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Abstract. The traditional wind load assessment for long-span bridges rely on assumed models
for the wind field and aerodynamic coefficients from wind tunnel tests, which usually introduces
some uncertainties. It is therefore desired to develop tools that can utilize full-scale vibration
response data from existing bridges in order to study the wind loading in detail for in-situ
conditions. This paper presents a novel case study of inverse identification of dynamic wind
loads on the 1310 m long Hardanger bridge, a suspension bridge equipped with a network of
accelerometers. The identification method used is recent a unscented Kalman-type filter for
joint input, state, and parameter estimation. A system model considering the still-air modes
in addition to a quasi-steady submodel for the self-excited forces of the bridge is presented.
Herein, the aerodynamic lift and pitch parameters are considered unknown and are jointly
estimated with the buffeting forces. (...)
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1 INTRODUCTION

For very long and slender bridges, aerodynamic performance often becomes the critical fac-
tor in the reliable design [1]. Hence, it is important to understand the dynamic response behavior
under wind excitation. In this arena, it is commonly accepted that the theories behind buffet-
ing forces due to turbulence [2] and self-excited forces induced by the motion of structure [3]
are governing. In addition to this comes static wind pressures and vortex-shedding [4, 5], but
these are not the focus of this contribution. The calculation of the buffeting and self-excited
involves the use of aerodynamic coefficients or functions, which in today’s practice often are
obtained from series of wind tunnel tests. Alternatively, simulations based on computational
fluid dynamics can be performed [6, 7], with the drawback of requiring immense computational
power. The numerical and small-scale experiments involve some uncertainties and simplifi-
cations, and sometimes it can be beneficial to learn directly from the existing bridges in their
operating environment.

In recent years, the focus on structural health monitoring (SHM) have given engineers abun-
dance of full-scale data from long-span bridges. This full-scale data can be valuable since it
contains information the behavior of the bridge in the complex conditions that occurs in reality.
It is therefore desired to use such data to explore the ability for testing and validation of the
models for the wind loading and aerodynamic interaction. This can be a difficult task since
the application of advanced signal processing methods can be encounter some trouble due to
uncertain or non-idealized conditions, disturbances, and data from limited sensors.

One available tool to reduce the uncertainties in the dynamic behavior of structures is the
use of inverse force identification methodologies in which the excitation forces, considered
unknown, are estimated from limited (acceleration) response measurements. Although many
techniques have been proposed in the literature [], the application of these inverse methods are
not well-explored for large bridges. There is therefore a need to test the available methods to
get experience on the performance.

In this work, the apply the novel input and state estimator in [8], which is a generalized
version of earlier algorithms [9, 10]. This Kalman-type algorithm can be implemented in an
unscented scheme, and allows for an extension to estimation of unknown system parameters.
The method is tested for measurement data from a long-span suspension bridge. In the presented
framework, the states are the modal responses, the unknown inputs are the buffeting forces and
the uncertain parameters are quasi-steady coefficients related to the self-excitation of the bridge
box girder under wind loading.

2 THEORY

2.1 Equations for the wind-induced dynamic response

This section derives a state-space formulation for the bridge dynamics, taking into account a
quasi-steady form of self-excitation leading to aerodynamic stiffness and damping. We assume
the following equations of motion in a FE-format for the response u(t) ∈ RnDOF:

M0ü(t) + C0u̇(t) + K0u(t) = fb(t) + fse(t) (1)

where fb(t) are the buffeting forces and (·)0 denotes still-air properties. The self-excited forces
fse(t) depend on the displacement and velocity motion of the structure, and is dealt with later in
this section. A modal truncation (u(t) = Φz(t)) yields the reduced-order representation for the
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modal coordinate vector z(t) ∈ Rnm:

z̈(t) + 2ΞΩż(t) + Ω2z(t) = ΦTfb(t) + ΦTfse(t) (2)

Ω and Ξ ∈ Rnm are diagonal matrices that contain the still-air natural frequencies and damping
ratios. By introducing the modal state variable x(t) = [z(t)T ż(t)T]T ∈ R2nm , Eq. 2 can be
cast into state-space form. Furthermore, the force vector fse(t) is set equal to Hse,d(t, ε)Φz(t) +
Hse,v(t, ε)Φż(t), a transformation that is explained later. The time-evolution of the system then
becomes:

ẋ(t) =
([ 0 I
−Ω2 −2ΞΩ

]
+

[
0 0

ΦTHse,d(t, ε)Φ ΦTHse,v(t, ε)Φ

])
x(t) +

[
0
I

]
ΦTfb(t) (3)

or in compact notation:
ẋ(t) = Ac(t, ε)x(t) + BcΦ

Tfb(t) (4)

It is noted this results in a system which is linear, but time variant. When considering accelera-
tion and displacement measurements, the output vector become:

y(t) = Saü(t) + Sdu(t) = Gc(t, ε)x(t) + JcΦ
Tfb(t) (5)

with corresponding matrices:

Gc(t, ε) = SaΦ
[
−Ω2 −2ΞΩ

]
+
[
SdΦ 0

]
+ SaΦ

[
ΦTHse,d(t, ε)Φ ΦTHse,v(t, ε)Φ

]
(6)

Jc = SaΦ (7)

B

(xi, yi, zi) ∆x
Wind

ry(t, xi)rz(t, xi)

rθ(t, xi)
V (t, xi)

x

yz D

Figure 1: Suspension bridge and motion vectors of a segment of the box girder subjected to wind.

Next, the self-excited forces on the box girder are discussed. Although many model for-
mulations are available [11], a simple memory-less model is adopted in this study for reasons
of simplicity, implying the self-excited forces depend only on the structural displacement and
velocity in the same time instant. Specifically, we employ a model called modified quasi-steady
theory [12]. With reference to Fig. 1, the localized self-excited forces on a slice of the box
girder with coordinate xi are given on the form:fse,y

fse,z

fse,θ

 =
1

2
ρV 2B∆x

(p4 1
B

p6
1
B

p3
h6

1
B

h4
1
B

h3
a6 a4 a3B

ryrz
rθ

+

p1 1
V

p5
1
V

p2
B
V

h5
1
V

h1
1
V

h2
B
V

a5
B
V

a1
B
V

a2
B2

V

ṙyṙz
ṙθ

) (8)

or in compact notation:

fse(t, xi) = Hd(t, xi, ε)r(t, xi) + Hv(t, xi, ε)ṙ(t, xi) (9)
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where the parameter set ε = [a1 . . . a6 h1 . . . h6 p1 . . . p6]
T consist of 18 quasi-steady coeffi-

cients. This corresponds to modeling the aerodynamic derivatives as functions proportional to
Bω
V

or (Bω
V

)2 [12]. In the presented framework, the mean wind velocity V (t, xi) is allowed to
vary with time, although the notation V is used for brevity. The span is divided into M equally
spaced nodal points with coordinates {x1, . . . , xM}. Using matrices Si ∈ R3×nDOF to select
r(t, xi) from the larger vector u(t), the vector fse(t) in Eq. 1 now is taken as the lumped sum of
contributions from all M nodes:

fse(t) =
M∑
i=1

ST
i fse(t, xi) =

M∑
i=1

ST
i

(
Hd(t, xi, ε)r(t, xi) + Hv(t, xi, ε)ṙ(t, xi)

)
(10)

=
M∑
i=1

ST
i

(
Hd(t, xi, ε)Siu(t) + Hv(t, xi, ε)Siu̇(t)

)
=

M∑
i=1

ST
i Hd(t, xi, ε)SiΦz(t) +

M∑
i=1

ST
i Hv(t, xi, ε)SiΦż(t)

= Hse,d(t, ε)Φz(t) + Hse,v(t, ε)Φż(t)

where the definitions of the (time and) parameter-dependent matrices Hse,d(t, ε) and Hse,v(t, ε) ∈
RnDOF×nDOF now are clear. A discretization in time (tk = k∆t) of Eq. 4 and 5 now gives the fol-
lowing system equations:

xk+1 = Ad(tk, εk)xk + Bdpk (11)
yk = Gd(tk, εk)xk + Jdpk (12)

where the substitution pk = ΦTfb(tk) define the buffeting loads in the modal space. No para-
metric model is introduced for the buffeting or the turbulence. Provided that the wind velocity,
the parameters, and the modal buffeting loads were known, the system output response could be
straightforwardly solved from Eq. 11 and 12 for some given initial conditions. However, these
are all, except the wind velocity, treated as unknown quantities; the estimation methodology is
discussed in the next section.

2.2 Equations for the identification problem

The goal is to jointly estimate the inputs, states and the parameters for this system. The
parameters are augmented into the state vector, resulting in the following final model of the
dynamics: [

xk+1

εk+1

]
=

[
Ad(tk, εk) 0

0 I

] [
xk
εk

]
+

[
Bd

0

]
pk +

[
wk

µk

]
(13)

yk =
[
Gd(tk, εk) 0

] [xk
εk

]
+ Jdpk + vk (14)

According to principles from Kalman filtering, this model includes stochastic white noise
on the modal states (wk) and on the measurements (vk), as well as a fictitious driving term for
the parameters (µk). These vectors are all assumed mutually uncorrelated, zero-mean and with
covariance relations:

E[wkw
T
l ] = Qw δkl, E[vkv

T
l ] = R δkl, E[µkµ

T
l ] = Qµ δkl (15)
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Figure 2: The Hardanger bridge (photo: Ø.W. Petersen/NTNU)

We apply a Kalman-type algorithm from [8], which is termed unscented minimum-variance
unbiased (UMVU) joint input-state (JIS) estimation. Specifically, we have implemented the
“additive noise”-version, meaning the noise terms in Eq. 13 and 14 are separate from the other
terms, as is assumed here. This leads to a faster calculation, since the covariances in Eq. 15 are
explicit and the noise vectors need not be augmented into the state vector for the calculation of
the so-called sigma points.

Some necessary mathematical conditions for the estimation should be discussed. Firstly,
rank(Jd) = nm is required is order to identify all nm modal forces [8]. This condition is fulfilled
for the actual system model presented later in Section 3.1. As the system matrices changes with
time, the observability should formally be checked according to the theory in reference [13]
(...).

3 IMPLEMENTATION FOR THE HARDANGER BRIDGE

3.1 Data from the Hardanger bridge

The practical test of the methodology is applied to data from the Hardanger bridge, a sus-
pension bridge shown in Fig. 2. In this study, the bridge is modelled with nm = 14 vibration
modes from a FE model [14, 15], called H1-H5, V1-V8 and T1. The shapes of these modes
along the main span are shown in Fig. 3 together with the natural frequencies and damping
ratios. As discussed in [15, 16], the number of modes in the reduced-order model for long-span
bridges (in inverse estimation) is mainly limited by the necessary criteria rank(Jd) = nm; more
acceleration sensors are needed to be able to identify more modal forces.

This bridge have 20 accelerometers for measuring the dynamic response, and eight anemome-
ters that measures wind velocities in the main span [17]. The positions of the sensors are given
in references [15, 17].

A measurement data set with duration 30 min (∆t = 0.1 s) is studied. The direction of
the wind is approximately 20◦ off the bridge normal throughout this period. The span of the
bridge is discretized into M = 65 points (∆x ≈ 20 m). First, the mean wind velocity for the
eight anemometer measurements is found by using 10 minute moving averages. Then, linear
interpolation is used estimate the field V (x, t) between the anemometers, resulting in the time-
spatial distribution in Fig. 4. Inhomogeneous features in the wind field is not uncommon for
this bridge location [18], and in this case an apparent trend of higher velocities for one part of
the bridge is observed. Although robust testing for (non-)stationarity of time series generally

5



Øyvind W. Petersen, Ole Øiseth, Torodd S. Nord and E. Lourens

H1 @ 0.051 Hz, 0.65 % H2 @ 0.105 Hz, 0.77 % V1 @ 0.112 Hz, 1.77 % V2 @ 0.142 Hz, 0.65 %
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Figure 3: Horizontal, vertical and torsional deflection of the mode shapes along the main span.
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Figure 4: Estimated time-spatial distribution of the mean wind velocity along the main span. The horizontal lines
indicate the positions of the anemometers A1-A8. Linear interpolation is used along the x-axis, with constant end
values for extrapolation beyond A1 and A8.

is difficult, the mean wind velocity could intuitively also be said to have weakly non-stationary
features for this 30 minute period. This is not a direct problem, however, as no stationarity
assumptions are imposed on the loading or dynamic behavior in the UMVU-JIS estimation.

Some pre-processing of the response data is necessary. A low-pass filter is applied to mitigate
the content below 0.5 Hz. A subset of the acceleration response data is shown in Fig. 5 for
sensors in the quarter span. In addition to the acceleration data, displacements in the form of
(offline) integrated accelerations are also included in the output vector to avoid instabilities in
the estimation. This also involves high-passing the displacement data at 0.01 Hz.

3.2 Unscented estimation of inputs, states and parameters

Some initial values for the unknown quantities are also needed for the first time step in the
algorithm. As the conditions at time t0 are not practically determinable, the initial guess is set
to x0, ε0,p0 = 0. The error corresponding covariances are set to Px

0 = I, Pµ
0 = I, Pp

0 = I.
After some trials, it was found that estimation of all 18 parameters lead to some unrealistic
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Figure 5: Acceleration response in the quarter span for the horizontal, vertical and torsional motions.

results, mostly connected to the self-excited drag effects (i.e., related to the motion in the y-
direction). It was therefore chosen to reduce the parameter set to a1 − a4 and h1 − h4 (i.e., the
vertical-torsional coupling in Eq. 8). For this type of bridge, it is well-known that these eight
self-excitation coefficients are important for flutter analysis, and that the self-excited drag is
usually not very large for streamlined cross sections. In accordance with [12], the remaining
parameters were therefore set to fixed values:

a5 = −2C̄M , a6 = 0, h5 = −2C̄L, h6 = 0

p1 = −2C̄D
D

B
, p2 = 0, p3 = C ′D

D

B
, p4 = 0, p5 = (C̄L − C ′D

D

B
), p6 = 0

(16)

where the following static force coefficients from wind tunnel tests are used [19]:

C̄D = 1.05, C ′D = 0, C̄L = −0.363, C ′L = 2.22, C̄M = −0.017, C̄ ′M = 0.786

B = 18.3 m, D = 3.25 m
(17)

An important aspect of the estimation is the choice of covariance matrices (Eq. 15). As noted
in [8], the covariance magnitudes (noise levels) could influence the results quite considerably.
R = 10−6 I is used, a level which corresponds to 1− 5% of the output data standard deviations.
For the process noise, Qw = 10−2 I is set. For the parameter covariance Qµ = cµ I, the three
scalar values cµ = 10−4, 10−6, 10−8 and are tested, which are much less than the expected
parameter order.

The identified modal forces are shown in 6 in the frequency-domain by a fast Fourier trans-
form (FFT) of the time series. The value of Qµ does not really influence identified forces,
therefore only a single solution is shown. Characteristic to ill-conditioned problems, identifi-
cation of forces generally suffer from sensitivity in the solution to errors on the model or the
output data. A known practical problem is that a few so-called cable-modes that could not be
included in the state-space model in reality has a small contribution to the dynamic response in
the box girder [16]. This leads to some unfortunate effects visible in Fig. 6, namely a spurious
contribution around the frequencies 0.24, 0.37 and 0.41 Hz in the horizontal modes. Other than
this, the modal forces appear to realistically resemble the frequency-domain characteristics of
buffeting forces due to turbulence.
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Figure 6: Estimated modal forces in the frequency-domain.
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Figure 7: Estimated quasi-steady parameters.

Next, the attention is shifted to the parameter estimation. The parameter estimation is shown
in Fig. 7. It is seen that for cµ = 10−4, the dynamic response or loading tend to bleed into
the parameter estimate, thus cµ = 10−6 or cµ = 10−8 is deemed a more suitable choice. It is
expected that the parameters should be quite constant, but small time-variations could happen
for changes in environmental conditions such as the wind yaw angle or mean the angle of attack.
Although no formal convergence is achievable in unscented estimation, most parameters reach
a relatively stable level after the initial 200 s. This is not the case for a4 , which tend to slowly
rise throughout the time period. A potential problem here is parameter magnitude differences,
for which a shared cµ-value introduces some compromise. The interpretation of the results
should also factor in the individual parameter influence on the system dynamics. Generally, it is
expected the most influential parameters for the system response are most accurately estimated,
whereas parameters with a smaller influence could be more inaccurate since its deviations do
not to the same degree affect the goodness of fit for the solution to the data. A sensitivity
analysis could give some indications of the significance to trim out non-essential parameters.

A more intuitive way to assess the results is to study the effective natural frequencies and
damping ratios of the system for the in-wind conditions. These can be solved from the eigen-
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Figure 8: Evolution of natural frequencies (ω in rad/s) and damping ratios (ξ in %). The red lines indicate the
still-air modal properties.

values of Ac(t, ε), which are on the form λj = −ξjωj ± iωj
√

1− ξ2j . The modal properties
will be time-varying since they are dependent on the mean wind velocity and the quasi-steady
parameters, and Fig. 8 shows the evolution. Herein, it is the vertical and torsional modes that
are most interesting, as changes in the horizontal modes mainly are driven by the assigned a
priori values in Eq. 16. As expected, the effective damping ratios increases for all the modes
compared to the still-air properties. In particular mode 11, the first torsion mode, has a strong
shift in the natural frequency (∼ 11% reduction).

The use of advanced computational methodology to full-scale bridge data always has some
uncertainties that are difficult to eliminate. In this context, the following sources could be
mentioned:

• Limited anemometer data leads to uncertainties in the interpolated wind field V (x, t).

• A number of uncertainties can be related to the UMVU-JIS estimation itself. Herein,
the Kalman-type algorithms always have an estimate error uncertainty inherited from the
white noise modelling. As shown, the noise covariance matrices influence to some degree
the solution.

• Errors in the FE-based state-space model could give some incorrect estimates. Although
the model is tuned [14], some temperature variations could affect the still-air natural
frequencies and damping and thus also slightly the graphs in Fig. 8.

• The self-excitation of the cables could give some damping contributions. If the wind
velocity at the elevation of the main cable was known, formulas similar to Eq. 8 could
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be included for the self-excitation of the main cable by letting its drag coefficient be an
unknown parameter.

• Local traffic could give some small dynamic response contributions to the considered
modes.

4 CONCLUSIONS

The wind-induced dynamic response is an important but often uncertain aspect of long-span
bridges due to uncertainties in the models for wind load prediction. This paper has presented a
framework for state-space modelling of long-span bridges, taking into account the self-excited
forces for the vertical and torsional modes through a set of modified quasi-steady parameters.
Using recently developed unscented Kalman-type estimation schemes, this model can be ap-
plied for coupled input-state-parameter estimation to dynamic response measurements from
bridges with monitoring systems.

The methodology is tested to acceleration from the Hardanger bridge, which is modelled us-
ing 14 modes. The identified forces have the characteristics of buffeting forces. Most estimated
parameters reach a stable values. Although the estimated parameters are still are uncertain, it
is shown they do provide realistic changes in the effective modal properties such as increased
damping.
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