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Fourier coefficients

Fourier coefficients

width

Chézy coefficient

concentration

discretised concentration

coefficients in special treatment near the bottom
diffusivity, in the x- and z-direction respectively
discretised diffusivities

numerical diffusivity in the x-direction
numerical viscosity in the x—direction

function, describing velocity boundary condition
function, describing concentration boundary condition
function, describing tidal boundary condition
depth

high water slack

integer

wave number

length

intrusion length

low water slack

displacement operators

maximal ebb velocity

normal direction

maximal flood velocity

number of time steps

number of steps in the x— and z-direction respectively
order symbol of Landau

pressure

discharge

river discharge

tidal discharge

hydraulic radius

time

tidal period



NOTATION (~ontinued)

u velocity in the x-direction

ugsuy velocity in constructed test case

u?. . . .

ij discretised velocity

u* shear velocity

w velocity in the z-direction

sz discretised velocity w

X longitudinal direction

z vertical direction

zy position of the bottom

Zq coefficient for roughness length

Ax, Az step size in the x- and z-direction respectively

€ €, turbulent diffusion coefficient for momentum in the x- and
z-direction respectively

K Von Karman coefficient
phase angle

¢k phase angle in Fourier series

0 density

T time step

L position of the free surface

%o position of the free surface at x = 0

w frequency

W frequency in Fourier series



COMPUTATION OF DENSITY CURRENTS IN ESTUARIES

1 Introduction

The present Report is the first of a series of three in which the verification
of the vertical two-dimensional density currents model DISTRO for tidal flume
conditions is presented. In this Report the numerical accuracy is discussed;
the second Report will deal with the verification for homogeneous conditions;
and the third Report with the inhomogeneous conditions.

In the present Report firstly a complete review of the boundary conditions is
given, including the discretisation.

Much attention is paid to the physical relevance of the boundary conditions,
especially at the bottom. Further, the numerical behaviour is tested for a tidal
flume situation, and under homogeneous conditions. The results of these tests
are discussed and finally a conclusion is formulated about the numerical accu-
racy of the model.

This Report, drawn up by Mr. P.A.J. Perrels, is the result of a study which is
incorporated in a basic research programme T.0.W. (Working Group "Stromen en
transportverschijnselen") executed by Rijkswaterstaat (Public Works and Water
Control Department), the Delft Hydraulics Laboratory and other research insti-

tutes.



2 Description of the mathematical model

After integration over the width, and if the shallow water approximation is

made, the equations for vertical two-dimensional homogeneous currents read:

2 2
du %_ 9 (bu®) 4 duw _ ., 9%u _ ji_(sz EE) —_ F1S 2.1
ot 9x oz ax%? 3z 9z X
[
A ,1 2 o suazr=o0 2.2)
t b ox z,
1 3(bu) ow _
5 T t "0 ——
Be , 180w , Awe) , 13 o e,
t * b 9x * 0z - b 9x (b Dx 9x g (2.4

For e, a mixing length approximation is employed, which reads:
2
S 2u L ,
e, = K (z+ 2z laz (2.5)

in which zq is a measure for the roughness length.
An extended derivation of these equations can be found in I:I] . In that reference also
the transformation is g'iven to handle variations in bottom and free surface topography.

The boundary conditions read:

At the bottom, z o Zpiu . 0 (2.6a)
w=20 (2.6b)
D ac sz ) dc s (2.6¢)
* 3x ox z 9z
-7: Su _
At the surface, z =Gt = 0 (2.7a)
dc oL dc
eb R — - 247
Dx 9x 9x Dz dz 9 ( )
At the upstream end, x = L: u = £(z) Q(t) (2.8a)
c=20 (2.8b)
3%u
At the downstream end, x = 0: = 0 (2.9a)
ox
Tl . g(t,z), 1if u.> 0 (2.9b)
3%¢ _ :
— =0 , 1Ifusg0 (2.9¢)
ax?

T = Lo(t) (2.9d)



3 Treatment of the bottom roughness

3.1 Description of the computations

For the derivation of a special discretisation near the bottom some computations
have been made for a specially constructed test case.

The physical and numerical data for this case are:

L = 100.65 m
H = 216 m
T = 558.75 s
2 =1
IS = e i m s
X
-1
u0 = il m S
w = .011245 s °
k= 00632 m
K = A
N = 20
X
N = 20
VA
Nt = 600
T = .93125 s

The boundary conditions for u are:

u = ut(t,O,z) at x=0.0m
and:
u = ut(t,L,z) at x =1

In the numerical model a Zq is used to describe the bottom roughness. The follow-

ing expression yields the relation between zy and C in steady-state conditions:

B 12R
C = 18 1og(3320)

in which R is the hydraulic radius.



3.2 Construction of a test case

In [1] a special treatment was given for the computation of the velocity profile
near the bottom. For nearly steady circumstances this approach appeared to be
accurate enough, as can be seen from the examples given in that Reference. For
non-steady situations, however, as can be expected in tidal areas, this approach
dit not appear very reliable [2]. Therefore the following investigation was set
up. Into the equation for the conservation of momentum in the x-direction, which

reads for constant width:

(3.7}

S o e b i

2 2
du , du +3uw_€_§__u__3__(€zi1_)=__l_
9t  9x 3z Xox? 2z 3z 0

¥

a pressure distribution was substituted, for which an analytical solution of
the horizontal velocity u and the vertical velocity w was known. So the numer-
ical results for u could be compared with an analytical expression for u, to
give an indication of the accuracy of the numerical method.

The pressure distribution was obtained by substituting a selected expression
for u into the equation for the conservation of momentum in the x-direction

(3.1) and into the continuity equation which, for constant width, reads:

du . dw _
hal ek -2

An extended derivation is given in Appendix II.

The expression for u was so selected that near the bottom it shows a behaviour
with z that can be expected in practical circumstances. In Appendix I it is shown
that for tidal circumstances a logarithmic behaviour may be expected near the
bottom. Accordingly, the following expression for u was selected:

22

u. =y, sin(wt + kx) {In( 0) - } (3:.3)

. ' ZO 218?

Z ¥ 2

In the test of the numerical accuracy, firstly some computations were made with
the same discretisation over the whole area, and thus without special treatment
near the bottom.

The first one was with the boundary conditions at z = O:

) L, |
II5: u=0 at z =0; C=19.2 m’s



And the second one with the boundary condition at z = Az
1L =1
II8: u = ut(Az) at z = Az; C = 19.2 m’s

The results of these computations are shown in Figure 1, where the velocity
profiles from II5 and II8 are compared with u .
Figure | shows that the results of II8 are very accurate, while the results of
II5 show small deviations. It also appears that these deviations are almost

constant over the height. Similar computations were made for C = 29.4

-1
IVl: u 0 at z =0; C = 29.4 més

IVZs 1

]

.
ut(Az) at z = Az; C = 29.4 m®s

The results are shown in Figure 2. They are analogous to the results shown in
Figure 1, only the deviations are greater.

The conclusions that may be drawn from this first test are:

- A straightforward numerical approach does not reproduce the velocity profiles

very accurately especially not for higher C.

- The normal discretisation can reproduce the velocity profile correctly for
z > Az, so the accuracy depends mainly on the discretisation of (3.1) at

z = Az,

The next question was: "Which terms of the numerical approach cause the largest
errors in the approximation of the velocity profile near the bottom?"

After comparison of numerically-computed values and values computed by the sub-
stitution of (3.3) into several terms of the equation for the conservation of

momentum (3.1), it appeared that the term for the vertical exchange of momentum:

3 du

52 &2 5 b

causes the largest errors. This is due to the large gradients that arise in the
velocity profiles near the bottom, because of this term (3.4).

Figure 3 shows the velocity profiles that arise when in the numerical model the
normal discretisation of (3.4) is replaced by substituting (3.3) into (3.4). It
also shows that this substitution yields an accurate velocity profile.

The conclusion of the above is that, if in the numerical model the discretisation



of the term for the vertical exchange of momentum (3.4) in the equation for

the conservation of momentum in the x-direction (3.1), is replaced by a special
more suitable approximation, then the model will yield accurate velocity pro-
files.

So the nmext step will be to find a better approximation for:

d

EE'(E Bu) (3.4)

z 0z
near the bottom.

3.3 Special treatment near the bottom

As stated in [f], and confirmed by the computations of 2.1, application of the

same discretisation mear the bottom as in the rest of the field yields inaccurate

results. Therefore a special approximattion of the Reynolds stress at z = %;:
du "
szz=T

has to be given to replace the usual discretisation.

Starting from the equation for the conservation of momentum in the x—-direction:

2 2
E+@_+M_Exu_i(ezéﬂ)=_l§2 (3.1)
ax? oz 9z p 9x

at 9x 9z
rewritting yields approximately:

9 du

32-(62 5;) =cztc, 052z < Az £3:5)
in which ¢ and c, are given by:

2 2
¢, = {l-ER o BU S0 L BUw o E—-H-} - ¢, /Az {3.6)

p 3x  dt ox 9z Xox? z = Az

{l.ER 5 du u? ouw 3%u (3.7)
p 9x ot 9x oz X 9x? z 0



This corresponds to an approximation of the Reynolds stress by a quadratic

function of z:

du ¢,
E, 5z = 52 + c.zZ +cC (3.8)

If a mixing length approximation is applied with

= 2 2 |9u
e, = K (z+z4) |-a—z| (3.9)

in which z is a measure for the roughness length,

then substitution of (3.9) into (3.8) and rewriting yields:

c c ) c c .
'/(“”Egz 2 22) /(HEE““fzz)
o oL 3 3 R 3 3 £ 1653

oz 2 du 3
*(z + zg) ]a—z (z + z)
c C]
with — z + 25t £ 2} for 0 <z < Az
Cq 2c3 = =

Now the first term on the right hand side of (3.10) is a constant:

c c '
V/6 52 3 +-E£— zﬁ
‘3 3 1

c, = .
4 k2(z + zo) |3u|

(3.11)

Developing the square root of (3.10) into a series of z yields, if higher order

terms are neglected:

c c

2
_2 —_—
{42+22+C3}

(z + =z

£3:12)
0’

which shows the correct behaviour of
e for z = .

Integration of (3.12) and substitution of the boundary conditions:



at z = 0: u=20 (83..13)

u(Az) (3.14)

N
I
&
e
1]

at

yields an expression for Cqs which is linearly dependent on u(Az).
Substitution of Cq into (3.8) gives the desired relation from which

du

z 0z|z = 7?

can be computed.
An extended derivation can be found in Appendix III.

3.4 Implementation and verification of the special treatment near the bottom

When implementing the suggestions of 3.2 into the numerical model, the discre-
tisation of two quantities is of major importance.

In the first place it appeared during the test computation that the discretisa-
tion of %% in equation (3.6) was important, especially around H.W.S. and L.W.S.
when the velocities reverse direction. A second order backward discretion of

Ju
=— appeared to be accurate enough:

ot
-1 n-2
du,n _ 1.5 a o= 30w 0.5 a
(EE' = e , (3.15)

n denoting the time level: t = nT.

; ; p y 9
The importance of the discretisation of |§§| becomes clear from (3.10).
In fact a non-linear equation has to be solved and with an appropiate discreti-
sation of ]%%1 an iteration process could be avoided.

Finally, the following approximation appeared to give satisfactory results:

n+1 .
For the computation of un+1 an approximation of |%§ is needed: |%§1 » which
is given by:
n
du ¥ _ du It Au
l5zl = 0.5 dlgl + 151 b (3.16)
n
) ; du ™ . Au :
in which |§E| is computed from (3.10) and ITETI is computed from:
A
Au _ 1
= i ® Ty =y - ) (3.17)



in which:
_ 2 u(Az) - u(24z)
Ai a Az + ZO 20z + Zq (3.18)
2 1n(——z———~—)- 1n (—T—-)
0 0
Az + Zq
u(Az)- Al lnC——?;—~—)
- 0
A2 = e (3.19)

This approach appeared to be sufficiently accurate to avoid an iteration process.

A derivation of (3.17) to (3.19) is given in Appendix IV.

For the verification first a comparison is made between a computation with the
same discretisation over the whole area and a computation with the special
treatment near the bottom.

i -1
IV 2 : everywhere the same discretisation; C = 29.4 m?s .

-1
IV 29: with special treatment near the bottom; C = 29.4 m%s .

In Figure 4 the results are shown together with u . It is evident that the
special treatment near the bottom improves the accuracy considerably.
The verification was completed with a test of the dependency on the vertical

stepsize: Az. Therefore computation IV 29 was repeated with different Az, res-

pectively:

IV 34: Az = .036 m

IV 35: Az = .018 m '
IV 36: Az = .009 m

The differences appear to be in the order of the desired accuracy defined in [j],

which corresponds with the differences caused by a variation of 5% in C.

A harmonic analysis of the discharges yields:

IV 34: Q(x = 50.325 m) = .0504 cos (wt + 1.0106)
IV 35: Q(x = 50.325 m) = .0511 cos (wt + 1.0056)
IV 36: Q(x = 50.325 m) = .0514 cos (wt + 1.0043)
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Integrating u, yields a discharge:
Q(x = 50.325 m) = .0516 cos (wt + 1.0018)

which shows the accuracy of the numerical results and a clear convergence for

decreasing Az.
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4 Treatment of the other boundaries

4.1 Boundary conditions at the free surface and the bottom

At the free surface the boundary condition for the momentum equation reads:

du _ '
ok 0y (4.1)

which means that no wind influence is considered. In its discretised form equation

(4.1) is taken as:

s = u, s (Gs2)
1,022 i,nze—1

which implies:

20, 8. (4.3)

oz

Appendix V gives an account of this approach.

The boundary condition for the diffusion equation reads at the free surface:

p 9895 _p 2984 (4.4)
which means that the flux of dissolved matter through the free surface is zero.
In its discretised form this boundary condition reads:

n n n n n+l n+1
(Ci+1,nzz ci—],nzz) (:i+1 Ci«l) _ ci,nzz Ci,nzz—l) s 1

D .
Xi,nzz 2 Ax 2 Ax 2i,nzz Az

(4.5)

At the bottom a similar condition for the diffusion equation exists, which

reads:

dc sz ac

% bk O Bz

In its discretised form (4.6) reads: (4.6)
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n n n n n+1 n+l
N TS U0 Tl o U L o) LA I S U LA . 73
Xi,1 2 Ax 2 Ax Az :

The boundary condition for the momentum equation at the bottom reads:

u = 0. (4.8)

4.2 Boundary conditions at the upstream boundary

At the upstream boundary the discharge must be given in combination with a
velocity profile. The discharge can be specified as a Fourier-series in which
not only are the amplitudes important, but also the phase. Especially the phase-

difference with the downstream boundary appeared to be very critical [3].

In its discretised form this boundary condition reads:

K

- Fj {AO + E] Ak cos (ktw - ¢k)}. (4.9)

u y
XX, ]

k

With regard to the upstream boundary condition of the diffusion equation it is
supposed that the concentration is zero. In terms of salt content this means
that the salt wedge does not reach the upstream boundary.

The discretised boundary condition reads:

c . =0 (4.10)
NXX, ]

4.3 Boundary conditions at the downstream boundary

At the downstream boundary in the first place the position of the free surface

must be prescribed as a function of time:
c = gy(e) (4.11)

This condition introduces the tidal oscillations into the model, and after dis-

cretisation it reads:

K

Ly = BO + kil Bk cos(ktw - ¢k)' (4.12)
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Further, a boundary condition for the momentum equation must be given.

From a mathematical point of view prescribing the velocity profile should

be a correct boundary condition; in practice, however, this cannot be realized.
Therefore the following weak condition is adopted, which leaves the velocities

free to settle:

32u

cgu.- . (4.13)
9x>

Straightforward discretisation of (4.13) would mean an extrapolation over the
first grid step, and nothing of the physical processes would be included.
Therefore (4.13) is substituted into the momentum equation (3.1), which then

reduces to:

Ju ou? quw 9

dw 3 p
ot X 9z 9z (4.14)

ou, _ _ 1
e, 5g) = p ox

zZ 02

Next (4.14) is split according to the normal splitting technique. For the dis-
cretisation of the part in the x-direction a one-sided second order difference

scheme is applied.

The difference equations read:

2 2

u* _un Gll o™ -3 n " é_un _ i.un )
nxx,j nxx,j_ 6 "nxx,j nxx=-1,§ 2 "nxx-2,]j 3 nxx-3,j°
T Ax ‘
n n
- (]'Spnxx,j-z'Opnxx—l,j O'Sanx—Z,j) %
pn ) Ax
NXX, ]
n+l * n n+l n n+1
u .~u 4 w il ., =W v, -
NXxX,j nxx,j__  nxx,j+l nxx,j+! nxx,j-l nxx,j-]l
T 2 Az
n+1l n+1 n+1l n+1
" ; Unxx, j+1 Cnxx, j e . Ynxx j_unxx j=1
anx,_]‘i'&( 2.l A ,J_)_ znxx:.]—é( 2 A 2 )
+{ z z } (4.15)

Az
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Finally, a boundary condition must be given for the diffusion equation. For this
condition the same arguments hold as for the boundary condition of the momentum
equation.

In this case a combination of boundary conditions is adopted. If the velocity is
directed inwards the concentration is prescribed as a function of t and z. In
fact, the concentration at each level z increases linearly with time upto a

maximal concentration, the concentration in the sea:
= B g(e,z), if u >0 (flood tide) (4.16)

If the velocity is directed outwards a weak boundary condition is adopted analo-

gous to that for the velocity:

2

3¢ g, (4.17)
ox?

The discretisation of (4.17) is performed analogous to the discretisation of (4.13).

In Appendix VII the truncation error and the numerical viscosity are given.
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5 Accuracy

5.1 Description of the computation

To test the influence of the numerical parameters Az, Ax and T, a test series
was set up. In that series variations in the different step sizes have been made,
starting from a reference situation. The data for this reference situation, which

approximates the tidal flume circumstances [3], are:

T, = 96.98 m
H = .216 m
T = 558.75 s
C |
Qr = .0029 m s
2 =1
£ = +37 m s
X
: -% 2 -1
Dx = 2u b+ .005 m s
N = 13
X
N = 12
z
Nt = 1200
T = 1.8625 s
-1 y 5
C = 22.3 mis (in the first 63.41 m)
= 24.0 wls™!  (in the last 33.57 m)

The boundary condition for £ at x = 0.0 m reads:
z(t,0) = .2160 + .02425 cos(wt)

The boundary condition for Qt at x = L reads:

Q(t,L) = .0029 + .01470 cos( wt + 1.3525)
+ ,00315 cos(2wt + 3.1751)
+ .00173 cos(3wt + 1.9864)

+ .00093 cos (4wt + 4.0749)
+ .00010 cos (5wt + 2.0980)
+ ,00016 cos(bwt + 3.6467)
+ ,00006 cos(7wt + 3.2067)
+ .00018 cos(8wt + 4.4373) -
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5.2 Influence of Az

To test the influence of Az on the computations, the following three runs have

been made:

RB 21: Az = .036 m (Nz = 6)
RB 19: Az = .018 m (Nz = 12)
RB 22: Az = .009 m (Nz = 24)

In Figure 5 the position of the free surface at x = L is shown. Position x = L
was selected because it is the farthest away from the point where the boundary
condition for the free surface is imposed.

For the same reason the influence on the velocity is shown at position: x = 0.0 m.
Similar to the verification in 3.4, the differences between the various computa-
tions become smaller than the permitted differences, defined in [3]. Further, a
smaller Az yields a smaller damping'ah& a small phase shift, as can be seen from
the harmonic analysis of the motion of the free surface at x = L and of the dis-

charges at x = 0,0 m.

RB 21: z(L) = .2219 + .0262 cos(wt + 2.909)
Q(0) = .0029 + .0284 cos(wt - 2.048)
RB 19: C(L) = ,2220 + .0272 cos(wt + 2.916)
Q(0) = .0029 + .0290 cos(wt - 2.042)
RB 22: (L) = .2219 + .0275 cos(wt + 2.896)
Q(0) = .0029 + .0291 cos(wt - 2.047)

It turns out that the variations in the phase are not monotone. This is mainly due
to the discretisation of the boundary condition at x = L: Q(t,L), which becomes

more inaccurate for larger Az.

The results of the harmonic analysis are confirmed by the Figures. In Figure 5
the position of the free surface is shown at x = L. It appears that the main
differences occur around L.W.S. and H.W.S. Further, the differences between the
computations with Az = ,009 m and Az = .018 mare much smaller than the differences
between Az = .018 m and Az = .036 m. The same holds for the differences in the
velocity profiles at M.E.V. and M.F.V. respectively. The velocity profiles are
shown in Figure 6, while Figure 7 shows the discharges at x = 0.0m. Here the main

differences occur also for Az = .036 m, but now just after M.F.V. and M.E.V.
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The influence of the vertical step size Az on the rhodamine concentration is

a direct one via the accuracy and an indirect one via the influence of Az on
the velocities. In the present tests only the integrated effect has been con-
sidered. Figure 8 shows the influence of Az on the evolution of the depth-
averaged concentrations at x = 0.0 m and at X = 14.94 m. The main differences
occur during ebb tide, which corresponds with the differences in the discharge
at M.F.V. (see Figure 7). A smaller Az yields a larger flood velocity, which
in turn gives higher rhodamine concentrations upstream.

The very small differences in the concentrations at x = 0.0 m during flood
tide are also caused by the transition function, which was the same for all
three computations.

Figures 9 and 10 show the same picture: almost identical concentrations during
flood tide, and small differences in the concentrations computed with the lar-
gest grid step.

In Figure 11 the maximal concentrations occurring at x = 7.46 m are shown. The
lowest concentration occurs for the largest Az, due to the smaller velocities
that occur for larger Az. Finally, the intrusion length and the horizontal
rhodamine distribution are shown in Table II.

The influence of Az on the intrusion length is rather small. There is, however,
some influence on the horizontal rhodamine distribution that has a steeper
descent at its upstream side (see Table II). Summarising the influence of Az,
it may be concluded that Az influences the tidal movement and that from the
viewpoint of accuracy 24 steps in the vertical yield a good discretisation,

with 12 steps as a reasonable minimum.

5.3 Influence of Ax

The size of the horizontal step size Ax influences the solution via the accuracy
and via the numerical diffusivity and viscosity.

The influence of Ax is tested in the following computations:

RB 17: Ax = 7.46 m (NX = 13)
RB 18: Ax = 3.73 m (NX = 26)
RB 25: Ax = 1.865 m (NX = 52).
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In Figure 12 the influence of Ax on the position of the free surface is shown.
This influence is very small, compared with the influence of Az. This is con-

firmed by the harmonic analysis:

Il

.2216 + .0268 cos(wt + 2.848)
L2217 + .0266 cos(wt + 2.852)
.2217 + .0266 cos(wt + 2.852)

RB 17: g(L)
RB 18: (L)
RB 25¢ (L)

Figure 13 shows the influence of Ax on the discharges and Figure 14 shows the
influence on the velocity at x = 0.0 m during M.E.V. and M.F.V.
For the velocities, too, the influence is very small, as can be seen from a

harmonic analysis of the discharges at x = 0.0 m:

.0029 + ,0289 cos(wt - 2.070)
.0029 + .0289 cos(wt - 2.068)
.0029 + .0289 cos(wt - 2.068)

RB 17: Q(0)
RB 18: Q(0)
RB 25: Q(0)

This small influence could be expected, considering the tidal wave length:

LT = ¥(gh)T =~ 800 m (5.1)

which means that even for the largest grid-size, Ax = 7.46 m, there are more
than 100 grid-points at a wave length., This is more than enough to guarantee

an accurate representation of the tidal phenomena.

An estimation of the numerical viscosity [ﬁ]:

E_w=% {1602 « 32 g2 (5.2)
nx 8 X 0X

shows that this is independent of Ax and therefore will not influence the numer-

ical results.

The influence of Ax on the concentration of rhodamine is found to be more distinct
than the influence on the velocities. This can be explained by the contribution

of the turbulent diffusivity in the x-direction which is of greater importance

for the transport of rhodamine than the turbulent viscosity for the tramsport

of momentum [53. This also makes the influence of the numerical diffusivity more

important.
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An estimation of the order of magnitude of the numerical diffusivity:

o _T (g2 -p By _ A du

an - A {u DX ax} T % 0 é x < 2 Ax (5.3)
D =-—T-{u2—])ﬂ~— 2 Ax € x <L (5.4)
nx 4 x 0% =" =
yields
Ip_ |z .02 T + .0014 Ax? 0<x<2A (5.5)
|p._|2 027 2 Mx <x<L (5.86)

nx = =

with a physical diffusivity in the x-direction:

D, = 2]u*|b + .005 (5.7)

which has an order of magnitude:
2 =1
D = .,07ms . (5.8)
X

This means that if Ax > 7 m, then the numerical diffusivity will be of the same
order as or larger than the physical diffusivity and can influence the results in
cases where the contribution of the horizontal diffusifity is significant.

In Figure 15 the influence of Ax on the depth averaged concentrationsatx=0.0m
and at x = 14.92 m is shown. At x = 0.0 m there is a constant difference during
flood time between the results with the largest Ax and the other two. This difference
is due to the different build-up during ebb tide by the numerical diffusivity.
The difference is kept constant during flood tide by the form of the boundary con-
dition. At x = 14.92 m the influence of Ax is even more clear. Here the numerical
diffusivity yields extra diffusion which results in a stronger damping of the depth

averaged rhodamine concentrations. This behaviour of the depth averaged concen-

tration at x = 14.92 m in Figure 15 can be explained by the opposite sign of
%ﬁ-in (4.3) during flood and during ebb tide.

During flood time an is reduced, and the concentration, and thus the transport,
remains somewhat smaller for larger Ax. During ebb tide, when an is enlarged by

the term with the opposite happens and the concentrations become larger for

du
ox’
larger Ax.
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In Figure 16 and 17 the influence of Ax on the concentration profiles at

x = 0.0 m at M.F.V. and M.E.V. respectively are shown. The differences at
M.F.V. are very small, but at M.E.V. there appears to be a noticeable differ-
ence, which is still, however, less than two percent of B ¥ These differences

agree very well with the results shown in Figure 15 at x = 0.0 m.

Figure 18 shows the influence of Ax on the maximal concentration at x = 7.46 m.

The influence is only of the order of one percent of B i

Table II shows that during maximal intrusion the concentrations increase with
Ax, particularly at large x. The intrusion length also increase for larger Ax,

This effect, too, is due to the numerical diffusivity.

Summarsing the influence of Ax, it may be concluded, that this influence manifests
itself mainly via the numerical diffusivity.

For an accurate computation of the concentration it is, therefore, necessary to
choose Ax € 2.0 m. This holds, of course, only for the tidal flume circumstances
described in (5.1). Another geometry would permit other discretisations. For the
tidal movement alone, without concentrations, much larger sizes of Ax would still

give accurate results.

5.4 Influence of the time step T

The time step T influences the computations, analogous to the step size Ax, via
the accuracy and via the numerical viscosity and diffusivity.

To test the influence of T the following computations have been made:

RB 16: T = 1.8625 s
RB 17: T = .93125 s
RB 24: T = .465625 s

The influence of T on the position of the free surface is comparable with the

influence of Ax. The harmonic analysis of the motion of the free surface is

given by:
RB 16: (L) = .22163 + .0266 cos(wt + 2.829)
RB 17: (L) = .22164 + ,0268 cos(wt + 2.852)

RB 24: (L) .22169 + .0268 cos(wt + 2.854)
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That the influence of T on the position of the free surface is very small could
be expected considering the number of time steps per tidal period, which even
for the greatest time step is still 300. The same arguments hold for the veloci-

ties and the discharges.

The influence of T on the discharge and the velocities at x = 0.0 m appears
clearly from a harmonic analysis of the discharges at x = 0.0; which shows

that the influence is small.

.0029 + ,0289 cos(wt - 2.073)
.0029 + ,0289 cos(wt - 2.070)
.0029 + .0289 cos(wt - 2.070)

]

RB 16: Q(0)
RB 17: Q(0)
RB 24: Q(0)

The influence of T on the concentrations is of about the same order as the in-

fluence of Ax, as can be concluded from the expressions for the numerical diffu-

sivity:
o _T g2 -p duy A2 Bu

an = Z {u DX 3x} 5 % 0 <x < 2 Ax (5.3)
= T opm du

D ==g i ~1I =} 2 Ax < x <L (5.4)

The orders of magnitude are given by:
ID_, =02 T+ .0014 Ax? 0<x<2AMx (3.5}
|D._|=o02 T 2 Ak <x<L (3.6)
nz
with a physical diffusivity of an order of:
2 -1
Dx % 07 ms . (5.8)

This means that T = 1.88 yields a numerical diffusivity of 407 of the physical

diffusivity Dx' However the influence of T on the numerical diffusivity will

; . . 9 3
always be in one direction, because always u? - Dx §§-> 0, whereas the influence

of Ax® changeé direction with the sign of 5§.
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This is clearly seen in Figure 19, where a smaller T yields higher concen-
trations over the whole field and through the whole tidal period.

This behaviour is confirmed by Figures 20 and 21 which show the concentration
profile at x = 0.0 m by M.F.V. and M.E.V. respectively, and also by Figure 22
where the maximal concentration at x = 7.46 m is shown.

The magnitude of T has only little effect on the intrusion length, as appears

clearly from Table II.

For the influence of T similar conclusions hold as for Ax. For the time step
this means that for accurate computations of the concentrations T < .25 should
hold. For the tidal movement alone again much larger time steps are allowed. In
contrast to Ax it is, however, not necessary to compute the tide and the concen-
trations with the same T. So the time step for the tidal computation will be
fixed by stability and the time step for the computation of the concentration

will be fixed by numerical diffusivity.
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6 Conclusions

In the present Report the numerical accuracy of the model for homogeneous

conditions in a tidal flume situation has been investigated.

Before an evalution of the test results is given, it should be stressed that

neither the numerical accuracy investigated in this Report nor the physical

sensitivity [i]alone gives a good impression of the reliability and the predictive
capability of the model. Therefore, it is necessary to combine the results of
[3] and the present Report to get a complete impression of the model.

As far as the numerical accuracy goes, the following conclusions can be drawn:

- The vertical step size Az is fixed by the accuracy of the computation of the
tide. The minimum number of steps in the vertical direction is Nz = 12, and
Nz = 24 yields a good accuracy.

- The horizontal step size Ax is fixed by the numerical diffusivity in the com-—
putation of the concentration. A minimal number of steps in the horizontal
direction is N = 50. The only way to weaken this restriction is to find an-
other discretisation for the diffusion equation, with less numerical diffusi-
vity, especially near the boundaries.

- The size of the time step for the computation of the tide is fixed by the
stabiltiy [5] and for the computation of the concentration by the numerical
diffusivity. The most economical way of computation will be to choose different

time steps for the tide and the concentration.
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no N, Ax N Az Nt T %X_l lD)_{1 lc B cpu(cyber)
m m s m?’s [m’s m’s 172

IT 5 | 20| 5.0325| 20| .0108 600 931250 .37 - 19.2 19.478
II 8 | 20| 5.0325| 20| .0108 600 «93125| .37 = 19.2 19.902
IV 1 | 20| 5.0325| 20| .0108 600 :93125] .37 - 29.4 20.244
IV 2 | 20| 5.0325| 20| .0108 600 93125 .37 - 29.4 19.780
Iv29 | 20| 5.0325| 20| .0108 600 «33125] .37 - 29.4 20.421
Iv31 | 20| 5.0325| 20| .0108 600 .93125| .001] - 29.4 19.025
Iv34 | 20| 5.0325 6 .036 100 93125 <37 - 29.4 1.490
Iv35 | 20| 5.0325| 12| .018 100 93125 .37 - 29.4 2.442
Iv3ie | 20| 5.0325| 24| .009 100 «93125] .37 - 29.4 4,361
RB16 | 13| 7.46 12| .018 1200 | 1.8625 | .37 |.005 | 22.2/24. 17.3%)
RB17 | 13| 7.46 121 .018 2400 .93125] 37 |-005 | 22.2/24%, 33.798
RBI8 | 26 | 3.73 12| .018 2400 .93125| .37 |.005 | 22.2/24. 62.501
RB49 | 13| 7.46 12 ] .018 1200 | 1.8625 .37 1.005] 22.2/24. 17.542
RB21 13 7.46 6 .036 1200 | 1.8625 .37 |.005 | 22.2/24. 11.062
RB22 | 13| 7.46 24 | .009 1200 | 1.8625 37 1,005 | 22,2724, 31,527
RB24 | 13| 7.46 12| .018 4800 | .465625 .37 |.005| 22.2/24. 67.903
RB25 | 52| 1.865 12 '] 018 2400 .93125| .37 |.005| 22.2/24. 125.359
Table I: List of Computations and Variationms of Parameters

position .

0.0 7.46 14.92 22.38 20.84 37.40 44,76 Li

number m m m m m m m m
RB16 .9815 .7920 .5446 .2986 L1104 .0235 .0000 | 39.3
RB17 .9832 .8006 «5850: | ,30%81 L1169 .0272 | .0000 | 39.6
RB18 .9855 . 7897 P 7 3227 .0916 .0074 .0000 38.1
RB19 .9816 .7925 .5451 .2989 .1099 .0233 | .0000 | 39.3
RB21 .9796 o 155 .5181 .2786 .0996 .0214 .0000 | 39.4
RB22 ] .9819 .7966 .5548 « 3075 L1163 | .0247 .0000 | 39.3
RB24 .9836 .8034 .5586 .3130 .1203 .0289 .0000 | 39.7
RB25 .9918 .7858 .5716 « 3227 .0856 .0039 .0000 376

Table II: Depth-averaged Concentrations at Maximal Intrusion and the Intrusion Length

* The maximal intrusion length L: is found.from a linear extrapolation of the
concentrations in x = 29.84 m and x = 37.30 m.
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APPENDIX I: Fixing the Singular Behaviour of u near the Bottom

For steady uniform turbulent flow it can be shown that the velocity behaves

logarithmically near the fixed bottom.

For unsteady non-uniform flow no closed analytical solution can be given.

Estimating, however, the order of magnitude of several terms of the equation for

conservation of momentum indicates that near the bottom u behaves logarithmically
z + 2z

Suppose ! u = ln(——
“0

) (1a)

Then substitution of (la) into the continuity equation yields:

Z"I'ZO
W~ Z - zln(———E—--——) (2a)

0

Substituting (la) and (2a) into the equation for conservation of momentum:

2 2
8_U+8L+BUW“€ au_i(e ..-.....):-—_— (33.)

at 9% 9z X 32 3z % 9z p 9%
yields the following orders of magnitude for the successive terms of (3a)

Z. F é z t+ z z + z zZ + z
0 0,42 0
1n (—z‘—'), {ln(-—-;——)} . 1n(—z—-——-) + zi’ 1n( 2

0 0 0 o 0

Oy,  o(1), o

so near the bottom approximately the following equation holds:

9 3p
oz X (42)

and if a mixing length approach is adopted for €,

_ 2 20U
g, = (z + z) |§E (5a)

(4a) will yield:

z + z
0

i -~ 10 =
0

which is in agreement with (la)
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APPENDIX II: Derivation of the Pressure Distribution for a Given Velocity

Profile

The following expression for the horizontal velocity is adopted:

2+ F

B sin(wt + kx) {1n ( ) - - (6a)

in which the sine function reflects the tidal influence, the logarithm reflects
2

the behaviour near the bottom and herein iiﬁy is included to provide a simple

boundary condition at the free surface.

Substituting (6a) into the continuity equation:

yields:

- z + 2 z?

— ¥ W k cos (wt + kx) {1n ( ) - } =0 (8a)
2

oz zq 2 H

w=0 at z =20 (9a)
yields:
z + 2, z?
w = - uyk cos (wt + kx) {(z + 20) In (——) -z - } (10a)
2 6 N2

If (7a) is substituted into the equation of conservation of momentum in the x-direction:

du . du® _ 3uw 3%u _ D du, _ _ 1 3p (33)

i, A —— | U i _)____

3t ox 3z Xoax2 23z Z oz 0 9x

reordering vields:

L =-p{—+u—+w—-¢, —-— (g

X 2
op _ du du du 3°u 0 B_u)} (11a)
3x 3t ox 3z Xox2 93z 2% 22

Differentiating (6a) with respect to t yields:
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zZ + Z

= u, W cos (wt + kx) {1n ( ) - } (12a)
ot z 2 W

Differentiating (6a) with respect to x yields:

3u

z + ZO z
— =1u_. k cos (wt + kx) {1n ( ) - } (13a)
) g 2 H?

X 2,

Differentiating (6a) with respect to z yields:

B u,. sin (wt + kx) {———l———-— .} (14a)

9z 0 (z-+zO) H?

Differentiating (13a) with respect to x yields:

82, 2 + 24 z?
“— = - uy k¥ sin (wt + kx) {1n ( ) - ks (15a)
ax? z 2 H?
0
For €, a mixing length approach is used:
& =i? (zd st (28, (16a)
z 0 dz

Substituting (l4a) into (16a) yields:

z(z + zO)2
k? |sin (wt + kx)| {(z + z,) - —————} (17a)
0 12

E =u
z 0

Multiplying (14a) by (17a) and differentiating with respect to z yields:

g% (g, %%) = u,* k? sin (wt + kx) |sin (wt + kx)|

2 zq bz 2 z{z + zo) (2 z+ 2

2

)
- — 0 } (18a)

B? H*

{-
H

Substituting (6a), (10a), (12a), (13a), (l4a), (15a) and (18a) into (1la) yields:

ap z + ;0 z
— == p|uyw cos(wt + kx) {1n ( ) - } o+
2
90X z 2 H
0
k z + zO 22
+ uO2 — sin{2(wt + kx)} {1n ( ) - 12+
2
2 z 2 H
0
k z + ZO z z®
-.uo2 — sin{2(wt + kx)} {1n ( ) - - +
2 z - z+2z, 6 H2(z + zo)
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z(z + zo) z + z0 22 z4
- In ( ) + — + } o+
H? z H? 6 H?
0
z + z z2
+ ug k? £ sin(wt + kx) {1n ( )y - } o+
* z 2 H?

- uo2 k2 sin(wt + kx)|sin (ot + kx)|

- 4z 2 z(z+2z) (2z+ 2z2) 2.1z
{ + 0 g - 0} (19a)
H? H" H?
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APPENDIX III: Derivation of the Velocity Profile near the Bottom

Near the bottom the following equation for the horizontal velocity uholds approximately:

d du, _
5‘; (Ez -a-;) = C] z + C2 (203)

Substituting the following mixing length approximation for €, into (20a):

2 du
B, =" (2 # zo)2 L§E|’ (21a)

and applying the transformation of [ﬂ], by which the domain of the problem is
transformed into a rectangle, yields:
3 2 2 du ; du By
i 1 ! ik &t it
{k® (z' + zo) |§ET'32'} TF 4 z' + ¢, (22a)

oz' TF3

in which TF3 is a transfer coefficient, which reads:

) I
T e A ey (23a)

and in which

z' =z TF,. (24a)

Reordering (22a) yields:

3 2 142 au Bu _ 1
-B—Z—' {k (z' + ZO) IT}_Z.'—F-'BT} = 01.'!1 z' + C'z, (25a)
in which:
CT - C'
2
C; - Az (26a)
v _  |du du _l_abu2 du? duw
& B at # az' TF] 73 T a2 TFZ * 9 TFB *
2
+l8i+la—pTF2— g el /T8, (27a)
p 9x p oz ® o
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oo |13
¢y = |75 /TF3 (28a)
z'=0
in which TF]’ TF2 and TF3 are transfer coefficients which read:
9L
T
TF1 = (z - zy —— (29a)
_ 2
(t - z,)
oC Bzh
3z 1 - =- 591!
TF2 v ol + (z - zb) 9x at (30a)
ax (L - z) (T - z)
1
3 % &m0 - z, (%) (31a)
Integrating (25a) yields (when primes are ormitted for convenience):
—C-l- z2 FoG=E * G
du | du _ 2 2 3
ﬁ;[-ﬁ-] - (32a)
K2 (z + z.)2
0
cy
Now |c3] b >|7f 25 # szl for 0 <z < Az
So (31a) can be rewritten as:
c c c c
(]+—zz+—lzz)% (1+—22+~2—1—-22)£
du 3 2 1 3 3
E N 2 Bu C3 (33&)
K(z + zo) [52 iz & ZO)
¢ c
(1 + = z + 5 : 22)£
~ 3 g 1
Czl - 2 Bu
K (Z + ZO) |'5;

and behaves like a constant. Development of the square root into a series of z,

(32a) yields:

c; c
Y { 5 z? + - c3}
3z 0 % (z + z)

in which higher order terms of y and c, are neglected.

(34a)

Integrating (33a) and substituting the boundary condition u = 0 at z = 0 yields:
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Substituting the boundary condition u = u(Az) at z = Az yields cyt

1 2 -
) c, 1 5 clAz + 2c2Az cleAz}
c = — u(Az) - +
3 Az + 2, Az + z4
4 & ln(——;——) 4 ln(——;-—)
0 0
2
o LD
“17% T %272

Substitution of (35a) into (3la) gives the desired relation for: €,

(35a)
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APPENDIX 1IV: Derivation of the Discretisation for |§§1 near the Bottom

Suppose u can be approximated near the bottom by the following expression:

zZ + 2

u = A ln(—————g) + Az + A (37a)
1 zq 2 3
then the coefficients Al’AZ en A3 can be found if u(0), u(Az) and u(2Az) are known.
; . . _ 2 u(Az) - u(2Az)
This yields: A1 = T Z TR Zg (38a)
2 ln(---*E——-) - 1n(—z——)
0 0
Az + ZO
u(Az) - A1 ln(——?;———d
0
A2 = e (39a)
A, = 0 (40a)

Differentiation of (36a) yields:

A
_QE:___1_+A

41
oz z + Zq 2 (41a)

; 3 ; du
which expression is used to compute: Bz|z=Az
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APPENDIX V: Discretation of the Free-surface Boundary Condition for the Momentum

Equation
The boundary condition for the momentum equation reads:

L1 s (1b)

which is equivalent to:

du .9z du _
= C5 s &= = (2b)

Applying the coordinate transformation to a rectangular grid yields:

du ,9C du _ ot
Rewriting (3b) yields:
oz
c-20 &
du , du b ox _
7 5 b 57 =0 (4b)
3 1 - _é_)
.9
Discretising (4b) yields:
bz A G
_ _ Az Au 1 x'nzz
Ynzz = UYnzz-1 Az (Az)nzz (TF.) oC ' o3k}
3'nzz (1 - E_)
x'nzz
An estimation of the order of magnitude yields:
_ _H u AMPL
0(u) = 0(u) (L - - B —7:—). (6b)
Suppose: 0(u) =
0(n) = 10 (7b)
0(L) = 1000
0(AMPL) = 1,
substituting (7b) into 6b) yields
' o
0(1) = 0(1) = 010 ), (8b)
which implies.that
= o=0 (9b)

is a good approximation of (1b)
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APPENDIX VI: Discretisation of the Diffusion Equation, with Truncation Error

and Numerical Diffusivity

The differential equation for the diffusion equation reads:

2
9¢ , 1 3buc , dwe _, 37c_ 3 ) 3¢y _ (1c)
ot b 9x 9z “

X ax? oz oz

For the discretisation of the diffusion equation the same method as for the
momentum equation is used, which means that (lc) is spli into a part for the

x-direction and a part for the z-direction:

2

! oc _ 1 dbuc _ D 3°c  _ 0, (2¢)
3t b 9x = B

! dc , dwc ji.(Dz EE) = {}. (3c)

at 9z 9z dz

Now the difference equation read:

nd _ c ) a (b uy et T ct )
1,5 7 %,570 . % P Yien,5%e1,5 T Pie1,5 o1, Cie,j
T bi 2 Az

(c

= n n n B
(l a) (bi+2 ui+2,j ci+2,j bi~2 ui_zgj ci_z,j)
b. 4 DAx

=0 (4c)

(cn+1 n+3 n Cn+1 g Cn+l )
i,j ls.] isj+1 i,j+l isj_l i’j_l
T 2 Az

n+1 n+1
e 9 L2 il ¥ P o)

: iy

Az

Az

n+l n+1
PREETI S L T

( le] zla.]-]) ( 1,] 1:3_1)

+ 2 Az = 0 t5e)
Az
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TL
i t AXLx Asz =

Substitution of U $n = e e e ug ; etc. into (4c) yields:
3 3
> L AxL AxL %L
£ n X * I X n
(c -1e. . (e b. e u, . e Cu )
1,] , @ ¢ 1 1,] 1,] +
T . 2 Ax
1
-AxL =AxL -AxL
(e b. u., . cll )
_ 1 1,] 1,]
2 Ax
2AxL 20%L 201,
+ (1 i Cﬂ){ (e bl 1,] Cl:.]) £
b Ax
& ;
-ZAXLX -2AxL —ZAXLX
(e b, e WL e <t L)
_ i 1.9 i,i%
Ax -
+AxLx -AxL
(e -2 +e ) N
= Dae .2 c. . =0 (6c
Xl,J AXZ 1,] )
%'Lt T = B B 3
Substitution of: e =1+ §'Lt + 4 (E) Lt + O(TTJ etc. into (6c¢c) yields:
2 3
, (1+ bl +°iL Syb, (14 Bl +932‘—L uf 1+ T A P
L el Yol i el X sl TR
L R S T bi 2 Ax
2 2
(1-AxL +é—;§—L )b, (1= AxL_ +A’2‘L) (1-aL +ALL)
- X 2 93} +
2 Ax
2 2
(=g | (142850 +4"-\X L2)b, (1+28xL +4§’-‘—L Dul L Geasa +48e?
+ b(l { 413+
i 2 Ax
(1= 2050 + 65512, (1 - 2851 by bxly2 (1= 20xL L L
a Tk 2 "x1 *x 2 x)u * 'Q 1,1}
4 Ax
- D,. .(L% + Ax* 5ye , w4 (7¢)
i, x 12, " 1y
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Elaborating (7c¢) yields:

2
jRf  LoEEE o HE g, E_ (8c)
ot b 9x

* ax?
in which Ex is given by:

2 2 Y
87c A% 5 3c, g(r?, Ax™) (9¢)
ot 12 * px*

&5
I
|
@ [~

By analogy an expression for the truncation error EZ in the z-direction can be
derived, which reads:

g ook g _ B (22w Be | dw 3%

z 8 a2 2 9z2 9z 9 9z?

Az? 3%D_ 3%c  Az? 9D 3%  Az? 3'c
- z " Z " D + O(TZ,Aza) (10e)
4 9z? 3z2? 6 9z 98z° 12 % az*

The only term of (9c) that contributes to the numerical diffusivity is:

32c
ot

g
8

2
Rewriting of = yields:
at?

2 2
} 9°¢c Ji_(_ 1 dbuc + D E_E) _

at? ot b 9x X ax?
_ -1 _b3uc 3% 3% _
b 9x 9t  Ax*t ¥ 3x?at
_ _ 13 . 3¢ du 3 dc du 3% ac
S Thwm Ut e Tw Ut o ke G (Hep
Substitution of (2c) into (1le¢) yields:
2 ]
i S E {-2 ughys Sy g u?} £ higher order terms (12¢)
at? box ~ 3x ¥ ox?

Now the numerical diffusivity reads:

u

-T2 _ (pudb _ 3u
D = {u {2 g ax) DX}- (13c)
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APPENDIX VII: Discretisation of the Diffusion Equation near the Boundaries at

=0 and x = L

Because a fourth order scheme is used, difficulties arise by the discretisation
at x = Ax and at x = L - Ax, besides the difficulties that already arose at x = 0.
Therefore a special discretisation is applied at x = Ax and x = L - Ax, which is
given in this Appendix.

This discretisation is the second-order—centered difference scheme, which reads:

Il+§ n
& i, _ ci’j) + {b 0 oy - b u? oy }
i+l Ti+l,j Ti+l,] i=1 "i-1,j i-1,j

c - 20 L+ b
i+1,] i,j] Pl P
- Dx; j { : } (14¢)
’ Ax

The discretisation in the z-direction is identical with (5¢).
Analogous to the derivation given in Appendix V. The truncation error of (l4c)

can be given, which then reads:

T 3% _ Mx® Bu _u Bb} 5%¢c

E == —— =2 2= %
* 8 a2 2 3x b 9x ox?

Ax® 3¢ c EE 3%u

- = {= =%

2 9x b 9x 9x2

Ax?* (u Bc 2 Bu} 9%b

2 b Bx b 9x ox?

2
4 0x7 D E + 0(T2%, Ax™). (15¢)

iz ¥ ax

The numerical diffusivity is given by:

R udb Ax? [du u 9b
0. =~z {u. (2 & = )D } - - {ax s ax}. (16¢)
The truncation error at x = o reads:
E = - I‘BZC + 0(12,Ax%) (17¢)

p. 8 ot? ?

And the numerical diffusivity is given by:

__T _ u gb Ju - (18¢)
Do = 4 - 2yg B i B )Dx}
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