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Automatic Identification of Time-Series Models
From Long Autoregressive Models

Piet M. T. Broersen and Stijn de Waele

Abstract—Identification is the selection of the model type and
of the model order by using measured data of a process with
unknown characteristics. If the observations themselves are used,
it is possible to identify automatically a good time-series model for
stochastic data. The selected model is an adequate representation
of the statistically significant spectral details in the observed
process. Sometimes, identification has to be based on many less
than characteristics of the data. The reduced statistics infor-
mation is assumed to consist of a long autoregressive (AR) model.
That AR model has to be used for the estimation of moving average
(MA) and of combined ARMA models and for the selection of the
best model orders. The accuracy of ARMA models is improved by
using four different types of initial estimates in a first stage. After
a second stage, it is possible to select automatically which initial
estimates were most favorable in the present case by using the fit
of the estimated ARMA models to the given long AR model. The
same principle is used to select the best type of the time-series
models and the best model order. No spectral information is lost
in using only the long AR representation instead of all data. The
quality of the model identified from a long AR model is compa-
rable to that of the best time-series model that can be computed
if all observations are available.

Index Terms—Autocorrelation, autocovariance function, order
selection, parameter estimation, power spectral density, spectral
analysis, system identification.

I. INTRODUCTION

T IME-SERIES modeling is a parametric method to esti-
mate the covariance and the power spectral density of sto-

chastic processes. The parameters of the model describe the
statistically significant details in the autocovariance function
or in the spectral density of the data. Three model types can
be used: autoregressive (AR), moving average (MA) and com-
bined ARMA models. No well-established algorithm for prac-
tical ARMA spectral estimation has been found with asymptotic
theoretical arguments [1]. Maximum likelihood estimates may
display spurious peaks as a result of almost canceling pole-zero
pairs. The ARMA estimator of Durbin [2] can be used for the
separate estimation of the AR and the MA parameters. The
quality of the original estimator of Durbin has been improved
by using a better order for the intermediate AR model [3] in a
new and robust algorithm that will always produce stationary
and invertible models. The usual intermediate AR order was
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too low, while taking it too long also has a negative influence
on the accuracy. The improved Durbin estimator enabled the
automatic identification of a single time-series model for spec-
tral estimation [4]. For stationary stochastic processes, a freely
available automatic time-series algorithm [5] outperforms the
modified, windowed, and tapered periodograms that are derived
from the fast Fourier transform of the data. Identification with
the ARMAsel algorithm [5] includes the automatic selection of
the model type, (AR, MA, or ARMA) and the model order from
a large number of candidate models.

The ARMAsel algorithm uses already a long AR model
during the computation of ARMA and MA parameters, even if
the data themselves are available. The measured observations
themselves are only used for three purposes in the automatic
time series identification algorithm [5]:

• the computation of a long AR model;
• the initial stage in ARMA estimation to separate AR and

MA parts;
• the computation of the residual variances required as input

for order selection.

The question addressed in this paper is whether the last two
points can be evaluated with only the information of a long AR
model as reduced statistics input. Then, the automatic selection
of model type and model order is also feasible if the data them-
selves are not available, but only the reduced information of a
long AR model. The purpose is to find a reduced statistics esti-
mator with an accuracy that is always close to the best accuracy
that can be attained if all data would be available.

The development of a reduced statistics estimator has sev-
eral reasons. The first may be the reduction of the computing
time if the number of observations is extremely large. An-
other application is the reduction of the amount of raw informa-
tion to be transmitted to earth by satellites from outer space,
without loss of statistically significant information. Also, the
identification of a time-series model for a given spectral den-
sity is possible. That was necessary to develop the signal pro-
cessing for a new satellite to explore the gravity field of the
earth [6]. Only the expected power spectral density of the dis-
turbing noise signal can be specified before the launching. Its
inverse Fourier transform is an autocovariance function that can
be transformed into a long AR model with the Yule–Walker
equations and the Levinson–Durbin recursion [7]. That yields
the optimal whitening filter for the accurate estimation of the
gravity. Further applications are found in missing data prob-
lems and in the analysis of segmented data. Only AR models are
easily estimated from the data then. Accurate algorithms for MA
and ARMA estimation are not available for those applications,
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although those models may be the best representation. Further-
more, the statistical analysis of subbands of the frequency range
has been made with a reduced-statistics algorithm.

A well-known reduced statistics ARMA estimator is the
method of the extended Yule–Walker equations, which used
estimated autocovariances to separate AR and MA parts [7].
The performance greatly varies with the process characteristics
due to the triangular bias in estimated lagged product auto-
covariances. Therefore, this method cannot be applied with
confidence to data with unknown characteristics. A second
known reduced-statistics ARMA estimator is based on an
intermediate autoregressive model [8], and a third estimator is
based on the impulse response of an intermediate AR model
[9]. This paper describes a fourth principle to determine ARMA
estimates, based on inverse autocorrelations. Also, for pure MA
estimation, Durbin introduced a reduced statistics estimator
based on a long AR model [10].

None of the four reduced-statistics ARMA methods gives
satisfactory results in one stage. Therefore, the AR parameters
obtained from those four different reduced-statistics estimators
are used as initial conditions for a second stage ARMA estimator
of the MA and of the AR parameters separately. A new reduced-
statistics order selection criterion is derived. It computes the
fit of estimated models by comparing them with the long
AR model that generally has many insignificant parameters.
That selection criterion is applied for an automatic, statistically
based, choice which of the four initial estimates for the ARMA
parameters is used. Having obtained the best ARMA model,
the same criterion can be used to select the best order for AR
and MA models and for the automatic selection of the model
type. The accuracy of the resulting spectral model based on
the long AR model is in simulations compared to the best
spectral model that could be obtained if the data would be
available.

II. ARMA MODELS

An ARMA process is defined as [11]

(1)

where represents a series of independent, identically dis-
tributed, zero mean white noise observations. The power spec-
tral density and the autocovariance function of the process are
exactly determined by the parameters and by the variance of
or . The ARMA process can also be written with polynomials
of AR and of MA parameters as

(2)

The process is purely AR if 0 and MA if 0. ARMA
models may have estimated polynomials of arbitrary orders, not
necessarily equal to and . In this paper, AR MA , and
ARMA models will be considered. Models are sta-
tionary if the estimated roots of are inside the unit circle
and invertible if the roots of are inside the unit circle.

Reduced-statistics estimators are derived from , a long
AR model estimated from the data . Apart from the pa-
rameters (or autocovariances or reflection coefficients), it is also
assumed that the number of observations is given for order se-
lection with the reduced statistics estimators. If is not known,
it can be guessed from the long AR model by assuming that the
highest order AR parameters are not significant and have the
asymptotical variance . Therefore, can be estimated as
the inverse of the average of the squares of those high-order AR
parameters.

The parameters of an estimated time-series model can be used
to compute the power spectral density and the autocovariance
function of a stationary stochastic process [11].

III. FOUR FIRST-STAGE REDUCED-STATISTICS

ARMA ESTIMATORS

The simultaneous estimation of AR and MA parameters from
the data with a maximum likelihood approach is computation-
ally not attractive and it does not produce accurate models in
many circumstances [1]. The solution in the ARMAsel algo-
rithm [4], [5] uses filtering of the data with the inverse of a long
AR model to have an estimate of the innovations in (1).
Using and , initial ARMA estimates are determined with
a least squares algorithm in a first-stage ARMA estimator using
the data.

To develop a reduced-statistics method, the first problem is
to find an initial separation of the ARMA model in an AR part
and an MA part. The first stage determines initial estimates
for the AR part of an ARMA model. It is enough to compute
ARMA models, for between 2 and some maximum
order, generally 10, or 200 if that is less. Estimation of
ARMA models with arbitrary orders and is discour-
aged if the orders are not a priori known but have to be selected.
It requires much computation time without providing a better
model after automatic identification. For 1, the AR(1)
model is used. The size of the intermediate AR model that is
used to calculate the parameters of an ARMA
model is given by if the mean is subtracted,
else . Here, denotes the AR order
that is selected from AR models with candidate orders from
AR to AR , including white noise and all possible AR
models. If can be chosen freely, it can be taken as 2 with
a limit of 1000 or 2000, like in the ARMAsel algorithm [5].
If would become greater than , that upper
value has to be used for . It has been shown that using only
this fraction of the totally available AR parameters improves
the accuracy of the estimated ARMA model [3]. The sliding
order depends on the number of estimated parameters and
on the selected AR order . Hence, a computer algorithm can
choose it automatically and it requires no subjective choices of
the data analyst.

The first method, long AR, has been introduced orig-
inally as a single-stage ARMA estimator [8]. It uses
an intermediate AR model denoted as basis
for computations, where is determined by the
first reflection coefficients of the given long AR
model. depends on the order of the ARMA model,
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which is currently estimated, as defined above. The long
AR method employs the relation

or (3)

A double hat in and indicates the first-stage
AR polynomial and parameters, respectively. A serious
problem is that the relations in (3) are approximations.
They give exact results for exact polynomials, but in the
practice with estimated polynomials, they cannot be sat-
isfied exactly. Standard estimation theory would require
information about the statistical errors in these equations.
This information is not available, and for that reason, it
is not possible to derive a maximum likelihood estimator
or any other efficient estimator from (3). By arbitrarily
concentrating the inaccuracies in an error signal , the
second representation in (3) can be written as

(4)

by equating the left- and right-hand side coefficients of
in (3). Note that the parameters are zero for .

Now, the initial stage MA parameters of an ARMA
model can be estimated without knowing the AR pa-

rameters, but with the knowledge that AR parameters have
to be zero in an ARMA model for orders .
Therefore, MA parameter estimates can be found as a
least squares solution from the equations in (4) with or-
ders higher than as

(5)

by minimizing the sum of for . A
solution exists for . If , there
are just enough equations to estimate the MA
parameters with . For greater , the equations
are overdetermined and need a least squares solution.
This step will be followed by the calculation of the
AR parameters. It seems attractive to determine an AR
solution with the first equations in (4). Substitution
of the MA estimates from (5) yields estimates with

for . However, simulations have
shown that better initial first stage AR parameters can
be found for a given MA model with the second-stage
AR algorithm, which will be derived later. The informal
derivation of this algorithm clarifies that no statistical
optimality can be claimed for this first-stage solution of
the initial estimates. The same lack of statistical optimality
applies to the next three first-stage estimators of initial
estimates. It is expected or hoped that at least one of
the four estimators will be adequate for each different
type of measured data. Simulations will be necessary to
investigate the performance.

The second method, denoted long MA, is an alternative
evaluation of the first relation in (3). It uses an estimate
for the impulse response . This can also be seen
as a long MA model, which is calculated from the
parameters of . The length of the impulse response
computed from can be chosen free, much
greater than or . Suppose that the impulse response
practically died out at

or

(6)

Knowing that the MA parameters are zero for ,

the AR parameters for the initial follow as the
least squares solution from

(7)

The different expressions for in (5) and (7) indicate
once more that the application of least squares on approx-
imate relations will not lead to theoretically optimal or
efficient estimators. This long MA method has been de-
scribed before [9].
The third method to find initial conditions for the AR
part of the ARMA model is denoted long
COV, because it uses the covariance function as reduced
statistic information [7]. The required formulas to estab-
lish the relations between the AR parameters in the long
AR model and the autocovariances are
the Yule–Walker equations [11]

with (8)

Now the initial AR parameters are calculated from
Yule–Walker equations with a least squares solution

(9)

by minimizing the sum of for . It is as-
sumed that is greater than , which will be guaranteed
by the choice .
The fourth method, long Rinv, is new and uses inverse
correlations [11]. Inverse correlations and spectra are ob-
tained by interchanging AR and MA polynomials [11].
The inverse correlation is found from the parameters of
the intermediate AR model with

(10)

Further, is zero for shifts greater than and it is
symmetric around shift zero. The initial estimates for the
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MA parameters are found with the overdetermined
equations

(11)

by minimizing the sum of for . Af-
terwards, the second-stage AR method is used to calculate
the first-stage AR model from these estimated MA param-
eters, like in the long AR method before.

IV. SECOND-STAGE REDUCED-STATISTICS ARMA ESTIMATORS

None of the four investigated reduced-statistics estimators
gives a satisfactory accuracy for all types of stationary stochastic
data in this initial stage; all require at least two stages. The first
stage determines initial estimates for the AR part of an ARMA
model; also, initial MA estimates are sometimes necessary to
find that AR part, but those are not used any further. A consid-
erable improvement in the accuracy is always obtained in the
second stage. That stage uses new and improved variants of
Durbin’s ARMA methods [2], [10].

The accuracy of estimated models and can be
characterized with the model error (ME), which is a scaled ver-
sion of the squared error of prediction (PE) [12]. PE is the vari-
ance of the signal remaining after filtering data with the inverse
of the estimated model

ME
PE

(12)

The ME can only be computed if the true process parameters in
(1) are known. It is an excellent measure to evaluate the quality
of estimation and selection algorithms in simulations. The ex-
pectation of the ME for unbiased models equals , the
number of estimated parameters. The quotient PE is also
defined as the power gain of an ARMA process

PE
(13)

This quantity can be computed as of the ARMA
process

(14)

With this definition of the , some properties of the ME are
derived easily like

ME ME

ME

(15)

It is well known that the best fitting AR model to an
arbitrary process is the solution of the Yule–Walker relations
to equate the AR autocovariance function to the first au-
tocovariances of the process [7], [11]. This formulation can be

given formally with the ME of (12). The best AR model of
an arbitrary ARMA process can be written as

ME (16)

It is not accurate to approximate some estimated autocovari-
ance sequence by an MA model of the same length [7], and the
best MA model requires a nonlinear optimization. If
equals exactly , the numerator and the denominator
of in (15) can be interchanged and the product AR and MA
polynomials in (14) are equal. If the ME is small, about the
number of estimated parameters, it turns out that interchanging
the MA and the AR polynomial has only a small influence on
the ME

ME ME (17)

The small error of this approximation can be illustrated by
comparing the output variances of an AR and of an MA
process that have the same small parameter and the same
input variance . They are and ,
respectively. Therefore, the approximation

ME

ME

ME (18)

can be derived to estimate MA models of a given ARMA
process. The final step in (18), interchanging the sequence of the
arguments of estimated and true parameters in the original ME
of (12), is only a close approximation for well fitting models.
Nevertheless, this interchange will be applied because the first
representation of (18) has no easy or computationally attractive
solution that minimizes this ME. The solution would be highly
nonlinear. The last representation of (18) shows a close agree-
ment with Durbin’s MA method [10].

After the four first-stage AR estimates have been computed,
a second stage algorithm follows, consisting of two steps. It is
applied to all four AR initial first-stage estimates and it requires
or uses no information about initial MA parameters. In stage
two, the initial AR estimates are first used to compute the final
MA model. Then, this final MA model is used to improve the
first-stage AR estimate.

Divide the intermediate AR model by the initially

estimated AR polynomial of the first stage and
use the MA method of Durbin [10] to determine the MA
estimates .

ME

ME (19)
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In this derivation, use is made of the approximation due
to interchanging the sequence of the elements of the ME,
like in (17) and (18).
Multiply the intermediate AR model with this
newly estimated MA model . The solution for the
improved AR parameters can be formulated as

ME

(20)

This step yields the AR model with the first au-
tocovariances equal to the first autocovariances of the
product model . The same computation is

also used to calculate in the first stage for the long
AR and the long methods where the overdetermined
equations yielded an initial estimate for .

The two steps in the second stage can be iterated if desired. It-
eration of the second stage will give an improved model if poor
or zero initial stage AR estimates would be used. In simula-
tions with the reduced-statistics initial estimates of this paper,
up to ten iterations did not improve the quality of the estimated
models for the very best of the four types of initial estimates, at
least in most simulation examples. Generally, iterations tend to
converge for all four methods to the same value that is slightly
worse than the result of the best type of the first stage obtained
after a single iteration, but it will often give an improvement for
the three other types of initial estimates. In other words, poor
initial estimates will mostly be improved with iterations in the
second stage, but generally the best initial estimate will become
worse with iterations.

V. REDUCED-STATISTICS ORDER SELECTION

Most order selection criteria are based on the reduction of
the residual variance as a function of the model order, with
an additional penalty for every estimated parameter. As this
paper deals with time-series models that are based on a long AR
model, without knowledge of the data, no direct estimate for the
residual variance is available. However, it is possible to compare
the fit of different estimated AR, MA, and ARMA models to
the long AR model that represents all given information
about the process. The power gain of (13) describes the fit of an
estimated model to a true process. Replacing the true process
polynomials by the long AR model , the fit is given as the
power gain

(21)

Thus, the power gain is the residual
variance of an estimated ARMA model relative to the
unknown input variance. It can be calculated from the estimated
parameters together with , without knowledge of the data

. A simple computation of the ARMA power gain is found
with (14) by separating the AR and MA filter operations [12].
This relative residual variance can
be used in an order selection criterion that is based on the loga-
rithm of the residual variance. The unknown input variance be-

comes a constant in the logarithm of , the same constant for
all estimated models. Therefore, it has no influence on the min-
imum of the order selection criterion. The penalty factor 3 is
preferred for order selection [13]. The selection criterion for an
ARMA model becomes

(22)

where equals the penalty factor three times the total number
of parameters, AR parameters, MA parameters, and an
additional parameter for the subtraction of the estimated mean.
This order selection criterion has been used to select the best
order after the second stage, for each of the four ARMA first-
stage methods of Section III. Furthermore, has also
been used to select between those four estimators. In this way,
the best first-stage algorithm is selected automatically.

The same type of criterion (22) can also be used for the selec-
tion of the order of estimated AR or MA models, by substituting
in (22) 1 or 1 for and , respectively,
and by using the number of estimated parameters in the penalty
function. In this way, the criterion for the MA model of order
becomes

(23)

For AR order selection, a similar criterion can be used, but a
finite sample criterion is to be preferred if the highest candidate
order for selection is greater than 10 [13].

VI. SIMULATIONS

In simulations, the quality of estimated models can be mea-
sured with the model error ME (3). The Cramér–Rao lower
bound for the spectral accuracy of unbiased models, expressed
in the ME, equals the number of estimated parameters. Every ef-
ficiently estimated parameter gives a variance contribution 1 to
the expectation of the ME. For biased models, also an additional
bias contribution is present in the ME if the model order is lower
than the true process order. The bias is directly proportional to

. Generally, order selection criteria should select lower order
biased models if the bias contribution to the ME is less than 1
for each parameter that is left out of the selected model. In this
way, the average ME of biased estimated models could become
less than the number of truly nonzero parameters. That number
is the Cramér–Rao lower bound for unbiased models, with at
least all truly nonzero parameters included. The expectation of
the ME has been made independent of and of the variance of
the signal by using the normalization in (12).

First, simulations have been carried out with Yule–Walker
and with Burg [7] estimates for the parameters of the long
AR model . Using AR parameters, estimated with the
Yule–Walker AR algorithm, is identical to using the biased

for the covariance as information. This bias
is known to give spectral distortions [4]. In some examples,
the final ARMA results are comparable with either Burg or
Yule–Walker parameter estimates for the long AR information.
However, in other examples, the performance of Yule–Walker
estimates for the parameters of the long AR is much worse than
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TABLE I
COMPARISON OF MODELS FROM REDUCED-STATISTICS AND FROM DATA. THE

MODEL ERROR ME OF SELECTED ARMA MODELS FOR THE FOUR

FIRST-STAGE INITIAL ESTIMATES AFTER THE SECOND STAGE, THE AUTOMATIC

SELECTION FROM THOSE FOUR, THE ARMA MODEL SELECTED FROM THE

DATA, THE REDUCED–STATISTICS MODEL ARMAsel rs WITH TYPE AND

ORDER SELECTED FROM THE REDUCED-STATISTICS INPUT AND THE ARMAsel
MODEL WITH TYPE AND ORDER SELECTED FROM THE OBSERVED DATA,

ALL AS A FUNCTION OF THE RADIUS INDICATOR �. THE NUMBER OF

OBSERVATIONS N IS 200 AND THE LENGTH LOF THE REDUCED-STATISTICS AR
MODEL IS 100. THE FIRST SIX COLUMNS ARE AVERAGES OF ONLY ARMA

MODELS WITH SELECTED ORDERS. IN THE LAST TWO COLUMNS, THE

MODEL TYPE IS SELECTED AS WELL, FROM THE AR(100) MODEL AND

DIRECTLY FROM THE DATA, RESPECTIVELY

Burg, while Burg never is so bad. Hence, Burg’s AR results
are preferred for the long AR estimator as input for automatic
identification of a good time-series model.

Simulations of an available automatic reduced statistics
algorithm ARMAsel rs [14] with an ARMA process with
poles and zeros on the same radius are reported here. The
AR reflection coefficients are , and ; the
MA follow from with the
same Levinson recursion [7] as the usual for the AR polyno-
mial. Some results are reported in Table I. For other processes
and sample sizes, similar results are obtained in comparing
models estimated from long AR with models estimated from

observations. Table I shows that the first-stage method
long COV is a poor method for the processes used. However,
examples have been reported [9] where this method produced
the best first-stage initial estimates. In this example, the other
three methods of initial estimates are more or less comparable,
except for the largest radius, where long AR is definitely the
best. If the absolute value is less than 0.8, the best estimated
ARMA models are of lower order than the true ARMA
orders for . The bias in estimated ARMA models
is less than the variance increase that would occur if the full
ARMA model had to be estimated. The order selection
criterion selects those lower orders. The average ME is less than
the Cramér–Rao lower bound for unbiased models, which is 12
for the ARMA process with subtraction of the mean.

It is remarkable that the ME of the automatically selected ini-
tial condition type in the column “selected” follows the smallest
ME of the four previous columns rather closely. This simula-
tion result is a strong support for the use of four different initial
conditions as a first stage in reduced statistics ARMA modeling.
The selection of the best of four reduced statistics estimators can
be carried out with the selection criterion of (22). A comparison
of the columns “selected” and “ARMA data” reveals that the
quality of ARMA models from reduced statistics and from data
is comparable in this example; each of the columns is some-
times better. Also, the quality of models with selected order and
type in the last two columns is similar. The data identification
algorithm ARMAsel [5] has been used in the last column. The

TABLE II
COMPARISON OF AUTOMATICALLY SELECTED MODELS FROM DATA AND FROM

LONG AR. AVERAGE ME OF MODELS OF SELECTED ORDER AND TYPE FOR AN

ARMA(6; 5) PROCESS WITH RADIUS � = 0.7 AS A FUNCTION OF

N . IDENTIFICATION IS BASED on DATA WITH ARMAsel [5] OR ON

REDUCED STATISTICS WITH ARMAsel rs [14]

identification of both the model order and the model type shows
that a long AR model can provide about the same accuracy for
identification as using the data.

Table II compares identification of time-series models from
the observations themselves and from a long AR model, respec-
tively, as a function of the sample size , for ARMA pro-
cesses with 0.7. The accuracy is about the same. The se-
lected reduced statistics model is slightly better for small ,
whereas data are somewhat better for the larger . The results
are, for about 1000, close to the Cramér–Rao lower bound,
which is 12. For higher , the average ME increases, which in-
dicates a small persistent bias in the algorithms. Furthermore,
with reduced statistics the data can still speak for themselves
in selecting their best model with the algorithms that have been
proposed here. Also, the selection of the best model type is pos-
sible with the order selection criteria (22) and (23) that use the
fit of the estimated AR, MA, and ARMA models with respect
to the very long AR model.

VII. CONCLUSION

An order selection criterion has been defined that can be de-
rived from a long AR model of the data. That criterion can be
used to select automatically the best performing of four ARMA
estimators. It can also select the ARMAsel rs model with the
best model order and the best model type (AR, MA, or ARMA)
for processes that are only represented by the information of a
long AR model.

All ARMA models estimated with the two-stage reduced-sta-
tistics estimators are stationary and invertible. Single-stage es-
timators give no accurate ARMA models for most processes.
The performance of four estimators of the AR part as initial
estimates for a second stage depends greatly on the example.
However, at least one of the four proposed estimators was quite
good in each simulation example.

The accuracy of the ARMAsel rs model based on a long
AR model is in most examples comparable with the ARMAsel
model that selects the best model type and model order with esti-
mations from the observed data. Hence, using a long AR model
estimated with the Burg algorithm gives no loss of spectral in-
formation. It remains possible to determine the statistical signif-
icance of details in the spectrum with the selection of order and
type of time-series models if only a long AR model is given.
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