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a b s t r a c t 

Principal component analysis (PCA) and its modified methods have been widely applied in industrial 

process monitoring. In practice, industrial processes are with disparate characteristics, the process moni- 

toring system should consider as many process characteristics as possible, such as dynamic and nonlinear 

characteristics. In this paper, a multi-feature extraction technique based on PCA is proposed for nonlin- 

ear dynamic process monitoring. The proposed method integrates dynamic inner PCA (DiPCA), PCA and 

kernel PCA (KPCA) methods through a serial structure to extract the dynamic, linear and nonlinear fea- 

tures among the process data. Along with the proposed method, the original data space is decomposed 

into several orthogonal subspaces, in which abnormal variations of different f eatures can be monitored. 

For real-time process monitoring, a combined Hotelling’s T 2 statistic based on the extracted multi-feature 

and a squared prediction error (SPE or Q ) statistic are established. Case studies on a numerical exam- 

ple and the Tennessee Eastman process are carried out to demonstrate the superior process monitoring 

performance of the proposed method compared with other relevant methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Process monitoring has become a hot topic research area in

oth academic and industry fields in the past decades [1,2] .

mong various monitoring methods, data-driven methods have

ttracted considerable attention, especially multivariate statistical

rocess monitoring (MSPM) methods [3–5] . Some representative

SPM methods including principal component analysis (PCA) [6,7] ,

anonical variate analysis (CVA) [8,9] and partial least squares

PLS) [10,11] , etc. have been widely developed for the process

onitoring purpose. As the most ubiquitous MSPM method, PCA

as been thoroughly studied. However, for nonlinear dynamic pro-

esses, the application of traditional PCA tends to have an ineffi-

ient and unreliable process monitoring performance. 

To cope with the dynamic characteristic of industrial processes,

u et al. [12] directly extended the ordinary PCA to dynamic PCA

y performing PCA procedure on the augmented data matrix. How-

ver, the derived dynamic relationships are implicit and have poor

nterpretability. To improve the interpretability, Li et al. [13] sug-

ested a dynamic latent variable (DLV) method, in which an inner

ector auto-regressive (VAR) model is built to explore the dynamic
∗ Corresponding author. 
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elationships and a compact outer model is built to represent the

ata structure. However, the inner VAR model is not consistent

ith the outer model. Inspired by the idea of DLV, Dong and Qin

14] developed a dynamic-inner PCA (DiPCA) method to extract dy-

amically correlated latent components, in which the current la-

ent components are predictable from the past correlated latent

omponents. 

In addition, several nonlinear PCA methods have been devel-

ped to address the nonlinear problem. Compared with the neu-

al network-based [15,16] , lwpr-based [17] and randomized non-

inear PCA methods [18] , the kernel-based PCA (KPCA) methods

re simpler and more elegant. In KPCA, the original input space

s mapped into a high, possibly infinite-dimensional feature space

hrough nonlinear mapping, in which the data can be treated with

raditional PCA method. Since the nonlinear mapping is implicit,

he nonlinear features are usually extracted with the help of the

ernel function computed in original space [19] . KPCA has been

idely adopted in nonlinear processes [20–24] . 

For complex industrial processes, the monitoring system should

xtract as many features as possible. Several studies have pointed

ut that the combination strategy may be a better choice for

rocess monitoring [25,26] . Chen et al. [27] developed a multi-

ayer data processing method based on PCA to extract several sig-

al features for real-time incipient fault detection and diagnosis.

eng et al. [28] devised a layerwise feature extraction strategy to

https://doi.org/10.1016/j.jprocont.2019.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2019.11.010&domain=pdf
mailto:pingwu@zstu.edu.cn
https://doi.org/10.1016/j.jprocont.2019.11.010
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capture multiple linear and nonlinear features hierarchically for

nonlinear process monitoring. In addition, a new hybrid approach

referred to as serial PCA (SPCA) was developed through integrating

PCA and KPCA using a serial structure for nonlinear process mon-

itoring [29] . However, the above-mentioned methods do not take

dynamic characteristic of the process data into account. 

Motivated by the above discussions, a novel multi-feature ex-

traction technique is proposed for nonlinear dynamic process mon-

itoring. Through a serial structure, the proposed method integrates

DiPCA, PCA and KPCA methods to extract the multi-feature includ-

ing dynamic, linear and nonlinear features. The proposed method

is referred to as MFPCA in this paper. Specifically, DiPCA is first

conducted to capture the dynamic features. After the dynamic

components are extracted, PCA is applied in the residuals for addi-

tional research and analysis. Furthermore, PCA model residuals still

contain nonlinear information that can be retrieved by KPCA. As

a result, the original data space is decomposed into several sub-

spaces, in which the variations of different features can be de-

tected. A combined Hotelling’s T 2 statistic is constructed based

on all the extracted features from DiPCA, PCA and KPCA. And a

squared prediction error (SPE or Q ) statistic is established. 

The main contributions of the proposed MFPCA method are as

follows. 

• It takes the unique advantage of DiPCA, PCA and KPCA methods

in modeling different f eatures and then develops a monitoring

index through combining these features for real-time process

monitoring. 
• The dynamic, linear and nonlinear features contained in the

process data are considered simultaneously and the abnormal

variations of these features are reflected in the corresponding

subspaces. 

The remaining part of this paper is organized as follows. In

Section 2 , a brief review of PCA, KPCA and DiPCA methods is pre-

sented. Section 3 describes the proposed MFPCA method. Then, the

MFPCA-based process monitoring scheme is presented in Section 4 .

In Section 5 , case studies on a numerical example and the Ten-

nessee Eastman (TE) process are presented to illustrate the appli-

cability and efficiency of the proposed MFPCA-based process mon-

itoring method. Finally, conclusions are drawn in Section 6 . 

2. Review of PCA, KPCA and DiPCA 

2.1. PCA 

For PCA, the objective is to find an orthogonal transformation

so that the new variables after transformation, i.e., principal com-

ponents (PCs), retain as much variance information of original data

as possible. Given a data matrix X ∈ R 

n ×m with n samples and m

variables, the PCA model is represented as, 

X = 

l ∑ 

i =1 

t i p 

T 
i + E (1)

where t i is the i th PC, p i ∈ R 

m is the loading vector corresponding

to i th PC, E is the residual matrix and l ( l < m ) is the number of

retained PCs. 

2.2. KPCA 

The nonlinear structure among the original data is more likely

to be linear after high-dimensional nonlinear mapping. In KPCA,

the original data x is mapped onto the feature space H through a

nonlinear function �, 

x ∈ R 

m −→ �(x ) ∈ H 
hen PCA is performed on the data �( x ) to extract kernel PCs

KPCs) as nonlinear feature. Since �( · ) is implicit and unknown,

ernel function κ( · ) is used to help completing the nonlinear

ransformation. Specifically, the dot products in H can be calcu-

ated by the kernel function in original space. 

(x i , x j ) = �(x i ) 
T �(x j ) (2)

or KPCA, there are several types of kernel functions. In this

tudy, the commonly used radial basis function κ(x i , x j ) =
xp(−

∥∥x i − x j 
∥∥2 

/ 2 σ 2 ) is adopted. And σ is a scaling constant.

ore detailed explanation and implementation of KPCA can readily

e found in the literature [6,19,21] . 

.3. DiPCA 

Assumed that x k ∈ R 

m is the sample vector at time k and w ∈
 

m is the weight vector, then its latent score can be expressed as

 k = x T 
k 

w . The future latent score can be predicted from the past

cores. 

ˆ 
 k = β1 t k −1 + β2 t k −2 + · · · + βs t k −s 

= [ x 

T 
k −1 , x 

T 
k −2 , . . . , x 

T 
k −s ]( β � w ) (3)

here ˆ t k is the predicted latent score, s is the dynamic order,

= [ β1 , β2 , . . . , βs ] 
T is the coefficient vector, β�w is the Kronecker

roduct. Based on the dynamic model (3) , the objective of DiPCA

s to maximize the covariance between the t k and 

ˆ t k , 

max 
w , β

n ∑ 

k = s +1 

w 

T x k [ x 

T 
k −1 , x 

T 
k −2 , . . . , x 

T 
k −s ]( β � w ) 

s.t. ‖ 

w ‖ 

= 1 , 
∥∥β

∥∥ = 1 (4)

. The proposed MFPCA method 

To extract the dynamic, linear and nonlinear features, DiCPA,

CA and KPCA are performed sequentially through a serial struc-

ure. The schematic of the proposed MFPCA method is shown in

ig. 1 . 

.1. Dynamic feature extraction 

Firstly, the DiPCA method is used to capture the dynamic char-

cteristic of the process. For the normalized process data matrix

 = [ x 1 , x 2 , . . . , x n ] 
T , the optimization problem (4) can be rewrit-

en as, 

max w , β w 

T X 

T 
s +1 Z s ( β � w ) 

s.t. ‖ 

w ‖ 

= 1 , 
∥∥β

∥∥ = 1 

(5)

here X i = [ x i , x i +1 , . . . , x i + n −s −1 ] 
T and Z s = [ X s , X s −1 , . . . , X 1 ] . After

eight vector w and latent scores t = Xw are obtained, the loading

ector is calculated as p = X 

T t / t T t . The objective (5) can be solved

hrough an iterative algorithm (see [14] ). Following the iterative al-

orithm, we can obtain several latent scores t j and loading vectors

 j for j = 1 , 2 , . . . , L d , where L d is the number of retained dynamic

Cs (DPCs). Then, we have the following relation, 

 = X −
L d ∑ 

j=1 

t j p 

T 
j = X − T L d P 

T 
L d 

(6)

here loading matrix P L d 
= [ p 1 , p 2 , . . . , p L d 

] , latent scores ma-

rix T L d = XR , R = W L d 
(P 

T 
L d 

W L d 
) −1 and weight matrix W L d 

=
 w 1 , w 2 , . . . , w L d 

] . 

By constructing T i 
L d 

in the same way as X i , an inner VAR

odel is built to represent the dynamic relationships between T s +1 
L 
d 
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Fig. 1. The schematic of MFPCA method. 
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nd T 1 
L d 

, T 2 
L d 

, . . . , T s 
L d 

, 

 

s +1 
L d 

= T 

1 
L d 
�s + T 

2 
L d 
�s −1 + · · · + T 

s 
L d 
�1 + V 

= T̄ 

s 
L d 
� + V (7) 

here T̄ s 
L d 

= [ T 1 L d 
, T 2 L d 

, · · · , T s 
L d 

] , � = [ �s ;�s −1 ; . . . ;�1 ] is the coef-

cient matrix and V is the inner VAR model residuals. The model

arameter � can be estimated by least squares, 

ˆ = ( ̄T 

sT 
L d 

T̄ 

s 
L d 

) −1 T̄ 

sT 
L d 

T 

s +1 
L d 

(8) 

Then the prediction of T s +1 
L d 

can be derived, 

ˆ 
 

s +1 
L d 

= T̄ 

s 
L d 

ˆ � (9) 

Finally, X is decomposed as, 

 = 

ˆ T 

s +1 
L d 

P 

T 
L d 

+ E d (10)

here E d is the DiPCA model residuals which contain little or no

uto-covariance information. 

Given a test vector x t ∈ R 

m , its dynamic latent scores t d t , pre-

icted dynamic latent scores ˆ t d t and DiPCA model residuals e d t are

alculated, 

ˆ t d t = 

s ∑ 

i =1 

�T 
i t 

d 
t−i , t 

d 
t = R 

T x t 

 

d 
t = x t − P L d ̂

 t d t (11) 

.2. Linear feature extraction 

After the dynamic relationships are extracted through DiPCA,

he residuals still contain some useful information which can be

reated by PCA for additional exploration and analysis [14] . Thus,

e perform singular value decomposition on E d , 

 d = UDV 

T = ZV 

T , Z = UD (12)

here V and Z represent the loading matrix and PCs, respectively.

nd they are sorted in columns based on the order of the singular

alues in D . 
In the PCA model (12) , the PCs with the first L l largest singular

alues are selected. Then the linear PCA model of E d is expressed

s, 

 d = T L l P 

T 
L l 

+ E l (13)

here T L l and P L l 
are the first L l columns of matrices Z and V, E l 

epresents the PCA model residuals. 

For the test residual vector e d t , the linear latent scores t l t and

CA model residuals e l t can be calculated as follows, 

t l t = P 

T 
L l 

e d t 

 

l 
t = (I − P L l P 

T 
L l 
) e d t (14) 

.3. Nonlinear feature extraction 

Most industrial processes are nonlinear in nature. After per-

orming PCA as stated in (13) , the residuals maybe contain non-

inear information [29] . Thus, KPCA is used to further explore the

onlinear features in the PCA model residuals E l . 

Denote the nonlinear mapping as E l ∈ R 

n ×m → �(E l ) ∈ R 

n × H.

o perform KPCA on the residuals E l , the eigenvalue decomposition

ethod is adopted, 

(n − 1) λi αi = K αi (15) 

here K ∈ R 

n ×n is kernel matrix with its element given by [ K ] i j =
(e l 

i 
, e l 

j 
) . λi and αi represent the i th eigenvalue and eigenvector

f K . Then the loading vector and KPCs can be expressed as p i =
(E l ) 

T αi and t i = K αi , respectively. Assumed L n as the number of

etained KPCs, �( E l ) can be decomposed as follows, 

(E l ) = T L n P 

T 
L n 

+ E (16)

here T L n = KA L n . The coefficient matrix A L n = [ α1 , α2 , . . . , αL n ]

nd loading matrix P L n = [ p 1 , p 2 , . . . , p L n ] . 

For the test residual vector e l t , the nonlinear latent scores are

omputed by projecting �(e l t ) onto P L n as 

 

n 
t = P 

T 
L n 
�(e l t ) = A 

T 
L n 

k t (17)

here k t = [ κ(e l t , e 
l 
1 
) , κ(e l t , e 

l 
2 
) , . . . , κ(e l t , e 

l 
n )] T is the test kernel

ector. 
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Table 1 

The comparisons of MFPCA with other relevant methods. 

Method Focusing on different characteristics Computation time 

Dynamic Nonlinear Interpretability 

SPCA [29] 
√ 

Easy Longer 

DiPCA [14] 
√ 

Easy Shortest 

DKPCA [30] 
√ √ 

Difficult, the extracted 

nonlinear dynamics of the 

process are implicit 

Longest, performing kernel 

function on augmented data 

MFPCA 
√ √ 

Easy Longer compared to SPCA, 

but shorter than DKPCA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The MFPCA-based process monitoring scheme. 

w  

t  

t  

S  

d  

t

T  

w

 

(  

v  

t  

u  

t  

t

 

w  

p  

f  

l  

l

∫
 

I  

p  

F

By synthesizing the above multi-feature extraction (11),

(14) and (17) , the original data x can be fully decomposed as

follows, ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

x = 

ˆ x 

d + ̂

 x 

l + ̂

 x 

n + e 

ˆ x 

d = P L d ̂
 t d ∈ S D 

ˆ x 

l = P L l P 

T 
L l 
(x − P L d ̂

 t d ) ∈ S L 

ˆ x 

n = P L n P 

T 
L n 
�((I − P L l P 

T 
L l 
)(x − P L d ̂

 t d )) ∈ S N 

e = (I − P L n P 

T 
L n 

)�((I − P L l P 

T 
L l 
)(x − P L d ̂

 t d )) ∈ S R 

(18)

Along with the MFPCA model (18) , the original data space is

decomposed into four orthogonal subspaces: dynamic subspace S D ,

linear subspace S L , nonlinear subspace S N and residual subspace S R .

In [14] , the orthogonality between S D and static subspace S S has

been proved. Both PCA and KPCA methods can provide orthogo-

nal decomposition. Therefore, the derived subspaces are orthogo-

nal to each other. The comparisons of MFPCA with other relevant

methods are listed in Table 1 . Compared with SPCA, DiPCA and dy-

namic kernel PCA (DKPCA), it can be seen that the proposed MF-

PCA method can capture the dynamic and nonlinear characteristics

of process data in more interpretable way at lower computational

cost. 

3.4. Determination of model parameters 

In the MFPCA method, there are three types of parameters to

be determined: the dynamic order s in DiPCA model, the retained

number L d , L l and L n for DPCs, PCs, and KPCs, and the kernel pa-

rameter σ in KPCA. 

• Obviously, the choice of the dynamic order s will have sig-

nificant influence on the decomposition of dynamic and static

parts. To determine s , a cross validation (CV) method is adopted

as in [14] . The criterion is to observe the sample crosscorrela-

tion of any two residual variables. An optimal s should make

the sample crosscorrelation close to 0. 
• The average eigenvalue (AE) method is usually adopted to de-

termine L d , L l and L n for DPCs, PCs and KPCs owing to its sim-

plicity and robustness. It determines the number of retained

components by observing whether the corresponding eigenval-

ues are larger than the average eigenvalue [29] . 
• The kernel parameter σ is critical to process monitoring. As σ

becomes large, the false alarm rate (FAR) decreases meanwhile

the fault detection rate (FDR) also decreases. Here, we use the

cross validation method to find an optimal σ that minimizes

the FAR [6,21,30] . 

4. MFPCA-based process monitoring scheme 

Based on the features extracted from MFPCA model (18) , we can

obtain the following monitoring statistics, 

T 2 
d 

= ̂

 t dT 
t �−1 

d 
ˆ t d t 

T 2 
l 

= t lT t �
−1 
l 

t l t 
T 2 n = t nT 

t �−1 
n t n t 

Q = e T e 
here �d , �l and �n are covariance matrices for scores ˆ t d t , t 
l 
t and

 

n 
t under the normal operation condition, respectively. These statis-

ics T 2 
d 

, T 2 
l 

, T 2 n and Q monitor the abnormal variations in subspace

 D , S L , S N and S R , respectively. Except the individual statistics, the

erived three features are also incorporated into a multi-feature

 

m 

t = [ ̂ t d t , t 
l 
t , t 

n 
t ] to reflect the process status, 

 

2 = t mT 
t �−1 t m 

t (19)

here � = { �d , �l , �n } is diagonal matrix. 

To determine whether a fault occurs, the upper control limits

UCLs) are required for the developed statistics. For notational con-

enience, we denote S as one of the above statistics. In this study,

he kernel density estimation (KDE) method is used to estimate the

nknown distribution which statistic S obeys [8,31,32] . For statis-

ic S , its probability density function p ( S ) can be estimated through

he kernel function K, 

p(S) = 

1 

Mh 

M ∑ 

j=1 

K 

(
S − S j 

h 

)
(20)

here M is the number of samples, h is the bandwidth. In this

aper, kernel function K(g) = e −g 2 / 2 / 
√ 

2 π . The selections of kernel

unction and parameter h are referred to [32] . Given a significance

evel α, the upper control limit J S is calculated by solving the fol-

owing equation, 

 J S 

−∞ 

p(S) dS = α (21)

n case studies, α is set to 95% for all statistics. To sum up, the

roposed MFPCA-based process monitoring scheme is presented in

ig. 2 . 



L. Guo, P. Wu and S. Lou et al. / Journal of Process Control 85 (2020) 159–172 163 

5

 

s  

p  

i  

R

5

 

v{

A

P

w  

c  

t

N  

f

 

t  

a  

S  

M  

t  

s  

D

 

a

 

 

 

 

 

 

 

Table 3 

Numerical example: the comparisons of the averaged 

computation time for online process monitoring, which is 

based on 100 simulations. 

Method SPCA DiPCA DKPCA MFPCA 

Time (ms) 0.5173 0.0189 0.5327 0.4756 
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. Case studies 

In this section, a numerical example and the TE process are pre-

ented to illustrate the proposed MFPCA-based process monitoring

erformance. The experiment environment is Windows 10 operat-

ng system, Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz, 64.0GB

AM, and Matlab(R2018b). 

.1. Numerical example 

Consider a nonlinear dynamic system, which is an integrated

ersion of the two examples given in [14,29] . 

z k = c + Az k −1 + w k 

x k = Pz k + f (u k ) + e k 
(22) 

 = 

[ 

0 . 5205 0 . 1022 0 . 0599 

0 . 5367 −0 . 0139 0 . 4159 

0 . 0412 0 . 6054 0 . 3874 

] 

, c = 

[ 

0 . 5205 

0 . 5367 

0 . 0412 

] 

 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 4316 0 . 1723 −0 . 0574 

0 . 1202 −0 . 1463 0 . 5348 

0 . 2483 0 . 1982 0 . 4797 

0 . 1151 0 . 1557 0 . 3739 

0 . 2258 0 . 5461 −0 . 0424 

⎤ 

⎥ ⎥ ⎦ 

here state variables z k ∈ R 

3 is generated from a VAR(1) pro-

ess, input variables u = [ u 1 , u 2 ] 
T ∈ R 

2 obeys a uniform distribu-

ion on the closed interval [0,2]. w k ∈ R 

3 ∼ N (0 , 1 2 ) and e k ∈ R 

5 ∼
 (0 , 0 . 1 2 ) denote the independent noises. The nonlinear mapping

unction f ( u ) is expressed as follows, 

f (u ) = 0 . 05[ u 1 , u 2 , 5 u 1 − 2 u 2 , u 

2 
1 − 3 u 2 , −u 

3 
1 + 3 u 

2 
2 ] 

T 

Based on system (22) , 10 0 0 samples are generated to build

he MFPCA model. Here, SPCA, DiPCA and DKPCA methods are

lso employed for comparison. By using the method described in

ection 3.4 , s = 1 , L d = 3 and L l = 2 are selected for DiPCA and

FPCA methods. In MFPCA, kernel parameter σ and L n are de-

ermined as 40 and 2. SPCA and DKPCA methods also adopt the

ame kernel parameter. Also, L l = 1 and L n = 3 for SPCA, L n = 8 for

KPCA. 

To validate the process monitoring performance, the following

rtificial faults are designed, 

• Fault 1: z k := z k + [1 . 8452 , 1 . 5656 , 0 . 0640] T for k > 500. The

fault is injected to the dynamic components. Fault 1 should be

detected by SPCA T 2 
l 

, DiPCA T 2 
d 

and T 2 
l 

, DKPCA T 2 , MFPCA T 2 
d 

and T 2 
l 

indices. Since this fault does not affect the residual part

of the static relationships, it is not detected by Q index [14] .

The monitoring charts are depicted in Fig. 3 . The four methods

all correctly detect the fault with satisfactory results. However,

DKPCA Q exceeds the corresponding UCL after the occurrence
of the fault. r  

Table 2 

Numerical example: averaged monitoring per

MFPCA methods, which is based on 100 simul

Fault SPCA DiPCA 

T 2 Q T 2 Q 

1 99.62 a 8.76 99.65 10.57 

6.28 b 6.29 5.95 5.77 

2 80.07 42.79 40.95 74.73 

6.06 6.42 5.71 5.69 

3 29.15 99.98 7.41 74.90 

5.88 6.35 5.51 5.70 

a First row: Fault detection rates (FDRs). 
b Second row: False alarm rates (FARs). 
• Fault 2: u k := u k + [ −1 . 7070 , 1 . 6926] T for k > 500. In this case,

the fault causes the change of nonlinear part and should be

monitored by SPCA T 2 n , DKPCA T 2 , MFPCA T 2 n statistics. Fig. 4

plots the monitoring charts. As shown in Fig. 4 , for DiPCA, T 2 
d 

and T 2 
l 

statistics can not detect Fault 2 due to the nonlinearity.

On the other hand, since the nonlinear features are left in the

residual part, the fault is detected partly by Q statistic. 
• Fault 3: x k := x k + [0 . 2980 , −0 . 3039 , −0 . 4 4 43 , 0 . 4151 , −0 . 1047] T 

for k > 500. It is an additional disturbance of x k , which occurs

in the residual part of the static relationships. Therefore, it

should be only detected by Q statistic. The results are shown

in Fig. 5 . It can be seen that SPCA T 2 n and DKPCA T 2 statistics

fluctuate around the UCLs. 

Based on the above discussions and results, it can be observed

hat the proposed MFPCA method has a better representation for

he data structure. To further quantify the monitoring performance,

wo indices are introduced. The first one is FDR, which is defined

s the ratio of detected faulty samples to all faulty samples. An-

ther index is FAR, which is defined as the ratio of false detected

ormal samples to all fault-free samples. Table 2 compares the av-

raged monitoring results. It can be seen that the FARs of MFPCA

re at the same level as that of the SPCA method. In addition, the

roposed MFPCA method can offer comparable even better FDRs to

PCA and DiPCA methods, which maybe because it takes advantage

f DiPCA, PCA and KPCA to extract different features and improves

he monitoring performance. For FDRs and FARs, the statistics T 2 
d 

,

 

2 
l 

and T 2 n also provide similar conclusions as described. 

Table 3 gives the averaged computation time for online process

onitoring. MFPCA method (0.4756ms) requires shorter computa-

ion time than DKPCA method (0.5327ms) for real-time process

onitoring. Since DKPCA performs kernel function after augment-

ng the data, it requires more time than other methods. 

.2. TE process 

The Tennessee Eastman (TE) process, which is based on a real

hemical process, has become a widely acceptable benchmark pro-

ess for developing, studying and evaluating process monitoring

ethod [33] . The flowchart of TE process is depicted in Fig. 6 . It

onsists of five major unit operations: a condenser, a reactor, a

tripper, a compressor, and a vapor-liquid separator. Four gaseous

eactants A, C, D, E and the inert B are fed to the reactor in which
formance of SPCA, DiPCA, DKPCA and 

ations. 

DKPCA MFPCA 

T 2 Q T 2 Q 

99.38 99.41 99.60 7.30 

5.64 5.63 6.27 6.39 

95.09 24.20 88.44 29.58 

5.32 5.11 5.99 6.47 

39.14 99.76 8.28 99.99 

5.27 5.29 5.81 6.66 
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Fig. 3. The monitoring charts of SPCA, DiPCA, DKPCA and MFPCA for Fault 1. Red dashed lines indicate the 95% control limit J S , blue dash-dot lines represent the corre- 

sponding statistic, green square and red circle represent false-alarm points and missed-detection points, respectively. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. The monitoring charts of SPCA, DiPCA, DKPCA and MFPCA for Fault 2. Red dashed lines indicate the 95% control limit J S , blue dash-dot lines represent the corre- 

sponding statistic, green square and red circle represent false-alarm points and missed-detection points, respectively. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. The monitoring charts of SPCA, DiPCA, DKPCA and MFPCA for Fault 3. Red dashed lines indicate the 95% control limit J S , blue dash-dot lines represent the corre- 

sponding statistic, green square and red circle represent false-alarm points and missed-detection points, respectively. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. The TE process flowsheet [34] . 

t  

t

A
A
A
3

 

n  

T  

m  

c  

s  

f  

T

 

s  

s  

L  

2  

L  

a

 

p  

t  

c  

m  

a  

r  

a

 

o  

Table 4 

TE process: Description of fault modes. 

Fault Description Type 

IDV(0) Normal situation −
IDV(1) A/C feed ratio, B composition constant Step 

IDV(2) B composition, A/C ration constant Step 

IDV(3) D feed temperature Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water inlet temperature Step 

IDV(6) A feed loss Step 

IDV(7) C header pressure loss-reduced availability Step 

IDV(8) A, B, and C feed composition Random 

IDV(9) D feed temperature Random 

IDV(10) C feed temperature Random 

IDV(11) Reactor cooling water inlet temperature Random 

IDV(12) Condenser cooling water inlet temperature Random 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 

IDV(16–20) Unknown Unknown 

IDV(21) The valve fixed at steady state position Constant position 

i  

D  

m  

D  

M  

F  

I  

p  

a  

s  

t  

t

he liquid products G, H and a by-product F are produced through

he following reactions, 

 (g) + C(g) + D (g) → G (liq ) 
 (g) + C(g) + E(g) → H(liq ) 
 (g) + E(g) → F (liq ) 
 D (g) → 2 F (liq ) 

There are 41 process measurements XMEAS(1–41) and 12 ma-

ipulated variables XMV(1–12) in TE process [33] . A widely used

E dataset for process monitoring is available from http://web.

it.edu/braatzgroup/links.html . In this dataset, 52 variables are in-

luded, except for XMV(12) that is the agitator speed. 22 different

imulation conditions including a normal situation IDV(0) and 21

ault modes IDV(1–21) are simulated. The descriptions are listed in

able 4 . 

In this study, 33 variables (XMEAS(1–22) and XMV(1–11)) are

elected for process monitoring. And the normal dataset with 960

amples is used to build model. According to Section 3.4 , s = 3 ,

 d = 13 and L l = 14 are set for DiPCA and MFPCA methods, σ =
00 and L n = 16 is chosen for MFPCA method, σ = 165 , L l = 13 and

 n = 14 are selected for SPCA method, s = 3 , σ = 30 and L n = 80

re determined for DKPCA method. 

To illustrate the performance of the proposed MFPCA-based

rocess monitoring method, the detection delay time (DD) be-

ween fault occurrence time and fault detection time is also cal-

ulated for comparison, except FAR and FDR. In general, a better

onitoring performance means that the higher FDR, the lower FAR

nd shorter DD [8,21] . Tables 5 and 6 summarize the monitoring

esults including FAR, FDRs and DDs based on SPCA, DiPCA, DKPCA

nd MFPCA methods, respectively. 

Here, we compute the FAR on the normal dataset consisting

f 500 samples. Although the FAR of MFPCA T 2 statistic (7.44%)
s slightly higher than SPCA T 2 statistic (5.80%), it is lower than

KPCA T 2 statistic (8.47%). As can be seen in Table 5 , MFPCA

ethod can derive better monitoring performance than SPCA,

iPCA and DKPCA methods, particulary for IDV(10), IDV(20). For

FPCA, most of the faults can be successfully detected and their

DRs reach more than 90%, except IDV(3), IDV(9), IDV(15) and

DV(21). For IDV(3), IDV(9) and IDV(15), since they have little im-

act on the overall process behavior due to feedback control, they

re extremely difficult to be detected. However, MFPCA method

till gives better performance than SPCA and DiPCA methods for

he three faults. For IDV(21), the FDR derived by MFPCA is lower

han 90%, but it is higher than other methods. 

http://web.mit.edu/braatzgroup/links.html
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Fig. 7. The monitoring charts of SPCA, DiPCA, DKPCA and MFPCA methods for IDV(5). Red dashed lines indicate the 95% control limit J S , blue dash-dot lines represent the 

corresponding statistic, green square and red circle represent false-alarm points and missed-detection points, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. The monitoring charts of SPCA, DiPCA, DKPCA and MFCPA methods for IDV(20). Red dashed lines indicate the 95% control limit J S , blue dash-dot lines represent the 

corresponding statistic, green square and red circle represent false-alarm points and missed-detection points, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. The monitoring charts of SPCA, DiPCA, DKPCA and MFPCA methods for IDV(21). Red dashed lines indicate the 95% control limit J S , blue dash-dot lines represent the 

corresponding statistic, green square and red circle represent false-alarm points and missed-detection points, respectively. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Table 5 

TE process: FAR for IDV(0) and FDRs for IDV(1–21) with different methods. 

Fault SPCA DiPCA DKPCA MFPCA 

T 2 Q T 2 Q T 2 Q T 2 Q 

IDV(0) 5.80 4.80 4.63 10.66 8.47 2.62 7.44 9.05 

IDV(1) 100.00 99.50 99.88 100.00 99.63 99.75 100.00 99.88 

IDV(2) 98.88 94.13 98.88 96.63 98.63 98.38 99.00 96.25 

IDV(3) 12.63 7.88 10.88 13.63 15.50 28.38 18.00 16.50 

IDV(4) 100.00 84.50 89.00 100.00 99.88 99.88 100.00 100.00 

IDV(5) 39.00 99.88 33.63 43.25 36.88 88.75 39.38 100.00 

IDV(6) 100.00 100.00 99.75 100.00 99.38 99.88 100.00 100.00 

IDV(7) 100.00 99.88 100.00 100.00 99.88 99.88 100.00 100.00 

IDV(8) 98.50 84.13 98.25 96.00 97.63 99.63 99.00 97.50 

IDV(9) 10.38 7.13 11.25 14.25 12.63 23.38 18.25 16.75 

IDV(10) 89.88 71.63 84.25 84.63 56.50 82.50 91.00 93.50 

IDV(11) 87.00 55.50 81.75 92.00 97.63 92.25 93.13 90.75 

IDV(12) 99.50 99.13 99.63 99.25 99.63 100.00 99.63 100.00 

IDV(13) 96.00 94.75 95.13 96.38 95.50 96.13 96.13 96.38 

IDV(14) 100.00 99.88 100.00 100.00 99.88 99.88 100.00 100.00 

IDV(15) 15.75 6.50 14.13 13.38 19.00 27.00 19.50 27.25 

IDV(16) 93.50 68.50 75.75 93.00 37.50 84.38 94.00 92.50 

IDV(17) 97.88 87.25 94.00 97.75 97.38 97.63 98.00 97.25 

IDV(18) 91.50 90.13 91.00 91.00 90.63 93.25 92.00 91.25 

IDV(19) 90.50 89.25 49.25 90.38 78.38 93.25 97.63 92.00 

IDV(20) 76.75 80.25 67.63 75.75 68.13 82.50 88.25 91.38 

IDV(21) 61.63 40.50 59.88 47.88 55.25 59.50 60.88 64.50 

Average 79.01 74.30 73.99 78.34 74.07 83.15 81.13 83.98 

Table 6 

TE process: DDs (minutes) for IDV(1–21) with different methods. 

Fault SPCA DiPCA DKPCA MFPCA 

T 2 Q T 2 Q T 2 Q T 2 Q 

IDV(1) 3 15 6 3 12 9 3 6 

IDV(2) 15 12 15 12 24 42 15 3 

IDV(3) 45 9 54 45 90 39 45 3 

IDV(4) 3 3 3 3 6 6 3 3 

IDV(5) 3 6 3 3 6 9 3 3 

IDV(6) 3 3 9 3 18 6 3 3 

IDV(7) 3 3 3 3 6 6 3 3 

IDV(8) 9 33 45 9 51 3 9 9 

IDV(9) 3 30 3 3 6 3 3 3 

IDV(10) 18 51 24 3 27 27 18 21 

IDV(11) 18 6 9 3 3 3 3 3 

IDV(12) 9 3 9 9 6 3 9 3 

IDV(13) 6 24 81 6 3 3 81 33 

IDV(14) 3 6 3 3 6 6 3 3 

IDV(15) 117 78 189 15 84 264 198 15 

IDV(16) 3 33 15 6 60 6 3 21 

IDV(17) 3 45 3 54 9 9 3 57 

IDV(18) 39 54 12 39 51 48 12 27 

IDV(19) 3 6 33 6 36 9 6 3 

IDV(20) 15 45 18 42 201 27 30 45 

IDV(21) 120 27 63 6 252 741 3 3 

Average 21 23 29 13 46 60 22 13 
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Table 7 

TE process: the comparisons of the averaged computa- 

tion time for online process monitoring. 

Method SPCA DiPCA DKPCA MFPCA 

Time(ms) 0.4808 0.0220 0.5226 0.4551 
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To further demonstrate the superiority of the MFPCA method,

igs. 7 and 8 plot the monitoring charts obtained by SPCA,

iPCA, DKPCA and MFPCA methods for IDV(5) and IDV(20), respec-

ively. From Fig. 7 , the proposed MFPCA-based process monitoring

ethod combines the advantage of SPCA and DiPCA methods. For

DV(20), as can be seen from Fig. 8 , there are quite a few missed-

etection points in SPCA Q , DiPCA Q and DKPCA Q charts. However,

n MFPCA Q chart, the missed-detection points are greatly reduced

o that the FDR is as high as 91.38%. As shown in Table 5 , the aver-

ge FDRs of the MFPCA Q statistic (83.98%) is higher than SPCA Q

tatistic (74.30%), DiPCA Q statistic (78.34%) and DKPCA Q statistic

83.15%). 

In Table 6 , it can be seen that the average DDs of MFPCA

ethod is either equal to or lower than the other three methods.

aking IDV(21) as an example, the monitoring charts are shown
n Fig. 9 . The MFPCA Q statistic can detect the disturbance ear-

ier than other Q statistics. Although the SPCA T 2 n , DiPCA T 2 
d 

and

KPCA Q statistics are over 95% control limits after the 400th sam-

le, many faulty samples are not detected from 450th sample to

00th sample. On the contrary, the MFPCA Q statistic can observe

lmost faulty samples after the 450th sample. 

Table 7 compares the averaged computation time of the four

ethods. It can be observed that the computation cost of MF-

CA (0.4551ms) is much lower than DKPCA (0.5226ms) for real-

ime process monitoring. It can be concluded that the proposed

FPCA-based process monitoring method can detect faults more

ffectively and timely, compared to other relevant methods. 

. Conclusions 

In this paper, a multi-feature extraction technique based on

rincipal component analysis is proposed for nonlinear dynamic

rocess monitoring. The proposed MFPCA method takes the dy-

amic, linear and nonlinear characteristics of process data into

onsideration. Then multi-feature is extracted separately from pro-

ess data through using several PCA-like methods, i.e., DiPCA, PCA

nd KPCA. Case studies show the extracted rich information im-

roves the process monitoring performance by comparison with

iPCA and SPCA methods. And compared with DKPCA methods,

he interpretability of the multi-feature extraction is improved.

ased on existing results, the MFPCA-based fault identification and

ault diagnosis method is worth further investigating in future

ork. 
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