
Political Stance Detection using Knowledge Graphs and Sentiment Analysis

Abel Van Steenweghen , Pradeep Murukannaiah
TU Delft

Abstract
Sentiment analysis techniques estimate the opinion of the au-
thor of a text towards an entity from that text. Current sen-
timent analysis techniques are based on language features or
deep learning methods. However, they do not make use of
the extensive background knowledge that human readers can
have. This makes it difficult for these models to detect irony,
pop culture references and other subtleties for which connec-
tions between entities need to be known. The usage of knowl-
edge graphs allows these models to use the enormous exist-
ing knowledge bases. We propose a political stance detection
pipeline that makes use of knowledge graphs and sentiment
analysis. The proposed pipeline uses a combination of exist-
ing deep learning methods and classic rule-based methods to
train an opinion-aware knowledge graph, with which it clas-
sifies sentences as either liberal, conservative or neutral. The
pipeline acts as both a classifier and a framework that can in-
tegrate existing stance detection models. In an experimental
evaluation on the IBC and SemEval datasets, the proposed
pipeline achieves an average F-score of 0.63, outperforming
traditional machine learning models.

1 Introduction
We study the usage of knowledge graphs and sentiment anal-
ysis in the field of political stance detection. Feldman [8]
defines sentiment analysis as “the task of finding the opin-
ions of authors about specific entities.” Sentiment analysis has
many useful applications such as extracting information from
a large set of product reviews, monitoring the reputation of a
specific brand on social media, predicting the behavior of the
financial markets and estimating the stance of voters towards
certain issues during political campaigns [8].

We propose a model to estimate the political stance of a sen-
tence or document, meaning a statement can be labelled as
conservative, liberal or neutral. This can be used for estimat-
ing the overall ideology of an author. Estimating the ideology
of an author is used in, for example, analyzing public opinion
on social media. It can also be valuable because it allows you
to look at an author’s works more objectively, knowing their
potential biases.

Current sentiment analysis algorithms focus on the overall
sentiment or on a specified target entity. While the latter is
already more specific it still only returns limited informa-
tion about the text or its author. It cannot specify the stance
towards entities outside of the text. For example, if some-
one writes: “Barack Obama was a great president.” The cur-
rent sentiment analysis algorithms would classify it as posi-
tive, and if they were target-specific it would select “Barack
Obama” as target. However, more information can be ex-
tracted in this example. A human reader with background
knowledge would be able to classify the stance of the au-
thor towards, for example, “The Democratic Party” to be also
probably positive since there is a connection between the two
entities. Knowledge graphs can provide the context and back-
ground knowledge necessary to make such connections [7].

This paper aims to answer the question:
How can knowledge graphs be applied in the field of political
stance detection and can they improve the F-score?
The main focus of this research therefore lies on the develop-
ment and testing of a political stance detection pipeline.

The proposed pipeline integrates existing models, both tradi-
tional and deep learning methods, with a knowledge base, as
illustrated in Figure 1. This architecture allows the pipeline to
be integrated with different models, allowing for application
in other fields or for improved performance. The pipeline
transforms unstructured text into a knowledge graph which
is then enriched by linking it to an existing knowledge base
(DBPedia1). Next, the opinions are linked towards the en-
tities with a custom trained deep model. Finally, the stance
towards a chosen entity is estimated. The advantage of using
rule-based methods in the final stages is that the classification
is more explainable than an abstract “black box” approach
such as a deep learning approach.

The paper is structured as follows. First, the literature related
to this work is discussed. Next, in Section 3, the design of the
algorithm is discussed, with a focus on the most important
stages of the pipeline. Sections 4 discusses the experimental
setup and its results. Section 5 covers the responsibility of
the research. Section 6 concludes the paper with the main
takeaways and possible further improvements.

1https://www.dbpedia.org/

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Figure 1: A pipeline for stance detection, combining deep learning and rule-based methods, and a knowledge base.

2 Related Work
Our work is related to two main research areas: sentiment
analysis and knowledge graphs. This section presents the rel-
evant existing work in both fields and discusses how it was
used.

2.1 Sentiment Analysis
There exists a diverse set of sentiment analysis algorithms
that fall in two categories: traditional models and deep learn-
ing models.

Examples of traditional models are Logistic Regression (LR)
and Support Vector Machine (SVM) [14]. These models of-
ten make use of word embeddings to represent the sentence
or document as a vector, which then can be incorporated by
the classical machine learning techniques. Two examples of
word embeddings are word2vec [10], where two vectors that
are contextually close are also close in the vector space, and
bag-of-words, which is a simple model that keeps track of the
number of occurrences of each word in the text. A variation
of this embedding is an n-gram, which acts the same as bag-
of-words but counts the occurrences of n-tuples of sequential
words. For example “I like this idea.” contains the following
tuples for a 2-gram: {“I like”, “like this”, “this idea”}.

The Sentiment-Specific Word Embedding model from [12] is
another traditional model that uses sentiment lexicons in its
word embedding. This means it uses opinion words and other
sentiment-specific language to calculate similarity values and
classify the sentences.

Examples of deep learning models are a Convolutional Neu-
ral Network (CNN) [16] and a Convolutional Bi-directional
Long Short-Term Memory Network (CB-LSTM) [13]. Both
[16] and [13] are applied in the context of political ideology
detection. [16] ranked 1st and 2nd on task B and task A of the
SemEval 2016 challenge [14] respectively. The CB-LSTM
model of [13] aims to capture the context in which each tar-
get entity is expressed, by combining an LSTM with a CNN,
which performs well at target-context representations.

Because of the good performance of these works a CNN ar-
chitecture was chosen for the sentiment analysis part in the
opinion linking stage at Subsection 3.5.

2.2 Knowledge Graphs
A knowledge graph is a network of entities connected by rela-
tions. It is often stored as set of triplets in the form of [h, r, t]
with h as head entity, r as relation, and t as tail entity. Rela-
tions can be directed or undirected, depending on its meaning.
Knowledge graphs are not frequently used in the stance detec-
tion field despite advantages such as the creation of context-
awareness, by combining meta-data and general text-mining
approaches [5].

Our research mainly builds upon the works of Chen et al.
(2017) [2] and of Xu et al. (2019) [18]. These works
propose stance detection algorithms making use of opinion-
aware knowledge graphs (OKG), with the application of po-
litical ideology estimation. While both these works focus
on the importance of including background knowledge in the
classification process they use different approaches.

Chen et al. [2] use a more traditional, rule-based approach
working with the opinion-values linked to the entities and
using other text features such as distance between opinion
words and entities to estimate the sentiment.

Xu et al. [18] use a deep learning approach working with
a knowledge graph embedding (KGE) to use the knowledge
graph in a deep classifier. There has been a lot of research
in the field of KGEs. A KGE “embeds the entities and re-
lationships of multi-relational data in low-dimensional vector
spaces” [1]. This way the information that a knowledge graph
represents can be used in machine learning approaches. There
are multiple methodologies for KGEs such as translation [1;
2], multiplication and neural networks based approaches.

This paper proposes a pipeline that builds on the OKG con-
struction techniques from [2; 18] but introduce deep learning
methods to improve certain stages.

3 Algorithm Design
The political stance detection pipeline consists of 7 phases:

1. Coreference Resolution
2. Entity Extraction and Linking
3. Relation Extraction
4. Knowledge Graph Formation

5. Opinion Linking
6. Opinion Propagation
7. Sentence Classification

3.1 Coreference Resolution
This first stage is a vital preprocessing step. A coreference
is a word that refers to an earlier mentioned entity, called the
referent. For example:

“Barack Obama is an American politician. He served as the
44th president of the United States.”

⇓

“Barack Obama is an American politician. Barack
Obama served as the 44th president of the United
States.”

(A)

In natural language coreferences offer the advantage of avoid-
ing repetitiveness. In the pipeline this is however disadvanta-
geous for recognizing the entities in each individual sentence.
By first resolving all coreferences to their referent, the algo-
rithm can handle each sentence individually without missing
certain entities. This process is implemented with the neural-
coref 2 package from Huggingface.

3.2 Entity Extraction and Linking
The second stage is entity extraction and linking. A named
entity is defined as a “real world object” such as an organiza-
tion, a person or a concept. Here the goal is to extract the enti-
ties out of each sentence and link them to an existing knowl-
edge base. The knowledge base used is DBPedia3. Other
candidates for entity linking were the WikiData [6] and the
BLINK model [17] that both use Wikipedia as a knowledge
base to retrieve the entities. DBPedia was selected because of
its existing focus on knowledge graphs.

The entity linking makes use of the DBPedia Spotlight 4 tool
[3]. There are two main hyperparameters that can be config-
ured: confidence and support.

Confidence is a score for the disambiguation, meaning that
a higher confidence score leads to more certainty that the
linked entity is the right one and a lower confidence score
leads to more (but possibly wrongly) recognized entities. Ta-
ble 1 shows an example of this behavior. Note that at 0.3 con-
fidence there are more entities recognized, but the “served”
entity was linked to “serving in the Vietnam war”, which is
obviously wrong in this context.

Support is a score for the prominence, the number of inlinks
in Wikipedia, of the entities. A high support means an en-
tity is more prominent and more probable to be the right one.

2https://github.com/huggingface/neuralcoref
3https://www.dbpedia.org/
4https://github.com/dbpedia-spotlight/dbpedia-spotlight

A low support leads again to more recognized entities. For
our implementation the support hyperparameter was set at 10,
which is relatively low, thereby allowing less prominent enti-
ties to be recognized when they pass the confidence score.

Table 1: Influence of the confidence parameter on the number of
recognized entities in sentence A in Section 3.1

Confidence Recognized Entities

0.9 Barack Obama

0.5 Barack Obama, American, United States

0.3 Barack Obama, American, Politician,
Served, President, United States

3.3 Relation Extraction
The next stage is relation extraction. Here each sentence is
individually analyzed by going over each permutation of two
entities of the sentence. This is done by using the open source
project OpenNRE5 [9]. OpenNRE makes use of CNN and
BERT encoders to gain a state-of-the-art relation extraction.
The model takes each permutation of two entities as input and
predicts whether there is a relation between them and what
that relation might be. For our pipeline the default pre-trained
model was used, but OpenNRE allows for training an own
model, which could further increase performance.

3.4 KG Formation
This stage forms a knowledge graph from the extracted enti-
ties and relations. The entities act as the nodes in the knowl-
edge graph, and the relations as the edges connecting the en-
tities. A KG can be described by the Resource Description
Framework (RDF), which is used to represent linked data. In
RDF, a KG is described as a set of triples. An RDF triple
contains a subject, a predicate and an object. The predicate
represents the relation between two entities, extracted in sec-
tion 3.3. Figure 2 shows the format of an RDF triple in graph
form.

Figure 2: An RDF Triple.

In this work, we use a modified version of an RDF triple
where both nodes, the subject and the object, also contains the
liberal and conservative opinions towards the specific entity.
Each opinion is a value between -1 and 1. This is described
in detail in the next section.

Neo4J 6 was used as database for the implementation because
of its graph-centric approach and great performance [4].

5https://github.com/thunlp/OpenNRE
6https://neo4j.com/

Figure 3: POS tags and dependencies of sentence B, visualized with displaCy7.

3.5 Opinion Linking
This stage estimates the sentiments expressed in the sentence
towards each occurrence of an entity and aggregates them
into a liberal and conservative opinion. For this stage exist-
ing target-specific sentiment analysis models can be used, the
only requirement is that the sentiment scores are aggregated
and normalized to be in the [−1, 1] interval, where −1 means
absolutely opposed and 1 means absolutely in favor. The im-
plementation of this paper is a variation on the work of Chen
et al. [13].

The model of [13] makes use of the distance between the
opinion words and the entity to link the entity with a senti-
ment score. An opinion towards an entity v is calculated as
a vector [libOp, conOp] determined by the aggregation of all
the separate occurrences, following these aggregation func-
tions: {

libOp =
∑

Li∈L
∑

opj∈Li

opj ·SO
d(opj ,v)

conOp =
∑

Ci∈C
∑

opj∈Ci

opj ·SO
d(opj ,v)

(1)

L is the set of liberal training sentences and C is the set of
conservative training sentences. opj is an opinion word in
a sentence Li or Ci. For recognizing the opinion words an
opinion lexicon is used, this is a dictionary that stores a set of
known opinion words with their respective sentiment orienta-
tions. d(opj , v) is the distance between the current estimated
entity v and the opinion word opj . The distance between two
words is defined as the minimum number of words between
the first word and the second word, in this case the entity word
and the opinion word. opj .SO = {−1, 0, 1} is the notation
for the sentiment orientation of the opinion word, meaning
{negative, neutral, positive} respectively.

The approach of Equation 1 of using opinion words and their
distance towards the entities has two main disadvantages.
First, there can be multiple entities in one sentence with con-
flicting opinion words. For example, the sentence:

“While apples often taste bad, oranges taste good.” (B)

has two entities, “apples” and “oranges”, and two conflict-
ing opinion words, “good” and “bad”. If we would follow
Equation 1 and use distance to compute the opinion towards
“oranges”, “bad” (distance of 1) would be more related to

“oranges” than “good” (distance of 2), which is clearly false.
A second disadvantage is that the opinion lexicon, the dictio-
nary of opinion words, can be limiting. There may be parts of
the sentence that do have a sentiment but are not recognized.

Therefore a variation of formula 1 is implemented: libOp = 1
|L|
∑

Li∈L

(
1
|Li|

∑
dj∈Li

s(dj)
)

conOp = 1
|C|
∑

Ci∈C

(
1
|Ci|

∑
dj∈Ci

s(dj)
) (2)

dj is a dependency towards the entity Li or Ci. |Li| and |Ci|
are the numbers of dependencies in the entity Li and Ci re-
spectively. They are used to normalize the sum of aggregated
sentiments. |L| and |C| are the numbers of recognized enti-
ties in the sentence L and C respectively. They are used to
normalize the sum of aggregated entities.

A dependency is a part of a sentence that depends on an-
other part and thereby indicates a connection. To resolve
these dependencies the algorithm uses Part-of-speech (POS)
tags. Figure 3 shows the POS tags of sentence B. Here “or-
anges” gets the dependency “taste good”. The resulting de-
pendencies are based on the semantic structure of the sen-
tence, which is more reliable than a simple distance measure.
In our implementation the dependencies are extracted with
the DependencyMatcher8 from Spacy.

s(dj) is the estimated sentiment of the part dj . Our imple-
mentation uses TextBlob9, which returns the sentiment polar-
ity and assessments. TextBlob uses a pretrained model, fol-
lowing a CNN architecture, as in Section 3.3 this model could
be optimized to further increase performance.

3.6 Opinion Propagation
After the opinion linking stage the model can already use
the opinion-aware knowledge graph (OKG) in the final stage
of sentence classification. But to improve the accuracy the
model can leverage the relations between the entities to prop-
agate the opinions of known entities towards the unknown

8https://spacy.io/api/dependencymatcher
9https://github.com/sloria/TextBlob

entities. This is done with the following formula:{
libOp = −

∑p
j=1 log [P (rj)] · libOpj

conOp = −
∑p

j=1 log [P (rj)] · conOpj
(3)

This formula iterates over each entity j connected by rj to the
current unlabeled entity. P (rj) is the probability of the rela-
tion rj in the OKG. The probability is calculated as follows:

P (rj) =
|rj |
|R|

(4)

|rj | is the number of occurrences of the type of relation rj ,
such as, for example, “MEMBER OF”. |R| is the number of
all relations in the OKG. The assumption here is that speci-
ficity is important to relevance. So a relation that appears less
in the OKG is given more relevance than a frequent occurring
relation. This idea is used in both [13] and [15].

3.7 Sentence Classification
Going into this stage the model has been trained and has con-
structed an OKG G, storing an individual opinion vector for
each entity. When the model is applied on a new sentence or
document T from the test set, the first step is to get the inter-
section of the set of entities in G and the set of entities in T .
We call this intersection V .

The second step is to get the opinion orientation OOv towards
each entity v of V . It follows this formula:

OOv = sign

(∑
dv∈T

s(dv)

)
(5)

As in formula 2, dv are the POS dependencies linked to the
handled entity v and s(dv) is the estimated sentiment. The
sentiments are aggregated and a sign function is applied to
get a value of -1, 0 or 1, meaning again {Favor, Neutral, Op-
posed}.

After the opinion orientation of the entity is calculated it is
compared to the opinions of the entities from the OKG in V .

ideology =

∑
v∈V (libOpv ·OOv − conOpv ·OOv)

|VT |
(6)

Here VT is the set of entities in the sentence T and |VT | is the
number of entities in in VT . The overall ideology of sentence
T will be labeled as liberal if ideology > n then , as conserva-
tive if ideology < −n, and as neutral if−n ≤ ideology ≤ n.
Here n is a threshold hyperparameter that sets an interval
[−n, n] between which the ideology is not distinctively lib-
eral or conservative enough, wherein therefore samples get
labeled as neutral. In our implementation this n is 0.1.

The following example illustrates the classification process.

“President Trump’s horrifying energy policy,
which focuses on the reduction of American
petroleum regulation, will cause a significant raise
in damaging greenhouse-gasses.”

(C)

⇓

Figure 4: A subgraph of the intersecting entities of the text C and
the OKG G. The edges are the relations between the entities that
are present in the text. Other relations connected to the entities are
omitted for clarity.

⇓

Table 2: The opinion orientation and opinion scores of the recog-
nized entities from text in C. Because of the overall negative sen-
timent in C all the opinion orientations are negative but they may
differ.

Entity v OOv LibOpv ConOpv

Greenhouse gasses -1 -0.53 -0.21

Energy -1 0.32 0.43

Donald Trump -1 0.78 -0.63

Energy policy -1 0.45 - 0.28

Petroleum -1 0.38 -0.54

POTUS -1 0.34 0.23

United States -1 0.54 0.43

⇓
ideology = 0.29 = Liberal (7)

4 Evaluation
This section evaluates the performance of the algorithm. We
measured performance with the F-score and compared it
against three other traditional models on two datasets.

4.1 Datasets
The algorithm was tested on two datasets, both in the political
context.

The SemEval2016 dataset [14] consists of tweets during
the US 2016 presidential election. It covers six sub-
jects: Hillary Clinton (HC), Donald Trump (DT), the

feminist movement (FM), the Legalization of Abortion
(LA), Atheism (AT) and climate change is a Real Con-
cern (CC). Each tweet is annotated with a target (one of
the subjects) and a stance (in favor, opposed, neutral).
For our model the data is preprocessed by labeling each
tweet as either liberal (Lib), conservative (Con) or neu-
tral. Table 3 describes how the known stance of the ide-
ologies towards the subjects are applied to achieve this.

Table 3: Political ideology per subject for the SemEval2016 dataset.

Subject Favor Opposed Neutral

HC Lib Con Neutral

DT Con Lib Neutral

LA Lib Con Neutral

CC Lib Con Neutral

AT Con Lib Neutral

FM Lib Con Neutral

The IBC dataset [11] consists of sentences extracted from
works of the Ideological Books Corpus, which is a col-
lection of books and articles, written between 2008 and
2012 by authors of whom the political leaning is well
known. Each sentence is annotated as either liberal, con-
servative or neutral.

Tables 4 and 5 describe the distributions of the datasets.Both
datasets have an already established train/test distribution,
therefore the train/test ratio differs.

Table 4: Train/Test distribution of SemEval and IBC datasets.

Dataset #Total #Train #Test Train/Test

SemEval 4.9K 3K 1.9K 61/39

IBC 4.3K 3.4K 0.9K 79/21

Combined 9.2K 6.4K 2.8K 70/30

Table 5: Ideology distribution of SemEval and IBC datasets.

Dataset #Total #Lib #Cons #Neutral

SemEval 4.9K 1.7K 1.9K 1.3K

IBC 4.3K 2K 1.7K 0.6K

Combined 9.2K 3.7K. 3.6K 1.9K

4.2 Models
The pipeline was compared against three types of models.

• LR: Logistic Regression algorithm using bag-of-words
feature embedding.

• SVM: Support vector machine algorithm using bag-of-
words feature embedding.

• CNN: A convolutional neural network algorithm using
word2vec [10] embeddings.

The LR and SVM model were both implemented with
scikitlearn10. The CNN model was implemented with the
TextCategorizer11 component from Spacy.

4.3 Performance Measure
The performance of the models is measured with the F-score.
This performance measure combines two concepts, precision
and recall, to evaluate the classifications. The formulas use
three types of classification:

• True Positive (TP): Correctly classified as the specific
ideology.

• False Positive (FP): Wrongly classified as the specific
ideology.

• False Negative (FN): Wrongly classified as another ide-
ology than the specific ideology.

Precision (P) and recall (R) are defined as follows:

P =
TP

TP + FP

R =
TP

TP + FN

F =
2 ∗ P ∗R
P +R

Since the F-score is a measure that only works for binary clas-
sifications (right or wrong classification) the F-score is calcu-
lated for each ideology separately. Thereafter the average of
the three ideologies is calculated:

FIdeology =
2 ∗ PIdeology ∗RIdeology

PIdeology +RIdeology

F =
FLiberal + FConservative + FNeutral

3

4.4 Experimental Results and Analysis
Tables 6 and 7 contain the F-scores of the models of section
4.2 and the knowledge graph pipeline (KGP) as described by
section 3. The best F-scores per ideology are marked in bold.

The knowledge graph pipeline outperformed both the 2 clas-
sical machine learning models and the deep learning model
on the overall F-score. The second-best performing model is
the CNN, this is in line with the good performances of [13;
16], discussed in Subsection 2.1. CNN outperforms KGP on
both the liberal set from the SemEval dataset and the con-
servative set from the IBC dataset. These two sets are both

10http://scikit-learn.org/stable/index.html
11https://spacy.io/api/textcategorizer

Table 6: F-scores of different models on the SemEval dataset.

Model F Flib Fcons Fneutral

LR 0.5564 0.5632 0.5328 0.5733

SVM 0.5795 0.5832 0.5623 0.5929

CNN 0.6120 0.6401 0.5935 0.6024

KGP 0.6276 0.6279 0.6203 0.6346

Table 7: F-scores of different models on the IBC dataset.

Model F Flibe Fcons Fneutral

LR 0.5925 0.5871 0.5943 0.5957

SVM 0.6117 0.6245 0.6002 0.6103

CNN 0.6296 0.6237 0.6329 0.6323

KGP 0.6356 0.6381 0.6166 0.6521

the smaller sets in their respective dataset. This may indicate
that CNN is more efficient than KGP, allowing it to get better
performance with a smaller dataset.

Noteworthy is that every model performed better on the IBC
dataset than on the SemEval dataset, this may indicate a cor-
relation between the size of the training set and the perfor-
mance for all models.

D and E are examples of a liberal and a conservative sentence
respectively, that were classified wrongly as neutral by the
baseline models, but correctly by the KGP model. The rec-
ognized entities are marked in bold.

“‘We share culture, we share friends and enemies’,
explains Mara Keisling, a longtime trans activist
who for the past five years has led the National Cen-
ter for Transgender Equality.”

(D)

“Indeed, Eric Garris wrote a generally favor-
able piece about Brown for Reason in 1975, and
Murray Rothbard praised him that same year in
The Libertarian Forum, though his later remarks
about the governor were more caustic.”

(E)

Remarkable about D is that there are no clear opinion words
or explicitly stated sentiments. This may indicate that KGP
has a lower reliance on clearly stated sentiments and can rely
more on the sentiments that are stored in its OKG.

Remarkable about E is the presence of two persons and one
organization as recognized named entities. After closer in-
vestigation of the OKG, these two persons had both a conser-
vative leaning sentiment and had only a combined total of 8
relations towards other entities. This may indicate that KGP
is better at classifying sentences with multiple less known en-
tities.

5 Responsible Research
This paper is written in the context of the CSE3000 “Research
Project” course from Delft University of Technology. The
field of political ideology detection and the field of politics
in general is ethically sensitive because of its prominent in-
fluence over multiple aspects of a society. Therefore it is im-
portant that there is no bias in the classifications and that this
work is reproducible.

5.1 Bias
The classifications of the algorithm are susceptible to bias
from three main sources:

• Third-party models, used for coreference, entity, relation
and opinion extraction. Since these models are partly out
of the control of the pipeline this may skew the classifi-
cations towards a particular ideology.

• Knowledge base, used for linking entities. Some entities
may be not represented in the knowledge base.

• Datasets, used to train and test the pipeline. If one ide-
ology has a considerable majority in the data, the re-
sults may be biased towards this ideology. The SemEval
dataset was slightly more liberal and the IBC dataset was
slightly more conservative, making the combined dataset
equally distributed between both ideologies, see table 5.

5.2 Reproducibility
To make reproducibility manageable, the stages of the
pipeline and the used packages have been described in de-
tail in section 3. The pipeline was implemented with the
Spacy 3.0 framework and all used packages have been anno-
tated with footnotes. The code is also accessible at GitHub12.
The structure and preprocessing of the datasets have been de-
scribed in section 4.1. There is no significant influence of
randomness throughout the whole pipeline.

6 Conclusion
Knowledge graphs and sentiment analysis techniques can be
combined to create a political stance detection algorithm. The
knowledge graph pipeline (KGP) proposed in this paper of-
fers a framework for existing stance detection models to use
the background knowledge stored in knowledge bases and
improve their context-dependent classifications.

The results showed that KGP achieved an average F-score of
0.63 outperforming three other traditional models on the IBC
and SemEval dataset. Closer investigation of the classifica-
tions showed that KGP is superior in classifying sentences
with no explicitly stated sentiments or with sentences with
multiple named entities.

12https://github.com/Abel-VS/Grapher

6.1 Future Work
There is a lot of room for improvement and further features
for this pipeline. First, there is the subject of explainability.
Most deep learning methods act like a “black box”, where a
model achieves high efficiency and performance but the clas-
sifications can’t be given an explanation. By combining the
efficiency of modern deep learning methods such as CNN and
BERT with the clarity of the rule-based opinion propagation
and sentence classification, the developed model should be
able to offer intuitive explanations for its classifications. This
can be valuable in fields such as medical research where a
decision needs to be backed by a sound explanation.

A second improvement could be to integrate the links from
the KB entities in the OKG. Currently the relations between
the entities are purely extracted from the training data itself,
but the structure of DBPedia already contains many links be-
tween its entities. If this were to be implemented the pipeline
could recognize relations to entities that were not mentioned
in the training data.

7 Acknowledgments
I would like to thank Pradeep Murukannaiah for his guidance
as supervisor and responsible professor through the whole re-
search and writing process. I am also grateful for the help and
feedback of Simon Marien, Wout Haakman, Kristof Vass, and
Jacob Roeters, with whom I formed a peer group.

References
[1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and

O. Yakhnenko. Translating embeddings for modeling
multi-relational data. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, ed-
itors, Advances in Neural Information Processing Sys-
tems, volume 26. Curran Associates, Inc., 2013.

[2] W. Chen, X. Zhang, T. Wang, B. Yang, and Y. Li.
Opinion-aware knowledge graph for political ideology
detection. Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, 2017.

[3] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes. Im-
proving efficiency and accuracy in multilingual entity
extraction. In Proceedings of the 9th International Con-
ference on Semantic Systems (I-Semantics), 2013.

[4] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Martı́nez-Bazán, and J. L.
Larriba-Pey. Survey of graph database performance on
the hpc scalable graph analysis benchmark. Web-Age In-
formation Management Lecture Notes in Computer Sci-
ence, page 37–48, 2010.

[5] J. Dörpinghaus and A. Stefan. Knowledge extraction
and applications utilizing context data in knowledge
graphs. Proceedings of the 2019 Federated Conference
on Computer Science and Information Systems, 2019.

[6] M. Farda-Sarbas and C. Müller-Birn. Wikidata from
a research perspective - a systematic mapping study of
wikidata, 2019.

[7] B. Fatemi, S. Ravanbakhsh, and D. Poole. Improved
knowledge graph embedding using background taxo-
nomic information. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33:3526–3533, 2019.

[8] R. Feldman. Techniques and applications for sentiment
analysis. Communications of the ACM, 56(4):82–89,
2013.

[9] X. Han, T. Gao, Y. Yao, D. Ye, Z. Liu, and M. Sun.
OpenNRE: An open and extensible toolkit for neural re-
lation extraction. In Proceedings of EMNLP-IJCNLP:
System Demonstrations, pages 169–174, 2019.

[10] T. M. G. Inc., T. Mikolov, G. Inc., I. S. G. Inc.,
I. Sutskever, K. C. G. Inc., K. Chen, G. C. G. Inc.,
G. Corrado, J. D. G. Inc., and et al. Distributed represen-
tations of words and phrases and their compositionality,
Dec 2013.

[11] M. Iyyer, P. Enns, J. Boyd-Graber, and P. Resnik. Polit-
ical ideology detection using recursive neural networks.
Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), 2014.

[12] Q. Li, S. Shah, R. Fang, A. Nourbakhsh, and X. Liu.
Tweet sentiment analysis by incorporating sentiment-
specific word embedding and weighted text features.
2016 IEEE/WIC/ACM International Conference on Web
Intelligence (WI), 2016.

[13] X. Li, W. Chen, T. Wang, and W. Huang. Target-specific
convolutional bi-directional lstm neural network for po-
litical ideology analysis. Web and Big Data Lecture
Notes in Computer Science, page 64–72, 2017.

[14] S. Mohammad, S. Kiritchenko, P. Sobhani, X. Zhu, and
C. Cherry. Semeval-2016 task 6: Detecting stance in
tweets. Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), 2016.

[15] M. Schuhmacher and S. P. Ponzetto. Knowledge-based
graph document modeling. Proceedings of the 7th ACM
international conference on Web search and data min-
ing, 2014.

[16] W. Wei, X. Zhang, X. Liu, W. Chen, and T. Wang. pkud-
blab at semeval-2016 task 6 : A specific convolutional
neural network system for effective stance detection.
Proceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), 2016.

[17] L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettle-
moyer. Zero-shot entity linking with dense entity re-
trieval, 2020.

[18] Z. Xu, Q. Li, W. Chen, Y. Cui, Z. Qiu, and T. Wang.
Opinion-aware knowledge embedding for stance detec-
tion, 2019.

	Introduction
	Related Work
	Sentiment Analysis
	Knowledge Graphs

	Algorithm Design
	Coreference Resolution
	Entity Extraction and Linking
	Relation Extraction
	KG Formation
	Opinion Linking
	Opinion Propagation
	Sentence Classification

	Evaluation
	Datasets
	Models
	Performance Measure
	Experimental Results and Analysis

	Responsible Research
	Bias
	Reproducibility

	Conclusion
	Future Work

	Acknowledgments

