in an augmented objective function. Bilimoria and Wie (1993) showed that for a
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symmetric body with constraints on all control variables, the minimum-time, rest-to-rest spacecraft reorien-
tation problem has an optimal solution that is a so-called non-eigenaxis manoeuvre. Generating minimum-
time trajectories requires a free-final-time formulation of the problem (see Section 4.3), in contrast to the
fixed-final-time formulation that can be used if the exact duration of the manoeuvre is known. The former
has a larger degree of freedom, typically making it more difficult to solve robustly (Lysandrou, 2019).

3.6. Non-convex problem formulation

In this section, the elements of the spacecraft reorientation problem of the previous subsections have been
combined into two main problems that are studied during this research project: the minimum-energy and
minimum-time spacecraft reorientation problems. The minimum-energy problem is easier to implement
and was studied in literature using an SCP-based approach before the start of this project, while the minimum-
time problem is more challenging to implement and was not yet studied. These problems are both non-
convex and continuous. In Chapter 4, both are convexified and discretised in order to be solvable in the SCP
framework. Both problems are very comparable at this stage. However, in Chapter 4, more differences are
introduced. Because of that, it was decided to present both problems independently in this section for the
sake of consistency.

3.6.1. Problem 1: minimum-energy reorientation

The non-convex, continuous, minimum-energy spacecraft reorientation problem studied in this research
project can be formulated in its most general way as

Non-convex, continuous, minimum-energy spacecraft reorientation problem

Objective function minimise J = wu
∫ t f

t0
‖u‖2dt Equation 3.18

Boundary conditions q(0) = q 0, q(t f ) = q f Equation 3.7
ω(0) =ω0, ω(t f ) =ω f Equation 3.8

Dynamics and kinematics I ω̇+ω× I ω= u Equation 3.1

q̇ = 1
2Ωq Equation 3.4

Control constraint
(

u1
uellipse,1

)2 +
(

u2
uellipse,2

)2 +
(

u3
uellipse,3

)2 ≤ 1 Equation 3.13

Angular rate constraint |ωi | ≤ωbox,i , ∀ i ∈ 1,2,3 Equation 3.15

Attitude constraints x I (t )T y I ≤ cos
(
θsep,out

)
Equation 3.16

x I (t )T y I ≥ cos
(
θsep,in

)
Equation 3.17

3.6.2. Problem 2: minimum-time reorientation

The non-convex, continuous, minimum-time spacecraft reorientation problem studied in this research project
can be formulated in its most general way as
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Non-convex, continuous, minimum-time spacecraft reorientation problem

Objective function minimise J = wt · t f Equation 3.19

Boundary conditions q(0) = q 0, q(t f ) = p q f
(t f ) Equation 3.9

ω(0) =ω0, ω(t f ) = pω f
(t f ) Equation 3.10

Dynamics and kinematics I ω̇+ω× I ω= u Equation 3.1

q̇ = 1
2Ωq Equation 3.4

Control constraint
(

u1
uellipse,1

)2 +
(

u2
uellipse,2

)2 +
(

u3
uellipse,3

)2 ≤ 1 Equation 3.13

Angular rate constraint |ωi | ≤ωbox,i , ∀ i ∈ 1,2,3 Equation 3.15

Attitude constraints x I (t )T y I ≤ cos
(
θsep,out

)
Equation 3.16

x I (t )T y I ≥ cos
(
θsep,in

)
Equation 3.17

3.7. Algorithm requirements
Before it is possible to develop and thoroughly analyse an SCP-based optimisation algorithm for solving the
optimal spacecraft reorientation problem, it is important to understand which requirements such an algo-
rithm should fulfil in the first place. In this section, these requirements are presented and discussed.

It is noted that the objective of this study is to get a general understanding of the capabilities of an SCP-based
optimisation algorithm, not to design such an algorithm for a specific mission scenario. Therefore, it was
decided not to define strict, quantitative requirements in the manner that would be expected when designing
a system. Rather, this section identifies the potential requirements in a general sense in order to determine
the focus areas for the analyses that are performed in this study. These requirements were fundamental for
the formulation of the research (sub-)questions in Section 1.3.

REQ-1 Computational efficiency
A high computational efficiency (or speed) is one of the most important requirements for an onboard
attitude guidance algorithm (Bonalli et al., 2019). This requirement is specifically important for on-
board satellite guidance applications, as the computational resources of a spacecraft are often limited.
In this study, computational efficiency is evaluated through the run times of the SCP algorithm. The
customer OHB mentioned that run times in the order of tens of milliseconds are desired when using a
personal computer. This means that the SCP algorithm should be multiple factors faster than the NLP
optimisation methods that are currently used.

REQ-2 Robustness
In the context of this study, the robustness of the SCP algorithm is directly evaluated through its con-
vergence rate. An (onboard) optimisation algorithm should be reliable and deliver predictable perfor-
mance for a wide range of potential problems. OHB has mentioned that, ideally, the convergence rate
of the SCP algorithm should match the convergence rate of conventional pseudospectral NLP meth-
ods. It was considered to be out of scope for this research project to provide theoretical guarantees for
convergence, so the evaluation of the convergence rate was performed through extensive Monte Carlo
analyses.

REQ-3 Optimality
The SCP algorithm should generate optimal guidance trajectories as this study considers the optimal
spacecraft reorientation problem. This optimality requirement is evaluated on the basis of the manoeu-
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vre duration for the minimum-time problem, and the energy cost of the manoeuvre for the minimum-
energy problem. As there is no objective reference point for evaluating the optimality of the SCP algo-
rithm, its solutions were compared to the solutions of an NLP benchmark algorithm, as pseudospectral
NLP methods are widely regarded as the standard for finding locally optimal solutions to complex op-
timisation problems. It is desired that the SCP algorithm has comparable performance as the NLP
algorithm in terms of optimality.

REQ-4 Generality
In order to be suitable for a variety of onboard attitude guidance applications, the SCP algorithm should
be able to solve a range of different types of spacecraft reorientation problems.

REQ-5 Accuracy
The guidance trajectories that are obtained using the SCP algorithm should be consistent with the real-
world spacecraft dynamics and kinematics. As this accuracy requirement strongly depends on the exact
mission requirements, which are not specified for this study, the goal regarding this requirement was
to obtain a better understanding of the level of accuracy that an SCP algorithm could achieve.

REQ-6 Constraint satisfaction
The SCP algorithm should satisfy the constraints that are imposed on the optimisation problem. Con-
straint violations could lead to a variety of problems for a space mission, ranging from loss of commu-
nication to damaged observation instruments.

This study primarily focused on evaluating the performance of the SCP algorithm on the first three items
of this list of requirements, as these are considered to be the most essential criteria for potential onboard
applications. This is also reflected in the research (sub-)questions presented in Section 1.3. The fourth re-
quirement is incorporated into this study through the extension of the problem formulation according to
the first research sub-question. Regarding the final two requirements, the performance results of the SCP
algorithm will be provided but not evaluated against a reference value. The reason for this is that the exact
levels that are required for these criteria vary strongly per mission scenario. In Chapter 6, more information
is provided on how these criteria were expressed and measured.

3.8. Heritage
In this section, a brief overview is provided of previous optimisation methods that were developed and pro-
posed to solve the optimal spacecraft reorientation problem in real time. While Subsection 3.8.1 presents a
variety of methods that rely on different theoretical approaches, Subsection 3.8.2 covers all previous studies
that applied the sequential convex programming framework to the spacecraft reorientation problem.

3.8.1. Real-time, optimal spacecraft reorientation
In Table 3.1, a general overview is provided of methods that were developed in literature to solve the real-time,
optimal spacecraft reorientation problem. Table 3.1 is adopted from the literature study that was performed
for this MSc thesis research project (Diercks, 2021). It is noted that in these studies, different types of reori-
entation problems were solved, differing in both their objectives and constraints. Nevertheless, the overview
of Table 3.1 can be used to obtain a general understanding of the strengths and weaknesses of different op-
timisation methods. The scoring of the performance of the algorithms in terms of computational efficiency
(speed), robustness and optimality serves an illustrative purpose. These scores do not directly relate to spec-
ified efficiency, convergence rate or overcost metrics, as these are often not provided and strongly depend on
a large range of factors (computation platform, problem type, etc.), which makes a fair quantitative compar-
ison impossible.

The main conclusion that can be drawn from Table 3.1 is that current optimisation methods that show promis-
ing performance in terms of computational efficiency either exclusively solve simplified problems (e.g., no
minimum-time objective or attitude constraints) or lack performance in terms of robustness or optimality.
This confirms the need for a novel optimisation method that can fulfil all, or at least the majority of the cri-
teria identified in Section 3.7. The promising performance evaluation of SCP-based optimisation methods is
based on previous applications to the optimal spacecraft reorientation problem and to other space-related
optimisation problems (see Subsection 2.4.4).
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3.8.2. Sequential convex programming-based approaches
Before this research project was started, three earlier studies had developed SCP-based optimisation methods
for the spacecraft reorientation problem. In Table 3.2, the main characteristics and key results of these three
studies are listed.

Table 3.2: Overview of the characteristics of three SCP-based approaches to the optimal spacecraft reorientation problem.

Study McDonald et al. (2020) Virgili-Llop et al. (2018) Jerez et al. (2017)
Discretisation method Trapezoidal (TM) Zero-order-hold (ZOH) Euler (EM)
Dynamics Rigid-body Rigid-body (inverse) Rigid-body
Attitude parameterisation Quaternions CRPs Quaternions
Attitude constraints No Yes Yes
Objective Minimum-energy Minimum-energy Minimum-energy
Speed ? (not reported) 200 ms (median) ‘milliseconds’
Optimality Nearly identical to NLP

reference solution
0.7% overcost (median) ? (not reported)

Robustness ? (not reported) 96.7% convergence rate ? (not reported)

From the studies presented in Table 3.2, it was concluded that significant research opportunities existed re-
garding the application of SCP-based optimisation methods to the spacecraft reorientation problem. To be-
gin with, all existing studies only studied the relatively simple, minimum-energy reorientation problem. In
addition, the promising first-order-hold discretisation method (Subsection 4.5.2) had not yet been imple-
mented for this problem. Furthermore, these studies developed relatively ‘basic’ SCP algorithms that did not
rely on advanced techniques, such as adaptive trust regions. Moreover, the performance analyses of the SCP
algorithms that were developed can at best be described as shallow, as McDonald et al. (2020) analysed only
a single test case and Jerez et al. (2017) did not provide any results whatsoever. Finally, the performance of
the algorithm developed by Virgili-Llop et al. (2018) seemed not to meet the requirements specified in Sec-
tion 3.7. It could therefore be concluded that on the basis of these three studies, the research (sub-)questions
of Section 1.3 could not be answered.

During the course of this research project, three other studies were published that applied SCP-based opti-
misation methods to the spacecraft reorientation problem. In Table 3.3, the main characteristics and results
of these studies are provided for overview purposes.

Table 3.3: Overview of the characteristics of three SCP-based approaches to the optimal spacecraft reorientation problem, which were
published during this research project.

Study Reynolds et al. (2021) Preda et al. (2021) Sin et al. (2021)
Discretisation method First-order-hold (FOH) First-order-hold (FOH) First-order-hold (FOH)
Dynamics Momentum wheels

(Equation 3.3)
Momentum wheels
(Equation 3.3)

Rigid-body

Attitude parameterisation Quaternions Quaternions Quaternions
Attitude constraints Yes Yes No
Objective Minimum-energy Maximise observation

time
Minimum-time

Speed 19 ms (median, 10 nodes) 110 ms (median) 20.1 s (single case)
Optimality ? (not reported) ? (not reported) ? (not reported)
Robustness 100% convergence rate 100% convergence rate ? (not reported)

In the context of this research project, the studies of Preda et al. (2021) and Sin et al. (2021) are not extremely
relevant. Sin et al. (2021) solved a relatively straightforward minimum-time problem without constraints on
the angular rate and attitude of the spacecraft, and only provided performance results for a single test case.
Furthermore, Preda et al. (2021) analysed a different type of optimisation problem than the ones that will
be considered in this study. The objective of their study was to optimise the science time for the upcoming
Comet Interceptor flyby mission of ESA. However, both studies do provide confidence regarding the choice
of the quaternion attitude parameterisation in combination with the first-order-hold discretisation method,
which were both implemented into the SCP algorithm that was developed in this study (Chapter 4). The
study of Reynolds et al. (2021), however, is more comparable to the work that has been performed in this
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study. As is discussed in Chapter 9, the performance results that were reported in this study are in line with
the performance of the SCP algorithm that was developed during the MSc thesis research project.
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4
Sequential Convex Programming

Algorithm

This chapter presents the SCP-based optimisation algorithm that was developed and implemented in this
study. While this chapter addresses the main design features and choices, specific details regarding its im-
plementation and its performance are provided in, respectively, Chapter 5 and Chapters 7 to 9. This chapter
should enable the reader to obtain a thorough understanding of the SCP framework and the algorithm that
was developed as part of this research project. In Section 4.1, the structure of this chapter and the contents
of Sections 4.2 to 4.9 are presented. In Section 4.10, an overview is provided of the convex sub-problems that
are solved by the SCP algorithm.

4.1. Overview

In this section, a top-level description is provided of the SCP algorithm and its main steps. These individual
steps directly correspond to the sections in the remainder of this chapter. In Figure 4.1, the main elements
and (analytical) steps of the SCP algorithm are shown. As was discussed in Subsection 2.4.4, the essence of
an SCP algorithm is to replace a non-convex optimisation problem with a sequence of convex sub-problems
that approximate the original non-convex problem. These convex sub-problems can be solved with highly
efficient convex solving algorithms. The assumption behind the SCP framework is that the resulting approxi-
mation error decreases as more SCP iterations are performed, until a solution is obtained which is equivalent
to the solution to the original, non-convex problem.

31
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Figure 4.1: Block diagram of the main steps within the sequential convex programming algorithm.

In the remainder of this section, the steps from Figure 4.1 are briefly introduced.

1 Define non-convex problem (Section 3.6)
In this step, the problem elements that were introduced in Section 3.6, the spacecraft parameters, con-
straints, boundary conditions, and problem objective, are defined.

2 Set algorithm parameters
Several algorithm parameters, a set of specific settings for the SCP algorithm, have to be defined. These
parameters are introduced in the remainder of this chapter.

3 Generate initial trajectory (Section 4.2)
In this step, an initial guess is generated for the state trajectory. The SCP algorithm requires an initial
guess for its first iteration, as the convexification process relies on a reference solution.

4 Convexify problem
In the convexification step, the non-convex problem from Section 3.6 is convexified into a convex, nu-
merical optimisation problem that can be solved with efficient numerical solving algorithms. This step
can be further broken down into four main steps:
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4.1 Normalise problem (time) (Section 4.3)
In this step, the fixed-final-time problem is reformulated into the free-final-time formulation that
is required to solve the minimum-time reorientation problem.

4.2 Linearise problem (Section 4.4)
At this point, the problem is still non-convex. In the linearisation step, the elements of the prob-
lem that are non-convex (e.g., the dynamics) are linearised or convexified into convex approxima-
tions that can be dealt with by the convex solving algorithms considered in this study.

4.3 Discretise problem (Section 4.5)
Then, the convex, continuous problem is discretised in order to obtain the finite set of optimisa-
tion parameters that is required for numerical optimisation methods.

4.4 Define virtual control and trust region (Sections 4.6 and 4.7)
In this step, two distinct techniques are applied which improve the performance of the SCP algo-
rithm.

5 Scale problem / update objective weights (Section 4.8)
It was found that scaling the optimisation parameters improved the numerical performance of the SCP
algorithm. As well as this, certain algorithm parameters from step (2) are updated.

6 Solve convex sub-problem (Chapter 5)
Then, the scaled convex sub-problem is solved in order to obtain an updated guidance solution for the
spacecraft reorientation problem.

7 Check convergence criteria (Section 4.9)
As the convexification step introduces a linearisation error, the solution to the convex sub-problem of
step (6) is initially not equivalent to the solution of the original non-convex problem. However, as mul-
tiple iterations of this scheme (main loop in Figure 4.1) are performed, the local optimum is approached
and the difference between subsequent solutions decreases. As a result, the linearisation error in the
solution to the convex sub-problem gradually reduces as well. In this step, several convergence criteria
are evaluated. If all of these convergence criteria are met, the linearisation error is deemed to be suffi-
ciently small and the solution is accepted. At this point, a guidance trajectory is obtained that is, within
a certain accuracy level, equivalent to a solution to the original, non-convex problem.

In the remainder of this chapter, these steps are explained in more detail.

4.2. Initialisation
The iterative process of the SCP framework always requires a reference solution around which the problem
dynamics, kinematics and constraints can be convexified. As a result, an inherent challenge is formed by
the need to provide an initial reference solution. This first reference solution is also referred to as the initial
guess. In literature, it has been suggested that the SCP framework typically does not require a high-quality ini-
tial guess to find a feasible solution for most optimisation problems (McDonald et al., 2020). However, as the
quality of the initial solution increases, the algorithm tends to require fewer iterations to converge, improving
its computational efficiency. Considering the strict requirements on computational efficiency that govern
onboard, real-time guidance applications, a high-quality initialisation is therefore an interesting research di-
rection. During this research project, three different initialisation techniques were implemented and studied.

These three techniques only consider the initialisation of the reference state trajectory x̄ . The reference con-
trol profile is also used in the linearisation (Section 4.4) and discretisation steps (Section 4.5) of the SCP al-
gorithm, but has a significantly smaller effect on the approximation accuracy of the convexified dynamics
than the state trajectory. Therefore, the control was simply set to zero for the corresponding initial guess,
as was done in earlier studies of Reynolds et al. (2021) and McDonald et al. (2020). Thereby, developing a
more accurate initial guess for the control profiles remains as a recommendation for further research. For the
minimum-time problem, an initial guess for the manoeuvre duration, t f ,guess, has to be provided in addition
to the initial guess for the state (x̄) and control (ū) profiles. However, developing a strategy to accurately es-
timate this parameter was considered out of scope for this research project, leaving it to be a potential topic
for further research as well.
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4.2.1. Straight-line initialisation
Straight-line initialisation is one of the most commonly encountered initialisation techniques in literature
to obtain proper reference trajectories to initialise an SCP algorithm. This technique consists of a linear in-
terpolation of the state variables between the initial (x0) and final (x f ) boundary conditions, and can be
represented as (Reynolds et al., 2020a)

xk,i =
K −k

K −1
x0,i + k −1

K −1
x f ,i , ∀ i = 1, . . . ,nx , k ∈K = {1, . . . ,K } (4.1)

where K is the number of grid nodes of the discretised problem (Section 4.5) and K the set of grid nodes.
While having been proven to be useful and effective for powered descent problems in 3-D space, the 4-D
(quaternion) nature of the spacecraft reorientation problem implies that the quality of this approach has its
limits. Furthermore, the linear interpolation does not reflect the speeding up and slowing down phases that
are characteristic of a typical, control-constrained reorientation manoeuvre.

4.2.2. Spherical linear interpolation
Spherical linear interpolation (SLERP) was first introduced by Shoemake (1985), and is one of the most pop-
ular tools to obtain an elementary interpolated great arc between two quaternions. Therefore, in contrast
to the straight-line initialisation method, this approach does account for the nature of the 4-D quaternion
space. It can be formulated as (Terzakis et al., 2018)

q(t ) = q 0
sin((1− t )θ)

sin(θ)
+q f

sin(tθ)

sin(θ)
(4.2)

where t ∈ [0,1] is referred to as the interpolation parameter, and θ = cos−1
(

q 0 ·q f

)
is the angle between q 0

and q f . Again, one can intuitively understand that the actual spacecraft will not perform its rotation with a
constant angular rate. Therefore, although this technique represents a more realistic quaternion trajectory
than the straight-line method, the challenge of accounting for the speeding up and slowing down phases has
not been solved for this initialisation strategy.

4.2.3. Shape-based initialisation
The shape-based initialisation technique uses an analytical polynomial to represent the quaternion state tra-
jectory. This technique is based on earlier work of Caubet and Biggs (2013), who used a shape-based approach
to obtain attitude guidance trajectories. The main principle of this method is to represent every quaternion
element by a third-order polynomial (which has four coefficients). In this manner, all four quaternion ele-
ments can be represented by the polynomials

qi = ai +bi t + ci t 2 +di t 3, ∀ i = 1, . . . ,4 (4.3)

By solving a simple linear system for each quaternion element qi , which only requires the use of the boundary
conditions that have been defined for the optimisation problem at hand, the coefficients of these polynomials
can be obtained. These linear systems can be formulated as

1 0 0 0
1 t f t 2

f t 3
f

0 1 0 0
0 1 2t f 3t 2

f




ai

bi

ci

di

=


q0,i

q f ,i

q̇0,i

q̇ f ,i

 , ∀ i = 1, . . . ,4 (4.4)

Caubet and Biggs (2013) assumed a rest-to-rest reorientation problem, and could therefore simply set q̇0,i =
q̇ f ,i = 0. However, an alternative approach had to be taken in this study to account for the non-zero initial
and final angular rates that are imposed on the problem. To this end, the first-order quaternion derivatives
required for Equation 4.4 are calculated usingω0 andω f through the following linear system (Wie, 2008):

q̇1

q̇2

q̇3

q̇4

= 1

2


q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4



ω1

ω2

ω3

0

 (4.5)
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While Caubet and Biggs (2013) proposed to calculate the polynomial coefficients for only three quaternion
elements qi , and calculate q4 through the quaternion unit-norm property1, a different approach was taken
in this study: it was proposed to define an analytical polynomial for all quaternion elements. The reason for
this is that this approach allows for analytically differentiating the polynomials representing each qi to obtain
q̇i . Evaluations of q̇ can then be used to obtain a rough initial guess for the angular rate parameterω, through
the relation (Wie, 2008) 

ω1

ω2

ω3

0

= 2


q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

q1 q2 q3 q4




q̇1

q̇2

q̇3

q̇4

 (4.6)

After the polynomial coefficients for all four quaternion elements have been determined, the quaternion
q k and angular rate ωk are determined for all K nodes of the grid (Section 4.5) to obtain the initial guess.
Subsequently, the resulting K quaternions are normalised at every grid point. An alternative approach would
be to first normalise q k and then calculate ωk . However, due to the fact that the first guess is typically a bad
approximation of the optimal solution, the effects of this approach on the performance of the SCP algorithm
are expected to be very limited.

4.3. Time-normalisation
In the (time-)normalisation step, the non-convex, continuous, fixed-final-time problem is converted into a
non-convex, continuous, free-final-time problem. It is the first step in the convexification block of Figure 4.1.
The free-final-time formulation is required for problems where the final time t f is not a fixed, predetermined
value, but instead an optimisation parameter that is, for instance, to be minimised or is restricted to lie within
a certain range. Due to the fact that t f is free for these types of problems, another variable than the real time
t ∈ [

t0, t f
]
, which is usually used for optimisation problems, is to be selected as the independent variable for

the optimal spacecraft reorientation problem. Although there are different strategies to do so, it was decided
that using a temporally normalised trajectory time τ ∈ [0,1] was the most logical option for the attitude prob-
lem considered in this study. The normalised trajectory time τ can be related to the real time t through the
relation

τ= t − t0

t f − t0
(4.7)

Using this definition of the normalised trajectory time τ, the nonlinear dynamics and kinematics expressed
in real time (Equations 3.1 and 3.4) can be reformulated as (Szmuk et al., 2020)

x ′(t ) = d

dτ
x(t ) = d t

dτ

d

d t
x(t ) =

(
d t

dτ

)
ẋ(t ) = ηẋ(t ) (4.8)

where ẋ(t ) = f (x(t ),u(t )) represents the original, nonlinear dynamics, and the time dilation factor is defined
as η = d t

dτ ∈ R+. In accordance with Equation 4.8, one can express the time-normalised dynamics as (Szmuk
et al., 2020)

x ′(τ) = F (x(τ),u(τ),η) = η · f (x(τ),u(τ)) (4.9)

In this study, the time dilation factor η is treated as a constant for the fixed-final-time, minimum-energy
problem and as an optimisation parameter for the free-final-time, minimum-time problem. Apart from the
nonlinear problem dynamics and kinematics, no other problem constraints have to be time-normalised. The
reader might notice that when t0 = 0 (as is assumed in this study), η= t f , turning Equation 4.9 into

x ′(τ) = η · f (x(τ),u(τ)) = t f · f (x(τ),u(τ)) (4.10)

4.4. Linearisation
The linearisation step is arguably one of the most important elements of the SCP algorithm. In this step
the nonlinear dynamics and non-convex problem constraints are converted into linear, convex forms that
can be handled by the convex solving algorithms that are applied in this study. In other words, the non-
convex, continuous, free-final-time problem from Section 4.3 is converted into a convex, continuous, free-
final-time approximation of the original, non-convex problem. There are four sources of non-convexity in the
spacecraft reorientation problems defined in Section 3.6: the nonlinear dynamics, time-dependent boundary

1This approach does require the selection of the sign of q4 according to the signs of its initial and final values (Caubet and Biggs, 2013).



36 4. Sequential Convex Programming Algorithm

conditions, objective function, and conical attitude constraints, which are discussed in Subsections 4.4.1,
4.4.2, 4.4.3, and 4.4.4, respectively.

4.4.1. Dynamics and kinematics
The main challenge of the application of convex solving methods to the spacecraft reorientation problem is
the fact that this problem is characterised by highly nonlinear, non-convex dynamics and kinematics. In the
so-called linearisation step, these nonlinear dynamics are approximated by a first-order Taylor series around
a reference trajectory z̄(τ) = [

x̄(τ) ū(τ) η̄
]
. Accordingly, the linear, time-varying dynamics as a function of

the normalised trajectory time τ can be mathematically represented as approximating

x ′(τ) = F (x(τ),u(τ),η) (4.11)

by (Szmuk et al., 2020)

x ′(τ) ≈ x ′
approx(τ) = F (x̄(τ), ū(τ), η̄)+ A(τ)

(
x(τ)−x(τ)

)+B(τ)
(
u(τ)−u(τ)

)+C (τ)
(
η− η̄)

(4.12)

where x̄ , ū, and η represent the optimisation parameters of the reference solution, x , u, and η represent the
optimisation parameters for the current iteration, and A, B and C represent the first-order derivatives of the
problem dynamics F as

A(τ) := ∂F

∂x

∣∣∣∣
z̄(τ)

(4.13)

B(τ) := ∂F

∂u

∣∣∣∣
z̄(τ)

(4.14)

C (τ) := ∂F

∂η

∣∣∣∣
z̄(τ)

(4.15)

Using Equation 4.9
(
F (x̄(τ), ū(τ), η̄) =C (τ)η̄

)
, Equation 4.12 can be simplified into

x ′
approx(τ) = A(τ)

(
x(τ)−x(τ)

)+B(τ)
(
u(τ)−u(τ)

)+C (τ)η (4.16)

and, finally, further simplified into

x ′
approx(τ) = A(τ)x(τ)+B(τ)u(τ)+C (τ)η+ r (τ) (4.17)

where

r (τ) :=−A(τ)x(τ)−B(τ)u(τ) (4.18)

In other words, the time-normalised problem dynamics x ′(τ) can be approximated for a certain trajectory
z(τ) = [

x(τ) u(τ) η
]
, when a reference trajectory z̄(τ) = [

x̄(τ) ū(τ) η̄
]

is provided. Typical for first-order
Taylor series expansions, this approximation becomes less accurate as the difference between z(τ) and z̄(τ)
(or ∆z)) becomes larger. To put it in a different way, as ∆z increases, the so-called linearisation error in-
creases, and the convex approximation of the nonlinear dynamics becomes less accurate.

This is a key challenge within the SCP framework, as it implies that the convexified (sub-)problem with its
approximated, linear dynamics is not equivalent to the original problem with nonlinear dynamics as a con-
sequence of this linearisation error. As a result, it must be ensured that this linearisation error is within a
certain limit for the final, accepted guidance trajectory.

4.4.2. Boundary conditions
While the constant boundary conditions from Subsection 3.3.1 are linear, convex equality constraints that can
be directly incorporated into the convex sub-problem formulation, this is not the case for the time-dependent
(final) boundary conditions from Subsection 3.3.2. The polynomials used to represent these time-dependent
boundary conditions lead to nonlinear, non-convex equality constraints which cannot be incorporated into
the problem formulation that is required for the application of convex solving algorithms. Therefore, these
boundary constraints need to be convexified.
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The technique that was applied for this purpose is referred to in literature as successive approximation (Liu
et al., 2017). Using this technique, the nonlinear equality constraint is approximated as

f (a) ≈ f (ā) (4.19)

where a is some optimisation variable. In other words, the nonlinear boundary conditions are simply evalu-
ated around the solution ā of the most recent reference trajectory. For the optimal spacecraft reorientation
problem considered in this study, this method leads to two convex equality constraints for the final quater-
nion and angular rate, which can, respectively, be formulated as

Time-dependent boundary conditions
q f = p q f

(η̄) (4.20)

w f = p w f
(η̄) (4.21)

where η̄ is the time dilation factor of the most recent SCP reference trajectory. It must be noted that the poly-
nomials of Equation 4.20 are only evaluated for three quaternion elements, while q4 is obtained through the
quaternion unit norm to ensure that the boundary conditions satisfy the unit-norm constraint. As was noted
for the shape-based initialisation strategy (Subsection 4.2.3), this approach requires the sign of q4 to be in
line with its corresponding polynomial. For future research, it is recommended to, instead, evaluate the poly-
nomials for all four quaternion elements, and then normalise the obtained q f . This is expected to (slightly)
improve the quality of the approximation and eliminate the need to select the proper sign for q4.

Through the convergence criterion εη, which is introduced in Section 4.9, it is ensured that |η− η̄| is under a
predefined limit for the final iteration of the SCP algorithm. Consequently, it can be ensured that the approx-
imation error of these final boundary conditions is within a defined range.

Another approach that was considered to convexify the time-dependent boundary conditions is the succes-
sive linearisation convexification technique (Liu et al., 2017). This scheme represents a first-order Taylor
series expansion and can be formulated as

q f = p q f
(η̄)+

d p q f

dη
(η̄)(η− η̄) (4.22)

Although this technique leads to a smaller approximation error for the boundary conditions, it became im-
possible to ensure that these conditions satisfied the quaternion unit-norm constraint (due to SOCP limita-
tions). This led to cases for which the SCP algorithm could not converge. Therefore, the successive approx-
imation technique was implemented instead. It is noted that this successive linearisation technique can be
used for the time-dependent boundary condition on the angular rate (or control), as this parameter does not
face such a constraint.

4.4.3. Objective function
As was discussed in Subsection 2.4.2, the convex solvers considered in this study only support an objective
that is a linear function of the optimisation parameters. As a result, the Mayer-type objective function of the
minimum-time problem can be directly incorporated into the convex optimisation sub-problems. However,
the quadratic minimum-energy objective from Equation 3.18 is not supported by the convex solving algo-
rithms applied in this study, and an alternative approach had to be found to implement this type of objective
function into the SCP framework.

The method that was used towards this end is sometimes referred to as the equivalent transformation convex-
ification method (Liu et al., 2017). This method is regularly used in an SCP context to augment an objective
function with nonlinear, non-convex terms (Reynolds et al., 2020a; Sagliano et al., 2020; Wang et al., 2019b).
The equivalent transformation method involves the introduction of an additional optimisation parameter,
a so-called slack variable, which replaces the nonlinear term in the objective function. As a result, the ob-
jective function becomes a linear function of the optimisation parameters, as desired. In addition, a convex
constraint is introduced to the problem which enforces the minimisation of the original, nonlinear term. In
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a general way, this scheme can be represented as replacing the nonlinear objective (Liu et al., 2017)

J =
∫ t f

t0

a2dt (4.23)

by

J =
∫ t f

t0

sadt (4.24)

where sa is the slack variable. The additional convex constraint that is required to enforce the minimisation
of the original, nonlinear term, is formulated as

a2 É sa (4.25)

As one can observe, the nonlinear function of the optimisation parameter, a2, is replaced by a linear function
of the slack variable sa , while this slack variable is directly related to the a2-term that is to be minimised in
Equation 4.23. For the minimum-energy spacecraft reorientation problem studied in this project, using this
equivalent transformation technique, Equation 3.18 is replaced by

Ju = wu

∫ t f

t0

sud t (4.26)

and
u2 É su (4.27)

4.4.4. Attitude constraints
In this section, the attitude constraints from Subsections 3.4.3 and 3.4.4 are reformulated into a representa-
tion that can be incorporated into the convex sub-problems that are solved by the SCP algorithm. It must
be noted that these constraints are not linearised, as the title of this section suggests. However, as these con-
straints are reformulated into a convex representation (convexified), this section was found to be the most
suitable place to explain the process that was followed for this purpose.

Several previous studies on the optimal spacecraft reorientation problem have focused on reformulating the
conical attitude constraints from Equations 3.16 and 3.17 into a variety of other representations, such as an
extended form (Pontani and Melton, 2016) and a quadratic inequality form (Kim and Mesbahi, 2004). The
latter is of particular interest to this study and formulates the quaternion characterisation of the exclusion
cone of Equation 3.16 as

q(t )T Ã(xB , y I ,θsep,out)q(t ) ≤ 0 (4.28)

where

Ã(xB , y I ,θsep,out) =
[

A b
bT d

]
∈ R4×4 (4.29)

where
A = xB y T

I + y I xT
B − (

xT
B y I +cosθsep,out

)
I 3×3 (4.30)

b = y I ×xB , d = xT
B y I −cosθsep,out (4.31)

where (·)B and (·)I denote that the vector is represented in, respectively, the body-fixed reference frame FB

and the inertial frame FI , and I3 is the third-order identity matrix. This quadratic formulation of the attitude
keep-out constraint has a real set of eigenvalues due to the symmetric nature of Ã. However, it can still be
non-convex, as Ã is not always positive-semidefinite, which is required for a quadratic constraint to be con-
vex (Eren et al., 2015; Kim and Mesbahi, 2004).

Starting from the non-convex constraint from Equation 4.28, Kim and Mesbahi (2004) developed a very use-
ful, theoretical proof that this constraint can be convexified for the quaternion attitude parameterisation
through a relatively straightforward spectrum shift. They succeeded in obtaining a convex, quadratic formu-
lation which can be represented as (Eren et al., 2015; Kim and Mesbahi, 2004; Lee and Mesbahi, 2012)

q(t )TP̂ (xB , y I ,θsep,out)q(t ) ≤µ (4.32)
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where

P̂ = Ã+µI4 (4.33)

where µ is chosen to be strictly greater than the largest eigenvalue of −Ã. Essentially, the attitude constraint
is converted into a convex, quadratic constraint by shifting the spectrum of the Ã matrix. It must be noted
that the spectrum shift throughµ, which convexifies the constraint, is only valid when the unit norm property
of the quaternions is properly enforced (Eren et al., 2015; Kim and Mesbahi, 2004). In studies of Jerez et al.
(2017) and Reynolds et al. (2021), it was found that taking µ= 2 suffices for the convexification of the attitude
constraints in this study. The convex formulation of Equation 4.32 represents a keep-out constraint, but a
similar reformulation can be applied to involve keep-in constraints into the convex problem formulation.

4.5. Discretisation
In the discretisation step, the infinite-dimensional, continuous optimisation problem is converted into a
finite-dimensional numerical optimisation problem that can be solved by numerical solving algorithms. As
a result, the convex, continuous, free-final-time problem with linearised dynamics and convex constraints
from Section 4.4 is transformed into a convex, discrete, free-final-time problem. The section focuses on the
discretisation techniques applied to the optimisation parameters, dynamics, and objective function, which
are discussed in, respectively, Subsections 4.5.1, 4.5.2, and 4.5.3. For the sake of completeness, a brief elabo-
ration is dedicated to the discretisation of the constraints in Subsection 4.5.4.

4.5.1. Optimisation parameters
The first step taken to discretise the convex, continuous problem of Section 4.4 into a finite-parameter opti-
misation problem is the discretisation of the continuous optimisation parameters x and u. This is achieved
by the introduction of K equally spaced temporal grid points (including the inital and final boundaries) that
split up the normalised trajectory time τ ∈ [0,1]. Each of these grid points is referred to with an index k ∈K ,
where

τk = k −1

K −1
(4.34)

Accordingly, the continuous state and control optimisation parameters x and u are represented by a vector
of, respectively, (K ×nx ) and (K ×nu) elements as

x = [x1 x2 . . . xK ] (4.35)

u = [u1 u2 . . . uK ] (4.36)

4.5.2. Dynamics and kinematics
The discretisation of the problem dynamics and kinematics can be defined as finding a way to turn the contin-
uous (time-normalised, linearised) dynamics from Equation 4.17 into a finite number of convex constraints
that enforce the dynamics and kinematics between the state and control parameters (Equations 4.35 and
4.36) at the nodes of the grid. An accurate discretisation of the dynamics and kinematics that govern the
spacecraft reorientation problem is crucial to ensure that the obtained attitude guidance manoeuvres are, in
fact, feasible and that the obtained control profiles result in the predicted state trajectories.

Discretisation method
The desired discretisation method needs to (1) lead to a computationally efficient SCP algorithm, and (2) keep
the discretisation error within an acceptable bound. In recent literature on sequential convex programming,
a variety of different discretisation methods can be encountered, amongst others: a variety of pseudospectral
methods, the trapezoidal method, and the Runge-Kutta method. Another method which has recently be-
come popular (Szmuk et al., 2020), models the control profile with a zero-order-hold (ZOH) or a first-order-
hold (FOH) assumption and applies the concept of the state transition matrix ΦA from linear systems theory
(Malyuta et al., 2019). There are few SCP-related studies that compare these different discretisation strategies
in terms of performance, but two relatively recent studies by Malyuta et al. (2019) and Sagliano (2019) were
found to provide enough information to select a discretisation method for this study. The main findings of
the study of Malyuta et al. (2019) are presented in Figure 4.2.
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Figure 4.2: Landing position error (accuracy) versus overall solution time (computational efficiency) for a set of powered descent
problems using six different discretisation techniques. N represents the number of grid nodes. The data points corresponding to each

discretisation method are covered with their convex hull polytope for visualisation purposes (Malyuta et al., 2019).

The FOH transcription method was chosen for the following reasons:

• As can be observed in Figure 4.2, the FOH discretisation method shows very promising results in terms
of solution times (y-axis) and a small landing position error (x-axis), where the latter is a direct indicator
of the accuracy of the method.

• The FOH discretisation method relies on a first-order-hold modelling of the control (see next para-
graph), which enables this method to guarantee that control constraints are not violated between the
grid nodes (where these constraints are enforced). This cannot be said about the pseudospectral meth-
ods, which model the control with Lagrange polynomials that might violate control constraints be-
tween the grid nodes. Additional constraints could be added to prevent these violations from happen-
ing, but this would come at a cost of computational efficiency. As low computation times are one of the
most important requirements on the SCP algorithm, it would be desirable to avoid this situation.

• The results of Figure 4.2 are in line with two studies by Sagliano (2018) and Sagliano (2019), which (to the
best knowledge of the author) pioneered the application of pseudospectral discretisation methods in
an SCP context. In these studies, it was found that, although pseudospectral methods show promising
accuracy performance, they introduce a penalty in terms of computational performance because the
resulting constraint matrices are less sparse.

• As covered in Section 3.8, during the thesis research project, other studies were published that also
selected the FOH discretisation method for solving the spacecraft reorientation problem with an SCP
algorithm (Preda et al., 2021; Reynolds et al., 2021; Sin et al., 2021). This could be seen as a confirmation
of the promise that this method is considered to have in the wider research community.

The FOH discretisation method is both accurate and fast. It is accurate because it leverages the iterative
nature of the SCP framework by extracting much more information from the previous reference solution than
a simpler trapezoidal method. Furthermore, is fast because it leads to a sparser constraint matrix than, for
instance, pseudospectral discretisation methods.

Control modelling

One of the main features of the FOH discretisation method consists of modelling the control parameter as a
linear function (linear interpolation) between the nodes of the grid, as shown in Figure 4.3.
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Figure 4.3: Piecewise-linear control modelling under a first-order-hold (FOH) assumption (Kelly, 2015).

This piecewise-linear modelling of the control variable can be mathematically formulated for each segment
of the grid as (Szmuk et al., 2020)

u(τ) =λ−
k (τ)uk +λ+

k (τ)uk+1, ∀ τ ∈ [τk ,τk+1] (4.37)

where
λ−

k (τ) := τk+1 −τ
τk+1 −τk

, and λ+
k (τ) := τ−τk

τk+1 −τk
(4.38)

When Equation 4.37 is substituted in Equation 4.17, the following equation for the time-normalised, con-
vex, continuous dynamics and kinematics is obtained for each segment between nodes k and (k +1) of the
reorientation manoeuvre

x ′
approx(τ) = A(τ)x(τ)+λ−

k (τ)B(τ)uk +λ+
k (τ)B(τ)uk+1 +C (τ)η+ r (τ), ∀ τ ∈ [τk ,τk+1] (4.39)

However, Equation 4.39 is still continuous and has to be discretised in order to be enforced in the numerical
optimisation problem.

Discretisation procedure
The FOH discretisation method fundamentally relies on the result from linear systems theory that any x(τ)
(from Equation 4.17) on the segment τ ∈ [τk ,τk+1] can be obtained through (Malyuta et al., 2019)

x(τ) =ΦA (τ,τk ) x (τk )+
∫ τ

τk

ΦA(τ,ξ)B(ξ)u(ξ)dξ+
∫ τ

τk

ΦA(τ,ξ)C (ξ)ηdξ+
∫ τ

τk

ΦA(τ,ξ)r (ξ)dξ (4.40)

where the state transition matrixΦA from τk to ξ can be calculated using (Reynolds et al., 2020b)

ΦA (ξ,τk ) = Inx×nx +
∫ ξ

τk

A(ζ)ΦA (ζ,τk )dζ (4.41)

Using the inverse and transitive properties of the state transition matrix ΦA (Reynolds et al., 2020b), one
can arrive at the following, discrete equality constraint that enforces the linearised attitude dynamics and
kinematics on the state of the spacecraft between nodes k and (k +1)

xk+1 = Ak xk +B−
k uk +B+

k uk+1 +C kη+ r k (4.42)

where
Ak :=ΦA (τk+1,τk ) (4.43)

B−
k := Ak

∫ τk+1

τk

Φ−1
A (ξ,τk )B(ξ)λ−

k (ξ)dξ (4.44)

B+
k := Ak

∫ τk+1

τk

Φ−1
A (ξ,τk )B(ξ)λ+

k (ξ)dξ (4.45)

C k := Ak

∫ τk+1

τk

Φ−1
A (ξ,τk )C (ξ)dξ (4.46)

r k := Ak

∫ τk+1

τk

Φ−1
A (ξ,τk )r (ξ)dξ (4.47)

In the implementation of this theoretical approach in the SCP algorithm, Equations 4.43 to 4.47 are integrated
simultaneously with Equation 4.41, for every segment of the grid. The integrand evaluations of A, B , C and
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r are based on the numerically propagated, nonlinear dynamic and kinematic equations of Equation 4.9
from the reference state (previous SCP solution) at the beginning of the segment (at node τk ), which can be
represented as

x(τ) = xk +
∫ τ

τk

F (x(ζ),u(ζ),η)dζ (4.48)

In Figure 4.4, this process is visualised. Using Equation 4.48, the state is propagated (red line) from the ref-
erence state value x̄1 at a grid node (green point). In the meantime, Equation 4.41 and Equation 4.44 to
Equation 4.47 are integrated in order to obtain the A, B , C , and r matrices and vectors that are required for
the convex equality constraints that enforce the dynamics and kinematics on the problem. After the integra-
tion process has reached the end of the segment, the integrands of the B , C , and r terms are multiplied with
the result for Ak to obtain Bk , C k , and r k .

Figure 4.4: Illustration of the procedure that was used to obtain the reference trajectory used for the discretisation process (Reynolds
et al., 2020b).

Effectively, using this approach, information on the problem dynamics and kinematics along the entire seg-
ment is introduced to the convex sub-problem. This is a major difference compared to the trapezoidal
method that was used by, for instance, Liu and Lu (2014), Wang et al. (2019b), and McDonald et al. (2020),
as that method only includes information on the problem dynamics and kinematics at the grid points k and
k +1. This is the major driver behind the fact that the FOH discretisation method is characterised by a signif-
icantly higher accuracy.

In the implementation of the algorithm, this integration process is performed using a numerical Runge-Kutta
4th-order (RK4) scheme, which is, for the sake of completeness, provided in Equations 4.49 to 4.53.

k1 = f
(
tn , yn

)
(4.49)

k2 = f

(
tn + h

2
, yn +h

k1

2

)
(4.50)

k3 = f

(
tn + h

2
, yn +h

k2

2

)
(4.51)

k4 = f
(
tn +h, yn +hk3

)
(4.52)

yn+1 = yn + 1

6
h (k1 +2k2 +2k3 +k4) (4.53)

In earlier research, the Runge-Kutta 4th-order method was found to provide a good balance between compu-
tational performance and accuracy (Mao et al., 2018a; Reynolds et al., 2020a; Szmuk et al., 2020). As a result
of the selection of this integration method, the two algorithm parameters that influence the discretisation
performance of the algorithm are the number of grid nodes, K , and the number of (RK4) propagation nodes,
Kdisc, which determines the number of steps that are performed for each single grid segment to obtain the
matrices to enforce the dynamics and kinematics in discretised form.
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4.5.3. Objective function
The Mayer-type objective term t f ≡ η of the minimum-time problem from Equation 3.19 does not have to be
discretised. However, the minimum-energy, Lagrange-type objective function from Equation 3.18 requires
the evaluation of the integral of a continuous function and therefore has to be discretised to be included in the
numerical form that is required for a finite-dimensional optimisation problem. Two methods to discretise this
objective function term were studied, of which the trapezoidal method has often been used in other studies
and the successive approximation of the exact cost method was developed during this research project.

Trapezoidal method
The trapezoidal method (TM) is often applied to discretise and approximate an integral in the objective func-
tion of an SCP optimisation sub-problem (McDonald et al., 2020; Sagliano, 2019; Wang and Grant, 2017). The
general trapezoidal integration rule can be formulated as∫ b

a
f (x)dx ≈

K−1∑
k=1

(
f (xk )+ f (xk+1)

2

)
(4.54)

As visualised in Figure 4.5, this integration rule is only exact when the function f that is to be integrated
shows linear behaviour between the grid points. This is, unfortunately, typically not the case for the energy
used during a spacecraft reorientation manoeuvre. As a result of the first-order-hold modelling of the control,
the energy profile (u2) is a quadratic function. Hence, it can be concluded that this discretisation method is
not exact for the reorientation problem considered in this study.

Figure 4.5: Visualisation of the trapezoidal integration technique.2

Using the trapezoidal scheme from Equation 4.54, the minimum-energy objective function can be formu-
lated in discretised form as

Minimum-energy objective term
Ju = wu su (4.55)

where the continuous convex constraint of Equation 4.27 is replaced by

Minimum-energy convex constraint
K∑

k=1
c u,k u2

k ≤ su (4.56)

where c u = [0.5 1 . . . 1 0.5] ∈ RK , in accordance with the trapezoidal rule from Equation 4.54. In other
words, all inner grid points have double the relative weight compared to the boundary points of the grid. As
was stated before, this quadrature leads to a result that does not represent the true energy cost of a certain
trajectory. Therefore, a second method was developed during this study that aims to improve the accuracy of
this discretisation process.

2https://medium.com/swlh/finite-element-analysis-f8eaba1ae54 (Cited: 28-06-2021).

https://medium.com/swlh/finite-element-analysis-f8eaba1ae54
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Successive approximation of the exact cost
This discretisation technique for the minimum-energy objective function utilises both the iterative nature of
the SCP algorithm and the first-order-hold assumption on the control parameter to approach the accuracy of
analytically integrating the linear control over every segment. In this way, the energy-cost of the minimum-
energy reorientation manoeuvre can be accurately evaluated in the convex sub-problems solved by the SCP
algorithm.

First, the energy of a single segment of the grid is calculated through an analytical integration, where the
control u is represented by the linear function (ax +b)∫ d t

0
(ax +b)2d t , where a = uk+1 −uk

d t
, and b = uk (4.57)

∫ d t

0

(
a2x2 +2abx +b2)d t (4.58)

[
a2x3

3
+ 2abx2

2
+b2x

]d t

0
(4.59)

Substituting a and b, one obtains[
u2

k+1 −2uk+1uk +u2
k

d t 2

x3

3
+ uk+1uk −u2

k

d t
x2 +u2

k x

]d t

0

(4.60)

1

3

(
u2

k +uk uk+1 +u2
k+1

)
d t (4.61)

Unfortunately, due to the uk+1uk -term, this exact result cannot be directly included into the convex SOCP
framework through the convexification method from Equation 4.25. Therefore, it is not possible to simply
sum this analytic integral for all grid segments to obtain the exact integral of the objective function. However,
one can approximate this exact integral using the iterative nature of the SCP algorithm. Using information
from the control history of the previous iteration, ū, it was thought that it could be possible to arrive at a more
accurate estimation of the energy used. The scheme that was developed can be represented (for a single grid
segment) as

1

3

(
u2

k +
1

2
ūk uk+1 +

1

2
uk ūk+1 +u2

k+1

)
d t (4.62)

Omitting the constant multiplication factors of 1
3 and d t , which leads to an equivalent solution, one can

define the cost for all segments of the grid:

segment 1: u2
0 +

1

2
ū0u1 + 1

2
u0ū1 +u2

1

segment 2: u2
1 +

1

2
ū1u2 + 1

2
u1ū2 +u2

2

. . .

segment K −1: u2
K−1 +

1

2
ūK−1uK + 1

2
uK−1ūK +u2

K

(4.63)

Summing these expressions for all (K −1) segments, one obtains the following objective function

Ju = wu · su (4.64)

where the accompanying convex inequality constraint is formulated as

K∑
k=1

c u,1,k u2
k +c u,2,k uk ≤ su (4.65)

and
c u,1 = [0.5 1 . . . 1 0.5] (4.66)

c u,2 = [0.25ū1 (0.25ū0 +0.25ū2) (0.25ū1 +0.25ū3) . . . 0.25ūK ] (4.67)
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In Section 8.2, both the trapezoidal and the successive approximation of the exact cost methods are analysed
and their performance is compared.

It is noted that, in hindsight, an alternative approach is thought to exist to realise an exact integration of the
minimum-energy objective in the SCP algorithm. Through introducing an additional set of k slack variables
r k = uk +uk+1, and squaring these in the convex inequality constraint of Equation 4.65, the uk+1uk -term
could be included directly into the formulation of the optimisation objective, eliminating the need for the
successive approximations proposed in this subsection. In terms of optimality, the performance of both ap-
proaches is expected to be similar, but the additional optimisation parameters (slack variables), which in-
crease the size of the optimisation problem, could have a negative effect on the computational efficiency of
the algorithm. This alternative discretisation method serves as another example of the modelling power of
the SOCP framework.

4.5.4. Constraints

The continuous constraints from Section 3.6 and Equation 4.32 are discretised in a straightforward manner:
they are enforced on every single grid node. This results in the following constraints.

Control constraints (
uk,1

uellipse,1

)2

+
(

uk,2

uellipse,2

)2

+
(

uk,3

uellipse,3

)2

≤ 1, ∀ k ∈K (4.68)

Angular rate constraint
|ωk,i | ≤ωbox,i , ∀ i ∈ 1,2,3, k ∈K (4.69)

Attitude constraints
q T

k P̂outq k ≤ 2, ∀ k ∈K (4.70)

q T
k P̂inq k ≤ 2, ∀ k ∈K (4.71)

As one might notice, since the control and state constraints are only enforced on the grid nodes, it automati-
cally follows that it is not guaranteed that these constraints are satisfied along the entire trajectory. Although
this problem is faced by most numerical optimisation methods, it does pose a significant challenge regarding
the usefulness of the SCP optimisation algorithm specifically. This aspect is further analysed and discussed
in Section 8.2.

4.6. Virtual control

The convex sub-problem that is obtained after the time-normalisation, linearisation and discretisation steps
can already be solved using available (highly efficient) convex solving algorithms. However, one challenge
that has arisen within the SCP framework is that problems that are feasible in their original, nonlinear, non-
convex form, might become infeasible due to the conversion into a convex sub-problem. This phenomenon
is called artificial infeasibility. Using a highly simplified reference problem, this phenomenon is visualised in
Figure 4.6.
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Figure 4.6: Illustration of the phenomenon of artificial infeasibility. It can be observed that the original problem (with the parabolic
equality constraint h) has a feasible solution for z , while the convexified problem (dashed, linear equality constraint) has none. The

green lines represent inequality constraints. (Reynolds, 2020).

In Figure 4.6, the aim is to minimise an objective function for a problem with two optimisation parameters
(z1 and z2) with a cost that decreases southwards in the graph. Three constraints are imposed on the prob-
lem: two linear inequality constraints (green lines), and one nonlinear equality constraint (blue parabola).
It can be seen that, for the original NLP problem, the quadratic equality constraint and the two inequality
constraints can be simultaneously satisfied. However, for the linearised, convexified problem, the linearised
equality constraint (blue dashed line) and inequality constraints cannot be satisfied simultaneously, hence
rendering the problem infeasible.

The strategy that is usually applied in the SCP framework to deal with this problem of artificial infeasibility is
to introduce a so-called virtual control variable, which, regarding the example of Figure 4.6, effectively allows
for a violation of the linearised equality constraint. In the context of the spacecraft reorientation problem,
the virtual control variable is added to the linearised dynamic and kinematic equality constraints of Equa-
tion 4.42. This virtual control variable ν ∈Rnx is referred to as a control variable, as it can be interpreted as an
additional control variable (next to u) which can be optimised to influence the dynamics of the state x . After
defining this virtual control parameter, the convex, discrete, dynamic and kinematic equality constraints of
the convex sub-problem can be formulated as

Dynamics and kinematics

xk+1 = Ak xk +B−
k uk +B+

k uk+1 +C kη+ r k +νk , ∀ k = 1, · · · ,K −1 (4.72)

It can be seen that the introduction of the virtual control variable leads to K ×nx additional optimisation
variables. The introduction of this virtual control variable has been found to strongly improve the feasibility
characteristics, convergence rate, and thus the robustness of the SCP algorithm (Malyuta et al., 2020; Mao
et al., 2016; Szmuk et al., 2016). The use of this virtual control variable is primarily focused on the first it-
erations of the SCP algorithm, for which it is most important to find an approximate, rough solution to the
convex sub-problem. As the use of the virtual control variable leads to dynamic infeasibility of the obtained
solution, the final, converged solution should restrict its use of virtual control within a strict, low limit. There-
fore, an additional term is added to the objective function of the convex optimisation sub-problem with a
relatively large weight factor in order to penalise the use of virtual control. This term can be formulated as

Virtual control objective

Jvc = wvc

K−1∑
k=1

‖νk‖1 (4.73)



4.7. Trust region 47

By choosing wvc to have a large magnitude, it can be ensured that the use of virtual control for the converged
result is negligible and that the solution can be considered to be dynamically feasible. There are several
alternative ways to penalise the use of virtual control, of which using the L∞-norm is a popular choice. How-
ever, the use of the L1-norm leads to sparse matrices in the convex sub-problem (Section 5.4) and has shown
favourable performance in earlier studies of, amongst others, Reynolds et al. (2020a) and Szmuk et al. (2020).

A challenge that was encountered during the Monte Carlo analyses of this study was that for some cases, the
virtual control use, although being highly penalised, continued to be larger than the imposed convergence
limit. As a result, in these cases, the SCP algorithm failed to converge to a feasible, locally optimal guidance
solution. An effective strategy that was implemented to avoid this phenomenon, was the introduction of
a so-called adaptive virtual control technique. This approach consisted of increasing the weight factor wvc

of the virtual control objective for every SCP iteration where the use of virtual control was larger than its
convergence criterion (Section 4.9), encouraging the SCP algorithm to reduce its use of virtual control. It was
found that multiplying the weight factor wvc with an updating factor ofαvc,adap = 3 for such iterations sufficed
for improving the convergence rate of the SCP algorithm.

4.7. Trust region
The implementation of a so-called trust region, next to the use of a virtual control variable, is a second strategy
often seen in combination with an SCP algorithm. A trust region is an additional constraint on the optimi-
sation sub-problem, which is introduced to avoid the undesirable phenomenon of artificial unboundedness
(Benedikter et al., 2019a). This phenomenon is caused by the fact that the linearised dynamic and kine-
matic constraints are only a valid approximation in the neighbourhood of the reference solution that forms
the basis of the linearisation process. Artificial unboundedness entails that the convex approximation of the
original, non-convex problem can become unbounded, while the original problem is not. This phenomenon
is illustrated in Figure 4.7.

Figure 4.7: Illustration of the phenomenon of artificial unboundedness. It can be observed that the original problem (with the parabolic
equality constraint) has a solution at z1 = 0, while the convexified problem (dashed, linear equality constraint) allows for an infinite

reduction of the cost, thereby becoming unbounded (Reynolds, 2020).

In Figure 4.7, it can be observed that for the linearised problem, the equality constraint (dash-dotted blue
line) allows for an infinite reduction of the cost, rendering the problem unbounded. To deal with this chal-
lenge, a trust region imposes a limit on the differences between the optimisation parameters (the state, con-
trol, and time dilation factor) of a reference trajectory (z̄) and its subsequent solution (z) in the SCP algorithm.
In addition, the trust region ensures that the approximation error of the solution of the convex sub-problem
does not become too large. For the simplified problem of Figure 4.7, the trust region is represented by the
red circle. As can one can intuitively understand, selecting a trust region that is too small hinders the con-
vergence process, requiring many iterations in order to arrive at the optimal solution, while selecting a trust
region that is too large might lead to undesirable convergence properties. Furthermore, it was found that the
limit on ∆z imposed by the trust region can also increase the performance of an SCP algorithm in terms of
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computational efficiency.

In recent studies on SCP-based optimisation algorithms, a wide variety of methods has been proposed to
impose such a trust region on the optimisation problem. These range from simpler, hard and fixed trust re-
gions that have a constant magnitude for all SCP iterations (Liu and Lu, 2014; McDonald et al., 2020), to more
complex, soft trust regions. These trust regions do not have a fixed magnitude, but instead use the objective
function to encourage the SCP algorithm to limit the state difference ∆z between iterations (Sagliano et al.,
2020; Szmuk et al., 2020). An even more complex class of trust regions consists of adaptive schemes, which,
depending on certain algorithm parameters, change the size of the trust region after every iteration of the
SCP algorithm (Benedikter et al., 2019a; Mao et al., 2018b).

Although there are many studies proposing alternative trust-region (updating) techniques, the number of
studies actively comparing several options is, unfortunately, very limited. However, one of the main trends
that could be recognised is that, more recently, most researchers tend to use an (adaptive) soft trust region
(Benedikter et al., 2020; Bonalli et al., 2019; Reynolds et al., 2020a; Szmuk et al., 2020). Szmuk et al. (2020)
noted that such a soft trust region converges faster than the adaptive, hard trust-region technique that was
proposed and implemented by Mao et al. (2018b). Therefore, it was decided to implement a soft trust region
for this specific study.

A soft trust region does not impose a hard constraint on the maximum difference between two subsequent
iterations but rather penalises these differences by augmenting them to the objective function of the convex
optimisation sub-problem. To comply with the requirement to have an objective that is a linear function of
the optimisation variables, this trust region type is implemented using the equivalent transformation convex-
ification technique that introduces a slack variable, which was presented in Subsection 4.4.3. The resulting
objective function term can be formulated as

Trust region objective
Jtr = wtr · str (4.74)

where wtr is a weight factor and str the slack variable for the trust region. This objective function term in-
directly minimises the state and control deviations between two subsequent iterations through the convex
constraint

Trust region
K∑

k=1
(‖(xk − x̄k )‖2 +‖(uk − ūk )‖2) ≤ str (4.75)

It should be noted that for the implementation of this trust region, scaled variables (Section 4.8) were used
to ensure that the trust-region elements corresponding to the q , ω and u terms have a similar magnitude.
During the experimentation phase of this research project, it was found that the trust region had a limited
influence on the convergence behaviour of the SCP algorithm for the spacecraft reorientation problem stud-
ied in this project. This is further discussed in Chapters 7 and 8, where it is shown that the SCP algorithm
performs best when the trust region is kept relatively large (with an order of magnitude in the objective func-
tion that is significantly smaller than the magnitude of the minimum-energy or minimum-time term). This is
thought to be caused by the fact that the spacecraft reorientation problem requires a relatively small number
of iterations to converge (around 3-7, as is presented in Chapter 9) compared to more complex optimisation
problems, such as the planetary descent problem studied by Wang and Cui (2018). Consequently, it was de-
cided that a detailed comparison of multiple trust-region techniques was not a priority and, therefore, out of
scope for this research project.

However, it was found that an adaptive trust-region scheme could improve the robustness (convergence rate)
of the SCP algorithm for the minimum-time reorientation problem. This adaptive scheme, in a similar man-
ner as the adaptive virtual-control technique, increases the weight factor wtr of the trust-region objective with
a constant factorαtr,adap, after a specified number of iterations, ntr,adap,thres, is reached and the SCP algorithm
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has not (yet) converged.

Finally, a hard trust region on the time dilation factor η was found to improve the performance of the SCP
algorithm for the minimum-time reorientation problem. Especially for early iterations where the virtual con-
trol use is large, it was found that this hard trust region would avoid large differences in the time dilation
factor ∆η between iterations (which were sometimes larger than 90%). This hard region on the time dilation
factor can be formulated as

Hard trust region on the time dilation factor

|η− η̄| ≤ δηη̄ (4.76)

where δη is an algorithm parameter that directly determines the size of the trust region for the time dilation
factor.

4.8. Scaling
During initial tests of the SCP algorithm, it was found that the convex solving algorithm ECOS (Section 5.1)
sometimes suffered from numerical problems. Instead of requiring approximately 10-20 iterations to con-
verge, as was the case for the majority of test cases, these numerical problems resulted in ECOS requiring a
much larger number of iterations. After the specified limit of 100 iterations was reached, ECOS reported hav-
ing found a solution that was ‘close to optimal’. This phenomenon was highly undesirable, both due to the
resulting sub-optimality of the solution and due to the increase in the computation time of multiple factors.
It was found that scaling the optimisation parameters solved this problem.

It was decided to scale the optimisation parameters in a manner that is commonly applied in studies on
numerical optimisation, which can be represented as (Malyuta et al., 2020)

η= Sηη̂+ sη, q k = Sq q̂ k + sq , ωk = Sωω̂k + sω, uk = Su ûk + su (4.77)

where S(·) and s(·) represent scaling factors and scaling offsets, respectively, and the (̂·)-notation is used to rep-
resent the scaled optimisation parameters. It was found that the application of scaling factors S sufficed for
solving the numerical problems of ECOS. Therefore, the scaling offsets s were not used for the SCP algorithm
developed in this study. The scaling factors S(·) that were applied are listed in Table 4.1.

Table 4.1: Scaling factors applied to the spacecraft reorientation problem.

Optimisation parameter Symbol Scaling factor
Time dilation factor η t f ,guess

Quaternion q I 4×4

Angular rate ω avg(ωbox)
Control u avg(uellipse)

where I is the identity matrix, and the average values are constants obtained from the constraint vectors that
are specified in the formulated problem. It can be observed that, by taking this approach, all scaling factors
are constant throughout the iterative solving procedure of the SCP algorithm. Updating these scaling factors
after an SCP iteration has been performed is a possibility but was not pursued due to time constraints on this
research project. Consequently, it is left as a potential topic for further research.

An additional advantage of the implementation of scaling factors is that several objective function terms, for
instance the minimum-time and minimum-energy terms, are automatically scaled. As a result, the perfor-
mance of the SCP algorithm becomes less dependent on the specific problem parameters of the optimisation
problem that it is trying to solve. This also reduces the need to re-tune the SCP algorithm when it is applied to
a different optimisation problem, which is characterised by, for instance, a different inertia matrix or stricter
angular rate constraints.
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It should be noted that this scaling was applied to all elements (constraints, trust region, objective) of the
convex optimisation sub-problem that is presented in this section. However, for the sake of readability, the
(̂·) notation is dropped in the remainder of this chapter.

4.9. Convergence criteria
The last step of the SCP algorithm is to check whether the algorithm has converged. In this step, it is assessed
whether the solution of the convex sub-problem of the most recent iteration of the SCP algorithm can be ac-
cepted as a solution to the original, non-convex problem. This step is performed through the definition of a
set of so-called convergence criteria ε.

The purpose of the first convergence criterion is to be able to assess whether the deviation between a guid-
ance solution of iteration (i +1) lies sufficiently close to the solution of iteration i . The reason for this is that
this deviation directly influences the linearisation or approximation error that differentiates the original, non-
convex problem from the convex sub-problem. If this deviation is found to be sufficiently low, the solution
to the convex sub-problem can be considered to adhere to the original, nonlinear dynamics and therefore
to be feasible. Furthermore, in experiments it was observed that when this deviation between the solutions
of subsequent iterations became small, the cost function of the optimisation problem stopped improving.
However, it is noted that the approach taken does not ensure that an optimum has been reached, although
the results in Chapter 9 strongly suggest that this is the case.

In literature, many different paths are taken to define such a convergence criterion. During this study, it
was found that a straightforward approach succeeded in obtaining reliable and consistent results. For the
minimum-energy problem, this resulted in the following convergence criterion, which is defined as

K∑
k=1

‖xk − x̄k‖1 ≤ εx (4.78)

where x̄ refers to the solution of the i th iteration of the SCP algorithm. The convergence criterion from Equa-
tion 4.78 ensures that the state difference between iteration (i +1) and i is smaller than a set limit. Due to
the applied scaling factors, both the angular rate and quaternion parameters have a similar influence on this
convergence criterion. The choice to only include the state x and not the control u was based on the as-
sumption that the magnitude of the state and control differences between subsequent iterations are strongly
correlated. It is stressed that the use of the L1-norm for this convergence criterion is only one of the available
options. Alternatives would be, for instance, to use an L∞-norm on the state (Reynolds et al., 2020a) or to base
the convergence criterion on the cost difference between subsequent iterations (Sagliano et al., 2020). As the
selection of the type of convergence criterion was no focus of this research project, a comparison between
the different options is left as a potential topic for future research.

A second convergence criterion was introduced to ensure that the use of virtual control of the SCP solution is
within a predefined limit. This criterion was defined as

K∑
k=1

‖νk‖1 ≤ εν (4.79)

Using the L1-norm for this convergence criterion is a popular option (Szmuk et al., 2020), but similar as for
Equation 4.78, other approaches could be considered in future research. For the minimum-time problem, a
third criterion was introduced to ensure that the linearisation error that follows from the changes in the time
dilation factor η between SCP iterations, is smaller than a predefined level. This convergence criterion can be
formulated as

|η− η̄| ≤ εη (4.80)

When the SCP algorithm has not met its specified convergence criteria after a certain number of iterations,
the so-called iteration limit nit,lim, the iterative process is stopped and the problem is reported as uncon-
verged.
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4.10. Convex sub-problem formulation

In this section, for overview purposes, the full problem description of the minimum-energy and minimum-
time convex (sub-)problems is provided, which are solved in every iteration of the SCP-based optimisation
algorithm.

4.10.1. Problem 1: Minimum-energy, attitude-constrained reorientation

The convex, discrete, minimum-energy reorientation sub-problem solved sequentially by the SCP algorithm
in this research project can be formulated as

Convex, discrete, minimum-energy spacecraft reorientation sub-problem

Objective function minimise J = Ju + Jvc + Jtr Equation 4.55
Equation 4.73

= wu su +wvc
∑K−1

k=1 ‖νk‖1 +wtrstr Equation 4.74

Minimum-energy
constraint

∑K
k=1 c u,k u2

k ≤ su Equation 4.56

Trust region state and
control

∑K
k=1 (‖(xk − x̄k )‖2 +‖(uk − ūk )‖2) ≤ str Equation 4.75

Boundary conditions q(0) = q 0, q(t f ) = q f Equation 3.7
ω(0) =ω0, ω(t f ) =ω f Equation 3.8

Dynamics and kinematics xk+1 = Ak xk +B−
k uk +B+

k uk+1 +C k η̄+ r k +νk , Equation 4.72

∀ k = 1, . . . ,K −1

Control constraints
(

uk,1
uellipse,1

)2 +
(

uk,2
uellipse,2

)2 +
(

uk,3
uellipse,3

)2 ≤ 1, ∀ k ∈K Equation 4.68

Angular rate constraints |ωk,i | ≤ωbox,i , ∀ i ∈ 1,2,3, k ∈K Equation 4.69

Attitude constraints q T
k P̂outq k ≤ 2, ∀ k ∈K Equation 4.70

q T
k P̂inq k ≤ 2, ∀ k ∈K Equation 4.71

As noted in Section 4.8, the optimisation parameters presented in this convex sub-problem formulation rep-
resent scaled variables x̂ and û, where the (̂·)-notation is dropped for the sake of readability.

4.10.2. Problem 2: Minimum-time, attitude-constrained reorientation

The convex, discrete, minimum-time reorientation sub-problem solved sequentially by the SCP algorithm in
this research project can be formulated as
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Convex, discrete, minimum-energy spacecraft reorientation sub-problem

Objective function minimise J = Jη+ Jvc + Jtr Equation 3.19
Equation 4.73

= wηη+wvc
∑K−1

k=1 ‖νk‖1 +wtrstr Equation 4.74

Trust region state and
control

∑K
k=1 (‖(xk − x̄k )‖2 +‖(uk − ūk )‖2) ≤ str Equation 4.75

Trust region time |η− η̄| ≤ δηη̄ Equation 4.76

Boundary conditions q(0) = q 0, q(t f ) = q f (η̄) Equation 4.20
ω(0) =ω0, ω(t f ) =ω f (η̄) Equation 4.21

Dynamics and kinematics xk+1 = Ak xk +B−
k uk +B+

k uk+1 +C kη+ r k +νk , Equation 4.72

∀ k = 1, . . . ,K −1

Control constraints
(

uk,1
uellipse,1

)2 +
(

uk,2
uellipse,2

)2 +
(

uk,3
uellipse,3

)2 ≤ 1, ∀ k ∈K Equation 4.68

Angular rate constraints |ωk,i | ≤ωbox,i , ∀ i ∈ 1,2,3, k ∈K Equation 4.69

Attitude constraints q T
k P̂outq k ≤ 2, ∀ k ∈K Equation 4.70

q T
k P̂inq k ≤ 2, ∀ k ∈K Equation 4.71

As noted in Section 4.8, the optimisation parameters presented in this convex sub-problem formulation rep-
resent scaled variables x̂ , û and η̂, where the (̂·)-notation is dropped for the sake of readability.
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Algorithm Implementation

In this chapter, it is explained how the SCP-based optimisation algorithm from Chapter 4 was implemented.
To begin with, in Section 5.1, the tools are presented that were used during this research project. Then, Sec-
tion 5.2 introduces the NLP benchmark algorithm that was implemented to verify and evaluate the perfor-
mance of the SCP algorithm. In Section 5.3, this NLP benchmark algorithm is verified. Finally, in Section 5.4,
an overview is provided of the steps that were taken to implement the convex solving algorithm ECOS.

5.1. Tools
Several tools were used to develop and analyse the SCP-based optimisation algorithm. In Figure 5.1, an
overview is provided of these tools. MATLAB functioned as the numerical computing environment that was
used to formulate the optimisation problems, interface with the modelling tools, and analyse the resulting
attitude guidance trajectories. In terms of the other tools, two main paths can be distinguished:

• Sequential convex programming (SCP) algorithm.
This algorithm is the implementation of the optimisation algorithm that was presented in Chapter 4.
MATLAB was used to formulate the convex optimisation sub-problems from Section 4.10. In early
stages of this research project, a modelling tool called CVX (Grant and Boyd, 2020) was used to re-
formulate these convex sub-problems into a form compatible with various convex solving algorithms .
The results obtained from the convex solving algorithms were then analysed and visualised using MAT-
LAB. In later stages of the research project, a direct interface to ECOS was developed in MATLAB (as
is illustrated by the red arrow in Figure 5.1), removing the need for a modelling tool. This process is
further described in Section 5.4.

• Nonlinear programming (NLP) benchmark algorithm.
In order to perform a thorough analysis and evaluation of the performance of the SCP algorithm, a
comparison with an NLP benchmark algorithm was determined to be essential. This NLP benchmark
algorithm was used to verify the results of the SCP algorithm (Chapter 7), and as a reference point for
the performance assessment of the SCP algorithm in terms of the three main criteria identified in Sec-
tion 3.7: robustness, optimality and computational efficiency. In this study, the CasADi tool (Andersson
et al., 2018) was used as modelling tool in order to formulate the nonlinear optimisation problem in a
compatible format for the nonlinear solving algorithm Ipopt (Wächter and Biegler, 2005). The NLP
benchmark algorithm developed in this study is an efficient pseudospectral NLP method.

In the remainder of this section, these five tools are introduced with a higher level of detail.

53
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Numerical computing environment
○ Monte Carlo set-up
○ Convexification step
○ Convex sub-problem formulation
○ NLP benchmark problem formulation
○ Analysis of output and results

MATLAB

Modelling / interfacing tool
○ Reformulates convex sub-problem
into a form accepted by the convex
solving algorithm
○ Enables rapid prototyping

CVX

Convex solving algorithm
○ Numerical solving algorithm that
generates a solution for the convex
sub-problem

ECOS, MOSEK, SDPT3, etc.

Modelling tool for benchmark solution
○ Reformulates problem into form
accepted by the NLP solving
algorithm

CasADi

NLP solving algorithm
○ Numerical solving algorithm that
generates a solution for the NLP
problem

Ipopt

Sequential convex
programming algorithm

Nonlinear programming
(NLP) benchmark algorithm

Direct ECOS implementation

Figure 5.1: Top-level overview of the main tools that were used during this research project.

5.1.1. Numerical computing environment: MATLAB
MATLAB was selected as numerical computing environment. One reason for this is that MATLAB was identi-
fied to be compatible with all tools and solving algorithms that were required to implement both the SCP and
NLP benchmark algorithms. Secondly, OHB communicated that it was desired that the thesis research would
be performed using this programming platform.

For the execution of the discretisation step (Equation 4.42) of the SCP algorithm, which is known to be the
second most time-consuming step after the solve step (Reynolds et al., 2020a; Szmuk et al., 2020), the MAT-
LAB Coder package was used. Using this package, it is possible to automatically generate highly efficient C
code for functions developed in MATLAB. This does require the corresponding MATLAB code to adhere to a
set of rules but greatly simplifies the process of generating code that could be run on embedded (satellite)
processors.

This implementation is relevant regarding the development of onboard optimisation algorithms, as these
should be executable on such embedded processors using C code. In addition, MATLAB is significantly slower
than efficient routines written in C. Through performing the discretisation step using C code it became pos-
sible to compare its computation time to the time required for executing the solve step (Section 8.6). To
illustrate, using MATLAB, a typical SCP discretisation step is characterised by solve times in the order of 40
ms, while the efficient C code generated by MATLAB Coder only required about 1-2 ms.

5.1.2. SCP modelling tool: CVX
With the term modelling or interfacing tool, software is referred to that facilitates the modelling of optimisa-
tion problems in a relatively easy and intuitive manner. In this study, the convex (sub-)problems to be solved
as part of the SCP algorithm were modelled in MATLAB using the tool CVX, a well-known tool that was built
to accommodate a variety of convex solving algorithms. Using CVX, the optimisation problems could be for-
mulated in a manner that followed common mathematics, rather than the complicated and restricted forms
that are often required by the (convex) solving algorithms themselves. In Table 5.1, an overview is provided
of the convex solving algorithm compatibility of CVX.

Table 5.1: Solver compatibility of the modelling tool CVX.

Modelling tool Convex solver compatibility Free

CVX (Grant and Boyd, 2020)
Free: SDPT3, SeDuMi, ECOS
Academic license: GUROBI, MOSEK

Yes
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5.1.3. Convex solving algorithm: ECOS
The main advantage of using convexification-based optimisation methods instead of the conventional class
of NLP methods is that there exist state-of-the-art, highly efficient algorithms which can solve these prob-
lems in real time (Liu et al., 2017). These algorithms belong to the class of interior point methods (IPMs).
After a convex (sub)-problem has been formulated, either directly by the user or through the modelling tool
CVX presented in the previous subsection, this problem can be solved using one of several available convex
solving algorithms.

Regarding these IPMs, a distinction is made between general-purpose solvers, which can be implemented on
modern desktop computers, and so-called embedded solvers. In order to use an SCP-based optimisation algo-
rithm for a real mission scenario, it has to be executable on an embedded flight processor (Dueri et al., 2016).
The corresponding process, which is called embedded convex optimisation, needs to be both robust and fast,
in line with the criteria identified in Section 3.7. It needs to be robust because there are no human operators
that could intervene if a failure would occur during onboard operations. In contrast, general-purpose solvers
used for development and testing purposes might have lower requirements on robustness. Computational
efficiency is essential as the computational resources of these embedded systems are limited, while the op-
timisation process is required to take place in real time. Spacecraft typically use flight-hardened processors,
which have architectural features that make them robust to the high-radiation environment in space. How-
ever, this comes at the cost of computational efficiency.

The five most popular convex solving algorithms considered for this study are: ECOS, MOSEK (Andersen and
Andersen, 2000), SDPT3 (Tütüncü et al., 2001), and SeDuMi. However, it was quickly concluded from existing
research that ECOS outperforms the other three solvers for the problem size associated with the spacecraft
reorientation problem (Sagliano, 2018; Yang and Liu, 2020), which was confirmed by initial tests during our
research. A second consideration is that ECOS is written in low-footprint, library-free ANSI-C, which enables
it to run on embedded platforms. This is in contrast to the other SOCP solvers that are currently available,
which are typically characterised by a large code size, large memory requirements, and dependencies on
external libraries (Domahidi et al., 2013). Therefore, the decision was made to use ECOS for the analyses per-
formed in this study. ECOS, known as the Embedded Conic Solver, is a relatively novel IPM that uses a stan-
dard primal-dual Mehrotra predictor-corrector method with Nesterov-Todd scaling and self-dual embedding
techniques for SOCP optimisation problems (Domahidi et al., 2013). ECOS employs sparse linear algebra
routines which make it one of the fastest methods currently available for solving convex conical problems
(Wang, 2019). ECOS is publicly available on GitHub1 and can be directly integrated into MATLAB and CVX.

5.1.4. NLP modelling tool: CasADi
In order to have a benchmark that delivers state-of-the-art performance, the decision was made to use a
tool that is currently used by research partner OHB: CasADi. CasADi is an open-source tool that can solve
NLP problems through interfacing to a variety of popular NLP solvers, such as Ipopt, BlockSQP, KNITRO, and
SNOPT (Andersson et al., 2018). In this sense, in a similar manner as CVX, it allows for rapid and straightfor-
ward modelling of nonlinear optimisation problems.

It is noted that the commercially available MATLAB-based GPOPS-II tool was often encountered in studies
on both SCP-based optimisation and on optimal spacecraft reorientation problems. GPOPS-II is typically
presented as the state-of-the-art tool used by researchers to obtain optimal reference solutions for complex
NLP problems. GPOPS-II applies Legendre-Gauss-Radau quadratic orthogonal collocation methods to tran-
scribe the continuous optimisation problem into a finite-dimensional numerical NLP problem. An adaptive
hp-pseudospectral mesh refinement strategy is employed to determine the number of mesh intervals and the
degree of the approximating polynomial in each interval. The resulting problem is then solved using known
and proven NLP solvers, such as Ipopt and SNOPT (Wang and Grant, 2016).

However, it was decided to use CasADi for this research project due to the fact that this tool is open-source and
that it is currently being used at OHB. Compared to computation times reported for GPOPS-II, it is expected
that CasADi delivers relatively high computational performance.

1https://github.com/embotech/ecos. Accessed on: 11-06-2021.
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5.1.5. NLP solving algorithm: Ipopt
Ipopt, also known as ‘Interior point optimiser’, is a popular NLP solving algorithm for large-scale nonlinear
optimisation algorithms (Wächter and Biegler, 2005). It implements a primal-dual interior point method,
uses (Leyffer and Fletcher) filter methods, and is well known to be one of the fastest NLP solving algorithms
(Mao et al., 2018b; Sagliano, 2019).

5.2. NLP benchmark algorithm
In this section, the main characteristics of the NLP benchmark algorithm are presented and discussed. Al-
though this optimisation algorithm is not the focus of this study, it is important to have a good understanding
of the characteristics and performance of this method to make a valid comparison between the performance
of the SCP and NLP algorithms. This section is divided into two parts. First, in Subsection 5.2.1, the discreti-
sation method is presented, followed by an elaboration regarding the enforcement of the constraints that are
imposed on the reorientation problem in Subsection 5.2.2.

5.2.1. Discretisation
The NLP benchmark algorithm that was used to obtain benchmark solutions for this study uses a so-called
pseudospectral (PS) transcription method. The class of pseudospectral NLP methods is well-known for having
highly efficient performance characteristics for a wide variety of nonlinear, non-convex optimisation prob-
lems (Sagliano, 2018).

There are a large number of families of pseudospectral transcription methods based on various sets of nodes,
such as the flipped Radau (fRPM), Lobatto (LPM), Chebyshev (Fahroo and Ross, 2002), or Gauss pseudospec-
tral methods (Sagliano, 2018). As the goal of this research project is not to identify the single-best pseudospec-
tral method, but rather to develop a proper benchmark for the evaluation of the SCP algorithm, the decision
was made to use the proven Chebyshev-Gauss-Legendre (CGL) transcription method used by research part-
ner OHB. For the sake of completeness, a general description of pseudospectral transcription methods is
provided in this subsection.

The main, shared characteristic of pseudospectral transcription methods is that they model and approximate
the state x and control u parameters with Lagrange polynomials. For all pseudospectral methods, a set D :={
ηi ∈ [−1,1]

}N
i=0 of discretisation nodes is defined that collectively form a non-uniform grid (Malyuta et al.,

2019). In this set, η is referred to as the pseudo-time. These nodes ηi are usually defined on the interval
[−1,1]. The pseudo-time η is transformed to real time t through

t (η) = t f (η+1)

2
(5.1)

where t f represents the final time of the manoeuvre. The state and control variables are approximated as
follows

x(η) =
N∑

i=0
x iφi (η), u(η) =

N∑
i=0

uiφi (η), where φi (η) :=
N∏

j=0
j 6=i

η−η j

ηi −η j
(5.2)

The functions φi are known as Lagrange interpolation basis polynomials of degree N . Furthermore, a set of
M collocation nodes C ⊆D is defined for M ≤ N +1. These collocation nodes are defined as the nodes where
the differential equations are imposed on the state and control variables. The specific set of collocation nodes
defines a certain pseudospectral method and forms the main difference with respect to the other methods
(Malyuta et al., 2019). To illustrate, there can be differences in the number of nodes and their location on
the interval [−1,1]. For every combination of C and D, there is an associated pseudospectral differentia-
tion matrix D ∈ RM×(N+1) (Garg, 2011), which imposes the differential (in this case: dynamic and kinematic)
constraints on the finite-dimensional basis of the Lagrange polynomials

ẋ ′ (η j
)= N∑

i=0
x iφ

′
i

(
η j

)= N∑
i=0

D j i x i , ∀ η j ∈C (5.3)

where j refers to the considered collocation node. As the differential ẋ ′ is defined with respect to pseudo-time
η in Equation 5.3, a temporal transformation has to be applied to relate the real-time differential equations
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of the system to the pseudo-time differential operator:

ẋ ′ = d x

dη
= d x

d t

d t

dη
= t f

2

d x

d t
= t f

2
ẋ (5.4)

At this point, the relation between the original system dynamics and the pseudospectral differential operator
can be obtained in the form

ẋ
(
η j

)= 2

t f

N∑
i=0

D j i x i , ∀ η j ∈C (5.5)

Put differently, this relation implies that the state derivative at a single point can be approximated by a certain
combination of the values of the state x at other discretisation nodes. Using barycentric Lagrange interpo-
lation (a fast and stable variant of Lagrange polynomial interpolation), the differentiation matrix D can be
computed within machine-rounding error (Berrut and Trefethen, 2004; Malyuta et al., 2019; Sagliano, 2018). It
must be noted, that to account for the non-uniformity of the pseudospectral grid, a so-called pseudospectral
weight vector for Clenshaw–Curtis quadrature w ps should be introduced to the discretised objective function
to accurately represent integrands (Sagliano et al., 2020):

J = wµ ·w T
psµ (5.6)

where J is the objective funciton, wµ is a standard weight factor, and µ ∈ RN+1 is some cost variable or func-
tion.

5.2.2. Constraint enforcement
The most straightforward way to enforce the problem constraints is to impose them on the grid nodes. How-
ever, this does not ensure that the constraints are satisfied on the inter-nodal segments of the grid. This
forms especially a challenge for the (CGL) pseudospectral NLP method implemented in this study, as its non-
uniform grid and corresponding large inter-nodal segments could lead to significant constraint violations. To
illustrate, in Figure 5.2, the grid of the CGL collocation method is shown for 15 grid points, a number that was
often used during this research project.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Pseudo time [-]

Figure 5.2: Discretisation nodes of the CGL grid.

To deal with this challenge, additional constraints were imposed on the problem in CasADi. Using a Lagrange
interpolation of several optimisation parameters, the box constraint on the angular rate and the ellipsoidal
constraint on the control were imposed on 30 linearly-spaced nodes. This was decided to enable a fair com-
parison with the SCP algorithm developed in this study, because its first-order-hold (FOH) control modelling
(Subsection 4.5.2) prevents any control violations whatsoever. In addition, the box constraint on the angular
rate was eventually enforced at 29 grid points for the SCP algorithm, as explained in Section 8.3. In order to
ensure that both the NLP and SCP algorithms impose angular rate constraints in a similar manner, for the NLP
algorithm it was decided to only enforce the rate constraints at the 30 linearly-spaced nodes (in hindsight, 29
would have led to a slightly fairer comparison), and not on the CGL discretisation nodes. The effectiveness
of this approach is illustrated in Figure 5.3, where the NLP control solution for a minimum-time, attitude-
constrained reorientation manoeuvre is shown, with and without the enforcement of the 30 linearly-spaced
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constraints. As visualised, this reference problem formulation includes a [10 10 5]T box constraint on the
control.
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(a) NLP benchmark control solutions obtained when the control constraint
is only enforced at the (CGL) discretisation nodes.
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(b) NLP benchmark control solutions obtained when the control constraint
is also enforced at 30 linearly-spaced discretisation nodes.

Figure 5.3: Control solutions obtained using the NLP benchmark algorithm for a reference minimum-time reorientation problem.

As can be observed in Figure 5.3, without enforcing the additional constraints (Figure 5.3a) one ends up with
NLP control profiles that violate the box constraint. These profiles, in reality, would not be executable through
the physical limitations of an attitude control system. Furthermore, the performance comparison performed
in this study would be less valid, as the control violations could lead to shorter manoeuvre durations than
would be feasible considering all constraints. As the SCP algorithm models the inter-nodal control in a linear
fashion, it does not face this same problem for this specific variable. However, as discussed in Chapter 7,
inter-nodal constraint violations are a challenge for the angular rate, attitude keep-out and attitude keep-in
constraints.

5.3. NLP benchmark algorithm verification and validation

As the NLP benchmark algorithm has a vital role in this study as reference point for the performance analysis
of the SCP algorithm, it is critical to verify that the NLP method that was implemented during this research
project delivers both correct and optimal results. To this end, in this section, three relevant reference cases
from literature are analysed. Then, the results obtained from the NLP algorithm are compared with the results
that were reported in the original studies.

5.3.1. Minimum-energy reorientation

Ventura et al. (2015) used the GPOPS-II solver in order to obtain a benchmark for the minimum-energy space-
craft reorientation problem. This test case was selected because of the use of the popular and proven GPOPS-
II solver and because Ventura et al. (2015) verified their results with the findings of Boyarko et al. (2011), who
used the same test case to benchmark a novel algorithm for optimal spacecraft reorientation. Furthermore,
both studies discussed their problem set-up and results to the extent that they could be replicated in this
study. The parameters (and results) of this test case are provided in Table 5.2.
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Table 5.2: Parameters of the minimum-energy reference test case (Ventura et al., 2015).

Parameter Value Unit
Inertia matrix I I3 kg m2

Maximum angular velocityωmax Unconstrained -
Maximum control torque umax [1,1,1]T Nm
Objective Minimum-energy -
Number of grid nodes 100 -
Initial attitude q 0 [0,0,0,1]T -

Final attitude q f

[
0,0,sin 1

2φ,cos 1
2φ

]T
, with φ= 180◦ -

Initial angular rateω0 [0,0,0]T rad/s
Final angular ateω f [0,0,0]T rad/s
Manoeuvre duration t f 10 s
Cost j 5.922·10−2 -

In Table 5.3, the results are provided that were obtained through solving the optimisation problem defined by
the parameters from Table 5.2 with the NLP algorithm that was implemented in this study.

Table 5.3: Benchmark verification results of the minimum-energy test case.

Method Cost J Difference [%]
GPOPS (Ventura et al., 2015) 5.922 ·10−2 -
NLP benchmark algorithm (CGL PS method) 5.920 ·10−2 −3.38 ·10−2

As can be observed in Table 5.3, the solution of the NLP benchmark algorithm is almost equal to the reference
solution. The small difference could be explained by several factors. For instance, it could be explained by
the fact that GPOPS-II uses a different (hp-adaptive) grid than the NLP benchmark algorithm. Another cause
could be the method that was used to integrate the obtained control profiles to obtain the energy (cost). How-
ever, for the purpose of serving as the benchmark for this study, this difference is more than acceptable, as the
expected differences between the SCP and NLP benchmark algorithms in terms of optimality are significantly
higher. For the purpose of visualising the verification process, Figures 5.4 and 5.5 show the control profiles
that were obtained using both methods.

(a) u1 control profile (referred to with Tx ). (b) u2 control profile (referred to with Ty ). (c) u3 control profile (referred to with Tz ).

Figure 5.4: Reference control profiles for the minimum-energy reorientation test case from Table 5.2 (Ventura et al., 2015).
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(a) u1 control profile.
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(b) u2 control profile.
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(c) u3 control profile.

Figure 5.5: Control profiles for the minimum-energy reorientation test case from Table 5.2 which were obtained using the NLP
benchmark algorithm.



60 5. Algorithm Implementation

The control profiles of both methods can be seen to match closely. In addition, it can be observed that only the
u3 control parameter has a non-zero magnitude, which could have been expected since a symmetric inertia
matrix I was used, and the specified manoeuvre represents a 180◦ rotation around the body-fixed z-axis.

5.3.2. Minimum-time reorientation

Both Ventura et al. (2015) and Boyarko et al. (2011) also extensively studied the minimum-time attitude guid-
ance problem. Table 5.4 presents an overview of the parameters and the obtained results of one of the test
cases that were analysed in these studies. Again, this problem was solved using the reliable and proven
GPOPS-II tool.

Table 5.4: Parameters of the minimum-time reference test case (Boyarko et al., 2011).

Parameter Value Unit
Inertia matrix I I3 kg m2

Maximum angular velocityωmax Unconstrained -
Maximum control torque umax [1,1,1]T Nm
Objective Minimum-time -
Number of grid nodes 100 -
Initial attitude q 0 [0,0,0,1]T -

Final attitude q f

[
0,0,sin 1

2φ,cos 1
2φ

]T
, with φ= 180◦ -

Initial angular velocityω0 [0,0,0]T rad/s
Final angular velocityω f [0,0,0]T rad/s
Cost t f 3.243 s

It can be noted that the problem that is presented in Table 5.4 only differs from the minimum-energy prob-
lem from Subsection 5.3.1 with respect to the objective of the optimisation problem (minimum-time instead
of minimum-energy). Table 5.5 shows the results that were obtained using the different optimisation algo-
rithms.

Table 5.5: Benchmark verification results of the minimum-time test case (Ventura et al., 2015).

Method Cost J = t f [s] Difference [%]
GPOPS (Boyarko et al., 2011) 3.243 -
GPOPS (Ventura et al., 2015) 3.243 -
NLP benchmark algorithm (CGL PS method) 3.2599 0.5

It can be seen that the difference between the cost of the reference algorithm and the NLP benchmark al-
gorithm is higher than for the minimum-energy problem. However, this difference can be explained by the
fact that the NLP benchmark algorithm used only 30 instead of 100 grid points. As can be seen through com-
paring the control profiles shown in Figures 5.6 and 5.7, this causes the solution of the NLP algorithm to be
characterised by more gradual changes in the control profiles at the switch points between the maximum
and minimum control magnitudes. As a result, the discrete steps in the optimal control profiles cannot be
represented as accurately. The reason for only using 30 grid points was that the NLP algorithm was found to
become unstable for large numbers of grid points (more than 40). However, as the NLP algorithm in this study
only uses 10 - 20 discretisation nodes, this was found not to pose a problem for its application as benchmark
algorithm.

Because the SCP algorithm found the optimal solution to the reorientation test case that corresponds to its
number of grid points KNLP, the NLP benchmark algorithm was considered to be verified.
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(a) u1 control profile (referred to with Tx ). (b) u2 control profile (referred to with Ty ). (c) u3 control profile (referred to with Tz ).

Figure 5.6: Reference control profiles for the minimum-time reorientation test case from Table 5.4 (Ventura et al., 2015). The different
profiles and symbols correspond to the three different optimisation methods that were studied. The control solution with the

?-symbols represents the reference solution of the GPOPS-II solver that is of interest to this verification analysis.
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(a) u1 control profile.
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(b) u2 control profile.
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(c) u3 control profile.

Figure 5.7: Control profiles for the minimum-time reorientation test case from Table 5.4, which were obtained using the NLP
benchmark algorithm. The oscillatory behaviour of these control profiles is known as the Gibbs phenomenon.

5.3.3. Minimum-energy, attitude keep-out constrained reorientation
In addition to the attitude-unconstrained minimum-energy and minimum-time verification test cases stud-
ied in the previous subsections, a final test case was performed in order to verify (1) that the keep-out con-
straints in this study are correctly formulated and (2) that the NLP benchmark algorithm satisfies this type of
constraints. To this end, a suitable minimum-energy, attitude keep-out constrained spacecraft reorientation
problem was identified, which was solved using a variety of methods in studies of Spiller et al. (2018), Virgili-
Llop et al. (2018), and Virgili-Llop et al. (2018). The fact that this case had been solved by multiple authors
was determined to provide enough confidence regarding its correctness. The problem parameters of this test
case are provided in Table 5.6.

Table 5.6: Parameters of the minimum-energy, attitude keep-out constrained verification test case (Virgili-Llop et al., 2018).

Parameter Value Unit
Inertia matrix I diag([3000 4500 6000]) kg m2

Maximum angular velocityωmax Unconstrained -
Maximum control torque umax 0.25 Nm
Objective Minimum-energy -
Number of grid nodes 25 -
Instrument boresight xB [0,−sinξ,−cosξ]T with ξ= 38◦ -
Exclusion cone 1, y out,1 [cosαcosβ,cosαsinβ, sinα]T ,α=−54◦,β=−171.9◦,θ1 = 40◦ -
Exclusion cone 2, y out,2 [cosαcosβ,cosαsinβ, sinα]T ,α=−64.8◦,β=−18◦,θ2 = 19◦ -
Initial attitude q 0 [0,0,0,1]T -
Final attitude q f [0.866,0.500,0,0]T -
Initial angular velocityω0 [0,0,0]T rad/s
Final angular velocityω f [0,0,0]T rad/s
Manoeuvre duration t f 10 τt s
Cost J 0.01631 τ2

uτt -

In Table 5.6, it can be seen that several problem parameters are formulated in a different manner than in
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other parts of this work. For the purpose of reproducibility, it was decided to adhere to the original formu-
lation of Virgili-Llop et al. (2018) as much as possible. In line with the original formulation, τu = umax and
τt =

p
Ix /umax represent normalisation factors for the control and time parameters. Finally, it is noted that

these reference studies used the Classical Rodrigues attitude parameterisation. Therefore, q 0 and q f had to
be obtained using a parameter conversion process. Table 5.7 presents the (performance) results that were
obtained using the different optimisation methods. For the sake of completeness, the solution of the SCP
algorithm developed in this study was also included. However, the performance of this algorithm is not dis-
cussed in this subsection, as it is extensively studied in Chapters 7 to 9.

Table 5.7: Benchmark verification results of the minimum-energy, attitude keep-out constrained test case.

Method Cost J [-] Difference [%]
GPOPS (Virgili-Llop et al., 2018) 0.01631 τ2

uτt 0
PSO (average) (Spiller et al., 2018) 0.01628 τ2

uτt -0.18
SCP reference (Virgili-Llop et al., 2018) 0.01643 τ2

uτt 0.74
NLP Benchmark CGL-PS method (NLP benchmark) 0.01635 τ2

uτt 0.26
SCP (this study) 0.01635 τ2

uτt 0.26

In Table 5.7, it can be observed that all results are very similar. The main takeaway is that the NLP benchmark
algorithm delivers practically the same cost as the GPOPS-II NLP solver that was used in both reference stud-
ies. The fact that there is a slight difference between the GPOPS and NLP benchmark solutions is not a major
issue, as the focus of this study is rather to assess whether the SCP algorithm can provide solutions that are
optimal (in the order of a few percent), than assessing whether that solution is optimal within 0.1%. There
could be a variety of causes for the difference in optimality that can be observed. It could result, for instance,
from the fact that the reference studies use an hp-adaptive pseudospectral discretisation method, Classical
Rodrigues parameters instead of quaternions, an alternative approach to calculating the final performance,
constraint violations, or, perhaps, a different approach to formulating and enforcing the conical keep-out
constraints.

To visualise these results, in Figure 5.8, the optimal control profiles are shown for the SCP approach from
Virgili-Llop et al. (2018) (Figure 5.8a), the NLP benchmark algorithm (Figure 5.8b), and the SCP algorithm
developed in this study (Figure 5.8b, coloured lines). The control profiles of the reference SCP algorithm of
Virgili-Llop et al. (2018) are shown (instead of the more optimal profiles of the GPOPS-II algorithm), as these
were the only profiles provided in the reference studies.

(a) Control solution of the reference SCP algorithm developed in the study
of Virgili-Llop et al. (2018). The torque and time are dimensionless.
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(b) Control solution of the SCP and NLP benchmark algorithms developed
in this study.

Figure 5.8: Control profiles for the minimum-energy, keep-out constrained reorientation test case from Table 5.7 which were obtained
using the SCP reference, the NLP benchmark and the SCP algorithms. It should be noted that the axes of Figure 5.8a are dimensionless

while the axes of Figure 5.8b are not.

The similarities between the control profiles in Figure 5.8 confirm that the the NLP benchmark algorithm
found a locally optimal solution. It can be seen in Figure 5.8a that Virgili-Llop et al. (2018) imposed a zero-
order-hold on the control as part of the SCP algorithm that was developed in their study, in contrast to the
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first-order-hold modelling implemented in this study. It is thought to be likely that this feature is one of the
main causes of the performance difference between the optimality of their SCP algorithm and the optimality
of the corresponding GPOPS-II solution in Table 5.7. Interestingly, while the obtained u1 and u2 control
profiles can be observed to match closely between the solutions of the NLP benchmark and the reference
SCP methods, the u3 control can be observed to differ significantly.

5.4. Direct ECOS implementation
As was shown in Figure 5.1, initially, the convex optimisation sub-problems of the SCP algorithm were re-
formulated into an ECOS-compatible format using the modelling tool CVX. Using such a modelling (or in-
terfacing) tool allows for rapid development, testing and many design iterations. However, the process of
reformulating an optimisation problem into an ECOS-compatible format, as performed by CVX, is extremely
slow, with run times that are typically three orders of magnitude larger (seconds) than the computation times
of ECOS (milliseconds). Furthermore, in contrast to ECOS, CVX cannot be run on embedded hardware, which
is a prerequisite for onboard, autonomous applications of the SCP algorithm. Therefore, it was considered
an interesting research direction to get a thorough understanding of how the CVX step could be eliminated
and how ECOS could be implemented directly into the SCP algorithm. Thereby, the SCP algorithm would be
brought one step closer to actual implementation.

In this section, it will be discussed how the convex spacecraft reorientation sub-problems were reformulated
into a form that could be solved directly with the ECOS convex solving algorithm. This direct ECOS imple-
mentation has only been performed in a limited number of studies in the context of SCP and has practically
never been documented in a detailed manner. Therefore, it was decided that for future work, it would be
helpful to describe the process of implementing ECOS directly with a high level of detail.

5.4.1. ECOS requirements
In order to understand how the optimal spacecraft reorientation problems from Subsections 4.10.1 and 4.10.2
can be solved without resorting to a modelling tool such as CVX, the first step is to understand the type of
input which is required by ECOS. ECOS solves problems of the type

minimise c T
0 xe

subject to Axe = b, Gxe ¹K h
(5.7)

where the cone K can represent the product of three different types of cones (Domahidi and Jerez, 2015;
Reynolds et al., 2020a):

• K ,Rn+, where Rn+ ,
{

x ∈Rn | x ≥ 0
}

is a linear cone of dimension n.

• Qn1
1 ×Qn2

1 ×·· ·×QnM
M , where Qn ,

{
(t , x) ∈RdQ,n | ‖x‖2 ≤ t

}
is a second-order cone of dimension dQ,n .

• E1 ×E2 × . . .EN , where every E , cl
{
(x, y, z) ∈R3 | ex/z ≤ y/z, z > 0

}
is an exponential cone.

Put differently, the Gxe ¹K h inequality constraint can incorporate a range of different conical inequality
constraints, including linear, (reformulated) quadratic and SOCP constraints. For the formulation of the
spacecraft reorientation problem considered in this study, only the linear and second-order cone constraint
types are used. The problem formulation presented in Equation 5.7 is exactly how the convex sub-problems,
which need to be solved in the SCP algorithm, have to be formulated. In other words, an approach had to be
found to include all elements of the optimal spacecraft reorientation problem, such as the boundary condi-
tions, constraints, dynamics and objective function, in the vectors c T

0 , b and h, and the matrices A and G . In
this section, this process is outlined for the minimum-time, attitude-constrained reorientation problem from
Subsection 4.10.2. This reformulation process is very similar for the minimum-energy reorientation problem,
so it was decided to only highlight the major differences in this section for the sake of conciseness.

5.4.2. Optimisation parameters
For the direct ECOS implementation, all optimisation parameters, including slack variables, need to be com-
bined into a single vector xe , in line with the problem format from Equation 5.7. For the minimum-time
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reorientation problem of Subsection 4.10.2, this results in the following vector of optimisation parameters:

xe =



x
u
η

ν+
ν−
µx
µu
λx

λu


(5.8)

where
x = [

x1,1 x1,2 . . . x1,7 x2,1 . . . xK ,nx

]T
(5.9)

u = [
u1,1 u1,2 u1,3 u2,1 u2,2 . . . uK ,nu

]T
(5.10)

η= η (5.11)

ν+ = [
ν1,1 ν1,2 . . . ν1,7 ν2,1 . . . νK ,nx

]T
(5.12)

ν− = [
ν1,1 ν1,2 . . . ν1,7 ν2,1 . . . νK ,nx

]T
(5.13)

µx = [
µx,1,1 µx,1,2 . . . µx,1,7 µx,2,1 . . . µx,K ,nx

]T
(5.14)

µu = [
µu,1,1 µu,1,2 µu,1,3 µu,2,1 µu,2,2 . . . µu,K ,nu

]T
(5.15)

λx = [
λx,1 λx,2 . . . λx,K

]T
(5.16)

λu = [
λu,1 λu,2 . . . λu,K

]T
(5.17)

where x , u and η represent the state, control and time dilation factor,ν+ andν− are required to implement the
virtual control L1-norm in the objective function, andµx ,µu ,λx , andλu are four slack variables required for
the implementation of the trust region of Section 4.7. To enable the reader to obtain a better understanding
of the structure of this vector, the sizes of its respective elements can be provided as

xe =



x
u
η

ν+
ν−
µx
µu
λx

λu


∈



RK nx×1

RK nu×1

R1

RK nx×1

RK nx×1

RK nx×1

RK nu×1

RK×1

RK×1


(5.18)

It is interesting to observe that the virtual-control and trust-region techniques add a significant number of
optimisation parameters to the spacecraft reorientation problem.

5.4.3. Boundary conditions
The boundary conditions of the spacecraft reorientation problem can be formulated in a relatively straight-
forward manner, where the major challenge is to select the optimisation variables at the boundary points of
the grid through the A matrix of Equation 5.7. The subsets Abc,0 and Abc, f of A, and bbc,0 and bbc, f of b were
formulated as

Abc,0 =
[ x︷ ︸︸ ︷[

Inx 0nx×(K−1)nx

] u︷ ︸︸ ︷
0nx×K nu

η︷︸︸︷
0

ν+︷ ︸︸ ︷
0nx×K nx

ν−︷ ︸︸ ︷
0nx×K nx

µx , µu ,λx ,λu︷ ︸︸ ︷
0nx×K (nx+nu+2)

]
(5.19)

bbc,0 =
[

q 0
ω0

]
(5.20)
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Abc, f =
[[

0nx×(K−1)nx Inx

]
0nx×K nu 0 0nx×K nx 0nx×K nx 0nx×K (nx+nu+2)

]
(5.21)

bbc, f =
[

q f (η̄)
ω f (η̄)

]
(5.22)

In Equation 5.19, the relation between the elements in matrix Abc,0 and the vector of optimisation parameters
xe is shown for the sake of clarity. In the remainder of this section, this relation is not shown for all matrices
that are presented for the sake of conciseness. Furthermore, where possible, matrices and vectors will be
presented in forms that are somewhat more concise.

5.4.4. Dynamics and kinematics
The dynamic and kinematic constraints from Equation 4.72 are incorporated into the ECOS equality con-
straint matrix A and vector b as

Adyn = [
Aecos Becos Cecos 1K nx 0K nx 0K nx×K (nx+nu+2)

]
(5.23)

bdyn =


−r 1

−r 2
...
−r K

 (5.24)

where

Aecos =


A1 −Inx 0 · · · 0 0
0 A2 −Inx · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · AK−1 −Inx

 (5.25)

Becos =


B−

1 B+
1 0 · · · 0 0

0 B−
2 B+

2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · B−

K−1 B+
K−1

 (5.26)

Cecos =


C1

C2
...

CK−1

 (5.27)

As can be observed and will be further elaborated upon in Subsection 5.4.7, only theν+ virtual control param-
eter is included in Adyn. Consequently, ν+ represents the virtual control variable as defined in Equation 4.72,
andν− is solely introduced in order to include the L1−norm in the ECOS-compatible objective function (Sub-
section 5.4.7).

5.4.5. Linear inequality constraints
Linear inequality constraints can be modelled in an ECOS-compatible manner (Gxe ¹K h) in a relatively
straightforward manner. For illustration purposes, this process is described in this subsection for the angular
rate box constraint, which can be formulated as

Glin,ω,boxxe ¹K hlin,ω,box (5.28)

This equation can be expanded as[
Glin,ω,box,1 02(3K )×K nu 0 02(3K )×K nx 02(3K )×K nx 02(3K )×K (nx+nu+2)

]
xe ¹K hlin,ω,box (5.29)
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where

Glin,ω,box,1 =



[03×4 I3] 0 · · · 0
0 [03×4 I3] · · · 0
...

...
. . .

...
0 0 · · · [03×4 I3]

[03×4 − I3] 0 · · · 0
0 [03×4 − I3] · · · 0
...

...
. . .

...
0 0 · · · [03×4 − I3]


, hlin,ω,box =



ωbox

ωbox
...
ωbox

ωbox

ωbox
...
ωbox


(5.30)

Glin,ω,box,1 consists of two parts in order to account for both the upper and lower bound on the angular rate
of the spacecraft. In a similar fashion, Glin,u,box and hlin,u,box can be obtained for the box constraint on the
control. Furthermore, it is possible to impose the hard trust-region constraint δη on the time dilation factor
η, which was presented in Section 4.7, as

Glin,δηxe ¹K hlin,δη (5.31)[
01×K nx 01×K nu 1 01×2K nx 01×K (nx+nu+2)

01×K nx 01×K nu −1 01×2K nx 01×K (nx+nu+2)

]
xe ¹K

[
(1+δη)η̄
−(1−δη)η̄

]
(5.32)

5.4.6. SOCP constraints
Several SOCP constraints had to be formulated in order to incorporate various elements of the attitude re-
orientation problems considered in this study: the ellipsoidal constraint on the control, the conical attitude
constraints, the minimum-energy objective, and constraints related to the trust region. This subsection out-
lines the procedure that was followed to formulate these SOCP constraints. An important step in this process
is to reformulate the general second-order cone constraint of Equation 2.12, ‖Ax +b‖2 ≤ c Tx +d into the
form Gxe ¹K h. For this purpose, a reformulation presented in the work of Wenzel and Seelbinder (2017) was
used, which can be represented as [ −A

−c T

]
xe ¹

[
b
d

]
(5.33)

where A, b, c , and d represent the same vectors and matrices as in Equation 2.12. The desired formulation,
Gxe ¹K h, could be obtained after defining

G =
[ −A

−c T

]
, and h =

[
b
d

]
(5.34)

As an example, the ellipsoidal constraint on the control for a single grid point k can be formulated as

G2-cone,u,ellipse,k xe ¹K h2-cone,u,ellipse,k (5.35)

which can be further expanded into[
01×K nx G2-cone,u,ellipse,k,1 01×1 01×K nx 01×K nx 01×K (nx+nu+2)

01×nz

]
xe ¹K h2-cone,u,ellipse,k (5.36)

where

G2-cone,u,ellipse,k,1 =
[

01×K nx 01×nu (k−1) u−1
ellipseI3 0 · · · 0

]
(5.37)

h2-cone,ω,ellipse,k =
[

0
1

]
(5.38)

In other words, for every grid point k, G2-cone,u,ellipse,k and h2-cone,u,ellipse,k are generated and appended to the
matrix G and vector h. In order to communicate the size of these constraints to ECOS, their number of rows
is saved as an input variable for the solver as

dims.q(k) = size(G2-cone,u,ellipse,k ) (5.39)
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where ‘dims’ is an input variable for the ECOS solver. In this way G2-cone,u,ellipse can be constructed as

G2-cone,u,ellipse =

 G2-cone,u,ellipse,1
...

G2-cone,u,ellipse,K

 (5.40)

and h2-cone,u,ellipse as

h2-cone,u,ellipse =

 h2-cone,u,ellipse,1
...

h2-cone,u,ellipse,K

 (5.41)

In a similar manner, the conical attitude keep-out and keep-in constraints can be represented in an ECOS-
compatible format. All of these constraints are then collected in the G2-cone matrix and h2-cone vector as

G2-cone =
 G2-cone,u,ellipse

G2-cone,keepout

G2-cone,keepin

 (5.42)

and

h2-cone =
 h2-cone,u,ellipse

h2-cone,keepout

h2-cone,keepin

 (5.43)

5.4.7. Virtual control
As was discussed in Subsection 5.4.2, the virtual control term is represented using two different variables, ν+
and ν− in the ECOS problem formulation. This is required to impose the L1-norm in the problem objective in
a manner that meets the ECOS format of Equation 5.7. Several steps were taken to implement this L1-norm.
The first step was to only include the ν+ variable in the dynamic and kinematic equality constraints from
Equation 5.23. Consequently, this variable ν+ represents the actual sign of the virtual control from Equa-
tion 4.72, which can either be positive or negative. However, to impose the L1-norm in the linear objective
function, the negative values have to be reformulated into their positive counterparts. For this purpose, the
ν− parameter was introduced, following a strategy proposed by Reynolds et al. (2020a). Then, through the
introduction of 2K nx inequality constraints, the ν− parameter was defined as a positive outer bound on the
virtual control. This scheme can be represented as

−ν− ≤ν+ ≤ν− (5.44)

In other words, while ν+ can have either a positive or negative sign, ν− is always strictly positive. In practice,
the corresponding (linear) ECOS constraints can be formulated as

Glin,νxe ¹K hlin,ν (5.45)

where

Glin,ν =
[

0K nx×K nx 0K nx×K nu 0 IK nx −IK nx 0K nx×K (nx+nu+2)

0K nx×K nx 0K nx×K nu 0 −IK nx −IK nx 0K nx×K (nx+nu+2)

]
(5.46)

hlin,ν =
[

0K nx×1

0K nx×1

]
(5.47)

5.4.8. Trust region
To implement the L2-norm type trust region as presented in Section 4.7, additional slack variables, equality
constraints and inequality constraints were introduced to the convex optimisation problem. First, in order
to obtain the state and control difference between the optimisation parameters x and u and their respective
reference trajectories x̄ and ū, the parameters µx ∈RK nx and µu ∈RK nu were introduced and defined using a
set of equality constraints. These parameters are defined as

µx = x − x̄ , µu = u − ū (5.48)
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Or, in an equality-constraint formulation that is ECOS-compatible, as

Atr,x = [ x︷ ︸︸ ︷
−IK nx

u, η, ν+, ν−︷ ︸︸ ︷
0K nx×(K nu+1+K nx+K nx )

µx︷︸︸︷
IK nx

µu ,λx ,λu︷ ︸︸ ︷
0K nx×(K nu+K+K )

]
(5.49)

btr,x = [ −x̄ ] (5.50)

In a similar fashion, Atr,u and btr,u could be obtained. Afterwards, the second set of trust region-related slack
variables, λx ∈ RK and λu ∈ RK , were used to obtain the L2-norm at every single grid point for both the
state and control deviations through the implementation of a number of SOCP constraints. To illustrate, the
corresponding inequality constraint for the state deviation at a single grid node k can be formulated as

‖µx,k‖2 ¹λx,k (5.51)

Or, in the conical form that is ECOS-compatible, as

G2-cone,tr,x,k =
[ · · ·

µx︷ ︸︸ ︷
01×K nx

µu︷ ︸︸ ︷
01×K nu

λx︷ ︸︸ ︷
[01×(k−1) 1 01×(K−k)]

λu︷ ︸︸ ︷
01×K

· · · [0nx×nx (k−1) Inx 0nx×nx (K−k)] 0nx×K nu 0nx×K 0nx×K

]
(5.52)

h2-cone,tr,x,k =
[

0
0nx×1

]
(5.53)

Such a conical constraint was formulated for every element of λx and λu , and these were appended to the
G matrix and h vector of Equation 5.7. As a final step, λx and λu were directly penalised in the objective
function to enforce the trust region, as shown in Subsection 5.4.9.

In hindsight, it is thought that an alternative approach could have been taken to implement this type of trust
region, which does not require the introduction of the slack variables µx and µu . Instead, the reference vari-
ables x̄ and ū could be directly included in the SOCP constraints (Equation 5.52 and Equation 5.53) through
the b-term from Equation 5.33. Potentially, this alternative approach could improve the computational effi-
ciency of the SCP algorithm due to the reduced size of the corresponding optimisation problem. Comparing
the performance of both approaches is left as a recommendation for further research.

5.4.9. Objective function
The minimum-time objective function from Subsection 4.10.2 can now be formulated in its required linear
form as

c T
0 = [ x︷ ︸︸ ︷

01×K nx

u︷ ︸︸ ︷
01×K nu

η︷︸︸︷
wη

ν+︷ ︸︸ ︷
01×K nx

ν−︷ ︸︸ ︷
wvc ·11×K nx

µx , µu︷ ︸︸ ︷
01×K (nx+nu )

λx ,λu︷ ︸︸ ︷
wtr ·11×2K

]
(5.54)

It becomes clear that through using this approach the virtual control is penalised through an L1-norm.

The main difference between the ECOS implementations of the minimum-time and minimum-energy re-
orientation problems can be traced back to this objective function. For the minimum-energy problem, the
time-dilation factor η is replaced in the vector of optimisation parameters with the slack variable su . This
slack variable su represents the energy that is required for the reorientation manoeuvre through the following
SOCP constraint

G2-cone,u xe ¹K h2-cone,u (5.55)

which was formulated in the manner presented in Subsection 5.4.6.

5.4.10. Full formulation
As noted in Subsection 5.4.1, the goal of this subsection was to obtain the vectors c T

0 , b and h, and the matrices
A and G that are required to solve the spacecraft reorientation problem studied in this research project using
the convex solving algorithm ECOS. Using the expressions from the previous subsections, these parameters
can now be obtained (for the minimum-time problem) as

A =


Abc,0

Adyn

Abc, f

Atr,x

Atr,u

 , b =


bbc,0

bdyn

bbc, f

btr,x

btr,u

 (5.56)
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and

G =



Glin,ω,box

Glin,u,box

Glin,δη
Glin,ν

G2-cone

G2-cone,tr,x

G2-cone,tr,u


, h =



hlin,ω,box

hlin,u,box

hlin,δη
hlin,ν

h2-cone

h2-cone,tr,x

h2-cone,tr,u


(5.57)

The resulting A and G matrices are shown in, respectively, Figures 5.9 and 5.10. It can be observed that
both matrices are highly sparse, which is the main reason that the SCP algorithm combined with the FOH
discretisation method excels in terms of computational efficiency.
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Figure 5.9: Resulting A matrix for the ECOS solving algorithm for the minimum-time, attitude-constrained reorientation problem
(1.19% non-zero elements). The problem has 542 optimisation parameters.
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Figure 5.10: Resulting G matrix for the ECOS solving algorithm for the minimum-time, attitude-constrained reorientation problem
(0.24% non-zero elements). The problem has 542 optimisation parameters.
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6
Monte Carlo Test Campaign Set-up

As stated before, the goal of this study is to develop an SCP-based optimisation algorithm that can reliably
solve the optimal spacecraft reorientation problem in real time. To this end, it was determined that a well-
structured Monte Carlo analysis would be essential to:

1. Analyse the influence of different design choices and algorithm parameters on the performance of the
SCP algorithm (Chapter 8).

2. Develop an in-depth understanding of the performance of the SCP algorithm in terms of the require-
ments that were identified in Section 3.7 (Chapter 9).

In this chapter, the approach towards the generation of the Monte Carlo test cases is briefly outlined in Sec-
tion 6.1, and, in Section 6.2, it is discussed how the Monte Carlo results were used to evaluate the performance
of the SCP algorithm. Two examples of these Monte Carlo tests cases are provided, verified, and studied in
Chapter 7.

6.1. Problem generation
For each test case within the Monte Carlo analyses, it was desired to formulate a unique, complex spacecraft
reorientation problem. In this section, it is briefly discussed how these cases were generated. The Monte
Carlo test cases correspond to the minimum-energy and minimum-time optimisation problems that were
introduced in Section 3.6. Having an understanding of the structure of these Monte Carlo cases can assist
in the interpretation of the results provided in later chapters. The elements included in the Monte Carlo test
cases are:

• Spacecraft parameters
For the satellite reorientation problem studied in this project, the only relevant satellite parameter is its
inertia matrix. Together with research partner OHB, a (constant) reference value was selected for this
parameter.

• Boundary conditions
For every Monte Carlo test case, random initial and final states were generated. In this process, it was
ensured that the angular rate conditions satisfied the corresponding box constraint. The resulting ma-
noeuvres represent attitude rotations of up to 180 degrees. For the time-dependent boundary condi-
tions, four different final boundaries were generated that represent the boundary conditions at t = 0 s,
t = 40 s, t = 80 s, and t = 120 s. The boundary conditions for other values of the manoeuvre duration t f

could be obtained through interpolating these four points with a third-order polynomial.

• Manoeuvre duration
For the minimum-energy problem, a final time t f was specified.

• Constraints
For both the box and angular rate constraints, constant values were used. Furthermore, an attitude
keep-out constraint was formulated for the (body-fixed) x-axis of the considered spacecraft. To make

71
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the Monte Carlo test cases as complex as possible, this attitude keep-out constraint was always located
at the midpoint of the great-circle segment that connected the x-axis of the spacecraft at the start and
end of its manoeuvre on the unit sphere. Finally, an attitude keep-in constraint was formulated for the
(body-fixed) z-axis of the spacecraft. The magnitude of the separation angles corresponding to these
attitude constraints varied among the Monte Carlo cases.

As stated earlier, an example of a minimum-energy and a minimum-time Monte Carlo test case are provided
in Chapter 7. It is noted that the problems formulated in Section 3.6 include both attitude keep-out and keep-
in constraints. In this study, this problem formulation is referred to as the attitude-constrained reorientation
problem. The two other problem types studied in the remainder of this report are listed in Table 6.1.

Table 6.1: The three different problem types studied in this work.

Problem type Attitude constraints
Attitude-unconstrained reorientation No attitude constraints
Attitude keep-out constrained reorientation Keep-out attitude constraint
Attitude-constrained reorientation Both keep-out and keep-in attitude constraints

Apart from the constraints on the attitude, the Monte Carlo test cases corresponding to these different prob-
lem types are identical.

6.2. Performance evaluation
In this section, it is briefly discussed how the algorithm requirements and criteria introduced in Section 3.7
were measured and visualised for the Monte Carlo analyses.

6.2.1. Performance metrics
The five performance requirements for an onboard optimisation algorithm for the spacecraft reorientation
problem that were identified in Section 3.7 are evaluated in the Monte Carlo analyses through the following
parameters:

• Robustness
The robustness of the SCP algorithm is evaluated directly through the convergence rate that was ob-
tained from the Monte Carlo analyses. The convergence rate is defined as the rate of cases for which
the SCP algorithm was able to find a solution that meets all convergence criteria from Section 4.9.

• Optimality
There exists, unfortunately, no objective standard of the ‘true’ optimal guidance solution for a certain
Monte Carlo test case. Therefore, in order to be able to draw conclusions about the performance of the
SCP algorithm regarding optimality, a reference solution was required. To provide this reference solu-
tion, all Monte Carlo test cases were also solved with the NLP benchmark algorithm from Section 5.2.
The reputation of NLP optimisation methods as the standard for finding optimal solutions (Boyarko
et al., 2011; Ventura et al., 2015) was considered to be sufficient for answering the research questions of
this study. In this manner, the optimality of the SCP algorithm is evaluated as

optimality = JSCP − JNLP

JNLP
·100% (6.1)

• Computational efficiency
The computational efficiency of the SCP algorithm is evaluated through the computation times that
were required to solve the Monte Carlo test cases. However, this is not as straightforward as it seems,
as simply measuring the time that is required in MATLAB to solve the entire SCP routine is no accurate
representation of the efficiency of the SCP algorithm regarding onboard applications. The reason for
this is that MATLAB is known to be significantly slower than the compiled language (e.g., C) that would
be used for an onboard implementation. Therefore, it was decided that a combination of the two most
time-consuming steps in the algorithm would result in a more accurate evaluation. These two steps
consist of (1) the runtimes that are reported by the ECOS convex solving algorithm for every convex
sub-problem that is solved and (2) the time required for performing the discretisation of the problem
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dynamics and kinematics. Both steps are performed using compiled code and, therefore, do not suffer
from the low computational efficiency of MATLAB. This approach is in accordance with most studies
on sequential convex programming (Reynolds et al., 2020a; Sagliano, 2019; Szmuk et al., 2020).

• Accuracy
The accuracy of the SCP guidance solutions is evaluated by propagating the control solutions of the
SCP algorithm with the ODE45 function in MATLAB. The settings that were used are: ‘RelTol’ = 1×10−10

and ‘AbsTol’ = 1×10−10. The final quaternion that results from this propagation is then compared to
the quaternion specified by the boundary condition. The resulting difference is expressed as the ro-
tation angle between both quaternions. In this manner, the accuracy of the SCP algorithm is assessed
through the error in the solution of an initial value problem. It should be noted that, in reality, a con-
troller tracks the guidance results (q and ω). Consequently, the fact that these propagation errors exist
does not mean that, in practice, the spacecraft would end up off-pointing with respect to a specified tar-
get. However, these propagation errors are a good indication of the accuracy of the obtained guidance
results.

• Constraint violations
Using the results that are obtained from the propagation of the spacecraft dynamics, the inter-nodal
constraint violations can be calculated for the angular rate and attitude constraints. The rate violations
are expressed in percentages, while the attitude violations are expressed in degrees, for the sake of
intuitiveness.

6.2.2. Presentation of results
Several options were considered to present the results of the Monte Carlo analyses, amongst others, tables
and histograms. However, after some experimentation, it was found that box plots provided the most intuitive
and fast way to distinguish trends and make observations. In addition, box plots provide insight into both the
median or typical performance of the algorithm and the characteristics of certain outliers. These outliers are
very important for onboard applications, as unpredictable performance can lead to problems regarding the
mission that a spacecraft is part of. In Figure 6.1, the legend is provided containing all box plot elements that
are presented in the remainder of this study.

Median
25% - 75%
Whisker (max. 1.5 x interquartile range (IQR))
Outlier (outside 1.5 x IQR)
98th percentile

Figure 6.1: Legend for the box plots representing the performance of the SCP algorithm in the Monte Carlo analyses.

In these box plots, the interquartile range (IQR) represents the difference between the 25th and 75th per-
centile (boxes in the figures). All data points outside of a range of 1.5 × IQR from the 25th and 75th percentile
are considered to be outliers. For some analyses, not all elements of Figure 6.1 are shown. For instance, the
outliers are sometimes omitted to focus on the mean performance.
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7
Single Case Analyses

In this chapter, the performance of the SCP algorithm is analysed on a single-case level in order to obtain an
initial understanding of the characteristics and performance of the SCP guidance algorithm that was intro-
duced in Chapters 4 and 5. Furthermore, the resulting guidance trajectories are verified using the results of
the NLP benchmark algorithm and through an analysis of the problem constraints. The attitude-constrained
minimum-energy and minimum-time problems are analysed in, respectively, Sections 7.1 and 7.2.

7.1. Case 1: Minimum-energy spacecraft reorientation

The first test case that was analysed is the so-called minimum-energy, attitude-constrained spacecraft reori-
entation problem that was presented in Subsection 4.10.1. As noted in Subsection 3.5.2, the minimum-energy
problem has a smaller degree of freedom than the minimum-time problem, which makes it relatively easier
to solve using numerical methods. Therefore, this problem was identified as a natural starting point for the
single-case analyses of this chapter.

7.1.1. Input parameters

In Table 7.1, all problem and algorithm parameters are provided that were used for this specific test case. The
problem parameters (boundary conditions, constraints, etc.) are obtained from one of the Monte Carlo test
cases presented in Chapter 6. It is stressed that the algorithm settings used for this test case were already
extensively tuned in order to provide good performance. In Chapter 8, an in-depth analysis will be provided
of this tuning process and the sensitivities of a number of the most important algorithm parameters and other
design elements. As a final note, for this test case, the trapezoidal rule was used for the discretisation of the
minimum-energy objective, and the shape-based first guess was used to initialise the SCP algorithm.

77
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Table 7.1: Problem and algorithm parameters for the minimum-energy, attitude-constrained reorientation problem studied in
Section 7.1.

Parameter Value Unit Parameter Value Unit

Problem parameters

t f 150 s
I

 1500 −50 75
−50 1000 25
75 25 600

 kg m2uellipse [10 10 5]T Nm
ωbox [2 3 1.5]T deg s−1

q 0


0.2805
−0.1669
0.4762
0.8165

 - q f


−0.1837
−0.3758
−0.3072
0.8548

 -

ω0

 −0.1638
1.2844
−0.6488

 deg s−1 ω f

 −0.8633
0.9708
−0.6213

 deg s−1

xB ,out [1 0 0]T - xB ,in [0 0 1]T -

y I ,out

 0.8714
−0.1778
−0.4573

 - y I ,in

 0
0
1

 -

θsep,out 33.11 deg θsep,in 66.55 deg

Algorithm parameters

K 15 - Kdisc 5 -
wu 1×102 - nit,lim 25 -
wtr 1×10−3 - wvc 1×102 -

αtr,adap 5 - αvc,adap 3 -
ntr,adap,thres 8 - εvc 5×10−5 -

εx 0.6 -

7.1.2. Guidance results

In Figure 7.1, the quaternion, angular rate and control profiles generated by the SCP and NLP algorithms are
shown. The coloured points represent the values of the optimisation parameters at the 15 nodes of the SCP
grid, which are directly obtained from the converged SCP solution. The coloured lines represent the inter-
polated time histories of the state and control parameters. The interpolated quaternion and control profiles
were obtained through linear interpolation, whereas the angular rate solution of the SCP algorithm was inter-
polated with a third-order polynomial. This interpolation was performed purely for visualisation purposes.
As a result, the continuous quaternion and angular rate time histories shown in Figure 7.1 do not represent
the actual manoeuvre trajectory. This actual trajectory is only obtained after propagating the obtained con-
trol profile, which was performed at a later stage in the analysis and is presented in Subsection 7.1.5. Finally,
the dash-dotted black lines represent the guidance solution of the NLP benchmark algorithm.
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(a) SCP and NLP quaternion profiles.
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(b) SCP and NLP angular rate profiles.
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(c) SCP and NLP control profiles.

Figure 7.1: Quaternion, angular rate and control profiles obtained using the SCP and NLP benchmark algorithms.

Several interesting observations can be based on Figure 7.1:

• It can be concluded that the SCP results closely match the results of the NLP benchmark for this specific
test case. Therefore, the conclusion can be drawn that the SCP algorithm successfully found a locally
optimal solution to the minimum-energy, attitude-constrained spacecraft reorientation problem. As
stated before, it cannot be guaranteed that the globally optimal solution to the convex sub-problem is
equivalent to the globally optimal solution to the original, non-convex problem.

• The one main difference that can be observed between the SCP and NLP solutions is a slightly different
control profile, which becomes visually distinguishable near the initial boundary of the reorientation
manoeuvre. However, the effects of this difference appear to be small, as it does not lead to visual dif-
ferences in the quaternion and angular rate profiles. Nevertheless, this is an interesting observation. It
was found that this difference is related to the discretisation rule that is used as part of the SCP algo-
rithm to discretise the minimum-energy integral in the objective function. An in-depth discussion of
this phenomenon and the choice of discretisation technique is presented in Section 8.2.

• Inspecting the structure of the optimal control profiles of the SCP and NLP solutions, it can be seen
that the first-order-hold assumption (linear interpolation) of the control accurately represents the con-
tinuous shape that can be observed in the Lagrange polynomial-modelled control profiles of the NLP
benchmark. This was the case for all minimum-energy reorientation cases that were individually anal-
ysed during this study and shows that the FOH assumption on the control does not represent a disad-
vantage for the SCP method regarding the minimum-energy reorientation problem.

7.1.3. Algorithm performance
In Table 7.2, the most important performance criteria corresponding to this test case are presented in terms
of the metrics presented in Chapter 6.
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Table 7.2: Performance parameters of the SCP and NLP algorithms for the minimum-energy test case presented in Table 7.1.

Parameter Value Unit

SCP computation time 0.0368 sec
NLP computation time 0.189 sec
Relative optimality ((JSCP − JNLP)/JNLP) 0.108 %
Propagation error (accuracy) 1.09 ·10−3 deg
SCP iterations required for convergence 4 [-]

As expected, based on the fact that the SCP and NLP guidance profiles that were shown in Figure 7.1 are
highly similar, the SCP results are highly optimal, under the assumption that the NLP benchmark represents
a globally optimal solution. Furthermore, it can be seen that the SCP algorithm is significantly faster than
the NLP benchmark. However, in this chapter, no in-depth analysis will be performed of these performance
criteria, as it is desired to base performance-related observations and conclusions rather on a large number
of Monte Carlo cases than on a single test case. Therefore, detailed performance analyses can be found in
Chapters 8 and 9.

7.1.4. Convergence process
In order to better understand the behaviour and characteristics of the SCP algorithm, it was found worthwhile
to analyse the iterative convergence process that characterises the SCP framework. In Figure 7.2, this iterative
process of finding a solution is visualised for, respectively, the state variable q2 and the control variable u3.

0 50 100 150

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

Q
ua

te
rn

io
n 

q 2
 [-

]

Converged solution Initial guess

1

2

3

4
Iteration

(a) Convergence process of the q2 quaternion parameter.
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(b) Convergence process of the u3 control parameter.

Figure 7.2: Convergence process of the SCP algorithm for the minimum-energy, attitude-constrained reorientation problem that was
presented in Table 7.1.

Based on Figure 7.2, several interesting observations can be made:

• The differences between the solutions of subsequent convex sub-problems gradually become smaller
as the number of iterations increases and convergence is approached. As stipulated, this process con-
tinues until the difference between two subsequent state trajectories is smaller than a predefined limit,
which is assessed through the convergence criteria ε (Section 4.9). When these criteria are met, in this
case after four iterations, the algorithm stops, and the most recent solution is referred to as accepted.
Within a bound of both linearisation and discretisation error, the solution of this most recent convex
sub-problem is expected to represent a locally optimal solution with respect to the original, non-convex
problem.

• The control profiles that can be observed in Figure 7.2b are in line with expectations. In initial itera-
tions, when the algorithm ‘tries’ to find feasible solutions, these are usually sub-optimal due to the large
linearisation errors that are present. As a result, the amount of control that is used (and thus the amount
of energy that is required) for the manoeuvre can be seen to be relatively high, while, as convergence
and thus the local optimum is approached, the required control (at least for the u3 control parameter)
decreases. This behaviour was commonly observed for minimum-energy reorientation test cases.
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• The initial guess of the state parameter q2 is surprisingly accurate, and the algorithm already approaches
the local optimum in its second iteration. For the minimum-energy problem, this behaviour was often
observed, although, in many occasions, more iterations were required (see Chapter 9). The perfor-
mance of the shape-based first guess is further analysed in Section 8.1.

In Figure 7.3, the convergence process of the objective function and the convergence criteria is presented.
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Figure 7.3: Convergence process of the objective function and convergence criteria of the SCP algorithm for the minimum-energy,
attitude-constrained reorientation problem presented in Table 7.1.

The behaviour of these terms is as expected:

• Although it can barely be distinguished on the logarithmic scale of this figure, after further inspection,
it was found that the energy-term in the objective function starts with a relatively high magnitude, due
to the sub-optimal initial guess and first iteration, and then shows a decreasing trend for subsequent
iterations.

• Furthermore, it can be seen that the virtual control variable is used to a significant extent for the initial
iteration of the SCP algorithm, as its magnitude is several orders of magnitude higher than its corre-
sponding convergence criterion. Due to the large linearisation and discretisation errors that are present
for the first iteration, it appears that the SCP algorithm requires the use of virtual control to find a fea-
sible solution. After the first iteration, it can be seen that the use of virtual control decreases to a level
that is acceptable for convergence.

• Finally, the state deviation gradually decreases and meets its convergence criterion after four iterations.
This is in line with the results from Figure 7.2, where it could be seen that the difference between the
state parameters of the final two iterations, ∆x , becomes very small.

After paying attention to the guidance results, the performance of the SCP algorithm and the convergence
process, in Figure 7.4, a 3-D visualisation is provided of the reorientation manoeuvres that were obtained
using the SCP and NLP algorithms. Both the keep-out and keep-in constraints are shown, in addition to the
body-fixed x- and z-axis of the spacecraft. To be clear, the z-axis (blue line) should be kept inside the keep-in
constraint (blue cone), and the x-axis (red line) should be kept outside of the keep-out constraint (red cone).
Furthermore, the convergence history is shown in the form of the body-fixed x-axis trajectories of all SCP
iterations. These are barely distinguishable for this specific case but will be more insightful in the remainder
of this study.
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Figure 7.4: 3-D visualisation of the SCP and NLP guidance trajectories for the minimum-energy, attitude-constrained reorientation
problem formulated in Table 7.1.

Observing the body-fixed x-axis of the spacecraft, it can be seen that the algorithm converged on a guidance
trajectory around the attitude keep-out cone. Furthermore, it can be observed that the body-fixed z-axis of
the spacecraft is continuously pointing inside the attitude keep-in cone during the manoeuvre, as required.
Therefore, it can be concluded that the SCP algorithm successfully found an attitude constraint-satisfying,
optimal trajectory using a relatively poor initial guess that violated the keep-out constraint.

7.1.5. Further verification and analysis

The strategy that was used in this research project to verify the solutions of the SCP algorithm consists of
multiple analyses and observations, of which several can be made on the basis of the results provided in the
previous subsections:

1. In Figure 7.1, it can be seen that the SCP algorithm converges on the exact same guidance trajectory as
the verified (see Section 5.3) NLP benchmark solution. This provides strong evidence for the verifica-
tion of the results of the SCP algorithm. As discussed before, pseudospectral NLP methods are widely
recognised in literature and industry to be the benchmark for finding optimal solutions to nonlinear
problems.

2. As becomes evident from Figure 7.1c, the constraints on the control are satisfied by both the SCP and
NLP solutions.

3. Another indicator of the correctness of the results is provided by the 3-D visualisation in Figure 7.4,
where it can be observed that both the keep-out and keep-in conical constraints are respected, as re-
quired.

In addition, in this section, the obtained results are analysed from two other perspectives to solidify the ver-
ification of the SCP algorithm. To begin with, in Figure 7.5, a 3-D visualisation is provided of the ellipsoidal
constraint on the control and the solution that was obtained from the SCP algorithm.
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Figure 7.5: 3-D visualisation of the control profile obtained from the SCP algorithm and the ellipsoidal constraint on the control, for the
minimum-energy, attitude constrained reorientation problem formulated in Table 7.1.

Clearly, the SCP solution does not violate the specified control constraints. In this case, this is a consequence
of the minimum-energy nature of the reorientation, for which control magnitudes near the boundary are
avoided as those result in a high cost in terms of energy. It is expected that this situation is different for the
minimum-time problem studied in Section 7.2.

The second analysis outlined in this subsection concerns the propagation of the original, nonlinear problem
dynamics and kinematics with the control profiles obtained from the SCP algorithm. The goal of this step is
threefold: (1) to verify whether the obtained trajectories are feasible and lead to the expected reorientation
manoeuvres, (2) to identify and quantify the constraint violations between the grid nodes, and (3) to anal-
yse the performance of the SCP algorithm in terms of the accuracy of its guidance solutions. The first two
objectives will be covered in this section, while an in-depth accuracy analysis (latter objective) is provided
through the Monte Carlo analyses of Chapter 9. In Figure 7.6, the time histories of the propagated state of the
spacecraft x are visually presented along with the SCP solution at the grid nodes. For verification purposes,
the box constraints on the angular rate are also indicated in the figure.
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(a) SCP solution and propagated time histories of the quaternion attitude.
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(b) SCP solution and propagated time histories of the angular rate.

Figure 7.6: SCP solution of the state parameter x and the corresponding time histories obtained through propagation of the SCP control
profiles from Figure 7.1c.
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From Figure 7.6, it follows that the SCP algorithm successfully managed to enforce the original, non-convex
problem dynamics and kinematics. At least to a visually observable level, the propagated state trajectories
perfectly correspond with the SCP solution at the grid nodes. The exact propagation accuracy is further anal-
ysed through the Monte Carlo analyses provided in Chapter 9. Furthermore, it can be concluded that the
box constraint on the angular rate is respected, which is no surprise for the relatively long (in terms of time)
minimum-energy manoeuvre studied in this section.

The time histories of the propagated state parameters of the spacecraft can also be used to analyse the inter-
nodal satisfaction of the keep-out and keep-in attitude constraints. In Figure 7.7, the angular separation
angles between the body-fixed x-axis and body-fixed z-axes and, respectively, the central axes of the keep-out
and keep-in constraints are shown.
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(a) Constraint satisfaction of the attitude keep-out constraint.
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(b) Constraint satisfaction of the attitude keep-in constraint.

Figure 7.7: Constraint satisfaction of the attitude keep-out and keep-in constraints of the SCP solution for the minimum-energy,
attitude-constrained reorientation problem formulated in Table 7.1.

It can be seen that for this specific test case, the guidance trajectory of the SCP algorithm satisfies both the
keep-out and keep-in constraints, apart from a minor keep-out constraint violation (0.048 deg) between the
grid nodes. These attitude constraint violations will be further analysed through the Monte Carlo analyses
presented in Chapter 9.

7.2. Case 2: Minimum-time spacecraft reorientation

The second problem that was analysed on a single-case level is the minimum-time, attitude-constrained
spacecraft reorientation problem presented in Subsection 4.10.2. As noted in Subsection 3.5.2, the minimum-
time problem is characterised by a larger degree of freedom than the minimum-energy problem. Further-
more, solutions to the minimum-time problem typically approach the constraints on the angular rate and
control. As a result, it is known to be more difficult to find an optimal solution for this type of reorientation
problem than for the minimum-energy problem discussed in the previous section.

7.2.1. Input parameters

In Table 7.3, the problem and algorithm parameters for this test case are provided.
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Table 7.3: Problem and algorithm parameters for the minimum-energy, attitude-constrained reorientation problem that is studied in
Section 7.2.

Parameter Value Unit Parameter Value Unit

Problem parameters

t f ,guess 50 s
I

 1500 −50 75
−50 1000 25
75 25 600

 kg m2uellipse [10 10 5]T Nm
ωbox [2 3 1.5]T deg s−1

q 0


0.1033
−0.2145
0.1990
0.9506

 - q f


−0.080 −0.082 −0.082 −0.082
0.203 0.199 0.199 0.1970
−0.681 −0.677 −0.677 −0.679
0.699 0.704 0.704 0.703

 -

ω0

 −0.0175
−0.0125
0.0144

 deg s−1 ω f

 0.933 0.806 0.843 0.882
0.528 0.615 0.576 0.512
−0.073 −0.167 −0.084 −0.076

 deg s−1

xB ,out [1 0 0]T - xB ,in [0 0 1]T -

y I ,out

 0.8714
−0.1778
−0.4573

 - y I ,in

 0
0
1

 -

θsep,out 37.73 deg θsep,in 58.31 deg

Algorithm parameters

K 15 - Kdisc 5 -
wη 1 - δη 30 %
wtr 1×10−3 - wvc 5×101 -

αtr,adap 5 - αvc,adap 3 -
ntr,adap,thres 8 - εη 5×10−2 -

εx 0.9 - εvc 5×10−5 -
nit,lim 25 -

As can be noticed, in constrast to the q f andω f from Table 7.1, for the minimum-time test case four separate
quaternions and angular rates are provided in order to define the time-dependent boundary conditions. In
these matrices, the columns represent the final boundary conditions at t = 0 s, t = 40 s, t = 80 s and t = 120 s,
respectively.

7.2.2. Guidance results

Figure 7.8 shows the quaternion attitude, angular rate and control profiles that are obtained using both the
SCP and NLP benchmark algorithms.
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(a) SCP and NLP quaternion profiles.
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(b) SCP and NLP angular rate profiles.
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(c) SCP and NLP control profiles.

Figure 7.8: Quaternion, angular rate and control profiles obtained using the SCP and NLP algorithms for the minimum-time,
attitude-constrained reorientation problem defined in Table 7.3.

Based on the SCP and NLP results presented in Figure 7.8, three interesting observations were made:

• The most striking differences between the SCP and NLP solutions can be observed for the control pro-
files. Although a significant resemblance can be distinguished in terms of structure, obvious differ-
ences exist between both profiles. This is a direct consequence of the different methods that both
optimisation algorithms use to model the control: while the NLP benchmark uses Lagrange polynomi-
als to model the control, the SCP algorithm uses the first-order-hold modelling presented in Subsec-
tion 4.5.2. This modelling difference resulted in few differences between the SCP and NLP solutions for
the minimum-energy problem, due to the relatively gradual nature of the optimal control profile. How-
ever, the optimal profile for the minimum-time profile seems to contain more abrupt changes, and the
different control modelling techniques cause both algorithms to respond differently to this situation.
However, interestingly, the differences between the SCP and NLP control profiles seem to have a rather
limited influence on the angular rate solutions and an even smaller influence on the quaternion solu-
tions. Therefore, the preliminary conclusion can be drawn that the state profile is relatively insensitive
to changes in the control.

• Something that is worth keeping in mind is that the oscillations in the SCP control profiles can be
problematic for some mission scenarios, as an attitude control system could struggle to actuate upon
such an abruptly changing guidance profile. This phenomenon is further analysed in Section 8.3.

• Another interesting observation can be made in Figure 7.8b, where it can be observed that the magni-
tudes of angular rate parameters are at (and cross) the boundaries of the corresponding box constraint
for the majority of the manoeuvre duration. This could be expected for a minimum-time manoeu-
vre and will be further analysed in Subsection 7.2.5 through the propagation of the obtained control
profiles.
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7.2.3. Algorithm performance
In Table 7.4, the most important performance criteria corresponding to this test case are presented.

Table 7.4: Performance parameters of the SCP and NLP algorithms for the minimum-time test case from Table 7.3.

Parameter Value Unit

SCP computation time 0.081 sec
NLP computation time 0.437 sec
Relative optimality ((JSCP − JNLP)/JNLP) -0.0349 %
Propagation error (accuracy) 6.39 ·10−3 deg
SCP iterations required for convergence 6 [-]

The most interesting finding from Table 7.4 is that it supports the observation that the large differences be-
tween the SCP and NLP control solutions have a small influence on the performance of the algorithm in terms
of optimality. In fact, it can be seen that the guidance solution of the SCP algorithm represents a slightly faster
manoeuvre and is, therefore, more optimal. Again, a detailed analysis of the performance of the SCP algo-
rithm is provided in Chapter 9.

7.2.4. Convergence process
In Figure 7.9, the iterative process of finding an optimal solution is visualised for the state parameter q2. This
time, only the convergence history of a state parameter is shown, as the convergence histories of the control
parameters did not provide any additional insight in addition to Figure 7.2.
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(a) Convergence history of the q2 attitude parameter.
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Figure 7.9: Convergence process of the SCP algorithm for the q2 attitude parameter.

The two main insights that can be extracted from Figure 7.9 are:

• In Figure 7.9a, it can be seen that the manoeuvre duration t f , which is to be minimised, strongly in-
creases for the first two iterations of the SCP algorithm. This behaviour was observed for the majority
of the cases where the virtual-control term of the objective function was dominant during the first it-
eration(s). A successful strategy that was found to mitigate this challenge was the inclusion of the hard
trust-region constraint on the time dilation factor δη, as was discussed in Section 4.7. In this specific
case, this hard constraint, which limits ∆t f (or, equivalently, ∆η) to 30% of its reference value, actively
constrains the increase in t f for the first two iterations. Without this strategy, undesired changes in η

were observed of multiple factors compared to its reference value.

• In Figure 7.9b, the behaviour of the successive approximation convexification technique that is applied
to the final boundary condition is illustrated. As can be observed, the solutions of the convex sub-
problems of the initial iterations (1,2 and 3) do not satisfy the third-order polynomial that represents
the time-dependent boundary condition for the q2 parameter, due to the fact that the difference in
the time dilation factor (∆η), and therefore also the approximation error, are relatively large. As ∆η
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becomes smaller for subsequent iterations, the approximation error reduces for this boundary condi-
tion. Eventually, the converged solution can be seen to (visually) satisfy the time-dependent boundary
condition.

In Figure 7.10, the convergence process of the objective function and the convergence criteria is presented.
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Figure 7.10: Convergence process of the objective function and convergence criteria of the SCP algorithm for the minimum-time,
attitude-constrained reorientation problem presented in Table 7.3.

Several interesting observations can be made based on these figures:

• For this case, the virtual control variable is used to an even larger extent to find a feasible solution for
the first two convex sub-problems than for the minimum-energy problem of Section 7.1. The weighted
virtual-control objective term has a magnitude that is factors larger than the second-largest (η) objec-
tive term. Due to the relatively high magnitude of this term, the SCP algorithm is encouraged to reduce
the use of virtual control significantly. From iteration 3, it can be seen that the virtual control use is at a
level that is acceptable for convergence.

• In Figure 7.10b, it can be seen that the convergence criterion for the final time εη was met much ear-
lier than the convergence criterion for the state εx . Logically, this depends on the specification of the
magnitudes of the performance criteria ε, but even when εη was made significantly more strict (lower
magnitude), it was observed that the state term was in almost all of the cases the term that was even-
tually slower to converge. This means that the εη parameter has a smaller influence on the algorithm
behaviour than the εx parameter.

In Figure 7.11, a 3-D visualisation is provided of the SCP and NLP solutions for the body-fixed x- and z-axis of
the spacecraft, the corresponding keep-out and keep-in attitude constraints, and the convergence history of
the SCP solution for the body-fixed x-axis.
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Figure 7.11: 3-D visualisation of the guidance solutions of the SCP and NLP algorithms for the minimum-time, attitude-constrained
reorientation problem from Table 7.3.

The most interesting observation that can be made regarding Figure 7.11 is that the body-fixed x-axis of the
spacecraft seems to violate the conical keep-out constraint for the initial iterations of the SCP algorithm. In-
tuitively, this should not be possible, as the convex solving algorithm ECOS should not allow for constraint
violations. However, it was discovered that these violations are a consequence of a complex interaction be-
tween the virtual control and the (convex) quadratic attitude constraints. It was found that the significant
use of virtual control for the first two iterations of the SCP algorithm, which was identified in Figure 7.10a,
allowed for a violation of the quaternion norm-preserving dynamic and kinematic equations. As a result, the
quaternion norm is not equal to 1 for several nodes of these trajectories. Because the preservation of the
quaternion unit norm is the main requirement for the validity of the convex attitude constraint formulation,
as outlined in Subsection 4.4.4, this resulted in the situation where the attitude constraints could be violated.
This phenomenon was observed frequently but posed no major issue as the use of virtual control and the
constraint violations were reduced to an acceptable level before a converged solution was obtained.

7.2.5. Further verification and analysis

Similar as for the minimum-energy problem from Section 7.1, the verification of the SCP algorithm for the
minimum-time problem mostly relied on the fact that it shows similar performance as the NLP benchmark
algorithm in Table 7.4, and similar results in Figure 7.8 and Figure 7.11. In this section, the propagated re-
sults and the constraint satisfaction are analysed. In Figure 7.12, the SCP control profile is shown with the
corresponding ellipsoidal constraint.
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Figure 7.12: 3-D visualisation of the control profile obtained from the SCP algorithm and the ellipsoidal constraint on the control, for
the minimum-time, attitude-constrained reorientation problem from Table 7.3.

The control behaviour is relatively erratic (in line with Figure 7.8c) but can be seen to satisfy the ellipsoidal
constraint at all grid nodes. Due to the first-order-hold modelling of the control, it automatically follows
that it can be guaranteed that the ellipsoidal constraint is satisfied for the entire reorientation manoeuvre,
including the inter-nodal segments. This is an interesting advantage of the SCP algorithm, because this is
not the case for pseudospectral NLP methods, which are known to often find solutions that violate control
constraints and cannot be executed by the spacecraft attitude control system.

In Figure 7.13, the time histories that correspond to the propagated state parameters are shown, along with
the SCP solution at the grid nodes. For verification purposes, the box constraint on the angular rate is indi-
cated in the figure as well.
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Figure 7.13: SCP solution and propagated time histories of the state parameters for the reorientation test case of Table 7.3.

As becomes evident from Figure 7.13b, significant constraint violations are present in the angular rate time
histories that are obtained from propagating the SCP control profiles. When comparing the results of Fig-
ure 7.13b with the control profiles from Figure 7.8c, it becomes apparent that the strong ‘spikes’ or oscillations
in the control profiles are in phase with these violations of the box constraint on the angular rate. Apparently,



7.2. Case 2: Minimum-time spacecraft reorientation 91

in its search to find a locally optimal solution, the SCP algorithm ‘cheats’ by introducing constraint-violating
angular rate oscillations in order to obtain a solution that is more optimal. This behaviour was detected in
most minimum-time problems and, with violations of up to 35%, posed a challenge to the usability of the
SCP-based optimisation algorithm developed in this study. Therefore, finding a method to solve this problem
became one of the research priorities of this study. This method was successfully developed and is presented
in Section 8.3.

Using the propagated results from Figure 7.13, the inter-nodal violations of the attitude constraints can be
analysed. In Figure 7.7, the angular separation between the body-fixed x-axis and body-fixed z-axis and,
respectively, the central axes of the keep-out and keep-in constraints are shown.
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(a) Constraint satisfaction of the attitude keep-out constraint.
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(b) Constraint satisfaction of the attitude keep-in constraint.

Figure 7.14: Constraint satisfaction of the attitude keep-out and keep-in constraints of the SCP solution for the minimum-time,
attitude-constrained reorientation problem formulated in Table 7.3.

Slight constraint violations can be observed in Figure 7.14. A more extensive analysis of these violations is
provided for the Monte Carlo analyses discussed in Chapter 9.
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8
Performance Analysis and Optimisation

In Chapter 7, the performance of the SCP-based optimisation algorithm developed in this study was analysed
on a single-case level using only two spacecraft reorientation test cases. This chapter aims to analyse the SCP
algorithm on a more detailed level to obtain a better understanding of the influence of the most important
design elements and parameters of the algorithm on its performance. In addition, where possible, the per-
formance of the SCP algorithm is improved. It is noted that several of these performance improvements were
already taken into account for the two test cases that were analysed in Chapter 7. However, it seemed logical
to first verify and study the performance of the SCP algorithm on a higher level before presenting this more
in-depth analysis of its specific features. To assess the performance of the SCP algorithm, Monte Carlo anal-
yses were performed in line with the set-up introduced in Chapter 6. For some of these analyses, no outliers
are shown in order to focus on the median performance of the SCP algorithm. Furthermore, it is stressed that
this chapter analyses the relative performance of the SCP algorithm as a function of several design features
and parameters. The absolute performance of the algorithm is studied in Chapter 9.

In terms of structure, Section 8.1 presents an analysis of the different initialisation strategies that were intro-
duced in Section 4.2. Then, in Section 8.2, the performance of the novel method to discretise the minimum-
energy objective function is studied. Afterwards, Section 8.3 presents a novel way to enforce constraints on
inter-nodal segments. In Section 8.4, the effects of the adaptive trust region technique on the robustness of
the SCP algorithm is analysed. Next, in Section 8.5, the objective function weight factors are tuned. In ad-
dition, in Section 8.6, the computation times of the SCP algorithm are analysed. Finally, in Section 8.7, the
sensitivity of the performance of the algorithm to two important algorithm parameters is studied.

8.1. Initialisation strategies
As discussed in Section 4.2, three different initialisation strategies were compared and studied during this re-
search project. In this section, the influence of these different initialisation strategies on the performance of
the SCP algorithm is analysed. Regarding this analysis, it was decided to replace the straight-line initialisation
method presented in Section 4.2 with a constant initialisation method, as only insignificant differences were
observed between the performance of the straight-line and SLERP initialisation methods. Furthermore, from
a robustness perspective, it was decided to analyse the influence of a poor initialisation method on the algo-
rithm performance. To illustrate, in Figure 8.1, three initial guesses are shown for the q1 and ω1 parameters
of a reference test case. These initial guesses correspond to the three different initialisation techniques that
were analysed: the constant, SLERP and shape-based initialisation methods. In addition, the SCP solutions
for these two state parameters are provided for comparison purposes.

In Figure 8.1, it can be seen that the shape-based initialisation method approximates the optimal (SCP) so-
lution to the reorientation problem better than both the constant and SLERP initialisation techniques. How-
ever, it must be noted that this is not the case for all situations and reorientation problems. Especially for
attitude-constrained test cases, it was found that the initial guesses commonly violate the attitude keep-out
constraints and, therefore, often are not an accurate approximation of the optimal solution to the problem.

93
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(a) Initial guesses and SCP result for the quaternion parameter q1.

0 0.2 0.4 0.6 0.8 1

Normalised trajectory time [-]

-2

-1.5

-1

-0.5

0

0.5

1

A
ng

ul
ar

 r
at

e 
pa

ra
m

. !
1
 [d

eg
/s

]

Const. SLERP Shape-based SCP solution

(b) Initial guesses and SCP result for the angular rate parameter ω1.

Figure 8.1: Initial guesses for the state parameter q1 and the angular rate parameter ω1 for three different initialisation techniques. The
test case considered is a minimum-time problem with both attitude keep-out and keep-in constraints, in accordance with the

formulation presented in Subsection 4.10.2. In the legend, ‘const.’ refers to the constant initialisation technique.

To get a more thorough understanding of the influence of these different initialisation techniques on the per-
formance of the SCP algorithm, two series of Monte Carlo analyses were performed: one for the relatively easy
minimum-energy, attitude-unconstrained reorientation problem, and one for the more difficult minimum-
time, attitude-constrained (both keep-out and keep-in constraints) problem. The set-up of the Monte Carlo
analysis and the evaluation of its results were discussed in Chapter 6. In Figure 8.2, the influence of the three
initialisation methods on the performance of the SCP algorithm is shown for the minimum-energy problem.
As noted earlier, no outliers are shown in this figure. The reason for this is that the focus of this chapter is
to analyse the typical or median performance of the SCP algorithm. A detailed analysis of the outliers is pre-
sented in Chapter 9. In Figure 8.2, the performance is evaluated based on the metrics that were introduced
in Chapter 6. Furthermore, each Monte Carlo analysis consisted of 500 test cases.
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Figure 8.2: Performance of the SCP algorithm in terms of optimality, computational efficiency, and robustness as a function of different
initialisation strategies. The Monte Carlo analyses considered a minimum-energy, attitude-unconstrained reorientation problem and

consisted of 500 test cases. ‘Const.’, and ‘Shape-.’ refer to the constant and shape-based initialisation techniques, respectively.

From Figure 8.2, it can be concluded that the shape-based initialisation strategy strongly outperforms the
constant and SLERP techniques that were used in other studies, for instance, in the works of McDonald et al.
(2020) and Reynolds et al. (2021). The effects on the computation time can be considered to be significant, as
a factor 2 reduction in median computation time can be observed. Furthermore, in terms of optimality, it can
be seen that the median performance is comparable, from which it can be concluded that the initialisation
method does not influence the optimality of the obtained guidance solutions. Finally, the 100% convergence
rates support the notion of some researchers that the convergence of SCP-based convexification methods is
initialisation-independent for this problem (McDonald et al., 2020).
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In Figure 8.3, the influence of the three different initialisation strategies on the performance of the SCP al-
gorithm in terms of optimality, computational efficiency, and robustness is provided for the more complex
minimum-time, attitude-constrained reorientation problem. Again, the Monte Carlo analyses consisted of
500 test cases. It should be noted that the obtained convergence rates are relatively low because some Monte
Carlo cases were found to be infeasible. However, this chapter focuses on the relative performance, while the
absolute performance is studied in Chapter 9.
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Figure 8.3: Performance of the SCP algorithm in terms of optimality, computational efficiency, and robustness as a function of different
initialisation strategies. The Monte Carlo analyses considered a minimum-time, attitude-unconstrained reorientation problem and

consisted of 500 test cases. ‘Const.’, and ‘Shape-.’ refer to the constant and shape-based initialisation techniques, respectively.

It can be observed that for the minimum-time problem shown in Figure 8.3, the gain in computational ef-
ficiency is there, but smaller than for the minimum-energy problem of Figure 8.2. This is in line with ex-
pectations, as for an attitude-constrained problem, the initial guesses often violate attitude constraints and,
therefore, approximate the (locally) optimal solutions not as well as for the unconstrained problem. More-
over, minimum-time solutions often closely approach the limits of the box constraint on the angular rate,
something not well represented by the more gradual profiles of the shape-based initialisation method. Per-
haps even more interesting is the fact that the convergence rate varies for the three different initialisation
methods. This contradicts other studies, such as the work of McDonald and Wang (2019), that proclaim
that the convergence of SCP-based optimisation methods is independent of poor initialisation. It seems that
this is not the case for more complex optimisation problems, such as the attitude-constrained reorientation
problem. In addition, it is interesting to note that the constant initialisation technique achieves a better con-
vergence rate than the SLERP technique.

8.2. Objective function discretisation
As discussed in Subsection 4.5.3, two distinct ways to discretise the Lagrange (integral) term of the minimum-
energy objective function were studied during this research project. These two approaches, the trapezoidal
method and the method of successive approximation of the exact cost are analysed in, respectively, Subsec-
tions 8.2.1 and 8.2.2.

8.2.1. Trapezoidal method
In early stages of this research project, it was discovered that in several studies encountered in literature, also
ones in which the SCP framework was applied to the spacecraft reorientation problem, the trapezoidal dis-
cretisation method seems to have been implemented incorrectly. Examples are the studies of McDonald et al.
(2020) and Reynolds et al. (2021)1. It appears that these studies did not multiply the cost (energy) evaluations
at the first and last grid points with half the weight relative to the cost evaluations at the inner grid points,
in line with the formulation presented in Subsection 4.5.3. As a result, a strong, unexpected kink in the ob-
tained control profiles can be observed near the boundaries of the manoeuvre, which negatively impacts the
optimality of the obtained solution. Figure 8.4 shows two examples of this alternative implementation of the
trapezoidal discretisation method, obtained from other studies.

1Through personal correspondence with the author.
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(a) u3 control profile for a minimum-energy reorientation problem studied
in the work of McDonald et al. (2020).
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(b) Control profiles for a minimum-energy reorientation problem
corresponding to the work of Reynolds et al. (2021).2

Figure 8.4: Illustrations from literature of control profiles that resulted from an alternative implementation of the trapezoidal
discretisation of a minimum-energy objective.

It can be observed that the effects of this alternative implementation are larger (on the time scale) as the
number of grid nodes, K , is lower, as McDonald et al. (2020) defined K = 100 and Reynolds et al. (2021)
defined K = 10 for the control solutions presented in Figure 8.4. Implementing the trapezoidal rule using the
scheme presented in Subsection 4.5.3, improves the optimality of the obtained solutions, as is illustrated in
Figure 8.5.
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(a) Minimum-energy reorientation problem with an alternative
implementation of the trapezoidal quadrature, which applies an equal
weight to all grid points. The corresponding optimality of the solution

(JSCP − JNLP) is 2.6106%.
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(b) Minimum-energy reorientation problem with the implementation of
the trapezoidal rule from Subsection 4.5.3. The corresponding optimality of

the solution (JSCP − JNLP) is 0.1226%.

Figure 8.5: Control profiles of the SCP and NLP benchmark algorithms for a single minimum-energy test case for two different
implementations of the trapezoidal discretisation rule.

From Figure 8.5, it can be concluded that the implementation of the trapezoidal rule in this study leads to
more optimal solutions. However, although this implementation of the trapezoidal quadrature rule repre-
sents a significant step towards finding an optimal solution, it is still possible to observe (visual) differences
between the control profiles of the SCP and NLP benchmark algorithms. These are predominantly visible at
the boundaries of the reorientation manoeuvre. It was thought that this source of non-optimality is caused
by the inferior integration accuracy of the trapezoidal method, which is used in the SCP algorithm, compared
to the pseudospectral quadrature of the NLP benchmark algorithm. It is widely known that pseudospectral
quadrature rules are the most accurate way to perform an integration for a discretised problem (Sagliano,
2018).

2Through personal correspondence with the author.
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This observation led to the development of the alternative discretisation technique presented in Subsec-
tion 4.5.3. This method, which was developed and pioneered in this study, is analysed in the following sub-
section to evaluate its performance against the trapezoidal approach.

8.2.2. Successive approximation of the exact cost
Using the novel method proposed in Subsection 4.5.3, which leverages the iterative nature of the SCP algo-
rithm, it was found that results could be obtained that were more optimal than the ones found using the
trapezoidal discretisation method. In Figure 8.6, the control profiles obtained using this approach are pre-
sented for the same test case that was considered in Figure 8.5.
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Figure 8.6: Control profiles of the SCP and NLP benchmark algorithms for the single minimum-energy test case of Figure 8.5. This time,
the SCP algorithm uses the technique of successive approximation of the exact cost to integrate the minimum-energy term in the

objective function. The corresponding optimality JSCP − JNLP is equal to 0.0359%.

In Figure 8.6, it can be seen that the discretisation method developed in this study improves the optimality of
the SCP guidance trajectory. Although its improvement in optimality in relative terms is high, as the optimal-
ity ‘overcost’ relative to the NLP benchmark solution is decreased by around 60%, in absolute terms, the gain
in optimality is small, less than 0.1%. The remaining differences between the SCP and NLP control profiles
are thought to result from the FOH control modelling of the SCP algorithm. In order to be able to draw gen-
eral conclusions regarding the optimality improvements that follow from this discretisation method, a Monte
Carlo analysis was performed that consisted of 500 minimum-energy, attitude-unconstrained test cases. In
Figure 8.7, the results of this Monte Carlo analysis in terms of optimality and computational efficiency are
shown. 100% percent convergence rates were obtained for all four Monte Carlo analyses. Again, no outliers
are shown to focus on the mean performance of the SCP algorithm.
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Figure 8.7: Optimality and computational efficiency of the SCP guidance trajectories obtained using two different discretisation
techniques for the minimum-energy objective function. These results are based on a Monte Carlo analysis of 500 test cases. ‘Succ.

approx.’ refers to the successive approximation of the exact cost discretisation technique.
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In line with the results of the single test case that was studied in Figure 8.6, it can be observed that the succes-
sive approximation of the exact cost technique developed in this study consistently improves the optimality of
the guidance solutions of the SCP algorithm. However, as mentioned earlier, the performance gain is tiny in
absolute terms. In fact, it was determined to be of little significance for the spacecraft reorientation problem
studied in this research project, as in this study, the optimality is mostly analysed in the order of percentages,
not in tens of percentages. Therefore, the trapezoidal discretisation technique was used for the analyses pre-
sented in the remainder of this report. However, for potential applications of the SCP framework to other
optimisation problems for which optimality has a higher priority, this method to discretise a Lagrange objec-
tive could be an essential improvement to match the performance of NLP optimisation methods.

8.3. Constraint satisfaction
As was discussed for the minimum-time test case of Section 7.2, it was frequently observed during inspec-
tions of Monte Carlo test cases that the guidance solutions of the SCP algorithm led to large constraint vi-
olations on the inter-nodal grid segments. In particular for the minimum-time, rate-constrained problem,
severe constraint violations of up to 35% were observed. Moreover, these violations were often accompanied
by undesired oscillations in the control and rate profiles of the SCP guidance solutions. These oscillations are
problematic because they might be challenging to actuate upon by a real, physical attitude control system.
Therefore, it could be concluded that these constraint violations represented a major challenge for the prac-
tical usability of an SCP algorithm.

In Subsection 5.2.2, it was discussed that the NLP benchmark algorithm uses a strategy that performs a La-
grange interpolation of the optimisation parameters to impose additional, inter-nodal constraints on the
state variables. However, this strategy was unfortunately not an option to resolve this challenge for the al-
gorithm developed in this study. The reason for this is that the SCP algorithm does not model the state pa-
rameters with Lagrange polynomials. To the knowledge of the author, this problem of inter-nodal constraint
violations has not been studied or mentioned in literature on SCP, let alone that an effective solution has been
proposed. Therefore, an SCP-specific method was developed during this study to solve this problem. This
method uses information from the discretisation process of the dynamics and kinematics (Subsection 4.5.2)
and is presented in the remainder of this section. In this case, the method is used to enforce the box con-
straint on the angular rate at the (K −1) temporal midpoints of the grid segments.

The first step of this method is to perform the Runge-Kutta integration process described in Subsection 4.5.2
from the start of a segment to its midpoint (instead of to the end of the segment). The resulting matrices and
vectors that are obtained at this point can be mathematically represented as

Ak+ 1
2

:= Inx×nx +
∫ τ

k+ 1
2

τk

A(ξ)ΦA (ξ,τk )dξ (8.1)

B−
k+ 1

2
:= Ak+ 1

2

∫ τ
k+ 1

2

τk

Φ−1
A (ξ,τk )B(ξ)λ−

k (ξ)dξ (8.2)

B+
k+ 1

2
:= Ak+ 1

2

∫ τ
k+ 1

2

τk

Φ−1
A (ξ,τk )B(ξ)λ+

k (ξ)dξ (8.3)

C k+ 1
2

:= Ak+ 1
2

∫ τ
k+ 1

2

τk

Φ−1
A (ξ,τk )C (ξ)dξ (8.4)

r k+ 1
2

:= Ak+ 1
2

∫ τ
k+ 1

2

τk

Φ−1
A (ξ,τk )r (ξ)dξ (8.5)

where the obtained matrices and vectors are referred to with the (·)k+ 1
2

subscript. As can be observed, the

only difference between the matrices and vectors obtained for the dynamic and kinematic constraints (Equa-
tions 4.43 to 4.47) and the matrices and vectors obtained for the additional enforcement of the angular rate
constraints (Equations 8.1 to 8.5), is the length of the integration domain. This is a useful observation, as it
means that no additional integration process has to be performed. Instead, the intermediate results of the
discretisation step from Section 4.5 can be stored and re-used for this purpose. Using the obtained matrices
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and vectors, the additional angular rate constraints can be formulated as

−ωbox ≤ Ak+ 1
2

(5 : 7, :)xk +B−
k+ 1

2
(5 : 7, :)uk . . .

+ B+
k+ 1

2
(5 : 7, :)uk+1 +Sk+ 1

2
(5 : 7)η+ r k+ 1

2
(5 : 7) ≤ ωbox, ∀ k ∈ 1, . . . ,K −1

(8.6)

As can be seen in Equation 8.6, the optimisation parameters that are involved in the additional rate con-
straints, xk , uk , uk+1 and η are optimisation parameters corresponding to the grid of the discretised, convex
sub-problem. As a result, this strategy does not require the introduction of additional optimisation parame-
ters while enabling the enforcement of problem constraints on inter-nodal segments.

This approach leads to 2(K −1) additional (linear) inequality constraints in the ECOS problem formulation of
Section 5.4, which enforce the box constraint on the angular rate at the temporal midpoint of every segment
of the grid. In order to analyse the effectiveness of this strategy, in Figure 8.8 the propagated angular rate time
histories are provided for the minimum-time test case that was studied and discussed in Section 7.2, both
with and without the inclusion of the additional constraints of Equation 8.6.
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(a) Propagated angular rate time histories and SCP solution. Obtained
without the additional constraints of Equation 8.6.
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(b) Propagated angular rate time histories and SCP solution. Obtained after
imposing the additional constraints of Equation 8.6.

Figure 8.8: Angular rate time histories obtained through propagation of the SCP control solution. The angular rate solution of the SCP
algorithm is provided at the grid points. The parameters of the minimum-time test case are provided in Table 7.3.

It can be seen in Figure 8.8 that the technique that was developed to enforce the box constraint on the angular
rate (ωbox) at additional nodes significantly reduces the severity of the constraint violations. Therefore, the
preliminary conclusion can be drawn that this technique effectively reduces the magnitude of inter-nodal
constraint violations. In Figure 8.9, the control profiles that correspond to the results of Figure 8.8 are shown.
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(a) Control solutions of the SCP and NLP benchmark algorithms. Obtained
without the additional constraints of Equation 8.6.
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(b) Control solutions of the SCP and NLP benchmark algorithms. Obtained
after imposing the additional constraints of Equation 8.6.

Figure 8.9: Control solutions of the SCP and NLP benchmark algorithms for the minimum-time reorientation problem from Table 7.3.

As expected, the implementation of additional rate constraints through Equation 8.6 results in the disappear-
ance of most of the oscillations in the control solution of the SCP algorithm. This is a desirable result, as a
gradually changing control profile is typically easier to follow for the attitude control systems of most space-
craft.

As a further illustration, in Figure 8.10, both the propagated angular rate time history and constraint violations
are shown for the same, minimum-time test case of Table 7.3. However, this time, an ellipsoidal instead of
a box constraint is imposed on the angular rate (in the same format of the ellipsoidal control constraint of
Equation 3.13). The reason for including this example is that the oscillations in both the control and angular
rate parameters were found to be even more severe for this type of constrained reorientation problem.
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(a) Propagated angular rate time histories and SCP solution.

0 20 40 60 80

Time [s]

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ng

ul
ar

 r
at

e 
el

lip
se

 m
ag

ni
tu

de
 [-

]

Propagated solution SCP solution Violation

(b) Ellipsoidal rate constraint violation.

Figure 8.10: Angular rate time histories and angular rate constraint violations obtained through propagation of the SCP control
solution. These results were obtained without the additional constraints of Equation 8.6. The parameters of the minimum-time test

case are provided in Table 7.3.

It can be seen that the ellipsoidal angular rate constraint is violated by up to 40%, which is unacceptable.
Figure 8.11 clearly shows the positive effects of imposing additional (ellipsoidal) rate constraints using Equa-
tion 8.6.
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(a) Propagated angular rate time histories and SCP solution.
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(b) Ellipsoidal rate constraint violation.

Figure 8.11: Angular rate time histories and angular rate constraint violations obtained through propagation of the SCP control
solution. These results were obtained after imposing the additional constraints of Equation 8.6. The parameters of the minimum-time

test case are provided in Table 7.3.

To obtain a thorough understanding of the effectiveness of this technique, a Monte Carlo analysis was per-
formed to study the effects of the implementation of Equation 8.6 on the performance of the SCP algorithm
in terms of optimality, computational efficiency and angular rate constraint satisfaction. This analysis was
performed for the minimum-time, attitude-constrained reorientation problem defined in Subsection 4.10.2.
The results of this Monte Carlo analysis are presented in Figure 8.12. The box plots for the results regarding
optimality and computation times contain no outliers in order to focus on the median performance of the
algorithm. For the violations, however, outliers are of high interest and, therefore, shown.
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Figure 8.12: Performance of the SCP algorithm in terms of optimality, computational efficiency and angular rate constraint satisfaction,
both with (‘Default’) and without (‘Add. constraints’) the additional rate constraints of Equation 8.6 for the minimum-time,

attitude-constrained reorientation problem. Each Monte Carlo analysis consisted of 500 test cases.

Based on Figure 8.12, it can be concluded that the constraint satisfaction was significantly improved using the
additional rate constraints, signalled by a decrease in the maximum box constraint violation from 35% to 5%.
Furthermore, this approach can be seen to come at the cost of both optimality and computation time, which
is no surprise. Restricting angular rate constraint violations could be expected to decrease the optimality
while enforcing additional constraints could be expected to increase computation times. One might wonder
why there are still constraint violations after the implementation of Equation 8.6. It was found that these
violations occur at the midpoints of the half -segments of the grid where the box constraint is not enforced,
even after the enforcement of Equation 8.6. An example of such a test case is provided in Figure 8.13. In this
figure, the propagated angular rate time histories and control profiles are shown for the case that represents
the worst violation (around 5%) from Figure 8.12.
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(b) Control solutions of the SCP and NLP benchmark algorithms.

Figure 8.13: SCP solution corresponding to the largest rate-violating outlier of the box plot of Figure 8.12.

It can be observed that the violation occurs for the ω2 parameter near the beginning of the manoeuvre. As
expected, the solution seems to satisfy the rate constraints at the midpoint of all grid segments due to the ad-
ditional constraints. However, there is still some room left for the SCP algorithm to use constraint violations
to reduce the manoeuvre time and improve optimality.

For the purpose of this study, the obtained reduction sufficed as proof of the effectiveness of the developed
method to enforce problem constraints on inter-nodal segments. However, if constraint violations for some
future applications need to be reduced to a further extent, the same technique can be used to impose ad-
ditional constraints on different points. Furthermore, this method could also be used to enforce other con-
straints, such as the attitude keep-out constraint, on inter-nodal segments. Moreover, it could be interesting
to impose the additional constraints at different points than the midpoints of the grid segments. When care-
fully observing Figure 8.13, it can be seen that the extrema of the angular rate profiles occur at nearly the same
time as the zero-crossings of the corresponding control profiles (not exactly, due to control cross-coupling).
Using information from previous SCP iterations, it could be possible to impose the additional constraints
near these points, potentially further reducing the constraint violations. Due to the scope of this research
project, these topics are left as recommendations for further research.

8.4. Adaptive trust region

As outlined in Section 4.7, another design feature that was implemented and studied during this research
project is the so-called adaptive trust region. For this type of trust region, the weight factor of the (soft)
trust-region term that is augmented to the objective function of the convex sub-problems is not constant.
It was found that this adaptive trust region improved the performance of the SCP algorithm by increasing
its convergence rate for a specific set of minimum-time reorientation problems where the SCP algorithm
struggled to find a local optimum. An example of such a test case is provided in Figure 8.14. This figure
shows the convergence histories of the state parameter q2 and the convergence criteria, which were obtained
without the implementation of the adaptive trust region.
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Figure 8.14: Example of a minimum-time reorientation problem for which the SCP algorithm failed to converge. The results were
obtained without the implementation of the adaptive trust-region technique. The iteration limit of the SCP algorithm was set to 20.

In Figure 8.14, it can be observed that the SCP algorithm failed to converge within the limit of 20 SCP itera-
tions. The algorithm seems to search in the right direction, as all solutions to the convex sub-problems have a
very similar final time t f . This final time of approximately 65 seconds was found to represent a local minimum
through comparison with the solution of the NLP benchmark algorithm. However, it seems that there are a
number of different manoeuvres for this problem that all have a similar manoeuvre duration and cost (t f ).
As the SCP algorithm keeps finding different solutions to the subsequent convex sub-problems, the criterion
εx is not met. It is noted that this behaviour was only observed for a very small number of minimum-time
reorientation problems. This phenomenon is thought to be caused by the inherent larger degree of freedom
that is characteristic of the minimum-time spacecraft reorientation problem.

In Figure 8.15, however, it is shown that the implementation of the adaptive trust-region strategy enables the
SCP algorithm to converge for the test case of Figure 8.14.
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(b) Convergence history of the convergence criteria.

Figure 8.15: Same test case as presented in Figure 8.14, but this time the SCP algorithm used the adaptive trust-region technique that
was presented in Section 4.7.

From Figure 8.15, it can be concluded that the adaptive trust-region scheme from Section 4.7 enabled the SCP
algorithm to converge to a solution. Through increasing the weight factor of the trust-region term (thereby
decreasing its effective size) after the 10th iteration of the iterative SCP algorithm, the convex sub-problems
‘encourage’ a decrease in the difference between the state solution x and its most recent reference solution x̄ .
Consequently, the algorithm has converged after the 13th iteration.
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8.5. Objective function weight factor tuning
As became apparent in Chapter 4, there is a large number of algorithm parameters involved in the design
and implementation of the SCP-based optimisation algorithm. Two important ones are the (initial) weight
factors of the virtual-control (wvc) and trust-region (wtr) terms of the objective function of the convexified
sub-problems from Subsections 4.10.1 and 4.10.2. It was found that these two parameters have a significant
influence on the performance of the SCP algorithm. This sensitivity has, to the knowledge of the author, not
yet been researched in detail in available literature on SCP. To simplify the parameter analysis and tuning
process, the weight factor of the optimisation term (either the minimum-energy or minimum-time term, de-
pending on the problem formulation) was set to have an order of magnitude of approximately one. This was
achieved through scaling of the optimisation parameters and the introduction of an adequate weight factor.
Multiple Monte Carlo analyses were performed for both the minimum-energy and minimum-time problems
to select the values for these two parameters that optimise the performance of the SCP algorithm. For the
sake of conciseness, this section only presents the tuning process for the minimum-time problem.

The strategy that was followed to understand the influence of the virtual-control and trust-region weight
factors on the performance of the SCP algorithm was to perform multiple Monte Carlo analyses while only
varying a single parameter. Consequently, this analysis was performed independently for the virtual-control
and trust-region weight factors.

Virtual-control weight factor
In Figure 8.16, the Monte Carlo results are provided in terms of optimality, computational efficiency, and the
convergence rate. The performance in terms of accuracy was similar for all weight factors, which was to be
expected as the convergence criteria were identical for all Monte Carlo analyses.
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Figure 8.16: Performance of the SCP algorithm as a function of the virtual-control weight factor [-] for the minimum-time,
attitude-constrained reorientation problem. Each Monte Carlo analysis consisted of 500 test cases.

In Figure 8.16, it can be seen that the weight factor wvc does not influence the optimality of the solutions to
a very large extent, apart from the fact that for wvc = 1 the spread in the results becomes somewhat larger.
However, in terms of computational efficiency, a trend can be observed where the performance increases
(lower computation times) as the magnitude of the weight factor decreases. This trend continues until a
certain point is reached where the computation times start to increase again. This increase can be observed
for wvc = 1. For this weight factor, it can be seen that the SCP algorithm struggles to find (optimal) solutions,
signalled by both the increase in computation times and the decrease in the convergence rate. A possible
explanation for the fact that a lower virtual-control weight factor negatively influences the convergence rate
is that allowing the SCP algorithm to excessively use the virtual control variable hinders it from finding a
feasible solution. A weight factor of 5× 101 was selected for the SCP algorithm as it combines acceptable
computational efficiency with a seemingly higher convergence rate than for lower weight factors.

Trust-region weight factor
In Figure 8.17, the results of the weight factor tuning process are provided for the trust-region weight factor
of the minimum-time reorientation problem.
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Figure 8.17: Performance of the SCP algorithm as a function of the trust-region weight factor [-] for the minimum-time,
attitude-constrained reorientation problem. Each Monte Carlo analysis consisted of 500 test cases.

To begin with, it can be observed that, starting from a weight factor of 1× 10−3, the SCP solutions start to
become sub-optimal compared to the solutions of the NLP benchmark algorithm. This behaviour is in line
with expectations, as a higher trust-region weight factor (smaller trust region) results in a decrease of the state
difference (x− x̄) between two subsequent iterations. At some point, this can cause the algorithm to meet the
convergence criterion εx for a particular iteration, while it would not have met this criterion if the trust region
had been larger. In the latter scenario, the algorithm would have performed another iteration, bringing it
closer to the locally optimal solution. This hypothesis is confirmed by the fact that, from a weight factor of
1×10−3, it was found that the computation times decrease due to a lower number of SCP iterations that were
performed. Furthermore, in terms of computational efficiency, there is a clear trend that computation time
decreases as the trust-region weight increases. Finally, in terms of robustness, the lower convergence rate for
a weight of 1×10−3 was thought to be accidental rather than representing a general trend, considering the
equal convergence rates for all other weight factors. For the SCP algorithm, a trust-region weight factor of
1×10−3 was selected, as it provides optimal results combined with good computational efficiency.

8.6. Computation times
In literature on sequential convex programming, there has been some debate on the assessment of the com-
putational efficiency of SCP-based optimisation algorithms. As was mentioned in Chapter 6, the main issue is
that MATLAB takes significantly more time to execute the optimisation algorithm than a compiled language,
which would be used on an embedded system in the context of autonomous guidance. Currently, most re-
searchers assume that the sum of all solve times of the ECOS runs corresponding to the SCP iterations, serves
as a proper indication of the computation time of the entire SCP algorithm (Reynolds et al., 2021; Szmuk
et al., 2020). Reynolds et al. (2020a) reported that, in their study, the time spent outside the convex solver only
accounted for 2% of the total solution time of the SCP algorithm, supporting this line of thought. However,
as the spacecraft reorientation problem solves relatively quickly compared to more complex problems such
as the 6-DoF, constrained, powered-descent problem, it cannot be known with certainty that this result holds
for the SCP algorithm that was developed in this study. This uncertainty is, for instance, confirmed by results
of a recent study of Preda et al. (2021), who studied a different type of spacecraft reorientation problem and
found that for their implementation, the discretisation step of Subsection 4.5.2 represented around 50% of
the total solution time (although it must be noted that the Python routine that was implemented in that study
does not seem to be the fastest option).

Therefore, as the implementation of the SCP algorithm in this study uses highly-efficient C-code generated
by MATLAB Coder for the discretisation step, it was thought to be very interesting to analyse how the discreti-
sation step compares to the ECOS solving step in terms of runtime. In Figure 8.18, the results of this analysis
are shown. In this figure, the median computation times of two Monte Carlo analyses of Chapter 9 are shown.
These analyses consider the minimum-energy and minimum-time, attitude-constrained reorientation prob-
lems.
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Figure 8.18: Median computation times of the Monte carlo analyses of the minimum-energy and minimum-time, attitude-constrained
reorientation problems, split up into the computation times of the discretisation and ECOS solve steps.

In Figure 8.18, it can be seen that the discretisation step represents approximately 10% of the total solution
time. This is higher than reported by Reynolds et al. (2020a) but can, as mentioned before, be explained
by the fact that the time required to find a solution for a spacecraft reorientation problem (at least in our
set-up) seems significantly lower than the times reported in that study. However, it can be concluded that
the assumption that the ECOS solve step can serve as a proper indication of the total solution time, still
holds. Finally, the fact that it requires relatively less time to execute the discretisation step for the minimum-
time problem than for the minimum-energy problem, could have been expected. Due to the larger degree
of freedom of the minimum-time problem, ECOS typically requires more iterations to find a solution for
a convex sub-problem. Meanwhile, in the algorithm implemented in this study, the discretisation step is
identical for both the minimum-time problem and for the minimum-energy problem. It is thought that a
performance improvement could be realised by eliminating the time-normalisation step (Section 4.3) for the
minimum-energy problem.

8.7. Sensitivity analysis
The SCP algorithm that was developed in this study requires the definition of a large number of algorithm
variables, which all influence the performance of the algorithm. For instance, in Section 8.5, it was analysed
how the weight factors of the objective function could be tuned in order to realise performance improve-
ments. Regarding the remaining parameters, most were selected through an iterative process of trial, error,
and the analysis of the results of corresponding test cases. During this process, it was discovered that two
algorithm parameters have a relatively large influence on the performance characteristics of the SCP algo-
rithm, especially in terms of computational efficiency and accuracy. These two parameters are the number of
discretisation nodes K and the convergence criterion for the state deviation εx . It was decided to analyse the
sensitivity of the SCP algorithm regarding these two parameters. The purpose of this analysis is not to select
the ‘best’ combination of parameters, as this would require detailed algorithm requirements for a specified
mission scenario, but rather to identify general trends that could be of use when the performance of the SCP
algorithm has to be optimised for a specific application. In this section, this sensitivity analysis is performed
for the minimum-energy, attitude-unconstrained reorientation problem, but a similar analysis could be per-
formed for different types of reorientation problems.

Figure 8.19 provides the results of this sensitivity analysis. For different combinations of the parameters K
and εx , the mean performance of the SCP algorithm for a set of five Monte Carlo cases is shown. It must be
noted that the convergence criterion εx was scaled for the number of grid nodes K , where the values provided
in Figure 8.19 represent the parameters for K = 15. Furthermore, the NLP benchmark solution that forms the
reference point of the optimality evaluation had a constant number of grid nodes KNLP = 15 to realise a fair
comparison in terms of optimality.

Several interesting observations can be made from Figure 8.19. To begin with, Figure 8.19a shows that the
computational efficiency of the algorithm strongly depends on both parameters that were studied. The trend
is as expected: the computation time increases as the number of discretisation nodes K (and therefore the
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(a) Mean computation time (computational efficiency).
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(b) Mean number of iterations required for convergence.
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(c) Mean optimality of obtained solutions.
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(d) Mean propagation error (accuracy).

Figure 8.19: Sensitivity of the performance of the SCP algorithm to the number of discretisation nodes K and the convergence criterion
εx . For this analysis, the x- and y-axis were split up into 11 and 10 nodes, respectively. Every data point represents the mean value of five

Monte Carlo test cases for the minimum-energy, attitude-unconstrained reorientation problem.

problem size) increases, and the convergence criterion εx is tighter (and it takes longer to converge). How-
ever, while the change in performance as a function of K is gradual, the change as a function of εx is stepwise:
for values of εx smaller than 3, a sudden increase in the computation times can be observed. This stepwise
behaviour is caused by the fact that from this point, the SCP algorithm typically required an additional it-
eration to convergence, as can be seen in Figure 8.19b. This behaviour is in line with expectations, as the
convergence criterion εx influences the number of iterations that are performed before the algorithm con-
verges. As the typical number of iterations required to converge is relatively low for the minimum-energy,
attitude-unconstrained reorientation problem, a single additional iteration of the SCP algorithm is clearly
visible in Figure 8.19a.

The same stepwise behaviour can also be identified for the results regarding the optimality (Figure 8.19c) and
accuracy (Figure 8.19d) of the SCP algorithm. The reduction in accuracy for a stricter convergence criterion
can be explained by the insight that such a stricter convergence criterion reduces the maximum difference
between the converged solution and the last reference solution (∆z) of the SCP algorithm. Consequently,
the corresponding approximation of the original, non-convex problem dynamics becomes more accurate,
and the accuracy of the SCP algorithm increases. It is noted that the accuracy (or propagation error) is ex-
pected to show quadratic behaviour as a function of the convergence criterion εx , as the approximation error
of a first-order Taylor series expansion is a function of (∆x)2. As a convex sub-problem that better approxi-
mates the original, non-convex problem also has an optimal solution that better approximates the solution
of the original problem, it is no surprise that the general trends visible for sensitivities of Figure 8.19c and Fig-
ure 8.19d are highly similar. For the minimum-time problem, however, a larger sensitivity of the optimality
with respect to the number of grid nodes K is expected, due to the less gradual nature of the optimal control
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profiles. More grid nodes could enable the FOH-modelled control of the SCP algorithm to better approximate
the control profiles of the true optimum.

Regarding the selection of parameters, an interesting finding is that the number of discretisation nodes K
has a relatively small influence on both the accuracy and optimality of the SCP algorithm for the minimum-
energy problem. The FOH discretisation method can deliver accurate results for low numbers of grid nodes
K in combination with a strict convergence criterion εx . Considering the high computational efficiency of
the SCP algorithm for a low number of grid nodes K , it could be interesting for onboard applications to con-
sider such a combination of parameters. However, something that must be kept in mind is the enforcement
of constraints. If control, attitude, and rate constraints would be exclusively enforced at the K grid nodes,
reducing this parameter would lead to more extensive inter-nodal constraint violations.

When developing an SCP-based optimisation algorithm, it is suggested to perform a similar sensitivity analy-
sis to get an initial ‘feeling’ of the sensitivity of the performance of the algorithm to these important algorithm
parameters. The next step would be to perform an iterative cycle of Monte Carlo analyses while tweaking the
algorithm parameters until satisfactory performance is obtained.



9
Monte Carlo Analyses

In this chapter, the results of the Monte Carlo analyses that were performed during this research project
are presented. The aim of this chapter is to obtain a thorough understanding of the performance of the
SCP-based optimisation algorithm in terms of the three main criteria identified in Section 3.7: robustness,
optimality, and computational efficiency. In addition, characteristics regarding accuracy, the convergence
process and constraint violations are provided and discussed.

A total of six Monte Carlo analyses were performed for different formulations of the spacecraft reorientation
problem. The goal of this was to analyse the extent to which the type of reorientation problem influences the
performance of the SCP algorithm. For both the minimum-time and minimum-energy spacecraft reorienta-
tion problems, three Monte Carlo analyses were executed for three different types of reorientation problems:

1. Attitude-unconstrained reorientation (Subsections 9.1.1 and 9.2.1)
This problem formulation consists of all constraints and parameters presented in Section 4.10, except
for the (conical) keep-out and keep-in attitude constraints. Even if these attitude constraints are im-
posed on a spacecraft, most of the reorientation manoeuvres are usually not hindered or obstructed
by these constraints, as these restrict only a part of the (quaternion) attitude space. Therefore, the
attitude-unconstrained reorientation problem serves as a useful indicator for the typical performance
behaviour of the SCP algorithm, even when attitude constraints are enforced.

2. Attitude keep-out constrained reorientation (Subsections 9.1.2 and 9.2.2)
For the second set of Monte Carlo analyses, attitude keep-out constraints were added to the problem
formulation. These constraints are often included in both industry and literature (Section 3.8), and add
a layer of complexity to the optimisation problem.

3. Attitude-constrained reorientation (Subsections 9.1.3 and 9.2.3)
The final set of Monte Carlo analyses contains both attitude keep-out and keep-in constraints. This
combination of these constraints further increases the complexity of the problem. For these analyses,
the full problem formulations from Section 4.10 were solved.

In other words, the six different reorientation problems differ both in their objective (minimum-energy ver-
sus minimum-time) and in the extent to which attitude constraints are imposed on the problem. It should
be noted that, in addition to the convex problem formulations from Section 4.10, the angular rate constraints
were enforced on the midpoints of the 14 segments of the grid, in accordance with the method that was
proposed in Section 8.3. Furthermore, each Monte Carlo analysis consisted of 2,500 test cases. Finally, in the
following sections, the minimum-energy results are discussed with a higher level of detail than the minimum-
time results, as similar trends could be identified for both problems, and it was tried not to repeat too much
information for the sake of clarity.

In terms of structure, Sections 9.1 and 9.2 present the results and an in-depth discussion of the Monte Carlo
analyses of, respectively, the minimum-energy and minimum-time reorientation problems. Then, in Sec-
tion 9.3, the main findings of these analyses in terms of the three main performance criteria are collected,
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compared to the results of the NLP benchmark algorithm, and used to answer the research questions that
form the foundation of this study.

9.1. Minimum-energy reorientation problem
In this section, the performance of the SCP algorithm concerning the minimum-energy spacecraft reorien-
tation problem is presented and analysed for three different Monte Carlo analyses. In Table 9.1, the SCP
algorithm parameters are presented that were used for the Monte Carlo analyses presented in this section.

Table 9.1: SCP algorithm parameters for the minimum-energy reorientation problem studied in Section 9.1.

Parameter Value Unit Parameter Value Unit
K 15 - Kdisc 5 -

wu 1×102 - nit,lim 25 -
wtr 1×10−3 - wvc 1×102 -

αtr,adap 5 - αvc,adap 3 -
ntr,adap,thres 8 - εvc 5×10−5 -

εx 0.6 -

9.1.1. Minimum-energy, attitude-unconstrained reorientation
In this subsection, the Monte Carlo results are provided for the minimum-energy, attitude-unconstrained
spacecraft reorientation problem. In Figure 9.1, the convergence rate and behaviour of the SCP algorithm are
visualised.

0 1 2 3 4 5 6 7 8 9 10

Number of SCP iterations [-]

0

0.2

0.4

0.6

0.8

1

C
on

ve
rg

ed
 c

as
es

 [-
]

SCP convergence rate = 100.0%
NLP convergence rate = 100.0%
Last converged case

Figure 9.1: Empirical cumulative distribution function (CDF) of the number of SCP iterations required to obtain a converged solution
for the minimum-energy, attitude-unconstrained reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

Three interesting observations can be extracted from Figure 9.1:

• Both the SCP and NLP benchmark optimisation algorithms achieve a 100% convergence rate. This
means that for all 2,500 Monte Carlo test cases, a feasible solution was found. This is a significant
result from the perspective of a potential onboard implementation, as robustness is one of the key
considerations for such applications (Section 3.7).

• The SCP algorithm converges rapidly, typically requiring only a few iterations. This was found to be
related to the fact that the optimal, minimum-energy solution was usually approximated very well by
the shape-based initial guess, as was discussed in Section 8.1. This explanation is supported by the fact
that the SCP algorithm converged within a single iteration for some test cases.

• The SCP algorithm converged within a finite number of iterations (10) for all test cases. It is interesting
to note that this number was significantly lower than the iteration limit nit,lim of 25 iterations. This
finding suggests that there exists a predictable upper bound for the computational efficiency of the
SCP algorithm, as the variance of this performance parameter is mainly driven by a varying number of
iterations required for convergence.

In the remainder of this subsection (and chapter), the other performance criteria from Section 6.2 are anal-
ysed. The decision was made to use box plots for this purpose, as these, as outlined before in Chapter 6,
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were found to provide the best overview of both the mean performance and the characteristics of outliers. In
Figure 9.2, the legend is provided that applies to all box plots presented in the rest of this chapter.

Median
25% - 75%
Whisker (max. 1.5 x interquartile range (IQR))
Outlier (outside 1.5 x IQR)
98th percentile

Figure 9.2: Legend for the box plots representing the performance of the SCP algorithm in the Monte Carlo analyses.

Regarding these box plots, the interquartile range (IQR) represents the difference between the 25th and 75th
percentile (orange box in the figures). All data points outside of a range of 1.5 × IQR from the 25th and 75th
percentile are considered to be outliers. Using this representation, in Figure 9.3, the performance of the SCP
algorithm in terms of optimality, computational efficiency and accuracy is shown.
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Figure 9.3: Performance of the SCP algorithm in terms of optimality, computational efficiency and accuracy for the minimum-energy,
attitude-unconstrained spacecraft reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

Then, in Figure 9.4, the results of Figure 9.3 are presented without the consideration of outliers to enable the
reader to get a grasp of the median performance of the SCP algorithm for the majority of the Monte Carlo test
cases, without being distracted by outliers.
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Figure 9.4: Detailed view of Figure 9.3, which shows the Monte Carlo results without consideration of the outliers.

Both Figures 9.3 and 9.4 are very insightful:

• In terms of optimality, the SCP algorithm performs excellent regarding our goal of finding minimum-
energy guidance trajectories. For practically all cases, the difference in optimality between the SCP and
NLP solutions is within 1%.
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• In terms of computational efficiency, it can be observed that the SCP algorithm is fast. In literature, the
NLP methods are often associated with computation times in the order of hundreds of milliseconds
or even seconds. These results confirm the hypothesis that the SCP framework can deliver promising
computation times. The computational efficiency of the SCP algorithm is further analysed and com-
pared to the efficiency of the NLP benchmark algorithm in Subsection 9.3.3.

• In terms of accuracy, the mean propagation error was slightly higher than 0.01 degrees, which seems to
be accurate considering other studies on reorientation guidance (f.i. the study of Ventura et al. (2015)).
However, as was discussed in Section 3.7, a final conclusion can only be drawn when explicit accuracy
requirements are formulated for a certain mission scenario. As covered in Section 8.7, when defining
the parameters of the SCP algorithm, specifically the state convergence criterion εx , one basically per-
forms a trade-off between computational efficiency and accuracy. This process could be complicated
by the behaviour that can be observed in Figure 9.3. The reason for this is that the maximum propa-
gation error is almost three orders of magnitude larger than the median propagation error. In order to
improve the accuracy of these outliers, a computational burden would be placed on many problems
for which the results could already be accurate enough.

9.1.2. Minimum-energy, attitude keep-out constrained reorientation
In Figure 9.5, the convergence characteristics of the SCP algorithm with respect to the keep-out constrained
problem are shown. As noted earlier, this problem is known to be more complex than the attitude-unconstrained
reorientation problem.
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Figure 9.5: Empirical cumulative distribution function of the number of SCP iterations required to obtain a converged solution for the
minimum-energy, keep-out constrained spacecraft reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

Two main insights were obtained from Figure 9.5:

• Similar as for the attitude-unconstrained problem presented in Figure 9.1, both the SCP and NLP bench-
mark algorithms show a 100% convergence rate. From this observation, it can be concluded that the
conical keep-out constraint in itself has no negative consequences on the robustness of the SCP algo-
rithm for the minimum-energy problem.

• In contrast to the attitude-unconstrained problem from Figure 9.1, the SCP algorithm needs a maxi-
mum of not 10, but 14 iterations to find a solution that meets all convergence criteria. This is in line
with the general notion that the keep-out constrained problem is more challenging to solve than the
attitude-unconstrained problem. Nevertheless, the majority of test cases can be seen to have converged
after around 10 iterations.

In order to analyse the performance of the SCP algorithm regarding the other criteria of Section 3.7, in Fig-
ure 9.6, the optimality, computational efficiency, and accuracy results of the Monte Carlo analysis are pro-
vided.
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Figure 9.6: Performance of the SCP algorithm in terms of optimality, computational efficiency and accuracy for the minimum-energy,
keep-out constrained spacecraft reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

Again, Figure 9.7 shows a detailed view of the results from Figure 9.6 which does not consider outliers.
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Figure 9.7: Detailed view of Figure 9.6, which shows the Monte Carlo results without consideration of the outliers.

Based on Figure 9.6 and Figure 9.7, it can be concluded that:

• In terms of optimality, although the majority of SCP solutions show a performance difference to the
NLP benchmark within a few percent, large outliers can be observed. After inspecting the results that
correspond to these outliers, it was concluded that these differences in optimality mainly result from
the fact that both the SCP and NLP algorithms are local optimisation methods. It was observed that,
because the problem formulation specifies that the keep-out constraints are located directly between
the initial and final attitude of the manoeuvre, the SCP and NLP solutions often took a path around
the ‘opposite’ sides of the conical keep-out constraint. An example of this phenomenon is provided
in Figure 9.8. In this case, these different trajectories lead to a difference in performance of 22.9%.
However, neither the NLP nor the SCP algorithm was found to consistently find solutions that were
more optimal.

• The computational efficiency decreases due to the introduction of the attitude keep-out constraint
compared to the unconstrained case. It was found that this was caused by both the increased number
of iterations that the SCP algorithm required to converge, and by an increase in the ECOS solve times
due to the increased problem size.

• As expected, as both the discretisation procedure and convergence tolerances for the keep-out con-
strained and attitude-unconstrained problems were identical, the propagation errors of the SCP guid-
ance solutions have approximately the same magnitude as for the attitude-unconstrained problem.
Therefore, it can be concluded that tuning the accuracy of the SCP algorithm is relatively independent
of the type of minimum-energy reorientation problem.
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Figure 9.8: 3-D visualisation of an example, minimum-energy, keep-out constrained test case where the optimality difference
∆J = 22.9% (the SCP solution is more expensive than the NLP solution). The NLP and SCP solutions pass along a different ‘side’ of the

keep-out constraint.

Because the attitude keep-out constraint is only enforced at the grid nodes, it was determined to be interest-
ing to analyse the maximum constraint violations that were encountered during the test cases of this Monte
Carlo analysis. In Figure 9.9, these violations are shown.
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Figure 9.9: Attitude keep-out constraint violations for the minimum-energy, keep-out constrained spacecraft reorientation problem.
The Monte Carlo analysis consisted of 2,500 test cases.

For most cases, it can be observed that the maximum constraint violation is within 2 degrees and relatively
small. However, outliers were found of up to 4 degrees. In order to provide additional insight, in Figure 9.11 a
3-D visualisation is provided for the SCP guidance solution for the test case that results in the highest keep-
out constraint violation in Figure 9.9, which is about 4 degrees.
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Figure 9.10: 3-D visualisation of the minimum-energy, keep-out constrained test case that represents the maximum keep-out
constraint violation (4 degrees) of Figure 9.9.

In Figure 9.11, the corresponding angular separation angle between the x-axis of the body-fixed reference
frame and the central axis of the keep-out constraint cone is shown.
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Figure 9.11: Angular separation between the body-fixed x-axis of the spacecraft and the vector representing the central axis of the
keep-out constraint for the minimum-energy, keep-out constrained test case of Figure 9.11.

In this case, the relatively large constraint violation is a consequence of the fact that the attitude keep-out
cone is very small. This allows both the SCP and NLP algorithms to find a solution that ‘skips’ the constraint
altogether, using inter-nodal constraint violations. This case was in line with the broader observation that
the keep-out constraint violations increased as the minimum separation angle of the corresponding keep-
out cones were smaller.

In practice, it would be very unlikely that such a small keep-out constraint would be enforced on an attitude
reorientation problem. If this would be an actual mission scenario, there could be two main ways to deal with
these constraint violations. The first is to increase the angular separation angle of the keep-out constraint
with a 5-degree safety margin. This would suffice to guarantee that, for the majority of cases, the keep-out
attitude constraint is satisfied at all times. An alternative approach would be to use the novel method intro-
duced in Section 8.3 to enforce the conical keep-out constraint at a set of additional nodes that do not belong
to the grid of the discretised optimisation variables. This would, however, as discussed in Section 8.3, lead to
an increase in the computation time required for finding a guidance solution.

9.1.3. Minimum-energy, attitude-constrained reorientation
In this subsection, the results are provided of the Monte Carlo analysis of the minimum-energy, attitude-
constrained reorientation problem. Figure 9.12 shows the convergence results of this Monte Carlo analysis.
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Figure 9.12: Empirical cumulative distribution function of the number of SCP iterations required to obtain a converged solution for the
minimum-energy, attitude-constrained spacecraft reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

Two important findings can be extracted from Figure 9.12:

• To begin with, it can be seen that at first sight, the SCP algorithm seems to have had difficulties to
converge successfully in comparison to the previous two Monte Carlo analyses, as is reflected by the
convergence rate being only 98.1%. Meanwhile, the convergence rate of the NLP benchmark algorithm
is 99.9%, which supposedly indicates that there exist feasible solutions to the problems where the SCP
algorithm failed to converge. However, it was found that this conclusion cannot be drawn that easily,
as will be extensively discussed after the next observation.

• After a certain number of iterations, in this case 15, it was found that the SCP algorithm either had con-
verged or would not converge at all. During the analysis, increasing the iteration limit of the SCP algo-
rithm did not change this behaviour. Therefore, it can be concluded that there is no point in increasing
the iteration limit significantly above 15-20, at least for this Monte Carlo test set-up. Furthermore, it
was found that inconvergence typically could be detected early, as ECOS would provide the status ‘Un-
bounded’ already from iterations 5-7 for the majority of cases where it failed to converge. This property
could enable an SCP algorithm to abort early when it cannot find a solution for an optimisation prob-
lem, something which is not always possible for NLP optimisation methods. These are known to run
for extended amounts of time before reporting that no solution can be found.

The following paragraphs aim to provide an in-depth analysis of the fact that Figure 9.12 shows a lower con-
vergence rate for the SCP algorithm than for the NLP benchmark algorithm.

After a thorough analysis of a large number of individual test cases for which the SCP algorithm failed to con-
verge, the hypothesis was formed that there were test cases present in the set of Monte Carlo cases that would
be infeasible if all attitude constraints would be enforced continuously, in contrast to only at the nodes along
the attitude manoeuvre. In other words, it was thought that there are cases that are theoretically infeasible but
for which the SCP and NLP algorithms could still find (discrete) solutions through inter-nodal constraint vio-
lations. In order to prove this hypothesis, the same Monte Carlo analysis, with identical test cases, was solved
with a third algorithm. This algorithm is identical to the NLP benchmark algorithm that was used up to this
point, except for the fact that for this algorithm, the attitude constraints were enforced at 30 (linearly-spaced)
nodes, instead of the 15 CGL grid points. The results of this Monte Carlo analysis regarding the convergence
rate of the three algorithms can be seen in Figure 9.13. In this figure, the third algorithm is referred to with
NLPfeasible, as this algorithm is considered to be a better indicator for the test cases that are feasible.
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Figure 9.13: Convergence results of the Monte Carlo analysis for the minimum-energy, attitude-constrained reorientation problem,
including the results of a second NLP algorithm. This algorithm enforces the attitude constraints at a larger number of nodes.

As can be seen in Figure 9.13, the NLPfeasible algorithm only converges for 97.36% of all 2,500 test cases. Given
the 99.88% convergence rate for the original NLP algorithm (which enforces the attitude constraints at a
smaller number of nodes), it becomes very likely that the NLP and SCP methods indeed achieve a higher
convergence rate than 97.36% due to inter-nodal keep-out and keep-in constraint violations. This theory was
confirmed through analysing a large number of individual test cases, of which one is provided in Figure 9.14.

Figure 9.14: 3-D visualisation of a minimum-energy, attitude-constrained test case that does converge for the SCP and NLP algorithms,
but does not converge for the NLPfeasible algorithm.

For the test case shown in Figure 9.14, both the SCP and NLP algorithms were able to find a solution, while
the NLPfeasible algorithm failed to converge. It can be seen that the guidance trajectories of both the SCP
and NLP methods touch the boundaries of both attitude constraints, indicating that this test case could be
infeasible if the attitude constraints were enforced continuously. To provide further evidence for this hypoth-
esis, Figure 9.15 shows the propagated angular separation angles between the central axes of the keep-out
and keep-in constraints and, respectively, the body-fixed x- and z-axes of the spacecraft for the test case pre-
sented in Figure 9.14.
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(a) Angular separation between the body-fixed x-axis of the spacecraft and
the central axis of the keep-out constraint.
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(b) Angular separation between the body-fixed z-axis of the spacecraft and
the central axis of the keep-in constraint.

Figure 9.15: Attitude constraint satisfaction of the SCP solution and propagated time histories corresponding to the minimum-energy,
attitude-constrained test case of Figure 9.14.

It Figure 9.15, it becomes clear that at exactly the same point in the manoeuvre, the keep-out constraint and,
to a lesser extent, the keep-in constraint are violated, providing more evidence for the hypothesis that this
case would be infeasible if the attitude constraints would be enforced continuously, instead of only at 15
nodes. Combining the results of Figure 9.13 with the results of the single-case analysis from Figure 9.15, the
hypothesis that the Monte Carlo analysis contained infeasible test cases was considered proven.

At this point, the question remains how the performance of the SCP algorithm in terms of robustness can be
evaluated if the results from Figure 9.12 contain infeasible test cases. The decision was made that it would
be more fair to evaluate the convergence rate of the SCP algorithm within the 97.36% of the original 2,500
Monte Carlo cases for which the NLPfeasible algorithm converged, as these test cases are thought to be more
or less feasible, although small constraint violations could still be present in the obtained solutions. Using
this approach, the robustness of the SCP algorithm would be defined as its capability to converge for feasible
reorientation problems, and not as its capability to use constraint violations to find solutions for problems
that are infeasible. The results of this analysis for the reduced set of Monte Carlo test cases are provided in
Figure 9.16.
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Figure 9.16: Convergence results of the Monte Carlo analysis for the minimum-energy, attitude-constrained reorientation problem.
This time, only the 97.36% of the cases were considered for which the NLPfeasible algorithm converged to a solution.

From Figure 9.16, it can be observed that the convergence rate of the SCP algorithm for this set of test cases
was 99.84%, which is significantly higher than the 98.08% from Figure 9.12. The important conclusion that
can be drawn from this analysis is that the robustness of the SCP algorithm for the minimum-energy, attitude-
constrained reorientation problem appears to be highly comparable to the NLP benchmark algorithm. How-
ever, an exact comparison cannot be drawn as the taken approach does not consider test cases that are fea-
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sible, but where the NLPfeasible algorithm failed to find a solution. Nevertheless, for the purpose of this study,
it was determined that the obtained convergence rate of 99.84% sufficed to draw conclusions about the ro-
bustness of the SCP algorithm at a level that is required for answering the research question.

After inspection, the three cases (0.16%) for which the SCP algorithm did not and the NLPfeasible algorithm
did converge were found to be feasible. One of these three test cases is visualised in Figure 9.17.

Figure 9.17: 3-D visualisation of one of the three minimum-energy, attitude-constrained test cases for which the SCP algorithm failed to
converge while the NLPfeasible algorithm did converge.

In Figure 9.17, it can be seen that the SCP algorithm tried to find a solution at the side of the keep-out cone
where it (visually) seems impossible to find a solution that satisfies both attitude constraints. Meanwhile, the
NLP solution, which takes a path along the other side of the constraint, is obviously able to satisfy all attitude
constraints. This behaviour was detected for all three cases for which the SCP algorithm failed to converge. In
these test cases, as described in Subsection 7.2.4, the SCP algorithm uses virtual control to violate the conical
constraints for early iterations. However, because of the conflicting attitude constraints, the SCP algorithm is
unable to reduce this use of virtual control in later iterations. This is illustrated in Figure 9.18, which presents
the convergence criteria satisfaction and virtual control use of the SCP algorithm.

5 10 15 20 25

Iteration [-]

100

C
rit

er
io

n 
m

ag
ni

tu
de

 [-
]

Virt. cont. term State term 0
8

0
x

Figure 9.18: History of the convergence criteria corresponding to the minimum-energy, attitude-constrained tests case from
Figure 9.17. The SCP algorithm was halted after 4 iterations.

Figure 9.18 shows that the SCP algorithm resorts to using virtual control at a level much higher than allowed
for convergence, and apparently does not have the capacity to ‘refocus’ and try to find a solution on the other
side of the keep-out constraint. Considering the difference between the typical convergence behaviour of the
SCP and NLP algorithms, this might have been expected. The SCP algorithm either converges within 10-15
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iterations, or does not converge at all. In contrast, the NLP algorithm sometimes requires up to 1000 itera-
tions to find a solution. Furthermore, the NLP algorithm uses advanced logic, including multiple ‘restoration
phases’, in which the algorithm ‘zooms out’ in order to consider a search direction that is significantly differ-
ent from the one it was focused on during its recent iterations. This logic is not included in the SCP algorithm.
As a result, it is highly likely that the SCP algorithm cannot recover from a first guess or early iteration that
leads it to focus on a side of the keep-out constraint that eventually turns out to be infeasible. However, it was
found that the SCP algorithm could converge for these three test cases when a different initial guess would be
provided. Therefore, it is thought that the obtained convergence rate of 99.84% could be increased through
the development of initialisation-dependent logic for the SCP algorithm. For instance, if the SCP algorithm
would still use virtual control after 5 iterations, it could be considered to re-initialise with an alternative ini-
tial guess. However, due to the scope of this research project, this topic is left as a recommendation for future
research.

The final thing that needs to be clarified is that the NLP algorithm was able to converge for more cases
(99.88%) than the SCP algorithm (98.08%) in the original set of 2,500 Monte Carlo test cases, as shown in
Figure 9.13. Three causes for this phenomenon were identified:

• The SCP algorithm uses an equally spaced grid, while the NLP algorithm uses a non-equally spaced
grid (see Subsection 5.2.2). As the keep-out and keep-in constraints are exclusively enforced at the
grid nodes, this implies that for the NLP algorithm, several inter-nodal grid distances are slightly larger,
allowing for larger constraint violations. This was found to enable the NLP algorithm to find a solution
for some of the test cases were the SCP algorithm could not.

• Through analysing the test cases for which the NLP algorithm did and the SCP algorithm did not con-
verge, it was found that the NLP algorithm was often more ‘creative’ and persistent (using up to 1000 it-
erations and computation times of multiple seconds) in terms of finding complex, constraint-violating
solutions, while the SCP algorithm simply resorted to using virtual control and did not converge. An
example of such a case is provided in Figure 9.19. In this test case, the SCP algorithm continued to
use virtual control and did not converge, while the NLP solution (for the x-axis) can be seen to take a
non-straightforward route. The NLP solution was found to accelerate substantially near the attitude
constraint, effectively enlarging the distance that could be travelled between two subsequent nodes of
the grid. Using this strategy, larger constraint violations could be achieved and used to find a solution
to the infeasible case. The occurrence of this phenomenon is supported by the keep-out constraint vi-
olations of the NLP algorithm for all cases where the NLP algorithm did and the SCP algorithm did not
converge, which are shown in Figure 9.20. The inter-nodal keep-out constraint violations for this set of
test cases can be seen to be significantly larger than for the cases where the SCP algorithm did converge
(Figure 9.23).

• The SCP and NLP algorithms apply a different strategy to model the control. While the SCP algorithm
uses a first-order-hold assumption, the NLP algorithm uses Lagrange polynomials. It is thought that
the use of Lagrange polynomials allows for more flexibility to achieve the large angular accelerations
that the NLP algorithm commonly applies to find a solution for an infeasible test case. In addition, the
NLP algorithm could allow for (small) inter-nodal violations of the control constraint.
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(a) Perspective focused on the start of the manoeuvre. (b) Perspective focused on the end of the manoeuvre.

Figure 9.19: 3-D visualisation of a test case for the minimum-energy, attitude constrained reorientation problem for which the NLP
algorithm did and the SCP algorithm did not converge, as seen from two perspectives.

 

0

5

10

15

20

25

M
ax

. k
ee

p-
ou

t c
on

st
ra

in
t v

io
la

tio
n 

[d
eg

]

Figure 9.20: Violations of the attitude-keep out constraint of the NLP solutions for the minimum-energy, attitude-constrained
reorientation problem. The results only represent cases for which the NLP algorithm did converge and the SCP algorithm did not.

In Figure 9.21, the Monte Carlo results regarding optimality, computational efficiency and accuracy are pro-
vided.
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Figure 9.21: Performance of the SCP algorithm in terms of optimality, computational efficiency and accuracy for the minimum-energy,
attitude-constrained spacecraft reorientation problem. These results represent all cases of the original set of 2,500 Monte Carlo cases

for which both the SCP and NLP algorithms converged.
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Figure 9.22 shows the results from Figure 9.21 without the consideration of outliers.
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Figure 9.22: Detailed view of Figure 9.21, which shows the Monte Carlo results without consideration of the outliers.

On the basis of Figures 9.21 and 9.22, it was observed that:

• Regarding the optimality of the obtained guidance solutions, the performance is relatively similar to the
performance for the keep-out constrained problem of Subsection 9.1.2, except for two outliers around
+150% and +200%,

• In terms of computational efficiency and accuracy, the differences with respect to the earlier Monte
Carlo analyses are in line with expectations, as the computation times increase due to the additional
(keep-in) constraint and the accuracy does not notably change.

Finally, Figure 9.23 shows the constraint violations that were encountered during the Monte Carlo analysis.
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Figure 9.23: Attitude constraint violations for the minimum-energy, attitude-constrained spacecraft reorientation problem. These
results represent all cases of the original set of 2,500 Monte Carlo cases for which both the SCP and NLP algorithms converged.

Interestingly, it can be observed in Figure 9.23 that constraint violations appear to pose a smaller problem for
the keep-in attitude constraint than for the keep-out constraint. Therefore, if all violations would be unac-
ceptable, it is suggested to simply impose a safety margin on this constraint instead of imposing additional
constraints using the strategy from Section 8.3. The resulting penalty in optimality that results would likely
be preferable over the penalty in computational efficiency that would result from additional constraints. It
should be noted, though, that this margin would also increase the number of infeasible cases.

9.2. Minimum-time reorientation problem
In this section, the results of the three Monte Carlo analyses are presented that were performed to analyse the
performance of the SCP algorithm regarding the same three problem types as were studied in the previous
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section, but this time with a minimum-time objective instead of a minimum-energy objective. For the pur-
pose of conciseness, the discussion of the results is somewhat more brief in this section than in Section 9.1.
The reason for this is that most of the interesting observations have already been identified and discussed
extensively in Section 9.1, and it was desired to avoid repetition. In Table 9.2, the SCP algorithm parameters
are provided that were used for the Monte Carlo analyses presented in this section. As stated before, the 14
additional rate constraints from Section 8.3 were included in the problem formulation as well.

Table 9.2: SCP algorithm parameters for the minimum-time reorientation problem studied in Section 9.2.

Parameter Value Unit Parameter Value Unit
K 15 - Kdisc 5 -

wη 1 - δη 30 %
wtr 1×10−3 - wvc 50 -

αtr,adap 5 - αvc,adap 3 -
ntr,adap,thres 8 - εη 5×10−2 -

εx 0.9 - εvc 5×10−5 -
nit,lim 25 -

9.2.1. Minimum-time, attitude-unconstrained reorientation
In this subsection, the results of the Monte Carlo analysis of the minimum-time, attitude-unconstrained
spacecraft reorientation problem are provided. To begin with, in Figure 9.24, the convergence rate is pre-
sented as a function of the number of performed SCP iterations.
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Figure 9.24: Empirical cumulative distribution function of the number of SCP iterations required to obtain a converged solution for the
minimum-time, attitude-unconstrained spacecraft reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

Interesting findings that can be extracted from these results are:

• In contrast to the minimum-energy, attitude-unconstrained problem, it can be seen that the NLP bench-
mark algorithm failed to find a solution for 4 of the 2,500 Monte Carlo test cases. This finding is line in
with the experience of the research partner OHB, which has also encountered seemingly random NLP
failures for a very small number of small-angle rotations. The 4 NLP failures from Figure 9.24 also con-
sidered small-angle rotations. Because of the fact that the focus of this study was not to optimise the
NLP benchmark algorithm but rather to analyse the potential of an SCP-based optimisation method, it
was decided that a detailed study of the causes of the inconvergence of the NLP algorithm was out of
scope and left as a possible topic for further research.

• As for the results of the minimum-energy analyses, it was found that after a relatively low number of 12
SCP iterations, the SCP algorithm had converged for all test cases. This strengthens the idea that the
SCP algorithm converges in a predictable range of computation times.

In Figure 9.25, the performance of the SCP algorithm in terms of optimality, computational efficiency and
accuracy is visualised.
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Figure 9.25: Performance of the SCP algorithm in terms of optimality, computational efficiency and accuracy, for the minimum-time,
attitude-unconstrained spacecraft reorientation problem. These results represent all cases of the original set of 2,500 Monte Carlo cases

for which both the SCP and NLP algorithms converged.

In Figure 9.26, the results of Figure 9.25 are shown without consideration of the outliers in order to better
visualise the median performance of the SCP algorithm.
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Figure 9.26: Detailed view of Figure 9.25, which shows the Monte Carlo results without consideration of the outliers. These results
represent all cases of the original set of 2,500 Monte Carlo cases for which both the SCP and NLP algorithms converged.

The two observations that were made on the basis of these figures are:

• In terms of optimality, the performance of the SCP and NLP benchmark algorithms is comparable for
the majority of the test cases. However, it can also be observed that the majority of the outliers rep-
resent cases where the NLP algorithm found a more optimal solution than the SCP algorithm. After a
close inspection of these individual test cases, a potential cause was identified. It is thought that the
Lagrange modelling of the control of the NLP algorithm allows for more flexibility regarding the search
for an optimal control profile, compared to the FOH-modelled control profiles of the SCP algorithm.
For instance, for some cases it was observed that the NLP solution showed a faster acceleration than
the SCP solution at the beginning of the manoeuvre. This could be seen to lead to a shorter (in terms
of time), more optimal reorientation manoeuvre. Regarding future research, it would be interesting to
investigate how a non-equally spaced grid with more grid nodes at the start and end of the manoeuvre
could potentially improve the optimality of the SCP algorithm.

• Regarding computational efficiency, the results indicate that it typically takes more time to solve a
minimum-time problem than a minimum-energy problem, as is expected due to the larger degree of
freedom of the minimum-time problem.

Then, in Figure 9.27, the violations of the box constraint on the angular rate are shown. It was decided to
show these violations for the minimum-time Monte Carlo analyses, as the angular rate constraint has a major
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influence on the extent to which the final time t f can be minimised and, therefore, is often closely approached
by the optimal solution.
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Figure 9.27: Violations of the box constraint on the angular rate for the minimum-time, attitude-unconstrained spacecraft reorientation
problem. These results represent all cases of the original set of 2,500 Monte Carlo cases for which both the SCP and NLP algorithms

converged.

In Figure 9.27, it can be seen that the violations of the box constraint on the angular rate are in line with the
remaining violations that were reported and discussed in Section 8.3.

9.2.2. Minimum-time, attitude keep-out constrained reorientation

In this subsection, the results of the Monte Carlo analysis for the minimum-time, keep-out constrained space-
craft reorientation problem are provided. To begin with, in Figure 9.28, the convergence rate is presented as
a function of the number of performed SCP iterations.
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Figure 9.28: Empirical cumulative distribution function of the number of SCP iterations required to obtain a converged solution for the
minimum-time, keep-out constrained spacecraft reorientation problem. These results represent all cases of the original set of 2,500

Monte Carlo cases for which both the SCP and NLP algorithms converged.

From this figure, the same conclusion can be drawn as for the minimum-energy, keep-out constrained prob-
lem: adding conical keep-out constraints in itself has no negative influences on the convergence rate and
thus the robustness of the SCP algorithm.

In Figure 9.29, the performance of the SCP algorithm in terms of optimality, computational efficiency and
accuracy is visualised.
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Figure 9.29: Performance of the SCP algorithm in terms of optimality, computational efficiency and accuracy for the minimum-time,
keep-out constrained spacecraft reorientation problem. These results represent all cases of the original set of 2,500 Monte Carlo cases

for which both the SCP and NLP algorithms converged.

In Figure 9.30, the results of Figure 9.29 are shown without consideration of the outliers to get a better under-
standing of the mean performance of the SCP algorithm for this type of reorientation problem.
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Figure 9.30: Detailed view of Figure 9.29, which shows the Monte Carlo results without considering the outliers.

As for the convergence rate, no new insights can be obtained from Figures 9.29 and 9.30 as they show the same
trends that were already identified for the minimum-energy problem. To begin with, the computation times
increase relative to the attitude-unconstrained problem due to the enforcement of the additional keep-out
constraint. In addition, the number and spread of outliers increases because the NLP and SCP algorithms,
for some of the Monte Carlo test cases, found solutions that moved the x-axis of the spacecraft on opposite
sides of the conical keep-out constraint.

Then, in Figure 9.31, the violations of the conical attitude keep-out constraint and box constraint on the
angular rate are provided.
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Figure 9.31: Attitude keep-out and angular rate box constraint violations of the minimum-time, keep-out constrained spacecraft
reorientation problem. These results represent all cases of the original set of 2,500 Monte Carlo cases for which both the SCP and NLP

algorithms converged.

As can be seen, the keep-out constraint violations are comparable in terms of magnitude to the constraint
violations that occurred for the minimum-energy analyses. However, regarding the violations of the box con-
straint on the angular rate, two outliers can be identified of around 8%, which supports the relevance of the
research recommendation from Section 8.3 to study the effects of imposing additional inter-nodal rate con-
straints on the spacecraft reorientation problem.

9.2.3. Minimum-time, attitude-constrained reorientation

This subsection presents the results of the Monte Carlo analysis of the minimum-time, attitude-constrained
spacecraft reorientation problem. To begin with, in Figure 9.32, the convergence rate is presented as a func-
tion of the number of SCP iterations that have been performed.
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Figure 9.32: Empirical cumulative distribution function of the number of SCP iterations required to obtain a converged solution for the
minimum-time, attitude-constrained spacecraft reorientation problem. The Monte Carlo analysis consisted of 2,500 test cases.

As for the minimum-energy, attitude-constrained problem, it can be observed that the SCP algorithm fails to
converge for a significant number of Monte Carlo test cases. However, as was extensively discussed in Sub-
section 9.1.3, the Monte Carlo analysis was found to contain test cases that are infeasible if all constraints
would be enforced continuously. Therefore, all test cases were solved a third time with the NLPfeasible algo-
rithm that enforced that attitude constraints at 30 instead of 15 nodes, following the same strategy as for the
minimum-energy problem. The convergence results of this analysis are shown in Figure 9.33.
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(b) Convergence results for the reduced set of 99.08% test cases for which
the NLPfeasible algorithm converged.

Figure 9.33: Convergence results of the Monte Carlo analysis for the minimum-time, attitude-constrained reorientation problem,
including the results of a second NLP algorithm which enforces the attitude constraints at a larger number of nodes.

Interestingly, in contrast to the results of the minimum-energy case of Subsection 9.1.3, the NLPfeasible algo-
rithm shows a higher convergence rate for the full set of Monte Carlo test cases than the SCP algorithm, as
can be observed in Figure 9.33b. This is also reflected in Figure 9.33, where it can be observed that the 98.91%
convergence rate of the SCP algorithm in the reduced set of MC test cases is nowhere close to the 99.84% that
was obtained for the minimum-energy problem.

Based on an in-depth analysis of the 1.19% of the test cases for which the NLPfeasible algorithm did and the
SCP algorithm did not converge (Figure 9.33b), it was found that all SCP failures could be attributed to the
SCP algorithm trying the find a solution at the ‘wrong’ side of the conical keep-out constraint, a phenomenon
that was also analysed in Subsection 9.1.3. It is not fully clear why this phenomenon occurs more often for
the minimum-time problem than for the minimum-energy problem, but it could be caused by the fact that
minimum-time solutions are typically located closer to the keep-out constraint than minimum-energy so-
lutions. However, as for the minimum-energy problem, it was found that an alternative initialisation could
result in the SCP algorithm successfully converging and finding the optimal solution. Therefore, the same rec-
ommendation is applicable to the attitude-constrained minimum-time problem as for the minimum-energy
problem: introducing initialisation-based logic to the SCP algorithm is expected to be a promising option to
realise robustness improvements for the attitude-constrained reorientation problem.

For this minimum-time problem, it was seen that the NLP algorithm used an even more ‘creative’ strategy to
find solutions to infeasible test cases than for the minimum-energy problems. An example of this strategy is
provided in Figure 9.34.



9.2. Minimum-time reorientation problem 129

Figure 9.34: 3-D visualisation of a minimum-time, attitude-constrained test case for which the NLP algorithm did and the SCP
algorithm did not converge. Only 3 iterations are shown of the SCP algorithm.

It was discovered that the spacecraft slows down at the beginning of the manoeuvre of Figure 9.34, increas-
ing the total manoeuvre time. Then, it rapidly speeds up and ‘skips’ the keep-out constraint. Through the
increased manoeuvre duration and constant number of grid points where the attitude constraints are en-
forced, the NLP algorithm could realise large constraint violations and find a solution. In contrast, the SCP
algorithm would simply resort to using virtual control and fail to converge.

In Figure 9.35, the performance of the SCP algorithm in terms of optimality, computational efficiency and
accuracy is visualised.
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Figure 9.35: Performance of the SCP algorithm in terms of optimality, computational efficiency and accuracy, for the minimum-time,
attitude-constrained spacecraft reorientation problem. These results represent all cases of the original set of 2,500 Monte Carlo cases

for which both the SCP and NLP algorithms converged.

In Figure 9.36, the results of Figure 9.35 are shown without consideration of the outliers to better visualise the
performance of the SCP algorithm for the majority of the test cases.
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Figure 9.36: Detailed view of Figure 9.29, which shows the results of the Monte Carlo analysis without consideration of the outliers.

All results shown in Figures 9.35 and 9.36 are in line with the observations that were made regarding the five
other Monte Carlo analyses presented in this chapter.

Finally, in Figure 9.37, the violations of the conical attitude keep-in constraint, keep-out constraint, and the
box constraint on the angular rate are provided.
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Figure 9.37: Attitude keep-in, attitude keep-out and angular rate box constraint violations of the minimum-time, attitude-constrained
spacecraft reorientation problem. These results represent all cases of the original set of 2,500 Monte Carlo cases for which both the SCP

and NLP algorithms converged.

The three surprisingly large outliers for the keep-out constraint violation were found to be related to cases for
which the NLPfeasible algorithm did not converge. Therefore, these cases represent infeasible reorientation
problems.

9.3. Overall performance assessment
In this section, the main results and findings from all six Monte Carlo analyses that were presented in the
previous two sections of this chapter are collected to draw top-level conclusions regarding the performance
of the SCP algorithm. These conclusions are drawn with respect to the three main algorithm requirements
that were identified in Section 3.7: robustness, optimality and computational efficiency, which are discussed
in, respectively, Subsections 9.3.1, 9.3.2 and 9.3.3.

9.3.1. Robustness
Figure 9.38 presents the convergence rates of the SCP and NLP algorithms that were obtained for the six
Monte Carlo analyses.
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(a) Convergence rates of the three Monte Carlo analyses of the
minimum-energy reorientation problem.
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Figure 9.38: Convergence rates of the SCP and NLP algorithms for the six Monte Carlo analyses. For the attitude-constrained Monte
Carlo analyses, the SCP convergence rates for the reduced sets of Monte Carlo test cases is shown as well, in line with the discussions of

Subsections 9.1.3 and 9.2.3.

Regarding the attitude-unconstrained and attitude keep-out constrained reorientation problems, the con-
clusion is evident: the SCP algorithm shows excellent performance in terms of robustness, as it converged for
100% of all 2,500 Monte Carlo test cases.

For the minimum-energy and minimum-time, attitude-constrained reorientation problems, the conclusion
is less straightforward. As was extensively discussed in Subsection 9.1.3, it was found that the original set of
2,500 Monte Carlo cases contained infeasible test cases, for some of which the NLP and, to a lesser extent, the
SCP algorithms were able to find solutions using inter-nodal constraint violations. Therefore, it was decided
to base conclusions regarding robustness on a smaller selection of the original 2,500 test cases, for which a
third algorithm (NLPfeasible) was able to converge to a solution. This third algorithm enforced the attitude
constraints on 30 instead of 15 nodes, and was therefore considered to be an indication of a set of test cases
that are actually feasible. The results of the SCP algorithm in terms of robustness for this smaller set of test
cases are highlighted in Figure 9.38 with red boxes.

For this reduced set of test cases, the SCP algorithm performed better for the minimum-energy problem
(99.84% convergence rate) than for the minimum-time problem (98.91% convergence rate). All the failures
could be attributed to the SCP algorithm trying to find a solution around a ‘side’ of the keep-out constraint
where no feasible solution could be obtained. This appears to be a downside of the SCP algorithm, as a
convergence rate lower than 99% could be insufficient for onboard applications. However, it was found that
alternative initialisation trajectories could result in the SCP algorithm finding an optimal solution for these
test cases. Therefore, it is thought that adding initialisation-dependent logic to the SCP algorithm, which is
to some extent inherently included in most NLP solving algorithms (through a so-called ‘restoration phase’),
could improve the convergence rate of the SCP algorithm. The development of this initialisation-dependent
logic is recommended for further research. Furthermore, it should be noted that the convergence rates ob-
tained for this Monte Carlo analysis are conservative. The Monte Carlo test cases were designed to be very
complex, signalled by the number of cases that turned out to be infeasible. Consequently, it could well be
that for a problem with smaller attitude keep-out constraints, these convergence problems would not occur.

9.3.2. Optimality
In Figure 9.39, the results of all six Monte Carlo analyses are shown in terms of the optimality of the obtained
guidance trajectories.
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Figure 9.39: Performance in terms of optimality of the SCP algorithm for the six Monte Carlo analyses. The figure on the left shows all
outliers, while the figure on the right does not consider these in order to assess the median performance.

From Figure 9.39, it can be concluded that:

• The SCP algorithm shows similar median performance as the NLP benchmark algorithm. This can be
considered to be an excellent result, as pseudospectral NLP methods are considered as the standard for
finding optimal results in industrial applications and in most studies on optimal spacecraft reorienta-
tion (Boyarko et al., 2011; Ventura et al., 2015). The slight degradation in optimality for the minimum-
time keep-out constrained and attitude-constrained problems is thought to be caused by the fact that,
for this specific problem set-up, the Lagrange-modelled control of the NLP benchmark algorithm bet-
ter represents the true optimal control profile than the FOH-modelled control of the SCP algorithm. It
should be noted that, for different problem formulations (e.g., larger number of nodes, no angular rate
constraints), it is thought that the FOH-modelled control could better approximate the discrete control
profiles that typically correspond to optimal minimum-time solutions. Another cause could be that
the non-equidistant, pseudospectral grid of the NLP benchmark algorithm allows for larger constraint
violations than the equidistant grid of the SCP algorithm.

• A significant number of outliers were observed for both the minimum-energy and minimum-time
problems, in particular for the reorientation problems that include attitude constraints. However, no
significant trend was identified that showed that either the SCP or NLP algorithm consistently outper-
formed the other algorithm. These outliers were found to be caused by the fact that both algorithms
are local optimisation methods that sometimes arrived at different locally optimal solutions. Conse-
quently, these outliers present no argument against the conclusion that the SCP algorithm shows good
performance in terms of optimality.

9.3.3. Computational efficiency

In Figure 9.40, the obtained computation times of both the SCP and NLP algorithms are provided for the three
different minimum-energy reorientation problems that were studied in Section 9.1.
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Figure 9.40: Performance in terms of computational efficiency of the SCP and NLP algorithms for the three minimum-energy Monte
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performance.

In Figure 9.40, these results are shown for the minimum-time Monte Carlo analyses of Section 9.2.
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Figure 9.41: Performance in terms of computational efficiency of the SCP and NLP algorithms for the three minimum-time Monte Carlo
analyses. The figure on the left shows all outliers, while the figure on the right does not consider these to assess the median

performance.

The comparison between the SCP and NLP benchmark algorithms with regard to computational efficiency is
very relevant, as the main promise of the SCP framework is that it is thought to be significantly faster than the
pseudospectral NLP methods that are currently used for optimal spacecraft reorientation.

However, it is noted that no final conclusions can be drawn from this comparison. The computation times
of these algorithms do strongly depend on the specific set-up of this study and the specific problem that is
being solved. A range of factors, amongst others, the number of grid nodes, type of NLP solver, convergence
tolerances, computation platform, constraint enforcement, and many others, all influence the performance
of both the SCP and NLP algorithms. Furthermore, although the NLP method used in this study is already
highly efficient compared to the NLP solvers used in attitude guidance literature (through code generation
and algorithmic differentiation using CasADi), optimising the performance of the NLP algorithm was not the
priority of this study. It could be possible that more optimised, faster NLP optimisation algorithms exist or
could be developed. In the end, the only way to be able to confidently assess whether an SCP algorithm would
be fast enough for onboard implementation would be to define specific requirements for a space mission and
evaluate the performance of the SCP algorithm on actual satellite hardware.

That said, two conclusions can be drawn from the results presented in Figures 9.40 and 9.41:

• The median computational efficiency of the SCP algorithm is a factor of 4.2 to 6.1 higher than the effi-
ciency of the NLP benchmark algorithm, depending on the exact problem type that is being solved. This
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strongly supports the conclusion that the SCP algorithm can deliver very high computational speeds,
possibly at the level required for onboard applications.

• Potentially as important as the increase in median computational efficiency, it was found that the com-
putation times of the SCP algorithm are bounded within a smaller range than for the NLP benchmark
algorithm. In other words, outliers regarding computation times show more predictable behaviour for
the SCP algorithm than for the NLP benchmark algorithm. This finding is important regarding onboard
applications, as these require predictable performance from the perspectives of robustness and relia-
bility. The outliers of the NLP algorithm that can be observed in Figures 9.40 and 9.41 represent an
important weakness of the corresponding class of optimisation methods.



10
Conclusions and Recommendations

In this chapter, the main conclusions of this study are presented, and recommendations are provided for
further research. First, the conclusions and answers to the research (sub-)questions are listed in Section 10.1.
Next, based on these conclusions, in Section 10.2, recommendations are provided for further development
of SCP-based optimisation methods for robustly solving the optimal spacecraft reorientation problem in real
time.

10.1. Conclusions
The research question that was formulated in Section 1.3 is:

Could a sequential convex programming-based optimisation method be a candidate for solving the optimal
spacecraft reorientation problem in onboard applications?

Everything considered, the answer to this question is ‘yes’. In the remainder of this section, the conclusions
are presented that form a foundation for this answer. To provide structure, the main conclusions are grouped
with respect to the research sub-questions defined in Section 1.3 to which they provide an answer.

Research sub-question 1: Could SCP-based optimisation methods be used to solve the complex minimum-
time reorientation problem with time-dependent boundary conditions and conical attitude constraints?

• SCP-based optimisation algorithms can be used to solve complex optimal spacecraft reorientation
problems.
In this study, an SCP-based optimisation method was developed that can incorporate a variety of com-
plex problem elements: a minimum-time objective function, combinations of conical keep-out and
keep-in attitude constraints, time-dependent boundary conditions and ellipsoidal constraints. This is
an important advantage of SCP-based optimisation algorithms compared to other real-time optimisa-
tion methods for the spacecraft reorientation problem that are currently available, as these typically
rely on a variety of problem simplifications (see Section 3.8).

Research sub-question 2: How could the performance of current SCP-based optimisation algorithms be im-
proved?

• The first-order-hold discretisation method (which uses the state transition matrix) implemented in
this study shows performance that is comparable to or better than the state-of-the-art reported for
different discretisation methods.
Compared to earlier studies that applied the sequential convex programming framework to the space-
craft reorientation problem (e.g., from McDonald et al. (2020) and Virgili-Llop et al. (2018)), the perfor-
mance is either matched or improved. These findings are in line with the performance of this discreti-
sation method that has been reported in studies concerning other space-related optimisation problems
(e.g., from Szmuk et al. (2020) and Malyuta et al. (2019)).

135
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• Large inter-nodal constraint violations were found to pose a challenge to the usability of SCP-based
optimisation algorithms. A novel method was developed in this study and shows potential to over-
come this challenge.
These inter-nodal constraint violations were particularly large, up to an unacceptable 35%, for prob-
lems that combined a minimum-time objective with angular rate constraints. This phenomenon has,
to the knowledge of the author, not been discussed in literature at the time of writing, let alone solved.
Therefore, a novel technique was developed that leverages the iterative nature of the SCP framework
and re-uses information from the discretisation process. Using this method, worst-case angular-rate
violations were reduced from 35% to 5%, while leading to a significantly smaller decrease in compu-
tational efficiency than simply adding more discretisation nodes. Moreover, strategies were identified
that could result in further reductions to a defined level corresponding to some mission requirement.

• A range of other techniques and methods were identified to have a positive impact on the perfor-
mance of the SCP algorithm.
To begin with, both adaptive trust-region and virtual-control techniques were found to increase the
convergence rate (robustness) of the SCP algorithm. Furthermore, the implementation of a shape-
based initialisation method led to a significant increase in median computational efficiency of up to
40%, compared to initialisation methods used in other studies (e.g., from Reynolds et al. (2021) and
McDonald et al. (2020).

Research sub-question 3: How could the first steps towards an onboard implementation of an SCP algorithm
be executed?

This research question was answered in two ways. To begin with, the convex solver ECOS was implemented
directly, eliminating the use of interfacing tools that are not compatible with satellite hardware. In addition,
using MATLAB Coder, highly efficient C-code was generated to perform the discretisation step of the SCP
algorithm, which is known as its second-most time-consuming step. As ECOS is also available as a set of C
files, the remaining step required for realising an onboard implementation of the SCP algorithm is converting
the MATLAB routine to a C routine. These implementations resulted in the following conclusion:

• The discretisation step of the SCP algorithm accounts for about 10% of the total solve time.
Executing both the discretisation and ECOS solve steps with C-code that can be used on embedded
systems allowed for a proper comparison of computation times. This finding validates the common
assumption in literature that the ECOS solve step accounts for the majority of the total solution time.

Research sub-question 4: What are the performance characteristics of an SCP-based optimisation algorithm
in terms of computational efficiency, optimality and robustness?

In this study, six extensive Monte Carlo analyses were performed, which allowed for a thorough evaluation of
the performance of the SCP algorithm.

• The SCP algorithm was found to deliver strong performance in terms of computational efficiency.
The main promise of the SCP framework is that it is supposed to be significantly faster than the NLP
optimisation methods that are currently used. In this study, the median computational efficiency of
the SCP algorithm was found to be a factor of 4.2 to 6.1 higher than the computational efficiency of the
NLP benchmark algorithm, depending on the problem type. Furthermore, even larger efficiency dif-
ferences were observed between the outliers of the SCP and NLP algorithms. However, tests need to be
performed on actual satellite hardware to draw final conclusions on whether SCP-based optimisation
algorithms are computationally fast enough for onboard applications.

• The guidance solutions of the SCP algorithm show satisfactory performance in terms of optimality.
For all six Monte Carlo analyses, the optimality of the SCP solutions for the majority of the test cases
was within 1% of the optimality of the NLP benchmark algorithm. As pseudospectral NLP algorithms
are widely regarded as the standard for finding optimal solutions for nonlinear problems, this is a very
promising result. For some cases, due to the fact that both the SCP and NLP algorithms are local opti-
misation methods, differences were encountered in the optimality of the solutions. However, neither
the SCP nor the NLP algorithm was found to consistently outperform the other method.
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• The SCP algorithm shows excellent performance in terms of robustness, except for reorientation
problems with both attitude keep-out and keep-in constraints.
For both the minimum-energy and minimum-time problems, 100% convergence rates were obtained
for the Monte Carlo analyses except for the two analyses that included both attitude keep-out and keep-
in constraints. For these problems, convergence rates of 99.84% and 98.91% were obtained for, respec-
tively, the minimum-energy and minimum-time reorientation problems. However, it is believed that
these convergence rates could be increased in future research through the introduction of initialisation-
based logic to the SCP algorithm.

10.2. Recommendations
In this section, several recommendations are provided for further research. These recommendations are split
up into two main directions: recommendations to bridge the gap from general research to actual implemen-
tations of SCP-based optimisation algorithms, and recommendations to further improve the performance of
SCP-based optimisation algorithms.

The recommendations to increase the maturity level of SCP-based optimisation algorithms for the spacecraft
reorientation problem are:

• For further research, it is recommended to define specific system requirements for a realistic space
mission scenario that uses onboard attitude guidance. Due to the novelty of the SCP framework, this
study took a more general approach to assessing whether SCP-based optimisation algorithms could be
a suitable candidate for onboard applications. Formulating realistic requirements on efficiency, opti-
mality, robustness, accuracy, and constraint violations would be required for a concluding assessment
of the potential of SCP-based optimisation methods.

• In addition, it would be necessary to investigate the performance of the SCP-based optimisation algo-
rithm using satellite hardware. The computation times reported in this study were obtained using a
personal computer, which is not representative for real-world satellite hardware. Therefore, the next
step would be to analyse the performance of the SCP-based optimisation algorithm on an attitude con-
trol system test bench.

The recommendations to further develop and increase the performance of SCP-based optimisation algo-
rithms are:

• The discretisation method is one of the most influential design elements of an SCP algorithm. While
the FOH method implemented in this study is considered to be one of the most promising methods, it
would be interesting to thoroughly compare its performance to pseudospectral discretisation methods,
for instance, the methods proposed by Sagliano (2019) and Sagliano et al. (2020). The reason for this
is that it is thought (Subsection 4.5.2) that pseudospectral methods perform relatively well when the
number of grid nodes of the optimisation problem is small, which is expected to be the case for most
applications of the spacecraft reorientation problem.

• The method developed in this study to enforce constraints on inter-nodal segments was shown to be
very effective. It would be interesting to further develop this method. Specifically, as mentioned in Sec-
tion 8.3, it would be recommended to develop techniques that include certain logic to select the most
effective points on the inter-nodal segments to apply these additional constraints to further reduce the
extent of the (angular rate) constraint violations.

• A third recommendation concerns the development of initialisation-dependent logic for the SCP algo-
rithm. The SCP algorithm was found to sometimes fail to converge for reorientation problems that in-
cluded both attitude keep-out and keep-in constraints. As these failures were found to be initialisation-
dependent, it would be interesting to develop techniques that could increase the convergence rate of
the SCP algorithm.

• Although the initialisation method developed and implemented in this study shows significant perfor-
mance improvements with respect to the methods proposed in available literature, there is still room
for improvement. Specifically, this research project did not focus on optimising the initial guess for the
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duration of the reorientation manoeuvre and its control profile, leaving both as promising areas to im-
prove the performance of the SCP algorithm (in terms of computational efficiency). Furthermore, the
initial guess of the state trajectory could be improved by taking into account information regarding the
3-D geometry of the reorientation manoeuvre and the imposed conical attitude constraints.

• At the moment of writing, the ECOS convex solving algorithm appears to be the preferred option for the
majority of studies on the SCP framework. As the convex solving algorithm has a significant influence
on the performance of an SCP-based optimisation algorithm, it would be interesting to either develop
alternative convex solvers or implement them if they become available. For the more developed lossless
convexification framework, for instance, customised solvers were developed that showed significant
improvements in computational efficiency (Dueri et al., 2016).

• Finally, to the knowledge of the author, current studies employing SCP-based optimisation methods
work with a constant number of grid nodes. It would be very interesting to investigate whether an adap-
tive number of nodes (between iterations) could lead to performance improvements. For instance, by
using a lower number of nodes for the initial iterations of the sequential algorithm, the computational
efficiency could potentially be increased. In addition, defining a higher number of nodes near certain
constraints could reduce the occurrence and severity of inter-nodal constraint violations.
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