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We present results of direct numerical simulations of travelling waves in dense
assemblies of monodisperse spherical particles fluidized by a liquid. The cases we
study have been derived from the experimental work of others. In these simulations,
the flow of interstitial fluid is solved by the lattice-Boltzmann method (LBM) and
the particles move under the influence of gravity, hydrodynamic forces stemming
from the LBM, subgrid-scale lubrication forces and hard-sphere collisions. We first
show that the propagating inhomogeneous structures seen in the simulations are in
agreement with those observed experimentally. We then use the detailed information
contained in the simulation results to assess aspects of two-fluid model closures,
namely, fluid–particle drag, and the various contributions to the effective stresses. We
show that the rates of compaction and dilation of the particle phase in the travelling
waves are comparable to the rate at which the microstructure relaxes, and that there
is a pronounced effect of the rate of compaction on the average collisional normal
stress. Although this effect can be expressed as an effective bulk viscosity term, this
approach would require the use of a path-dependent bulk viscosity. We also find that
the effective fluid–particle drag coefficient can be described well with the often-used
closure motivated by the experiments of Richardson & Zaki (Trans. Inst. Chem. Engng
vol. 32, 1954, p. 35). In this respect, the effect of the system size for determining the
drag requires specific care. The shear viscosity of the particle phase manifests small,
but clearly noticeable dependence on the rate of compaction/dilation of the particle
phase. Our observations point to the need for higher-order closures that recognize
the slow evolution of the microstructure in these flows and account for the effects of
non-equilibrium microstructure on the stresses.

1. Introduction
Dense fluidized beds exhibit a rich variety of complex inhomogeneous flow

structures, ranging from one-dimensional travelling waves to bubble-like voids. The
origin and hierarchy of these structures in liquid-fluidized beds have been the subject
of many theoretical and experimental studies (Anderson & Jackson 1969; El-Kaissy &
Homsy 1976; Didwania & Homsy 1981; Batchelor 1988; Ham et al. 1990; Anderson,
Sundaresan & Jackson 1995; Poletto, Bai & Joseph 1995; Singh & Joseph 1995;
Glasser, Kevrekidis & Sundaresan 1996, 1997; Zenit, Hunt & Brennan 1997; Zenit
& Hunt 2000; Duru & Guazzelli 2002; Duru et al. 2002). Most of the theoretical
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and computational studies probing these structures are based on the analysis of
Eulerian two-phase-flow model equations, which treat the fluid and particle phases as
interpenetrating continua. These two-fluid model equations take the following form:

∂(ρsφ)

∂t
+ ∇ · (ρsφv) = 0, (1)

∂(ρf (1 − φ))

∂t
+ ∇ · [ρf (1 − φ)u] = 0, (2)[

∂(ρsφv)

∂t
+ ∇ · (ρsφvv)

]
= ∇ · σ s + F + ρsφg, (3)[

∂
(
ρf (1 − φ)u

)
∂t

+ ∇ · (ρf (1 − φ)uu)

]
= ∇ · σ f − F + ρf (1 − φ)g. (4)

Here, ρs and ρf denote the densities of the particle and fluid phases, respectively;
v and u are the local-average particle and fluid phase velocities; φ is the local
particle volume fraction; g is specific gravitational force; F is the total fluid–particle
interaction force (exerted by the fluid on the particles) per unit volume of the mixture;
σ s and σ f are the effective particle and fluid phase stress tensors. The total fluid–
particle interaction force is usually partitioned into two (e.g. see Lovalenti & Brady
1993; Jackson 2000):

F =φ∇ · σ f + f . (5)

The first term on the right-hand side captures the effect of the slowly varying σ f

field, while the second term accounts for the effects of the rapidly varying velocity
and pressure fields around the individual particles. In what follows, f will be referred
to as the local fluid–particle interaction force per unit volume.

It is now well established that these equations coupled with simple
phenomenological closures for σ s , σ f and f can capture the experimentally observed
structures in a qualitatively correct manner; however, quantitative predictions remain
elusive (e.g. see Jackson 2000; Sundaresan 2003).

The interaction force f is usually expressed as the sum of several components:
the drag force ( f d), added mass force ( f a), history force ( f h), etc. The drag force is
written as:

f d =β(u − v), (6)

where the drag coefficient β depends on φ, the local slip velocity, |u − v|, the particle
size, and the physical properties of the fluid. For example, a constitutive relation of
the form (Batchelor 1988; Jackson 2000),

β =
g

v∞
(ρs − ρf ) φ (1 − φ)2−N, (7)

which can be deduced from the classic results of Richardson & Zaki (1954), is widely
used. Here, v∞ is the terminal settling velocity of a single particle in an unbounded
fluid. The Richardson–Zaki exponent N decreases monotonically with increasing
particle Reynolds number based on v∞, Re∞ = v∞dp/ν (Richardson & Zaki 1954;
Batchelor 1988); here dp is the particle diameter and ν is the kinematic viscosity
of the fluid. Much effort is in progress to develop more accurate closures through
computational simulations (e.g. see Hill, Koch & Ladd 2001; Li & Kuipers 2003;
Kandhai, Derksen & Van den Akker 2003; Wylie, Koch & Ladd 2003; van der Hoef,
Beetstra & Kuipers 2005).
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Developing closure relations for the effective stresses is considerably more difficult.
The effective stress in the particle phase consists of several contributions: the
streaming stress associated with the fluctuating motion of the individual particles;
stress transmitted through particle–particle collisions; stress arising through other
interactions between particles (e.g. electrostatic and van der Waals interactions); and
a hydrodynamic component resulting from particle–particle interaction through the
interstitial fluid. Closures for the effective stresses should also take into account the
effects of the rates of compaction and dilation of the particle phase – which is typically
captured through an isotropic contribution involving the particle phase bulk viscosity.
The particle phase stress, σ s , is written as:

σ s = − ps I + κs(∇ · v) I + µs

[
(∇v) + (∇v)T − 2

3
(∇ · v) I

]
, (8)

where ps , κs and µs are the pressure, bulk viscosity and shear viscosity of the
particle phase, respectively. The pressure and the viscosities are either closed through
phenomenological models (for example, see Anderson et al. 1995; Duru et al. 2002)
or are expressed through constitutive models based on the concepts of kinetic theory
of dense gases. These kinetic theory of granular flow (KTGF) based models (for
example, see Lun et al. 1984; Gidaspow 1994; Koch & Sangani 1999; Agrawal et al.
2001) afford constitutive models for ps , κs and µs explicitly in terms of local particle
volume fraction, φ, ρs , dp and the fluctuating velocity of the particles. Although the
actual expressions for the shear and bulk viscosities differ slightly from one derivation
to another, all derivations yield comparable values for them, with the shear viscosity
being larger in magnitude than the bulk viscosity (e.g. see Gidaspow 1994).

In the present study, we examine the adequacy of such constitutive models for
σ s and f , using one-dimensional waves in fluidized beds as the model problem.
Such travelling waves are made up of regions where the particle assemblies undergo
dilation and regions where they compact. As compaction and dilation of particle
assemblies are ubiquitous in granular and fluid–particle flows, it is important to
test and validate constitutive models through clean model problems where both
compaction and dilation occur.

Duru et al. (2002) have reported the particle volume fraction profiles in fully
developed one-dimensional travelling waves in liquid-fluidized beds. These authors
have also probed the variation of particle phase pressure and viscosity with φ from
the experimentally measured particle volume fraction profile, the two-fluid model
equations (1)–(6) and (8), and an assumed constitutive model for the drag coefficient.
They found that

µt (φ) = µs(φ) + κs(φ) ≈ 0.18
ρsdpv∞

φrlp − φ
,

dps

dφ
≈ 0.2ρsv

2
∞ or

dps

dφ
≈ 0.7ρf v2

∞. (9)

Here, φrlp is the particle volume fraction at random loose packing. More critical
assessment of the closure relations requires detailed data on the spatial variation
of particle and fluid velocity fields, collision statistics, etc. in these travelling waves,
in addition to the particle volume fraction profiles. These are not easily measured
in dense suspensions; to date, such measurements have not been made. However,
computer simulations can be used to obtain the missing data. In the present study, we
have performed detailed simulation of the flow of the fluid and the particles in these
travelling waves and extracted all the detailed data required for critical evaluation of
the constitutive models. We have used the experimental data of Duru et al. (2002)
to validate the computer simulations, so that some degree of confidence can be
associated with the detailed data extracted from them.
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In our simulations, we explicitly resolve the motion of a set of spherical uniformly
sized solid particles and the interstitial fluid. The fluid flow is simulated by means of
the lattice-Boltzmann method (LBM), see, for example, Chen & Doolen (1998). Other
methods that have been reported in the literature for directly simulating the dynamics
of dense suspensions with moving particles and resolution of the solid–liquid interface
are distributed Lagrange multipliers (Pan et al. 2002; Singh, Hesla & Joseph 2003),
and smoothed particle hydrodynamics combined with the discrete element method
(Potapov, Hunt & Campbell 2001).

In this article, we first demonstrate that by numerical simulation we can qualitatively
capture the wave phenomena observed by Duru et al. (2002). The body force
due to gravity, hydrodynamic forces (stemming from the LBM, and subgrid-scale
lubrication), and hard-sphere collisions govern the dynamics of the particles. From
our simulations, we determine how the particle volume fraction, fluid and particle
velocities, fluid–particle interaction force, and the various contributions to the stresses
vary with position along the travelling wave. Such detailed information allows us
to examine the importance of various terms in continuum models and various
microphysics such as lubrication forces. Equally importantly, it allows us to assess
whether closures developed from simulations of homogeneous suspensions should
be supplemented for effects of compaction or dilation occurring in inhomogeneous
systems.

In the subsequent sections, we will demonstrate that the inhomogeneous travelling
structures seen in the experiments of Duru et al. (2002) and Duru & Guazzelli (2002)
readily evolve in the simulations, and that the propagation velocities obtained in the
simulations are comparable to the experimental values. The simulations reveal that
the rates of compaction and dilation of the particle phase in the void region of the
travelling waves are comparable to the rate at which the microstructure relaxes, and
that the rate of compaction of the particle assembly has a pronounced effect on the
collisional stress in the particle phase.

The rest of the paper is organized as follows. In § 2, we describe the specific cases in
the experiments by Duru et al. (2002) which are simulated in our study. The numerical
procedure is outlined in § 3. The results are presented in § 4 and the main findings
of this study are summarized in § 5. More detailed accounts have been placed in the
Appendices.

2. Flow system
Duru et al. (2002) carried out an extensive study of the onset and characteristics of

planar waves in relatively narrow liquid fluidized beds. Their experimental variables
were the ratio of particle and fluid densities, the particle size, the fluid viscosity, the
size ratio (particle diameter divided by tube diameter) and the average particle volume
fraction (which was controlled by the superficial velocity of the fluidizing liquid). Even
though planar waves formed spontaneously, they excited specific wave frequencies
by subjecting the distributor plate to an oscillatory motion so that clean high-quality
data could be obtained; therefore, the excitation frequency and amplitude were also
inputs in the experiments. Figure 1 shows a typical experimental result obtained by
them: a space–time plot of the solids volume fraction. Clearly visible are regions
of low particle volume fraction (‘voids’) that travel with a well-defined speed in the
vertical (z) direction. Figure 2 shows two of the many waveforms measured in their
experiments. Travelling waves are shown with a single hump (figure 2a) and two
humps (figure 2b). These data were obtained by averaging over a hundred waveforms.
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Figure 1. Experimental space–time plot of the solids volume fraction at φ̄ = 0.540. The wave
speed (c) can be derived from the slope of the light lines representing the void regions.
[Reprinted from Duru et al. 2002.]
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Figure 2. Experimental solids volume fraction wave profiles for (a) φ̄ = 0.57 and
(b) φ̄ = 0.49. [Reprinted from Duru et al. 2002.]

In this paper, we first simulate one-dimensional travelling waves such as those
shown in figures 1 and 2. The specific experiments that we selected from Duru
et al. (2002) had particles with dp = 685 ± 30 µm, a density ratio ρs/ρf =4.1, and
a fluid kinematic viscosity of ν = 0.90 × 10−6 m2s−1 (these settings being denoted
‘Combination 7’ by Duru et al.).

In order to keep the computations affordable, we restrict our simulations to a
fully-periodic three-dimensional domain. Since we wish to simulate one-dimensional
travelling waves, we suppress the onset of secondary instabilities by choosing the
lateral dimensions to be small (typically 6dp). By repeating some of the simulated
cases for smaller lateral domains (5dp and 4dp), we evaluate the impact the domain
size has on the results. It will become apparent that the fluid–particle drag is sensitive
to the size of the domain. Most of the analysis in this paper will be devoted to a study
of one-dimensional travelling waves. Towards the end of this paper, we present the
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results of a few simulations with wider periodic domains, illustrating the evolution
of two-dimensional structures, as a further validation of the numerical approach
employed in our studies.

In our simulations, we represent the experimental system by a set of uniformly sized
spherical particles immersed in a fluid. The flow is induced by a force in the negative
z-direction acting on the particles (gravity), and an effective body force acting on the
fluid that balances the gravity force on the particles. This body force on the fluid is
equivalent to the average pressure gradient (in laboratory experiments) that drives
the flow of the fluidizing liquid up through the particle assembly. The total force
acting on the fluid–particle mixture in the periodic domain is zero and so the total
momentum of the mixture as a whole does not change with time in our simulations.

Simulations of one-dimensional travelling waves were performed in three-
dimensional periodic domains (6dp × 6dp × 20dp), for several different average particle
volume fractions (φ̄), but much of the discussion will be on results obtained for three
specific φ̄ values (0.580, 0.505 and 0.488). The case with φ̄ =0.505 will serve as our
base case. Parametric sensitivity analyses – with respect to collision parameters, spatial
resolution of the simulations and domain size – were performed around this base
case.

The simulations differed from experiments in one important way: the frequency of
the wave was controlled in the experiments by externally forcing the distributor plate,
and the wavelength of the travelling structure emerged as an output. In contrast,
the wavelength is fixed in the simulations and the resulting waveforms evolved
spontaneously without any external forcing. This difference, however, does not limit
the value of the simulations; waves did evolve in the experiments spontaneously, but
one does not have the luxury of forcing a specified wavelength in the experiments
although this is straightforward in the simulations.

3. Numerical set-up
In our simulations, we consider a three-dimensional (Cartesian) domain which is

discretized into a number of lattice nodes residing on a uniform cubic grid. In the
LBM, fluid parcels move from each node to its neighbours according to prescribed
rules. It can be proved by means of a Chapman–Enskog expansion that, with the
proper grid topology and collision rules, this system obeys, in the low-Mach-number
limit, the incompressible Navier–Stokes equations (e.g. see Chen & Doolen 1998).
The specific implementation used in our simulations has been described by Somers
(1993) and Eggels & Somers (1995), which is a variant of the widely used lattice BGK
scheme to handle the collision integral (e.g. see Qian, d’Humieres & Lallemand 1992).
We use in the results presented below the scheme due to Eggels & Somers (1995),
as it manifests a more stable behaviour at low viscosities when compared to LBGK.
This scheme is second-order accurate in space and time.

Ladd (1994a, b) pioneered the application of lattice-Boltzmann methods for
suspension simulations; since then, lattice-Boltzmann methods have been applied
extensively for suspension simulations (e.g. Aidun, Lu & Ding 1998; Ladd 1997; Hill,
Koch & Ladd 2001; Wylie et al. 2003; Ten Cate et al. 2004; Ten Cate & Sundaresan
2006a, b). In our code, the no-slip condition at the solid–fluid boundaries is introduced
through a forcing scheme (Goldstein, Handler & Sirovich 1993; Derksen & Van
den Akker 1999; Ten Cate et al. 2002). The forcing scheme is akin to immersed
boundary methods that have been developed by, among others, Peskin and co-workers
(Griffith & Peskin 2005). In this scheme, fluid is present everywhere in the periodic
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domain – both at the lattice nodes outside the solid particles (‘true or external fluid’)
and at the nodes inside the solid particles (‘fictitious or internal fluid’). Both external
and internal fluid experience and respond to the effective fluid phase body force
mentioned earlier. The fluid flow and the particle motion are coupled by demanding
that at the surface of the sphere the fluid velocity matches the local velocity of the
solid surface (that is the sum of the linear velocity vp and Ωp × (r − rp) with Ωp being
the angular velocity of the particle); in the forcing scheme this is accomplished by
imposing additional forces on the fluid at the surface of the solid sphere (which is then
distributed to the lattice nodes in the vicinity of the particle surface). The details of the
implementation can be found elsewhere (Goldstein 1993; Derksen & Van den Akker
1999; Ten Cate et al. 2002). The collection of forces acting on the fluid at the sphere’s
surface and its interior is subsequently used to determine the hydrodynamic force
and torque acting on the sphere (action =–reaction); see Appendix A for additional
details.

In our simulations, the diameter of each spherical particle is specified and input
diameter refers to this diameter scaled by the lattice spacing. In the LB simulations,
as the spherical particle is represented by forces that are confined to a cubic grid,
the input diameter does not reflect the actual diameter of the particle. A calibration
procedure to estimate the effective diameter of this object (commonly referred to as
the hydrodynamic diameter) was introduced by Ladd (1994a). We apply this scheme
to estimate the hydrodynamic diameter of the particles. The hydrodynamic diameter
is recognized as the diameter dp mentioned earlier.

The procedure employed to translate the physical parameters of the experiments
into LB-parameters is straightforward. In lattice units, the spacing � and time step
�t are taken as unity. The hydrodynamic diameter in lattice units a is then equal
to dp/�. The spatial resolution of the simulations can be expressed in terms of the
magnitude of a. The default value of a in our simulations was 16; results of sensitivity
tests with respect to the parameter a are discussed below. The fluid density (in lattice
units) was nominally equal to 8 and the solid density was then chosen to obtain the
desired density ratio. The average particle volume fraction in the periodic domain, φ̄,
determined the number of particles in the domain. The only other dimensionless group
to be matched between the experiments and simulations is g d3

p/ν2. We demanded
that (g d3

p/ν2)exp = gLB a3/ν2
LB and also insisted that the terminal settling velocity of

a single particle in unbounded fluid be of the order of 0.02 in LB units. The latter
condition assures that fluid velocities stay well below the speed of sound of the
numerical scheme so that incompressible flow is being simulated.

In order to demonstrate that the above procedure represents the dynamics of
spheres immersed in liquid properly, we considered the transient motion of a single
sphere that is accelerated from rest under the influence of gravity. The equations
describing the motion for an isolated sphere in an unbounded fluid at low Reynolds
numbers are presented by Maxey & Riley (1983). Results obtained by integrating the
Maxey & Riley equation are compared to our numerical results in figure 3 in terms
of the time series of the velocity of the sphere. The simulation conditions were such
that the Reynolds number based on the steady state settling velocity was 0.1. Note
that good agreement of the two solutions is found even at density ratios close to one.
Ten Cate et al. (2002) compared the results on sedimentation of a single sphere in
a finite-size container at higher Reynolds numbers (up to Re =30) obtained through
lattice-Boltzmann simulations and forcing boundary conditions with particle image
velocimetry (PIV) data, showing good agreement in terms of the sphere’s trajectory
and the fluid flow field around the moving sphere.
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Figure 3. Time series of the velocity of a sphere falling under gravity at low Reynolds number.
Solid curve: solution of the Maxey and Riley (1983) equation of motion; dashed curve: LB
solution with a sphere with a hydrodynamic diameter of 16 lattice units. (a) ρs/ρf = 1.1,
(b) 2.0. The dashed and solid curves can hardly be distinguished. v∞ is the steady-state
velocity; τ = ρsd

2
p/ρf 18ν.

In our suspension simulations, we also take into consideration the interaction
between particles through binary hard-sphere collisions and lubrication forces. For
the former, we apply an event-driven collision algorithm: we move the collection
of particles until two particles are in contact. At that moment, we carry out the
collision (i.e. update the velocities of the two particles taking part in the collision).
Subsequently, the movements of all particles are continued until the next collision or
until the end of an LB time step. The collision model that we apply (Yamamoto et al.
2001) has two parameters: a restitution coefficient e and a friction coefficient µ. As
the default situation, we consider fully elastic frictionless collisions (e = 1, µ =0). We
will also present results with different settings for (e, µ) to check their influence on
the wave speed and the waveforms.

When two particles are in close proximity, with a separation of the order of or
less than the lattice spacing, the hydrodynamic interaction between them will not be
properly resolved in the LB simulations. Therefore, we explicitly impose lubrication
forces on the particles, in addition to the hydrodynamic forces stemming from the
LBM; see Appendix B for details of the implementation and validation.

The time-step-driven (LBM) and the event-driven (collisional) parts of the
simulation have been combined by first performing the LBM time step from t to
t + �t and subsequently moving the particles until the particle system has advanced
�t in time. Since in dense systems usually more than one collision occurs during
�t , the particle motion algorithm sets a number of sub-time-steps, the number being
equal to one plus the number of (potential, see below) collisions.

At the start of every particle motion sub-time-step, we update the lubrication forces
and torques. Then we move the particles over the sub-time-step, i.e. until the next
potential collision (or until t + �t is reached). At the new positions of the particles,
we again determine the lubrication force and torque. The linear and angular velocities
of the particles are now updated according to the average of the lubrication forces
and torques at the beginning and at the end of the sub-time-step. The velocity update
may result in the collision not occuring: in that situation, the lubrication forces were
strong enough to change the sign of the relative particle velocity so that a hard-sphere
collision was prevented.
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4. Results

4.1. Waves and wave speeds

A homogeneous bed was first created by placing a set of non-overlapping spheres
randomly in space in the periodic domain. Random packings up to φ̄ ≈ 0.3 can be
prepared in this manner (Torquato, Truskett & Debenedetti 2000). Higher levels of
φ̄ were reached by letting the system collapse under the influence of a body force.
After the desired solids volume fraction was obtained, the system was equilibrated
by giving the spheres random velocities and moving them around in the periodic box
as a granular gas for some time. (In such a granular gas simulation, the motion of
the particles is not affected by the interstitial fluid, and they only respond to elastic
collisions with other particles.) At the start of the two-phase-flow simulation, the
velocities of the particles and the fluid were set to zero. At t = 0, gravity and the body
force on the fluid were turned on. As the lateral dimensions of the domain are small
(6dp), there is little opportunity for any persistent lateral structure to evolve, but one
can readily see non-uniform structures that travel in the direction of the mean fluid
flow. Figure 4, shows a series of snapshots taken at an arbitrary vertical cross-section
of the periodic domain. The system develops a wave structure in a time span of the
order of d2

p/ν. A region of lower particle volume fraction, hereinafter referred to as
‘void’, travels in the opposite direction to gravity (i.e. the positive z-direction). Outside
the void, the particle volume fraction is significantly higher than the average value, φ̄.
Above the void, particles detach from the dense region, then ‘rain’ through the void,
and subsequently collect on the dense region below the void.

The simulated wave was averaged over the horizontal directions (x and y), and
represented in a space–time plot similar to the experimental one (see figure 1).
Examples of such plots are given in figure 5. The wave amplitude and structure
depend on the average particle volume fraction, φ̄: shallow waves form at high φ̄,
whereas more complicated waves form for lower φ̄ values. The dimensionless wave
speeds c̃ = cdp/ν(with c being the dimensional wave speed) extracted from figure 5
are 30.9, 33.7 and 33.2 for φ̄ = 0.580, 0.505 and 0.488, respectively. The error margin
in determining c̃ from the simulation results was estimated as ±1.

The wave speed decreased slowly, but monotonically, as the wavelength of the
domain was increased. For φ̄ = 0.505 and a = 16, the dimensionless wave speeds c̃

obtained in simulations with wavelengths of 10dp , 20dp and 40dp were 36.0 ± 1,
33.7 ± 1 and 29.4 ± 1, respectively.

Duru et al. (2002) measured dimensionless wave speeds of c̃ = 28 and 29 (±1.4) for
their ‘Combination 7’ system at φ̄ = 0.488 and 0.496, respectively; the corresponding
wavelengths were ∼ 26dp and ∼36dp . The wave velocities derived from our simulations
deviate only slightly from the experimental data. This difference is perhaps related to
the flow resistance offered by the tube wall in the experiments, which is missing in
the simulations.

By varying numerical parameters, while keeping the dimensionless numbers that
govern the flow system constant, we evaluated the consistency of our results for our
base case: φ̄ = 0.505 and wavelength (i.e. height of our simulation domain) = 20dp .
An increase of the acceleration due to gravity by a factor of 4, and of the viscosity by
a factor of 2, while keeping the rest of the parameters constant, typically resulted in
fluid and particle velocities that were twice as high. The wave that developed in this
system had a speed that was twice as high. The dimensionless wave speed c̃, however,
remained practically unchanged. Apart from consistency, this test indicates that our
choice for the velocity scale in the base case (which was based on a single particle
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Figure 4. Cross-sections through the simulated solid–liquid field with φ̄ =0.505 at various
moments in time. (a) The initial stages of the simulation. (b) The wave travelling at constant
speed. (From left to right tν/d2

p =0.026, 0.55, 1.095, 1.225, 1.277, 1.329, 1.381, 1.434.) The
colours denote the absolute value of the fluid velocity. All the spherical particles have the
same size.

1.04dp
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t φ/φ
0.84 1.0 1.16      

Figure 5. Simulated space–time plots of the solids volume fraction. From left to right:
φ̄ = 0.580, 0.505 and 0.488. Wavelength (= height of our simulation domain) = 20dp . a = 16.

falling with a terminal velocity of 0.02 in LB units) was appropriate with a view to
compressibility effects in the LBM.

The dimensionless wave speed appears to be only weakly sensitive to the grid
resolution. If we compare the wave speed of our base case (with resolution parameter
a =16) with simulations that had a = 12 and a = 24, the wave speeds we find are
c̃ =34.4 (a = 12); c̃ = 33.7 (a = 16); c̃ = 32.5 (a = 24).

A fully developed wave, when viewed in a co-travelling frame, is clearly a
steady solution. The data gathered in our simulations, when viewed in such a
co-travelling frame, represent various realizations of the travelling-wave solution.
By ensemble-averaging over all these realizations, we determined the axial profiles
of various macroscopic quantities in the co-travelling frame. In every simulation,
after establishing a fully developed wave, data sets containing short-time averages
(averaging time ta =5.2 × 10−4d2

p/ν corresponding to 50 LB time steps) of volume
fraction, velocities and other relevant quantities, were computed as functions of the
vertical location in the wave. We have summarized in Appendix C the numerical
procedure used to compute these quantities. A series of 2000 such data sets (spanning
a time 2000ta; in this time span the wave typically travelled 30dp) were used to
determine the ensemble-averaged profiles in the co-travelling frame. In what follows,
all the quantities are presented and analysed in this co-travelling frame.

The particle volume fraction profiles shown in figure 6 are analogous to those
reported by Duru et al. (2002). The simulated profiles certainly resemble the measured
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Figure 6. Solids volume fraction wave profiles for (from left to right) φ̄ = 0.580, 0.505 and
0.488. a = 16.
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Figure 7. Wave shapes for various collision parameters at φ̄ = 0.505. (a) Profiles for different
values of the restitution coefficient at µ= 0. (b) Profiles for different values of the friction
coefficient at e =1.0. The wave profiles were horizontally shifted such that the minimum
values coincided. a = 16.

ones; it is striking that even the two-humped wave seen in the experiments at lower
φ̄ values are captured in the simulations. Thus, we believe that the experimental data
of Duru et al. (2002) provide a qualitative validation of our simulations. We did not
attempt detailed quantitative comparison as the waves obtained in our simulations
were ‘unforced’, whereas those generated by Duru et al. (2002) were externally ‘forced’,
as discussed earlier.

In the above simulations, the hard-sphere collisions were assumed to be fully elastic
and frictionless (e =1, µ = 0). We probed the effects of inelasticity and friction on
the wave speed and the wave shape. The wave formed readily in every case. The
wave speeds for (e, µ) = (1.0, 0.0), (0.95, 0.0), (0.8, 0.0), (1.0, 0.2) were essentially
indistinguishable. The wave shape depended only weakly on the collision parameters
(figure 7). Thus, the deviations between measured and simulated wave speeds are not
due to uncertainties in the collision parameters. The energy dissipated in the inelastic
collisions is very small. In the (e, µ) = (0.95, 0.0) case, only 0.8% of the power inserted
in the system is dissipated in the collisions, while lubrication dissipates ∼ 3%. The
rest is dissipated in the resolved fluid motion.
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4.2. Quantitative analysis: fluid–particle interaction force

Hill et al. (2001), Kandhai et al. (2003), van der Hoef et al. (2005) and Ten Cate &
Sundaresan (2006a, b) used static arrays of spheres and measured in series of
simulations the effects of the solids volume fraction, Reynolds number and sphere
configuration on the drag coefficient. Wylie et al. (2003) considered homogeneous
assemblies of massive particles executing random motion in a periodic box and
exposed the effect of the mean-squared fluctuating velocity of the assembly of particles
on the drag coefficient. In our simulations, the inhomogeneity associated with the
wave provides us with data on fluid–particle interaction force over a range of solids
volume fractions in a single simulation.

The total fluid-to-particle force per unit volume of the suspension, F = F ez,
along the wave is readily found from the simulation results. The local fluid–particle
interaction force, f = f ez, is then found (see Appendix D):

f =F + φ
d

dz
(p + σ f s,zz), (10)

where σ f s,zz is the zz-component of the fluid phase streaming stress. To assess the
role of the fluid phase streaming stress, we will consider an additional quantity

fa = F + φ
dp

dz
. (11)

We present below the variation of F, f and fa along the wave.
The local hydrodynamic force component, f , is usually partitioned into several

components: the drag force, added mass force, history force, etc. For the fully
developed one-dimensional flow considered here, the added mass force can be written
as

Caρf φ(1 − φ)

[
vf

dvf

dz
− vp

dvp

dz

]
where Ca is the added mass coefficient; vp and vf are the z-velocities of the two phases
in this co-travelling frame. For isolated particles Ca =0.5 (Auton, Hunt & Prud’homme
1988) and it differs only marginally for suspensions (Ten Cate & Sundaresan 2006b).
We can therefore use the above expression to estimate the potential contribution of the
added mass force term to f (and tofa). We found that the added mass force estimated
in this manner is no more than 0.4% of the force f . Ten Cate & Sundaresan (2006b)
found that the history-force and the added mass force contributions were comparable,
and so we simply attribute the entire local hydrodynamic force to fluid–particle drag
and write:

f =β(vf − vp), fa = βa(vf − vp), (12)

with β(βa) depending on the particle Reynolds number (based on the local slip velocity
vf − vp), and the particle volume fraction. The wave profiles of the variables involved
in (10)–(12) are presented in figure 8(a–c) for the base case. The dimensionless drag
coefficient β̃ = βν/g(ρs − ρf )dp is plotted against z in figure 8d and against the local
φ in figure 8(e). Figure 8(b) shows that the fluid streaming stress term is small,
however significant. Its most striking effect is a reduction (almost removal) of the
path dependence of β as a function of φ (compare figures 8e and 8f ): βa depends on
the branch of the wave it is determined in, it has slightly higher values for the dilation
branch as compared to the compaction branch. The coefficient β as a function of
φ does not show this ambiguity anymore: to a very good approximation, β̃ can be
expressed as a function of φ alone. This is reminiscent of a widely used constitutive
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Figure 8. Determination of β (equation (12)) along the wave for the base case. (a) φ-profile,
(b) fluid-to-particle forces (i.e. the various terms in equations (10) and (11)), (c) Reynolds
number based on the slip velocity Reslip = |vf − vp|dp/ν, (d) resulting β-profile where β has

been non-dimensionalized according to β̃ = βν/g(ρs − ρf )dp , (e, f ) β̃ versus φ. We distinguish

between β̃a and β̃ (equation (12)). The triangles denote that β̃ (β̃a) was determined in the
dilation branch of the wave, the squares that β̃ (β̃a) was determined in the compaction branch.
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Figure 9. ln(1/(1 − φ)) versus ln(β̃/φ) along with a linear fit, in the spirit of equation (13).
(a) φ̄ = 0.580, (b) 0.505 and (c) 0.488. The slopes of the lines correspond to N = 3.49, 3.49 and
3.36, respectively. The intercepts with the vertical axes are −4.17, −4.23 and −4.19, respectively;
these correspond to Reynolds numbers of 65, 68 and 66. a = 16.

relation of the form presented earlier (see (7)). In terms of dimensionless variables,
(7) takes the form:

β̃ =
1

Re∞
φ (1 − φ)2−N. (13)

The logarithmic plots in figure 9 lend some support to this type of closure model.
The linear fits to the data points in figure 9 indicate N ≈ 3.5. The most striking
feature in this figure is in the intercept. According to (13), the intercept of the fitted
lines with the vertical axes in figure 9 should be equal to ln(1/Re∞). The values of
Re∞,app estimated from the intercepts in figure 9 are around 66, which is some 45%
below Re∞ =120. The latter value would follow from a force balance on a single
particle and applying (for instance) the Schiller & Naumann (1933) correlation for
the drag coefficient CD =(24/Re)(1 + 0.15Re0.687).

The origin of the difference is at least in part due to the limited domain size. Results
of two additional simulations that differed from the base-case only in their lateral
dimensions (5dp and 4dp; whereas the base-case has 6dp) showed that Re∞−Re∞,app

is roughly inversely proportional to the lateral domain size. Figure 10 shows the β vs.
φ relation for the smaller domains. The dependence of Re∞,app on the lateral domain
size is presented in figure 11. An extrapolation to an infinitely wide domain would
bring Re∞,app close to Re∞.

4.3. Momentum transfer

The liquid–particle system transfers momentum through a variety of mechanisms:
particle and fluid streaming motion (streaming stresses), particle–particle collisions
(collisional stress), particle–particle interaction through lubrication forces, and fluid-
phase viscous stresses. The wave clearly induces anisotropy. As an example, we show
in figure 12 the three components of the collisional normal stress. (In this figure,
stresses have been non-dimensionalized according to σ̃ = σd2

p/ρf ν2; this scaling of
stresses (and pressure) has been applied throughout this paper, unless otherwise
stated.) As expected, the two lateral components (xx and yy) are approximately equal
to one another, and the axial component (zz ) differs appreciably from the other two.
The effects of particle volume fraction are clearly visible in the stress profiles. The
collisional stress is much lower in the void region than in the dense plug.

The most important zz -stresses are presented in figure 13. Collisions are largely
responsible for the particle phase stress in the parts of the flow that have a high particle
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Figure 13. Variation of zz -stresses along the wave (σ̃ has been defined in figure 12).
(a) φ̄ = 0.580, (b) 0.505 and (c) 0.488. a =16. Thick line: collisional stress; thin line: stress due
to lubrication; dotted line: fluid streaming stress; dashed line: particle streaming stress.

volume fraction. In the void, fluid and particle streaming stresses are significant and
of comparable magnitude. Lubrication plays only a modest role. The fluid-phase
viscous normal stresses (not shown in figure 13) are negligible.

4.4. Particle stresses in relation to Eulerian two-phase flow models

The constitutive model for the particle phase stress, σ s , commonly employed in
two-fluid models was discussed earlier (see (8)). It is important to note that in all
theories, the bulk and shear viscosities depend on local particle volume fraction and
granular temperature (if included as a variable), but not explicitly on the local rate
of deformation. At prescribed particle volume fraction and granular temperature,
the particle phase stress depends linearly on the rate of compaction or dilation of
the particle phase (which is captured through the ∇ · vp term); and the bulk and
shear viscosities are independent of whether the assembly is undergoing compaction
or dilation locally. Modifications of the closures to account for the presence of
interstitial fluid have so far neither changed the relative magnitudes of the shear
and bulk viscosities appreciably nor introduced a dependence of these quantities on
the rate of compaction or dilation (Gidaspow 1994; Koch & Sangani 1999; Brady,
Khair & Swaroop 2006).

In figure 14, we present the way the average collisional normal stress (defined as
pc = (σc,xx + σc,yy + σc,zz)/3) varies with the local particle volume fraction. Note that
pc denotes the sum of the contributions of collisions to the first two terms on the
right-hand side of (8). Figure 14(a) and 14(b) take the form of a single lobe, as
it corresponds to a single-hump wave, and it shows unequivocally that the average
normal stress is not a unique function of particle volume fraction and that it is
dramatically higher in the compaction branch than in the dilation branch. According
to Wang & Ge (2005), the kinetic theory of granular flows can yield good estimates,
if it is supplemented with a good estimate of the velocity fluctuations. They proposed
an energy budget analysis to estimate the particle velocity fluctuations and showed
that the corresponding particle phase pressure is in good agreement with the data
of Zenit et al. (1997). As our computations directly yield the granular temperature,
we can evaluate the adequacy of the KTGF using the computed particle phase
pressure and granular temperature. We show the ratio of collisional pressure over
granular temperature in figure 15 which shows that the lobe structure is still retained –
illustrating that the average normal stress profile determined in our simulations cannot
be simply identified with the collisional pressure of the KTGF. We have included in
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Figure 14. Dimensionless collisional pressure p̃c as a function of solids volume fraction.
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figure 15 the magnitude of pc/Tg according to the KTGF (for fully elastic collisions):

pc

Tg

= 4ρs

φ2

[1 − (φ/φrlp)1/3],

where we took φrlp = 0.62. It is clear that the computed results are not too far from
the KTGF predictions, but for the lobe structure.

We determined the collisional pressure averaged over space and time for a range of
average solid volume fractions with the default 20 × 6 × 6d3

p domain size in order to
compare with the experimental results of Zenit et al. (1997), and with the model by
Wang & Ge (2005). The results are presented in table 1, where we have normalized
the pressure with ρsv

2
∞/2, i.e. in the same way as Zenit et al. did. Note that for the LB

simulations, we also could have normalized with ρsv
2
∞,app/2 which would have yielded

values approximately three times higher; see the discussion around figures 9–11. The
scatter in Zenit et al.’s experimental results is reflected in the ranges given in table 1.
In applying Wang & Ge’s model we assumed e = 1, and (as above) φrlp = 0.62.

The order of magnitude of the collisional pressure, and the trends as a function of
the average solids volume fraction – slowly increasing (almost constant) pressure with
increasing φ̄ up to φ̄ = 0.5 where the pressure quickly collapses – roughly agree with
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φ̄ LB Zenit et al. (1997) Wang & Ge (2005)

0.360 0.0186 0.03–0.1 0.08
0.420 0.0318 0.03–0.09 0.13
0.488 0.0501 0.02–0.08 0.16
0.505 0.0689 0.01–0.05 0.16
0.542 0.0612 0.003–0.02 0.16
0.580 0.0586 – 0.15
0.610 0.0212 – 0.063

Table 1. Average solids volume fraction φ̄ versus average dimensionless collisional pressure
p̄c/

1
2
ρsv

2
∞ for LB simulations (this work), according to experiments by Zenit et al. (1997), and

according to the model by Wang & Ge (2005).

Zenit et al.’s observations for 3 mm glass particles fluidized in water. The Reynolds
number based on the terminal velocity in their experiment was Re∞ = 954, whereas
in our simulations it was 120. In the Wang & Ge model, the collapse occurs at higher
values of φ̄ and is less drastic as compared to the experiments. The LB simulations
have a pressure that is a factor of 3 smaller than the pressure due to Wang & Ge
(2005); the uncertainty related to the normalization of the LB results is of the same
order (see above).

Figure 14(c) shows two lobes as it corresponds to a double-hump wave. The rates of
compaction and dilation in the shallower void (figure 12c) are much smaller than those
in the deeper void; figure 14(c) suggests that the average collisional normal stress in
the dilation branch is approximately independent of the rate of dilation. In contrast,
the average collisional normal stress in the compaction branch of the shallower void is
appreciably lower than that of the deeper void, indicating a pronounced dependence
on the rate of compaction.

In the kinetic theory, particle phase pressure depends on both volume fraction
and the granular temperature, and the granular temperature is indeed higher in the
compaction branch than in the dilation branch, but this difference is no more than
30%, and it cannot explain the factor of 4–6 difference seen in the average collisional
normal stresses in the two branches at intermediate concentrations. It is natural to
begin by suspecting that the path dependence seen in figure 14 is a consequence of
the bulk viscosity effect, with the bulk viscosity being essentially zero under dilation
and non-negligible upon compaction. In this line of thinking, the difference between
the compaction and dilation branches in figure 14 is exclusively attributed to the bulk
viscosity effect. To test this further, we used the data in the outer lobe of figure 14(c)
and estimated the bulk viscosity at different particle volume fractions according to

pc = ps − κs

∂vp,z

∂z
. (14)

The reference pressure ps as a function of φ was estimated from the lower (dilation)
branch of figure 14(c); the compaction branch data (pc and ∂vp,z/∂z) from the outer
lobe were subsequently used to estimate κs . Using these bulk viscosity estimates and
the compaction rate at different locations in the shallow hole, we calculated what
the average collisional normal stress at different locations in this wave must be;
these results are shown in figure 14(c) as plus signs. Although not quantitative, these
estimates are close to the actual average normal stress in the shallow hole, lending
support to the argument that the bulk viscosity contribution to the particle phase
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Figure 16. Particle phase viscosity as a function of particle volume fraction for φ̄ = 0.488. The
squares (triangles) denote the shear viscosity in the compaction (dilation) branch. The plus
signs are the bulk viscosity estimates in the deep void.

stress is significant. The bulk viscosity estimates corresponding to figure 14(c) are
shown in figure 16. Also shown in this figure are the collisional shear viscosities
extracted from this simulation (according to τzz = pc − σzz = (4/3)µs∂vp,z/∂z where
τzz is the deviatoric zz-collisional stress). It is clear that the bulk viscosity estimate
is appreciably larger than the shear viscosity, which is contrary to what every theory
proposed to date predicts.

One can readily speculate, at least with hindsight, as to why large departures from
extant theories may arise in these flows. The fluctuating velocities in these flows
are of the same order of magnitude as the local mean slip velocity. As appreciable
gradients in local mean slip velocity arise over length scales of the order of only a
few particle diameters, the rate of compaction is not much smaller than the rate at
which the particle microstructure readjusts, and hence the magnitude of the radial
distribution function at contact (which enters in the theories) is not slaved to the local
mean particle volume fraction. This should be probed in future studies by studying
microstructure evolution and collision statistics in these waves. The need to displace
the fluid to achieve compaction and dilation of particle assemblies can also interfere
with the microstructure evolution and further modify the magnitudes of the stresses.

The observations regarding momentum transfer are not very sensitive to the lateral
system size (as was the case for the drag force). Figure 17 shows the collisional
pressure and the bulk viscosity as a function of the solids volume fraction for the
three simulations with φ̄ =0.505 and 4dp , 5dp and 6dp as the lateral system size. The
path dependence of the collisional pressure is maintained when the lateral size is
reduced. Also the bulk viscosity estimates are not systematically affected.

In order to see if particle pressure ps (as defined in (14)) and solids phase bulk
viscosity can be represented by simple functions of solids volume fraction and
granular temperature, we combined the information contained in the simulations
with φ̄ = 0.580, 0.505 and 0.488 (all having lateral system size 6dp) in figure 18. We
see that if the pressure is scaled with the granular temperature, and if the viscosity
is scaled with the square root of the granular temperature, they are fairly unique
functions of the solids volume fraction. Since the granular temperature is not a
unique function of the solids volume fraction, this is far less the case (as also shown
in figure 18) if we do not scale with granular temperature.
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If an additional variable such as the granular temperature is needed to close the
continuum equations, then a transport equation for this variable, such as the kinetic
theory model (Koch & Sangani 1999) must be included in the continuum analysis.
Such a transport equation includes a number of coefficients (e.g. see Koch & Sangani
1999; Wang & Ge 2005) and the present computations should be extended to measure
these coefficients as well.

4.5. Comparison with Duru et al.’s constitutive relations

Duru et al. (2002) analysed their experimental findings (in terms of voidage wave
shapes) in the context of the two-phase flow model equations as proposed by
Anderson et al. (1995). In one-dimensional form, the model allows for planar wave
solutions. Rewriting the wave solutions leads to expressions for the solids phase
viscosity µt and solids phase pressure derivative dps/dφ in terms of parameters
describing the (measured) wave shape. Their findings were presented earlier in (9).
(See equations (5.1) and (6.2) in Duru et al.; we use the symbol µt instead of µs since
it is a ‘total’ viscosity and not the shear viscosity µs as introduced in (8)). Duru et
al. (2002) estimated that φrlp ≈ φc + 0.025 with φc being the critical solids volume
fraction, i.e. the solids volume fraction at which wave instabilities set in. For the
particle–fluid combination 7 (in the taxonomy by Duru et al.) that was used in our
simulations, φc = 0.543. It is unfortunate that Duru et al. report that specifically for
this combination the scaling as proposed above does not work very well. They remark
that this combination hints at a φ̄ dependency of the solids phase viscosity.

Here, we check whether our findings in terms of solids pressure gradient and
viscosity based on numerical simulations were in the same range as estimated by the
experiments. We first introduce the solids phase stress as the sum of the collisional
pressure and the particle streaming pressure:

σs = 1
3
(σc,xx + σc,yy + σc,zz + σps,xx + σps,yy + σps,zz). (15)

The solids phase total viscosity µt we determine according to the one-dimensional
equivalent of (8):

σs,zz − ps = − κs

dup,z

dz
− µs

4

3

dup,z

dz
≡ −µt

4

3

dup,z

dz
. (16)

In figure 19, we show the results for the cases with φ̄ =0.505 and φ̄ = 0.580. First,
we determine the solids-phase stress as a function of φ. As we did for determining
the bulk viscosity, the solids phase pressure is set equal to the stress in the dilation
branches of figures 19(a) and 19(b) (and the pressure derivatives are the slopes of the
branches). The left-hand side of (16) is also readily determined from figures 19(a) and
19(b). It is the vertical distance between σs,zz in the compaction branch, and σs,zz (or
ps) in the dilation branch. Since we also know the particle velocity gradient from the
simulations, µt can be calculated. The results show that our estimates are in the same
range as those of Duru et al. (2002). The underestimation of the viscosity could, at
least partly, be explained by the absence of bounding walls in the simulations.

4.6. Two-dimensional waves

In the discussion so far, the limited domain size in the lateral directions (6dp) did
not permit the development of two- or three-dimensional structures. This way we
were able to resolve the planar waves as measured by Duru et al. (2002) in narrow
tubes. Extending one (or both) lateral dimensions of the fluidized bed will lead to
two- (or three-) dimensional instabilities. Two-dimensional waves and the onset of
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Figure 19. Left-hand column: φ̄ = 0.505, right-hand column: φ̄ = 0.580. (a, b) Average
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pressure gradient. (e, f ) Inverse solids phase viscosity. The dashed lines are scaling rules as
presented by Duru et al. (2002), see equation (9).
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Figure 20. Experiment showing the onset of a bubble in a flat fluidized bed. (a) Snapshots
of the bed; (b) schematization of the observations. [Reprinted from Duru & Guazelli 2002.]

bubbles have been studied experimentally by Duru & Guazzelli (2002). They used
flat liquid-fluidized beds that could not develop three-dimensional structures, and
allowed for good visible observations, well-resolved void fraction measurements, and
particle-tracking velocimetry measurements. Figure 20 shows a typical result of their
experiments: the development of a bubble-like void, starting from a planar wave
instability. In this case, steel beads (density 7.8 × 103 kgm−3) with a diameter of
dp = 1 mm were fluidized with water in a domain that was 120dp wide, 12dp thick
and some 2000dp high.

Such two-dimensional structures can be simulated using the approach described in
our study, provided one accepts a limited spatial resolution to keep the simulation
times manageable. In order to see the evolution of two-dimensional structures, we have
performed simulations in a 24dp × 6dp × 20dp periodic domain (the 20dp being in the
streamwise direction). As an initial condition for the particle positions and velocities
(translational and rotational), we juxtaposed four copies of a fully developed wave of
our base case (computed in a 6dp × 6dp × 20dp periodic domain). This simulation was
performed at a lower resolution than that typically used in the one-dimensional wave
analysis discussed earlier; specifically, the hydrodynamic diameter of the particles was
set to be 12 lattice units. As discussed earlier, at this resolution, the one-dimensional
wave was resolved nicely and had a speed comparable to simulations with dp= 16
and 24 lattice units. The density ratio was set to 8. The viscosity and body force
were chosen such that the terminal velocity of a single bead was 0.04 (in lattice units)
and the Reynolds number based on the terminal velocity matched the value in the
experiments (Re = 400). The collisions were smooth and elastic (µ = 0, e = 1).

Figure 21 shows how the numerical system developed a bubble very similar to the
experimental observations: the initially plane wave buckles and, at its crest, forms a
bubble-like void. The particle velocity field in the vicinity shows qualitative similarity
with the field measured by Duru & Guazzelli (2002) (see figure 22). We again note
that non-ideality of bead–bead collisions is not an essential condition for resolving
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Figure 21. Series of snapshots showing bubble formation. The upper left frame shows the
initial condition. The time-spacing between the subsequent (left-to-right, top-to-bottom) frames
is 0.057d2

p/ν.

(a) (b)

Figure 22. (a) Measured [reprinted from Duru & Guazelli 2002], and (b) simulated particle
velocities in the vicinity of a bubble.

the behaviour of void fraction instabilities in fluidized beds. The domain size in
the flow direction is too short for the bubble to behave as an isolated bubble. The
periodic system resembles a bubble train, which generally has a higher velocity than
an isolated bubble. If we estimate the bubble rise velocity and translate it back to
the experimental steel–water system, the bubble rise velocity in the simulation is
approximately 15 cm s−1. The bubble radius is approximately 0.4 cm. This bubble size
and rise velocity combination is at the lower end of the range of rise velocities for
bubble trains which is 15 to 22 cm s−1 according to the experiments (Duru & Guazzelli
2002, their figure 15b). These results on the evolution of two-dimensional structures
serve to validate the numerical simulation approach followed in this study to generate
the computational data on one-dimensional travelling waves. More in-depth analysis
of the results of such multi-dimensional structures will be addressed in a future paper.

5. Summary
Flow of dense liquid-fluidized suspensions of monodisperse spheres has been

simulated in detail by means of the lattice-Boltzmann method and a hard-sphere
approach for direct particle–particle interactions. Lubrication forces were implemented
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to represent the fluid dynamics at close proximity to solid surfaces. The formation of
one-dimensional waves in narrow periodic domains and a bubble-like void in wider
periodic domains observed in the simulations is in qualitative agreement with the
experimental data from Duru et al. (2002) and Duru & Guazzelli (2002). The onset,
shape and speed of the one-dimensional planar waves were largely insensitive to the
parameters governing the hard-sphere collisions (namely, the restitution and friction
coefficients). The wave speeds extracted from the simulations were comparable to
the reported experimental values. These results served as qualitative validation of the
simulation tool and justified more in-depth analysis of other results extracted from
the simulations (which are not experimentally accessible).

By ensemble-averaging the simulation data in a frame of reference moving with a
fully developed wave, we determined the spatial variation of various local-average
quantities typically appearing in two-fluid models for such flows. The presence of a
void, travelling as a wave in the direction opposite to gravity, allowed us to assess the
role of inhomogeneities and the sensitivity of the forces and stresses to solids volume
fraction in a single simulation.

The fluid–particle interaction (drag) force data from each simulation could be
summarized in a form reminiscent of the Richardson & Zaki model,

ffp,hyd =
g

vo

(ρs − ρf )
φ

(1 − φ)N−2
(vf − vp).

The exponent N is close to the value obtained by Richardson & Zaki (1954). In the
standard Richardson–Zaki formulation (Batchelor 1988; Jackson 2000), the velocity
vo appearing in the above equation is the terminal settling velocity of an isolated
particle, v∞. Our results for vo were very sensitive for the size of the flow domain.
Extrapolation to infinitely sized domains, however, showed that vo approached v∞.

The simulations allowed for detailed evaluation of the relative importance of the
momentum transfer mechanisms. In the dense regions of the system, momentum
transfer occurs predominantly through collisions. In the void, fluid and particle
streaming are of comparable importance. Stresses due to lubrication, and the fluid-
phase viscous stresses were of minor importance.

The travelling wave includes regions where the particle assembly undergoes
compaction (just below the rising void) and dilation (just above the void). A
remarkable degree of asymmetry was observed in the stresses in these two regions. The
average collisional normal stress was appreciably larger in the compaction branch
and it is shown that it depended on the rate of compaction. In contrast, the effect of
the dilation rate on the average collisional normal stress was only small. These results
are consistent with the notion of a bulk viscosity which assumed different values in
the dilation and compaction branches.

At a more fundamental level, the dependence of the average collisional normal
stress on the rate of compaction is probably a consequence of the non-equilibrium
microstructure of the particle assembly, which, in turn, derives from the fact that
the rates of compaction and dilation of the assembly in these waves are not slow
compared to the rate at which the microstructure relaxes. These observations suggest
that higher- order closures which recognize the slow evolution of the microstructure
in these flows and account for the effects of non-equilibrium microstructure on the
drag and the stresses may be required; such closures, however, are difficult to develop,
and it is likely that we will continue to rely on simple models which capture the gross
effects, but not all the details. Nevertheless, analysis of the type described here exposes
the limitations of such models.
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Appendix A. Effective equations of motion for the particles in the presence of
internal fluid

In our simulations, the fluid and the particles experience effective body forces which
can be related to the acceleration due to gravity, g = −gez, as follows. The net gravity
force acting on each spherical particle is

FG = − (ρs − ρ̄)
π

6
d3

pgez, (A 1)

and the force per unit volume acting on the (internal and external) fluid is

f B =(ρ̄ − ρf )gez, (A 2)

with ρ̄ = φ̄ ρs +(1 − φ̄) ρf the domain-average density of the fluid–solid mixture. It
can readily be recognized that the imposed body force accounts for both the body
force due to gravity acting on the fluid and the particles, and the contribution of the
average pressure gradient to the travelling waves in physical experiments.

The fluid inside the spherical particles is an artefact of the forcing scheme. As
long as the density of the solid is higher than the density of the fluid, the effects
of the internal fluid can be effectively corrected for. The force FLB acting on the
fluid determined by the forcing method is the sum of the force required to accelerate
the internal fluid and the force of the particle acting on the external fluid. Since
the internal fluid behaves largely as a solid body and it has nearly the same linear
velocity of the sphere, we can partition FLB as follows: FLB = FLB ,1 + Fext . where
the force FLB ,1 is the component that ensures that the internal fluid translates with
the particle; Fext is the force on the external fluid owing to the particle. The overall
linear momentum balance for the internal fluid can be written as

ρf

π

6
d3

p

dvp

dt
= + FLB,1+(ρ̄ − ρf )

π

6
d3

pgez = FLB − Fext+(ρ̄ − ρf )
π

6
d3

pgez, (A 3)

where it has been recognized that the internal fluid translates with the particle. The
corresponding equation for the particle is then

ρs

π

6
d3

p

dvp

dt
= − Fext − (ρs − ρ̄)

π

6
d3

pgez. (A 4)

Lubrication forces which arise because of inadequate resolution of the flow in between
neighbouring particles and those arising from direct particle–particle interactions (e.g.
collisions) can readily be added to the right-hand side of this equation.

Upon combining these equations, we obtain

(ρs − ρf )
π

6
d3

p

dvp

dt
= − FLB − (ρs − ρf )

π

6
d3

pgez. (A 5)

Following the same reasoning, we obtain the following angular momentum balance:

(ρs − ρf )
π

60
d5

p

dΩp

dt
= − TLB , (A 6)

where TLB is the torque acting on the fluid determined by the forcing method.
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Appendix B. Lubrication forces
The general framework for lubrication forces and torques acting on two particles

(1 and 2) as a result of the relative motion of their surfaces can be written in the
form of the following vector equation:⎡

⎣ Flub,1

T lub,1

T lub,2

⎤
⎦ =

⎡
⎣ A11 −B11 B22

B11 C11 C12

−B22 C12 C22

⎤
⎦

⎡
⎣ vp,12

Ω1

Ω2

⎤
⎦ (B 1)

with Flub,2 = − Flub,1 and vp,12 = vp,1 − vp,2 (Kim & Karila 1991; Nguyen & Ladd
2002). In the tensors A11, B11, B22, C11, C22, and C12, we only use the leading-order
terms in the parameter dp/h, with h the minimum spacing of the particle surfaces.
For the radial lubrication force (contained in the diagonal elements of the A11 matrix
in the equation Flub,1 = A11 vp,12,) the leading order is dp/h, while for the tangential
lubrication forces and torques it is ln(dp/h) (Kim & Karila 1991). Two modifications
to the above expressions were implemented to tailor them to our numerical
needs:

(i) Lubrication only acts if particle separation is less than δ =0.1dp (which is
equivalent to 1.6 lattice spacing in the default resolution). To switch on/off the
lubrication force smoothly at h = δ, in the lubrication expressions, dp/h is replaced
by dp/h − dp/δ, and ln(dp/h) by ln(dp/h) − ln(dp/δ) (Nguyen & Ladd 2002).

(ii) The lubrication force saturates once the particles are very close (at 10−4dp).
The latter restriction we use for numerical reasons (to avoid high force levels and
associated instabilities) but also with the surface roughness of the particles and/or
the mean free path of the fluid in mind.

By comparing the behaviour of a (translating and spinning) spherical particle in
the vicinity of a flat wall, Nguyen & Ladd (2002) validated the way they connected
lubrication forces (radial and tangential) and torques to the lattice-Boltzmann
method. The analytical solutions for these test cases are due to Cichocki & Jones
(1998).

We have also repeated the test simulation presented by Verberg & Koch (2006) –
namely, the normal approach of a spherical particle towards a flat surface. The solid
line in figure 23 represents the analytical solution for the force experienced by the
particle in Stokes flow. The open squares indicate the fluid–particle interaction force
computed by the LBM and the open triangles result when the lubrication force is
added to the fluid–particle interaction force computed in the simulations. In this
simulation, the resolution of the sphere was a =16; by increasing the resolution, the
accuracy can be improved further.

Experiments and modelling by Joseph et al. (2001) indicate that the radial
lubrication force can capture qualitatively the effect of the Stokes number on the
effective coefficient of restitution eeff of a submerged sphere impacting on a flat wall.
If we compare our procedure for applying the lubrication force as sketched above
to the model of Joseph et al. for estimating eeff, they differ in what happens at
close proximity to the lubricating surfaces, and in that we have included tangential
lubrication, the latter being of negligible significance. Joseph et al. let the surfaces
collide at a critical distance (commensurate with the surface roughness) away from the
point corresponding to perfectly smooth surfaces whereas we saturate the lubrication
force at a distance at which we expect roughness to become an important factor
and subsequently let the smooth surfaces collide. This implies that in our model, the
particle slows down slightly more and that eeff will become slightly smaller. While
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Figure 23. Force on a spherical particle approaching a flat wall with normal velocity vp , as a
function of the spacing h. Line: analytical solution (Cichocki & Jones 1998); squares: force as
resolved by the LBM; triangles: force resolved by LBM plus subgrid scale lubrication force.

travelling from the critical distance to contact, and back, i.e. at constant (saturated)
lubrication force, the particle velocity will decay exponentially. The factor with which
the particle velocity has decayed after having travelled the critical distance twice is
approximately exp(−2/St) with the Stokes number based on the approach velocity
u0: St = (1/9) (ρs/ρf ) (dpu0/ν). This factor does not depend on the critical distance. It
would only slightly alter the modelling results as confronted with experimental data
in figure 12 of Joseph et al. (2001): the critical Stokes number would be shifted to
slightly higher values, and the effective restitution coefficient would reduce slightly
(at St = 102 with a factor 0.98). The scatter in the experimental data of Joseph et al.
does not allow for assessing these subtle differences. In sum, the way we handle
lubrication in the present paper differs only slightly from the scheme described by
Joseph et al. (2001) and the difference is well within the scatter of their experimental
data.

Short-range lubrication forces are similar for particle–particle and particle–wall
interactions (see also Yang & Hunt 2006). The same mathematical approach can
be used to capture the influence of lubrication force on the effective coefficient
of restitution for collisions between submerged particles and between submerged
particles and wall (Joseph et al. 2001; Gondret, Lance & Petit 2002; Cichocki &
Jones 1998). Thus, it follows that the implementation of the lubrication force in our
simulations is also consistent with experimental results on submerged particle–particle
collisions.

Appendix C. Procedure to determine various local-average quantities
along the wave

In the co-travelling frame, the flow domain was divided into many slices of equal
thickness. For example, in the base case having a wavelength of 20dp , we employed
40 slices so that each slice had a thickness of 0.5dp . The particle volume fraction in
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Figure 24. Definitions as used in determining (a) the collisional stress, (b) the stresses
due to lubrication.

each slice was determined by dividing the volume occupied by solid material over the
total slice volume.

The fluid velocity was averaged over the slice by considering the external fluid (LB)
nodes only: 〈vf 〉 =

∑
vf,iVi/Vf with the sum over the fluid nodes i in the slice. Vi is

the node volume, and Vf is the total fluid volume in the slice.
For the (αth component of the) mean-square fluid velocity a similar procedure

applies: 〈v2
f α〉 =

∑
v2

f α,iVi/Vf . The root-mean-square value of the fluid velocity

fluctuations, v′
f α , is then given by v′

f α =
√

〈v2
f α〉 − 〈vf α〉2. To find the normal

components of the fluid streaming stress, we averaged over the total slice volume:
σf s,αα = ρf (v′

f α)
2Vf /V . Here, V denotes the total volume of the slice.

The fluid-to-particle force acting on each particle was first found by summing the
forces that are imposed to satisfy the no-slip condition at the sphere surface, and
these forces were localized at the particle centre. The total fluid-to-particle force in a
slice was then found as: 〈Ff →p〉 = −

∑
FiVi/V , where we sum over all the particles

whose centres lie in the slice. The negative sign is included as Fi is the force on the
fluid due to the particle.

The mean particle velocity was determined by averaging the velocities of the
particles having their centres in the slice under consideration. The same procedure is
applied to find the mean-square particle velocity. From the mean-square and mean
velocities we determine the (root) mean-square of the velocity fluctuations. The normal
particle streaming stresses are then:

σps,αα =
ρsφ(v′

sα)
2

V
.

Finding the collisional stress involved many steps. Consider a binary collision as
sketched in figure 24. The circles denote the two spheres A and B that collide and
the vertical lines are the LB grid planes normal to z (which is the direction in which
the wave travels). Suppose at the collision the particle velocities change as

vA1 = vA0 + a vB1 = vB0 − a

(index 0: before collision; index 1: after collision). Then an amount of z-momentum
equal to mpaz is transferred in the z-direction over a distance �z, x-momentum
mpax in the x-direction over �x, and y-momentum mpay in the y-direction over
�y (with mp the mass of the sphere, and �x, �y, and �z the components of the
vector �x separating the sphere centres, see figure 24(a). We evenly distribute this
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momentum transfer mpaz�z, mpax�x, mpay�y over the grey LB volume (i.e. the
volume in between the centres of the two spheres involved). The contributions of
various collisions in a time interval �t are summed up to determine the collisional
stress:

σc,αα,k =
1

�t

∑ mpaα�α

V
,

with α = x, y or z, and where the sum is over all collisions in the time interval with
the axial (z) location k lying in between the sphere centres at collision. V denotes
the volume of the domain shown in grey in figure 24(a). This procedure gave us
a stress profile with the spatial resolution of the LB simulation. By averaging over
many realizations, we were able to obtain smooth results at the slice resolution that
we have used for the other statistical quantities described above.

The procedure to compute the lubrication stress is analogous to the collisional
stress. The momentum exchange between two spheres is now not instantaneous (as it
is in a hard-sphere collision), but acts over a time interval δt (in the text, this time
interval is referred to as a sub-time-step), and the particles are not in contact. The
geometrical picture (see figure 24(b)) is similar. In the equation for the lubrication
stress, mpaα is replaced by FLαδt with FLα the αth component of the lubrication force:

σL,αα,k =
1

�t

∑
i

FLαδti�α

V
,

and the time interval �t =
∑

i δti . The volume V is now the grey volume in figure 24(b).

Appendix D. Evaluation of the fluid–particle interaction force
The spatial averaging procedure leading to the averaged equations of motion uses

a normalized weighting function g, centred at location x:∫
V

g(|x − y|)dVy = 1. (D 1)

Here, V denotes the entire region occupied by the fluid–particle mixture. The local
fluid volume fraction is given by

(1 − φ)(x) =

〈∫
Vf

g(|x − y|)dVy

〉
. (D 2)

Here Vf denotes the region occupied the fluid, φ is the local particle volume fraction,
and the angle brackets indicates averaging over many realizations. The local average
fluid velocity, uf (x), is given by

uf (x) =
1

1 − φ

〈∫
Vf

u( y)g(|x − y|)dVy

〉
, (D 3)

where u( y) is the actual fluid velocity at y. Particle averages are defined on the basis
of the location of the sphere centres, xp . Then the number density n(x) is given by

n(x) =

〈∑
P

g(|x − xp|)
〉

. (D 4)
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Consider a case where n varies only in one spatial direction, z. Then, we can show
that

φ(z) = 4
3
πa3n(z) + 2

15
πa5 d2n

dz2
+ h.o.t., (D 5)

where now a denotes particle radius. As discussed by Ten Cate & Sundaresan (2006a),
in the one-dimensional travelling waves, the second (and the higher-order) terms on
the right-hand side of (D 5) are negligible and

φ(z) ≈ 4
3
πa3n(z). (D 6)

The local average particle velocity us(x) is given by

us(x) =
1

n(x)

〈∑
P

upg(|x − xp|)
〉

, (D 7)

where up is the velocity of the pth particle located at xp .
The two-fluid model that results from the averaging process takes the following

form:

∂φ

∂t
+ ∇ · (φus) = 0, (D 8)

∂

∂t
[ρf (1 − φ)] + ∇ · [ρf (1 − φ)uf ] = 0, (D 9)

ρf (1 − φ)

[
∂uf

∂t
+ uf · ∇uf

]
= ∇ · πf − ∇ · σ f s − F + ρf (1 − φ)g + T , (D 10)

ρsφ

[
∂us

∂t
+ us · ∇us

]
= ∇ · σ s + F + ρsφg. (D 11)

Here, σ s is the sum of collisional, lubrication and streaming stresses in the particle
phase. πf is the local-average fluid-phase stress:

πf =
1

1 − φ

〈∫
Vf

σ ( y)g(|x − y|) dVy

〉
, (D 12)

where σ ( y) is the local fluid-phase stress. σ f s , the fluid-phase streaming stress, is given
by,

σ f s =

〈∫
vf

ρf (u( y) − uf ( y))(u( y) − uf ( y))g(|x − y|) dVy

〉
. (D 13)

The fluid–particle interaction force, F, is defined as:

F =

〈∑
p

g(|x − xp|)
∫

sp

n · σ ( y) dSy

〉
. (D 14)

Note that, in this expression,
∫

sp
n · σ ( y) dSy is the total fluid–particle force over the

surface of the pth particle, and it is assigned to the centre of the pth particle.
The force T (per unite bed volume) is due to the finite size of the particles. The

total fluid–particle force which appears in the fluid phase momentum balance is〈∑
p

∫
sp

n · σ ( y)g(|x − y|) dSy

〉
,
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which is different from F given by (D14). This difference is the vector T . This force
has been estimated from LB simulations of flows in inhomogeneous packed beds by
Ten Cate & Sundaresan (2006a). To leading order, we can show that

T = ∇ · t1(x), (D 15)

where

t1(x) = a

〈∑
p

g(|x − xp|)
∫

sp

nn · (σ ( y) − πf ( y))dSy

〉
(D 16)

We label t1(x) as fluid–particle stress. We have evaluated t1(x) from our LB simulation
results and found it to be generally small; separately, Ten Cate & Sundaresan (2006a)
found T to be quite small, and so we will not consider it any further in our analysis.
Equation (D10) then simplifies to

ρf (1 − φ)

[
∂uf

∂t
+ uf · ∇uf

]
= ∇ · πf − ∇ · σ f s − F + ρf (1 − φ)g. (D 17)

Ten Cate & Sundaresan (2006a) studied fluid flow in inhomogeneous packed beds,
and found that σf s was comparable to ρf (1 − φ)uf uf and that contributions from
both of there were much smaller than those from the other terms on the right-hand
side of (D 17). In our LB simulations, we found the fluid-phase streaming stress to
be measurably large in the void region, and so there is some basis retaining this
term and for exploring its consequence. Combining πf and σf s into a single effective
fluid-phase stress tensor σ f , we can write (D 17) as:

ρf (1 − φ)

[
∂uf

∂t
+ uf · ∇uf

]
= ∇ · σ f − F + ρf (1 − φ)g. (D 18)

We now express F as a sum of two contributions (e.g. see Jackson 2000):

F = f + φ∇ · σ f . (D 19)

For one-dimensional flows, then the z component takes the form

Fz = fz − φ
∂p

∂z
+ φ

∂τf,zz

∂z
− φ

∂σf s,zz

∂z
. (D 20)

Here, τf,zz is the zz -component of the local-average fluid phase viscous stress. As the
viscous stress was found to be negligibly small in our problem, we can simplify (D 20)
as

Fz ≈ fz − φ
∂p

∂z
− φ

∂σf s,zz

∂z
. (D 21)

This equation appears in the main text as (10).
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