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Blade Element Theory Model for UAV Blade Damage Simulation

José Ignacio de Alvear Cárdenas∗†

San Jose State University Research Foundation, Moffett Field, California, 94043, United States

Coen C. de Visser‡

Delft University of Technology, Delft, Zuid Holland, 2629HS, The Netherlands

From fault-tolerant control to failure detection, blade damage simulation is integral for
developing and testing failure-resilient modern unmanned aerial vehicles. Existing approaches
assume partial loss of rotor effectiveness or reduce the problem to centrifugal forces resulting
from the shift in the propeller centre of gravity. In this study, a white-box blade damage model
based on Blade Element Theory is proposed, integrating both mass and aerodynamic effects of
blade damage. The model serves as plug-in to the nominal system model, enables the simulation
of any degree of blade damage and does not require costly experimental data from failure cases.
A complementary methodology for the identification of the airfoil lift and drag coefficients is
also presented. Both contributions were demonstrated with the Bebop 2 drone platform and
validated with static test stand wrench measurements obtained at 3 levels of blade damage
(0%, 10%, 25%) in a dedicated wind tunnel experimental campaign with velocities up to 12
m/s. Results indicate high accuracy in simulating a healthy propeller. In the presence of blade
damage, the model exhibits a relative error between 5% and 24% at high propeller rotational
speeds and between 15% and 75% at low propeller rotational speeds.

I. Nomenclature

𝐵𝐷 = Blade damage, %
𝐵𝐿, 𝐵𝑆 = Blade and blade section
𝐶𝑑 , 𝐶𝑙 = Airfoil drag and lift coefficients
𝑐𝑐, 𝑐𝑟 , 𝑐𝑡 = Longest chord length, root chord and tip chord, m
𝐷 = Drag force, N
−→
𝑑 = Conversion matrix from rotational rates to linear velocities
𝑑𝑟 = Blade section length, m
𝐹 = Force, N
𝑔 = Gravitational acceleration, m/s2

ℎ = Trapezoid height, m
𝑖𝑝 = Propeller incidence angle, ◦
𝑘𝑥 , 𝑘𝑦 = Linear inflow weighting factors
𝐿 = Lift force, N
𝑙, 𝑏 = Distance from the propeller centre of rotation to the body coordinate frame x- and y-axes, m
𝑀 = Moment, Nm
𝑚 = Mass, kg
¤𝑚 = Mass flow, kg/s
𝑛𝑏, 𝑛𝑏𝑠 = Number of blades and blade sections
𝑛𝑡 = Number of trapezoids in which a blade is divided
𝑃 = Propeller
𝑄 = Torque, Nm
q = Number of data samples
𝑅 = Propeller radius, m

∗Project Associate, Human Systems Integration Division, San Jose State University Research Foundation, jose.dealvearcardenas@sjsu.edu
†Work performed as MSc Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology
‡Associate Professor, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology, AIAA member
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𝑟𝐶𝐺 = Distance between the propeller centre of rotation and centre of gravity, m
𝑇 = Thrust, N
𝑉 = Linear velocity, m/s
𝑉𝐴 = True airspeed, m/s
𝑉𝑅 = Airspeed at the rotor, m/s
𝑉𝑤 = Wind speed, m/s
𝑣0, 𝑣𝑖 = Uniform and linear induced velocities, m/s
𝑦̄𝑐 = Span-wise centroid location, m
𝛼 = Angle of attack, rad
𝛼𝑑 = Angle of attack of the rotor disk relative to the oncoming flow, rad
𝛾 = Gradient-descent optimisation learning rate
𝜖 = Model error
𝜁 = Rotation direction boolean
𝜃 = Pitch angle, rad
𝜃𝑡𝑤 = Blade twist rate per rotor radius, rad/mm
𝜆 𝑗 = Angle between the blade j with its propeller’s x-axis
𝜇𝑥 = Tip speed ratio or advanced ratio
𝜉 𝑗𝑘 = Damage indicator boolean
𝜌 = Air density, kg/m3

𝜎 = Standard deviation
𝜙 = Roll angle, rad
𝜒 = Wake skew angle, rad
𝜓 = Yaw angle, rad
𝜓𝑘 = Blade section azimuth angle, rad
𝜔 = Propeller rotational speed, rad/s
Ω = Vehicle angular velocity, rad/s

II. Introduction

Fault is defined as "an unpermitted deviation of at least one characteristic feature of the system from the acceptable,
usual, standard condition" [1], reducing its capability of performing a required task. Failure and malfunction are the

result of the accumulation of one or more faults that lead to the permanent interruption or intermittent irregularity in the
performance of a system function under the specified operating conditions.

Failures in Unmanned Aerial Vehicles (UAVs) are categorised based on their occurrence in different components,
namely sensor faults, actuator faults, and plant faults [2], being the first two groups those that most literature aim
at predicting. On the one hand, sensor faults arise from incorrect readings from system instruments and sensors,
encompassing constant bias faults (stuck sensor), drift faults (additive-type), constant gain faults (multiplicative-type),
and outlier faults [3, 4]. Actuator failures, on the other hand, result from the total loss or degradation of the propeller,
motor, or electronic speed controllers [5]. They are classified into four categories: actuator saturation, actuator lock,
actuator fly-off, and propeller damage. Propeller damage, characterised by the chipping or breaking of a blade, presents
a unique simulation challenge due to the asymmetrical forces and moments it introduces to the system that go beyond
the change in thrust.

To enhance the resilience of multi-rotor and hybrid UAVs to potential failures, work is carried out in multiple fronts,
including obstacle avoidance [6], upset recovery [7], fault-tolerant control [8–10] or fault detection and diagnosis [11];
the latter consisting of the fault classification, as well as its location and magnitude identification. For all these tasks,
researchers use models to simulate their systems and failures for the training or testing of their approaches before
deployment. The complexity of aerospace systems often necessitates the use of grey- or black-box models obtained
through system identification [12]. Consequently, simulations are constrained to the failure cases within the flight
envelope of the collected data, typically obtained from costly wind tunnel experimental campaigns. Additionally,
acquiring sufficient data for system identification from highly damaged cases is challenging due to concerns about
operator safety and system survivability in the event of a potential loss of control. These limitations restrict the range of
captured failures available for simulation, relying on the interpolation and extrapolation of the few experimentally tested
scenarios.
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Previous literature in the field of fault diagnosis has exploited simplified simulations of blade damage. Avram et
al. [13] treat quadrotor actuator faults, such as structural damage to the propellers or rotor degradation, as a partial
loss of effectiveness — a partial loss of thrust generated by the damaged rotor. This is simulated by multiplying the
commanded rotor angular velocity by a factor lower than one in order to obtain the "true" rotor angular velocity. This
approach, however, overlooks vibrations resulting from the unbalance of forces and moments in the system.

Another strategy, proposed by Ghalamchi et al. [14], introduces sinusoids in force signals to simulate vibrations
caused by propeller unbalance. The sinusoids only consist of the decomposition of the centrifugal force in the x and
y components caused by the displacement of the propeller centre of gravity due to blade damage. Unfortunately,
this approach neglects the vibrations in moment signals and those induced by the changed aerodynamics due to the
displacement of the centre of pressure.

Developing more accurate blade damage models is crucial for creating realistic simulations that can reveal subtle
data features, potentially improving UAV on-board failure detection and diagnosis capabilities. A promising technique
for modelling forces and moments is Blade Element Theory (BET), extensively used in helicopters [15], UAVs [16–18]
and wind turbines [19]. BET discretises the propeller radially into a finite number of segments, each producing a
differential thrust and torque, and it is based on the assumption that the wrenches generated by the complete (rotor) blade
can be computed by the addition of the individual contributions of each of its span-wise elements. For this purpose, 2D
airfoil characteristics are exploited whereas 3D effects are ignored. Previously, this approach has been used to model
propeller thrust [20] but it has never been explored for blade damage modelling.

In this paper, a white-box blade damage simulation model based on BET is proposed, implemented, and validated.
It complements the identified healthy UAV model, providing the difference in forces and moments with respect to the
nominal system. Unlike existing methods, the approach takes into account the effects of both shifts in the centres of
gravity and pressure, enabling the injection of any level of failure without the need for costly and dangerous system
identification experiments. To the authors’ knowledge, this is the first time BET is used for UAV blade damage simulation
and the first time mass and aerodynamic effects are modelled together in order to shift research towards more realistic
white-box blade damage models. Furthermore, this paper also presents a method for identifying the (mostly unknown)
UAV blade lift and drag curves with respect to the angle of attack using BET, an approach never tried before in literature.

The proposed model has been applied to the Parrot Bebop® 2 UAV and validated by comparing its predictions to
the wrench signals of a damaged propeller at multiple degrees of failure. The validation data were acquired during
a dedicated wind tunnel experimental campaign at the Open Jet Facility at Delft University of Technology. The
experimental setup allowed the controlled variation of environmental variables such as the wind speed (ranging from 0
and 12 m/s) and the propeller incidence angle (varying between 0 and 𝜋/2 rad).

The paper is organised as follows. First section III, section IV and section V describe the methodology, where the
first two explain the mass and aerodynamic effects and the third addresses the identification of the propeller lift and drag
curves. The flow of these computations and the complete approach is illustrated in advance for the reader in Fig. 1. In
section VI, the proposed approach is applied to the Bebop 2 UAV to show its potential in characterising blade damage
on a real platform. Subsequently, section VII validates the results through static test stand wind tunnel experiments,
highlighting some limitations of both the proposed model and test setup. Finally, section VIII presents the conclusions
of this research and recommendations for future work.

Fig. 1 Flowchart of the damaged propeller offline and online computations. The lift and drag coefficient curves
identification takes place offline, whereas the computation of forces and moments due to propeller damage are
performed online. The blocks with a solid edge line are further expanded in the methodology sections.
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III. Mass effects
This section discusses the moments and forces that emerge from the change in propeller mass and its corresponding

shift in centre of gravity for a single propeller with blade damage. They are all measured in the propeller’s reference
frame, which is the equivalent to the body reference frame translated to the centre of the propeller’s hub.

The first forces to be obtained are those caused by the loss of mass. Since the goal is to compute the forces and
moments that have to be added to those resulting from the physics model when there is no failure, the force required to
be added is in the opposite direction of the gravity vector, as can be seen in Eq. (1). Here, 𝑚loss is the lost mass and

−→
𝑅 𝑃𝐼

is the transformation matrix from the inertial to the propeller coordinate frame, which can be seen in Eq. (2). Depending
on the drone attitude, the gravity vector can have a value in all three dimensional components of the propeller coordinate
frame.

−→
𝐹 𝑃

𝑚1 =
−→
𝑅 𝑃𝐼


0
0

−𝑔𝑚loss

 (1)

−→
𝑅 𝑃𝐼 =


cos 𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃

sin 𝜙 sin 𝜃 cos𝜓 − cos 𝜙 sin𝜓 sin 𝜙 sin 𝜃 sin𝜓 + cos 𝜙 cos𝜓 sin 𝜙 cos 𝜃
cos 𝜙 sin 𝜃 cos𝜓 + sin 𝜙 sin𝜓 cos 𝜙 sin 𝜃 sin𝜓 − sin 𝜙 cos𝜓 cos 𝜙 cos 𝜃

 (2)

Second, the shift in the centre of gravity (CG) causes the appearance of moments around the centre of rotation of the
propeller. In order to compute these moments, the arm from the propeller central hub to the new CG location must be
computed. For that purpose, the blade has been modelled as a group of trapezoids. As can be observed in Fig. 2, in the
case of the Bebop 2 propeller, its blade can be split up in two trapezoids connected at their base, which is situated at the
location of the largest blade chord (𝑐𝑐). 𝑐𝑟 and 𝑐𝑡 are the chords lengths at the root and the tip, respectively.

Fig. 2 Bebop 2 propeller top view and trapezoid
simplification.

Fig. 3 Damaged Bebop 2 propeller top view and
trapezoid simplification.

The CG of each blade is computed separately depending on whether it has damage or not. In the case that there is
damage, the tip chord will move along the span of the blade toward the central hub. For the Bebop 2, in the case that
damage causes partial blade loss closer to the central hub than the location of 𝑐𝑐, then there would be only one trapezoid
in the blade planform and 𝑐𝑐 would disappear, as can be seen in Fig. 3.

In the computation of the CG, a constant density assumption is made for the blades, ensuring that the CG coincides
with the centroid of each blade. The centroid of each trapezoid is calculated using Eq. (3)∗ and they are weighted
together with their respective areas for the blade centroid calculation using Eq. (4). Figure 4 illustrates the trapezoid
geometrical variables and 𝑛𝑡 stands for the number of trapezoids within a blade.

∗For the first trapezoid (𝑖 = 1),
∑𝑖−1

𝑗=1 ℎ 𝑗 is the empty sum, meaning that it is equal to 0.
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𝑦̄𝑐trapezoid𝑖
=

ℎ𝑖

3
2 min (𝑐𝑖 , 𝑐𝑖+1) + max (𝑐𝑖 , 𝑐𝑖+1)

𝑐𝑖 + 𝑐𝑖+1
+
𝑖−1∑︁
𝑗=1

ℎ 𝑗 (3) 𝑦̄CG𝐵𝐿
= 𝑦̄𝑐𝐵𝐿

=

∑𝑛𝑡
𝑖
𝑦̄𝑐trapezoid𝑖

(𝑐𝑖 + 𝑐𝑖+1)ℎ𝑖/2∑𝑛𝑡
𝑖
(𝑐𝑖 + 𝑐𝑖+1)ℎ𝑖/2

(4)

Fig. 4 Blade and trapezoid geometry and centroid.

Similarly, the centroids of individual blades, weighted by their areas, determine the overall propeller centroid. Blade
attitude angles, denoted as 𝜆1, 𝜆2, ..., 𝜆𝑛𝑏 (where 𝑛𝑏 is the number of blades) — the angle each blade makes with respect
to the x-axis of the propeller coordinate frame — guide the decomposition of blade centroids into x and y coordinates.
Given the propeller’s CG to its centre of rotation (Eq. (5)), moments due to the gravity force are computed in Eq. (6),
with 𝑚𝑃 denoting propeller mass.

−→𝑟 𝑃
𝐶𝐺 =


𝑥𝑃
𝐶𝐺

𝑦𝑃
𝐶𝐺

0

 (5)
−→
𝑀𝑃

𝑚 =
−→𝑟 𝑃

𝐶𝐺 ×
©­­«
−→
𝑅 𝑃𝐼


0
0

𝑔𝑚𝑃


ª®®¬ (6)

Third, thanks to the shift of the centre of gravity and the rotation of the propeller, a centrifugal force is created. The
magnitude of the centrifugal force is computed with Eq. (7), where 𝜔 is the rotational velocity and 𝑟𝐶𝐺 is the distance
between the centres of rotation and gravity, as computed in Eq. (8).

𝐹𝑚2 = 𝑚𝑃𝜔
2𝑟𝐶𝐺 (7) 𝑟𝐶𝐺 =

√︃
(𝑥𝑃

𝐶𝐺
)2 + (𝑦𝑃

𝐶𝐺
)2 (8)

Finally, Eq. (9) shows the centrifugal force decomposed in the x and y components, where 𝜃𝐶𝐺 is the angle between
−→𝑟 𝐶𝐺 and the propeller coordinate frame computed using Eq. (10). This centrifugal force is illustrated in Fig. 5.

−→
𝐹 𝑃

𝑚2 =


𝐹𝑚2 cos 𝜃𝐶𝐺

𝐹𝑚2 sin 𝜃𝐶𝐺

0

 (9) 𝜃𝐶𝐺 = arctan
𝑦𝑃
𝐶𝐺

𝑥𝑃
𝐶𝐺

(10)

Fig. 5 Damaged propeller cen-
trifugal force.

Fig. 6 Flowchart of the computation of the damaged propeller mass
related forces and moments at a single time step during simulation.

In Fig. 6, a flowchart details the discussed computations of the damaged propeller mass related forces and moments.
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IV. Aerodynamic effects
This section discusses the moments and forces that emerge from the change in aerodynamics for a single propeller

upon blade damage. For their computation, the Blade Element Theory mathematical process is exploited. This method
discretises the blade along its span in sections of equal length, determines their individual generated moments and
forces, and adds all of them in order to obtain those generated by the complete propeller. When a blade is damaged, the
forces and moments that would have been generated by the missing blade sections would be subtracted from those
computed by the physics model in the healthy state.

A. Blade Element Theory
The goal of the BET method is the computation of the thrust and torque generated by the complete blade through

the sum of the contributions of all its sections. For that purpose, the lift (Δ𝐿𝑘) and drag (Δ𝐷𝑘) equations, which can be
seen in Eq. (11) and Eq. (12), are applied to each of the blade sections 𝑘 of span length equal to 𝑑𝑟 . For the rest of the
paper, the subscript 𝑖 stands for the propeller, 𝑗 for the blade and 𝑘 for the blade section.

Δ𝐿𝑘 (𝑟𝑘 , 𝜓𝑘) =
1
2
𝐶𝑙𝑘 (𝛼𝑘 (𝑟𝑘 , 𝜓𝑘))𝜌𝑉2

𝐴𝑘
(𝑟𝑘 , 𝜓𝑘)𝑐𝑘 (𝑟𝑘)𝑑𝑟 (11)

Δ𝐷𝑘 (𝑟𝑘 , 𝜓𝑘) =
1
2
𝐶𝑑𝑘

(𝛼𝑘 (𝑟𝑘 , 𝜓𝑘))𝜌𝑉2
𝐴𝑘

(𝑟𝑘 , 𝜓𝑘)𝑐𝑘 (𝑟𝑘)𝑑𝑟 (12)

𝜌 is the air density which depends on the altitude at which the drone flies with respect to the sea level. Furthermore,
𝑐𝑘 is the blade section average chord, 𝑉𝐴𝑘

is the airspeed seen by the blade section perpendicular to its span and 𝐶𝑙𝑘

and 𝐶𝑑𝑘
are the lift and drag coefficients of the 2D blade airfoil, respectively. As can be seen, these parameters are a

function of the angle of attack (𝛼𝑘), the distance from the blade section centroid to the centre of rotation (𝑟𝑘) and the
blade section azimuth angle (𝜓𝑘). The last one is an angle measured on the propeller plane and it is defined to have a
value of zero degrees (𝜓=0) in the direction of the drag, increasing its value in the direction of rotation. The 𝑟 and
𝜓 definitions can be visualised in Fig. 7 and Fig. 8, respectively. When a variable is a function of 𝑟 and 𝜓, it will be
represented by (·) for readability purposes.

Fig. 7 Blade geometrical parameters. Fig. 8 Azimuth angle visualisation.

The airspeed at each blade section (𝑉𝐴𝑘
) has to be computed taking into account three main components: the vehicle

combined linear and angular velocities, the propeller rotational velocity and the induced velocity. First, Eq. (13) is used
to compute the linear velocity of the propeller assembly (

−→
𝑉 𝑃) from the body linear (

−→
𝑉 𝐵) and angular velocities (

−→
Ω).

The
−→
𝑑 matrix presented in Eq. (14) is used to convert the rotational rates of the vehicle to linear velocities, exploiting

the known drone geometry shown in Fig. 9 [12]. Each row of the d matrix corresponds to each of the drone propellers.
The first row corresponds to the front-left propeller and the following rows to the other propellers moving clockwise
from a top-down view of the drone.

−→
𝑉 𝑃

𝑖 =
−→
Ω × −→

𝑑 𝑇
𝑖 + −→

𝑉 𝐵 (13)
−→
𝑑 =


𝑙 −𝑏 0
𝑙 𝑏 0
−𝑙 𝑏 0
−𝑙 −𝑏 0


(14)
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Fig. 9 Drone geometry [12]. Fig. 10 Blade coordinate frame.

Then, the propeller linear velocity is translated to the blade coordinate frame (𝐵𝐿), which rotates with the respective
blade, as can be seen in Fig. 10. The angle of the blade with the propeller coordinate frame x-axis is 𝜆 𝑗 and it is used in
Eq. (15) for the coordinate frame transformation. As can be observed, a minus sign precedes the transformation matrix
because the airspeed vector is opposite to the displacement direction. It is assumed that this value of airspeed, which is
a function of the vehicle linear and angular velocities, does not depend on the position along the blade.

−→
𝑉 𝐵𝐿

𝐴𝑖 𝑗𝑘1
=
−→
𝑉 𝐵𝐿

𝐴𝑖 𝑗
= −


sin𝜆 𝑗 − cos𝜆 𝑗 0
cos𝜆 𝑗 sin𝜆 𝑗 0

0 0 1


−→
𝑉 𝑃

𝑖 (15)

Second, the component of the velocity due to the rotation of the propeller is the product of the distance of the blade
section centroid to the centre of rotation (𝑟𝑖 𝑗𝑘) and the rotational velocity of the propeller (𝜔𝑖), as can be seen in Eq. (16).
The main benefit of the chosen blade coordinate frame is that this velocity component only exists along the x-axis. 𝜁𝑖 is
a variable which acquires a value of 1 if the 𝑖th propeller is rotating clockwise and -1 if it is rotating counter-clockwise.

−→
𝑉 𝐵𝐿

𝐴𝑖 𝑗𝑘2
(𝑟𝑖 𝑗𝑘) =


𝜁𝑖𝜔𝑖𝑟𝑖 𝑗𝑘

0
0

 (16)

Third, there exist multiple approaches in literature for computing the induced velocity field across the rotor disk,
most of the them based on estimates and empirical tests. The work of Gill et al. [21] assumes ideal propeller geometry,
considering a constant uniform induced velocity along the propeller, which is mostly not the case in forward flight. The
approach followed for the present research is the same one used by Niemiec et al. [22] and that is thoroughly explained
by Leishman et al. [23], which combines an initial uniform inflow estimation for the complete propeller with local
(blade section) linear inflow model corrections.

For the computation of the uniform induced velocity (𝑣0
†), the Glauert formula presented in Eq. (19) is derived

from the combination of the mass flow and the propeller thrust equations, shown in Eq. (17) and Eq. (18), respectively.
According to the principles of momentum and energy conservation, the far wake velocity equals the airspeed before the
rotor plus two times the induced velocity [23], leading to a change in velocity across the rotor of Δ𝑉 = 2𝑣0.

¤𝑚 = 𝜌𝜋𝑅2𝑉𝑅 (17) 𝑇 = ¤𝑚Δ𝑉 = ¤𝑚(𝑉𝐴𝑖
+ 2𝑣0 −𝑉𝐴𝑖

) = 2 ¤𝑚𝑣0 (18)

𝑣0 =
𝑇

2𝜌𝜋𝑅2𝑉𝑅

(19)

†Since it will be constantly referred to the same single propeller, the subscript 𝑖 to denote a specific propeller is dropped for the rest of the paper
for readability purposes.
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Given that the airspeed at the rotor (𝑉𝑅) equals the propeller airspeed plus the induced velocity along the z-axis
direction, it is expressed in Eq. (20) using the translational velocity found in Eq. (13). As the final Glauert equation lacks
a closed form, the induced velocity has to be computed using an iterative optimisation technique, such as Nelder-Mead.
To that end, a tailored and efficient gradient-descent (1D first-order derivative) algorithm is detailed in the Appendix.

𝑉𝑅 =

√︃
𝑉𝑃
𝑥 𝑉

𝑃
𝑥 +𝑉𝑃

𝑦 𝑉
𝑃
𝑦 + (−𝑉𝑃

𝑧 + 𝑣0)2 (20)

After determining the uniform inflow velocity, it can be used as the basis for the computation of the linear inflow
model. Several estimation models are available, such as those proposed by Howlett [24], Pitt & Peters [25] and White &
Blake [26]. However, for the present research, the Drees model [27] is employed since it is one of the best representations
when compared to empirical data [23]. Equation (21) expresses the induced velocity using the uniform inflow as a basis
and adjusting it with the 𝑘𝑥 and 𝑘𝑦 weighting factors, calculated in Eq. (22) and Eq. (23), respectively.

𝑣𝑖 (·) = 𝑣0 (1 + 𝑘𝑥𝑟 cos𝜓 + 𝑘𝑦𝑟 sin𝜓) (21)

𝑘𝑥 =
4
3
(1 − cos 𝜒 − 1.8𝜇2

𝑥)
sin 𝜒

(22) 𝑘𝑦 = −2𝜇𝑥 (23)

𝜒 is the wake skew angle or the angle between the wake and the propeller’s z-axis (Fig. 11), computed using the
propeller airspeed and the uniform induced velocity according to Eq. (24). 𝜇𝑥 is the tip speed ratio or advanced ratio
defined as the airspeed projected on the x-y plane in the propeller coordinate frame normalised by the blade length and
propeller rotational velocity (Eq. (25)). The resulting inflow, illustrated in Fig. 12, depicts the variation of induced
velocity across blade sections with respect to their distance from the centre of rotation and azimuth angle.

Fig. 11 Illustration of the wake skew angle [23]. Fig. 12 Linear inflow model [23].

tan 𝜒 =

√︃
𝑉𝑃
𝑥 𝑉

𝑃
𝑥 +𝑉𝑃

𝑦 𝑉
𝑃
𝑦

𝑣0 −𝑉𝑃
𝑧

(24) 𝜇𝑥 =

√︃
𝑉𝑃
𝑥 𝑉

𝑃
𝑥 +𝑉𝑃

𝑦 𝑉
𝑃
𝑦

𝜔𝑖𝑅
(25)

After computing the three components of the blade section airspeed, they are summed in Eq. (26).

−→
𝑉 𝐵𝐿

𝐴 𝑗𝑘
(·) = −→

𝑉 𝐵𝐿
𝐴 𝑗𝑘1

+ −→
𝑉 𝐵𝐿

𝐴 𝑗𝑘2
(𝑟 𝑗𝑘) +

[
0 0 𝑣𝑖 𝑗𝑘 (·)

]𝑇
(26)

Given the airspeed, the angle of attack seen by the blade can be obtained from Eq. (27). Here, 𝜃 𝑗𝑘 is the average
twist of the blade section and it is a linear function of the distance from the centre of rotation (Eq. (28), where 𝜃𝑡𝑤 is the
blade twist rate per radius of the rotor and 𝜃0 is the blade twist at the blade root). The closer to the root, the higher the
twist in order to compensate for the lower tangential velocity from the propeller rotation.

𝛼 𝑗𝑘 (·) = 𝜃 𝑗𝑘 (𝑟 𝑗𝑘) − arctan
𝑉𝐵𝐿
𝐴 𝑗𝑘𝑧

(·)

𝑉𝐵𝐿
𝐴 𝑗𝑘𝑥

(·)
(27) 𝜃 𝑗𝑘 (𝑟 𝑗𝑘) = 𝜃0 − 𝑟 𝑗𝑘𝜃𝑡𝑤 (28)

Finally, from the blade section lift and drag contributions, it is possible to determine the generated thrust (Δ𝑇) and
torque (Δ𝑄) by each blade section with Eq. (29) and Eq. (30), respectively‡. Here, 𝜙 𝑗𝑘 is the blade section flow angle

‡Since every term of these equations is meant for a particular blade section, the subscripts 𝑗𝑘 have been left out to enhance readability. For the
same reason, the variables each of the terms are a function of have also been removed; they are all a function of (𝜓𝑗𝑘 , 𝑟 𝑗𝑘 ) .
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defined as the difference between the local twist angle 𝜃 𝑗𝑘 and the local angle of attack 𝛼 𝑗𝑘 , as can be seen in Eq. (31).
Δ𝑇 = Δ𝐿 cos 𝜙 − Δ𝐷 sin 𝜙 (29) Δ𝑄 = 𝑟Δ𝐿 sin 𝜙 + 𝑟Δ𝐷 cos 𝜙 (30)

𝜙 𝑗𝑘 (·) = 𝜃 𝑗𝑘 (𝑟 𝑗𝑘) − 𝛼 𝑗𝑘 (·) (31)

B. Aerodynamic forces and moments
Once the percentage of blade damage to be simulated is known, the corresponding "lost" blade sections are identified.

For instance, if a 30% blade damage is considered in a blade composed of 100 sections, the 30 sections closest to the
blade tip are the ones lost. Then, their forces and moments are added to later be subtracted from those of the nominal
operating conditions obtained from the healthy blade model output.

Equation (29) can be used for the computation of the thrust of a single blade section. The added thrust value of
all the lost blade sections leads to 𝐹𝑃

𝑎1𝑧 , as given by Eq. (32). 𝜉 𝑗𝑘 is a boolean which has a value of 1 when the blade
section is damaged and 0 when it is in its nominal state. The moments emerging about the propeller x- and y-axes from
the change in the centre of pressure location are computed by decomposing the moment generated by the blade section
thrust around the centre of rotation with Eq. (33) and Eq. (34).

𝐹𝑃
𝑎1𝑧 =

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘Δ𝑇𝑗𝑘 (32)

𝑀𝑃
𝑎2𝑥

=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

−𝜉 𝑗𝑘Δ𝑇𝑗𝑘𝑟 𝑗𝑘 sin𝜆 𝑗 (33) 𝑀𝑃
𝑎2𝑦

=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘Δ𝑇𝑗𝑘𝑟 𝑗𝑘 cos𝜆 𝑗 (34)

Furthermore, Eq. (30) can be used for the computation of the torque of each blade section. The integral torque of
the lost blade sections leads to the moment about the z-axis, as shown in Eq. (35). The blade section force in the rotor
plane can be obtained by dividing the torque by the magnitude of the moment arm. This force is then decomposed in the
x- and y-directions, as shown in Eq. (36) and Eq. (37), in order to obtain the last aerodynamic forces.

𝑀𝑃
𝑎1𝑧 =

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘Δ𝑄 𝑗𝑘 (35)

𝐹𝑃
𝑎2𝑥

=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘
Δ𝑄 𝑗𝑘

𝑟 𝑗𝑘
cos

(
𝜆 𝑗 − 𝜁

𝜋

2

)
(36) 𝐹𝑃

𝑎2𝑦
=

𝑛𝑏∑︁
𝑗=1

𝑛𝑏𝑠∑︁
𝑘=1

𝜉 𝑗𝑘
Δ𝑄 𝑗𝑘

𝑟 𝑗𝑘
sin

(
𝜆 𝑗 − 𝜁

𝜋

2

)
(37)

These force and moment vectors are subtracted from the nominal physics model output to account for the aerodynamic
effects. In Fig. 13, a flowchart visually illustrates their discussed computation.

Fig. 13 Flowchart of the computation of the damaged propeller aerodynamic forces and moments at one time
step during simulation.
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V. Airfoil lift and drag coefficients identification
For most commercial drones, a propeller blade’s aerodynamic model is absent. Prior work [20] employs Hybrid

Blade Element Momentum Theory, equating the thrust derived from BET (blade geometry) and the thrust derived from
Momentum Theory (interacting flow characteristics), for the computation of the induced velocity and aerodynamic
coefficients. Its two-step method, estimating induced velocity and then the aerodynamic coefficients, has two drawbacks.
Firstly, it lacks clarity on the induced velocity computation without the required prior aerodynamic parameter calculation.
Secondly, the optimisation method takes 2 to 10 hours for 20 data points, making simulations of blade damage scenarios
in which the induced velocity must be computed for every time step, unfeasible. This section details an alternative
optimisation approach for identifying the lift and drag coefficient curves with much shorter computation times.

The proposed method is based on equating the thrust and torque obtained from the healthy UAV model (or
experimental data) to the sum of the blade sections’ moment and forces computed following BET. To that end, given a
drone geometry (R, and l and b from Eq. (14)), combinations of vehicle body linear (

−→
𝑉 𝐵) and angular velocities (

−→
Ω), as

well as propeller rotational velocities (𝜔), are fed as input to both models. Then, their outputs are combined in order to
solve a constrained minimisation problem that finds the lift and drag coefficient functions. 𝐶𝑙 and 𝐶𝑑 are modelled as
polynomials of m and n degree as a function of the angle of attack, as can be seen in Eq. (38) and Eq. (39), respectively.

𝐶𝑙 𝑗𝑘 = 𝑥0 + 𝑥1𝛼 𝑗𝑘 + 𝑥2𝛼
2
𝑗𝑘 + · · · + 𝑥𝑚𝛼

𝑚
𝑗𝑘 (38) 𝐶𝑑 𝑗𝑘

= 𝑦0 + 𝑦1𝛼 𝑗𝑘 + 𝑦2𝛼
2
𝑗𝑘 + · · · + 𝑦𝑛𝛼

𝑛
𝑗𝑘 (39)

With these lift and drag coefficient polynomials, BET thrust and torque are computed with Eq. (40) and Eq. (41).

𝑇 =

(
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

1
2
𝜌𝐶𝑙 𝑗𝑘 𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘𝑑𝑟

)
−

(
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

1
2
𝜌𝐶𝑑 𝑗𝑘

𝑐 𝑗𝑘𝑉
2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘𝑑𝑟

)
=

1
2
𝜌𝑑𝑟

[(
𝑚∑︁
𝑜

𝑥𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘

)
−

(
𝑛∑︁
𝑜

𝑦𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘

)] (40)

𝑄 = −𝜁 1
2
𝜌𝑑𝑟

[(
𝑚∑︁
𝑜

𝑥𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘

)
+

(
𝑛∑︁
𝑜

𝑦𝑜

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘

)]
(41)

With the previous definitions of the thrust and the torque, it is possible to create a system of the
−→
𝐴−→𝑥 =

−→
𝑏 form.

Each pair of rows of the A matrix and the b vector corresponds to the thrust and torque of a data point from the BET and
healthy UAV models, respectively. A data point refers to a set of conditions (

−→
𝑉 𝐵,

−→
Ω, 𝜔) that are provided as input to

both models. Equations (42) to (48) show the different components of the system with 𝑞 data points.

𝑙𝑜1 =

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘 (42) 𝑙𝑜2 = −
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘 (43)

𝑙𝑜3 = −𝜁
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

sin 𝜙 𝑗𝑘 (44) 𝑙𝑜4 = −𝜁
𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘𝑟 𝑗𝑘𝑐 𝑗𝑘𝑉

2
𝐴 𝑗𝑘

cos 𝜙 𝑗𝑘 (45)

−→
𝐴 =

1
2
𝜌𝑑𝑟



(𝑙01)1 (𝑙11)1 · · · (𝑙𝑚1 )1 (𝑙02)1 (𝑙12)1 · · · (𝑙𝑛2 )1
(𝑙03)1 (𝑙13)1 · · · (𝑙𝑚3 )1 (𝑙04)1 (𝑙14)1 · · · (𝑙𝑛4 )1
(𝑙01)2 (𝑙11)2 · · · (𝑙𝑚1 )2 (𝑙02)2 (𝑙12)2 · · · (𝑙𝑛2 )2
(𝑙03)2 (𝑙13)2 · · · (𝑙𝑚3 )2 (𝑙04)2 (𝑙14)2 · · · (𝑙𝑛4 )2
...

... · · ·
...

...
... · · ·

...

(𝑙01)𝑞 (𝑙11)𝑞 · · · (𝑙𝑚1 )𝑞 (𝑙02)𝑞 (𝑙12)𝑞 · · · (𝑙𝑛2 )𝑞
(𝑙03)𝑞 (𝑙13)𝑞 · · · (𝑙𝑚3 )𝑞 (𝑙04)𝑞 (𝑙14)𝑞 · · · (𝑙𝑛4 )𝑞


(46)

−→𝑥 =

[
𝑥0 𝑥1 · · · 𝑥𝑚 𝑦0 𝑦1 · · · 𝑦𝑛

]𝑇
(47)

−→
𝑏 =

[
(𝑇)1 (𝑄)1 (𝑇)2 (𝑄)2 · · · (𝑇)𝑞 (𝑄)𝑞

]𝑇
(48)
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The output of the BET model, namely the
−→
𝐴 matrix, has to be averaged over a rotation of the propeller, integrating

over the azimuth angle [20]. Equation (49) shows how this is done for 𝑙01; the same procedure can be applied to 𝑙02 , 𝑙03 and
𝑙04 . In practice, instead of integrating, a specific discrete number of rotation angles are chosen, and their contributions to
the

−→
𝐴 matrix are computed and averaged.

𝑙𝑜1 =
1

2𝜋

∫ 2𝜋

𝜓=0

𝑛𝑏∑︁
𝑗

𝑛𝑏𝑠∑︁
𝑘

𝛼𝑜
𝑗𝑘 (·)𝑐 𝑗𝑘 (𝑟 𝑗𝑘)𝑉2

𝐴 𝑗𝑘
(·) cos 𝜙 𝑗𝑘 (·) 𝑑𝜓 (49)

In order to guarantee that the lift and drag curves with respect to the angle of attack have their characteristic shape,
a constrained optimisation problem is posed in order to include airfoil aerodynamic knowledge in the solver. Given
that there is a large difference in scale between the thrust and torque values, the Normalised Root Mean Squared Error
(NRMSE) is used as objective function (Eq. (50) and Eq. (51)), where the standard deviation (𝜎𝑏) of the aerodynamic
healthy model output (

−→
𝑏 ) is the normalisation factor. Thrust and torque errors, along with their respective observations’

standard deviations, are computed independently. Hence, the figure that the optimisation function targets is the averaged
NRMSE of thrust and torque, as can be seen in Eq. (52), and the objective function for the aerodynamic parameter
computation −→𝑥 ∗ is defined in Eq. (53).

−→𝜖 =
−→
𝑏 − −→

𝐴−→𝑥 (50) NRMSE =

√︂(−→𝜖 𝑇 · −→𝜖
)
/𝑞

𝜎𝑏

(51)

NRMSEtotal =
NRMSE𝑇 + NRMSE𝑄

2
(52)

−→𝑥 ∗ = arg min
−→𝑥

NRMSEtotal (53)

Furthermore, the following constraints are used to achieve the lift and drag coefficient curves characteristic shapes:
1) The maximum lift coefficient can not be higher than 5 within the angle of attack range of -30 to 30 degrees:

𝐶𝑙 (𝛼) < 5, ∀𝛼 ∈ [−30◦, 30◦].
2) The lift coefficient curve should have a negative slope within the angle of attack range of 25 to 30 degrees:

𝑑𝐶𝑙 (𝛼)/𝑑𝛼 < 0, ∀𝛼 ∈ [25◦, 30◦].
3) The lift coefficient curve should have a positive slope within the angle of attack range of 0 to 7 degrees:

𝑑𝐶𝑙 (𝛼)/𝑑𝛼 > 0, ∀𝛼 ∈ [0◦, 7◦].
4) The lift coefficient curve should intersect the angle of attack axis within the angle of attack range of -10 to 10

degrees: min𝐶𝑙 (𝛼) < 0, ∀𝛼 ∈ [−10◦, 10◦].
5) The drag coefficient curve can not be negative within the angle of attack range of -30 to 30 degrees: 𝐶𝑑 (𝛼) >

0, ∀𝛼 ∈ [−30◦, 30◦].
For the declaration of these constraints, matrix

−→
𝐶 (−→𝛼 ) ∈ 𝑅𝑠×(𝑚𝑛) is created with the range of angles of attack

mentioned in each constraint definition. The matrix has the same number of rows as integer angles within the constraint
range, namely 𝑠 = 𝛼max − 𝛼min + 1 for 𝛼 ∈ [𝛼min, 𝛼max]; each row corresponds to an angle of attack. The number of
columns equals the length of the parameter vector −→𝑥 . Its input is an angle of attack vector which is a function of the
𝛼min and 𝛼max, as can be deduced from its definition in Eq. (54).

−→𝛼 (𝛼min, 𝛼max) =
[
𝛼min + 𝜂

] 𝑠−1

𝜂=0
=

[
𝛼0 𝛼1 · · · 𝛼𝑠−1

]𝑇
(54)

Since a constraint regarding the lift coefficient curve does not require information about the drag coefficient
parameters, the last 𝑛 columns will be full of zeros (Eq. (55) and Eq. (57)) for constraints 1 to 4. In the case of the drag
constraint (constraint 5), it would be the first 𝑚 columns that would be full of zeros, as shown in Eq. (56). Constraints 2
and 3 impose a limit in the gradient of the curve, so the derivative of

−→
𝐶𝐶𝑙

with respect to the angle of attack is taken in
Eq. (57).

−→
𝐶𝐶𝑙

(−→𝛼 ) =


1 𝛼0 𝛼2

0 · · · 𝛼𝑚
0

1 𝛼1 𝛼2
1 · · · 𝛼𝑚

1
...

...
... · · ·

...

1 𝛼𝑠−1 𝛼2
𝑠−1 · · · 𝛼𝑚

𝑠−1

����������
−→
0 𝑠×𝑛


(55)

−→
𝐶𝐶𝑑

(−→𝛼 ) =


−→
0 𝑠×𝑚

����������
1 𝛼0 𝛼2

0 · · · 𝛼𝑛
0

1 𝛼1 𝛼2
1 · · · 𝛼𝑛

1
...

...
... · · ·

...

1 𝛼𝑠−1 𝛼2
𝑠−1 · · · 𝛼𝑛

𝑠−1


(56)
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𝑑
−→
𝐶𝐶𝑙

(−→𝛼 )
𝑑𝛼

=


0 1 2𝛼0 · · · 𝑚𝛼𝑚−1

0
0 1 2𝛼1 · · · 𝑚𝛼𝑚−1

1
...

...
... · · ·

...

0 1 2𝛼𝑠−1 · · · 𝑚𝛼𝑚−1
𝑠−1

����������
−→
0 𝑠×𝑛


(57)

The
−→
𝐶 matrix or its derivative is multiplied with the parameter vector −→𝑥 and the maximum or minimum value from

the output is taken for the definition of the inequality constraints. As a result, the following constrained optimisation
problem is posed:

min−→𝑥
NRMSEtotal

s.t. max
(−→
𝐶𝐶𝑙

(−→𝛼 )−→𝑥
)
− 5 < 0, (𝛼min, 𝛼max) = (−30, 30)

max

(
𝑑
−→
𝐶𝐶𝑙

(−→𝛼 )
𝑑𝛼

−→𝑥
)
< 0, (𝛼min, 𝛼max) = (25, 30)

min

(
𝑑
−→
𝐶𝐶𝑙

(−→𝛼 )
𝑑𝛼

−→𝑥
)
> 0, (𝛼min, 𝛼max) = (0, 7)

min
(−→
𝐶𝐶𝑙

(−→𝛼 )−→𝑥
)
< 0, (𝛼min, 𝛼max) = (−10, 10)

min
(−→
𝐶𝐶𝑑

(−→𝛼 )−→𝑥
)
> 0, (𝛼min, 𝛼max) = (−30, 30)

(58)

Figure 14 visually illustrates the lift and drag coefficient identification with a flowchart.

Fig. 14 Flowchart of the offline lift and drag coefficient curves identification.

VI. Results
The department of Control & Simulation at Delft University of Technology developed in 2019 a grey-box aerodynamic

model of the Bebop 2 drone based on wind tunnel experiments [28]. To demonstrate the presented methodology, it will
be used as the healthy UAV identified model, turning the Bebop 2 into the platform of choice.

A. Bebop 2 lift and drag coefficients identification
Table 1 summarises the geometry of the Bebop 2 drone and propeller. In section V it was mentioned that the

aerodynamic grey-box and BET models require as input for each data point a set of conditions (
−→
𝑉 𝐵,

−→
Ω, 𝜔) beyond the

drone geometry. The range of those input conditions is also explained next:
1) The drone linear velocity is constrained in the x-z plane (𝑉𝐵

𝑦 =0). Its value in the z-direction (𝑉𝐵
𝑧 ) is sampled

from a uniform distribution over the closed interval [-2, -0.5] m/s, avoiding positive velocities in the z-axis that
could cause nonlinear behaviour, e.g. Vortex Ring State, that was not accounted for by the aerodynamic grey-box
model.
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Table 1 Geometrical properties of the Bebop 2 drone and propeller.

Drone geometry Propeller geometry
b l 𝑐𝑟 𝑐𝑐 𝑐𝑡 ℎ1 & ℎ2 R 𝑛𝑏 𝜃0 𝜃𝑡𝑤

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (-) (◦) (◦/mm)
115 87.5 13 20 8 32 75 3 27 0.29

Furthermore, the value of the drone linear velocity in the x-direction (𝑉𝐵
𝑥 ) is also sampled from a uniform

distribution, in this case over the closed interval [-3, 3] m/s. As a result, for the identification of the lift and drag
curves only scenarios in which the drone is ascending, flying forward or backwards are considered.

2) The angular velocity of the drone is always zero (
−→
Ω =

−→
0 ).

3) The rotation velocity of the propeller (𝜔) is sampled from a uniform distribution over the closed interval [300,
1256] rad/s.

Furthermore, the drag and lift curves were approximated with second degree polynomials (𝑚 and 𝑛 equal 2) and
the integral with respect to the azimuth angle presented in Eq. (49) was approximated with 10 discrete equally spaced
azimuth angles starting at 0◦, namely [0◦, 36◦, 72◦, ..., 288◦, 324◦]. The constrained optimisation method is posed using
Python’s Scipy package with the trust-region interior point method ("trust-constr") [29] solver. Additionally, the number
of blade sections (𝑛𝑏𝑠) and the number of data points used for the identification (𝑞) were 100 and 16,000, respectively.

The data gathering and optimisation took 10,707 seconds (2 hours and 58 minutes) using the aforementioned chosen
hyper-parameters in a consumer laptop with an Intel Core i7-9750H CPU running Python 3.7. Equations (59) and (60)
show the identified polynomials that define the airfoil lift and drag curves with respect to the angle of attack. Plots of
these polynomials in Fig. 15 and Fig. 16 show the characteristic shape expected from those aerodynamic curves. Only
the 5th constraint in section V is limiting in the solution, namely that the drag coefficient cannot be negative.

𝐶𝑙 = 0.24 + 5.15𝛼 − 12.25𝛼2 (59) 𝐶𝑑 = 0.0092 − 0.79𝛼 + 15.13𝛼2 (60)

Fig. 15 Identified airfoil lift coefficient curve with
respect to the angle of attack from the aerodynamic
grey-box model [12] data. Illustration of Eq. (59).

Fig. 16 Identified airfoil drag coefficient curve with
respect to the angle of attack from the aerodynamic
grey-box model [12] data. Illustration of Eq. (60).

The identified aerodynamic model was positively validated by verifying that the model residuals on a validation
dataset of 4,000 data points (25% of the training dataset) approximate zero mean white noise.

B. Bebop 2 mass and aerodynamic forces and moments
To observe the magnitude of the forces and moments caused by the change in mass, the front left Bebop 2 propeller

is simulated as damaged with a single blade loss of 20% of its length. It rotates at 600 rad/s counterclockwise from a
top-down view (𝜁=-1) for 0.25 seconds. The attitude of the drone is such that the z-axis direction of the propeller and

inertial coordinate frame coincide. Additionally, the drone is moving with a body linear velocity
−→
𝑉 𝐵 =

[
3 0 −1

]𝑇
[m/s] and body angular velocity

−→
Ω =

−→
0 rad/s. The Bebop 2 propeller has a total mass of 5.07 [g] and a mass per blade

(without the central hub) of 1.11 [g].
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Figures 17 and 18 show the forces and moments caused by the change of mass for the aforementioned scenario. As
can be observed, the signals in the x and y directions have a oscillatory behaviour due to the propeller rotations. Since
the drone’s propeller z-axis is aligned with its counterpart in the inertial frame, the gravity force coincides with the z-axis
in the propeller coordinate frame, leading to a constant force in the z-direction and a zero moment about the z-axis.

Fig. 17 BET-simulated evolution of forces caused
due to mass change upon 20% Bebop 2 blade damage
for 0.25 s rotating at 𝜔0 = 600 rad/s.

Fig. 18 BET-simulated evolution of moments caused
due to mass change upon 20% Bebop 2 blade damage
for 0.25 s rotating at 𝜔0 = 600 rad/s.

Next, the aerodynamic forces and moments are also analysed for the same 0.25 s Bebop 2 propeller scenario, leading
to the results illustrated in Fig. 19 and Fig. 20. As can be observed, the signals around the y-axis are centred around the
0 datum, whereas the wrenches in the x- and z-direction are biased. The wrench in the x-direction is negatively biased
because the lift and drag forces are the highest when the damaged blade is advancing and not retreating. Since the
propeller is rotating counterclockwise, the thrust produced when the blade is advancing creates a negative moment
around the x-axis and the force creating the torque points towards the negative x-direction. The oscillatory motion in the
z-direction is also due to the difference in incoming flow between when the damaged blade advances and retreats. If
the drone would be hovering, then the aerodynamic wrench in this direction would be constant and will have a value
approximately equal to the observed bias.

Fig. 19 BET-simulated evolution of aerodynamic
forces generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600
rad/s.

Fig. 20 BET-simulated evolution of aerodynamic
moments generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600
rad/s.

Furthermore, Fig. 21 and Fig. 22 show the mass and aerodynamic caused forces and moments super-imposed. The
mass change effects are predominant in the x- and y-components of the force, whereas the aerodynamic effects are
predominant in the force z-direction and in all moment directions.

Finally, the mass and aerodynamic effects around the propeller’s centre of rotation are combined as shown by
Eq. (61) and Eq. (62); quantities that will be used in the validation phase. The combined effect for the discussed 0.25
s simulation leads to Fig. 23 and Fig. 24. Previous literature is correct in focusing on the mass related centrifugal
forces, since they are one to three orders of magnitude greater than the rest. However, they ignore the effects outside the
x-y plane in the propeller coordinate frame, especially the force in the z-direction. Additionally, although subtle, the
oscillations in the moment signals could help in the identification of the blade damage.

Δ
−→
𝐹 𝑃 =

−→
𝐹 𝑃

𝑚1 +
−→
𝐹 𝑃

𝑚2 −
−→
𝐹 𝑃

𝑎1 −
−→
𝐹 𝑃

𝑎2 (61) Δ
−→
𝑀𝑃 =

−→
𝑀𝑃

𝑚 − −→
𝑀𝑃

𝑎1 −
−→
𝑀𝑃

𝑎2 (62)
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Fig. 21 BET-simulated evolution of mass and aero-
dynamic forces generated by lost blade sections upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 =

600 rad/s.

Fig. 22 BET-simulated evolution of mass and aero-
dynamic moments generated by lost blade sections
upon 20% Bebop 2 blade damage for 0.25 s rotating
at 𝜔0 = 600 rad/s.

Fig. 23 BET-simulated evolution of forces upon 20%
Bebop 2 blade damage for 0.25 s rotating at 𝜔0 = 600
rad/s.

Fig. 24 BET-simulated evolution of moments upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 =

600 rad/s.

Even though there is a different order of magnitude among the forces and the moments, all the signals are oscillatory.
Figures 25 and 26 show the upper and lower limit of these wrench oscillations for different degrees of blade damage,
namely from 0% (intact blade) to 100% (complete blade loss). All forces and moments have their upper and lower limits
symmetric with respect to the 0 datum, except the force and moment in the z-direction. Δ𝐹𝑃

𝑧 moves in the positive
direction with increasing blade damage — the higher the blade damage, the larger the thrust loss (positive thrust points
down in the propeller coordinate system). Δ𝑀𝑃

𝑧 moves in the negative direction with increasing blade damage because
the analysis is done on a counter-clockwise rotating propeller.

Fig. 25 Upper and lower limits of the forces’ oscil-
lations for different degrees of BET-simulated blade
damage.

Fig. 26 Upper and lower limits of the moments’
oscillations for different degrees of BET-simulated
blade damage.
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The higher the blade damage, the higher the oscillations. However, depending on whether the dominating effect is
mass or aerodynamic, the behaviour of those limits is different. The gradient of the upper and lower limits of Δ𝐹𝑃

𝑥 can
be observed in Fig. 27; the gradient first increases and around 50% starts decaying. This is caused by the modelled
double trapezoid Bebop 2 blade shape. As the blade is progressively damaged from the tip (0% damage) to the location
of the central chord (50% damage) the removed blade sections are progressively growing in size, causing constantly
greater shifts of the centre of gravity and, hence, greater increments in the centrifugal force. When the damage reaches
the maximum chord, the removed blade sections start to decrease in size, leading to smaller centre of gravity shifts and
more slowly growing centrifugal forces.

Fig. 27 Gradient of the upper and lower limits of the
Δ𝐹𝑃

𝑥 oscillations with respect to different degrees of
BET-simulated blade damage.

Fig. 28 Gradient of the upper and lower limits of
the Δ𝑀𝑃

𝑥 oscillations with respect to different degrees
of BET-simulated blade damage. The non solid lines
represent scenarios in which the blade section area is
constant and/or there is no induced velocity.

Figure 28 depicts the gradients of the upper and lower oscillation limits of Δ𝑀𝑃
𝑥 , an aerodynamic-dominated wrench

component. As can be observed, the moment gradient increases in magnitude until around 30%, primarily due to the
combined effect of the expanding blade section area from the tip to the central maximum chord and the induced velocity
impacting the angle of attack. If the blade section area is held constant and the induced velocity is removed, oscillations
only decay in magnitude. However, with at least one of these factors active, an initial gradient increment occurs.

Upon reaching 30% blade damaged, the most influential factor in the further gradient decay is the reduced distance
from the blade section to the centre of rotation (𝑟 𝑗𝑘). Δ𝑀𝑃

𝑥 is proportional to 𝑟3
𝑗𝑘

considering that at high propeller
rotational rates, airspeed is dominated by 𝑉𝐴 𝑗𝑘2

(Eq. (16)), a function of 𝑟𝑖 𝑗𝑘 . The airspeed is squared in the computation
of Δ𝐿𝑘 and Δ𝐷𝑘 (Eq. (11) and Eq. (12)). These lift and drag components are then used for the computation of Δ𝑇𝑗𝑘 ,
which is further multiplied by 𝑟 𝑗𝑘 to obtain the moment.

C. Importance of induced velocity
The significance of including the induced velocity in the aerodynamic calculations outlined in subsection IV.A is

evident when comparing Fig. 29 and Fig. 30; incorporating the linear induced velocity model reduces the amplitude and
bias magnitude of the oscillations. This reduction is attributed to the decrease in the angle of attack resulting from the
introduction of 𝑣𝑖 , as shown in Fig. 31 and Fig. 32. These figures present box plots of the angles of attack seen by each
of the 100 blade sections in the 16,000 scenarios used for identification of the lift and drag curves (subsection VI.A)
with and without the linear induced velocity model, respectively. The following additional observations can be made:

1) Besides the general reduction in the angle of attack, the introduction of the induced velocity model shifts the
linear part of the angle of attack with respect to the blade section box plot towards the blade tip. In contrast, when
𝑣𝑖 = 0, the box plot is mostly linear. It is crucial to note that the linearity of the 𝑣𝑖 model applies to the x and y
directions in the propeller reference frame, as illustrated in Fig. 12, rather than along the blade radial direction.

2) Even though the twist of the blade goes from 25◦ to 5◦ from the root to the tip, the centre line of Fig. 31 has a
lower value than the twist — especially close to the root — because the distribution of the linear body velocity
in the z-direction is biased towards negative values (the drone is flying upwards). In subsection VI.A it was
established that 𝑉𝐵

𝑧 has a value in the closed interval [-2,-0.5] m/s.
3) For both scenarios, the range of angles of attack is larger at the root due to the higher sensitivity to the vehicle’s

velocity; the blade section tangential velocity due to the propeller’s rotation is lower at the root than at the tip.
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Fig. 29 BET-simulated evolution of aerodynamic
forces generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 [s] rotating at 𝜔0 =

600 [rad/s] with and without linear inflow model.

Fig. 30 BET-simulated evolution of aerodynamic
moments generated by lost blade sections upon 20%
Bebop 2 blade damage for 0.25 [s] rotating at 𝜔0 =

600 [rad/s] with and without linear inflow model.

Fig. 31 Box plot with the angles of attack seen by
each BET-simulated blade section during 16,000 data
point optimisation without induced velocity model.
The inputs that shape each data point are taken from
uniform distributions with the following value ranges:
−→
𝑉 𝐵

𝑥 =[-3, 3] m/s, −→𝑉 𝐵
𝑦 =0 m/s, −→𝑉 𝐵

𝑧 =[-2.5, -0.5] m/s,
−→
Ω =

−→
0 rad/s, 𝜔 =[300, 1256] rad/s.

Fig. 32 Box plot with the angles of attack seen by
each BET-simulated blade section during 16,000 data
point optimisation with linear inflow velocity model.
The inputs that shape each data point are taken from
uniform distributions with the following value ranges:
−→
𝑉 𝐵

𝑥 =[-3, 3] m/s, −→𝑉 𝐵
𝑦 =0 m/s, −→𝑉 𝐵

𝑧 =[-2.5, -0.5] m/s,
−→
Ω =

−→
0 rad/s, 𝜔 =[300, 1256] rad/s.

The value of the induced velocity and its effect on the angle of attack can also be visualised in the propeller plane, as
illustrated in Fig. 33a and Fig. 33b for the Bebop 2 propeller located on the front left of the vehicle. The propeller is
moving towards the left with 3 m/s, out of the plane with 1 m/s and it is rotating counter-clockwise. The empty internal
concentric circle represents the propeller hub, which is not an aerodynamic surface, resulting in an annulus heat map.
Figure 33b reflects the same behaviour as in Fig. 32 but in 2D, namely that the angle of attack rapidly increases close to
the root until about 35% of the blade before it starts decaying more slowly towards the tip. The low angle of attack
values close to the root in the direction of 𝜓 =270◦ correspond to the retreating blade sections. When the rotational
speed is lowered to 300 rad/s, the stalled retreating blade sections become more apparent, as shown in Fig. 33c.

(a) 𝜔 =1256 rad/s (b) 𝜔 =1256 rad/s (c) 𝜔 =300 rad/s

Fig. 33 Heat map of the linear induced model velocity and angle of attack for the BET-simulated front left
Bebop 2 propeller moving to the left with 3 m/s, out of the plane with 1 m/s and it is rotating counter-clockwise.
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Finally, Fig. 34a and Fig. 34b show the same induced velocity and angle of attack plots when a uniform induced
flow is considered. As can be observed, the variations in both variables brought by the linear model corrections are very
small, practically unnoticeable in the angle of attack when comparing the results with Fig. 33b. Whereas the uniform
inflow model creates an induced velocity of 7.6 m/s across the complete blade, the linear inflow model creates an
induced velocity that varies from 7.48 to 7.72 m/s. Even though literature has proven empirically that the linear inflow
model is more accurate than the uniform counterpart [23], the difference can be considered negligible for propellers of
small radius, as it is the case for most commercial drones such as the Bebop 2; a dependency on the blade radius which
can be deduced from Eq. (21). The effect of the linear model can be observed in the main rotor system of helicopters
which have blades longer than 1.5 metres.

(a) Uniform induced model (b) Uniform induced model (c) No induced model

Fig. 34 Heat map of the induced model velocity and angle of attack for the BET-simulated front left Bebop 2
propeller rotating at 1256 rad/s and moving to the left with 3 m/s, out of the plane with 1 m/s and it is rotating
counter-clockwise.

Hence, the additional computations required for the uniform model corrections can be disregarded in simulation.
However, including the uniform induced model is crucial, as it can modify the vertical airspeed seen by the blade
sections from 1 to 8.6 m/s at full propeller rotational speed (1256 rad/s) for the Bebop 2 example scenario (Fig. 34a).
This effect can be visualised when comparing the angle of attack heat map when there is a uniform induced velocity, as
it is the case in Fig. 34b, to the scenario when 𝑣𝑖 = 0 shown in Fig. 34c, the latter being a 2D representation of Fig. 31.
Notably, the importance of the uniform inflow model is pronounced at the retreating blade sections near the root.

D. Assumptions and recommendations
For the development of the blade damage forces and moments model, as well as the lift and drag coefficient curves

identification, the following assumptions were made:
1) The mass along the blade is homogeneous, meaning that the centroid equals the location of the centre of gravity.
2) The Bebop 2 blades are simplified as two trapezoids with parallel sides connected by the long parallel side.
3) The twist decreases linearly from the root to the tip.
4) The airfoil is constant throughout the blade.
5) The cross flow along the span of the blade is ignored.
6) Aeroelasticity effects are ignored.
7) The blade root and tip lift losses are ignored.
8) The induced velocity is computed with the simplified linear induced inflow.
9) The nonlinear aerodynamic effects between (damaged) blades are not considered.

10) The nonlinear aerodynamic effects between propellers are not considered.
11) The nonlinear aerodynamic effects between the propellers and the body frame are not considered.
12) The data used for the identification of the lift and drag coefficient curves were obtained from the aerodynamic

grey-box model [12] that provides the propeller thrust and torque. Hence, the present work adopts the assumptions
taken for the development of this model.

13) The blade is cut parallel to the edge of the propeller, perpendicular to its span, such that the remaining polygon is
still a trapezoid. Hence, slanted or irregular cuts are not considered.

Further work in the simulation of propeller damage could be oriented towards the refinement of the model developed
in this chapter in order to remove one or multiple of the aforementioned assumptions; contributing to its generalisation
and application to different propeller types. For instance, the geometrical assumptions 1)-4) could be eliminated by
creating a 3D model (digital twin) of the propeller using scanning technologies that probe the propeller through physical
touch (with contact), such as Coordinate Measuring Machines [30], or scanning technologies that exploit acoustic,
optical or magnetic approaches (without contact), such as laser scanning, structured light or photogrammetry [31, 32]
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(e.g. structure from motion). If translated to a CAD model, this would allow the computation of the twist, chord and
volume of each blade section, the latter being used for the computation of the centre of gravity when the density of the
material is known. Additionally, such model would contribute to the potential discovery of multiple airfoils present in
the blade. If that would be the case, the parameter vector of Eq. (47) would be expanded with the polynomial coefficients
used to identify the lift and drag coefficient curves of those additional airfoils.

Assumptions 5)-11) are related to the degree of aerodynamic complexity introduced in the model. In particular,
assumption 6) points out that aeroelastic effects have been ignored. Most literature in this regard is oriented towards the
modelling of helicopter aeroelastic and blade flapping behaviour [33]. Unfortunately, this knowledge is not directly
applicable to drones given that helicopters have a horizontal hinge, also known as flapping hinge, which allows the
blade to be displaced up and down to compensate for the rotor lift dissymmetry [23]. Instead, commercial drone rotors
lack an articulated head, causing their material to bend and the rotor to tilt with the possibility of flapping [34]. As an
alternative, the field of wind energy could be explored since Blade Element Momentum Theory approaches have been
used as the aerodynamic component of wind turbine aeroelastic models [35]. However, given the circular dependency
between the blade deformations (aeroelastic effects), the induced velocity, and the generated moments and forces, the
authors consider such implementation to be challenging for real-time simulations.

Assumption 7) mentions that the blade root and tip losses were ignored. At those blade locations, the circulation
must be equal to zero and at the tip there is an additional reduction of lift due to the appearance of tip vortices —
airflow around the tip due to the pressure difference between the pressure side (high pressure) and the suction side (low
pressure). In the field of wind energy [19], these effects are taken into account by multiplying the induced velocity with
a correction factor that is a function of the distance to the centre of rotation (r). This factor would acquire a value of 1 in
the centre of the blade and a value of 0 at the edges, allowing the induced velocity to fall to zero at the blade edges.
Alternatively, previous literature [19, 23, 36] has also proposed the Prandtl tip-loss factor approximation (B=0.95-0.98)
to compute the effective blade radius (R𝑒 = BR) and account for the loss of blade lift. As a result, the outer portion of
the blade (R-R𝑒) is considered to be incapable of carrying lift. Given that in helicopter aerodynamics the introduction
of the tip loss factor can cause rotor thrust reductions between 6-10% [23], the study of its implementation in drone
propellers is recommended for the further improvement of the BET thrust and torque predictions.

Regarding the induced velocity model used (assumption 8)), a comprehensive benchmark study of the different
induced inflow models applied to drone propellers is missing in the current literature and it could be considered a line of
further work. It is recommended that future studies investigate the suitability and accuracy of the inflow models of
Mangler and Squire [37, 38] and Ormiston [39, 40]. The former associates the pressure field across the rotor disk to the
inflow with the incompressible, linearised Euler equations. This method originally requires to solve for the rotor loading
(Δ𝑝) using BET, an approach which is computationally expensive when compared to the linear induced inflow model
that optimises the induced velocity before the first BET iteration.

Other interesting approaches to consider include linear inflow models, such as those from Payne [41] and Pitt &
Peters [25], as well as Pitt-Peters [42] and Peters-He [43, 44] dynamic inflow models. The last two approaches have been
consolidated and broadly used in the field of rotorcraft dynamics because they exploit unsteady actuator disc theory for
hover and forward flight. Instead of ignoring wind-speed fluctuations by averaging the wind field (frozen wake model) or
assuming that the instantaneous wind velocity corresponds to that of steady-flow conditions (equilibrium wake model),
these dynamic inflow models accurately describe the wake behaviour by assuming the existence of a delay before the
induced inflow reacts to modifications in the wind field (unsteady-flow) [19]. Additionally, they are both represented
in state-space form, which could be implemented and solved in real-time simulations, and there exist augmentations
to their original formulations which include wake distortion effects during manoeuvring flight [45]. Although vortex
methods offer higher accuracy, their computational cost is prohibitive for online blade damage simulations [23, 46].

To address non-linear inter-propeller, inter-blade or body-blade interactions (assumptions 9)-11)), the creation of
a data-driven model that provides the highly nonlinear lift and drag contributions of each blade section that are not
encapsulated in the BET model, is recommended. Similar work that could serve as inspiration is carried out within the
field of aerodynamics, discipline in which turbulence is modelled for Reynolds-Averaged Navier-Stokes computations
using artificial intelligence [47, 48] (data assimilation for CFD closure). In this approach, physics is exploited for
simulating large scale flow behaviours, whereas machine learning, a mostly black-box approach, is used for modelling
the highly nonlinear lower scale turbulence using experimental data. This method is valued for its low computational
cost when compared to higher fidelity but more expensive simulations, such as Direct Numerical Simulations.

Finally, the grey-box aerodynamic model [28] is a data-driven identification approach with physical and semi-physical
parameters. Its parametric model structure, namely a piecewise polynomial, is variable since components have been
added and removed according to a stepwise selection scheme depending on their contribution to the model accuracy.
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Beyond its structure, the main model assumption derives from the identification of its parameters with wind tunnel data
obtained in quasi-steady flow conditions; there is no rate of change of velocity with time at a single point in the test
section volume but the vehicle states, such as the angle of attack, constantly change due to its circular flight motion. It
does not enter the unsteady-aerodynamic flow regime because effects caused by the changing circulation and wake
on the aerodynamic surfaces are not considered. Future research that would aim to use the developed fault detection
and identification framework "in the wild" under the presence of wind field changes, drastic manoeuvres, gusts and
turbulence would require the revision of this assumption.

VII. Model validation
The model was validated by comparing the thrust and torque signals measured in an experimental set-up to those

predicted by the BET model given the same input conditions (
−→
𝑉 𝐵,

−→
Ω, 𝜔). For that purpose, an experimental campaign

was carried out in the Open Jet Facility wind tunnel at the Faculty of Aerospace Engineering at TU Delft.

A. Test set-up and data collection
The OJF is a wind tunnel with an octagonal open test section of 2.85 metres in width and height through which the

air flows into a room with a width of 13 metres and a height of 8 metres. The maximum wind speed that can be reached
is 35 m/s. For the measurement of thrust and torque, the Series 1580 test stand from Tyto robotics was used. This is a
dynamometer for drone propulsion systems capable of measuring up to 5 kgf of thrust and 2 Nm of torque, as well as
voltage, current, power, motor rotational speed and vibrations. Figures 35 and 36 show the test stand from the side and
top, highlighting its most important components.

Fig. 35 Tyto stand: side view with calibration hard-
ware.

Fig. 36 Tyto stand: top view.

Table 2 displays the modified parameters and their value ranges, each potential combination forming a scenario. For
the experimental campaign, a single blade was cut at a time with damage represented by 𝐵𝐷 percentage, capped at 25%
due to excessive vibrations on the load cell at higher values. The damage involved a perpendicular cut to the blade’s
span, illustrated in Fig. 37 and Fig. 38 for 10% and 25%, respectively. Furthermore, as explained in subsection VI.A,
the BET model utilises drone linear velocity

−→
𝑉 𝐵, angular velocity

−→
Ω and propeller speed 𝜔 to predict thrust and torque.

−→
𝑉 𝐵 is simulated as the negative wind speed vector and, since the test stand remains stationary during measurements,

−→
Ω

is set to zero. The wind speed vector is decomposed into magnitude 𝑉∞ and the propeller incidence angle 𝑖𝑝 (Fig. 39).
Figures 40 and 41 depict a beam assembly used to minimise the local influence of the test platform on the

free-stream flow. This setup enables positioning the test stand within the wind tunnel airflow, thereby mitigating wind
tunnel wall effects on the flow field.

Thrust and torque data were recorded at 7Hz for 20 seconds per scenario, totaling 630 scenarios and a 3.5-hour data
collection phase. During that time, the following challenges were encountered that may have impacted the reliability of
the results and conclusions derived from the collected data:
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Table 2 Experimental campaign testing parameters and values.

Parameter Unit Values
𝐵𝐷 % 0, 10, 25
𝑖𝑝

◦ 0, 15, 30, 45, 60, 75, 90
𝑉∞ m/s 0, 2, 4, 6, 9, 12
𝜔 rad/s 300, 500, 700, 900, 1100

Fig. 37 Damaged propeller with
𝐵𝐷=10%.

Fig. 38 Damaged propeller with
𝐵𝐷=25%.

Fig. 39 Propeller incidence an-
gle.

Fig. 40 Test set-up in the wind tunnel. Fig. 41 Tyto test stand in the wind tunnel.

1) Even though the test stands measures accelerometer and propeller rotation values at around 100Hz, thrust
and torque are measured at 6-7Hz. This is insufficient for signal reconstruction, specially in cases of blade
damage where the observed sinusoids in section VI have a frequency of 50Hz-175Hz, depending on the propeller
rotational speed. These oscillations far exceed the test stand wrench sampling Nyquist frequency of 3.5Hz.
Even though larger test stands for measuring wrenches exist, designed for larger propellers, their sensitivity or
accuracy for small drone propellers may be insufficient, especially when anticipating the observation of small
vibrations on the order of 10−4.

2) During the execution of the experiments it was encountered that the test stand resonated with the vertical beam
and/or the platform at certain rotational frequencies. This resulted in the observation of peaks in the rpm and
wrench measurement signals.

3) The 5kg thrust load cell was not able to withstand prolonged vibrations at 25% blade damage or survive a higher
degree of blade damage for more than a few seconds.
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B. Experimental data pre-processing
The data pre-processing phase has 2 steps. First, the data were corrected by adding the effect of the wind on the test

stand. The thrust and torque are measured without a propeller installed at different wind speeds and angles with respect
to the incoming flow and the mean measured wrenches are then added to each data point accounting for their 𝑉∞ and 𝑖𝑝 .

Second, in the case of blade damage it was observed that the forces and moments were increasing with time even
though the parameters in Table 2 were kept constant. This is considered sensor error and the signals are detrended.

C. Experimental results
First, subsubsection VII.C.1 will present the results without blade damage followed by subsubsection VII.C.2 which

will examine those in the presence of 10% and 25% blade damage.

1. Without blade damage
This section analyses the impact of the last three input parameters from Table 2 on the BET model’s performance

without blade damage (𝐵𝐷=0%). In contrast to scenarios with blade damage, a comparison between BET’s performance
and the grey-box (healthy) aerodynamic model is feasible. First, the effect of the incidence angle on the results is studied
by maintaining constant the wind and the propeller rotational speeds while varying 𝑖𝑝 from 0◦ to 90◦. Figures 42 and
43 illustrate the results for thrust and torque at 𝑉∞=2 m/s and 𝜔=700 rad/s, respectively.

Fig. 42 Experimental and model thrust measure-
ments and their relative error for: 𝐵𝐷=0%,𝑉∞=2 m/s
and𝜔=700 rad/s. The black dashed line represents the
ideal scenario in which the model and experimental
thrust would match.

Fig. 43 Experimental and model torque measure-
ments and their relative error for: 𝐵𝐷=0%,𝑉∞=2 m/s
and𝜔=700 rad/s. The black dashed line represents the
ideal scenario in which the model and experimental
torque would match.

The upper window of each plot presents the values obtained in the experimental campaign (x-axis) with respect to
the values obtained by each of the models (y-axis) given the same conditions in terms of

−→
𝑉 𝐵,

−→
Ω and 𝜔. In an ideal

scenario, both models’ data points would fall on the dashed black line, meaning that both experimental and simulated
results are equal. Unfortunately, that is mostly not the case and the solid red and blue lines represent the linear fit of each
model’s data. Besides that, the data points are plotted with different degrees of transparency. The degree of transparency
varies linearly from the brightest or most opaque markers representing those data points measured at 𝑖𝑝=0◦ to the
most transparent ones representing those data points measured at 𝑖𝑝=90◦. Finally, the whiskers represent the range of
values in which 95% of the experimental wrench data samples can be found (≈2𝜎). For the computation of these value
ranges, the standard deviation of the forces and moments exerted by the wind on the test stand (subsection VII.B) were
included. The lower window of each plot shows the wrench relative error of each model with respect to the experimental
measurements, as well as a fitted Gaussian curve to those relative error data points.

As expected, the measured thrust decreases with decreasing 𝑖𝑝 because the blade element angle of attack is decreased
due to a higher wind speed perpendicular to the plane of rotation. Furthermore, it can be observed that the thrust
is always positively biased and the torque is negatively biased for both models. This indicates that there exist some
unmodelled physical effects that have not been taken into consideration, among which might be those outlined in
subsection VI.D. Additionally, these plots show that the performance of the BET and grey-box models is very similar,
which supports the hypothesis that the BET model has been well identified and that the errors are due to those in the
grey-box model whose data were used for identification.
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After having seen the effect of varying 𝑖𝑝, the next step would be the analysis of the influence of the propeller
rotational speed. All the results for different values of 𝜔 can be synthesised in Fig. 44 by plotting the mean of the relative
error for each propeller rotational speed with whiskers representing 1.96 times its standard deviation. Both the mean
and the standard deviation were obtained from the Gaussian curves in the lower window of plots identical to Fig. 42 and
Fig. 43 for different values of 𝜔. Three conclusions can be derived for the BET and grey-box aerodynamic models
comparison. First, the BET model is more accurate in torque but less in thrust. Second, the BET is more (over)confident
of its predictions because of its smaller confidence intervals. The latter observation is also visible in Fig. 42 and Fig. 43
due to the taller and narrower Gaussian fitted curves for the BET model. Third, model accuracy increases with 𝜔 for
both models.

Fig. 44 BET and grey-box aerodynamic model thrust and torque relative error for: 𝐵𝐷=0% and 𝑉∞=2 m/s.

Finally, in order to observe the effect of the increasing wind speed, Fig. 44 is repeated for each wind speed listed in
Table 2 within the same plot. This is shown in Fig. 45 and Fig. 46 for the grey-box aerodynamic and BET models,
respectively. Note that the whiskers representing the confidence intervals have been removed for clarity. From these
plots, four observations can be made:

1) The performance of both thrust and torque degrades with increasing wind speed for both models.
2) The relative thrust error of the BET model has a sudden increase when the wind speed is 6 m/s or higher when

compared to the grey-box aerodynamic model.
3) The BET model performs better than the grey-box aerodynamic model in terms of torque except at 12 m/s.
4) The performance of the grey-box aerodynamic model at a wind speed of 12 m/s for thrust and higher than 4 m/s

for torque is very low (sometimes with relative error values above 1000% for torque).
The reason behind the first three differences in performance between models originates from a design choice in

subsection VI.A, namely that the BET model airfoil lift and drag coefficients were identified with wind speeds up to 3.6
m/s. Hence, the BET model has never seen data collected at wind speeds higher than 4 m/s. The last observation is
unexpected as the grey-box aerodynamic model was identified with data gathered at wind speeds up to 14 m/s.

Fig. 45 Grey-box aerodynamic model thrust and
torque relative error for 𝐵𝐷=0%.

Fig. 46 BET model thrust and torque relative error
for 𝐵𝐷=0%.
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One general conclusion that can be derived from these observations is that the BET model architecture has a stronger
physical foundation for torque than for thrust. Both were identified with data collected at wind speeds lower than 3.6
m/s and the torque is able to perform better at those speeds that the model had not seen before during identification,
namely 4, 6, 9 m/s, when compared to the thrust. In most cases, it even performs better than the grey-box aerodynamic
model that was used for the identification data generation. This highlights that the unmodelled aerodynamic effects have
a stronger impact on the thrust than on the torque.

2. With blade damage
In the presence of blade damage, two signal features need to be validated, namely the bias of the signal and the

amplitude of the damage induced oscillations. Similar to subsubsection VII.C.1, a sensitivity analysis will be conducted,
examining the impact of parameters in Table 2 with 10% and 25% blade damage. Additionally, the BET model’s
performance with blade damage will also be compared to that presented in subsubsection VII.C.1 without blade damage.
The latter serves as baseline since its error can be associated to the identification dataset, and not to the BET model’s
architecture (the object of validation of the present section). Finally, there is no control signal from the grey-box
(healthy) aerodynamic model in the presence of damage.

To assess the impact of varying 𝑖𝑝 , Fig. 47 to 50 depict thrust and torque plots for both blade damages at 𝑉∞=2 m/s
and 𝜔=700 rad/s. In contrast to the scenario without blade damage, at 𝐵𝐷=25%, thrust and torque are not consistently
positively and negatively biased. This outlying behaviour — attributed to the resonance between the test stand, vertical
beam and platform, as discussed in subsection VII.A — is evident only in the thrust plots when 𝜔=500 and 700 rad/s.

Fig. 47 Experimental and model thrust measure-
ments and their relative error for: 𝐵𝐷=10%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental thrust would match.

Fig. 48 Experimental and model torque measure-
ments and their relative error for: 𝐵𝐷=10%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental torque would match.

Fig. 49 Experimental and model thrust measure-
ments and their relative error for: 𝐵𝐷=25%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental thrust would match.

Fig. 50 Experimental and model torque measure-
ments and their relative error for: 𝐵𝐷=25%, 𝑉∞=2
m/s and 𝜔=700 rad/s. The black dashed line rep-
resents the ideal scenario in which the model and
experimental torque would match.
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To assess the impact of 𝜔 on the results, Fig. 51 and Fig. 52 show the relative error for each value of 𝜔 for both
degrees of blade damage. With 𝐵𝐷=10%, the relative error follows a pattern similar to the undamaged scenario: mean
and standard deviation decrease with increasing 𝜔. However, at 𝐵𝐷=25%, that pattern is disrupted, with the mean even
crossing the x-axis for thrust between 500 and 700 rad/s. Again, this anomalous behaviour is attributed to the strong
vibrations observed during the experimental campaign at those rotational speeds and blade damage values.

Fig. 51 BET model thrust and torque relative error
for: 𝐵𝐷=10% and 𝑉∞=2 m/s.

Fig. 52 BET model thrust and torque relative error
for: 𝐵𝐷=25% and 𝑉∞=2 m/s.

To better assess the BET model architecture error in scenarios with blade damage, Fig. 53 shows the same curves
for 𝐵𝐷=10% and 25% with the error when 𝐵𝐷=0% — identification data related error — subtracted (Δerror). Two
observations emerge. First, performance for 𝐵𝐷=10% is worse at low 𝜔 values up to 700 rad/s than 𝐵𝐷=25%. Second,
𝐵𝐷=10% performance improves with 𝜔, whereas 𝐵𝐷=25% performance does not show a clear pattern. Table 3 details
the Δerror range for both blade damages in thrust and torque.

Fig. 53 BET model thrust and torque relative error for 𝐵𝐷=[10, 25]% and 𝑉∞=2 m/s, after subtracting the
relative error when 𝐵𝐷=0%.

Table 3 Δerror ranges for thrust and torque for 10% and 25% blade damage at 2 m/s wind speeds.

BD=10% BD=25%
T Δerror [%] [-76.9, -23.6] [-68.5, 15.8]
Q Δerror [%] [5.1, 39.8] [-4.9, 14.5]

After varying 𝑖𝑝 and 𝜔, the last parameter adjusted is 𝑉∞, as shown in Fig. 54 and Fig. 55 for 10% and 25% blade
damage. Again, a sudden performance decline is observed beyond 4 m/s wind speeds in both scenarios, phenomenon
attributed to the BET model identification data limited to 3.6 m/s.
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Fig. 54 BET model thrust and torque relative error
for 𝐵𝐷=10%.

Fig. 55 BET model thrust and torque relative error
for 𝐵𝐷=25%.

Finally, validating damage-induced oscillation amplitudes is challenging due to the low sampling frequency for
reliable signal reconstruction. Two attempted approaches, an evolutionary algorithmic method with Particle Swarm
Optimisation and a statistical approach using the Lomb-Scargle periodogram [49–51], aimed to fit a sinusoid matching
the propeller’s oscillation frequency to the experimental data, but both were deemed unfit for the challenging task.

VIII. Conclusion
This paper proposes a white-box model for blade damage simulation which combines the effects caused by the shift

of the centres of gravity and pressure. Mass effects were modelled by discretising the propeller into trapezoids whereas
the aerodynamic effects were derived from first principles exploiting Blade Element Theory (BET). Additionally, a
BET-based methodology for identifying 2D aerodynamic properties of UAV propellers, specifically airfoil lift and drag
curves as functions of the angle of attack, was presented. Such information is currently unavailable for most commercial
off-the-shelf UAVs.

The presented model has three key advantages. First, it does not require additional costly experimental wind tunnel
campaigns for the blade damage modelling. Second, it enables the simulation of any degree of blade damage instead of
being limited to a discrete number of failure scenarios within a safe flight regime. Third, it is complementary to existing
healthy UAV models and can be used as a plug-in to extend its range of operations to damaged cases.

The methodology was applied to the Bebop 2 drone, leveraging on the available grey-box aerodynamic model of the
chosen platform [12] to build the BET model. From the results it was concluded that previous literature was correct in
claiming that the centrifugal forces due to the shift in the centre of gravity were dominant. However, they ignore the loss
of weight and the aerodynamic effects, which are not negligible especially at high degrees of blade damage and propeller
rotational speeds. The main concern are the neglected forces which, depending on the drone’s geometry, could lead to
large moments around the UAV’s CG. Those oscillations could help in the identification of blade damage and ignoring
them could render fault-tolerant control approaches unsuccessful when deployed in the real world. Furthermore, the
results showed that the induced velocity is an essential parameter in the model. However, due to the small propeller size
of most UAVs, the corrections brought by the linear inflow model over the simpler uniform baseline are negligible and
can be ignored in simulation.

To validate the proposed approach, its predicted forces and moments were compared to those obtained from wind
tunnel experiments. They were conducted at the Open Jet Facility at Delft University of Technology with a Bebop 2
propeller mounted on a static test stand while four parameters were varied, namely the degree of blade damage (𝐵𝐷),
the propeller incidence angle (𝑖𝑝), the wind speed (𝑉∞) and the propeller rotational speed (𝜔). In the scenarios without
blade damage, it was possible to compare the BET model performance with that of the grey-box aerodynamic model.
The performance of both is very similar, indicating that the BET model has been well identified and its validation
errors are attributed to the identification data gathered from the grey-box aerodynamic model, instead of the BET model
architecture. Besides that, the thrust is positively biased and the torque is negatively biased for both models. This
remark points to the existence of unmodelled physical effects, among which might be those outlined in subsection VI.D.
Additionally, the performance of both models decreases with lower values of 𝜔 and higher values of 𝑉∞. This shows
that both approaches struggle to correctly model blade sections under a negative angle of attack; a phenomenon mostly
emergent in those 𝜔-𝑉∞ conditions for blade sections close to the propeller hub.
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Despite their similarities, three differences emerged between the models. First, the BET model demonstrates
higher confidence in its predictions than the grey-box aerodynamic model. Second, BET exhibits a faster decline in
thrust performance for wind speeds exceeding 4 m/s. This can be attributed to the design choice of airfoil lift and
drag coefficient identification using data with wind speeds up to 3.6 m/s, preventing exposure to data beyond 4 m/s.
Third, while BET is slightly more accurate in torque, it lags in thrust accuracy, emphasising the greater impact of
unmodelled aerodynamic effects on thrust. Besides these differences, the grey-box aerodynamic model’s unexpectedly
low performance at high speeds is noteworthy, given its identification with wind tunnel data gathered up to 14 m/s [12].

Validation of damage-induced wrench oscillations in scenarios with blade damage requires analysing the bias and
amplitude. A comparison between experimental and BET model signal biases indicates that 𝐵𝐷=10% behaves similarly
to that of 𝐵𝐷=0%. In contrast, when 𝐵𝐷=25% the relative error does not decrease with 𝜔 as it would be expected.
This outlying behaviour, especially noticeable when 𝜔=500 and 700 rad/s, is attributed to the resonance of the test
set-up. Overall, in the presence of the tested blade damage, BET’s performance at high propeller rotational speeds is
similar to that without blade damage, with relative errors fluctuating between 5% and 24%. However, errors at low
speeds can be more than 3 times higher, ranging from 15% to 75%. For the validation of the oscillations’ amplitude,
two approaches were implemented for signal reconstruction, namely Particle Swarm Optimisation (metaheuristic
evolutionary optimisation algorithm) and the Lomb-Scargle periodogram (statistical algorithm). Unfortunately, reliable
assessment was hindered by load cell noise and challenges in reconstruction attributed to test stand low sampling rates.

Besides the recommendations derived from the model assumptions and outlined in subsection VI.D, the authors
recommend designing an in-house test stand for measuring partially damaged propeller’s wrenches. The proposed
stand would require a sampling frequency exceeding 100 Hz for measurements at the minimum rotational speed of 300
rad/s (or 350 Hz for 𝜔=1100 rad/s), a dampening system to prevent resonance with the testing platform, and especially
designed load cells capable of withstanding at least 6g of sustained vibrations. In addition, characterising the complete
test set-up to identify its dynamics could contribute to the removal of the resonance present in the measurements.
Knowledge about the complete system behaviour enables a deeper understanding of the measured signals and the
separation of the set-up dynamics from the "pure" thrust and torque oscillations caused by the damaged propeller.

To conclude, the authors hope that the outlined lessons will serve as basis in the design of a future experimental
campaign with more specialised hardware. The developed "plug-in" BET model with its future work aspires to become
an indispensable cost-effective tool for researchers when designing and testing their work to build more resilient UAVs
against blade damage in a wide range of fields, from fault detection and diagnosis to fault-tolerant control.

Appendix
As outlined in section IV, 𝜈0 computation requires a numerical approach, vital in every simulation time step following

propeller damage. Consequently, a tailored computationally efficient gradient-descent approach is here developed.
In order to define the optimisation problem objective function, the alternative 𝑉𝑅 definition in Eq. (63) is used in

conjunction with the Glauert formula in Eq. (19). In contrast with Eq. (20), the new definition of 𝑉𝑅 translates the 3
components of the linear velocity of the propeller assembly (

−→
𝑉 𝑃) into 2 components, namely its magnitude (𝑉) and the

angle of attack of the rotor disk relative to the oncoming flow (𝛼𝑑). The latter is illustrated in Fig. 56.

𝑉𝑅 =
√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2 (63)

Fig. 56 Angle of attack of the rotor relative to the oncoming flow.
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The optimisation problem objective function can be defined as described in Eq. (64), which is the same as finding
the location where the function 𝑓 (𝑣0) intersects the x-axis.

min
𝑣0

| 𝑓 (𝑣0) | =
���𝑇 − 2𝜌𝜋𝑅2𝑣0

√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2

��� (64)

Gradient-descent methods are used in optimisation for finding the local minimum of a differentiable function by
traversing the solution space in the opposite direction of the function gradient, also known as the direction of steepest
descend. In the case of the present objective function, local minima will be found where the derivative of 𝑓 (𝑣0) with
respect to 𝑣0 is zero and where 𝑓 (𝑣0) = 0. In the case that it can be proven that the function 𝑓 (𝑣0) is strictly monotonic,
meaning that it only increases or decreases, then 𝑓 (𝑣0) will not have local minima and it will be zero at a single value of
𝑣0. Then, there exists a single (global) minimum in the objective function and a gradient-descent approach could be
used to find it. Given the definition of the Glauert formula (Eq. (19)), the uniform induced velocity can only have a
positive value. Hence, it is only required to prove the strict monotonocity for 𝑣0 values in the half-open interval [0, ∞).

Equation (65) shows the derivative of 𝑓 (𝑣0) with respect to 𝑣0 and Eq. (66) shows the uniform induced velocity
values that make it zero. As can be seen, 𝑓 (𝑣0) has one or two optima when 9 sin2𝛼𝑑 −8 ≥ 0. Since the uniform induced
velocity can only be positive, the only solutions that disprove 𝑓 (𝑣0) monotonicity comes from negative 𝛼𝑑 angles, ergo
when the condition in Eq. (67) is met. When the angle of attack of the rotating disk is higher than arcsin−2

√
2/3, 𝑓 (𝑣0)

is strictly monotone and gradient-descent would be able to find the global minimum.

𝑑𝑓 (𝑣0)
𝑑𝑣0

= −2𝜌𝜋𝑅2

(√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2 + 𝑣0

𝑉 sin𝛼𝑑 + 𝑣0√︁
(𝑉 cos𝛼𝑑)2 + (𝑉 sin𝛼𝑑 + 𝑣0)2

)
(65)

𝑣0 =
𝑉

4

(
−3 sin𝛼𝑑 ±

√︃
9 sin2𝛼𝑑 − 8

)
(66)

sin𝛼𝑑 ≤ −2
√

2
3

(67)

During nominal flight, the drone will experience a positive 𝛼𝑑 when in cruise. However, in the case of failure, when
the induced velocity has to be computed, the drone could pitch or roll excessively causing the air flow to impact the
propeller from below. Hence, it is important to consider the presence of the discovered local minima. Even though the
function can contain local minima, they could be avoided by a proper selection of hyper-parameters and initialisation of
the optimisation; tuning the gradient-descent to the particular (known) 𝑓 (𝑣0) function.

Considering extreme values of 𝑣0, it can be observed in Eq. (64) that the second term of 𝑓 (𝑣0) is dominant. As a
result, 𝑓 (−∞) leads to a positive value and 𝑓 (+∞) to a negative one, meaning that the function is decreasing in value
independently of the value of 𝛼𝑑 . In the case that there is a local minimum (Eq. (67) is fulfilled) and it takes place at a
lower uniform induced velocity than when 𝑓 (𝑣0) = 0, as illustrated in Fig. 57, the gradient-descent could be initialised
with a high value of 𝑣0 to guarantee that the optimisation will encounter the global optimum before the local minimum.
Since the function is decreasing, this approach would not work if 𝑓 (𝑣0) < 0 at 𝑑𝑓 (𝑣0)/𝑑𝑣0 = 0, as can be seen in
Fig. 58. In order to check whether this latter scenario exists, Eq. (66) is inserted in 𝑓 (𝑣0), leading to Eq. (68).

𝑇 − 𝜌𝜋𝑅2𝑉2

2

(
−3 sin𝛼𝑑 ±

√︃
9 sin2𝛼𝑑 − 8

) √︄
cos2𝛼𝑑 + 1

16

(
sin𝛼𝑑 ±

√︃
9 sin2𝛼𝑑 − 8

)2
≤ 0 (68)

Since the local minimum can only be found when sin𝛼𝑑 ∈ [−1,−2
√

2/3] (Eq. (67) is met), the two limits of this
range are inserted in Eq. (68), resulting in the two conditions presented in Eq. (69) and Eq. (70). Observing both
conditions, the second one is automatically met when the first one is fulfilled. Hence only when Eq. (67) and Eq. (69)
are met, there is a local minimum which takes place with a higher uniform induced velocity than when 𝑓 (𝑣0) = 0. In
that case, initialising the optimisation with a high value of 𝑣0 would most likely not converge to the undesired local
minimum.

sin𝛼𝑑 = −2
√

2
3

, 𝑇 <

√
3

3
𝜌𝜋𝑅2𝑉2 (69)

sin𝛼𝑑 = −1, 𝑇 <
1
2
𝜌𝜋𝑅2𝑉2 (70)

28

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

9,
 2

02
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

4-
28

16
 



Fig. 57 Desired scenario: local minima at lower
induced velocity than global minima, so gradient
descend will reach global minima first. The dotted
line corresponds to 𝑓 (𝑣0) and the bold line to | 𝑓 (𝑣0) |.

Fig. 58 Undesired scenario: local minima at higher
induced velocity than global minima, so gradient
descend will reach local minima first. The dotted line
corresponds to 𝑓 (𝑣0) and the bold line to | 𝑓 (𝑣0) |.

To assess whether the blade damage simulation with the Bebop 2 model would encounter scenarios in which both
conditions (Eq. (67) and Eq. (69)) are met, 100,000 scenarios were run under the specified conditions:

−→
𝑉 𝐵

𝑥 ∈ [−3, 3],
−→
𝑉 𝐵

𝑦 = 0,
−→
𝑉 𝐵

𝑧 ∈ [−3, 3], −→Ω =
−→
0 and 𝜔 ∈ [300, 1256]. The body velocity in the z-direction can now be positive with an

increased absolute value to consider failure cases. Figure 59 displays the V-T plot for all scenarios. Notably, there is no
overlap between points satisfying the first condition in Eq. (67) (pink points within the convex hull) and those meeting
the second condition in Eq. (69) (green points under the dashed line). Consequently, simulations of the present research
will only observe the desired scenario illustrated in Fig. 57. Thus, initiating gradient descent with a high positive 𝑣0
guarantees encountering the global minimum initially.

Now that it has been proven to be beneficial to initialise the gradient-descent with a high positive value of uniform
induced velocity, the question is what the exact initialisation value should be. Observing Fig. 57, it is enough to initialise
the gradient-descent with a uniform induced velocity value higher than the maximum 𝑣0 that the local minimum could
have. If initialised between the local and global minimum, the gradient-descent will move the solution towards the
global optimum, to the right along the 𝑣0 axis. If initialised to the right of the global minimum, the gradient-descent
will move the solution towards the global optimum, to the left along the 𝑣0 axis.

Given Eq. (66), the maximum 𝑣0 at the local minimum occurs when the square root output is positive and 𝛼𝑑 has a
value of -90◦; resulting in uniform induced flow equalling the incoming velocity (𝑣0 = 𝑉). From the 100,000 scenarios
presented in Fig. 59, the maximum velocity observed is 4.24 m/s. Therefore, initialising gradient-descent with 𝑣00 = 4.5
m/s guarantees the initial function evaluation to the right of the local optima.

Furthermore, the gradient-descent optimisation requires the selection of the learning rate (𝛾). This hyper-parameter
needs to be carefully chosen in order to avoid overshooting the global optimum and landing in the local minimum.
Given the update law of the gradient-descent provided by Eq. (71), the algorithm can overshoot the global optimum by a
value equal to 𝛾

𝑑 | 𝑓 (𝑣0 ) |
𝑑𝑣0

. Hence, the smaller this update step, the lower the probability that the optimisation overshoots
the global optimum and lands to the left of the local minimum.

𝑣0𝑖+1 = 𝑣0𝑖 − 𝛾
𝑑 | 𝑓 (𝑣0𝑖 ) |

𝑑𝑣0
= 𝑣0𝑖 − 𝛾

𝑑𝑓 (𝑣0𝑖 )
𝑑𝑣0

𝑓 (𝑣0𝑖 )
| 𝑓 (𝑣0𝑖 ) |

(71)

In this study, two learning rates, 0.5 and 0.1, are assessed and the value of the learning rate is decreased by a factor
of 0.5 every time 𝑑 | 𝑓 (𝑣0 ) |

𝑑𝑣0
changes sign. The performance results using the same 100,000 simulation scenarios of the

Bebop 2 drone in Fig. 59 are shown in Table 4. An optimisation is defined as successful when it yields 𝑓 (𝑣0) < 10−5.
As can be seen, the gradient-descent approach has a 100% success rate for both learning rates, in contrast with the slight
worse performance of 98.56% for Nelder-Mead. Additionally, the gradient-descent optimisation shows an approximately
20% and 55% computational time reduction with respect to the Nelder-Mead alternative for the 0.1 and 0.5 learning
rates, respectively. Hence, the chosen learning rate for the present research is 0.5.
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Fig. 59 V-T graph for 100,000 simulation scenarios of the Bebop 2 drone. The convex hull encapsulates all the
pink points that meet the (first) condition in Eq. (67). The green points under the dashed line meet the (second)
condition outlined in Eq. (69). The magenta points are those scenarios in which neither of the conditions are met.
From the figure, there is no overlap between both conditions sets.

Table 4 Performance results of Nelder-Mead and Gradient-Descent with learning rate values of 0.1 and 0.5.

m
m

Success rate
[%]

Average time per scenario
[ms]

Nelder-Mead 98.56 5.51
Gradient-descent (𝛾=0.1) 100 4.39

Gradient-descent (𝛾𝛾𝛾=0.5) 100 2.45

Finally, the optimisation concludes when one of the following 3 conditions is met:
1) The maximum number of iterations is reached (𝑖𝑚𝑎𝑥=10,000).
2) The change in the solution is lower than a threshold (𝑚 < 0.01) for a certain number of iterations (𝑐𝑚𝑎𝑥 = 20).
3) The denominator of the gradient update (| 𝑓 (𝑣0) |) is less than a very small value (𝜖 = 10−10) because then the

solution has been found.
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