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Abstract

Face clustering is a subfield of computer vision and
pattern recognition with many applications such as
face recognition and surveillance. Accurate clus-
tering of faces can also help us to create labeled
datasets. However, in the domain of comics, face
clustering is not well studied. Therefore, it is un-
certain which methods of feature extraction and
clustering perform well on faces of comic char-
acters. In this paper, we investigate the effective-
ness of comic face clustering. To conduct our in-
vestigation, we implement two pipelines: one that
automatically extracts character faces from comic
strips, and another that clusters the extracted faces.
Using Dilbert Comics for our experiments, we ex-
amine the performance of various feature extraction
and clustering methods. Additionally, we exper-
iment with combining feature extraction methods
and removing noisy samples to increase the clus-
tering accuracy. We show that using color infor-
mation is crucial for accurate clustering, and com-
bining color with shape features further improves
accuracy. However, our experiments indicate that
accuracy improvement is not guaranteed for every
combination of feature extraction methods. We also
demonstrate that removing noisy samples using hi-
erarchical clustering can increase clustering preci-
sion. Using our findings, we achieve an F1 score
of 0.752 based on our Dilbert Comics dataset of
77,768 face images. We obtain this result by clus-
tering 20,988 non-noisy face images into 35 clus-
ters with a precision of 0.886.

1 Introduction
Face clustering is a well-established subfield of computer vi-
sion and pattern recognition. It has applications in domains
such as facial recognition systems and surveillance [1]. The
objective is to automatically group face images that belong to
the same person based on visual similarities. Accurate face
clustering can also help us create labeled datasets by collec-
tively labeling images of the same cluster. In [2], the authors
show the feasibility of this method by achieving an F1 score
of 0.87 on the LFW dataset1, which consists of 13K human
faces.

The application of face clustering on characters from
comics is similarly interesting. For example, images of
comics with character labels can be used to train generative
models for creative purposes [3]. However, the domain of
comics presents unique challenges due to its exaggerated pro-
portions and non-realistic color palettes. The authors of [4]
show that prior techniques for face detection and recognition
of real humans cannot be applied to characters from comics
without a considerable loss of accuracy. Moreover, research
on comic face clustering is not as developed as on cluster-
ing of real faces. It remains uncertain which methods of fea-

1https://vis-www.cs.umass.edu/lfw/

ture extraction and clustering are more effective for clustering
comic faces.

In this paper, we investigate the effectiveness of face clus-
tering applied to comic characters. We divide our investiga-
tion into three components. The first component is feature
extraction. Having separable regions in the feature space is
paramount to the success of clustering. We experiment with
five methods of feature extraction to identify which works
best. The second component of our investigation is to see
whether we can improve the discriminative power of the fea-
ture extraction methods by combining them. Additionally,
we experiment with autoencoding the combined features to
improve clustering performance. The last component of our
investigation is the choice of clustering method. We com-
pare two types of clustering methods. These are the classi-
cal K-Means++ clustering [5] and an agglomerative hierar-
chical clustering algorithm called Approximate Rank-Order
Clustering (AROC) [2]. The latter is particularly interesting,
as it allows us to identify and remove noisy samples. To-
gether, these components help us answer the following re-
search questions.

• How effective are different feature extraction methods
for comic face clustering?

• Can we improve the discriminative power of feature ex-
traction methods by combining their feature vectors and
autoencoding them?

• Can we outperform K-Means++ using Approximate
Rank-Order Clustering and noisy sample detection?

2 Background
In this section, we first cover the state of research on comic
face clustering. We then describe the various techniques we
use in our methodology, including feature extraction, autoen-
coding, and clustering.

2.1 Comic Face Clustering
Face clustering, or more generally image clustering, can be
divided into two sequential steps: feature extraction from im-
ages and the clustering of these features. Various feature ex-
traction and clustering techniques have been studied for clus-
tering human faces. For example, the authors of [6] use Lo-
cal Binary Patterns (LBP) and Principal Component Analysis
(PCA) to generate compact face representations for classifica-
tion. In [2], the authors develop a variant of rank-order clus-
tering that outperforms baseline techniques. With advances
in deep learning, neural embeddings have also gained pop-
ularity. A prime example is FaceNet developed by Google
[7], where the authors improve the representational efficiency
of the embeddings while still achieving state-of-the-art face
recognition performance.

Face clustering has also been studied in the domain of
comics. In [8], the authors cluster manga2 characters us-
ing the DBSCAN clustering algorithm based on features ex-
tracted using a convolutional neural network. In a newer
paper, the same authors follow up with a character re-
identification pipeline that leverages the ”Face-Body and

2A style of Japanese comic books and graphic novels.



Spatial-Temporal Associated Clustering” method [9]. Simply
put, the pipeline uses a classification loss on pseudo-labels
and a contrastive loss on extracted features to train the fea-
ture extraction network and the clustering algorithm. Unfor-
tunately, the authors do not share their code. Apart from these
two contributions, research on clustering of comic faces is
lacking compared to its counterpart in real-life faces.

However, it is worth mentioning the broader literature on
feature extraction techniques applied to comic images. For
example, the authors of [10] evaluate the effectiveness of var-
ious feature extraction techniques for cartoon pornography
detection. Furthermore, the authors of [4] introduce features
tailored for anime3 characters. These features include skin-
color regions and edges. The authors of [11] show that com-
bining shape and color characteristics improves accuracy in
object detection applied to cartoon images. Deep learning
has also been studied in the domain of cartoons for tasks such
as supervised face detection [12, 13].

2.2 Feature Extraction Techniques

Local Binary Patterns (LBP)
Local Binary Patterns (LBP) capture the local texture infor-
mation of pixels in an image [14]. The method compares the
intensity of each pixel with a circular set of surrounding pix-
els. The neighboring pixels that have a higher intensity are
multiplied with a binary coefficient, and the resulting values
are summed to obtain a pattern for the given pixel. The pixel
patterns are used to construct a histogram that compactly rep-
resents the image. The method is particularly effective at
identifying corners and edges.

Histogram of Oriented Gradients (HOG)
Histogram of Oriented Gradients (HOG) is a feature extrac-
tion method based on local gradient information [15]. The
pixel intensity gradient is computed per pixel, the pixels are
joined as cells, and a histogram of the gradient directions is
computed for each cell. The contribution of each pixel to the
histogram is scaled by the magnitude of its gradient. Finally,
the histograms of neighboring cells are grouped as blocks and
normalized. The concatenation of the histograms forms the
feature vector.

Oriented FAST and Rotated BRIEF (ORB)
Oriented FAST and Rotated BRIEF (ORB) method has two
components: FAST and BRIEF [16]. FAST is an efficient
corner detector that relies on intensity variations around pix-
els to identify keypoints in an image [17]. Following key-
point detection, ORB computes descriptor vectors for each
keypoint using a variation of BRIEF [18]. BRIEF generates
a binary string that represents the local image patch around
a keypoint. After obtaining a descriptor vector for each key-
point, a vector quantization method is applied to combine the
vectors into a single descriptor vector per image. Examples of
vector quantization methods include bag-of-visual words [19]
and fisher vectors [20].

3A style of Japanese film and television animation.

SimCLR
SimCLR is a representational learning framework developed
by Google Research [21]. The framework trains a deep
convolutional neural network called the backbone with aug-
mented training data using a contrastive loss function. The
augmentation step generates two versions of a training im-
age called positive pairs xi and xj . The goal is to have the
backbone learn similar representations for xi and xj . After
training, the backbone is detached and can be used to create
latent representations of images for downstream tasks.

Autoencoding
Autoencoding is a method of learning representations of data
points that have lower dimensions than the original data. The
method consists of an encoder that maps an input to a la-
tent representation and a decoder that reconstructs the input
from the latent representation [22]. A classical example is
Principal Component Analysis (PCA). Neural networks are
also widely used for autoencoding. Deep autoencoders use
multiple fully connected neural networks as the encoder and
decoder.

2.3 Clustering Algorithms
K-Means++
K-Means++ is a variant of the K-Means clustering algorithm
that improves speed and accuracy [5]. The difference lies in
the selection of k initial centers of the clusters. Instead of
being randomly selected at the same time, the centers are se-
lected in an iterative fashion. At each iteration, data points
further away from the current centers have a higher probabil-
ity of being selected as a center. As a result, the centers are
not placed very closely to each other. The authors show that
K-Means++ provides a considerable improvement in the final
error of K-Means clustering.

Approximate Rank-Order Clustering
Approximate Rank-Order Clustering is a type of agglomer-
ative hierarchical clustering technique that uses a distance
measure based on nearest neighbors [2]. The distance be-
tween two clusters is defined as the minimum distance be-
tween any two samples in the clusters. The distance between
two samples a and b is given in Equation 1 and Equation 2.

D(a, b) =
d(a, b) + d(b, a)

min(Oa(b), Ob(a))
(1)

d(a, b) =

min(Oa(b),k)∑
i=1

Ib(Ob(fa(i)), k) (2)

where k indicates the top-k neighbors, fa(i) is the i-th face in
the neighbor list of a, Ob(fa(i)) gives the rank of face fa(i)
in face b’s neighbor list, and Ib(x, k) is an indicator function
that equals 0 if face x is in face b’s top k nearest neighbors,
and 1 otherwise. In simple terms, the distance function gives
lower values as the presence of shared neighbors increases.
To mitigate the O(n2) computation of the nearest neighbors,
the algorithm uses the randomized k-d tree algorithm to com-
pute approximate nearest neighbors.



3 Methodology
Our investigation of comic face clustering revolves around
feature extraction, feature combination, and clustering. Ob-
serving that these steps have a sequential dependency, we
base our methodology and evaluation on a pipeline that fa-
cilities all of these steps. The input of this pipeline is im-
ages of comic character faces, and the output is cluster labels.
The pipeline itself consists of the following steps: prepro-
cessing, feature extraction, feature combination, autoencod-
ing, and clustering. The pipeline is visualized in Figure 1.

Unlike images of celebrity faces, however, the images of
comic character faces are not readily available in large quan-
tities. Therefore, we also need to create a dataset of comic
character faces, i.e. the input of our face clustering pipeline.
To this end, we develop another pipeline that takes raw comic
strips downloaded from the Internet as input and extracts
character faces from the strips as output. The steps of this
pipeline are the following: separation of the comic strips
into panels, removal of text from the panels, face detection,
and face extraction. Figure 2 contains a visualization of this
pipeline for an example comic strip.

In the rest of this section, we describe our methodology for
each pipeline step by step. The code used for both pipelines
is made public on GitHub. Refer to section 6 for the link.

3.1 Face Extraction Pipeline
Panel Extraction and Text Removal
Most comic strips are made up of panels arranged in se-
quence. Before running a face detection algorithm, we sep-
arate the comic strips into distinct panels. Then, we remove
text boxes from the panels to prevent the face detection al-
gorithm from falsely identifying chunks of text as faces. For
panel separation, we leverage a portion of the ”Automated
Text-Image Dataset Creation Pipeline” developed by [23] and
keep the default hyperparameters. For text removal, we use
”ImageAnnotatorClient.document text detection” method of
Google Vision API. We run the detector to locate text blocks
and remove those that have a confidence greater than 0.8.

Face Detection and Extraction
The next step of the pipeline is face detection and extrac-
tion. In our implementation, we use wrappers around the
”Domain-Adaptive Self-Supervised Detection” algorithm de-
veloped by [13]. Using this algorithm, we locate boxes that
bound character faces in each panel. We crop these bounding
boxes to obtain the character faces. The extracted faces serve
as input to our face clustering pipeline. The authors of the
algorithm have nms thold = 0.4 and conf thold = 0.65
as default confidence thresholds. In addition to the default
thresholds, we experiment with nms thold = 0.45 and
conf thold = 0.7. We observe 967 fewer detections with
the latter configuration, which amounts to a relative differ-
ence of -1.23%. In our clustering experiments, we use the
faces detected with the latter configuration.

3.2 Face Clustering Pipeline
Feature Extraction
We investigate five different feature extraction techniques.
These are shown in Table 1. Our motivation for selecting

these features is to cover a wide range of approaches to fea-
ture extraction and to compare older and simpler methods
with newer and more complex ones. HOG features are adept
at detecting edges, whereas LBP and ORB features capture
corners well. Color histograms contain the color distribution
in an image, which is information that none of HOG, LBP,
and ORB use. Finally, SimCLR uses a deep convolutional
neural network to learn latent representations of images based
on a contrastive loss [21]. We believe that these methods col-
lectively cover a wide range of approaches to feature extrac-
tion. For the interested reader, we provide more information
on the inner workings of these methods in section 2.

Features Extraction Method
Histogram of Oriented Gradients (HOG)
Local Binary Patterns (LBP)
Oriented FAST and Rotated BRIEF (ORB)
Color Histograms
SimCLR

Table 1: The feature extraction methods under investigation.

For the computation of HOG and LBP features, we use the
implementations of the scikit-image library [24]. For ORB
features, we use the OpenCV implementation [25] to calcu-
late key points and descriptors and use the Fisher vector im-
plementation of [26] to obtain the final feature vectors. We
use the MMSelfSup library [27] for the training of SimCLR.

With the exception of SimCLR, we apply grid search to op-
timize the hyperparameters of the feature extraction methods.
We share the hyperparameter configurations we explore in
Appendix A. We skip hyperparameter optimization for Sim-
CLR due to time constraints and use the configuration from
the original paper. This configuration is placed in Appendix
A as well. We also share the complete MMSelfSup configu-
ration file we use in our GitHub repository.

Preprocesing
We resize every image before feature extraction to ensure that
images yield equal-sized vectors for a given feature extrac-
tion technique. Different dimensions are needed for differ-
ent techniques due to different input requirements. HOG fea-
tures require the input size to be a multiple of the cell and
block sizes. For SimCLR, the dimensions of the input images
must match the input layer of the ResNet50 architecture. LBP
and Color Histograms do not have a strict requirement on the
input dimensions. Their output dimensions, however, scale
linearly with the input dimensions. Therefore, we use small
dimensions for both. For ORB features, larger dimensions
are needed as the computation itself applies downscaling to
the input images. The exact dimensions used for each feature
are shown in Table 2.

We also convert the images to grayscale for the HOG, LBP,
and ORB features. For SimCLR, we additionally apply color
normalization to each channel based on xc−µc

σc
where x is a

pixel value in channel c ∈ red, green, blue. We experiment
with the color statistics of our training dataset and those of
the ImageNet dataset. Our experiments show that ImageNet
statistics work better.



Figure 1: The face clustering pipeline with HOG and LBP features as example extraction techniques. These techniques can be changed with
other ones.

Figure 2: The face extraction pipeline for extracting faces of characters from comics.

Feature Dimensions
HOG (64, 64)
LBP (48, 48)
ORB (256, 256)
Color Hist. (48, 48)
SimCLR (224, 224)

Table 2: The dimensions used for resizing images during prepro-
cessing per feature.

Feature Combination and Autoencoding
As mentioned previously, each feature extraction technique
we investigate focuses on a different aspect of an image.
Therefore, we hypothesize that we can improve the discrim-
inatory power of feature extraction methods by combining
their feature vectors for a given image. A combination of
feature vectors may hold more information than its parts.

When we use SimCLR for feature extraction, we rely on a
deep convolutional neural network to learn representations.
The underlying CNN can learn to detect multiple shapes
(edges, corners, etc.) at the same time. Furthermore, the in-
put to this CNN is RGB images, which also allows it to learn
from color information. Thus, we think that SimCLR would
not benefit from the complementary nature of feature combi-
nation, so we exclude it from the combination experiments.

For each feature extraction technique, we use the opti-
mal hyperparameter configuration for the combination exper-
iments. We define the optimal configuration as the one that

yields the lowest Davies-Bouldin score using K-Means++
clustering. We use Davies-Bouldin for this purpose for two
reasons. First, it does not require external information. As a
result, we maintain the unsupervised nature of our face clus-
tering approach and avoid information leakage from test data.
Second, it incorporates two aspects of clustering we are look-
ing to maximize: separation between clusters and cohesion
among clusters.

After identifying the optimal configurations, we combine
the feature vectors of the methods by concatenating the fea-
ture vectors that belong to the same image. If a method fails
to extract features from an image, the image is excluded from
the combined features. We have 4 feature extraction methods
to combine: HOG, LBP, ORB, and Color Histograms. We ex-
periment with every 2-combination these 4 features have, giv-
ing us 6 combined features in total: HOG-LBP, HOG-ORB,
HOG-Color Histogram, LBP-ORB, LBP-Color Histogram,
and ORB-Color Histogram.

Finally, we experiment with autoencoding the combined
feature vectors. We hypothesize that autoencoding can cap-
ture the correlations between vectors of different feature
methods and also reduce the dimensionality of the vectors,
which can boost the clustering performance. We use two dif-
ferent autoencoding methods: randomized PCA and neural
network autoencoders, also shown in Table 3. We experiment
with different configurations and latent representation sizes
for both methods. The explored configurations can be found
in Appendix B.



Autoencoding Method
Randomized Principal Component Analysis (PCA)
Neural Network Autoencoder

Table 3: The autoencoding methods under investigation.

For randomized PCA, we use the implementation of the
scikit library [28]. For the implementation of neural autoen-
coders, we use tensorflow [29].

Clustering
We experiment with two clustering algorithms: K-Means++
[5] and Approximate Rank-Order Clustering (AROC) [2],
also shown in Table 4.

Clustering Method
K-Means++
Approximate Rank-Order Clustering (AROC)

Table 4: The clustering methods under investigation.

We use K-Means++ for two purposes: hyperparameter tun-
ing of feature extraction methods and as a baseline for a com-
parison with AROC. We justify our choice of K-Means++
for hyperparameter tuning by noting that its assumptions and
properties match our data and purposes. First, we experiment
with a multitude of configurations for every feature extrac-
tion method. Therefore, we benefit from the scalability and
speed of K-Means++ when run with mini-batches. Second,
K-Means++ assumes that the clusters are convex. We know
that the faces of the comic characters are consistently similar.
If we take the average face of a character as a point in the
feature space, the various faces of the same character form a
hypersphere around this point. Thus, the points belonging to
the same character have a convex shape. For these reasons,
we believe that K-Means++ fits our use case.

K-Means++ requires the number of clusters prior to train-
ing. We set the number of clusters to the number of main
characters we identify in our experimental dataset of Dilbert
comics. This decision is based on the following observation
about a random sample we took from our dataset. Out of a
random sample of 1500 face images, only 264 did not belong
to the main characters. Furthermore, we were unable to iden-
tify these characters using character lists from Wikipedia4 and
Dilbert Wiki5. Thus, we conclude that these characters are
minor and, unlike the main characters, do not persist through-
out 35 years of publication.

AROC is an interesting choice for three reasons. First, it
is a hierarchical clustering technique that can identify noisy
samples. We achieve this by adding a new parameter to the
algorithm called ”min samples.” Using this parameter, we la-
bel the members of a cluster as noisy if the number of samples
in that cluster is less than ”min samples.” Second, AROC has
been shown to perform well in the task of clustering real hu-
man faces [2]. Finally, since it is based on approximate near-
est neighbors, it is computationally efficient and can scale to
a large number of faces.

4https://en.wikipedia.org/wiki/Dilbert#Characters
5https://dilbert.fandom.com/wiki/Category:Characters

Unlike K-Means++, however, AROC has two hyperparam-
eters that must be empirically tuned before use. These are
called ”n neighbors” and ”threshold.” The former determines
the number of approximate nearest neighbors to keep per data
point, and the latter indicates the distance threshold under
which two clusters are merged. The grid search strategy we
use for these hyperparameters can be found in Appendix C.
To limit an exponential increase in the number of configura-
tions we experiment, we use AROC with a select set of fea-
ture extraction methods. These are the best-performing single
feature and the best-performing combined feature. Our aim
is to see if we can improve on the K-Means++ baseline with
AROC using our custom parameter ”min samples.”

For K-Means++, we use the implementation of the scikit
library [28]. For AROC, we rely on the implementation6 by
the authors of [2]. We further modify the implementation to
add our custom ”min samples” parameter.

4 Experimental Setup and Results
We dedicate this section to our experiments. First, we de-
scribe our evaluation approach including the data and the met-
rics used. We follow that with the results of our experiments.

4.1 Data
We use Dilbert Comics to evaluate the performance of our
face clustering pipeline. The comics span the years 1989 to
2023, and there are 12,384 comic strips in total. Using the
face extraction pipeline described in section 3, we extract
77,768 face images. These images form our experimental
dataset. Figure 1 contains an example face image as input
of the clustering pipeline.

We identify 12 main characters in Dilbert Comics and base
our external evaluation on them. To obtain our ground-truth
labels, we sample 1,500 random images from our dataset and
manually label them. After removing images that do not cor-
respond to any of the main characters, we are left with 1,236
labeled face images. The names and count distribution of
these characters are given in Table 5.

4.2 Evaluation Metrics
Our evaluation of clustering performance is twofold: internal
and external evaluation. We use the silhouette score [30] and
the Davies-Bouldin [31] score as our internal metrics. For
external evaluation, we use pairwise precision, recall, and F1
score. The ground-truth labels used in the calculation of ex-
ternal metrics are shown in Table 5.

4.3 Results
The exact hyperparameter configurations of the reported re-
sults and the grid search strategy we employ for all feature
extraction, autoencoding, and clustering methods displayed
in this subsection can be found in Appendix A, B, and C, re-
spectively.

6https://github.com/KunpengWang/approximate-rank-order-
clustering



Character Dilbert Boss Dogbert Wally Alice Carol Asok Ratbert Catbert Tina Garbageman Bob Total
Count 409 235 175 142 110 39 37 36 21 17 11 4 1,236

Table 5: The distribution of characters in the labelled face images.

Comparison of Feature Extraction Methods
In Table 6, we report the performance of each feature extrac-
tion method based on K-Means++ clustering. For each fea-
ture, we report the hyperparameter configuration that maxi-
mizes the F1 score. As a baseline, we use a random feature
that assigns values sampled from the standard normal distri-
bution to each dimension.

We observe that Color Histograms outperform all other
features by a clear margin with an F1 score of 0.6. Then
comes HOG, LBP, and SimCLR, all of whom attain similar
F1 scores. The worst performing feature is ORB. The results
indicate that color information is crucial for differentiating
between comic character faces.

Interestingly, ORB features yield the best Davies-Bouldin
score, but they have the lowest F1 score excluding the random
feature baseline. This inverse relationship between Davies-
Bouldin and F1 scores can also be observed in LBP, albeit
in the opposite direction. Having the worst Silhouette and
Davies-Bouldin scores, LBP is located in the middle of the
pack in terms of the F1 score. Based on Table 6, Davies-
Bouldin and F1 scores have a correlation coefficient of 0.023.
It is clear that there is no significant correlation between
Davies-Bouldin and F1 scores. This suggests that internal
clustering metrics do not necessarily capture information re-
trieval capacity.

Effectiveness of Feature Combination
Next, we test the effectiveness of combining features. We
have 4 features to combine, and we experiment with 2-
combinations. This gives us 6 combined features in to-
tal: HOG-LBP, HOG-ORB, HOG-Color Histogram, LBP-
ORB, LBP-Color Histogram, and ORB-Color Histogram.
For each feature, we select the hyperparameter configuration
that yields the lowest, i.e. the best, Davies-Bouldin score.
Additionally, we experiment with autoencoding the combined
feature vectors before clustering them. Hence, we have 3
variations of every combination: combination without reduc-
tion, combination and reduction with PCA, and combination
and reduction with neural autoencoders. Figure 3 plots the
F1 scores of these variations based on K-Means++ cluster-
ing. We also plot the F1 scores of the individual features that
make up the combined features for comparison.

From Figure 3, we observe that combining features does
not guarantee an improvement in performance. For example,
combinations that contain LBP perform very similar to LBP
itself. We attribute this to the fact that LBP features consist of
2304 dimensions, which is three times larger than the method
with the second highest dimensionality, measuring 768 di-
mensions. Therefore, the LBP part of the combined features
seems to dominate during clustering.

On the other hand, the feature that benefits the most from
combination is Color Histograms. When we combine Color
Histograms with HOG and ORB features, we observe an in-
crease in performance, with and without autoencoding. This

is an indication that combining color and shape information
can improve the clustering of comic character faces.

With the exception of the LBP-ORB combination, we ob-
serve a general increase in accuracy after autoencoding the
combinations. However, the increase is marginal in some
cases. ORB-Color Histogram seems to benefit the most
from autoencoding, with its neural network-reduced version
achieving the highest F1 score of 0.609. This score is also
higher than that of any single feature.

Comparison of Clustering Algorithms
The final component of our investigation concerns the choice
of clustering technique. In addition to K-Means++, we exper-
iment with an agglomerative hierarchical clustering algorithm
called Approximate Rank-Order Clustering (AROC). We use
the following features to experiment with AROC:

• The best performing single feature: Color Histograms

• The best performing combined feature: ORB-Color His-
togram reduced with a neural network autoencoder

In Table 7, we compare the performance of AROC with
that of K-Means++. The displayed results of AROC are
obtained with ”min samples” parameter set to 100 and the
rest of the hyperparameters tuned using a grid search. We
also experiment with lower ”min samples,” but the number
of clusters grows exponentially. This renders manual label-
ing of clusters infeasible. During the evaluation, we remove
the noisy images from the test images to keep the evaluation
based only on the clustered data points.

Our first observation is that there is a positive correlation
between the number of noisy samples removed and the pre-
cision of the clustering. In both features, AROC clustering
identifies approximately 50,000 data points as noisy. In turn,
the precision of both features increases dramatically, with an
increase of 77.6% in Color Histograms and 26.3% in ORB-
Color Histograms. This is expected, as the removal of noisy
samples allows AROC to only cluster data points that are
tightly grouped.

In contrast, we observe a decrease in recall by 13.4% in
Color Histogram and 31.9% in ORB-Color Histograms when
we swap K-Means++ with AROC. This is the result of an in-
crease in the number of clusters. Recall is defined as the ratio
of the number of same-class pairs that are placed in the same
cluster to the total number of same-class pairs. Therefore, a
higher number of clusters reduces recall by definition.

As F1 depends on both precision and recall, the results sug-
gest that AROC does not guarantee an increase in F1. How-
ever, we obtain the highest F1 score of our experiments using
AROC on Color Histograms, with an F1 score of 0.752 on
20,988 face images. A precision of 0.886 gives further cre-
dence to the feasibility of collectively labeling clusters.



Feature Image Count Feature Dimensions Silhouette Davies-Bouldin Precision Recall F1
HOG 77,768 216 0.139 2.435 0.537 0.353 0.426
LBP 77,768 2304 0.002 6.532 0.345 0.515 0.413
ORB 67,482 640 0.248 1.188 0.230 0.200 0.214
Color Hist. 77,768 768 0.314 1.243 0.499 0.754 0.600
SimCLR 77,768 2048 0.097 2.600 0.374 0.426 0.399
Random 77,768 10 0.059 2.177 0.188 0.082 0.114

Table 6: Performances of the features based on K-Means++ clustering. For each feature, we report the configuration that maximizes F1.

Figure 3: F1 Scores of the K-Means++ clustering of combined features, with and without reduction, compared to the scores of the individual
features.

5 Discussion

In this section, we revisit the research questions posed in sec-
tion 1 and use our experimental data to answer them.

How effective are different feature extraction methods
for comic face clustering?

In our experiments, Color Histograms outperform other
methods by a significant margin. Using K-Means++, Color
Histograms achieve an F1 score of 0.6, which is 0.174 higher
than that of the second best method. With the exception
of SimCLR, every method in our experiments operates with
grayscale images. This emphasizes the importance of incor-
porating color information when clustering faces of comic
characters. Since comics usually use a wider range of colors
in the illustration of characters compared to images of real hu-
mans, color becomes a powerful distinguishing characteristic
for comic face clustering.

ORB features, on the other hand, perform the worst. We
note that ORB has the most hyperparameters out of all the
methods we test. Its inferior performance can be the result
of limited hyperparameter optimization. Nevertheless, this
is a disadvantage of ORB, as it is outperformed by simpler
HOG and LBP methods. Another complex approach, Sim-
CLR also performs worse than HOG and LBP. Therefore, we
conclude that simpler feature extraction methods perform bet-
ter for comic face clustering.

We also observe a lack of correlation between the inter-
nal and external clustering evaluation metrics. This suggests
that internal metrics may not capture the information retrieval
capacity of feature extraction methods. Therefore, considera-
tion of external metrics is essential for an accurate assessment
of feature extraction methods for comic face clustering.

Can we improve the discriminative power of feature
extraction methods by combining their feature vectors
and autoencoding them?
We observe that combining features does not consistently im-
prove accuracy. Some combinations outperform their parts,
whereas the opposite is the case for other combinations.
However, our results demonstrate that the combination of
color and shape information improves clustering accuracy.
This is evidenced by the combinations of HOG-Color His-
tograms and ORB-Color Histograms outperforming their sin-
gle features.

Autoencoding the combined features, excluding the LBP-
ORB combination, generally leads to a slight performance in-
crease. Although the improvement is modest in some cases,
autoencoding shows potential in enhancing the discriminative
power of combined features. The most effective combination
involves ORB and Color Histograms with a neural network
autoencoding. This combination outperforms all other com-
binations in clustering comic character faces.

Interestingly, a combination can be dominated by a feature
if there is a large difference between the dimensionality of
the combined features. This is illustrated by the combinations
that involve LBP. The mean absolute difference between the
F1 scores of LBP and its combinations is 0.0084. We connect
this small difference to the fact that LBP features have 2304
dimensions, which is three times larger than the method with
the second highest dimensionality.

Can we outperform K-Means++ using Approximate
Rank-Order Clustering and noisy sample detection?
Our results indicate that Approximate Rank-Order Cluster-
ing (AROC) does not guarantee a superior performance com-
pared to K-Means++. However, it does offer the advantage of
increased precision when a suitable ”min samples” parameter
is used to remove noisy samples. This leads to purer clusters.



Feature Clustering # Img. # Clustered Img. # Test Img. # Clusters Precision Recall F1
Color Hist. K-Means++ 77,768 77,768 1,236 12 0.499 0.754 0.600
Color Hist. AROC 77,768 20,988 317 35 0.886 0.653 0.752
ORB-Color K-Means++ 76,885 76,885 1,236 12 0.578 0.643 0.609
ORB-Color AROC 76,885 22,441 411 100 0.730 0.438 0.547

Table 7: A comparison of K-Means++ and AROC.

In our experiments, we achieve our highest pairwise precision
of 0.886 when we cluster Color Histograms using AROC with
100 minimum samples in each cluster.

A notable distinction between AROC and K-Means++ is
the resulting number of clusters. AROC generally results in
a higher number of clusters compared to K-Means++. In
turn, AROC obtains a lower recall metric. This suggests
that AROC’s tendency to generate more fine-grained clusters
comes at the expense of comprehensive cluster coverage of
comic faces.

Among all feature extraction, combination, and clustering
methods we evaluate, the best overall results are achieved us-
ing AROC on Color Histograms with 100 minimum samples
per cluster. This configuration yields an F1 score of 0.752 by
clustering 20,988 face images out of 77,768 into 35 clusters.

6 Responsible Research
Potential Bias in Results
According to a report by The Alan Turing Institute, racial
and gender bias is a common problem in facial recognition
systems [32]. The authors argue that the racism and sexism
that exist in the training datasets of these systems carry over
as bias in the results. We believe that a similar problem can
also occur in comic face clustering. Certain datasets might be
skewed toward white male characters. Dilbert Comics is an
example of this, where male characters are seen more often
than female ones. Racial representation is worse, with the
only person of color human character being Asok. Thus, the
results we obtain in this paper using Dilbert Comics might
carry a bias that neglects people of color. Future research
should always aim to have a fair representation of people in
the training datasets to ensure unbiased results.

Reproducibility of the Results
Reproducibility is fundamental for conducting research. It
motivates researchers to assess the robustness of their results
and allows fellow researchers to verify them. To enable the
reproducibility of our work, we publish our source code on
GitHub7 including our experiment scripts. With the help of
our documentation and usage guide, interested parties can re-
produce our results. In addition, we structured our code base
in a modular way so that other researchers can use parts of it
in their research and extend it if necessary.

Copyright Considerations
Comics are the intellectual property of their creator. There-
fore, their use is bound by copyright laws. In our research,

7https://github.com/artunboz/bachelor-research

we use a public Dilbert Comics dataset compiled from pub-
licly available comics on dilbert.com8. Therefore, we do not
risk any copyright violation. However, our work cannot and
should not be used for commercial purposes.

7 Conclusions and Future Work
In this work, we examine the effectiveness of face clustering
on comic characters. To conduct our examination, we im-
plement two pipelines. The first automatically extracts char-
acter faces from comic strips. The second helps us assess
the effectiveness of various feature extraction and clustering
techniques. We also investigate the effectiveness of combin-
ing different feature extraction methods to improve cluster-
ing performance. Finally, we experiment with the removal
of noisy samples to increase the accuracy of the clustering.
Based on our experiments with Dilbert Comics, we show that

• Using color information is crucial for accurate comic
face clustering.

• Combining feature extraction methods does not guaran-
tee an increase in clustering accuracy. However, com-
bining color with shape features does improve accuracy.

• Autoencoding the feature vectors generally enhances
the clustering performance. However, the increase is
marginal in most cases.

• Removal of noisy samples with hierarchical clustering
can drastically increase the precision of clustering and
result in purer clusters.

We combine these findings to achieve an F1 score of 0.752
on character faces extracted from Dilbert Comics. To achieve
this result, we use Color Histograms extracted from 77,768
face images. Then, we use Approximate Rank-Order Cluster-
ing to remove noisy samples and cluster the remaining 20,988
face images into 35 clusters with a precision of 0.886.

In terms of future work, our methodology should be tested
with other comic franchises. This can allow us to gauge the
robustness of our results. Moreover, our face image dataset
consists of images with fairly small dimensions. A dataset
with larger images might result in higher clustering accu-
racy. Further improvements can be achieved by applying face
alignment prior to feature extraction. Simultaneous training
of feature extraction and clustering is also an interesting av-
enue for improvement.

8Until 2022, all Dilbert comics were listed on this
website. They were later removed, possibly due to the
backlash the author received. For more information:
https://edition.cnn.com/2023/02/25/business/dilbert-comic-strip-
racist-tirade/index.html
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A Feature Extraction Configurations
This section contains the hyperparameter optimization search space and the optimal parameters found for each feature extraction
method. We applied a grid search on the Cartesian product of the sets found in the first row of each table.

A.1 Histogram of Oriented Gradients (HOG)

orientations pixels per cell cells per block block normalization
Search Spaces {6, 9} {(8, 8), (16, 16)} {(2, 2), (3, 3)} {L1, L1-sqrt, L2, L2-Hys}
Optimal for F1 6 (16, 16) (3, 3) L2
Optimal for Davies-Bouldin 6 (16, 16) (3, 3) L2-Hys

Table 8: Hyperparameter search space and the optimal parameters for HOG feature.

A.2 Local Binary Pattern (LBP)

P R variant
Search Spaces set to 8 ∗R {1, 2, 3} {basic, rotation-invariant, uniform}
Optimal for F1 8 1 uniform
Optimal for Davies-Bouldin 24 3 rotation-invariant

Table 9: Hyperparameter search space and the optimal parameters for LBP feature.

A.3 Oriented FAST and Rotated BRIEF (ORB)
There are additional parameters of OpenCV’s implementation of ORB feature. These parameters are set to the following:

• edge threshold: set equal to the patch size as advised by OpenCV
• first level: 0
• WTA K: 2
• score type: Harris score
• fast threshold: 20

# fisher components # keypoints # levels patch size
Search Spaces {10, 20} {10, 20} {6, 8} {16, 24, 31}
Optimal for F1 10 10 8 31
Optimal for Davies-Bouldin 10 10 6 24

Table 10: Hyperparameter search space and the optimal parameters for ORB feature.

A.4 Color Histogram

histogram size per channel
Search Spaces {32, 64, 128, 256}
Optimal for F1 256
Optimal for Davies-Bouldin 128

Table 11: Hyperparameter search space and the optimal parameters for Color Histogram feature.

A.5 SimCLR
The configuration we use for SimCLR training is as follows. For the exact configuration file, refer to our code on GitHub.

• Preprocessing Color normalization with RGB means and standard deviations of (198.878, 167.418, 132.772) and (21.34,
25.105, 26.093)

• Architecture



– Backbone ResNet50 with batch normalization
– Neck MLP with a single hidden layer and ReLU activation
– Loss Normalized Temperature-scaled Cross Entropy

• Optimizer Layer-wise Adaptive Rate Scaling (LARS)

– Learning Rate 0.3
– Weight Decay 1e-06
– Momentum 0.9

• Training Schedule
– Batch Size 32
– Epochs 200

* First 10 epochs: linear learning rate change with a factor of 0.0001
* Last 190 epochs: cosine annealing learning rate change with maximum temperature of 190

- Normalized Temperature-scaled Cross Entropy - optimizer: type=’LARS’, lr=0.3, weight decay=1e-06, momentum=0.9 -
epochs: linear learning rate change with factor of 0.0001 in the first 10 epochs, then 190 epochs of cosine annealing learning
rate with maximum temperature of 190 - default data augmentation, refer to paper - batch size 32

B Autoencoding Configurations
This section contains the autoencoding configurations we test in our experiments. We apply each configuration to every feature
combination and report the ones that result in the highest F1 score.

B.1 Neural Network
Our neural network-based autoencoder architecture consists of symmetric and fully connected encoder and decoder. We ex-
periment with using one and two hidden layers and a different number of neurons in each. The number of neurons in the last
hidden layer represents the dimensions of the latent representation. We use ReLU activation for all layers except the output
layer of the decoder, for which we use sigmoid. Additionally, we min-max normalize the input to the encoder as preprocessing.
Finally, we use the Adam optimizer with Mean Squared Error loss and train for 30 epochs with a batch size of 256. Table 12
contains the number of layers and number of neurons we search, and Table 13 contains the optimal configurations for the F1
score per feature combination.

Config. hidden layer 1 hidden layer 2
1 10 X
2 50 X
3 100 X
4 200 X
5 200 10
6 200 50
7 200 100

Table 12: The configurations tested for layer size and neuron count for the neural network autoencoder.

Feature HOG-LBP HOG-ORB HOG-Color Hist. LBP-ORB LBP-Color Hist. ORB-Color Hist.
Optimal for F1 Conf. 4 Conf. 1 Conf. 4 Conf. 3 Conf. 3 Conf. 4

Table 13: The optimal neural net autoencoder configuration based on F1 score. The configurations refer to Table 12

B.2 Principal Component Analysis
We use randomized Principal Component Analysis with 4 different number of components. These are [10, 50, 100, 200].
Table 14 contains the optimal number of components for the F1 score per feature combination.

C Clustering Configurations
This section contains the configurations of the clustering methods we use in our experiments.



Feature HOG-LBP HOG-ORB HOG-Color Hist. LBP-ORB LBP-Color Hist. ORB-Color Hist.
Optimal # Components 10 50 200 10 50 200

Table 14: The optimal number of components when applying PCA to reduce the dimensionality of feature combinations.

C.1 K-Means++
In all experiments involving K-Means++, the number of clusters is set to 12, which is the number of main characters we identify
in Dilbert characters. The rest of the sklearn implementation parameters are set to the following:

• init: k-means++
• n init: auto
• max iter: 300
• tol: 1e-4
• random state: None
• algorithm: lloyd

C.2 Approximate Rank-Order Clustering (AROC)
When using AROC, we apply two grid searches to optimize its hyperparameters. The first search is coarser and explores a
wider range of values. The second search is more fine-grained, exploring the area around the best configuration found in the
first search. The ”min samples” parameter is set to 100. We also experiment with values lower than 100, but the number of
clusters becomes unmanageable. As an example, AROC clustering on Color Histograms with 1 min samples result in 12536
clusters, and 10 min samples result in 148 clusters when averaged over all configurations.

First Grid Search
The Cartesian product of the following values is tested:

• n neighbours: [100, 200, 300, 400, 500]
• threshold: [0.1, 0.5, 1.0, 2.0, 5.0]

Second Grid Search
Color Histograms:

• n neighbours: [190, 200, 210]
• threshold: [0.08, 0.1, 0.12]

ORB-Color Histograms:

• n neighbours: [90, 100, 110]
• threshold: [0.4, 0.5, 0.6]

Optimal Hyperparameters
Color Histograms:

• n neighbours: 190
• threshold: 0.12

ORB-Color Histograms:

• n neighbours: 100
• threshold: 0.6
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