<]
TUDelft

Delft University of Technology

Systems for Digital Self-Sovereignty

Stokkink, Q.A.

DOI
10.4233/uuid:f3ed96a3-c436-4027-a3fc-5c22a9ee905d

Publication date
2024

Document Version
Final published version

Citation (APA)
Stokkink, Q. A. (2024). Systems for Digital Self-Sovereignty. [Dissertation (TU Delft), Delft University of
Technology]. https://doi.org/10.4233/uuid:f3ed96a3-c436-4027-a3fc-5c22a9ee905d

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:f3ed96a3-c436-4027-a3fc-5c22a9ee905d
https://doi.org/10.4233/uuid:f3ed96a3-c436-4027-a3fc-5c22a9ee905d

Systems for Digital Self-Sovereignty

Systems for Digital Self-Sovereignty

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. dr. ir. TH.J.J. van der Hagen,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen
op maandag 8 april 2024 om 17:30

door

Quinten André STOKKINK

Master of Science in Computer Science,
Technische Universiteit Delft, Nederland,
geboren te Leiderdorp, Nederland.

Dit proefschrift is goedgekeurd door de

promotor: Prof. dr. ir. D.H.J. Epema
promotor: Dr. ir. J.A. Pouwelse

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. ir. D.H.J. Epema, Technische Universiteit Delft, promotor

Dr. ir. J.A. Pouwelse, Technische Universiteit Delft, promotor
Onafhankelijke leden:

Prof. dr. M.J. van den Hoven, Technische Universiteit Delft, The Netherlands
Prof. dr. A. Veneris, University of Toronto, Canada

Prof. dr. D. Grossi, University of Groningen, The Netherlands
Prof. dr. F. Taiani, Université de Rennes 1, France

Prof. dr. ir. F.A. Kuipers, Technische Universiteit Delft, The Netherlands

N
f; »’“\ S \.\;\v
Delft .\aarﬂvh\\-'ﬂlns
e t University of NS
Technology Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school. ASCI dissertation series number
454.

Keywords: anonymity, blockchain, decentralization, gossip, green, identity man-
agement, local-first, network, network latency, peer-to-peer, privacy,
pseudonymity, replication, reputation, Self-Sovereign, smart contract,

Sybil, Web3

Printed by: Gildeprint B.V,, Enschede, The Netherlands

Cover: Quinten Stokkink and DALL-E 2. The cover is a Penrose tiling of pass-
port photos, as interpreted by Artificial Intelligence.

Style: TU Delft House Style, with modifications by Moritz Beller

https://github.com/Inventitech/phd-thesis-template

The author set this thesis in KIEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6366-839-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

16 év taig éényrjoeot un Svoyepavrikov
Kal TO 19elv &vBpwmov oapds EAGYIoTOV TV EQUTOD KAADV 1YOUUEVOV THY Eumelpiay
Kal v évipéyeiav tnv mepl 10 mapadidéven o Oewprjpara.

Marcus Aurelius, Meditations, describing his learnings from Apollonius*

"Transcription and translation from The Meditations of the Emperor Marcus Antoninus by Arthur Spenser Loat
Farquharson (1944): “Not to be censorious in exposition; and to see a man who plainly considered technical knowl-
edge and ease in communicating general truths as the least of his good gifts.”

vii

Contents

Summary ix
Samenvatting xi
Acknowledgments 3%
1 Introduction 1
1.1 Self-Sovereign Digital Identity 2
1.2 Self-Sovereign Public Infrastructure: Web3. 5
1.3 Self-Sovereign Execution of Shared Code. 8
1.4 Research Questions 11
1.5 ResearchContext. 13
1.6 Research and Engineering Methodology 15
1.7 Thesis Outline and Scientific Contributions. 16
2 A Truly Self-Sovereign Identity System 19
2.1 Introduction Lo 20
2.2 Problem Statement. Lo L Lo 21
23 SystemDesigno L 23
2.4 Passport Grade Specialization of TCID 25
25 Evaluation Lo o 28
2.6 RelatedWork. L Lo 32
2.7 Conclusion. Lo 33
3 Web3 Sybil Avoidance Using Network Latency 35
3.1 Introduction L 36
3.2 Problem Description 37
33 Adversarymodel. Lo 39
3.4 Basic SybilSys: basal Sybil-avoiding peer sampling. 40
3.5 Enhanced SybilSys: hardening to attacks. 45
3.6 Enhanced SybilSys: implementation 51
3.7 Enhanced SybilSys: evaluation. L. 58
3.8 RelatedWork. Lo 64
3.9 Conclusion.o 65
4 Reputation-Based Data Carrying for Web3 Networks 67
41 Introductiono 68
42 Requirementsanalysis L Lo 69
43 Design.o e 71
4.4 Storage based on carrier qualityo oL 75

4.5

Real-world traces. 79

viii

Contents

4.6 RelatedWork.
47 Conclusion.

5 A Local-First Approach for Green Smart Contracts

5.1 Introduction

5.2 Concepts to decouple smart contracts from Proof-of-Work chains

5.3 Design constraints to enable a local-first approach
5.4 A design for locality-based “green” execution
5.5 Consistency violations in a real-world smart contract
5.6 Resolving consistency violations
57 Relatedwork. Lo o
58 Conclusion. oL

6 Conclusion

6.1 Conclusions e
6.2 Future Directions.

Bibliography
Curriculum Vitae

List of Publications

ix

Summary

he digital world is evolving toward representing—and serving the interconnection of—
T natural persons. Instead of depending on the intrastructure of Big Tech companies and
governments, users can cooperate and use their hardware to form public infrastructure.
Instead of existing by virtue of a reference in some institution’s database, users can inter-
act based on a digital representation of their own choosing. It is no longer sufficient to
depend on users to act out of system-imposed altruism. A new digital world is emerging
that aims to provide systems that respect the rights of users to control their own digital
representation. The complete control over one’s own representation and all the data that
belongs to it is what we know as Self-Sovereignty.

Solutions for digital Self-Sovereignty are wildly sought after, though their solution
space remains woefully underexplored. Numerous global entities, e.g., the European Union,
have stated their support for Self-Sovereign systems. However, many old problems of
peer-to-peer systems that have gone ignored for decennia resurge with the need for Self-
Sovereignty. For example, interconnections in peer-to-peer networks are vulnerable to
attacks using fake identities and attackers can manipulate peers by depriving them of data.
As most deployed peer-to-peer solutions have very little incentive for disruption by attack-
ers, we have seen very little attacks. However, cryptocurrencies have shown that these
attacks do surface when there is sizable monetary gain for attackers. In order to secure
our future digital society, we must define and study these systems for Self-Sovereignty.

In this thesis we take the first steps toward defining the systems that can power a Self-
Sovereign “Web3” ecosystem. In particular, we explore systems that apply Self-Sovereignty
for identity, for public infrastructure, and for the execution of shared code. We describe
four prototype mechanisms to form a guide for future work and to derive their general
properties. Each mechanism is evaluated as realistically as possible. Thereby, this thesis
mostly fulfills an exploratory role to guide the further evolution of our digital world.

In Chapter 1 we describe the application of Self-Sovereignty and its considerations
for identity systems, public infrastructure maintenance, and for execution of shared code.
We discuss the evolution and historical approaches that have led to the need and to the
creation of these systems. We then formulate the main research question of this thesis
and its four derivative research questions. Furthermore, we describe our research and
engineering methodology and we outline the contributions and structure of this thesis.

In Chapter 2 we present a truly Self-Sovereign Identity system. We define the three
desirable Self-Sovereign Identity system properties of Self-Sovereignty, Credibility, and
Network-level Anonymity. Furthermore, we give the necessary functional requirements
for such a system to operate without any third party servers while guaranteeing the pri-
vacy of its users. Our evaluation shows that the overhead of using our TrustChainlDentity
(TCID) solution is not prohibitive for practical use and that existing work is overly focused
on cryptographic research. We conclude that more research is needed for network privacy
and peer interconnectivity.

X Summary

In Chapter 3 we define our mechanism SybilSys, which achieves peer interconnectivity
in the face of fake identities. By creating a surplus of identities from a single device, called
Sybils, attackers can cheaply and easily interfere with connections between peers. Secon-
darily, there exists a circular dependency between trusting other peers and connecting to
other peers. In order to filter out Sybils from the list of connections, our mechanism uses
network latency. We show that our basic mechanism avoids Sybils and we further define
an enhanced version of our mechanism that is resilient against attackers that attempt to
subvert our strategy. We show that our enhanced mechanism can find honest peers even
in networks that consist of 99% Sybils that actively interfere with latency measurements.

In Chapter 4 the Timely Sharing with Reputation Prototype (TSRP) mechanism is dis-
cussed, a mechanism for carrier selection to aid public infrastructure maintenance. In or-
der for public infrastructure to be maintained, data must be carried (i.e., stored and shared)
between peers. However, in order for communication to be efficient, as little data as pos-
sible must be shared. At the same time, to uphold security guarantees, data should be—at
the very least—shared with some given number of peers. TSRP is such a mechanism that
selects random carriers to share data with based on their reputation. Through our evalu-
ation we verify the basic behavior of TSRP and we show that TSRP does not necessarily
lead to many more copies of data when compared to approaches that depend on trust.

In Chapter 5 we describe our Green Smart Contracts (GSC) paradigm to execute shared
code. In contrast to traditional blockchains that execute their code on all nodes, we show
that a local-first approach is more efficient. A local-first approach consists of first optimisti-
cally executing code and then later merging this execution with the execution of peers. In
case of a conflict between the executions of peers, a consensus mechanism has some peers
roll back (i.e., undo part of their previous execution) and follow a different execution path.
At the same time, we argue that a local-first approach is not necessarily useful for all
applications. Specifially, we argue that the GSC paradigm is useful for liability-based ap-
plications. Nevertheless, our experiments show that a local-first approach can execute a
real-world program without collapsing the execution paradigm.

In Chapter 6 we give a summary of our findings and we provide the overarching con-
clusions of this thesis. We end this chapter with an overview of the future directions that
remain to be explored.

xi

Samenvatting

e digitale wereld ontwikkelt zich ter ondersteuning van de representatie en inter-
D connectie van natuurlijke personen. In plaats van athankelijk te zijn van de infra-
structuur van “Big Tech” bedrijven en overheden, kunnen gebruikers samenwerken en
hun apparaten inzetten om publieke infrastructuur te realiseren. In plaats van bestaan
bij wille van een referentie in de data opslag van een of andere institutie, kunnen gebrui-
kers interacteren op basis van een digitale representatie van hun eigen keuze. Het is niet
langer voldoende om te bouwen op gebruikers die handelen uit systeemgedreven altru-
isme. Er is een nieuwe digitale wereld aan het opkomen met als doel systemen voort te
brengen waarin de rechten van gebruikers, om hun eigen digitale representatie volledig in
handen te hebben, gerespecteerd worden. Deze complete controle over eenieder’s eigen
representatie en alle data die daartoe behoort, is wat we kennen als Zelf-Soevereiniteit.

Er wordt naarstig gezocht naar oplossingen voor digitale Zelf-Soevereiniteit, ook al
is de oplossingsrichting gebrekkig onderzocht. Verschillende globale spelers, zoals de
Europese Unie, hebben hun toewijding aan Zelf-Soevereine systemen kenbaar gemaakt.
Daarentegen doen vele oude problemen van systemen voor egalitaire interactie, die vele
decennia genegeerd zijn, hun wederintrede met deze roep om Zelf-Soevereiniteit. De in-
terconnecties in netwerken van gelijke participanten zijn bijvoorbeeld kwetsbaar voor
aanvallen door nepidentiteiten en aanvallers kunnen netwerk participanten manipuleren
door ze te data te onthouden. Gezien de meeste uitgerolde oplossingen voor egalitaire
interactie erg weinig stimulus creéren voor disruptie door aanvallers, hebben er over de
jaren vrij weinig aanvallen plaats gevonden. Echter hebben cryptografische betaalmid-
delen aangetoond dat aanvallen wel degelijk plaats vinden wanneer er een substantiéle
monetaire beloning tegenover staat voor aanvallers. Ten behoeve van het veiligstellen
van onze toekomstige digitale samenleving, moeten de systemen voor Zelf-Soevereiniteit
gedefinieerd en bestudeerd worden.

In dit proefschrift nemen we de eerste stappen richting het definiéren van systemen die
een Zelf-Soeverein “Web3” ecosysteem kunnen aandrijven. In het bijzonder onderzoeken
we systemen die Zelf-Soevereiniteit toepassen voor identiteit, voor publieke intrastructuur
en voor het uitvoeren van gedeelde programmacode. Om een leidraad te vormen voor
toekomstig onderzoek en om hun algemene eigenschappen af te leiden, beschrijven we
in dit proefschrift vier prototypes voor de mechanismen die onderdeel uitmaken van dit
soort systemen. leder mechanisme is op een zo realistisch mogelijke manier geévalueerd.
Daarmee vervult dit proefschrift voornamelijk een verkennende rol om de verdere evolutie
van onze digitale wereld in goede banen te leiden.

In hoofdstuk 1 beschrijven we de toepassing en overwegingen van Zelf-Soevereiniteit
voor identiteitssystemen, het onderhoud van publieke infrastructuur en voor het uitvoe-
ren van gedeelde programmacode. We bespreken de evolutie en de geschiedenis van be-
naderingen die voor deze systemen hebben geleid tot zowel hun behoeftestelling als hun
ontwikkeling. Daarna formuleren we de hoofdonderzoeksvraag van dit proefschrift en de

xii Samenvatting

vier daarvan-afgeleidde onderzoeksvragen. Verder beschrijven we onze onderzoeks- en
ontwikkelmethodologie en geven we in hoofdlijnen de contributies en de verdere structu-
rering van dit proefschrift.

In hoofdstuk 2 presenteren we een waarlijk Zelf-Soeverein Identiteitssysteem. We
definiéren de drie eigenschappen van Zelf-Soevereine Identiteitssystemen als zijnde “Zelf-
Soevereiniteit”, “Geloofwaardigheid” en “Anonimiteit op Netwerkniveau”. Verder geven
voor dat soort systemen we de functionele vereisten om te opereren zonder servers on-
der het beheer van derde partijen én om privacy van de gebruikers te waarborgen. Onze
evaluatie toont aan dat de extra belasting op machines door het gebruik van onze Trust-
ChainlDentity (TCID) oplossing geen practisch bezwaar vormt en dat voorgaand werk te
veel toegespitst is op cryptografisch onderzoek. We concluderen dat er meer onderzoek

nodig is naar netwerkprivacy en de interconnecties van netwerk participanten.

In hoofdstuk 3 definiéren we ons SybilSys mechanisme, dat interconnectiviteit tussen
gelijke netwerk participanten bewerkstelligt ondanks de aanwezigheid van nepidentitei-
ten. Door vanuit een enkel apparaat een overdaad aan identiteiten te creéren, ook wel
Sybils genoemd, kunnen aanvallers goedkoop en makkelijk interfereren met connecties
tussen netwerk participanten. Daarnaast is er een circulaire athankelijkheid tussen het
opbouwen van vertrouwen en het maken van verbindingen tussen netwerk participanten.
Om Sybils uit de connecties te filteren gebruikt ons mechanisme netwerk latentie. We
tonen aan dat onse basismechanisme Sybils vermijdt en we definiéren een versterkte ver-
sie van ons mechanisme dat weerbaar is tegen aanvallers die onder ons basismechanisme
proberen uit te komen. We tonen aan dat ons versterkte mechanisme echte participanten
vindt zelfs als een netwerk voor 99% bestaat uit Sybils die actief latentiemetingen proberen
te ondermijnen.

In hoofdstuk 4 wordt het Timely Sharing with Reputation Prototype (TSRP) mechanisme
besproken: een mechanisme voor het selecteren van dragers om publieke infrastructuur
te onderhouden. Om publieke infrastructuur te onderhouden moet data gedragen - dat wil
zeggen opgeslagen en uitgewisseld - worden tussen netwerk participanten. Voor efficiénte
communicatie moet echter zo min mogelijk data uitgewisseld worden. Tegelijkertijd moet
data - voor behoud van veiligheid - ten minste met een gegeven hoeveelheid gekozen
participanten uit het volledige netwerk gedeeld worden. TSRP is zo’n mechanisme dat
willekeurig gekozen dragers selecteert, op basis van reputatie, om data mee uit te wisselen.
Door middel van onze evaluatie verifiéren we de basale functionaliteit van TSRP en tonen
we aan dat het gebruik van TSRP niet per se leidt tot meer kopieén van data in relatie tot
benaderingen die gebaseerd zijn op vertrouwen.

In hoofdstuk 5 beschrijven we ons Green Smart Contracts (GSC) paradigma om pro-
grammacode uit te voeren. In contrast tot traditionele blockchains die hun code gelijktij-
dig uitvoeren bij alle participanten van een netwerk, tonen we aan dat het efficiénter is
om eerst lokaal “local-first” in elke participant code uit te voeren. Een local-first aanpak
bestaat uit de optimistische executie van programmacode, gevolgd door het samenvoegen
van deze executie met de executies van andere netwerk participanten. In het geval van een
conflict tussen executies van participanten, zorgt een consensus mechanisme ervoor dat
sommige participanten een rollback uitvoeren (d.w.z. een gedeelte van hun voorgaande
executie terugdraaien) en dat ze een ander executiepad volgen. Tegelijkertijd beargumen-
teren we dat een local-first aanpak niet per se in het algemeen toepasbaar is voor alle appli-

Samenvatting xiii

caties. Echter tonen onze experimenten aan dat een local-first aanpak echte programma’s
uit kan voeren zonder dat het executie paradigma vast loopt.

In hoofdstuk 6 geven we een samenvatting van onze bevindingen en de conclusies die
deze thesis overstijgen. We eindigen dit hoofdstuk met een overzicht van de onderzoeks-
richtingen die nog mogelijk onderzocht kunnen worden.

XV

Acknowledgments

I could have started this thesis with just about any quote from the movie Rocky (1976).
That would’ve certainly been very descriptive of the PhD process and very inspiring for
new PhD students. Instead, I gave you a quote from Marcus Aurelius, one of the five
people that went down in history as the so-called “Good Emperors of Rome”. Beyond
its superficial interpretation, the intention of this quote is to show that even one of the—
objectively—greatest human beings to ever walk the earth is fundamentally formed by,
and supported by, their interactions with others. In recognition of this fact, I use first-
person plural pronouns throughout this thesis except for these acknowledgements. Here,
I personally acknowledge all of the other people that have helped shape this plurality.

The first people that I thank are those that have been involved the closest with this the-
sis, my two promotors: Dick Epema and Johan Pouwelse. First, Dick: you directly inspired
my epigraph; the description of Apollonius fits you very well. You have taught me how
to be clear in my textual exposition and I fondly remember your stories—or complaints
rather—about scientific obfuscation using mathematical constructs. You were the first one
to tell me that you don’t understand my text and that has been the been the single most
important thing I needed to hear to improve my writing. I hope to one day match your
abililties to disambiguate and to be succinct. Second, Johan: you have a sixth sense for
scientific, and societal, relevance and you are a seemingly-endless source of inspiration.
Thanks to your efforts, I have had the opportunity to visit many companies and organiza-
tions that I never would have expected to ever see the inner workings of. You have taught
me the value of stepping away from the comfort zone of academia and connecting with
industry and government. Most importantly, you have shown me that there is always fun
to be had when doing science. Perhaps, in the future, I will also be able to see the value
and opportunities that lie within people and their ideas with the same ease as you.

I extend my gratitude toward the people that have (almost) written papers with me.
My special thanks go to Alexander Stannat, Can Umut Ileri, Dick, Georgy Ishmaev, and
Johan, for seeing my submissions through to their publication. Especially Can: you have
managed to stay in high spirits for years even when faced with several barely-rejected
papers (one paper even with four “weak accept” reviews). However, I would also like to
thank Aaron Yi Ding, Bulat Nasrulin, Jan Rellermeyer, and Martijn de Vos, for working
with me and almost becoming my co-authors. In particular, Jan: even after being involved
with five submissions (including chapters 3 and 4 of this thesis), you sadly left the TU Delft
just before my works started to get accepted into the body of science.

During my implementation work, I have closely worked with some very talented peo-
ple from industry and government. From the Rijksdienst voor Identiteitsgegeven (RvIG),
André de Kok, Fons Knopjes, Frans Rijkers, Jasper Mutsaers, and Pepijn Terra: I learned
a lot about the inner workings of our Dutch government from you. André, thank you for
taking the nerds from Delft by the hand through the wild world of government. From CMS
Legal Services, Simon Sanders: thank you for humoring me for hours on end to determine

xvi Acknowledgments

the legal status of our pilot solution and I will never forget your discussion with Pepijn
on who has the most verbose connotations in their law book. From IDEMIA, Emma Smal,
Emmanuel Bernard, Jan Patrick Sunglao, Joost van Prooijen, Jouri de Vos, Laurent Mercier,
Michiel de Wijkerslooth, and Stef Haartman: thank you for inviting me over time and time
again, both in Haarlem and Paris, in order to get the identity pilot operational. Jan Patrick,
I had a lot of fun both times that you came over to the TU Delft and your mango pieces will
not be forgotten! From the Dutch Chamber of Commerce (KVK), Joost Fleuren and Said
Akdim: thank you for your efforts (also with our student Tim Speelman) in integrating
our solution into your environment. Finally, I would like to thank everyone I worked with
during my project for the European Union Agency for Cybersecurity (ENISA).

For their engaging questions, I also thank the many students that personally sought
me out for guidance during their course or thesis work: Alexander Stannat, Jasmin Huber,
Rowdy Chotkan, Tim Speelman, and Valentin Gérard. Likewise, I thank the students I
guided during the Blockchain Engineering MSc. course, the Advanced Blockchain Engi-
neering PhD course, and the Bachelor Seminar. For the latter, to Dirk van Bokkem, Rico
Hageman, Gijs Koning, Luat Nguyen, and Naqib Zarin: I'm glad I told you to upload your
paper to arXiv even though you didn’t want to publish your work.

A big part of PhD life is the coffee break and there is no better way to spend it than en-
gaging in some systemic hyperboly and I would like to thank everyone who stuck around
to hear it. Here’s to my (previous and current) roommates that have suffered through
the bulk of my coffee talk: Alexander Kozlovsky, Andrei Andreev, Bart Gerritsen, Bulat,
Can, Egbert Bouman, Gaomei Shi, Georgy, Leonard Franken, Martijn, Sandip Pandey, and
Vadim Bulavintsev. In particular, Egbert: your presence always managed to synergize
with my hyperboly and elevate it to a higher plane. I also enjoyed learning everyone’s
mother tongue. For their teachings, I would also like to shoutout Alexander, Georgy, and
Vadim for Russian, Amirmasoud Ghiassi for Farsi, Can for Turkish, Mei for Mandarin Chi-
nese, Sandip for Nepalese. Mei, I will never forget my Google Image Search to show you
that Sesame Street has a Chinese version (regrettably, the random character I chose to
search for happened to be Big Bird, a.k.a. "Da Niao”).

For allowing me to flex my Artificial Intelligence skills, my thanks go out to Jole “D]J
S3RL” Hughes. I had a lot of fun bringing my hobby of abusing generative adversarial
networks for video generation into practice, before DALL-E even made image generation
cool. It was borderline-criminal by YouTube to age-restrict the resulting video, 291000
views is way too little for this masterpiece.

My thanks go out to the friends I spent my free time with, feeding me beers and keep-
ing me grounded during my PhD. Especially, I would like to thank my close friends Frank
van der Hulst and Matthijs Zijlstra. Frank, I hope you enjoy fatherhood and the married
life. Matthijs, I hope you can also find someone to settle down with. Furthermore, my
thanks go out to the “Hoogvliet 430” people I have visited Japanese all-you-can-eats with.

I would like to end by thanking my family, André, Brenda, Eric, Marco, and Nadine:
who made sure to remind me to get a “real” job and a girlfriend but nonetheless supported
me and my decision to stay on the PhD track.

Quinten

Introduction

igital Self-Sovereignty is the idea of being in complete control of all aspects of one’s
D representation in the digital world. The idea of Self-Sovereignty aligns with a coun-
terculture that rejects the data collection practices of Big Tech companies. Instead of in-
dividuals getting access to their own personally identifiable information from companies,
Self-Sovereignty would allow individuals to grant companies permission to access parts
of their information. The aim is to completely reverse the hierarchy in the current inter-
action model of individuals and the companies they interact with. However, beyond the
aims of the counterculture, the idea of Self-Sovereignty can be applied to all online inter-
actions. This thesis explores the application of Self-Sovereignty not just for interactions
with companies but also those with institutions like governments and other individuals.
The first inception of digital Self-Sovereignty came for the domain of digital identities
in the form of Self-Sovereign Identity, coined in the essay “The Path to Self-Sovereign Iden-
tity” by C. Allen in 2016 [4]. In his essay, Allen describes the evolution of identity manage-
ment systems through three phases and he attempts to predict the next phase of identity
management. The first phase of identity management is “centralized identity”, where one
party has full control over the identity information of any individual. The second phase
is “federated identity” and sees multiple third parties in charge of identity information.
Finally, in the third phase individuals can carry their own credentials between third par-
ties, dubbed “user-centric identity”. Allen predicts the next phase of identity to be that an
individual’s identity data does not originate from some third party. Instead, the individual
should be the origin of their own identity data, which Allen calls Self-Sovereign Identity.
The modern interpretation of Self-Sovereignty emerged with the concept of Blockchain.
Essentially, Self-Sovereignty is a materialization of the interaction model between users
of Blockchain systems. All users are equal, i.e., they are peers. Users work together in a
peer-to-peer system to establish a public infrastructure (which may consist of a chain of
data that forms a blockchain). As all users are equal, no peer holds authority over any
other peer and no trust relationships exist between peers when they become part of a
(Blockchain) system. All in all, every peer in a network is Self-Sovereign and works to-
gether to support decentralized public infrastructure (albeit on their own terms). For this
reason, the model of Self-Sovereignty is also sometimes called “trustless” and “open”.

2 1 Introduction

The Self-Sovereign model allows for governance through shared logic, consisting of
program code that is shared by all peers. Using shared logic, all peers can obtain (i.e., cal-
culate) the same common truth from the data that is available in their public infrastructure.
Establishing a common truth between peers is essential to govern public infrastructure.
For instance, in a cryptocurrency system, if users can have an account balance that is not
a common truth, users can create counterfeit currency without any other user being able
to establish whether this currency is counterfeit or not (i.e., whether it is true currency).
The key concept of shared code is that a system can impose rules upon its users (e.g., not
allowing users to spend counterfeit money). However, such a system is not governed by
a single authority, but rather the shared interest of its users.

Within this thesis we discuss the materializations of systems that are capable of provid-
ing Self-Sovereignty for the domains of identity, public infrastructure, and shared program
code. We design and analyze novel mechanisms that address problems within these three
domains. In particular, we analyze a mechanism to avoid connecting to a plethora of fake
identities and a mechanism to identify users in a Self-Sovereign fashion, a mechanism to
maintain shared public infrastructure, and a mechanism to execute shared program code.
We now discuss the history of these three domains and their facets (Section 1.1, Section 1.2,
and Section 1.3), our research questions (Section 1.4), our research context (Section 1.5),
our research methodology (Section 1.6), and the structure of this thesis and its scientific
contributions (Section 1.7).

1.1 Self-Sovereign Digital Identity

Digital identities are necessarily the starting point for all digital peer-to-peer interactions.
This necessity is grounded in the need for identifiers in order to route messages between
peers, for basic communication. For example, to route messages through the Internet, an
IP address may be required. Issues arise when deciding what entity, or entities, should
be provided a digital identity and who governs the assignment of these identities. Firstly,
one can derive identity from almost any (physical or digital) entity and what identity is—or
should be—dominant depends on the use case. For example, identity may be coupled to a
machine as its associated entity (in the form of an IP address) but also to the natural person
that holds a device. Secondly, peers can define their own identity or have it assigned to
them. A peer may create its own cryptographic key or simply exist as a database entry in
the server of some company. For instance, when buying products in a web store, identities
may only need to be assigned by the store and subsequently fetched from a database, when
users associate themselves with their identity using a username and password.

A Self-Sovereign approach tasks users with creating their own digital identity, fun-
damentally changing the established model of digital interactions and the business logic
that belongs to them. No longer do users of a third party’s service request access to exist
in a database. Instead, both a user and a third party operate as peers that request each
other to prove that they own certain identity information. For example, a bar may ask a
potential customer to digitally prove that they are over 18 years old instead of associating
this customer with a registered identity that has a known age. Not only does this com-
pletely change the business logic for relationships between businesses and consumers, it
also affects the digital communication protocol. When communicating, users must now
not only associate themselves with their identity data, they must also present it.

1.1 Self-Sovereign Digital Identity 3

Prove Attest
A A
~ ~
. Clai
Verifier erity Subject am Issuer

Figure 1.1: The three actors in Self-Sovereign Identity systems and their four interactions that result from creating
a claim (“Claim” and “Attest”) and subsequently verifying this claim (“Verify” and “Prove”).

1.1.1 History

Since the dawn of civilization, governments have sought to identify those with special
privilege. In ancient times, identity data was used to opt-in to certain services, or make use
of certain rights. As early as 4000 B.C., the Babylonians conducted censuses to determine
the necessary food that had to be procured to feed the population [225]. However, by the
end of the 1800’s most countries would do away with the opt-in nature of censuses and
adopt a population registry. It would take no more than one century, in the 1900’s, for
this information to be misused for racial persecution based on birthplace and ancestral
ethnicity [225]. To this day, we still use such a population registry.

Recent years have seen many rules imposed for governance of data derived from natu-
ral persons (e.g., the European Union’s GDPR directive). The downsides of storing identity
data of human beings in large databases have shown themselves and this practice is be-
coming disincentivized under pressure of regulation. The commonality that we observe,
between all of these regulations, is that users of technology should be in full control of
their own identity data, regardless of where it is stored. Though it is certainly possible for
third parties (governments and industry alike) to facilitate access to the identity data they
store, a user having full control over their own identity data aligns more naturally with a
peer-to-peer Self-Sovereign model. Therefore, we see a Self-Sovereign model as the next
necessary step to retire the flawed idea of centrally-governed registries and databases.

1.1.2 Actors in Self-Sovereign Identity systems

Self-Sovereign Identity models often distinguish three actor roles, shown in Figure 1.1: a
subject, an issuer, and a verifier. Because Self-Sovereign Identity systems (should) operate
as peer-to-peer solutions, these roles are driven by business logic. The subject is an actor
that wishes to enage in the business logic of a verifier. As an example, we discuss the
fictional case of the subject attempting to buy beer from a verifier. In our example, the
verifier would be required by law to assert that the subject’s age is over 18. However,
subjects can claim just about anything and the verifier would still not be sure if this claim
is true. For example, the subject could be 16 and digitally claim to be 50 years old. In other
words, a verifier cannot legally trust subjects without further proof of their claims.

In order to prove that the claims of a subject are true, issuers are used for transitive trust
through attestations. Whereas a random subject may be untrusted to a verifier, a claim
attested to by an issuer that is an authority for a certain type of data may be sufficient. For
example, a government is authorative for a subject’s age data and this subject may legally
buy alcohol if they present their digital claim that they are 50 years old and present an

4 1 Introduction

attestation to this fact created by their government. In short, in this Self-Sovereign model,
an issuer is a party that attests to claims of subjects and subjects use the combination of
claims and attestations to prove to verifiers that their claims are truths. This transitive
truth, or transitive trust, is essentially the same idea as the web of trust as it appeared in
PGP [249], where users would sign each other’s keys to show trustworthiness.

1.1.3 Identity wallets for digital representation

The management of a subject’s claims and attestations is performed by what is known
as an identity wallet. The goal of an identity wallet is to provide a subject with control
over all aspects of the disclosure of their identity information. Here “control” entails the
storage and collection of new claims and attestations, updates or removal of claims, and
presentation of claims and attestations to verifiers. Coming back to the essay of Allen [4],
the goal of this wallet construction is to provide its users (subjects) with the ten properties
of existence (the ability to create an identity without contacting a third-party), control,
access, transparency, persistence, portability, interoperability, consent, minimalization (the
ability to share only the bare minimum data needed for identification), and protection. The
requirements of existence, control, access, transparency, persistence, and consent, are almost
trivially provided by an identity wallet construction using claims and attestations [212].
However, the remaining four properties of portability, interoperability, minimalization, and
protection, are more intertwined with cryptographic primitives and we summarily give
examples of their intricacies.

In this thesis, we aim to implement an identity wallet sytem, and we now highlight
four intricacies of implementing Allen’s properties. Firstly, to provide protection, apart
from following well-established security standards for session management, persistent
identities must also use some form of cryptographic key rotation (i.e., the periodic change
of keys). In turn, the key rotation may not be centrally governed, which would violate
the independent existence property. Secondly, “selective disclosure” schemes are used to
provide minimalization. These schemes allow users to construct claims that show either
only part of, or even just a property of, their identity information. However, thirdly, many
complex standards exist for claim disclosure which are not interoperable on the protocol
level like Zero-Knowledge Proof constructions and signature schemes. This implies that
identity wallets need to support a wide array of protocols and have protocol negotiation
capabilities. Lastly, the copying of identity information to provide portability leads to
indistinguishable duplicates of identities. However, many (legacy) systems depend on
the uniqueness of identities to associate them with their stored information. We derive a
comprehensive mapping of Allen’s properties to technical requirements for identity wallet
systems in Chapter 2.

At the time of writing Chapter 2 of this thesis, the year 2020, no solutions existed
that satisfied all of Allen’s properties. In retrospect, the aim of Chapter 2 may no longer
seem relevant in light of new technology that does implement these properties. However,
we believe that-with our groundbreaking implementation—our work was instrumental in
advancing this technology and that it still forms a solid foundation for future work.

1.2 Self-Sovereign Public Infrastructure: Web3 5

1.1.4 Attacks on peer-to-peer identity technology

Self-Sovereign models that use peer-to-peer communication are open to the same attacks
as other peer-to-peer technology. However, to a certain extent, Self-Sovereignty is also
a solution for some of those attacks. For instance, Self-Sovereign Identity can be used as
a solution for an application to avoid communicating with “Sybil” identities. An attack
using Sybil identities consists of the creation of a surplus of fake identities and it is based
on the ability of attackers to cheaply create these Sybils. By requiring Sybils to show at-
testations that are difficult to acquire (e.g., an attestation from a national government that
attests to an identity being unique to a single human being), their existence is functionally
worthless to attackers on the application layer. However, focusing on the network layer,
Self-Sovereign Identity can obviously not be used to determine the identity of peers before
communicating with them. Therefore, through their sheer existence, Sybils can be used to
block communication between peers by forcing them into never-ending identity checks of
these otherwise-worthless identities. In Chapter 3, we give special attention to avoiding
connections to Sybils to enable Self-Sovereign Identity as a solution.

The privacy guarantees of communication substrates like the Internet do not align with
those that Self-Sovereign Identity aims to provide. In fact, most substrates optimize their
routing for the intent and content of user traffic [93]. For instance, it has been proposed
to make 6G “semantic and goal-oriented” [218]. However, this exposure of intent and
goals is orthogonal to Allen’s property of protection, which includes privacy. For example,
showing intent to share highly sensitive information with a bank makes subjects an obvi-
ous target for attackers. Therefore, Self-Sovereign Identity must protect users from their
communication substrate, to avoid exposing their identity data. We describe our solution
to protect users from their communication substrates in Chapter 2.

1.2 Self-Sovereign Public Infrastructure: Web3

Web3 is the name assigned to technology that enables peer-to-peer representation and
interaction without the need for trusted third-parties to enable either of these actions. In
contrast, in Web2 ecosystems users request access to the resources of centrally governed
institutions (e.g., the cloud infrastructure of “Big Tech”, web stores and auction sites, and
the web portals of governments). Some examples of Web3 technology are Bitcoin [164],
Ethereum [240], and the InterPlanetary File System [25]. Most Web3 functionality re-
volves around currency, as payment is one of two known ways to enable peer-to-peer
incentives, the alternative being reciprocity [81]. For example, in cryptocurrencies users
pay miners to transact with others and in systems that offer code execution users pay
to interact with the code. At this point in time, Web3 technology is critically bound to
cryptocurrencies for its peer-to-peer incentives.

What sets Web3 technology apart from existing peer-to-peer technology, like BitTor-
rent, is its trustless nature. For example, in BitTorrent peers use a Distributed Hash Table
(DHT) to determine which peers must store certain data. There are two things that disqual-
ify BitTorrent as Web3 technology: a data structure that depends on users’ honesty for its
maintenance and a lack of incentive for users to store its corresponding data. If peers are
dishonest, they can hijack the DHT’s routing using an Index Poisoning attack [142] that
routes all users to their (potentially malicious) data. Secondly, peers are not rewarded by
the DHT to store data and can easily read out a DHT without contributing any storage

6 1 Introduction

Web1 Web2 Web3
Third-Party Third-Party User
Infrastructure Infrastructure Infrastructure User

-

v

-

vt

Infrastructure
+—
—>

" i

User

User User User

Figure 1.2: The three versions of Web interaction models: from hypertext data being served to users (Web1), to
users uploading and downloading data (Web2), and users actively becoming part of public infrastructure (Web3).
Note that the infrastructure may consist of multiple servers.

themselves. Web3 technology addresses these issues to some extent. However, even Web3
technology typically cannot deal with a majority of malicious nodes (e.g., Bitcoin famously
claimed to resist up to 50% malicious peers, though this has been contested [77]).

1.2.1 History

The first version of the modern “web” is often accredited to T. Berners-Lee. Berners-Lee
proposed a system to share text that included links and media [26], which he called “hyper-
text”, “hyperlinks”, and “hypermedia” (though these terms were not invented by Berners-
Lee). There is much to say about this proposal but—for the scope of this thesis—we will
focus on its interaction model. In this first version of the web, which we call Web1, users
read data that is served by third party infrastructure. A user requests a web page and it is
sent to the user by the infrastructure, ending the interaction. The “Web” (now capitalized)
would slowly evolve into “Web 2.0” and become more interactive, with users actively inter-
acting with third-party infrastructure [69]. Users may interact with web pages, uploading
and downloading data to, and from, the third-party infrastructure. In the newest form of
the Web, i.e., Web3, users no longer just interact with infrastructure but also actively take
part in the creation and maintenance of this public infrastructure. The interaction model
of this new version of the Web is contrasted to that of its predecessors in Figure 1.2.

The first materialization of Web3 came in the form of the cryptocurrency Bitcoin [164].
Grossly simplified, the goal of Bitcoin is to create a currency that does not rely on a single
authority but, instead, on the majority of users in the system. In order to do so, Bitcoin
uses a cryptographic puzzle (known as “Proof-of-Work”) for its users to share informa-
tion. The puzzle leverages computational complexity to make shared information diffi-
cult to construct but easy to verify. In turn, new information is only sporadically intro-
duced into the system and all of its users have the time to receive and verify new informa-
tion. However, as the number of users increased dramatically, the throughput of Bitcoin
proved insufficient to serve as a digital currency. In turn, many alternative approaches

1.2 Self-Sovereign Public Infrastructure: Web3 7

with higher throughput were proposed which sacrifice connectivity, breaking Bitcoin’s
assumption that all users (are able to) verify all information. For example, the “Lightning
Network” [181] enables multiple currency transfers locally between users before making
their aggregation visible to other users of Bitcoin’s blockchain. However, even though
many alternatives exist, Bitcoin is still the dominant cryptocurrency to this day.

1.2.2 Blockchain data structures and their evolution
Traditionally, as pioneered by Bitcoin [164], a blockchain captures a list of transactions
between peers. Peers in a blockchain system are known by their public key. Peers propose
to transact with each other by providing a digital signature over an amount they wish to
transfer to another peer. Nodes in the Bitcoin network, known as miners, collect proposed
transactions and create blocks that capture a set of transactions. Each block has a hash
pointer to the previous block in the blockchain’s list of blocks. These blocks are special
in that the miners try to find a nonce that makes the cryptographic hash of the newly
proposed block start with a certain prefix (a given number of zeros). Finding a hash with
the given prefix is difficult and takes time and computing power, slowing the introduction
of new blocks in the system. If two blocks are found with the required prefix, then a fork
of two competing chains is created and whichever block becomes part of the longest chain
of successive blocks is the valid block, invalidating the other block. Finding blocks with a
given prefix and adopting the longest chain of blocks is known as Proof-of-Work.
Blockchain systems have evolved to be less linear in structure. Whereas the linear
data structure of the Proof-of-Work model has stood the test of time, the mining process
has a large environmental impact and the throughput of transactions between peers is
low. Therefore, alternative proposals have been made that modify the way in which the
data structure is organized and the way in which blocks are accepted. For example, to
optimize the data structure there are approaches that replace the list structure with a
Directed Acyclic Graph. However, approaches also exist to optimize block mining through
leader election, like Algorand [89]. The unifying aspect of most of these approaches is that
data is no longer shared immediately with all peers.

1.2.3 Locality optimization and maintenance
One of the ways to make blockchains less linear in structure is to optimize transaction
throughput and to decrease computation costs, is optimization for locality. Within the
context of Web3, this “locality” is not based on physical proximity but rather logical prox-
imity: if peers frequently interact with each other, or frequently interact with the same
data, they are in the same locality. For example, a branch of a Directed Acyclic Graph
may be locally updated by a small set of peers before being merged into the “main chain”,
which is an abstract description of “side chains” as it is used by, e.g., Bitcoin’s Lightning
Network. One of the downsides of the side chain approach is that the network partitions
that are formed through the application of locality optimizations have lesser security guar-
antees. It is easier to launch a 51% attack on a group of 10 peers than it is to launch a 51%
attack on a group of tens of thousands of peers.

A typical approach to deal with the security deterioration due to locality optimizations
is to depend on random sampling. Traditionally, blockchain security depends on the fact
that it is not easy for attackers to counteract the behavior of the majority of peers. For

8 1 Introduction

example, in a Proof-of-Work system it is assumed that attackers cannot overpower the
computational power of the honest peers. The idea of randomness-based approaches is
that it is infeasible for attackers to consistently be part of a random selection of peers. For
example, when indefinitely randomly sampling, even if nine out of ten peers are malicious,
eventually a random selection will contain the single honest peer. Therefore, randomness-
based approaches critically depend on the selection of random peers not being malleable
by attackers. Secondly, when an honest peer is eventually selected, malicious peers should
be exposed by honest peers and the data structure can then be corrected. Early work
that used randomly selected peers as “witnesses” to maintain a data structure is PeerRe-
view [95]. More recently, Verifiable Delay Functions have been proposed for verifiable
leader election to serve blockchains’ consensus protocols [35].

1.2.4 Web3’s scale and its resulting connectivity deterioration

Web3 is the newest public infrastructure for the interconnection of users. The goal of
Web3’s users is—like in all interconnection networks—to share information. However,
sharing information requires users to be connected through whatever communication
medium they use. Historically, over the many years of development of interconnected
networks, the connectivity between users is what breaks down as the number of users
increases, i.e., as the infrastructure scales up. For example, having a human dispatcher
create a physical connection between users of phones became untenable as the number
of users increased. The same connectivity breakdown seems to be occurring in Web3, at
least for Bitcoin [194], like in all interconnection networks that came before it.

The emerging lack of connectivity in Web3 should be addressed using mechanisms that
can handle its scale. Just like circuit-switched connections in the telephone networks were
superseded by packet switching networks, the network-wide broadcasts of information in
network overlays should be replaced by mechanisms that are locality-aware, like pub-
lish/subscribe systems. However, using locality is not compatible with the assumptions
of traditional Web3 technology like Bitcoin. The infrastructure maintenance of existing
technology depends on information being available to all users, of which a majority must
actively verify the information’s integrity. In Chapter 4, we describe a mechanism that
allows for public infrastructure maintenance using locality.

1.3 Self-Sovereign Execution of Shared Code

A grand vision for Web3 is for it to be an ecosystem where peers that do not trust each
other can act on common logic, using shared program code. This shared program code
is known as a smart contract. Of course, having multiple nodes reach a consistent state
using shared logic has been thoroughly explored in past works (e.g., forming the essence
of the domain of Cloud Computing [43]). However, what sets smart contracts apart from
traditional approaches is their use of replication of data to make up for the lack of trust
in their ecosystem. In contrast, traditionally, replication is only used to address fault-
tolerance (from faults in the network layer to the Byzantine behavior of applications).
This thesis explores a “local-first” approach to smart contract execution. The term
“local-first” was introduced by M. Kleppmann and it is used to describe systems where
each user generates data that is merged with data of other users later [118]. An example

1.3 Self-Sovereign Execution of Shared Code 9

of such a local-first system is GitHub, where users create changes and propose them to
other users. Eventually, the local proposals are merged into a global data structure. The
assumption of local-first approaches is that most users, specifically humans, do not create
change sets that conflict very often when collaborating. Therefore, by extension, a local-
first system would not be in a perpetual inconsistent state. If this assumption holds for
smart contract interactions as well, a local-first approach enables a new type of smart
contract execution.

1.3.1 History

The use cases for smart contracts stem from the promise of trustless automated governance
of both commercial and non-commercial applications. An early commercial use case for
smart contracts was for them to serve as a decentralized autonomous organization. “The
DAO?” was the first such organization and it attempted to be a decentralized venture capital
fund. The DAO is now mostly known for its failure, as a vulnerability in its smart contract
code allowed a malicious party to steal roughly 70 million dollars worth of cryptocurrency.
This early, and spectacular, failure of smart contracts has certainly convinced some that
they are a “bad idea” [168]. Nevertheless, the promise of a decentralized token economy
(using smart contracts) remains appealing to revolutionize business [132]. Furthermore,
smart-contract-based distributed collaborative organizations stand to revolutionize gov-
ernments and businesses alike [58].

Regardless of the promise of smart contracts, many problems exist with their execution
model. We highlight the two problems of the execution expenses and the dependence on
traditional blockchains here. Firstly, executing smart contracts is expensive monetarily.
A fee must be paid to whatever node captures smart contract executions in a blockchain
block (i.e., when a smart contract is created or whenever the state of a smart contract is
updated due to a function call). The cost of single contract function calls can range into
the thousands of dollars [175]. Most of the cost of executing smart contracts stems from
every single node in the blockchain being required to run the code (if it was not necessary
to run the code before accepting a block, no additional cost would be incurred). Secondly,
smart contracts depend on network-wide consensus to ensure the order of their function
calls (and thereby their implied state). Just like with any state machine, the state of a smart
contract depends on its previous state and the function call that followed it. There is no
guarantee that any two smart contracts will reach the same state if either their preceding
state or their function calls differ. Nevertheless, a state can be retroactively corrected (i.e.,
rolled back), which we explore in this thesis.

1.3.2 Consistency and consensus

In modern Web3 systems a distinction is made between consensus and consistency, though
in traditional Web3 systems like Bitcoin this distinction is not made. Bitcoin is driven by
two layers of consistency: transactions must be shared with miners to be included in
blocks and blocks must be shared before a longer chain of blocks emerges. Both consis-
tency layers of Bitcoin have been attacked (e.g., through Eclipse attacks [245] and selfish
mining [77]). However, if both layers do eventually successfully disseminate their respec-
tive information (transactions and blocks, respectively), peers in the Bitcoin network can
agree on the fact that one chain of blocks is the longest. Of course this agreement, consen-

10 1 Introduction

sus on the longest chain, can change if the consistency layer that synchronizes the blocks
updates its dominant history. In traditional consensus mechanisms, such a reversal would
not be possible and this led to this mechanism being called “metastable consensus”.

Whereas Bitcoin muddles the definition of consistency and consensus, modern ap-
proaches aim for a cleaner split between the two layers. First, a consistency layer ensures
that data (in currencies this data would be transactions) is known to peers. Which peers
to share data with and how the data is disseminated can vary. Weaker models like even-
tual consistency only guarantee that peers will receive data in finite time [16], whereas
traditional broadcasts make sure all network participants receive data as quick as possible.
Second, a consensus mechanism evaluates whether the consistent information should be
accepted. A more efficient mechanism, like that of Bitcoin, may decide locally to accept or
reject information. These relaxed consensus mechanisms depend on emergent consensus
through all peers sharing the same logic and (eventually) the same information. Never-
theless, some consensus alternatives opt for more traditional network-wide broadcasts
to form consensus, which takes longer but provides better guarantees on the finality of
decisions. What types of consistency and consensus mechanisms are acceptable depend
heavily on the given application.

1.3.3 Smart contracts

A smart contract consists of virtual machine instructions that are shared through a block-
chain. The virtual machine instructions are usually not handwritten by users but instead
compiled from a higher-level language (like the Solidity language). Every smart contract
exists in a given memory address in a shared virtual machine. In case the machine instruc-
tions are called in such a way that the state of the machine is updated, the call must be
shared through a blockchain. Specifically, if a smart contract specifies a given writable
memory location and a peer interacts with the contract in such a way that the value in the
memory location updates then this interaction must be shared. By sharing these writes,
all peers that receive the same interactions in the same order will obtain the same state in
their local virtual machine.

The state of a smart contract heavily depends on the consensus layer that powers the
interactions. In case of rollbacks in the main chain of a blockchain that underlies a smart
contract, the state of the smart contract will have to be recalculated. Therefore, smart con-
tract execution is most suited for traditional blockchains that do not see many changes in
their consensus layer. At the same time, the long waiting time before blocks are mined
and the corresponding smart contract instructions are finalized can also form a vulnerabil-
ity. One of the attacks on smart contracts enabled by the slow throughput of blockchains
is the front-running attack [56]. An attacker can use its knowledge of transactions that
have not yet been accepted to propose and reorder new transactions to its own benefit.
Of course, for some use cases the existence of these attacks may be an acceptable loss to
enable the shared state of a smart contract but this heavily depends on the application.

1.3.4 Local-first

A local-first approach is an approach to writing collaborative software that favors avail-
ability over consistency and partition tolerance. The idea consists of users making changes
locally and merging these changes with the changes of others at a later time. For exam-

1.4 Research Questions 11

ple, in Git a user makes local changes before merging their program code with the main
code branch. Only when a user makes an attempt to merge, is it revealed that the local
state may have to be rolled back. The explicit assumption is that merges succeed more-
often-than-not without requiring rollbacks. Of course, data structures that support more
granular merging strategies are better suited for such a collaborative workflow. Therefore,
the original local-first work suggests the use of “conflict-free replicated data type” (CRDT)
constructions to ease merging of data [118]. The same construction can be applied to
collaborative interaction with a smart contract.

The consequences of applying a local-first approach to smart contracts leads to a change
in guarantees in relation to traditional blockchains. Traditionally, smart contracts depend
on the fact that all peers in a network interact with code in consensus rounds. By favoring
availability, a local-first approach may imply that users operate on an unmergable state
without knowing it is unmergable and commit to business logic too early. For example,
when using tokens for access management, an access token might be claimed locally at the
same time by two peers. In this example, business logic may dictate that only one token
should be claimed at the same time. Secondly, traditionally there is a monetary incen-
tive for miners to accept all valid interactions. If merges of states are no longer the main
driver of the shared data structure but a secondary effort, some applications may suffer
from attackers that delay interactions. In the token example, a claim of a token of another
peer could be delayed in order to claim the same token and sell it for a higher price to the
original peer that attempted to claim it. In Chapter 5, we implement a local-first approach
to smart contracts that addresses these issues.

1.4 Research Questions

This thesis revolves around providing the first insights into the solution space of Self-
Sovereignty for modern peer-to-peer ecosystems, i.e., Web3. The overarching research
question this thesis focuses on is:

What technology is appropriate to enable Self-Sovereignty for a Web3 ecosystem?

To answer this research question, we explore the three domains of Web3 ecosystems in a
total of four related research questions. We define two questions for the domain of digital
identities, one question for the domain of public infrastructure, and one for the domain of
shared code. In most cases, the answer to a research question (perhaps indirectly) enables
another research question to be solved in a Web3-compatible way. The research artifacts
that are produced when answering these questions may directly implement a full Web3
solution or only support existing solutions. These relationships are shown in Figure 1.3.
[RQ1] What components should the architecture of a Self-Sovereign Identity
Management System leverage? A Self-Sovereign Identity solution must meet the ten
properties, laid out in Section 1.1.3, of existence, control, access, transparency, persistence,
portability, interoperability, consent, minimalization, and protection. However, these prop-
erties do not directly lead to functional requirements for systems or the necessary sys-
tem components to provide them. A Self-Sovereign Identity management solution should
provide identity data control and private data minimization by the subject. Furthermore,
beyond these basic properties, additional requirements must be met to have any use as

12 1 Introduction

. Public
Identity [usesy <uses+ Shared Code
Infrastructure
implements implements
enables———p
RQ1 | RQ4
supports
+
enables enables enables
RQ2 ——enables—p» RQ3

Figure 1.3: The relationships between the four research questions (RQ1-4) of this thesis and the domains of
identity, public infrastructure, and shared code.

a substitute for our current physical means of identification like passports. A passport-
equivalent identity management solution should provide legality and validity of data. Lastly,
a Self-Sovereign Identity management system needs to provide privacy guarantees to pro-
tect its users. Our goal is to identify the functional requirements and system components
necessary to enable such a system.

[RQ2] How can connections be established between Self-Sovereign peers with-
out depending on third parties? In order for peers to interact, typically using a gossip
protocol, they must be able to communicate with each other. However, one of the big
unresolved attacks on peer-to-peer networks is the blocking of communication using fake
identities. In particular, we focus on the Sybil attack [70], where a single party exploits
the ability to cheaply and easily create many identities. There is a circular dependency be-
tween requiring Sybil-free gossip protocols and using gossiped information to eliminate
Sybils. Gossip protocols do not guarantee delivery of information in a network filled with
Sybils and Sybils cannot be identified without the information gossiped through these
protocols. Our goal is to break this circular dependency by avoiding connecting to Sybils.

[RQ3] How can a public infrastructure be maintained by peers in a Self-
Sovereign fashion? Self-Sovereign nodes are primarily concerned with their own data,
not with that of others. Forcing all peers to be concerned with the data of all other peers is
not in line with Self-Sovereign incentives. However, the shared public infrastructure de-
grades if peers no longer verify each other’s data. Therefore, all data should be available
to all nodes, allowing them to identify when the infrastructure degrades and to correct it.
Our goal is to provide a Self-Sovereign incentive-compatible method to maintain shared
public infrastructure without forcing all peers to perform verification of other peers’ data.

[RQ4] How can a Self-Sovereign model support shared code execution between
peers? Shared code is not necessarily compatible with Self-Sovereign incentives and data
management. Generally speaking, not all program code will produce the same output
given different or reordered input values. If data is local to each peer, peers may not be
able to observe (all) interactions with shared code, they may not be able to observe interac-
tions in the right order and, perhaps peers may only be able to observe interactions after a

1.5 Research Context 13

long time has passed. Our goal is to provide insight into the ramifications for applications
using a Self-Sovereign model for shared code.

1.5 Research Context

The idea of Self-Sovereignty has spawned initiatives from many global institutions, in-
cluding blockchain infrastructure and identity management solutions. The World Wide
Web Consortium (commonly known as W3C) has provided the widely popular Decen-
tralized Identifier (DID) recommendation [207], in an attempt to standardize the commu-
nication protocol for Self-Sovereign identity data exchanges. This recommendation was
co-authored by C. Allen. The “Blockchain For Humanity” project of the United Nations*
saw proposals to use Self-Sovereign Identities to prevent modern day slavery, in partic-
ular to prevent child trafficking. These first two initiatives are also closely tied to the
Sovrin foundation [239]. The European Union has launched the European self-sovereign
identity framework (eSSIF?), the European Digital Identity (EUDI®) identity wallet, and the
blockchain initiative European Blockchain Services Infrastructure (EBSI*). For the latter,
the European Commission has multiple parties host nodes, including the Delft Univer-
sity of Technology. On the national level, many organizations like the Polish Blockchain
Association® and the Dutch Blockchain Coalition® attempt to use blockchains and Self-
Sovereign Identity within the context of their government and industry. Even national
governments themselves are involved with the Self-Sovereignty movement and below we
discuss the Dutch government in particular, as it has more directly inspired Chapter 2.
The global focus on blockchain and identity research—to empower citizens and give
them more freedom—spawned major conspiracy theories. In particular, the ID2020 project
by Microsoft would be a target of these theories, being accused of (among other things)
building a system for mass surveillance [224]. Whereas this thesis cannot prove or dis-
prove this theory, mass surveillance is certainly not the goal of the wider field of blockchain
and Self-Sovereign Identity research. In fact, the Self-Sovereign Identity research of this
thesis can (and should) supersede the vaccine passports that conspiracy theorists so revile.
The research presented in this thesis has been carried out as part of the research vision
of the Delft Blockchain Lab (DBL)’, a collaboration of the Distributed Systems group, the
Cybersecurity group, the Intelligent Electrical Power Grids group, and the Ethics/Philos-
ophy of Technology group of the Delft University of Technology. This thesis focuses on
the critical base layer, a public infrastructure, to enable other research output from the
DBL. For instance, the PhD thesis “Decentralization and Disintermediation in Blockchain-
based Marketplaces” by M.A. de Vos focuses on decentralized marketplaces [63] and the
PhD thesis “Incentives and Cryptographic Protocols for Bitcoin-like Blockchains” by O.
Ersoy focuses on the cryptographic primitives to enable blockchain trading [74]. Clearly,
both of these theses require a (blockchain-based) public infrastructure to be in place. All

'https://ideas.unite.un.org/blockchain4humanity/Page/Home
*https://essif-lab.eu/

*https://eudiwalletconsortium.org/
*https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
*https://blockchain-polska.org/
*https://dutchblockchaincoalition.org/
"https://www.tudelft.nl/delft-blockchain-1lab

https://ideas.unite.un.org/blockchain4humanity/Page/Home
https://essif-lab.eu/
https://eudiwalletconsortium.org/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://blockchain-polska.org/
https://dutchblockchaincoalition.org/
https://www.tudelft.nl/delft-blockchain-lab

14 1 Introduction

in all, the collective DBL research has succeeded in bringing together the three societal
pillars of academia, industry, and government. We now discuss how these three pillars
have inspired, influenced, and employed, the research of this thesis.

As a part of the societal pillar of academia, this research has been integrated into
the open source software Tribler [183], the research vehicle for cooperative systems re-
search of the Distributed Systems group of the Delft University of Technology. Tribler
offers peer-to-peer filesharing and peer-to-peer search. For its networking layer, Tribler
depends on other research from the TU Delft’s Distributed Systems group, the peer-to-
peer content synchronization framework called Dispersy [247]. After half a year of en-
gineering effort by the author of the present thesis, Dispersy has been redesigned to let
go of content synchronization and instead focus on providing identities and overlay net-
work primitives. This new focus led, in 2017, to a new distinct version of Dispersy called
IPv8®. IPv8 offers privacy by design, i.e., peer-to-peer exchanges that expose a minimal
amount of personally-identifiable information, including a complete identity solution to
do so (discussed in this thesis). Part of the reason that the academic research on IPv8
became entangled with the initiatives of industry and government, through the Dutch
Blockchain Coalition, was the (at the time, in 2017) looming General Data Protection Reg-
ulation (GDPR), which would come into effect in 2018 in the European Union (discussed
later in this thesis).

As a part of the societal pillar of industry, this research was conducted in close com-
munication with the Dutch Blockchain Coalition (which would also have a physical pres-
ence on the Delft University of Technology campus for a period of time). Though the
coalition had many industry members, we would mostly be in closer contact with the
(quasi-)government members. Some of the members that we were in close contact with
are the (Dutch) Authority Financial Markets, the ING Bank, and the Netherlands Organ-
isation for Applied Scientific Research (TNO). The latter member would eventually take
on a leading role in the development of eSSIF (the European self-sovereign identity frame-
work). One member that was a key party in relation to this thesis is the Ministry of the
Interior and Kingdom Relations (BZK). In cooperation with BZK and their passport-chip
supplier IDEMIA, we created a pilot for the identity research of this thesis. Together with
CMS lawyers and jurists from BZK, a Privacy Impact Analysis was created to, presented
to, and approved by the Dutch Data Protection Authority (Autoriteit Persoonsgegevens).

As a part of the societal pillar of government, this research has been integrated into
a pilot with BZK. The original intention was for this pilot to be deployed in the munici-
palities of Utrecht and Eindhoven [212]. For non-technical reasons, this did not end up
happening. We believe that this thesis—though it is not officially noted—has been a part
of the motivation for the Dutch government to change the Dutch passport law, in par-
ticular Amendment 35047 (R2108), 1 Oct 2018, of Article 23. This amendment allows the
Dutch government to explore more novel methods for digital identity management. On a
coarser scale and in particular relation to this thesis, the author of this thesis has served as
a consultant of the European Union Agency for Cybersecurity to give recommendations
for blockchain-based identity wallets.

Shttps://github.com/Tribler/py-ipv8

https://github.com/Tribler/py-ipv8

1.6 Research and Engineering Methodology 15

Table 1.1: The method of evaluation, and availability of its artefacts, per research question of this thesis.

RQ Evaluation Availability Publication Date

1 simulation + real-world code Aug 9, 2017
https://github.com/Tribler/py-ipv8

2 simulation + real-world + trace data Jan 6, 2020
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21bad

3 simulation + trace code Sep 26, 2022
https://doi.org/10.4121/85a871¢c5-3782-4a21-ae7f-7d52e9f019f7

4 simulation + trace - -

1.6 Research and Engineering Methodology

The concept of Self-Sovereignty has many facets and it appears in the fields of cryptogra-
phy, networking, distributed systems, and social sciences. For example, within the scope
of cryptography conferences, the Self-Sovereign disclosure of data between peers is often
the focus of research. Our focus, in this thesis, is on systems for Self-Sovereignty and we
adopt research and engineering methodologies that are typical for networking and dis-
tributed systems research. In particular, we use the approach of qualitative analysis of
system components, comprehensive experiments, and open-source system code.

In this thesis we adopt an experimental research methodology. Every research ques-
tion is answered through qualitative analysis and subsequent mechanism design, imple-
mentation, and evaluation. As the goal of this thesis is to explore solution spaces, we aim
for our work to be as reproducible and as usable as possible. Even though thesis predates
the requirement of a Data Management Plan for its data (which is now mandatory for
newly-starting TU Delft PhD students), it still follows the same best practices. When per-
missible by license restrictions, code is open source and data sets are publicly available
through 4TU.ResearchData (a data repository). In one case, for the mechanism belonging
to RQ1, the license of the open source software does not allow it to be mirrored in the 4TU
repository. Additionally, we implement all of the solutions we propose in Python in such
a manner that they can either be directly used or easily added to the existing maintained
and deployed open-source software Tribler [183]. Within our experimental evaluation
of these solutions we use real users of Tribler as much as possible. Of course, in light
of responsible research, we do not disproportionately burden or attack the users of our
framework.

Each of our research questions has led to research artefacts, in the forms of code and
data sets. We provide detailed descriptions of the methods of evaluation and availability of
artefacts when we discuss each research question in its own chapter (Section 1.7 presents
the mapping of research questions to chapters). In general, we use three different meth-
ods of evaluation. The evaluation of each mechanism includes a simulation of peers that
interact using the respective mechanism, using a real-world latency trace if possible. If

https://github.com/Tribler/py-ipv8
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0
https://doi.org/10.4121/85a871c5-3782-4a21-ae7f-7d52e9f019f7

16 1 Introduction

possible, ethical, and feasible, we include interaction data of the proposed mechanism with
real-world users of our proposed mechanism. Lastly, we employ traces of real-world inter-
actions if they are available. For each of our mechanisms we offer open source code if its
implementation is non-trivial. However, we do not make our shared program code pro-
totype of RQ4 available to avoid misuse for financial gain. A summary of the evaluation
and availability of artefacts is given per research question in Table 1.1.

1.7 Thesis Outline and Scientific Contributions

The following four chapters (Chapter 2-5) address our research questions (RQ1-4 of Sec-
tion 1.4) in their presented order. We now discuss the content, and the contributions, of
each chapter.

[Chapter 2] A Truly Self-Sovereign Identity System. In this chapter we address
RQ1 through a discussion of what functional requirements and what properties a Self-
Sovereign Identity system should meet. We present TrustChain [Dentity (TCID), our pro-
totype solution that has been created in collaboration with the Dutch government to meet
the use case of a digital passport analog. Our key contribution is the discription of a Self-
Sovereign Identity system that truly does not use (or trust) any third party servers. Users
of our prototype need only communicate with issuers of credentials and verifiers of cre-
dentials directly, without communication between the issuers and verifiers themselves.
We expose the need for the three desirable system properties of Self-Sovereignty, Credibil-
ity, and Network-level Anonymity. We define the seven functional requirements of direct
communication, message authenticity, message integrity, network-level anonymization, de-
central synchronization of messages, identification through credentials, and accountability
of credential use. Our results show that the overhead of using TCID is not prohibitive for
practical use. This chapter is based on the following publication:

Quinten Stokkink, Georgy Ishmaev, Dick Epema, and Johan Pouwelse. A truly self-
sovereign identity system. In 2021 IEEE 46th Conference on Local Computer Networks
(LCN), pages 1-8. IEEE, 2021.

The system discussed in Chapter 2 is a continuation of previous research. The chap-
ter encompasses the lessons we have learned after maturing the research artefacts first
presented in the following publication (not included in this thesis):

Quinten Stokkink and Johan Pouwelse. Deployment of a blockchain-based self-sovereign
identity. In 2018 IEEE international conference on Internet of Things (iThings) and IEEE green
computing and communications (GreenCom) and IEEE cyber, physical and social computing
(CPSCom) and IEEE smart data (SmartData), pages 1336—1342. IEEE, 2018.

[Chapter 3] Web3 Sybil avoidance using network latency. In this chapter we ad-
dress RQ2 by defining a method for peer discovery that does not require peers to trust the
accuracy of information from other peers. In fact, peers use only the network latencies
(to other peers) that they measure themselves. Using these measurements, peers discover
each other while avoiding connections to Sybils. We present the SybilSys peer discovery

1.7 Thesis Outline and Scientific Contributions 17

mechanism that filters connections to Sybils over time. The key contribution of SybilSys
is that it allows for peer discovery while only depending on network latency measure-
ments. In the chapter we discuss why, and how, to implement and verify light-weight
Sybil-avoiding peer sampling through filtering connections on unique network latencies.
Furthermore, we identify that a naive approach to filtering, only based on unique latencies,
is open to the attack of delaying latency measurements. We resolve the measurement-
delaying attack by using the queueing delay of messages to detect tampering with latency
measurements. This chapter is based on the following publication:

Quinten Stokkink, Can Umut Ileri, Dick Epema, and Johan Pouwelse. Web3 sybil avoid-
ance using network latency. Computer Networks, 227:109701, 2023.

[Chapter 4] Reputation-Based Data Carrying for Web3 Networks. In this chap-
ter we address RQ3 by giving an emergent algorithm that allows peers to exchange data.
The exchanged data allows peers to maintain their public infrastructure. We present our
Timely Sharing with Reputation Prototype (TSRP), a prototype solution that uses probabilis-
tic guarantees to select carriers for data. These carriers are peers that store and share
data. The key contribution of TSRP is its trustless exchange of data without depending
on network-wide broadcasts. A witness protocol is used by peers to audit each other. We
motivate and prove the emergent property of data being carried when using TSRP. We
emulate multiple networks to show that TSRP properly selects more carriers when repu-
tations are low and vice-versa. Finally, we let TSRP operate on real-world traces of Bitcoin
and Twitter to show that our method does not necessarily force all peers to store all data
in the system. This chapter is based on the following publication:

Quinten Stokkink, Can Umut Ileri, and Johan Pouwelse. Reputation-Based Data Carrying
for Web3 Networks. In 2022 IEEE 47th Conference on Local Computer Networks (LCN),
pages 283-286. IEEE, 2022.

Chapter 4 includes a more elaborate analysis of the basic behavior of TSRP in compar-
ison with the above publication and we highlight three of their main differences. Firstly,
the chapter contains more details on the choices for parameterization of TSRP in its de-
sign section. Secondly, a section is added that verifies the basic behavior of TSRP. Lastly,
a second real-world trace of Bitcoin is evaluated next to the trace of Twitter.

[Chapter 5] A Local-First Approach for Green Smart Contracts. In this chapter
we address RQ4 by exploring a local-first approach to program code execution. Peers ex-
ecute program code optimistically and they roll back if they derive a change in decision
from other peers. We argue that this approach also leads to less carbon emissions and,
therefore, a greener solution. The three main drivers for greener smart contracts that we
identify are probabilistic consensus mechanisms, weak consistency models, and decentral-
ized strong identities. We present the local-first Green Smart Contract (GSC) paradigm for
the execution of smart contract code and we motivate that economic liabilities best sup-
port it, instead of the economic assets that support traditional blockchains. Our results
show that a system that uses a single publisher to handle and exchange smart contract
updates leads to light-weight communication costs. Lastly, we apply our GSC-based pro-

18 1 Introduction

totype to a real-world trace to show the impact on the communication cost of the GSC
paradigm. This chapter is based on the following publication:

Quinten Stokkink and Johan Pouwelse. A local-first approach for green smart contracts.
Distributed Ledger Technologies: Research and Practice, ISSN 2769-6472. ACM, 2023.

[Chapter 6] Conclusion. This thesis concludes with a summary of the conclusions
of the individual chapters and the future directions that have been exposed.

19

2

A Truly Self-Sovereign Identity
System

Existing digital identity management systems' fail to deliver the desirable properties of control
by the users of their own identity data, credibility of disclosed identity data, and network-level
anonymity. The recently proposed Self-Sovereign Identity (SSI) approach promises to give
users these properties. However, we argue that without addressing privacy at the network
level, SSI systems cannot deliver on this promise.

In this chapter we present the design and analysis of our solution TrustChain IDentity
(TCID), created in collaboration with the Dutch government. TCID is a system consisting
of a set of components that together satisfy seven functional requirements to guarantee the
desirable system properties. We show that the latency incurred by network-level anonymiza-
tion in TCID is significantly larger than that of identity data disclosure protocols but is still
low enough for practical situations. We conclude that current research on SSI is too narrowly
focused on these data disclosure protocols.

*A historical perspective on this chapter. The paper that this chapter is based on was written in 2020 and
published in 2021. Four years later, 2024, more solutions have become available that are not considered in this
chapter because this chapter preceeds their existence. Other solutions have evolved. Some examples are that
the company Ver.iD was founded in 2022, the company Sphereon implemented its backend (OID4VC) in 2022,
since 2021 uPort is known as Veramo and since 2023 the IRMA solution is known as Yivi. The W3C DID standard
became in Candidate Recommendation Draft in 2021 and a Recommendation in 2022.

20 2 A Truly Self-Sovereign Identity System

2.1 Introduction

In its full generality, the problem of digital identity management is one of the most im-
portant and hardest problems associated with large-scale digital infrastructures. On the
one hand, digital identities are critical elements in the pervasive digital infrastructures we
use in daily life for economic activity, access to healthcare and public services, etc., but
on the other hand, data breaches, data leaks and privacy violations are all too common
with the current generation of digital identity management systems [67]. These issues
can at least partially be attributed to the reliance of these systems on centralized trusted
third parties to manage all aspects of users’ identities. Over the last few years, the con-
cept of decentralized management of digital identities labelled Self-Sovereign Identity (SSI)
has emerged that promises users control over how to collect, store and share their own
identity data [234]. This chapter presents the design, implementation and evaluation of a
complete, open-source, truly Self-Sovereign Identity System.

SSI systems minimize trust in third parties and assume a decentralized infrastructure
for private storage by the identity holders or subjects of credentials, which are confirmed
pieces of identity data. Trusted third parties act only as issuers of credentials on request
by subjects and cannot learn with whom or when subjects share their credentials. Third
parties cannot learn anything about subjects except for the credentials that are explicitly
shared with them. The SSI approach, in theory, has the strong privacy guarantees of data
minimization and private data control [4] as subjects can use any data disclosure protocol
they like for selectively sharing credentials and for implementing any cryptographic or
data obfuscation algorithms on the corresponding data.

The SSI approach is unique in its ability to serve as a digital analog for identification in
the physical world. What constitutes the strength of identification in the physical world
is that it (a) is always presented by its owner (e.g., showing a passport), (b) is legally and
practically recognized as a valid proof of identity (e.g., by verifying the passport photo) and
(c) is only shared between the identity owner and the verifier without knowledge of any
other party (e.g., the state that issued a passport does not know whom it is presented to).
The digital analog of these desirable physical properties are the digital system properties
of (a) Self-Sovereignty, (b) Credibility, and (c) Network-level Anonymity.

Though promising as a concept, current research on SSI is limited in its focus on data
disclosure protocols for maintaining the Self-Sovereignty of data. However, these pro-
tocols are definitely not sufficient on their own to deliver strong privacy guarantees in
practical applications. This is evident from the research on privacy-focused decentralized
systems such as anonymous crypto-currencies [80], which shows that not only protocol-
level privacy, achievable with cryptographic tools, but also network-level anonymity is
necessary for practical privacy-preserving applications [32]. Network-level anonymity,
that is, obfuscating the source-destination pairs of messages for credential creation and
sharing, is crucial in SSI systems since Internet traffic correlation can completely under-
mine the effect of the data-disclosure protocols [217].

The design of our SSI system is based on 7 functional requirements that we deduce
from the three system properties it needs to provide, which relate to basic trustworthy
messaging in a communication substrate and to network-level anonymity for credential
creation and verification in two peer-based overlays on top of this substrate. Our design is
modular in that it allows for the specialization of the system for applications with differing

2.2 Problem Statement 21

<" s
B.2. Prove A.2. Attest
& &
v V
R B.1. Verify R A.1. Claim
Verifier Subject Issuer

Figure 2.1: The two communication flows, A and B, when enrolling and verifying a credential: both flows involve
the subject, as communication between the verifier and issuer violates the Self-Sovereignty property.

privacy and security requirements by incorporating different software modules for several
functionalities. In particular, we discuss the specialization of our design for use as a digital
analog of a passport.

We are not the first to propose using network-level anonymity for Self-Sovereign Iden-
tity systems [217], but we are the first to create a viable prototype in a truly Self-Sovereign,
zero-server manner. The contributions of this chapter are:

1. We provide a complete and substantiated modular system design for the creation of
Self-Sovereign Identity solutions with strong privacy called TrustChain IDentity, or
TCID for short (Section 2.3).

2. We present the specialization of TCID for a passport-grade Self-Sovereign Identity
solution and we discuss methods for revocation of credentials (Section 2.4).

3. We perform a performance analysis of TCID that shows that the overhead of TCID
is not prohibitive for practical use (Section 2.5).

2.2 Problem Statement

The main research problem addressed in this chapter is “What components should the ar-
chitecture of a Self-Sovereign Identity Management System leverage to provide the proper-
ties of Self-Sovereignty, Credibility, and Network-level Anonymity?” Secondarily, the archi-
tectural components required for guaranteeing Credibility and Network-level Anonymity
may have an impact on the latency of attesting to and verifying credentials, which would
seriously hamper the practical use of an SSI system. Therefore, the second research ques-
tion is whether the overhead of these components is prohibitive for practical use.

The Self-Sovereignty property, which is defined as identity data control and private data
minimization by the subject, means that subjects can build their own sets of multiple pieces
of identity data (their credentials) by having issuers attest to them, and can selectively
prove credentials to verifiers when performing transactions in a digital infrastructure. For
this purpose, an SSI solution should only allow the following two types of communication
flows between issuers, subjects and verifiers, with four types of messages (see Figure 2.1):

« Flow A. Enrolling a credential: a request for credential creation by a subject (A.1)
and the attestation for this credential by an issuer (A.2).

22 2 A Truly Self-Sovereign Identity System

« Flow B. Verifying a credential: a request for proof of a credential by a verifier
(B.1) and the subsequent proof of this credential by the subject (B.2). This may also
include a check to determine if the credential was revoked, which we discuss in
Section 2.4.4.

As indicated in Figure 2.1, a direct data flow between the issuer and the verifier is not
permitted. An analogous physical example of these digital interactions is a citizen claiming
to be older than 21 (A.1) and a government issuing a passport that proves this claim (A.2).
The citizen in this example could then later attempt to buy liquor in a liquor store which
would ask for proof that this citizen is over 21 (B.1) for which the citizen shows his passport
(B.2). The government (the issuer) does not directly communicate with the liquor store (the
verifier). Nevertheless, the liquor store accepts a passport as proof because it knows it is
issued by the government and the government is trusted: the claim is credible.

The second property of Credibility is defined as credentials being legally and practically
recognized as valid proofs of identity data. The two cornerstones of credibility assurance
in the digital domain are digital signatures and user authentication, which we now discuss.

Digital signatures by legitimate authorities, i.e., digital signatures by third parties that
are trusted by both a subject and a verifier, serve to attest to the credibility of presented
claims (A.2 in Figure 2.1). Acting as an issuer, such an authority signs a claim to provide
a cryptographically verifiable proof of credibility, forming a presentable credential. For
example, subjects may present a credential that shows their age and is digitally signed by
a government, an issuer that most subjects and verifiers trust to be a credible source of age
information. Subjects have the ability to collect signatures of multiple authorities to fur-
ther enhance the credibility of a credential, similar to how users sign each other’s keys to
establish credible identity in the PGP web of trust [249]. However, this transitive credibil-
ity is not a one-way relationship from authorities to credentials. Instead, the credibility of
a credential also influences the legitimacy—and thereby the credibility—of authorities [91].
Credentials with provably incorrect data result in a damaged reputation of the authority
who signed them. Thus, issuers must be able to either retroactively change the data they
signed or be able to revoke signatures of subjects to uphold their own credibility.

The second cornerstone of credibility is user authentication of the subject. While an
interaction with a subject may be authentic and covert, device theft may have occurred:
the holder of the device might not correspond to the enrolled identity. This means that
in addition to deriving credibility from the signing authority, credibility is derived from
the authentication of the user holding the device, which allows an application to bind the
physical user to a device.

The third and final property of SSI management systems is Network-Level Anonymity.
Existing work shows that an adversary who is able to observe traffic in a network can de-
tect a pattern of a subject’s associations that may lead to identity correlation [72], which
we call an “identity correlation attack”. In the context of SSI systems, without network-
level anonymity, the credential enrollment and verification traffic of subjects can be ob-
served, which, even though the data in the messages is encrypted, makes them vulnerable
to identity correlation attacks® [208]. In its simplest form, even without analyzing a so-

*Though bad for users’ privacy, a single centralized attesting authority avoids this, as no social network can be
derived (i.e., all users will only ever interact with a single party that signs their data, the centralized authority,
making all interaction graphs equal).

2.3 System Design 23

cial network, this correlation may be observed when there is only a single IP address that
sends the messages for two distinct identities, which allows an adversary to determine
that these identities belong to one user. Thus, an SSI management system needs to pro-
vide anonymity guarantees at the network level to preserve the protocol-level privacy
guarantees.

2.3 System Design

In this section we present the system components that jointly deliver the Self-Sovereignty,
Credibility, and Network-level Anonymity system properties as implemented in our open-
source system TCID, which provides a framework that enables SSI-based messaging be-
tween applications that require identification. These applications may range from using
a mobile phone to buy alcoholic beverages in a bar to a pre-flight registration over the
Internet. Without loss of generality, for all applications we treat the subject, issuer and
verifier as separate entities using our system, though in practice the issuer and verifier
are often the same entity (e.g., bank account credentials being used to authenticate with
the same bank). To guide the introduction of TCID, in Figure 2.2 we show its system
components, distributed across a communication substrate and peer-to-peer-based over-
lays. These components jointly satisfy the 7 functional requirements detailed below that
we identified for enabling the SSI interactions for credential enrollment and verification
over the Internet. To focus on the high-level behaviors of the components, we deliberately
omit their implementation (linked in Table 1.1, RQ1) as it consists of tens of thousands of
lines of code and dozens of distinct messages. The communication substrate can be im-
plemented on top of different communication media, and in addition to our Python-based
Internet implementation, we have also created a Kotlin-based Bluetooth version.

We believe TCID to be a valid reference architecture as it can even be made to support
the use case of digital passports, which has arguably the most challenging set of design
requirements. TCID has been created in tight collaboration with both government and
industry. This was necessary to satisfy anticipated future legislation on the storage and
use of identity data in Self-Sovereign Identity solutions. However, authentication levels for
digital identities have long since been standardized by the National Institute of Standards
and Technology [90]. TCID can be specialized for specific applications by enabling the
corresponding authentication levels in a modular and transparent way, as discussed for
passport-grade identities in Section 2.4.

Regardless of its specialization, the communication substrate of TCID (shown in Fig-
ure 2.2) serves three functional requirements for messaging. First, peers must be able to
(1) communicate with other peers directly, i.e., without any specific trusted third party,
which can be solved using the address space of a medium (like the IPv4 and IPv6 proto-
cols). This direct communication circumvents the need for centralized portals that man-
age user identities. Secondly, it must be impossible for peers to impersonate each other:
messages should be (2) authentic. Lastly, the communication substrate should ensure mes-
sages are not modified by anyone other than their originator: messages should maintain
(3) integrity. The second and third requirements are implemented using digital signatures
from decentralized PKI (public key infrastructure).

Having a communication substrate for end-to-end messaging is not enough for all
possible uses of digital identity and TCID provides two network overlays to allow further

24 2 A Truly Self-Sovereign Identity System

Application [€ = = identity-based messaging = =>| Application
| A
A J |
@ SSI SSI
g
=
3 :
Anonymization Anonymization Anonymization
| A | A
= A J | A J |
g
® & PKI PKI PKI
g E
=
: 2 ¢ 3 f
=
E <2 UDP/IP UDP/IP UDP/IP
Q
Y A

ey Gl
Figure 2.2: The data flow through the TCID components for applications with one intermediary for anonymiza-
tion, using UDP/IP over the Internet for the communication substrate.

strengthening of its identification mechanism. If attackers are able to identify users based
on their messaging patterns, the security assumptions of SSI solutions are violated [217].
For an attacker can then both disrupt communication and track users through their mes-
sages. Practically, these attacks may be as simple as sending a large number of messages or
tracking IP addresses. Therefore, the first overlay on top of the communication substrate
in Figure 2.2 facilitates decentral (4) network-level anonymization.

The anonymization overlay uses randomly-selected peers with user-grade hardware
(like mobile phones) in the overlay network to create covert multi-hop communication
channels (Figure 2.2 shows a two-hop channel). These peers are randomly selected and
are therefore neither specific nor trusted third parties. If no peers are available as interme-
diaries, the anonymization is essentially reduced to an expensive form of link encryption
and requires the communication medium itself to not leak device identifiers. For creat-
ing the multi-hop channels, TCID implements its own derivative of the Tor protocol [68].
This customization is necessary as anonymization—while aiding in averting attacks [217]—
cannot be applied as an afterthought to existing protocols [31]. Tor’s “hidden services”
protocol normally requires centralized directory servers to share the peers that can be used
for constructing channels [173]. As these directory servers are again specific and trusted
third parties, which TCID wants to avoid, we have replaced them with a gossiping proto-
col over the anonymization overlay. Peers in TCID are able to (5) decentrally synchronize
the information normally published by directory servers. However, this gossiping ap-
proach is classically vulnerable to both the Index Poisoning attack and the Eclipse attack
through fake identities called Sybils. TCID uses a method of testing physical resources (us-
ing latency) to avoid these Sybil attacks in its anonymization overlay [235], our method is
described in Chapter 3.

2.4 Passport Grade Specialization of TCID 25

ECredential 0

Proof |<—| Attribute |<—| Metadata |<—|Attestation
A

=
=4
o
c
=
t|
s
s
3
3
»
)
By

ECredential 2
E Proof |<—| Attribute |<—| Metadata
:

Figure 2.3: A pseudonym data structure corresponding to the public key of a subject with two disclosed creden-
tials. Arrows denote an element storing the hash of the element pointed to. Undisclosed credentials include only
an attribute, whereas their disclosure also includes a proof, metadata and attestation(s).

Peers use the SSI overlay of TCID to disclose their credentials over covert channels,
i.e., to (6) identify themselves in a Self-Sovereign fashion. For the most stringent use cases
of SSI, the overlay also offers functionality for (7) accountability of subjects, e.g., for a
government to identify an individual in case of overstaying a visa after crossing a border.
The SSI component facilitates storage for subjects and verifiers of the public and private
(secure) data that allows for identification and accountability: public key pairs, creden-
tials and pseudonyms (explained in Section 2.4). Furthermore, the SSI overlay handles the
SSI-related data flows of Figure 2.1 between peers. The identification and accountability
functionalities are exposed to the application layer, providing identity-based messaging.

2.4 Passport Grade Specialization of TCID

In this section we further specify how the SSI component of TCID can be configured and
used to support various levels of authentication, up to the point of being able to support
use cases that normally require a physical passport. This section discusses the immutable
data structures that we call pseudonyms, how to check if a user is physically present when
the pseudonym is used, how audit logs can be formed in a privacy-preserving manner for
legal compliance and how authorities can revoke attestations previously given to users.

2.4.1 Identification and Pseudonyms

In TCID, identities are implemented as pseudonym data structures, which are stored on
the devices of the corresponding subjects. As TCID is Self-Sovereign, a pseudonym can be
created by generating a key pair with any of the supported elliptic curves, without permis-
sion of a third party. A pseudonym can also be invalidated or removed autonomously by a
subject, though its use may leave a permanent record (Section 2.4.3). The pseudonym data
structure itself holds a list of credentials that are hidden from verifiers until a user wishes
to disclose them. We show an example of a pseudonym presented by a subject to a verifier

26 2 A Truly Self-Sovereign Identity System

in Figure 2.3, to guide the explanation of its elements. Figure 2.3 shows that a credential
contains a proof; an attribute, metadata and attestations when disclosed, and only contains
only an attribute when undisclosed. When included, these elements make authentication
progressively stronger up to serving as a digital equivalent of a physical passport.

Disclosure of credentials is rooted in proofs. Each credential has one proof. Typically,
a proof will consist of encrypted information (e.g., Pedersen commitments [177] and un-
linkable signatures [27]). Given an agreement between the subject and the verifier on a
disclosure protocol for a particular proof (normally implicit, but captured explicitly in the
metadata of each credential in TCID), some property of the encrypted information can be
shown to hold. For example, one may prove the input data for a proof was larger than 21.
It is explicitly not allowed to create multiple proofs for the same data as this may lead to
information leakage. Building on our previous example, proving one’s age is larger than
21 but failing to prove one’s age is larger than 22 leaks the exact age of the user.

As shown in Figure 2.3, a subject can add credentials to their pseudonym by attach-
ing a single attribute using the hash of the preceding attribute or the public key of the
pseudonym, if there is no preceding attribute. Each of these attributes consists of only two
hashes: a hash that points to the previous attribute or public key and a hash that points
to a proof. By creating an immutable linked list of attributes, we allow for attributes to
depend on each other. For example, the validity of a driver’s license may critically depend
on being enrolled with a valid name, but the name may not always have to be disclosed. By
extension, the chain of attributes implies a partial ordering of credentials, which ensures
that credentials cannot be mixed-and-matched from multiple pseudonyms. To continue
our driver’s license example: it is important that the presented valid name is not just any
valid name, but the exact valid name that was used to enroll the driver’s license.

Metadata will have to support a credential, at least to identify the data disclosure pro-
tocol for its contained proof. To connect this metadata to an attribute and its proof, we
once again use a hash to point to the respective attribute. Finally, the collected attestations
made by issuers point to the metadata of credentials. Through the chain of hashes, this
binds an attestation to the metadata of the attested credential, the proof of the credential,
and all preceding credentials. Notably, a user cannot change a proof without invalidating
all attestations over credentials further down in the chain. This mechanism allows ver-
ifiers to detect that the conditions for an issuer to attest to an attribute may have been
violated. For example, a name change automatically invalidates a government’s attesta-
tion of a driver’s license that is only valid for that particular name.

Attestations are digital signatures made by issuers and form one of the cornerstones
for Credibility (Section 2.2). However, these digital signatures are made by public keys
and form pseudonyms themselves. We envision a future in which subjects require issuers
to use this pseudonym to identify themselves before attesting. For example, an issuer’s
pseudonym must first prove to work for the government before attesting to a driver’s li-
cense of a subject. However, which pseudonyms to trust when engaging in business logic
is up to users. For the standardization of business logic surrounding pseudonyms with at-
tributes, we refer to the NIST recommendations on Attribute-Based Access Control [103].

2.4 Passport Grade Specialization of TCID 27

2.4.2 Proof of user presence

Just like attestation, user authentication is one of the two cornerstones of Credibility in
SSI systems (Section 2.2). Establishing a communciation session between peers using just
public keys is not enough for a passport use case. The user who created a pseudonym
should prove they are present when using it, otherwise device theft could lead to identity
theft. To this end, a communication session established by the communication substrate
can be further strengthened by using credentials for authentication [127]. Such an authen-
ticating credential functions similarly to proving ownership of a public key with a digital
signature: a subject shows a verifier a publicly verifiable property of private data they
hold.

The contents of authenticating credentials can vary from passwords to biometric checks,
and Physically Unclonable Functions (PUFs) [167]. The more authentication credentials
are added to a pseudonym, the better its security guarantees will be (potentially even be-
yond the standards of the NIST [90]). The first deployed prototype of TCID included only
closed-source facial recognition with liveness detection.

2.4.3 Accountability and Audit Logs

In certain use cases, like border crossing, verifiers are legally required to keep audit logs.
Such logs exist for governments to hold individuals accountable for their use and misuse
of their identities [2, 179]. Audit logs can be formed by the verifier storing the disclosed
credentials presented by users [212]. The digital signatures and hashes that constitute a
pseudonym make the audit logs immutable, to avoid tampering and to hold legal status.
However, logs are not shared publicly. Only certified auditors with the appropriate legal
grounds may require verifiers to share an audit log. For example, immigration services
may audit border authorities.

To uniquely identify users, TCID offers privacy-preserving credential construction
that allows legally required checks by certified auditors. This feature is modular and
can be enabled to provide the full range of passport grade use cases. Before engaging
in verification of a credential, subjects present verifiers with a credential that is attested
to by a certified auditor without proving the credential. This special credential contains
an encrypted reference to the natural person that is captured in a government database.
Through the auditor maintaining a cryptographic secret link between the attribute of a
pseudonym and a central register of all citizens, a pseudonym can be traced back to the
enrolled individual by the auditor. The implementation of this optional credential is trans-
parent and limited to specific use cases grounded in appropriate legal frameworks. In the
spirit of Self-Sovereignty, both the subject and the verifier may opt not to include or use
the credential used for auditing, though it may not be legal to do so.

2.4.4 Revocation by Authorities

Several solutions have been proposed to enable revocation by authorities of the subject cre-
dentials they have signed [97]. We discuss three of them. The first and fastest solution adds
a link to the revocation registry (central server) of the issuer, e.g., a “revocation authority”
in IRMA [152]. However, this issuer will have to be online to allow access to the revo-
cation register and forms a specific and trusted third party—which is not Self-Sovereign.
The second solution is the complete decentralization of revocations using a shared log,

28 2 A Truly Self-Sovereign Identity System

enrollment verification
3- .
. L]
-
—
@ 24
5‘ L b\
g
=1 <o
© 14 3
. == -
o - = =«
- —
0_ -——
— T T T T S S L C
TEIRILS S LRSS
Y XS S QS Y RS S S
/'\’/V\QQ'Q?Q\O }\’/V\Q@'q?O\Q
S9d® ¥ $§804y
S SN &L S ¥
K Q@ N Q@
S S
I I

Figure 2.4: Boxplots of the credential enrollment and verification latency for different proof implementations.

e.g., a blockchain—as used by Sovrin [116], using a cryptographic construction to check
for revocation in a privacy-preserving manner. However, writing to a shared log takes
more time for the revocation to reach finality, can invalidate the incentives the log was
built around and has the issue of unbounded growth of the log. Finally, the third solution
is to include validity terms into the metadata of credentials, e.g., “epochs of lifetime” in
Idemix [27]. As a credential is then only valid for a limited amount of time, the chance of
a credential being revoked is related to the duration of its validity. This approach requires
frequent re-enrollment of credentials. None of these three available revocation methods
fits all use cases, so TCID enables all three to allow adaptation to any use case.

2.5 Evaluation

The key system property for the usability of SSI solutions in practical situations is low in-
teraction latency. It would be inconvenient to wait an hour at the airport to have your iden-
tity verified and, in fact, electronic border control should take no longer than 30 seconds
to be considered usable [128]. In this section we show that the latency of the interactions
within the SSI overlay is well within this 30-second limit, finishing consistently within
three seconds for all of the implementations of credential proofs we evaluate. In contrast
to the three-second latency of these SSI-overlay interactions without anonymization, the
latency of sending an SSI-overlay message across a covert channel in the anonymization
overlay is shown to be five seconds and up to over 20 seconds. We also attempt to find a
metric to serve as a tie-breaker for the different implementations of the SSI-overlay inter-
actions. However, we have not been able to find it, as the latency, CPU usage and network
traffic of the implementations are all similar.

2.5.1 Experimental Setup

We measure the performance of the enrollment and verification of credentials on a single
machine. We compare the credential proof implementations of TCID (see Section 2.4.1) to

2.5 Evaluation 29

those available in Hyperledger Indy® [197], uPort* and Jolocom® [92]. These three exter-
nal solutions have been identified as usable in a study by Bartolomeu [20]. The solutions
all offer functionality to create (enroll) and disclose (verify) credentials and we highlight
the manner in which they implement this functionality further in Section 2.6. The per-
formance metrics we measure for these two functionalities are latency, CPU usage and
network traffic.

The four credential proof implementations of TCID that we measure use three dis-
tinct protocols. Two implementations use a Zero-Knowledge Proof protocol that allows
proofs over input data with a length of 1024 bits and 4096 bits, which we refer to as the
“TCID-1024” and the “TCID-4096" proofs, respectively. One implementation uses a Non-
Interactive Zero-Knowledge Range Proof protocol, which we refer to as the “TCID-PB”
proof [178], and which allows subjects to prove input data lies in a certain number range.
Lasty, we measure TCID’s implementation of the IRMA protocol [5] (a blinded signature
scheme based on Idemix [27]), denoted as “TCID-IRMA”.

We have measured the Python implementation of TCID. All experiments are performed
on a virtual machine running Ubuntu 19.10, with 4 CPU cores fixed to 3.50 GHz and 16 384
MB of memory. Each of the presented boxplots is constructed from twenty data points.
Credential enrollment and verification is measured as-is with default settings, no modifi-
cations have been made to the publicly available source code.

2.5.2 Latency
In Figure 2.4 we present our measurements of the latency of credential enrollment and
verification. These latencies are defined as the time between the subject initiating Flow A
of Figure 2.1 and receiving the corresponding attestation, and the time between the verifier
initiating Flow B of Figure 2.1 and completing the proof, both without network transfer
time. From our latency comparison, we find no clear winner from the evaluated credential
implementations. What is gained in enrollment latency is lost in verification latency and
vice-versa, with Hyperledger Indy being the most consistent between these two categories
(but also not the fastest). The evaluated solutions all finish within 3 seconds, making them
usable for, e.g., electronic border control, which should be finished in 30 seconds [128].
The results of Figure 2.4 show that the TCID-1024 proof provides the lowest latency
for both enrollment and verification. However, it would be unfair to claim that the TCID-
1024 proof is the best solution, as it can only handle up to 128 bytes of information, while
the other credential solutions can handle arbitrary-size inputs. However, this does show
that choosing the correct disclosure protocol is important to satisfy the need for either
low enrollment or low verification latency.

2.5.3 CPU Usage

We explore CPU usage as a potential selling-point of disclosure protocols. We measure the
CPU usage as the average CPU utilization of the subject and issuer during Flow A of Fig-
ure 2.1 and of the subject and the verifier during Flow B of Figure 2.1. As our experiments
run on a homogeneous virtualized setup, they serve as a rough estimate for the power

Shttps://github.com/hyperledger/indy-sdk
*https://github.com/uport-project/uport-credentials
*https://github.com/jolocom/jolocom-sdk

https://github.com/hyperledger/indy-sdk
https://github.com/uport-project/uport-credentials
https://github.com/jolocom/jolocom-sdk

30 2 A Truly Self-Sovereign Identity System

enrollment verification
.
~ 604
X 1 4 .
=~ L
& 40+ 4
> . é :
3 ®
2 |E - i

20- =) =]

P S I RSN I
O IUTEFL S §8IIEL
P ILE Y NI L IS
SELETE ¥ 8890
S S ¢ S S ¢
N Q@ N QO
S N
< NS

Figure 2.5: Boxplots of the credential enrollment and verification cpu usage for different proof implementations.

consumption of the different Self-Sovereign Identity solutions. As in the previous latency
experiment, we measure each credential creation and verification implementation sepa-
rately. The results are visualized in Figure 2.5. Only uPort offers a surprise, in that it has a
higher CPU usage for both enrollment and verification of credentials, seemingly due to its
web server. From our experiments, we infer that CPU is not a significant distinguishing
factor for current Self-Sovereign Identities.

2.5.4 Network Traffic

We now evaluate the network traffic as a result of the various credential implementations.
No external tools were used for these measurements: the traffic was measured and ag-
gregated from the data flowing through the sockets used by the measured applications.
To contextualize these results, we note that, since the deployment of 3G mobile commu-
nication networks, mobile phones are able to transfer megabytes per second [78]. From
the results of our experiment, visualized in Figure 2.6, we derive that the transfer rate of
several megabytes already amounts to overprovisioning for these implementations.

A notable result is that interactive Zero-Knowledge Proofs generate much more traffic
than Non-Interactive Zero-Knowledge Proofs and signature schemes to verify. The worst
case, TCID-4096 proof, requires up to 70 kilobytes of data to be transferred (though this is
still completely acceptable for devices capable of communicating at several megabytes per
second). The low traffic for Non-Interactive Zero-Knowledge Proofs is expected, as it is
their design goal [34]. Lastly, the remaining proofs, based on digital signature derivation,
also show limited network use.

2.5.5 Anonymization

We have shown the feasibility of using different credential implementations with vastly
different cryptographic primitives and now offset this to the anonymization component in
TCID. We now measure latency as the time it takes to establish a communication channel
between real users of Tribler [183], our peer-to-peer file-sharing application that uses

2.5 Evaluation 31

enroliment verification

=

(o2}
o
1

traffic (kB)
5

N
o
1

o
f

Figure 2.6: Boxplots of the credential enrollment and verification network usage for different proof implementa-
tions.

20+
@15-
>
2 10
[¢]
b5 s
. b

S ==

1 2 3

number of intermediaries

Figure 2.7: Covert channel creation time in TCID.

TCID. We present the creation time for channels of the three lengths default to Tribler:
using 1, 2 and 3 intermediary peers. The more intermediaries a channel contains, the
harder it will be for an adversary to decrypt or block any particular channel.

We have visualized the time it takes to create a channel for different intermediary
counts in Figure 2.7, which shows that the parameterization of the anonymization com-
ponent is very important for the total latency of the SSI-overlay interactions in TCID.
Using 1-intermediary anonymization, the anonymization latency is hardly significant in
comparison to the latency of the credential implementations (Figure 2.4). When using
two intermediaries, the anonymization latency is comparable to that of the credential im-
plementations. Finally, by using three intermediaries for anonymization, the latency is
dominant compared to that of the credential implementations. This result shows that the
choice of the credential proof implementation is indeed insignificant for the latency of the
credential data flows when compared to the anonymization component, using the stan-
dard of three intermediaries for covert channel construction.

32 2 A Truly Self-Sovereign Identity System

2.6 Related Work

A promising start has been made in the field to try and make sense of all the available
information disclosure technology, its mapping to the W3C DID standard [188], and its in-
teraction with blockchains [122, 162] and distributed storage like IPFS [79]. A critical view
of the system components of Self-Sovereign Identity, however, is missing in academia and
is only briefly discussed in industry whitepapers, the most notable analysis coming from
SelfKey [83]. Many SSI solutions claim they are anonymous, but this is erroneous as they
only achieve pseudonymity and do not address device fingerprinting [217]. We postulate
that anonymity and identity disclosure protocols are orthogonal but can be combined to
achieve pseudonymity with selective disclosure of information. We have shown how ex-
ternal cryptographic protocols, like that of IRMA, can be made interoperable with our
solution.

Early work using central servers. Early work focuses on supplying users with
the ability to tie their claims to a token-based identity, as exemplified by Microsoft Pass-
port [42], OAuth [47], FIDO [143] and OpenlID [187]. At the time, the use-case of identi-
fication of users was to reidentify with the same central server—but these works laid the
groundwork for cryptography, the terminology (e.g., “claims” and “relying parties”), and
the principles of Self-Sovereign Identity. The advantage of using central servers is that
the metrics considered by this paper of latency, CPU usage, and network traffic, are all
superior as opposed to other solutions. However, the disadvantage is that these solutions
require third parties and thereby they are not Self-Sovereign.

Unlinkable signature-based disclosure schemes. Many mainstream SSI solutions
are based on signature derivation (most notably Idemix’s CL signatures [41] and JSON
Web Tokens [76]), possibly storing revocations on blockchains [1]. These signatures bind
the key of the identity holder to the disclosed data and usually allow derivation of a new
signature that is also valid for the same data (which is claimed to make this data unlinkable,
though fingerprinting makes users completely linkable as we have previously discussed).
Examples of these systems are IRMA [5], Jolocom and uPort [92], ClaimChain [126], Hy-
perLedger Indy and Sovrin [197]. The advantage of signatures schemes is that they have
less latency and bandwidth usage than classical Zero-Knowledge Proof protocols. How-
ever, the disadvantage is that these schemes require disclosure of data instead of only
proving a property of that data.

ZKP-based identities. Identification through Zero-Knowledge protocols has been
proposed decades ago [66] and these protocols have been rediscovered as a key compo-
nent of Self-Sovereign Identities [11]. However, Zero-Knowledge Proofs over data and
their security implications for SSI systems remain scarcely documented and rarely imple-
mented by academia [36], though this type of system is widely proposed by industry, with
https://github.com/peacekeeper/blockchain-identity listing 134 Self-Sovereign Iden-
tity solutions based on blockchain. The advantage of Zero-Knowledge Proofs is that they
allow a subject to only prove a property of the data that they wish to allow verification
of. However, the disadvantage is that classical (interactive) Zero-Knowledge Proofs re-
quire more latency and bandwidth. As shown by the results of this paper, more recent
“non-interactive” ZKPs mitigate these weaknesses.

https://github.com/peacekeeper/blockchain-identity

2.7 Conclusion 33

2.7 Conclusion

Research on Self-Sovereign Identities is narrowly focused on cryptographic data disclo-
sure protocols. However, our analysis shows that these protocols are not the only critical
consideration for Self-Sovereign Identity solutions. Such an isolated approach ignores
performance and security concerns at the networking layer of SSI systems. We have pre-
sented our implementation of a system that addresses these concerns. Furthermore, we
have shown the feasibility of a passport grade Self-Sovereign Identity through our design
and implementation of TCID. Our Self-Sovereign Identity solution of TCID disallows net-
work traffic correlation, while still enabling passport-grade interactions with acceptable
latency.

35

Web3 Sybil Avoidance Using
Network Latency

Web3 is emerging as the new Internet-interaction model that facilitates direct collaboration
between strangers without a need for prior trust between network participants and without
central authorities. However, one of its shortcomings is the lack of a defense mechanism
against the ability of a single user to generate a surplus of identities, known as the Sybil
attack. Web3 has a Sybil attack problem because it uses peer sampling to establish connections
between users. We evaluate the promising but under-explored direction of Sybil avoidance
using network latency measurements, according to which two identities with equal latencies
are suspected to be operated from the same node, and thus are likely Sybils. Network latency
measurements have two desirable properties: they are only malleable by attackers by adding
latency, and they do not require any trust between network participants.

In this chapter we present our basic SybilSys mechanism that avoids Sybil attackers using
only network latency measurements if attackers do not actively exploit their malleability. We
present an enhanced version of SybilSys that protects against targeted attacks using a variant
of the flow correlation attack, which we name TrafficjamTrigger. We show how the message
flows of Round-Trip Time measurements can be used to expose attack patterns and we pro-
pose and evaluate six classifiers to recognize these patterns. Our experiments show, through
both emulation and real-world deployment, that enhanced SybilSys can serve a fundamental
role for Web3, effectively establishing connections to real users even in the face of networks
consisting of 99% Sybils.

36 3 Web3 Sybil Avoidance Using Network Latency

3.1 Introduction

The Web3 ecosystem, the decentralized web, is the most recent step in 50 years of contin-
uous evolution of the Internet. This evolution is tightly connected to the history of the
birth, adoption, and governance of distributed protocols [176]. Web3 is the emerging decen-
tralized alternative to the currently dominant Web2, which is centrally governed [231]. In
contrast to the governance of Web2, the governance model of Web3 could be described as
a “collaboration of strangers,” characterized by a lack of prior trust between users. There-
fore, Web3 could be best defined as a collectively maintained public infrastructure [231]. To
create this infrastructure, users interact with other users, which they find through peer
sampling. However, attackers can interfere with this sampling by using Sybils, a surplus
of fake identities [70]. We present a peer sampling mechanism that avoids connections to
Sybils using only network latency.

A primary driver of Web3 is the use of transparency to become “trustless,” the absence
of a need for trust in a system [48]. To this end, Web3 typically consists of peer-to-peer
technology (e.g., BitTorrent) with a distributed ledger (e.g., Bitcoin) and the social prac-
tice of sharing (e.g., GitHub). Web3 is based on open protocols, open source, open col-
laboration, and freely re-usable components. Web3 can provide critical infrastructure for
identity, money, markets, data, and Al. Even security improvements are handled openly:
Web3 is aiming to alter the incentives for exploiting bugs, thereby improving security.
Incentive alignment is achieved by offering payment (e.g., Bitcoins) through bug bounty
programs [100]. For example, the community has tried to address frontrunning, a method
to exploit pending trading actions [56], collaboratively [24, 189, 222].

Scalability to billions of users is a problematic requirement for Web3. Scaling issues
arise as nodes within large-scale distributed systems are unable to keep track of all other
participating nodes. The membership table of nodes may become unmanageable due to
its size and due to the need for frequent updates because of node arrivals and departures.
Early work used this approach, leading to considerable synchronization costs at scale [29].
Instead of depending on a single global (data) structure, full scalability is only achieved
with distributed infrastructure. However, the typical Web2 approach of using predefined
critical infrastructure, like the cloud or privately owned servers, violates the trustless na-
ture of Web3. Therefore, Web3 applications employ different means to tackle their scala-
bility issue.

A fundamental mechanism at the heart of Web3 applications, which addresses the
scalability issue of node discovery, is the peer-sampling service [108] as it appears for ex-
ample in Bitcoin and BitTorrent. To this end, Web3 requires the creation of an overlay net-
work from network participants’ computers without relying on centrally governed servers
(“zero-server”), and resilience against fraud in the form of fake identities. A peer sampling
service is required by all three known styles of gossip protocols used by Web3 applications,
i.e., rumor-mongering protocols, anti-entropy protocols, and aggregation protocols [28].
Rumor-mongering protocols use flooding to spread information at a fixed rate to all nodes.
Anti-entropy protocols connect to nodes randomly, comparing information and reconcil-
ing differences. Aggregation protocols conduct pair-wise information exchanges and com-
bine values to arrive at a system-wide value. Therefore, all gossip-based Web3 designs are
susceptible to attacks on the peer sampling mechanism, e.g., a Sybil attack.

Any node can use a peer sampling service to discover other nodes that are randomly

3.2 Problem Description 37

sampled from all nodes in the system, these nodes are the node’s initial neighbors. Further
connections can be made to even more peers through connections to the neighbors of a
node’s neighbors. Thereby, the concept of neighbors exploits locality as an alternative to
a centrally maintained membership table. However, if a bad-faith actor creates many fake
identities (Sybils) to serve as neighbors, real identities may perpetually be introduced to
more Sybils. This systemic oppression of nodes hinders their ability to maintain public
infrastructure and, thereby, allows for their abuse. For example, an attacker can deprive
nodes of the latest information in a cryptocurrency, which leads them to think that they
will receive currency though this won’t happen (also known as “double-spending” [113]).
Using network latency to avoid Sybils is a unique opportunity for Web3. In Web2
systems, centralized platforms are used to bring users in contact with each other, and
the indirection of traffic that goes with it makes it difficult, if not impossible, to measure
network latency between users. In contrast, in the Web3 ecosystem, nodes send messages
to each other over the Internet without intermediaries, enabling a new method of defense
through latency. Furthermore, these latency measurements are a particularly attractive
option as they do not require a gossip protocol, avoiding a chicken and egg situation.
This chapter proposes a Sybil-avoiding peer sampling service to enable the collective
infrastructure of Web3 that provides nodes with non-Sybil nodes without a-priori trust.
To achieve this, we counter the Sybil attack solely using measured network distances,
which does not require a centrally governed entity. The core contribution of our work is
a mechanism for dependable, zero-server, trustless network topology creation in
spite of Sybils called SybilSys. On a more granular level our contributions are as follows:

1. We argue that Sybil avoidance must be addressed in the peer sampling mechanism
(Section 3.2) and we define an adversary model (Section 3.3).

2. We rationalize, implement and verify light-weight Sybil-avoiding peer sampling us-
ing only network latency measurements (Section 3.4).

3. We show how message flows of latency measurements can be used to detect Sybils
over the Internet (Section 3.5).

4. We create a version of our peer sampling mechanism that specifically counters at-
tacks against our initial mechanism (Section 3.6), based on message flows, and we
verify it with real users (Section 3.7). We derive that this mechanism is trustless,
predominantly samples honest nodes and cannot be efficiently attacked.

3.2 Problem Description

The core problem of our work is breaking the dependency between requiring Sybil-free
gossip protocols and using gossiped information to eliminate Sybils. Gossip protocols do
not guarantee delivery of information in a network filled with Sybils and Sybils cannot
be identified without the information gossiped through these protocols. In avoiding gos-
sip protocols, Sybil avoidance becomes a key problem for the peer sampling service. A
straightforward gossip-free approach, like relying on unique IP-addresses or traceroute
to filter Sybils is still open to attacks, as recently shown through the Erebus attack [226].

38 3 Web3 Sybil Avoidance Using Network Latency

Adversarial behavior is often considered to be out of scope for peer sampling
research (e.g., with assumptions that “each participant is limited to one identity” [138]).
For decades, analytical studies proposed peer sampling services and tried to determine if
they actually lead to uniform sampling or become unstable—while ignoring security [107,
108, 115, 138].

Bitcoin is an example of a system that seemingly resists Sybils, but can still suffer at-
tacks on the network layer [245]. Only on its application layer does Bitcoin provide a solu-
tion to Sybil attacks by crafting a high computational-cost barrier for tampering through
a mathematical puzzle known as proof-of-work. Regrettably, alternatives to proof-of-
work—or in general proof-of-something—systems with both lower computational costs
and preservation of decentralization remain elusive [96]. Nevertheless, attacks on Bitcoin
using Sybils are effective. Using Sybils to cause (even temporary) network partitioning is
monetarily profitable for attackers [201] and leads to long-term advantages [193]. An in-
teresting ongoing experiment is Blockstack, a chain which externalized protection against
Sybils by relying on Bitcoin [3]. Blockstack rewards prior mining in Bitcoin and uses a
verifiable random function for leader election, presumably leading to undesirable rich-get-
richer dynamics.

Peer sampling is inherently fragile and sensitive to fraud and faults. Protocols
with mass adoption typically encounter problems such as malicious behavior, acciden-
tal deviations from protocol specifications, malfunctioning nodes, correlated failures, net-
work partitioning, data corruption, and dissemination of incorrect information. The state-
of-the-art remains fragile. Especially Sybils that follow specialized attack strategies (be-
yond simply existing) go undetected in social networks [6, 86, 109] and are able to influence
applications based on (federated) Artificial Intelligence [84, 85, 120].

An example of using a “score function” on social interactions, to protect against Sybils,
is found in GossipSub [232]. With various parameters, each node attempts to keep track
of the honesty of its neighbors. Their “application-specific score” imports information
from the application level for Sybil avoidance and their “IP Address Collocation Factor”
parameter is very effective against simple Sybil attacks. The global impact of this approach
is still limited because it is not possible to trust your neighbors to accurately report their
neighbors’ Internet addresses (i.e., this violates our trustless requirement). Every address
obtained by an attacker can be re-used to create unique Sybils in GossipSub. Services that
offer unique IP addresses, rotating proxy infrastructure rental, can dramatically decrease
the monetary cost of an attack on this system.

Using network latency is a promising approach to the Sybil problem, due to the
grounding in the laws of physics. Network latency can only be tweaked by attackers by
artificially increasing it, never by decreasing it [21]. No software-based attack can alter
the lower bound on latency between two nodes, as the underlying shortest physical link
between nodes remains the same.

Network latency for Sybil avoidance is used in related fields outside of epidemic pro-
tocols and peer sampling. There have been prior attempts to make use of network latency
for the detection and avoidance of Sybils [21, 204]. Early work uses triangulation to pin-
point physical coordinates within wireless sensor networks. Unfortunately, triangulation
has proven to fail with realistic network conditions [130, 131, 153] due to lack of latency
symmetry for bidirectional wireless links and invalidity of the triangle inequality from Eu-

3.3 Adversary model 39

clidean geometry. Moreover, triangulation requires trust in the localization data provided
by strangers, violating the trustless requirement.

3.3 Adversary model

Web3 nodes aim to cooperatively maintain public infrastructure in the presence of at-
tackers that employ an overpowering number of identities on a limited set of physical
resources. Violation of public infrastructure by attackers can be detected by sharing im-
mutable Web3 data. For example, the immutable history of Bitcoin exposes any attempted
violations by attackers through its chain of blocks (connected using cryptographic hashes).
Therefore, a connection to only a single other honest node is required for any honest node
to detect violations. Conversely, the goal of the attackers is to disallow this sharing of
data, to not have their violations detected. To distinguish attackers, two types of entities
are considered:

« honest nodes control only one logical node and one identity per physical machine in
the network.

« attackers create and control multiple identities per physical machine in the network.
Any identity controlled by an attacker entity is a Sybil identity.

The focus of this work is to counter the cheapest attack on peer sampling services: the
generation of Sybil identities on a single node. Within this scope, the goal of attackers is
centered around operating a surplus of Sybil identities on a single node in an attempt to
isolate a cluster of honest nodes from the rest of the network (also known as an Eclipse
attack [205]). Therefore, we consider a Sybil-avoiding peer sampling mechanism to be
successful if it associates only a single identity with a single node. Our goal does not
include the more complex case of countering Sybil identities operated by a single attacker
from multiple nodes, e.g., by using a botnet, as existing work has already been shown to
work when attackers are limited to one identity per IP address [135, 138].

The peer sampling mechanism that we present in this work depends on latency mea-
surements between nodes and we now discuss how it can be attacked by adversaries. In
particular, in the remainder of this section we discuss how the possible attacks are ad-
dressed in our work. Our analysis considers attacks on the hardware, software, and ses-
sions, required to perform a latency measurement between nodes over the Internet.

Attacks on the ability of distributed communications networks, like the Internet, to
pass messages between nodes have been studied for over 60 years [19]. However, to this
day, messages that are sent over the Internet are still not guaranteed to arrive at their
destination. We mitigate all cases of latency measurement messages not arriving (e.g.,
due to attacks, offline nodes, and network disruption or outage) by periodically contacting
neighbors and disconnecting from them if they do not respond. Of course, a network that
lacks even the basic means of communication between nodes trivially forgoes the need of
a Sybil defense, like the one we propose. Therefore, we make the following assumptions
of basic meaningful connectivity:

« Assumption 1: Nodes are addressable over the Internet (e.g., through IP) and con-
nectable based on their address.

40 3 Web3 Sybil Avoidance Using Network Latency

« Assumption 2: Honest nodes are online long enough to engage in the peer sam-
pling process.

« Assumption 3: Attackers do not control all hardware on the routing path over the
Internet between them and an honest node. In Section 3.5.1 we discuss attackers
that control part of the hardware along the routing path.

It may be possible for adversaries to replay messages that are sent between other nodes.
Our approach to counter replay attacks is to make use of unique pairs of a request and
response message (explained in Section 3.4). These pairs are made unique through the
use of a random nonce that is added to the request and response message. However, if
the random nonce can be predicted, an attacker can send a latency response before any
request was made and potentially lower its measured latency. Therefore, we assume that
the random nonce generation used provides the following guarantee:

« Assumption 4: The request and response messages that are sent between nodes
contain a unique nonce that cannot be predicted by an attacker.

The manner in which our basic mechanism establishes node identities is through their
latency. However, honest nodes that share the same physical location are all seen as be-
longing to the same identity and, thereby, as attackers. In this case, a single honest node
would still be sampled but all others in the same location would be ignored, which is inef-
ficient. In Section 3.5, we further enhance our identity establishment through estimation
of Internet routing paths between nodes and how they overlap. However, in the case that
there is no overlap at all, e.g., using wormhole routing, our enhanced mechanism may
erroneously sample an attacker. Both of these cases can be addressed by assuming that
honest nodes have typical consumer connections:

« Assumption 5: Honest nodes are geographically dispersed.

« Assumption 6: Honest nodes use a single network adapter and a single last-mile
connection to their physical node.

Adversaries may attempt to abuse the connections that are opened between nodes by
sending a large amount of data. In this work, we do not provide or implement any pro-
tection against these Denial of Service attacks. However, we note that our peer sampling
mechanism has highly regular communication patterns, which allows it to be coupled to
most of the many available Denial of Service protection mechanisms [151].

3.4 Basic SybilSys: basal Sybil-avoiding peer sampling
We first describe a basic mechanism called Basic SybilSys, which leverages round-trip time
(RTT) measurements to avoid connecting to multiple identities from the same physical
location, i.e., Sybils. This mechanism does not address the problem that comes with using
network latency for Sybil avoidance: we assume attackers do not delay messages in order
to try to defeat Basic SybilSys (altering latency measurements, see Section 3.2). Enhanced
SybilSys drops this assumption (Section 3.5).

3.4 Basic SybilSys: basal Sybil-avoiding peer sampling 41

In every node, Basic SybilSys operates three lists of nodes: discovered, connected, and
accepted. Node identities are moved between these lists in three steps. During each of
these steps a node identity may be ignored or a connection to it may be dropped. When an
identity ends up in the accepted list, it is made available by SybilSys to a given application.

In the first step, Basic SybilSys is executed by a node to request new nodes from its
initial accepted neighbors. These initial neighbors are untrusted and typically either de-
fined by a user or sampled from a specialized server, known as a rendezvous server [82].
A rendezvous server does not act as a peer in the peer-to-peer network, it is not a critical
component that causes centralization, and it does not need to be trusted. Basic SybilSys
can be implemented using a single request message and a single response message. The
request message indicates a node wants to learn about new nodes and the response con-
tains the Internet addresses of one or more nodes. New addresses in the responses are
added to the discovered node list.

In the second step, the latency toward newly discovered nodes is measured. Repeat-
edly (using a fixed-interval schedule), a single identity is randomly sampled from the dis-
covered node list and an outgoing connection attempt is made. During the connection
establishment we measure the response time. We use the time between the transmission
of the request and the response as the RTT, which includes the remote message process-
ing time in a measurement. A node’s identity moves into the connected node list once a
connection is established (to the physical node over the Internet) and its RTT is known.

Finally, the essential step of Sybil filtering is carried out. The measured latencies are
compared to those of all nodes on the accepted list. Non-Sybil identities are promoted
from the connected node list to the accepted node list, while suspected Sybil connections
are simply dropped. Basic SybilSys reasons that two identities with the same RTT reside
on the same node and are therefore Sybils. We only accept a new node if we do not yet
have a node on the accepted list with the same RTT. This filtering ensures the latency
diversity property: all nodes using Basic SybilSys are surrounded by nodes with unique
latencies.

The performance of Basic SybilSys relies on the filtering step, which ensures that no
two (or more) nodes are accepted with a similar latency. This dramatically limits Sybil at-
tacks to one identity per node (which is the same number as an honest node has). However,
SybilSys may also filter identities that are not Sybils if they are operated from different
nodes that happen to have the same latency.

3.4.1 Latency and diversity
Our algorithm uses a simple, practical, and economical method to measure latency and (la-
tency) diversity. We use a simple probe packet and response to measure Internet latency,
an application-level ping approach. Application-level pings require no special Operating
System permissions or specialized hardware. For example, in contrast, sending ICMP mes-
sages may require super user permissions. Due to its ease of adoption, this approach fits
our aim of mass adoption by billions of users. Repeated probing of a single target increases
the measurement accuracy [21, 130, 131, 153, 204].

The latency measurements of two target nodes are considered (latency) diverse if their
difference is larger than some threshold parameter A. Choosing a A depends on the net-
work’s properties: it will not cover the natural variance in latency measurements if it is

42 3 Web3 Sybil Avoidance Using Network Latency

o
O —
© | = = Connected -
-
o m Accepted ,--
c -
S 8 -
° ™ -
2 _ -1
ey -
8 o -
S P
- -
o - =
T T T T T T T
0 50 100 150 200 250 300
time (s)
(@
o _
[Te]
° B Connected
@ < 7 O Accepted
S 8-
(8]
e |
I, o ,
© T T T 1
0 250 500 750 1000

measured RTT (ms)

(b)

Figure 3.1: The number of connected and accepted nodes without Sybils (a) and a histogram of their latencies at
the time of 300s (b).

too small, which could lead to a single node being seen as distinct from itself, but if A is too
big then only very few nodes will end up being accepted. Our implementation uses the
median of five latency probes as the latency measurement to avoid transient congestion
and packet loss [55]. If more probes have been performed, the last five are used to form
the latency measurement value.

Other, more advanced, implementations of latency diversity are also possible. For ex-
ample, the Kolmogorov—-Smirnov test can be used to test latency similarity [129], giving
the distance between two series of latency measurements. It would also be possible to mod-
ulate A in our approach by deriving the variance of measurements from already-accepted
nodes.

3.4 Basic SybilSys: basal Sybil-avoiding peer sampling 43

3.4.2 Real-world deployment

We now deploy Basic SybilSys over the Internet for a Web3 application to demonstrate
to what extent our peer sampling service avoids Sybils. The distributed system we utilize
is called Tribler [183], which is our research vehicle for cooperative systems research,
and which has been installed by 2 million users®. Tribler uses peer sampling and gossip
protocols to offer a video streaming service.

Our setup consists of a single “measuring” node that uses Basic SybilSys to sample
nodes from the Tribler network, which still use the default peer sampling service of Tri-
bler. We evaluate one configuration with and one without Sybils, and we extend our
setup with a second “attacker” node that operates Sybils in the former configuration. For
the configuration without Sybils we do not include an “attacker” node in our setup. The
experiment terminates after 300 seconds.

When used for the configuration with Sybils, the “attacker” node operates 100 Sybils
in such a way that they do not hinder real users in the Tribler network. To obtain a pres-
ence of 99% Sybils, we modify the mechanism that provides an initial sample of nodes to
be non-random. With a probability of 99% each identity in this sample is a Sybil, operated
from our “attacker” node, instead of being randomly sampled from the Tribler network.
Each Sybil only introduces one of the other Sybils from the “attacker” node for Basic Sybil-
Sys’ discovery step response messages (instead of a random sample of its accepted nodes).
Lastly, we modify our response messages to not forward Sybils to the regular users from
the Tribler network.

We present (a) the numbers of connected and accepted nodes over time, for which we
(b) verify the diversity property (at a time of 300s into the experiment). These results are
presented for our configuration without Sybils in Figure 3.1 and for a configuration with
a Sybil presence of 99% in Figure 3.2.

The horizontal axes of Figure 3.1a and Figure 3.2a represent the elapsed time since the
start of the experiment, and their vertical axes give the number of identities that are con-
nected or accepted (all accepted identities are also counted as connected). From a network
crawl we estimate that the Tribler network contains roughly 50 000 nodes, meaning that
approximately one hundredth of our network is reached in about five minutes.

The histograms of Figure 3.1b and Figure 3.2b show the number of occurrences of mea-
sured latencies, in intervals of 5ms. The chosen time range of the histograms (0 through
1000 milliseconds) omits one occurrence in Figure 3.1b (at 1295ms) and two occurrences
in Figure 3.2b (at 1655ms and 1730ms).

Our results show that Basic SybilSys correctly provides latency diversity and eventu-
ally finds honest nodes. The implementation repeatedly traverses its most-recently added
neighbors starting from 10 initially accepted nodes, which is visible in Figure 3.1b and Fig-
ure 3.2b: no single latency interval contains more than 10 accepted nodes. Furthermore,
it can be observed that the accepted nodes are spread out over the RTT intervals, which
is the latency diversity we seek. The second property of Basic SybilSys is that it eventu-
ally finds and accepts nodes in the network. However, the more Sybils are present in the
network, the longer it will take to find latency-diverse nodes.

Our results highlight two implementation details of Basic SybilSys. First, in Figure 3.1a
and Figure 3.2a sudden increases in the number of connections are visible (e.g., at 140

*https://www.tribler.org/

https://www.tribler.org/

44 3 Web3 Sybil Avoidance Using Network Latency

o

o —

© | = = Connected -7
” -| — Accepted -
c s -
c 9 =
= 8 1 -
8 ' d
b= — [
] ,
(] 8 | ¢

- A-.a—a—-—-—-_/-

o —

T T T T T T T
0 50 100 150 200 250 300
time (s)

(a)

o _

0

° B Connected
o Y B Accepted
[0]
5
o
(] 9 |

o MMMI ag abo. |.i. bediow o o0 : . : |

0 250 500 750 1000

measured RTT (ms)

(b)

Figure 3.2: The number of connected and accepted nodes with 99% Sybils (a) and a histogram of their latencies
at the time of 3005 (b). At the end of the experiment 12 out of 112 accepted nodes turn out to be Sybils.

3.5 Enhanced SybilSys: hardening to attacks 45

and 160s in Figure 3.2a), which occur due to the spam prevention for requesting random
samples from the deployed rendezvous servers. The second detail is that the Basic SybilSys
implementation uses latency-diverse random walks from latency-diverse starting points.
As long as SybilSys cannot find 10 latency-diverse nodes to start from, it continues to
repeatedly drop connections and request new random samples. This leads to a longer
period of low numbers of connections as the number of Sybils grows.

3.5 Enhanced SybilSys: hardening to attacks

The Basic SybilSys algorithm presented in the previous sections is vulnerable to the la-
tency measurement interference attack, in which an attacker may wait before answering
a network latency measurement message. Furthermore, Basic SybilSys does not account
for changes in latency (e.g., due to mobile nodes that physically travel) nor a node’s ini-
tial accepted neighbors completely consisting of Sybils (causing a node to be perpetually
introduced to only more Sybils). The issue of latency updates (and any other updates in
routing path) is addressed in Section 3.5.1. Countering attackers that manage to occupy
the initial set of accepted neighbors is discussed in Section 3.6.4.

3.5.1 Detecting measurement interference

We first consider the case when two messages flows are sent over the Internet to a single
“measuring” node. If the two flows are of “sufficient size” and they are each sent by a
different node, they will join in a network interface queue at some point along their ways.
To create flows of sufficient size, they should be adjusted to account for the latency of
the nodes that send them. For example, if two nodes both send only one message at the
same time and their latencies to a shared queue are 50ms and 100ms, the queue has likely
already forwarded the first message within the roughly 50ms before the second message
arrives. By sending more messages, over a longer time period, it becomes more likely
that messages of the two message flows occupy the same queue at the same time. Thereby,
additional delay for messages occurs when they have to wait for messages of another flow.

We now consider the second case, when messages follow the same physical path dur-
ing their flow, i.e., they originate from the same physical machine and are Sybils. In this
case, there is no deferred joining of these flows’ physical paths and the additional delay
will not occur. Therefore, the lack of additional delay can be used as an indicator for iden-
tities being Sybils. Secondarily, if message flows do follow the same path (i.e., to Sybils
on the same node), we expect higher delays to be measured over the entire series of mea-
surement responses as all messages already occupy the same queues.

In both of the cases we presented, we assume that flows follow a fixed path over the
Internet. However, routing over the Internet does not necessarily follow fixed paths: any
two messages sent to the same IP address may take radically different paths over the In-
ternet. However, even though the paths are not explicitly defined by the application layer,
paths over the Internet have enough temporal stability to detect joining message flows:
Internet paths can remain stable for days or months, and wireless paths are expected to
last for multiple seconds, if not minutes [185].

Enhanced SybilSys leverages the temporal stability of Internet routing paths and the
fact that RTT measurements capture queuing delays. By sending a message flow of la-

46 3 Web3 Sybil Avoidance Using Network Latency

tency probes (i.e., RTT measurement messages) to each of two identities, a joining of both
flows is exposed through the RTT measurement responses. The pattern that emerges from
joining flows is a sudden (short) increase in measured RTT. Our measurement strategy,
called TrafficfamTrigger, creates these latency probe flows and adjusts their size such that
the probes’ response messages are likely to join.

TrafficJamTrigger is applied to a message flow between a node sending latency probes
and one of two identities that are simultaneously being measured. An identity is classified
as an attacker if its flow does not show signs of the two flows joining. Enhanced SybilSys
uses this classification to further filter nodes beyond using the latency diversity of Basic
SybilSys. This intrinsically avoids identities whose message flows are routed through a sin-
gle proxy (e.g., the Erebus attack that reroutes message flows through a single autonomous
system [226]).

Our TrafficJamTrigger mechanism is grounded in existing work on the flow correla-
tion attack on Tor [119]. The goal of the flow correlation attack is for an attacker to de-
tect whether a single honest node receives messages from two message flows, for each of
which the honest node uses a different identity. Thereby, the attacker wishes to defeat
Tor’s anonymization (that allows the honest node to communicate using the two identi-
ties without exposing the Internet address of its node). An attacker uses the correlation
between a sudden increase in RTT and messages being sent over both message flows to
infer that both flows lead to the same node. This attack has been shown to work for both
TCP and UDP [246]. TrafficJamTrigger uses the concept of the flow correlation attack
to determine whether identities are Sybils or not by creating RTT measurement message
flows to those identities and looking for an RTT increase.

3.5.2 Verifying the flow join pattern and its impact on RTT

We now verify our claim that flow correlation can be used over the Internet through two
small experiment setups. Our first setup shows the increase in the measured RTT as the
number of identities on a single node increases when messages share a single path. Our
second setup shows the patterns in RTT measurements of joining flows and of a single
flow, focusing on the manner in which measurements increase over time instead of the
increase’s intensity. Both setups use TrafficJamTrigger.

For both setups, we implement TrafficJamTrigger by sending bursts of 20 messages to
each identity that is being measured. The identities are sent such bursts in descending
order of their “initial RTT”, which is measured for each identity in isolation before using
TrafficJamTrigger, in order to avoid message flow joins during these initial measurements.

Our first setup consists of two nodes connected over a LAN, with two intermediate
routers. Whereas this setup uses real routing hardware, it does not use the Internet, which
we evaluate in Section 3.7. We use one node to measure the RTTs and the other to respond
to RTT measurement requests. The measuring node uses TrafficJamTrigger in an attempt
to detect an increase in the RTT of the identities operated from the responding node. To
show to what extent the number of identities influences a latency measurement interfer-
ence attack, we test three configurations with fixed delays of 0ms, 100ms, and 500ms that
determine how long every Sybil waits before responding to a latency probe. Assuming
the Sybils to be numbered starting from zero, Sybil i uses a delay of i- d, with d the basic
delay of the configuration. The delays correspond to an optimal attack, where an attacker

3.5 Enhanced SybilSys: hardening to attacks 47

only requires a single Sybil to take over every unique latency slot in the accepted node
list.

Our results go up to the point where our measuring node starts filling its (network
socket) receiving buffer, which we find at 64 identities. When the receiving buffer of
the measuring node starts filling, the increase in RTT jumps into the order of dozens of
milliseconds due to the limits of our hardware. In turn, if the jump is used to detect Sybils,
the use of limited hardware would directly result in trivial Sybil detection. Therefore, to
predict for more powerful hardware, we provide an extrapolation of our results for higher
identity counts instead.

In Figure 3.3 we present the increase in measured RTT versus the number of identi-
ties on the responding node. We calculate linear regression models for each set of mea-
surements and plot them as lines in our graphs (these would be straight lines if the hor-
izontal axis would be linear instead of on a log scale). To show programming language
(in)dependence, both a Python (Figure 3.3a) and a Java (Figure 3.3b) implementation are
evaluated. To show the repeatability of this experiment we include the results from both
2020 and 2021 for the same Python implementation.

From the results of Figure 3.3 we observe an increase in the measured RTT as the
number of identities deployed on the responding node increases. The increase in RTT
is even observed when Sybils wait longer before responding to probes. However, the
RTT increase due to identities sharing a path should disappear when Sybils increase their
waiting time for probe responses. Therefore, the shown increase using 500ms, which is
almost double the highest measured increase of 256.6ms, must be due to other factors
(e.g., identity management inefficiencies in our implementation). Whereas these other
factors help in the detection of Sybils, we note that the 500ms RTT increase could feasibly
be eliminated with specialized attacker hardware. Nevertheless, when message flows do
share a path (0ms delay), the RTT clearly increases with the number of identities.

Our second setup, to show the pattern that emerges when flows join, consists of a
measuring node that is connected to 50 honest nodes sampled from our Tribler network
and two separate nodes that each run 25 Sybils. Of the two Sybil nodes, one is at a distance
of 300m on the same (TU Delft) campus as the measuring node, and the other is 48km
away, hosted in a datacenter. None of the 52 nodes that are connected to the measuring
node are on the same LAN as the measuring node. We present the typical pattern of RTTs
resulting from each of the bursts’ response messages when two honest nodes are being
measured (a) and when two Sybils are being measured (b). The latter situation, with two
Sybils, corresponds to that of our first setup when two identities share the same node (see
Figure 3.3).

To highlight the difference between honest nodes and Sybils, Figure 3.4 shows two
typical bursts, which we found through qualitative analysis of several dozens of measure-
ment pairs. The first obvious difference is the steady increase in measured RTT for the
honest node versus its absence for the Sybil. However, this steady increase (roughly 1.6ms
between messages) simply shows the application’s buffer being filled by other messages.
This is not necessarily a result of applying TrafficJamTrigger: the jump in measured RTT
due to filling buffers has been previously described related work, like that on packet chirp-
ing [125]. Instead, the pattern is characterized by the sudden jump in measured RTT for
the honest nodes (at timestamp 1.74ms, after the sixth measurement), which does not oc-

48 3 Web3 Sybil Avoidance Using Network Latency

—~ 9 _]

g AN —&— 0 ms delay (Dec 2021)
~ —o— 100 ms delay (Dec 2021)
% O _|-4— 500 ms delay (Dec 2021)
& 7 |---- 0msdelay (Nov 2020)

8 ---- 100 ms delay (Nov 2020)
£ S —---- 500 ms delay (Nov 2020)
@

Q@ n

3 S 7

©

g o

g o &

1 2 4 8 16 32 64 128 512

identity count

(a) Python implementation (measured in 2020 and 2021)

—~ 9 _]

g AN —8— 0 ms delay (Dec 2021)
~ —o— 100 ms delay (Dec 2021)
% ‘2 _|~4— 500 ms delay (Dec 2021)
2]

o o

€ —

@

Q n

@ S 7

©

o

o <9

£ ©

identity count

(b) Java implementation

Figure 3.3: The measured latency increase versus the number of identities on a node with TrafficJamTrigger in
comparison to the measured latency without using TrafficJamTrigger, with linear regression lines to provide
extrapolation. The regression lines of 100ms and 500ms for December 2021 in Figure 3.3a overlap.

3.5 Enhanced SybilSys: hardening to attacks 49

X
o | ><><><><>< X
— o] ><><><
£ xx X X
S o XX
E© < X X
[am
el o _|
[0 <
Q
o}
@
o &
1S
o
\ \ \ \ \ \
0 1 2 3 4 5
measurement message sending timestamp (ms)
(a)
o X X X XXX X X XX XX XX XX XX X X
—_ w N
[%2]
1S
~ o _|
= ©
|_
o
el o _|
o <
Q
>
3
o &
1S
o
\ \ \ \ \ \
0 1 2 3 4 5

measurement message sending timestamp (ms)
(b)
Figure 3.4: The measured RTT per message sent in a single 20-message burst versus the message sending times-

tamp (starting from 0) for an honest node (a) and a Sybil (b). The sudden jump in measured RTT for the honest
node at timestamp 1.74ms has been made slightly larger and colored red.

50 3 Web3 Sybil Avoidance Using Network Latency

cur for the Sybils.

The effectiveness of classification using the pattern that we observed (i.e., whether it is
statistically significant) depends on the manner in which the pattern is detected. Therefore,
in the remainder of this work we define six binary classifiers to detect the RTT jump
pattern and we evaluate them using real users.

3.5.3 Properties of Enhanced SybilSys

Enhanced SybilSys does not aim to prevent attackers from creating Sybils. An attacker
can temporarily block communication between honest nodes using Sybils, known as an
Eclipse attack [205]. Nevertheless, we summarily present the five properties of Enhanced
SybilSys that greatly increase the effort needed for attackers to perform a successful Sybil
attack, based on our findings of Section 3.4, and Section 3.5.

Trustless self-reinforcing Sybil avoidance is guaranteed through a bias toward
honest nodes when introducing neighbors. Nodes keep connections open to those neigh-
bors that they have accepted as non-Sybil through their latency-diversity property. There-
fore, honest nodes are more likely to increasingly introduce and be introduced to other
honest nodes without requiring a trust relationship with the introducing node.

Attackers must create Sybils with unique RTTs to be able to suppress honest
nodes (governed by the threshold parameter A). This suppression implies that Sybils must
wholly occupy the accepted list of a node, which is filtered using latency diversity. By
estimating what RTTs will be measured to honest nodes, an attacker can interfere with
latency measurements to have its Sybils appear to match the estimations. This causes the
honest nodes to be filtered out when they are eventually found. However, every diverse
RTT of an honest node requires a new Sybil group. For example, to obtain a Sybil presence
in a network that contains two honest nodes that differ in latency more than A, an attacker
must create two groups of Sybils that have RTTs within A of each honest node (doubling
the number of required Sybils by using latency diversity).

Attackers require low latency to targets to compete with honest nodes. To perform
an Eclipse attack, Sybils must have an overpowering presence within a latency of A of any
honest node. However, the only attack on RTT measurements is to introduce additional
delay, as they cannot be decreased by an attacker. Therefore, if an honest node exists
that has a measured RTT that differs more than A from the node that operates Sybils, it is
impossible to suppress this honest node using Sybils. As a consequence, honest nodes that
are in close physical proximity cannot be attacked without an attacker buying hardware
close to the targets. For a network-wide attack an attacker would have to buy hardware
close to all honest nodes in the network, which makes a network-wide attack possible, but
infeasible.

Open networks (Web3) cannot be efficiently attacked as the network participants
and their latencies are not known beforehand. Web3 technology is characterized by par-
ticipants from all over the world that continuously join and leave the system. In contrast,
in networks with known participants, it is feasible for an attacker to measure and predict
latencies between other network participants that are online for extended periods. In or-
der for an attacker to disrupt connectivity in such a network, it must occupy each unique
latency-diverse slot in the accepted node list. Therefore, all possible latencies must be
preempted and have a majority of Sybils to suppress newly joining honest nodes with a

3.6 Enhanced SybilSys: implementation 51

unique latency. For example, with a latency measurement timeout of 5 seconds and a di-
versity threshold of A = 5ms, a majority of Sybils has to be present for each of these 1000
distinct latencies. With a sufficient number of honest nodes (that may occupy any of these
1000 slots), the required number of Sybils has to be increased thousand-fold to suppress
honest nodes in comparison to an equal Sybil attack without latency diversity.

Low Sybil counts must be used per node to decrease the chance of a connection
being dropped. As the number of identities per node grows, it becomes increasingly likely
that a connection to any of these identities is dropped. Therefore, a significant Sybil attack
must be spread out over multiple nodes.

3.6 Enhanced SybilSys: implementation

In this section we discuss the implementation details of Enhanced SybilSys: the data struc-
ture that stores node identities, how flow joining is brought about, how it is detected when
flows do join, maintaining and refreshing the node storage data structure, and the pa-
rameterization of Enhanced SybilSys. To implement flow recognition and data structure
maintenance multiple options are presented, which are evaluated in Section 3.7.

3.6.1 The peer discovery tree

Every newly joining node in the system creates a peer discovery tree as its environment
to operate in with itself as the root. Using the peer sampling process, it first selects an
initial set of latency-diverse nodes, which we call the bootstrap set, as its children in this
tree. Each of these children then helps the creator by building a (linear) branch of the
tree consisting of latency-diverse nodes, starting with itself, of a pre-specified maximum
length. In fact, they initiate a random walk, reporting back to the creator the identities
of the nodes sampled along the branch and discarding those that are found by the creator
to be not latency-diverse with any of the previous nodes in the branch. In the latter case,
another node is sampled. As a consequence of this construction, the nodes in the bootstrap
set and the nodes in each of the branches separately are latency diverse, but nodes in
different branches may not be. An example of a possible peer discovery tree is given in
Figure 3.5.

TrafficJamTrigger must be applied to all pairs of nodes that require latency diversity.
However, because neighborhoods are of limited size, this is not a problematic requirement.
Furthermore, the pairs that require diversity are not all pairs of nodes in the peer discov-
ery tree. For example, given the ten initially sampled latency-diverse nodes that grow
branches of four diverse child nodes (as in Section 3.4.2), only 105 pairs need to be probed:
45 pairs for the ten initial nodes and 6 pairs for each of the 10 branches of four nodes. We
continuously apply TrafficJamTrigger to random pairs in the peer discovery tree after the
initial filtering using latency diversity. We discuss how a tree is updated when node pairs
classify as Sybils in Section 3.6.4.

3.6.2 Message flow joins and bursts

TrafficJamTrigger sends bursts of RTT measurement messages to two identities to decide
whether they share a node. However, it may not be sufficient to send two flows of mea-
surement requests to two identities one after the other. For example, a node close to a

52 3 Web3 Sybil Avoidance Using Network Latency

Discovered 0.2s
set .25
Bootstrap . L
set 0.4 s/ N5 N
N 0.5s n,
0.5 s/ ng 0.2s

no N1o

0.6 S/
0.2s Ny 0.9s
n3 / \>

0.3s

no

!

n14

ny < Ni2 \0.48

0.9s e

N4

0.6s

Figure 3.5: Example of a peer discovery tree for a node n, with a maximum depth of 3 and A = 0.1 s. Nodes with
dark (red) shading violate the latency diversity (i.e., their difference in latency is strictly smaller than A).

measuring node may already have responded to all latency probes before a node that is
further away has even started responding. This example would not lead to two message
flows joining in a queue and therefore lead to the honest nodes being labeled as Sybils. To
this end, our probe sending strategy consists of alternating short bursts of messages to the
two identities instead.

When measuring two identities, TrafficJamTrigger sends a burst of messages as fast
as possible. A burst starts with messages to the identity with the higher RTT, which is
immediately succeeded by messages to the other identity. The intent of this “slowest first”
ordering is to account for the case when an honest node has a low latency and responds
before the measuring node even finishes sending out its latency probes to the node with
the higher RTT. In practice, we use the heuristic of alternatingly sending the same number
of bursts (of 20 messages each) to both identities without additional delay, one for every
200 ms of RTT of the slower identity (for example, two bursts to each identity if the highest
RTT is 234 ms). Despite it being a heuristic, we show that this strategy works well enough
to detect attackers in Section 3.7, and we leave further optimization to future work.

3.6.3 Recognizing message flow joins

Any binary classifier that is able to detect a sudden jump in a burst of measured RTTs,
shown in Section 3.5.2, for the node with the highest initial RTT (Section 3.6.2) should
suffice for TrafficJamTrigger. However, the steady increase or decrease of measured RTTs
makes it more difficult to detect this jump. Queues may be in the process of being filled
or emptied due to other messages (Section 3.5.2). For example, an RTT jump of 0.2ms

3.6 Enhanced SybilSys: implementation 53

—— measurements
---. mean trendline
pivot trendline

measured

probe sending timestamp

Figure 3.6: Example construction of the pivot point, mean trendline, and pivot trendline, for an imaginary mea-
surement curve.

between two measurements over a steady increase of 1ms leads to an RTT difference
of 1.2ms between them, while the jump is actually of equal magnitude compared to a
difference of 0.2ms when there is no steady increase.

A linear interpolation, of two specifically selected measurements of the same burst,
is constructed to compensate for the increase (or decrease) during a burst. We call the
linear interpolation a trendline and we explain the two ways in which we construct it
shortly. A burst’s measurements are recalculated as their difference to the value of their
corresponding trendline at the time of sending a measurement probe.

We consider two types of trendlines: the mean trendline and the pivot trendline. The
mean trendline starts with the first measurement of a TrafficJamTrigger burst and ends
with its last measurement. The pivot trendline passes through the pivot point instead.
The pivot point intuitively corresponds to the point where a queue has finished filling
and streams have not joined yet (the fifth point in Figure 3.4a, just before the RTT jump
between the sixth and the seventh point). In other words, the first point in the burst after
which the increase of the RTT does not increase. We formally define this pivot point in a
burst as the last measurement m; (where ¢ > 2) in the sequence of timestamps starting at
t = 1 for which it holds that m, - m,_; > m,_{ - m,_, for all 3 < u < t. As a visual reference,
the two trendlines and the pivot point are shown for an imaginary measurement curve in
Figure 3.6.

We now present six classifiers for detecting the RT T-jump pattern, given in Table 3.1.
The first three classifiers are based on the nearness of the RT'T measurements to their trend-
line. We express this nearness as the mean squared error (MSE) of RTT measurements
being smaller than a parameter . Two identities are classified as Sybils if the Traffic-
JamTrigger measurements of the slower node have an MSE smaller than ¢. The difference
between the three MSE-based classifiers lies in the RTT measurements that are included in
the computation of the MSE: the MSE classifier uses all measurements, the MSE pre-pivot
classifier uses all measurements up to the pivot point, and the MSE post-pivot uses only
the measurements after the pivot point.

Two further classifiers are based on the shape of the measurement progression, taking
no parameters. The log-like classifier is based on whether the majority of the measure-
ments are higher than the trendline. The wave-like classifier decides if nodes are Sybils if
the TrafficJamTrigger measurements do not cross the trendline exactly once, going from
values smaller than the trendline to values larger than those of the trendline.

Our final classifier is the baseline increase classifier, which exploits the latency increase
phenomenon mentioned in Section 3.5.2. This classifier deems two identities to be Sybils if

54 3 Web3 Sybil Avoidance Using Network Latency

Table 3.1: Binary classifiers that detect artificial delay using the RTT burst measurements of the node with the
highest initial RTT.

Classifier Attacker classification condition

MSE MSE of all RTT measurements is smaller than «.

MSE pre-pivot MSE of RTT measurements before the pivot is smaller
than e.

MSE post-pivot MSE of RTT measurements after the pivot is smaller than
€.

Log-like Most of the measurements are above the trendline.

Wave-like RTT measurement progression does not go from below to

above the trendline.

Baseline increase The average of the measurements is a given percentage
higher than the initial RTT measurement before the burst.

the identity with the highest RTT exceeds a given increase in average RTT during a burst
compared to its initial RTT. The results of Figure 3.3 show that this method increases in
efficacy as the number of Sybils on a device grows.

3.6.4 On accepted node removal

Enhanced SybilSys may require the removal of accepted nodes. Nodes may go offline,
they may physically move (and no longer be latency-diverse), and TrafficJamTrigger may
classify identity pairs as Sybils. Secondarily, nodes should be continuously removed (and
resampled) to avoid the situation in which a successful attack could ever permanently hold
all of the spots in a node’s peer discovery tree if Sybils go undetected. In all of these cases
a node’s peer discovery tree has to be updated.

We consider three (binary) aspects that can be combined for a total of eight possible
configurations for node removal from the peer discovery tree. First, we explore what
node pairs to select for classification. We distinguish the selection of node pairs formed
by a node in the bootstrap set combined with a node in its respective branch (the local
pairs) and the selection of a pair from any two nodes in the entire peer discovery tree (all
pairs). Secondly, we investigate what node pairs to remove for continuous resampling,
the churn strategy. We consider periodically removing the node pair with the highest
(worst) classifier score (though it may not be above a classifier’s threshold), and removing
a random node pair. Lastly, we inspect whether to either remove all following nodes in a
branch when a node is removed or to only remove an intermediate node in a branch and
keep its descendants by linking its child to its parent. In Section 3.6.5 we evaluate all eight
configurations.

3.6 Enhanced SybilSys: implementation 55

3.6.5 Configuration for deployment

We configure Enhanced SybilSys to seamlessly integrate with our existing Tribler network
in order to deploy and evaluate it with real users of Tribler (Section 3.7). We adopt the pa-
rameterization of Tribler’s peer sampling mechanism as much as possible, namely the total
number of nodes and the periodicity of the peer discovery algorithm. First, we derive the
peer discovery tree’s bootstrap set size and its maximum branch length (see Section 3.6.1)
from the total number of nodes. The remainder of this section presents small-scale exper-
iments to configure parameters that cannot be derived from Tribler: the parameterization
of the classifiers (given in Section 3.6.3) and the configuration of Enhanced SybilSys’ node
removal (Section 3.6.4).

We configure Enhanced SybilSys’ peer discovery tree based on the peer sampling
mechanism of Tribler. We adopt the total number of 20 as the target size of the peer
discovery tree. Given the target number of 20 nodes, we parameterize SybilSys with 10
branches that grow to a branch length of 4 (if not stopped at 20 nodes, the tree would grow
to a size of 40 nodes).

The experiments to parameterize the classifiers emphasize classifier quality over the
speed of node discovery. The setup of our configuration experiments uses two nodes that
each operate 25 Sybil identities and we sample 50 honest nodes from the Tribler network
for each run (equal to the setup of Section 3.5.2). We run 60-second experiments using
A =0.05s, a bootstrap set size of 6, a maximum peer discovery tree branch length of 4 and
a total tree size of 20 for each node. With less branches than in actual deployment (which
grows 10 branches from 10 boostrap nodes), the quality of classifiers is stressed more.

We parameterize our classifiers (also known as “training” in Machine Learning) to
provide a balance between recall and precision. On the one hand, the recall of any binary
classifier corresponds to the chance that whatever entity is being classified, Sybils in our
case, is classified as that entity. As Enhanced SybilSys uses classifiers to mark nodes for
removal, the recall corresponds to the chance that a Sybil is (eventually) removed. The
recall should therefore be as high as possible. On the other hand, the precision of a binary
classifier corresponds to the fraction of entities that are correctly classified over all the
entities. A precision lower than 0.5 causes Enhanced SybilSys to mostly mark honest
nodes for removal. Inversely, because nodes share their neighbors with each other, a
precision of over 0.5 means that nodes predominantly resample nodes from a set of nodes
that is more likely to contain honest nodes. Therefore, if the precision is at least over 0.5,
this resampling ensures that honest nodes are predominantly connected to other honest
nodes.

We use our setup to configure the MSE-based classifiers and the baseline increase clas-
sifier. We show the impact of different values of ¢ on the precision and recall for both the
mean trendline in Figure 3.7a and the pivot trendline in Figure 3.7b for the MSE classifier.
The results of Figure 3.7 show a trade-off between the classifier’s recall and its precision.
We pick a value that lies between the collapse of the precision and the collapse of the
recall, with a precision of at least 0.5. Therefore, for both trendlines, we configure the
MSE classifier to use a value of ¢ = 10ms. The pre-pivot and post-pivot parameterization
have a similar collapse and we again choose values between their collapses, which we
find at € = 10ms and ¢ = 0.01ms respectively. In the same fashion, for the baseline increase
classifier we pick a 20% increase in latency to classify Sybils.

56 3 Web3 Sybil Avoidance Using Network Latency

B precision @ recall

0.5

0.01 0.1 1 10 100

@)

0.5

5l & S

0.01 0.1 1 10 100

€ (ms)
(b)

Figure 3.7: The precision and recall for different values of ¢ for the MSE classifier using the mean trendline (a)
and the pivot trendline (b).

Table 3.2: The number of honest nodes found using the node removal strategies of Section 3.6.4 averaged over
30 experiment runs (higher is better).

Node Removal Strategy =~ Number of Honest Nodes

Pairs Churn Descendant | Mean Median Min Max

local worst remove 9.18 9 4 17
local worst keep 8.88 9 5 14
local random remove 9.39 9 5 15
local random keep 8.56 9 5 12
all worst remove 9.57 10 5 16
all worst keep 8.91 9 5 13
all random remove 9.95 10 6 17
all random keep 10.24 10 6 16

3.6 Enhanced SybilSys: implementation 57

Start

|
~O
'

Node true
count < n — Choose a branch of

length < k randomly

¥

Ask the leaf of the
branch for a new node

false

¥

Diversity
condition (A)
satisfied?

O
A
A

A false

\ *true
Choose a random
pairwise selection group InserF the node to
the discovery tree

) |

Choose a random
pair in the group

l

Create artificial congestion

|

Classify
as Sybil?

lfalse

O

Figure 3.8: Activity diagram of our Enhanced SybilSys for the requested total node count n, and the maximum
branch length k.

Remove the node with

true
_—
the highest latency

58 3 Web3 Sybil Avoidance Using Network Latency

In order to configure the node removal of Enhanced SybilSys, we evaluate the strate-
gies of Section 3.6.4 using our experiment setup with the MSE classifier. We present the
number of honest nodes each node-removal strategy yields in Table 3.2. Firstly, the result
of applying classification over all pairs in the peer discovery tree is similar to that of clas-
sification within each branch and the bootstrap set, though classifying all pairs performs
slightly better. Secondly, enforcing churn through continuously removing the “most Sybil”
2-tuple also does not lead to any big differences in honest node counts compared to ran-
dom node removal, performing worse in all cases but one. Lastly, we find that—in all but
one case—removing all descendants in a branch leads to more honest node retention than
only removing the particular Sybil node and linking its child and parent node. Our results
show that the configuration that retains the most honest nodes consists of applying classi-
fication over all node pairs, periodically removing random nodes and linking descendants
to the parents of removed nodes in a branch.

3.6.6 Overview of Enhanced Sybilsys

Omitting the passive latency measurements (Section 3.4), bootstrap set construction (Sec-
tion 3.6.1), and peer maintenance (Section 3.6.4), the activity diagram of Figure 3.8 serves
as a summary of our proposed algorithm. The periodicity of this algorithm consists of
each node in the network running it once every 0.5 seconds (the default periodicity of
Tribler’s peer sampling).

3.7 Enhanced SybilSys: evaluation

We now evaluate both our flow joining detection classifiers and our complete Enhanced
SybilSys algorithm (configured for deployment as described in Section 3.6.5) through two
experiments. First, we construct several data sets of TrafficJamTrigger measurements to
which we apply the six classifiers defined in Section 3.6.3. Second, we evaluate Enhanced
SybilSys using the best-performing classifier to mimic a best-effort defense by honest
nodes. Finally, based on the experimental results, we estimate the cost of attacking En-
hanced SybilSys.

Both experiments of this section use real users of our Tribler network and we intro-
duce Sybils into the network that actively attack Enhanced SybilSys using the latency
measurement interference attack. We denote the node that uses Enhanced SybilSys in or-
der to filter out Sybils as the “measuring node” and we set its latency diversity threshold
A = 5ms, based on the real-world deployment results of Section 3.4.2.

3.7.1 RTT-based classifiers evaluation

To evaluate our binary classifiers (Section 3.6.3), we create four data sets consisting of Traf-
ficJamTrigger measurements, one for pairs of honest nodes and three for pairs of Sybils.
We create more sets for Sybils to evaluate the impact of running Sybils on three different
numbers of nodes, which should make them harder to detect (Section 3.5.2). The setup for
all four of these sets consists of a measuring node that connects to all identities in a given
set and performs TrafficJamTrigger measurements for all pairs of identities it is connected
to. The data sets only contain the measurement bursts which are used for classification,
those of the node with the highest RTT for each pair (Section 3.6.3). We do not perform

3.7 Enhanced SybilSys: evaluation 59

Table 3.3: Overview of the data sets used for the evaluation of the classifiers.

Data set Nodes Identities per node Measured pairs
honest 500 1 124750
Sybil (1) 1 100 4950
Sybil (2) 2 50 4950
Sybil (3) 4 25 4950

TrafficJamTrigger measurements, and we do not create datasets, for pairs consisting of an
honest node and a Sybil. The reason is that we deem it unethical to Sybil attack unsuspect-
ing users of Tribler. This limitation may skew our results. For reproducibility and further
research, we have made our anonymized data sets publicly available [213].

Our honest set was created using the nodes of real Tribler users found with a network
crawler that assumed the role of the measuring node. These users were running real work-
loads and had real network congestion during their measurement. All users had unique
IP addresses and remained online for the duration of our experiment. Over the course of
three days, our network crawler had eventually connected to 500 nodes and the experi-
ment was started. TrafficJamTrigger measurements were performed by the crawler for
all possible pairs of these 500 nodes, leading to 124750 unique sequences of measurement
bursts. The mean size of a sequence of bursts was 99 messages, and the median was 39
messages (to reiterate, we send 20 messages per 200 ms of RTT). Due to network effects,
there were messages that did not receive a response. Out of 124750 sequences of bursts,
only 7414 had all of their individual messages responded to. Despite these network effects,
Section 3.7.2 shows that a classifier can be used for effective Sybil filtering.

The Sybil sets capture artificially delayed Sybil attackers. We establish three data sets
for different attacker setups, where the attacker nodes are in different physical locations:
(1) a single node operating 100 Sybil identities, (2) two nodes operating 50 Sybil identities
each, and (3) four nodes operating 25 Sybil identities each. Each setup operates in its
own overlay network partition in order to keep Sybil attackers from communicating with
Tribler users. TrafficJamTrigger measurements were performed for all possible Sybil pairs,
including those running on different nodes. All three setups have 100 identities, each
resulting data set includes 4950 TrafficJamTrigger sequences of measurement bursts per
setup. For reference, the summary of our data sets is given in Table 3.3.

We evaluate the binary classifiers (parameterized using the training set of Section 3.6.5)
using a test set comprised of our honest set and our Sybils sets. However, our honest set
and Sybils sets are not of equal sizes (124 750 bursts sequences for honest nodes and three
sets of 4950 bursts sequences for Sybils) and this imbalance would skew the precision and
recall metrics [123]. To make up for the size differences, we use statistical bootstrapping,
which consists of random resampling with replacement from the (smaller) Sybil sets to
match the size of the (largest) honest set. Other methods can be used to equalize the
set sizes (e.g., taking a subset of the honest set), though their estimation errors should
all converge for a sufficiently-large smaller set [170]. Opinions on what constitutes a

60 3 Web3 Sybil Avoidance Using Network Latency

Table 3.4: Sybil classifier performance for both trendline types.

Mean Pivot
Classifier Precision Recall Precision Recall
Random 0.5021 0.4982 0.4984 0.4974
MSE 0.5372 0.9119 0.5895 0.9479
MSE pre-pivot 0.5319 0.9139 0.5860 0.9544
MSE post-pivot 0.4428 0.5877 0.1661 0.1037
Log-like 0.5457 0.4683 0.6577 0.9069
Wave-like 0.6283 0.4761 0.6544 0.9071

Baseline increase 0.5951 0.7350 0.5965 0.7392

sufficiently-large set differ, but typically this is in the order of hundreds of data points
(our smallest data set has 4950).

The precision and recall, calculated using our test set, for all of the RTT classifiers
are presented in Table 3.4 for both trendline methods (see Section 3.6.3). For reference,
we include the random classifier, which simply classifies an identity as Sybil with a 50%
chance. We only include this reference to show that our statistical bootstrapping method
is correctly implemented and leads to 50% precision and 50% recall.

Our results indicate that a jump in latency measurements is best detected by the MSE
pre-pivot classifier, which classifies measurements while intermediate queues are filling
before the pivot point. In contrast, the MSE post-pivot classifier shows both very poor pre-
cision and very poor recall, showing it is very difficult to detect Sybils after the pivot point
using the Mean Squared Error, i.e., after queues are filled. This lack of detection aligns with
the intuition that there can be no jump (up) in RTT measurements if all RTT probes already
suffer the maximum queuing time. The MSE classifier, which considers both the pre-pivot
and post-pivot measurements, achieves similar results to the pre-pivot classifier in spite of
the inclusion of the post-pivot measurements. The log-like and wave-like classifiers have
a relatively high precision of over 0.5 and are also usable with Enhanced SybilSys. These
two classifiers benefit greatly from the pivot trendline, nearly doubling in recall value. The
baseline increase classifier does not use a trendline and we have simply evaluated it twice,
with similar results. All in all, all classifiers except the MSE post-pivot classifier are able
to effectively filter Sybils with Enhanced SybilSys. Nevertheless, as recall is the decisive
metric for convergence of the set of accepted nodes to a set of honest nodes, we use the
MSE pre-pivot classifier for our final algorithm in the following evaluation.

3.7.2 Real-world evaluation of Enhanced SybilSys

Our second evaluation consists of combining the best performing Sybil classifier, MSE
pre-pivot, with our Enhanced SybilSys peer discovery mechanism and evaluating it in a
network with Sybil nodes. Again, every honest node is running a peer-to-peer file sharing
client, leading to real-world congestion effects. The aim of our evaluation is to show that

3.7 Enhanced SybilSys: evaluation 61

honest nodes are still able to find each other in these extremely challenging conditions.
We explore two aspects of how an honest node finds other honest nodes: (1) the time it
takes until it finds the first other honest node, and (2) how the number of honest nodes it
has found progresses over time.

For both aspects, we create a setup with in total 100 identities (both honest and Sybils).
Our setup consists of a measuring node that is connected to a number of honest nodes
from the Tribler network and up to four attacker nodes that run 25 Sybil identities each.
To create networks with a given Sybil fraction, we randomly sample identities from these
honest nodes and from the attackers’ Sybil identities. For example, a network with a Sybil
fraction of 0.75 contains 25 random honest nodes and 75 random Sybils, each of which
may run on any of the four attacker nodes.

We determine the number of Sybils per node based on the results shown in previous
sections. In Section 3.5.2 (the second setup) shows the relationship between the number of
identities per node and how easily Sybils are detected using an initial RTT measurement,
corresponding to the baseline increase classifier. As the latency of all identities on a single
node grows with the number of identities on the node, so does the efficacy of our baseline
increase classifier (see Section 3.6.3). In other words, creating too many Sybils per node
disallows an attacker to effectively influence its measured latencies (by defenders) and this
would thereby trivially increase the effectiveness of Enhanced SybilSys. Therefore, we use
the setup of Section 3.6.5 to derive that the largest number of Sybils per node that does
not increase the recall of our baseline increase classifier. We find a number of 25 Sybil
identities to be the maximum (reaching a recall of 0.92 at 50 Sybil identities, equaling the
MSE pre-pivot classifier).

We present the time until half of the honest (measuring) nodes have found another
honest node. The reason for using this metric is that when there is at least one connection
to another honest node, peer sampling is successful for Web3 applications (see Section 3.3).
For brevity, we call the neighborhood of an honest node (excluding the measuring node
itself) that includes at least one honest node robust. The results we present are averaged
over 20 runs of at least 10 minutes.

The results of our first exploration given in Figure 3.9 show that up to a Sybil fraction
of 0.95 (with only 5 honest nodes for 100 identities), the neighborhoods of honest nodes
are robust nearly instantly. This robustness is grounded in the chance of sampling at least
one honest node with 20 samples, the target number of nodes (see Section 3.6.5), from
a set of 100 identities that include 5 honest nodes (essentially binomial sampling). Our
results underline that, up to a Sybils fraction of 0.95, Sybils can be trivially avoided by
opening a sufficiently large number of connections. Nevertheless, Enhanced SybilSys is
useful when the initial random sample of nodes does not contain an honest node and when
the number of connections cannot be scaled up to match the Sybil presence in a network
(e.g., due to security or hardware constraints). For the Sybil fractions of 0.97 and 0.99, an
honest node using Enhanced SybilSys is expected to find another honest node after 275
and 335 seconds, respectively, with a granularity of five seconds.

We now zoom in on how the number of honest nodes found progresses over time for
a setup with a fraction of Sybils of 0.99, which is the most challenging case for 100 identi-
ties. It forces Enhanced SybilSys to filter out latency-diverse Sybils using TrafficJamTrig-
ger in order to find the single honest node. For comparison, we use two benchmarks,

62 3 Web3 Sybil Avoidance Using Network Latency

—
(2]
0 _
=

o
S o -
o o
o —
S
E —
c o
35 o
s 2
E 7
=

0.5 0.6 0.7 0.8 0.9 1.0

Sybil fraction

Figure 3.9: Time until half of the honest nodes has found another honest node, i.e., until their neighborhoods
are robust, as the Sybil fraction increases.

the theoretical upper bound on the number of honest nodes that can be found (e.g., by a
perfect classifier of precision and recall of 1.0) and the expected number of honest nodes
in a random sample (e.g., from a rendezvous server). Any Sybil-avoiding peer sampling
mechanism is upper bounded by the chance to discover an honest node through iterative
random sampling, which follows a geometric distribution. In contrast, a random and uni-
formly selected sample of 20 nodes (the configured number of target nodes) leads to 0.2
honest nodes on average for a network that contains one honest node out of 100 nodes.

The results depicted in Figure 3.10 show that Enhanced SybilSys does not reach the
theoretical maximum honest node count. However, our results do show that the average
number of connected honest nodes reaches over 0.5 after 6 minutes, at which point the
majority of experiment runs have found and retained the singular honest node. There-
fore, Enhanced SybilSys outperforms the benchmark of random sampling and is a viable
solution to form a robust overlay network for this particular setup.

3.7.3 On the cost of attacking
We evaluate the monetary cost of delaying the discovery of honest nodes by six minutes
(the time we found in Section 3.7.2 for a network to become robust). To put this into per-
spective, we use the statistics of Tribler, which is estimated to have 50 000 concurrent users.
In Section 3.7.2, it is shown that the ratio of the number of Sybil identities to the number of
honest nodes should be at least 99:1 to delay honest node discovery by six minutes. There-
fore, using Section 3.7.2’s setup of one node per 25 identities, a successful attack is required
to use more than 198000 nodes in different physical locations. Even if attackers use free
Wi-Fi and old $20 Raspberry Pi’s, a Sybil attack on this network would cost just under 4
million dollars. At this cost, attacks other than the Sybil attack are economically more
viable to block communication. For example, cheaper attacks are a man-in-the-middle
attack on all users (about 50000 x 20$, excluding labor costs) and rented virtual private
servers (given a $10 price tag per server, leading to 198000 x 10$).

Using the same assumptions as for the estimate using our own network, we estimate

3.7 Enhanced SybilSys: evaluation 63

© [L -----_-
@ _ '
o
£ o |
8 o
g < |
.8 o
N
o 1
_ |+ Worse than random
o [I I I I I [
0 100 200 300 400 500 600
time (s)

Figure 3.10: The number of honest nodes found by the measuring node over time (the dark, red, line) in a 99%
Sybil network. A random sample of 20 nodes leads to 0.2 found honest nodes, a robust neighborhood contains
more than 0.5 honest nodes, and a perfect classifier upper bounds the number of found honest nodes with a
geometric distribution.

Table 3.5: The estimated cost of performing a Sybil attack with $20 hardware to delay honest node connections
by 6 minutes, depending on the network size.

Network Year Online Nodes Attack Cost

Bitcoin 2017 10k [65] $0.79M
Ethereum 2018 15k [117] $1.19M
Kazaa 2002 30k [141] $2.38M
Tribler 2020 50k [this work] $3.96M
Napster 2000 500k [160] $39.6M

Napster 2001 1.57M [133] $124.3M

64 3 Web3 Sybil Avoidance Using Network Latency

the attack cost for several other popular peer-to-peer technologies. The costs are calcu-
lated using the estimated number of online nodes for each technology. The resulting cost
to delay connections between honest nodes (for six minutes) is given in Table 3.5. For in-
stance, we calculate a cost of $124.3M for the 1.57 million online nodes that Napster had in
2001. However, our estimate is based on measurements that were done for a file-sharing
application and its heavy bandwidth load decreases classifier effectiveness, as observed
in Section 3.7.1. We predict that applications that have lighter bandwidth loads will have
more success in detecting Sybils. Therefore, using Sybils to attack networks where users
have lighter bandwidth loads is expected to have a higher cost.

3.8 Related Work

Decentralized techniques to avoid Sybil identities have been studied in many contexts,
including computational puzzles [46, 53, 137, 192], graph-based approaches [45, 227, 243,
244] and reputation mechanisms [30, 111, 158, 242].

In the case of computational puzzles, computational resources of nodes are challenged
to limit the influence of attackers. SybilControl [137] proposes admission control that re-
quires each identity to periodically solve computational puzzles, suppressing the influence
of attackers who failed to solve a puzzle. To protect honest identities from devoting ex-
cessive computational effort, da Costa Cordeiro et al. use computational puzzles that have
adaptive difficulty [53] and that are energy-efficient [54]. An issue with the computational
puzzle approach is that attackers practically use the computational disparity between con-
sumer devices and their hardware to take control over peer-to-peer networks, in particular
the networks of cryptocurrencies. Besides, in the field of cryptocurrencies, these attacks
are not just for the sake of vandalism: these attacks are profitable [201]. In contrast, our
approach does not depend on the computational resources of attackers, but the routing in-
frastructure in between an attacker and a target, which is unlikely to be fully in the hands
of an attacker given the global structure of the Internet.

Graph-based approaches leverage the sparse connections between Sybils and honest
identities. SybilGuard [243] and SybilLimit [244] rely on random walks for ranking nodes
to filter out attackers. However, both approaches suffer from a large number of false
negatives as well as computational complexity due to the requirement of testing all sus-
pect nodes. SybilRank [45] is less prone to false negatives and reduces the computational
complexity of SybilGuard and SybilLimit. However, these graph-based approaches rely
on a set of globally known honest nodes called trust seeds. In our approach, none of the
components assume a-priori trusted nodes.

Reputation mechanisms rely on assigning numerical scores to each identity based on
reported interaction histories [30, 111, 158, 242]. However, addressing the problem of
establishing trust relationships, through some form of decentralized reputation system, is
also beholden to a plethora of attacks [124]. Creating trust requires a circular dependency
between the creation of trust and the mitigation of attacks, which easily leads to reputation
building with fake histories [209]. We have sought to avoid this problem in our own
work by only mitigating attacks based on first-hand knowledge, completely avoiding both
requiring centralized infrastructure and the need to establish trust.

Latency as a Sybil classifier. Many studies have attempted to use triangulation for
detecting and avoiding Sybils, using latency to pinpoint physical coordinates [21, 204]

3.9 Conclusion 65

or (locally) by using signal strength [8, 64, 94, 104, 145, 233]. However, the approach
of signal strength, while highly similar, is not applicable for interactions over the Inter-
net. Bazzi and Konjevod [21] exploit the geometric properties of network latency to test
the distinctness of identities. However, this work builds on the assumption that the la-
tency of nodes has strong geometric properties and that these latency measurements are
symmetric. Empirical studies provide sufficient evidence to reject the validity of both as-
sumptions [130, 131, 153]. In our work, we do not rely on those assumptions and consider
artificially delayed latency measurements. Sherr et al. propose Veracity [204], a decentral-
ized service for securing network coordinate systems, which also considers the case where
an attacker artificially delays the latencies. However, it mainly addresses the coordinate
system protection problem and has limited guarantees against malicious identities, provid-
ing results for a structured network (DHT) consisting of up to 40% active attackers, using
500 simulated nodes. We show in our experiments that the combination of Basic SybilSys
and TrafficJamTrigger can handle up to 99% active attackers, using 500 real users, running
real workloads.

Digital Identity. Detection and prevention of fake identities plays an essential role
in identity management systems [54, 155, 215]. In a recent study, Stokkink et al. [215]
have created a decentralized digital identity solution that requires no intermediation by
third parties, suitable to even replace physical passports. This may seem to suggest a lack
of communication to third parties and therefore to forego the problem of the Sybil attack.
Indeed, as pointed out by Maram et al. [155], the building of identity information is Sybil-
resistant. However, for the overall solution, this claim of Sybil-resistance would be false
since these systems still require communication with others [215]. These solutions require
decentrally established communication channels, which can be Sybil attacked. However,
once communication to honest nodes is established, these solutions may be a great com-
plement to our technology.

3.9 Conclusion
To aid in avoiding Sybil attacks on Web3 applications, this chapter presented Basic Sybil-
Sys, a Sybil-avoiding peer discovery mechanism based solely on network latency. Secon-
darily, this chapter introduced TrafficJamTrigger, a network latency measurement strat-
egy, to allow for detection of attacks that counter our Basic SybilSys mechanism. The
combination of Basic SybilSys and TrafficJamTrigger forms Enhanced SybilSys.
Enhanced SybilSys promises to establish connections between users while avoiding
Sybils without the need for trust or a centrally governed infrastructure. As Enhanced
SybilSys only serves to establish connections, any of the numerous existing Sybil avoid-
ance algorithms and mechanisms (e.g., computational puzzles, social network inference,
reputation mechanisms and digital identities) can be used to complement Enhanced Sybil-
Sys. Whereas Enhanced SybilSys already avoids Sybils, future work may explore the com-
plementary technology it enables to further filter Sybils and to achieve even less Sybils
in a node’s neighborhood. Furthermore, to improve Enhanced SybilSys, future work may
also investigate other means of detecting Sybils using TrafficJamTrigger measurements.
Through tests with Enhanced SybilSys, it was shown to what extent network latency
is able to ensure connections to non-Sybils over the Internet and what the expected mon-
etary cost of undermining our Sybil avoidance is. It has been shown how non-Sybil nodes

66 3 Web3 Sybil Avoidance Using Network Latency

are still found even when a network consists of 99% Sybils. Using the results for the Tribler
network, it is estimated that an attacker would have to invest millions of dollars to obtain
a significant presence in a real overlay network to perform a successful (albeit tempo-
rary) Eclipse attack. Therefore, SybilSys succeeds in driving up the cost of the previously
cheapest and easiest attack on the communication layer of Web3 solutions.

67

Reputation-Based Data Carrying
for Web3 Networks

Web3 networks are emerging to replace centrally-governed networking infrastructure. The
integrity of the shared public infrastructure of Web3 networks is guaranteed through data
sharing between nodes. However, due to the unstructured and highly partitioned nature of
Web3 networks, data sharing between nodes in different partitions is a challenging task.

In this chapter we present the Timely Sharing with Reputation Prototype mechanism,
which approaches the data sharing problem by having nodes audit each other to enforce car-
rying of data between partitions. We use reputation as an analogue for the likelihood of
nodes interacting with nodes from other partitions in the future. The number of copies of data
shared with other nodes is inversely related to the nodes’ reputation. Our experiments use
emulations to verify the basic behavior of making more copies available when reputations
are low and vice-versa. We use real-world traces of both Bitcoin and Twitter to show how our
implementation can converge to an equal number of copies as structured approaches.

68 4 Reputation-Based Data Carrying for Web3 Networks

Figure 4.1: Connection graph evolution: (top)a typical peer-to-peer network model and (bottom)a Web3 network
model.

4.1 Introduction

The “Web” is turning anarcho-capitalist. Centrally-governed infrastructure is no longer
required to share files (BitTorrent), to communicate (OppNets), to transfer currency (Bit-
coin), or even to identify at passport strength (TCID [215]). The “Web3” movement goes be-
yond classical peer-to-peer solutions, seeking to turn our digital world into collaboratively
maintained infrastructure [231]. However, as individualistic users only opportunistically
interact with others, the classical issue of network partitioning resurges. A partitioned
(split) network is incompatible with even the weaker consistency models, e.g., eventual
consistency [16]. We present an emergent algorithm for Web3 networks to probabilisti-
cally guarantee that data is shared between network partitions by using reputation.

The reality of Web3 networks does not fit the connectivity model of peer-to-peer net-
works. The traditional way of thinking of peer-to-peer networks is that at least one path
exists between any two nodes, allowing a rumor-mongering protocol to deliver informa-
tion to all nodes. However, we observe a shift away from this connectivity assumption.
Even a relatively small network like that of Bitcoin, in the order of 10000 nodes [174], can-
not keep up with the vast volume of user interactions and is seeing temporary partitioning,
using aggregated “off-chain” interactions (e.g., the lightning network [181]). Beyond Bit-
coin, partitioning has also been observed for Web3 digital assets in the interaction graph
of Non-Fungible Tokens [163]. Web3 connection graphs should not be thought of as rel-
atively static networks that periodically update connections. Instead, we should consider
opportunistic networks with highly mobile users that frequently migrate between network
partitions, exemplified in Figure 4.1.

Web3 networks find themselves in a precarious balance between nodes’ ability to main-
tain the integrity of the data forming their public infrastructure and lowering communi-
cation costs. On the one hand, all data should be available to all nodes, allowing them to
identify when the infrastructure degrades and to correct it (used in Bitcoin for instance).

4.2 Requirements analysis 69

On the other hand, the communication and computation requirements of Web3 applica-
tions are being increasingly scrutinized, which can be resolved by optimizing an overlay
network for locality [157]. However, if overlays are optimized too much and data is never
shared between network partitions, these networks become vulnerable to attacks again.
Instead of requiring over 50% of the network to be malicious in order to degrade the in-
frastructure, an attacker would require only over 50% of a partition’s size. Some data has
to periodically be shared between partitions.

The main problem that we address in this chapter is the need for data sharing between
partitions in split networks with highly mobile nodes. We leverage reputation mechanisms
to select nodes that are likely to traverse partitions to carry—and share—data. A node’s
reputation reflects the willingness of other nodes to interact with it. Therefore, nodes with
a high reputation are more likely to share data with others than low-reputation nodes and
make for prime carriers to share data between partitions. In contrast, more low-reputation
nodes are needed to achieve a comparable data sharing probability. Our contributions are
as follows:

We detail the requirements for Web3 data sharing solutions, and how they can be
attacked (Section 4.2).

« We motivate the design of our Timely Sharing with Reputation Prototype (TSRP) in
Section 4.3.

« We use emulations to show how more copies of data become available as reputations
change (Section 4.4).

« We apply our prototype to real-world traces of Bitcoin and Twitter and show how
the number of copies converges to the number for structured networks (Section 4.5).

4.2 Requirements analysis

We now derive requirements using three typical Web3 assumptions. Firstly, Web3 appli-
cations assume that over half of the network’s nodes are not malicious. Secondly, nodes
do not enter the system with prior trust for other nodes. Lastly, it is assumed that there
exists no node with special authority.

An emergent algorithm is required to fit our assumptions. In a Web3 system there
is both a lack of trust between nodes and no node has authority over any other node. This
translates to the physical world in that the users, each of whom controls a node, cannot be
told to form a physical connection to certain other nodes. For example, by interpreting an
application-layer interaction graph it may seem reasonable for the application to request
another interaction with a specific node, but this may involve physically moving devices
around the world to form a physical connection due to the high mobility of Web3 nodes.
In general, we believe it to be nonsensical for an application layer to force interactions on
the network layer. Physical connections emerge and any algorithm should fit this.

Load-balancing over nodes is required to meet Web3’s incentives. Without ex-
ternal regulation, peer-to-peer interactions lead to rich-get-richer dynamics [121, 220].
Therefore, if interactions are used to select nodes to carry data, nodes with more inter-
actions become disproportionally burdened with data. To select nodes to carry data our

70 4 Reputation-Based Data Carrying for Web3 Networks

Local Reputation

Storage /\ 1Y
®

K

90,
S5

Record

New Copies

Figure 4.2: New records and new copies from others are carried in a node’s local storage between partitions
based on reputation.

proposal uses reputation, which is based on nodes’ interactions. Therefore, simply select-
ing high-reputation nodes as carriers for data places an unequal burden on these nodes,
effectively punishing them for a high reputation score. In turn, unequal burden leads to
unequal reciprocity between nodes, which is not compatible with peer-to-peer incentive
mechanisms without payment [81]. Nevertheless, we do expect nodes with a high reputa-
tion to interact more frequently with other nodes and, therefore, to be more effective as
carriers for data between partitions.

All nodes have a partial view of a Web3 system due to the lack of trust in data
obtained from others. However, nodes do share logic that allows them to verify that the
data they receive complies with a system’s rules. This approach was pioneered by Bit-
coin, in which every node adopts the longest chain of correctly hashed data (known as
“Nakamoto consensus”). In a general sense, this corresponds to a Web3 system design pat-
tern that consists of providing all nodes with an algorithm to verify the integrity of their
common public infrastructure. However, nodes are never forced into accepting data and
they can subjectively deviate from the shared logic.

Records are required to both be locally stored on nodes and be shared to avoid
network partitioning in our system model. We use the term record to refer to all data that
is usable by a given Web3 application. A record may be encrypted, for which reputation
mechanisms exist for our solution [7, 98, 198]. Every instance of the same record is what
we refer to as a copy. Both records proposed by a node and those copied from other nodes
are stored in a node’s local storage. The implementation of the local storage can be a simple
database and may serve a higher-order data structure, like a blockchain.

Our system model consists of three components that form the feedback cycle shown in
Figure 4.2. First, any newly introduced record becomes part of the local storage of a node.
A node decides which other nodes to share a record with based on its shared verification
logic and by using its stored copies. Other nodes that receive a record verify that they
should store a copy of the record in their own local storage using the same shared logic.
The feedback cycle continues until nodes no longer want to, have to, or have space to,
store a copy of the record.

The refusal to store records is the main attack a data sharing solution is required
to resolve. Any node that does not store records should be detectable by any other node
through shared verification logic. Nodes may then choose to not further interact with a

4.3 Design 71

node that does not store what it must store. We do not distinguish between nodes with
malicious intent and non-malicious nodes that have simply run out of storage space, as
both necessitate additional copies of a record in the network. However, specifically for
our solution, the manner of calculating the change in reputation due to not storing a copy
can differ per node. Nevertheless, the reputation of a node is still based on the copies it
shares with other nodes.

4.3 Design

Our Timely Sharing with Reputation Prototype (TSRP) is designed to select nodes to carry
copies of records based on nodes’ reputation. Using both the identity and the reputation
of a node, TSRP provides the shared logic to decide whether the node “must store” a given
record (i.e., locally store a copy).

4.3.1 Overview

Every node using TSRP follows a simple two-step decision flow to determine whether a
node (including the node itself) should act as a carrier for a given record. First, the distance
between an identifier, which can be any arbitary string (likely a public key), and a record
is calculated using a distance function over their hash values, which we call the binding
score. Finally, the binding score is compared to the reputation of a node to decide whether
it “must store” the given record. The decision flow of whether a node must store a copy of
a record is schematically given in Figure 4.3.

The distance between an identifier and a record, i.e., the binding score, is used in a sim-
ilar fashion to how DHTs decide which identifiers should store certain records. Typically,
DHTs, like Kademlia [156], use XOR functions to bind nodes’ identifiers to the records
they should store. In particular, TSRP uses the Hamming distance, which is part of the
class of symmetric XOR functions [33]. The Hamming distance function has well-known
statistical properties that we use to construct a proof for the number of copies of records
in Section 4.3.4. The binding score is used to provide the initial association of records with
nodes and has nothing to do with the value, quality or importance of a record.

The binding score is made to resist index poisoning attacks, which consist of creat-
ing fake identities until one with a high binding score is found [147, 210]. The score is
grounded in values produced by a pseudo-random number generator (PRNG). The PRNG
is seeded using (a binary string representation of) both a record and a node identifier.
Thereby, the generated values are always the same, regardless of which node evaluates it
and when it is evaluated. Assuming attackers cannot pre-empt the creation of a record,
this disallows index poisoning attacks through fake identities.

The reputation of each node is calculated individually by nodes it interacts with. As
a result, the calculated reputations may differ wildly between nodes, depending on the
node that calculates it. As the reputation of a node is a factor in deciding whether or not
it should store a given record, nodes using TSRP may not come to the same decision on
whether a node should store a particular record. Nevertheless, we later prove and show,
through both emulations and real-world traces, that nodes are expected to store copies.

A node with a high reputation should be avoided when choosing carriers for records to
achieve load balancing. In a peer-to-peer setting, the reputation of nodes is a reflection of

72 4 Reputation-Based Data Carrying for Web3 Networks

record —|Binding Score

,—b Yes

Must Store?

identifier \
local storage —®»{ Reputation / \—bNo

Figure 4.3: How a node uses its local storage to decide if a copy of a record must be stored by another node,
based on its identifier.

the “work” they have done that has gone unreciprocated [214]. Therefore, selecting high
reputation nodes to perform more “work”, in the form of carrying records for TSRP, is not
compatible with the incentives of Web3 applications (as presented in Section 4.2). To keep
incentive compatibility, TSRP makes a node’s reputation inversely related to the proba-
bility of it storing any record. New records are more frequently coupled to nodes with a
low reputation. Because these low-reputation nodes are untrusted, they are given more
records to carry: a lack of reputation requires nodes to perform more “work”. Therefore—
assuming nodes wish to do less “work”—nodes are incentivized to have a high reputation.

4.3.2 Auditing

To detect nodes in the network that do not follow the shared storage logic, the main attack
on TSRP (Section 4.2), we use a witness protocol, also known as auditing. To this end, the
decision flow of Figure 4.3 is again used to determine the records that a node is required
to store. Each audit consists of a request for proof of an audited node storing the required
records, based on their estimated reputation and the auditor’s known records.

Audit proofs can be naively implemented by showing the record belonging to a hash.
However, if needed, these proofs can also be implemented through verification in the
encrypted domain [248]. We use the naive auditing approach using hashes within the
scope of this chapter.

Failing an audit (i.e., not being able to show that a required record is stored locally)
negatively affects the reputation of the audited node. Nodes that fail audits are punished
through ostracization by setting their reputation to 0 until they store the required records.

As Web3 users are expected to be egocentric and records are expected to become stale,
nodes are both expected and incentivized to remove records that are no longer interacted
with. For example, in Bitcoin this staleness occurs after blocks have six descendants, at
which point blocks are considered to be probabilistically finalized [191] and no longer re-
quire frequent auditing. As shown in PopCache [219] and StreamCache [140], basing local
caching of information on staleness (i.e., interaction rate) greatly reduces communication
costs.

4.3.3 Formalization
We now formalize our decision flow that leads to records being more frequently stored by
nodes with lesser reputation. In order to prove that our decision flow leads to availability

4.3 Design 73

Table 4.1: Symbols

Symbol Description

n The size of the set of all node identifiers.

i A randomly-assigned node identifier (can be any binary string, most
commonly a public key).

R(i) Reputation function for a node identifier i.

A Hamming distance function.

Hp A uniformly distributed secure hash function that produces a binary
string of Q bits.

Q Length in bits of the hash function Hy output.

Z(x) Function to map a uniformly distributed random variable on [0, Q] to a
distribution on [0,1].

D The minimum storage factor between 0 and Q - 1.

d Record (possibly encrypted).

r(d, i) A pseudo-random function that produces a binary string of Q bits (the
pseudo-randomness is seeded with the node id i and record d).
S(d, i) A Boolean function indicating whether node id i should store record d.

of records through random carriers, we provide the concrete definitions of its elements.
Our formalization uses the symbols captured in Table 4.1. For any node i it can be cal-
culated whether or not i should store a specific record d (a node may also decide this for
its own identifier). To do so, the binding score 9B(d, i) is calculated. Basically, a node i
must store a record d if its reputation (i) is smaller than its binding score %(d, i) for
d. If a node does not store what it must store, we consider it to be a malicious node. We
formulate the store condition function S as follows:

S(d, i) = R (i) < B(d, i) (4.1)

This carrier-selection function S is deterministic. When given the same reputation
& (i) and binding score %B(d, i), all nodes will have the same output for S. However, nodes
do not necessarily agree on the reputation & (i) of a node i.

The binding score %B(d, i) is calculated for a record-identifier pair (d, i) in four transfor-
mations. First, the PRNG, seeded with the concatenation of the binary strings representing
d and i, is used to generate a binary string of Q bits. Second, a uniformly distributed secure
hash function Hy is used on the binary string representing the node identifier i, shorten-
ing the representation without violating its probabilistic distribution. Third, the Hamming
distance is calculated between the PRNG-generated binary string and the hash value (i.e.,
two binary strings of the same length Q). Lastly, the resulting distance is mapped to the

interval [0, %] with a mapping function Z. In short, these four transformations are for-

malized as follows:

B(d. i) = Z(A(Hg().r(d, 1)) (4.2)

74 4 Reputation-Based Data Carrying for Web3 Networks

The mapping function changes the relationship between a node’s reputation and its
probability to store any particular record. For example, Z can be chosen to have a doubling
of reputation lead to a quarter of the storage requirements. In the context of this chapter,
we use Z(x) = x/(Q - D), where Q and D are integers where Q > D = 0. Both the length
of the hash Q and the minimum storage factor D can be chosen to guarantee a minimum
expected number of copies of a record (expanded upon in Section 4.3.6). Other choices are
left to future work.

4.3.4 Lower bound on available copies
We now discuss TSRP’s probabilistic guarantee on the number of available copies of a
record. Given our definition of TSRP and the function Z(x) = x/(Q - D), we show that any

record d has an expected lower bound of n x (%) copies.

By definition of S, nodes store records if Z(i) < %B(d,i). The least number of nodes
that will store a copy of a given record d occurs when the reputation Z(i) of every
node i is equal to the maximum value of 1. By expansion of %(d, i), we derive 1 <
Z (A (HQ (i),r(d, z))) The smallest number of copies are now stored if the function Z is

minimized, by setting D to 0. Our storage function is now simplified to Q < A (HQ (i),r(d, i)).
As both Hy (i) and r(d, i) are bit strings of length Q, the inequality can only be satisfied if
the distance between both strings is maximized: equal to the chance that both strings are
exactly equal, which we use for more compact notation. Because its inputs, r and HQ, are
both uniformly distributed and independent, it follows that the Hamming distance A fol-

lows a binomial distribution B(Q, %) The probability to store any record r on a particular

1

node i is given by P(Hp (i) = r(d,i)) = P(X = Q| X ~ B(Q,%)) = (g) (E)Q(l - %)0 - (%)Q

Q
Finally, all n nodes together are expected to store at least n x (%) copies.

We stress that this lower bound is an expected value, which gives the average number
of copies. Therefore, some records may even have no copies stored when all nodes have the
maximum reputation value. If this is an issue for a system, TSRP should be parameterized
to disallow this and we discuss how to do this in Section 4.3.6.

4.3.5 Estimating reputation

TSRP requires a reputation mechanism that allows a node to approximate the system-wide
reputation score of a node, within a known error €. Suppose a node i checks another node
Jj. If the reputation of j is higher than its binding score for a record, j removes the record
from its local storage. However, if i underestimates the reputation score of j, i concludes
that j fails to comply with the storage logic. These types of erroneous conclusions can be
resolved for any reputation mechanism % with a known estimation error of ¢. Increasing
the reputation score to min(R p,qx, % (j) + €) trivially guarantees that i does not mistakenly
conclude that j fails to comply with the storage mechanism for the given error e.

A node may estimate its own reputation incorrectly for a variety of reasons. For ex-
ample, due to the differing reputation mechanisms employed by other nodes or their ma-
licious behavior, views of a node’s reputation may be inconsistent. In these cases, a “cor-
rect” estimation of a node’s reputation does not exist. In practice and in the following

4.4 Storage based on carrier quality 75

experiments, we therefore scale the current reputation estimate of a node’s own reputa-
tion estimation by the amount of interaction rejections by other nodes. Upon a successful
interaction, the scalar for the node’s own reputation estimation increases and upon a re-
jection the scalar decreases.

It may be desirable for a node to only allow interactions with nodes that calculate a
similar reputation score to what the node calculates for itself. This similarity enforces
other nodes to obtain a sufficiently equal view of the network to obtain the same reputa-
tion score, thereby increasing the effort required by other nodes to interact with the local
network partition.

4.3.6 Parameterization
Choosing appropriate values for Q and D is an important design choice. The influence
that the reputation mechanism has on the number of copies corresponds to Q. Higher
values of Q lead to changes in reputation causing more dramatic changes in the number
of copies. The mapping of the malicious fraction of nodes in the network, over the range
of Q, is reflected by the value of D. We assume that any use case will, at the very least,
wish to cover random node failure (i.e., making at least 2 copies of a record available at
all times). We now discuss the appropriate choice of Q and D in more detail for the lower
bound of two records.

We first derive the choice of Q that allows for scaling between 2 and n copies in the

network. In this case, Q has to be chosen according to the condition n x (%) > 2 to
assure the minimum of 2 copies. This leads to the restriction Q < log,(n) - 1. Though this
seemingly implies a small value for Q, failure to choose an appropriately large Q for the
network size gives rise to additional copies. For example, in a network of 50000 nodes,
choosing Q =1 leads to a probabilistic lower bound of 25000 copies and Q = 14 leads
to a lower bound of 3.05 copies: a difference of 24996.95 copies per record. Of course,
the more copies of a record that are available in the network, the harder it will be for
attackers to perform a poisoning attack. The network size n can be estimated from local
interactions [114, 200] and, as the error of the estimation scales with the network size, fits
well with the logarithmic operation to calculate Q.

The estimated malicious node fraction in the network leads to the value of D. The idea
of D is to change Q, through Z, in such a way that the expected lower bound of copies per
record is larger than the number of malicious nodes in the network. Because the fraction
of malicious nodes known to any node converges to the fraction in the system [38], we
can estimate an appropriate value for D given the current estimated network size. Given
the (locally known) fraction m of nodes that is verified to not follow the shared storage
logic, each node sets the adaptive value D = Q- log,(mn). In the remainder of this chapter
we assume this adaptive value of D.

4.4 Storage based on carrier quality

The purpose of this section is to show that TSRP dynamically makes copies available ac-
cording to the available nodes and their estimated carrier quality (i.e., their reputation).
We evaluate the emergent carrier selection of TSRP on networks where nodes have con-
tinuous peer-to-peer interactions. We perform three emulations to explore TSRP’s carrier

76 4 Reputation-Based Data Carrying for Web3 Networks

selection through emergent behavior, based on the number of copies in the network. The
first two emulations show the impact of the network size and the record volume. In our
last emulation, we present the impact of the number of malicious nodes.

In our emulation setup, we use real latency data from the Internet (sampled from the
King data set [55], which has a maximum latency of 800 ms). Each node in our experiments
is mapped to a node in the latency data set, which contains the latencies to all other nodes
in the network. For each of the experiments, we impose a network topology where each
node has bidirectional communication with up to 30 random other nodes, regardless of
the network size. For all emulations we use a machine with 64 physical cores (clocked at
2.4 GHz) with 528 GB DDR4 RAM (clocked at 2933 MHz) available.

Our methodology consists of having nodes continuously generate records, to match our
problem description. For record generation, each node generates a string of characters and
shares it with a randomly selected node. We fix the record generation rate per node to two
records per second. The contents of these records consist of 20 randomly-generated bytes
(which would be replaced with application-defined data when used in a real application).
Our first two emulations do not introduce malicious nodes. Even so, every node still runs
the full TSRP protocol, performing audits before each interaction to ensure others follow
the shared storage logic.

We determine the impact of the network size on carrier selection when the rep-
utations of all nodes in the system change. In order to have control over the—otherwise
unpredictable—reputation values, we force all nodes to use the same reputation values for
other nodes in the network. We change all of the reputations at the fixed time of 10 sec-
onds into the experiments. We call this sudden change in reputation a flip. We perform
a flip of the reputation values of all nodes between the minimum possible value (0) to the
maximum possible value (1). After the flip in reputations, nodes continue generating and
disseminating records for another 20 seconds.

In Figure 4.4a we show the average number of copies (regardless of the associated
records) stored per node when reputations flip from 0 to 1. Due to our overlay network
topology setup (30 connections for each node), the larger network of 120 nodes takes
longer to receive records. Intermediate nodes need to forward records in larger networks,
but eventually the same average record storage rate is reached as for smaller networks.
For all three shown experiments, at the 10 second mark each node starts storing distinctly
less records. As all nodes are now deemed to be high quality carriers, nodes store less
copies overall when reputations flip to a value of 1.

The number of copies in the network as reputations flip from 1 to 0 is shown in Fig-
ure 4.4b. In this case, all nodes have to collect additional records. As the network size
increases, nodes also require more time to detect that their own reputation estimate is too
high (as nodes are not interacting with them anymore due to our ostracization strategy).
Furthermore, retrieving the missing records is slower in larger networks. Nevertheless,
we conclude that TSRP correctly selects more carriers to store copies when reputations
are low and vice-versa.

The impact of the number of the locally missing records is what we investigate
next, as retrieving records is the most difficult case to recover from. We fix the node count
to 60 nodes. Like before, we present the impact of flipping node reputations at different
times on the carrier selection.

4.4 Storage based on carrier quality 77

nodes == 30 == 60 = 120

300

2004

100 4

average copies

(a)

300 A

2004

100 1

average copies

(b)

Figure 4.4: The average number of copies stored per node when at 10 seconds all reputations flip from 0 to 1 (a)
and 1 to 0 (b). Every node generates two records per second.

flip == 10seconds = = 20 seconds = ' 30 seconds

600 -

4004

200 A

average copies

(@

600

4004

2004

average copies

(b)

Figure 4.5: The average number of copies stored per node when at 10, 20, and 30 seconds all reputations flip from
0to 1 (a) and 1 to 0 (b). Every node generates two records per second.

78 4 Reputation-Based Data Carrying for Web3 Networks

malicious == 40% == 60% = ' 80%

3
35 1501 —
8 4"_-;——
100 - o
% -'—-;:—-:-—‘—--——'
g 501 _;'—-—
m O T T
10 20 30
time (s)

Figure 4.6: Average copies per record over time using PageRank for malicious node fractions (shaded 95% confi-
dence interval).

We visualize the flip of reputations from 0 to 1 in Figure 4.5a. As there are no records to
catch up on, all nodes reduce their stored copies nearly instantly. In contrast, Figure 4.5b
shows the effect of generating more records before the reputation flip from 1 to 0. The
longer we wait before we change the reputation, the larger the number of records that
will have to be redistributed in the network. As a result, it will take more time for all
nodes to gather all the records. Even so, we observe the emergent effect of adapting to
known reputations.

We now introduce malicious nodes to the network and exhibit their impact
on the number of copies. We consider malicious behavior to be the refusal to store any
records. We again measure the average number of copies, this time for different fractions
of malicious nodes. Since the number of nodes only serves to delay the time to converge
to a stable record storage rate, we fix the node count in the experiment to 60. We use
incremental personalized PageRank [13] as the reputation mechanism for all nodes. As
opposed to random selection of interaction partner in the previous experiment, we mimic
rational users, corresponding to our problem description. Each node samples another node
from a categorical distribution formed by their PageRank scores.

We now examine the number of copies in the network for the malicious node frac-
tions of 40%, 60%, and 80%. Intuitively, all honest nodes should hold a high reputation,
which, in turn, would lead to an average number of copies close to the required minimum.
However, the results, presented in Figure 4.6, show that TSRP makes more than 2 copies
per record available for all three malicious node fractions. As the fraction of malicious
nodes increases, the average number of copies drops. The discrepancy between intuition
and these results is explained by the fact that reputations calculated by PageRank are nor-
malized and personalized. This normalization causes higher relative differences in reputa-
tion in the presence of malicious nodes, but equalizes reputation as the fraction of honest
nodes becomes higher. The end result is that PageRank causes TSRP to store records more
sparsely among honest nodes as the fraction of malicious nodes increases. Though it is
left out of scope, for this reason the carrier-selection behavior can be changed through the
mapping function Z.

4.5 Real-world traces 79

algorithm Kademlia ---- TSRP CRUSH(2)
D 50 4
% 20175
Q 151
o
:%10-
= 54
2 e i it o et
© T i T
0 10000 20000

time (hours)

Figure 4.7: Average number of copies over time (since 1 March 2009) for several storage algorithms applied to
Bitcoin. The numbered crosses correspond to the crashes of Table 4.2.

Table 4.2: Crash causes for the Bitcoin experiment.

Cause Crash time (hours) Median

copies
1 Out of memory 622 19.80
2 Segmentation fault 16452 2.00

4.5 Real-world traces

We apply TSRP to real-world traces of both Bitcoin and Twitter to show that the emergent
storage of TSRP does not necessarily lead to many more copies of records in comparison
to storage schemes for structured peer-to-peer networks.

We replay traces using our 64-physical-core machine (clocked at 2.4 GHz) with 528
GB DDR4 RAM (clocked at 2933 MHz). The Bitcoin trace is replayed at 2000x the original
speed, while the Twitter speed remains untouched. To provide a benchmark for the num-
ber of emergent copies of TSRP, we choose two representative solutions for respectively
DHT solutions and data allocation solutions: Kademlia [156] (introduced in Section 4.3.1)
and CRUSH [237]. The former is widely deployed [211] and the latter is part of the dis-
tributed file system Ceph [236].

We use the default parameterization of both Kademlia and CRUSH as much as possible.
By default, Kademlia attempts to allocate 20 copies per record. Crush operates on a given
amount of desired copies, which we will set to a value of 2 to provide crash fault tolerance
and denote as CRUSH(2). This is typical for allocation and provisioning schemes, like the
default replication factor of 3 in HDFS [37] and 2 to 3 for different kinds of information
in ZFS [23]. We also insert an additional head node for CRUSH that monitors the storage
capacity of the storage nodes and provides the storage mapping for each record.

We replay a real-world Bitcoin data set that includes both real records and real
node identifiers. To do so, we use the first 156056 blocks (nearly 3 years of data) from the
Bitcoin data set supplied by Kondor et al. [121]. We utilize this particular data set, as it also
includes an address-to-node mapping which we use to avoid assigning new identifiers to
the same nodes. During this replay we fix the reputation of all nodes to 1, the main attack

80 4 Reputation-Based Data Carrying for Web3 Networks

7500
wn
© 50004
o
(&)
o

2500

O L T T T T T
0 250 500 750 1000
round

Figure 4.8: Number of records per round in the Twitter data set.

algorithm TSRP CRUSH(2) -= Kademlia
S 1.00+
§ 0.75 1
ol 0.501 '_'_'_W
(@)]
© 0.25
[e)
% 0.00-4 : ; ; :
0 250 500 750 1000
round

Figure 4.9: The average storage fraction (i.e., the copies per record per node) per round for the Twitter data set.

vector on reputation-based storage [172].

Figure 4.7 shows the average copies per record in the network as Bitcoin users join
the network and interact with each other. For the implementations that crashed during
the processing of the data set, Table 4.2 shows the number of hours an implementation
managed to process and the median number of average copies stored. This average was
calculated over all nodes interacting with the system at any point in time. After the first
6 Bitcoin blocks (records), enough users have joined the network for TSRP to ensure the
availability of 2 copies for all records in the system. Albeit after a longer time than Kadem-
lia and CRUSH, TSRP does converge to a constant number of average copies. However,
both the sample standard deviation of the number of copies stored per particular record
(1.8069) and the maximum number of copies for a record (10) are higher for TSRP at the
end of this trace replay.

We replay a Twitter data set in such a way that data in shared between users, in-
stead of data being distributed by a server to users. We use a Twitter data set that cov-
ers a flash crowd of tweets about the Higgs boson [60]. We construct records by map-
ping the “retweets”, “mentions”, and “replies”, between users to records shared between
nodes. Through this construction, the trace that we replay contains 563069 records be-
tween 304691 nodes captured over 604621 seconds (roughly a week). We share records

4.6 Related Work 81

between nodes every ten minutes, to form the total of 1008 rounds of these record ex-
changes, for which we show the number of records per round in Figure 4.8.

The source of reputation for the Twitter data set comes from the number of “follow-
ers” per Twitter user. Reputations are calculated using the “simplified version” of the
Distributed EigenTrust algorithm [111] (normalized toward the median, a localized trust
value of 1 if there was a record between nodes and 0 otherwise, and using a “forget factor”
of 0.2). The follower count from the data set serves as the “a priori trust value” for each
node. As the trace is played, this simplified EigenTrust algorithm causes the median of all
the reputations of nodes in the network go to 1 and the average to near 0.72.

The visualization of the number of copies per record per node is given in Figure 4.9,
with a data point sampled every 100 rounds. As users build reputation in the network, we
see that TSRP stores a similar number of records on average to Kademlia. In the final state
of this experiment, in the 1008™ round, only 29.5% of the network stores a particular record
on average with an average reputation score of 0.72. This is a 70.5% decrease from the
starting state, where 100% of all nodes stored a particular record on average. Considering
the number of stored records, TSRP successfully achieves the same result as Kademlia,
a system that has been carefully parameterized by networking experts for well over a
decade.

4.6 Related Work

Our proposal of emergent carrier selection is closely related to information-centric net-
working, but critically releases the assumption of a connected network to fit Web3. Pop-
Cache [219] and StreamCache [140] are examples that underline the importance of the
information hit rate to serve caching. PopCache explores serving content to users through
a single node, a cascading network or a binary tree. StreamCache uses a tree topology.
We go beyond the connectivity assumption of these caching solutions and show how the
hit-rate of peer-to-peer interactions is sufficient to retain an arbitrary number of cached
records in an unstructured and split network. Our approach is supported by the research
of Bulut et al. suggesting that the friend-to-friend relationships of highly mobile users are
sufficient to route data to all network participants [39].

In general, optimizing networks for node locality leads to lesser communication re-
quirements between nodes [157]. For example, within the domain of edge storage, it has
been observed that eventual consistency leads to lower communication requirements [161].
This phenomenon has also been observed for semantic overlays [51], DHTs [146], and
causal multicast [61]. In our approach, we do not attempt to create a structured network
to fit the emergent property of locality and, instead, we make use of the unstructured, but
clustered and dynamic, network that emerges from Web3 applications.

The biggest difference between our proposal and other works is the use of storage
to allow for inconsistency detection, instead of using storage to serve data. To detect
inconsistencies, previous research has shown that auditing is highly effective ([95, 205]).
Auditing has even been shown to be able to detect Eclipse attacks by Singh et al. [205].
Audits have also been generally employed to deter and to detect faults in state machine
replication through “accountability” in PeerReview [95]. However, the assumption for
systems that use audits is that random nodes perform the audits, instead of only nodes
that interact with the data. Therefore, in order to randomly audit data, the data must be

82 4 Reputation-Based Data Carrying for Web3 Networks

shared in such a way that it reaches random nodes. TSRP uses auditing to enforce storage
by carriers of records and, in turn, ensures the auditability of the public infrastructure of
a Web3 application through the mobility of its users.

4.7 Conclusion

Web3 networks need to be approached differently. Structure cannot be imposed over these
networks. There is no authority to govern nodes and users should be assumed to be indi-
vidualistic and egocentric. Connections between users are opportunistic, making a Web3
network prone to partitioning. Users do not wish to serve each other data, but rather
police each other to uphold the integrity of their shared public infrastructure. However,
we have shown that network-wide storage of records is unnecessary for these types of
networks. Without breaking the Web3 incentives for cooperation, records can be shared
efficiently between partitions. Our prototype, TSRP, allows users to audit each other to
make sure that the integrity of records in a Web3 system is upheld.

83

A Local-First Approach for Green
Smart Contracts

Shared code in blockchains, known as smart contracts, stands to replace important parts of our
digital governance and financial infrastructure. This work evaluates permissionless execution
of smart contracts that is tightly coupled to cryptocurrencies and Proof-of-Work blockchains.
In this case, smart contracts inherit the environmental impact of their associated Proof-of-
Work blockchain, like its energy consumption, carbon footprint, and electronic waste. The
four concepts of relaxed consistency, strong identities, probabilistic consensus, and the use of
liabilities instead of assets may change the status quo.

This chapter explores the integration of these concepts to decouple smart contracts from
Proof-of-Work blockchains. By means of a local-first approach, that may expose users to non-
final contract states, the architecture of smart contracts can be transformed to become green.
Because the contract states that are presented to users may change, we base the interactions
between users on liabilities (i.e., a change in state is a liability to a user). We propose a novel
paradigm for smart contract architectures, named Green Smart Contracts, that is based on
a local-first approach. Furthermore, we present and implement a prototype solution for this
paradigm. We validate the need for a mechanism to resolve consistency violations by replay-
ing the contract calls of a real smart contract. Our simulation shows that violations occur
more often (13% of contract invocations) when using liabilities than when using a traditional
blockchain (3% of contract invocations). However, we additionally validate that they can be
avoided using a consensus mechanism, and our experiments show that a publish-subscribe
messaging pattern uses the fewest messages to do so, though it may not be applicable for
use cases that disallow the inherent imbalance in the messaging between peers. Our carbon
emission estimation shows that a Green Smart Contract approach lowers carbon emissions by
52.31% when compared to the messaging behavior of a typical peer-to-peer blockchain with
1000 nodes.

84 5 A Local-First Approach for Green Smart Contracts

5.1 Introduction

By 2030 it is expected that digitization and automation will make 80% of current financial
firms “go out of business, become commoditized or exist only formally but not competing
effectively” [87]. Executing the newly emerging digitized and automated processes will
require multiple servers that are governed by different entities that have mutual distrust
(e.g., due to geopolitics). Therefore, the financial sector is looking into Web3 developments
like blockchains and smart contracts to modernize its infrastructure [71]. Smart contracts,
which consist of program code that is published in a blockchain and seek to provide per-
missionless execution, transparency, and availability of source code, can serve to meet
the demands of new digitized governance and financial infrastructure [22, 49, 52, 62, 99,
184, 203, 223]. Some smart contracts are even already seeing up to 20 000 invocations per
day [180]. Unfortunately, the blockchains that power smart contracts are not environmen-
tally friendly [199]. The Chinese government has even banned cryptocurrencies due to
their utilized resources, energy consumption, carbon footprint, and electronic waste [238].
This chapter seeks to integrate and leverage recent proposals to realize a paradigm shift
in the architecture of smart contract systems and, thereby, provide a greener alternative
for future digitization and automation.

Traditional models used by, e.g., Bitcoin [164] and previously Ethereum® [240] allow
all their users to observe and verify that the program code of a smart contract is executed
correctly, while collaboratively appending to the same hash fabric (e.g., a blockchain). In
the traditional system model, users attempt to invoke smart contract code and nodes at-
tempt to add these invocations to a blockchain in return for payment. When added to a
blockchain, the code can be observed and executed on all nodes. Thereby, every node in
such a system can calculate the state of a smart contract based on the history of invoca-
tions. As all nodes are expected to execute all invocations of the smart contract code, the
responsibility for its correct execution does not depend on a single party but on the entire
network. Network-wide verification allows smart contracts to achieve fairness and coop-
eration among competitors in a trustless context [73]. In short, the system model of the
traditional approach to smart contracts, shown in Figure 5.1a, consists of a pool of users
that invoke smart contracts and a pool of nodes that attempt to add these invocations to
a shared hash fabric, consisting of a blockchain.

Several concepts have been proposed for the blockchain ecosystem that could be inte-
grated to realize a paradigm shift. Generally, the metric of “throughput” (i.e., the number
of contract invocations per time unit for smart contracts) is optimized and with it comes
lesser communication requirements and lesser environmental impact [12]. A throughput
increase is often achieved through the concepts of weaker consistency models (to capture
how invocations are recorded) and weaker consensus models (the manner in which invo-
cations are agreed upon), and typically these approaches no longer use a traditional single
chain of blocks but rather a hash fabric of blocks. For example, “sharding” uses cliques
of nodes, known as “shards”, that communicate intensively internally but very little be-
tween each other [221], and Hashgraph opts for a Directed Acyclic Graph instead of a
single chain [17]. As a result, the system models of recent proposals, shown in Figure 5.1b,

'As of September 15™ 2022, Ethereum has switched away from their traditional model and it now uses a so-called
“Proof-of-Stake” model, which we do not further discuss in this chapter.

5.1 Introduction 85

e
T 3

|nodes | |nodes | |nodes | |nodes |
| users | | users | | users | | users |
(a) Single user pool; single node pool; (b) Multiple user pools; multiple node (c) Multiple user pools; multiple node
single shared hash fabric. pools; multiple hash fabric branches. pools; multiple hash fabric branches;
multiple ephemeral hash fabric states
(caches).

Figure 5.1: System models for information flows between users’ smart contract invocations and the underlying
hash-based data structures: from traditional proposals (a) to recent proposals (b) and local-first (c).

have to consider multiple pools of nodes that attempt to synchronize with a shared hash
fabric. However, users do not actively take part in this synchronization.

Smart contracts are not necessarily compatible with weaker consistency and consen-
sus models. Depending on how a consistency model is weakened, the safety and liveness
guarantees of a system may radically change. Users and nodes may not be able to observe
(all) interactions with smart contracts, they may not be able to observe interactions in the
right order, and perhaps they may only be able to observe interactions after a long delay.
Furthermore, weaker consensus may lead to temporary decisions on allowable inputs and,
by extension, a change in the values of the outputs of smart contracts [139], which must
be retroactively corrected.

A next step, away from network-wide verification, is a local-first approach to the
smart contract execution model. The approach proposes to make sharing interactions
with other nodes a secondary concern [118]. The corresponding system model, shown in
Figure 5.1c, requires users and nodes to actively engage in change management by merg-
ing the changes in their hash-fabric caches to the global shared hash fabric. The local-first
approach was originally proposed for human users that collaboratively edit a shared data
structure but produce very little consistency conflicts [118]. Thereby, local-first is a green
approach to smart contract execution, as it eliminates the need for Proof-of-Work and
minimizes the required communication of data. However, when integrated into existing
blockchain systems, a local-first approach would still need its invocations paid for using
the cryptocurrencies of Proof-of-Work blockchains. Otherwise, users would not be in-
centivized to store invocations, so they can be verified by other users. Furthermore, like a
sharding approach, a local-first approach depends heavily on the identities of nodes to edit
caches, whereas blockchains typically do not have identity management, beyond public
keys.

This work enables a local-first approach by challenging the need for cryptocurrencies
and arguing that identities can be used in a permissionless smart contract system. Firstly,
our insight is that cryptocurrencies represent assets and, therefore, require network-wide
verification. By changing from assets (i.e., what is owned) to the concept of liabilities (i.e.,

86 5 A Local-First Approach for Green Smart Contracts

what is owed), network-wide verification is no longer required before smart contract ex-
ecution. Secondly, our insight is that modern identity management no longer requires
central governance. Identities can be stronger than just public keys: strong identities do
not necessarily violate smart contracts’ promise of a trustless context that enables fairness
and cooperation. However, due to the application of these concepts, green architectures
are necessarily subject to new design constraints. In this chapter, we derive these con-
straints for systems and their architectures in order to make use of novel green concepts.
Thereby, these resulting novel systems can be applied to meet all of the functional require-
ments of smart contracts to modernize governance and financial infrastructure without
the operational risk of being banned by governments due to environmental concerns.

This chapter defines a novel paradigm for smart contract execution called Green Smart
Contracts (GSCs), which is based on concepts observed in proposals for the Web3 ecosys-
tem and executes smart contracts using a local-first approach. The overall contribution of
this chapter is the definition of a novel architectural paradigm for local-first smart
contract execution. We envision our paradigm challenging Proof-of-Work blockchains
as the de facto standard for execution of smart contracts, that currently require network-
wide verification for each contract invocation. Our aim is to allow both system and appli-
cation designers to leverage a greener alternative for contract execution. Our work offers
the following contributions:

We identify the main problem of smart contract execution and the concepts of re-
laxed consistency, strong identities, probabilistic consensus, and liabilities, which
allow for greener smart contracts (Section 5.2).

« We derive the constraints for system architectures to leverage the four concepts for
greener smart contracts (Section 5.3).

« We design a greener smart contract prototype solution (Section 5.4).

« Our simulation shows the necessity of consensus for a widely-used real smart con-
tract and the amount of time that nodes work with a cache that is inconsistent with
the global hash fabric (Section 5.5).

« Through further experiments, we show that inconsistencies in the hash fabric can be
effectively resolved for multiple use cases and we create a model for CO, emissions
that shows when our approach becomes a greener alternative to existing solutions
(Section 5.6).

5.2 Concepts to decouple smart contracts from Proof-of-
Work chains

The problem that smart contracts face is that they inherit a large ecological footprint by
being tied to Proof-of-Work blockchains. We look for an execution model that can make
use of recent trends in the blockchain ecosystem to address this problem. We present four
concepts that can be leveraged for greener smart contracts, and we explain how they can
be leveraged.

5.2 Concepts to decouple smart contracts from Proof-of-Work chains 87

Concept 1: Relaxation of the consistency model. Weakening the consistency
model will improve throughput of a system. In practice, this is why systems that weaken
their consistency model to allow for independent block updates (like Directed Acyclic
Graphs) have shown higher transaction throughput [15, 136]. However, network-wide
consistency cannot be weakened to the point of being eliminated. The order of executed
operations matters for smart contracts [154, 228]: users’ reads and writes to smart con-
tracts are interdependent. Thereby, completely forfeiting consistency enables front-running
attacks through information hiding [75]. Nevertheless, basing the consistency model on
application-defined locality is a winning strategy [51, 61], especially if a small group of
nodes has additional influence over a data structure’s contents [150]. Exploring the appli-
cation of a weaker form of consistency for smart contracts remains promising.

Examples of solutions that leverage weak consistency are Avalanche [191], Hashgraph [17],
and the Tangle [182]. The commonality between these solutions is that they use Directed
Acyclic Graphs that see their transactions interlinked based on some form of locality. Lo-
cality is based on “transactions” for Avalanche, “actors” for Hashgraph, and “sites” for the
Tangle. We propose taking the concept of relaxing consistency based on locality to the
extreme and investigate local-first consistency.

Concept 2: Using strong identities to detect forks. Individual countries and the
European Union are creating passport-level identity solutions for use in the blockchain
ecosystem, known as Self-Sovereign Identity solutions [14, 212, 215]. If strong identities
were used for smart contracts, there would be no way for users to interfere with contract
operations (i.e., “writes”) of other users. However, despite a lack of writing contention,
even when grounded in natural persons, identity does not guarantee validity. Secondly, a
strong identity does not imply any special permissions (like in a permissioned blockchain).
A strong identity is not necessarily a trusted identity. A well-identified user may still pro-
duce a conflict with itself (e.g., to fool other users and through bugs), which is the classic
blockchain forking problem and still needs consensus. Nevertheless, strong identities and
public key infrastructure have been shown to greatly improve the detection efficiency of
information that users attempted to hide [134].

Examples of solutions that leverage strong identities are Corda [101], Ebay, and Uber.
Corda proposes ownership of contract applications based on public keys and the usage
of identity to assign legal weight to documents on its ledger. Identity is leveraged both
for privacy (not all nodes have to know of all transactions) and efficiency (not all nodes
need to process all transactions). Ebay and Uber have a centrally governed platform that
provides strong user identities, which are a legal requirement, vital for employee manage-
ment (Uber), and required for the selling of goods (Ebay) and services (Uber) between their
respective users. In short, for Ebay and Uber strong identity is used for accountability. We
investigate the application of strong identities to gain both efficiency and accountability
without central governance.

Concept 3: Using probabilistic consensus for smart contract invocations. In
our case, we define probabilistic consensus as a form consensus that reaches probabilistic
finality of decisions (i.e., decisions may be overturned). A probabilistic approach achieves
high throughput and hardens its probabilistic guarantees over time [139]. Using a small-
world assumption, detection of violations of agreements made through probabilistic con-
sensus becomes more efficient with witness and audit protocols [44, 95]. Just like for

88 5 A Local-First Approach for Green Smart Contracts

the consistency model, the highest throughput is achieved when the locality of the data
that consensus is formed over is close to the nodes that are selected to form consensus.
Practically, the consensus mechanism should be tightly coupled to the consistency mech-
anism. For instance, there is a large increase in throughput for smart contracts if locality
of Ethereum is optimized, known as “sharding” [221].

Examples of solutions that leverage probabilistic consensus are Avalanche [191], Bitcoin [164],

and Ethereum [240]. One of the key innovations of Bitcoin is its probabilistic consen-
sus, known as Proof-of-Work, requiring no communication between nodes in order to
reach consensus (simply deciding on the longest known chain). Ethereum’s “sharding”
further leverages locality and adopts a model of communication between cliques of nodes.
Avalanche even proposes “metastable consensus”, relying on majority votes in overlap-
ping localities. We note that probabilistic consensus, especially when exploiting locality,
is mostly focused on making any decision, which is not necessarily the best decision for
some use case or application. Therefore, we enable the use of these probabilistic con-
sensus mechanisms but we do not pick a single mechanism, in order to remain use case
agnostic.

Concept 4: Postponing consensus using liabilities. Liabilities can materialize as
tokens in contracts and can represent many different things, like assets, trades, and loans,
to support a token economy [231]. An example of a liability is payment through credit,
where a user clears a transaction regardless of the user’s balance, versus payment through
debit, where the user must have the required sum beforehand. In other words, liabili-
ties support systems that depend on authorization instead of ownership. However, even
though liabilities can represent assets, to avoid double-spending of assets (like currency)
a system requires some form of network consensus. Nevertheless, consensus is then only
required after executing the smart contract and it can be postponed (or possibly even
avoided) for use cases that depend on liabilities.

Liabilities stand to change the nature of a token economy, when used in combination
with the concepts of probabilistic consensus and weak consistency. Instead of serving one
network-wide token (e.g., a token that serves as a cryptocurrency), a unique token can
be used for the locality of a contract that does not require the whole network to verify it.
Thereby, every contract would have its own exchange rate against currency from other
contracts (akin to exchanges between fiat currencies). Therefore, the vision of a general
token economy, or digital currency, is transformed into one that exists only in the multiple
localities of nodes: token microeconomies.

Examples of solutions to leverage tokens are Ethereum Request for Comment 20 (ERC-
20) tokens [230], non-fungible tokens (NFTs) [149], and Basic Attention Token [148]. The
ERC-20 standard exists to capture fungible tokens and the NFT standard was made for
non-fungible tokens (i.e., assets). Both standards operate from smart contracts on the
Ethereum blockchain and tokens that derive from them can represent the breadth of use
cases for digital liability and asset management. For example, the Basic Attention Token
is an ERC-20 token that uses a user’s ad viewing time as the basis for its value. Instead of
treating tokens as something to be implemented in a smart contract, we investigate the
treatment of tokens as the primitive to power smart contracts.

Combining concepts. Any combination of the four concepts, that we have previ-
ously presented, can be leveraged to adapt a hash fabric to a given application domain.

5.3 Design constraints to enable a local-first approach 89

’ P(?W Blockchains ‘ Example: Bitcoin [164]
\l’ Reléxed Consistency ‘ Example: Hashgraph [17]
\" Probgbilistic Consensus ‘ Example: Avalanche [191]
\A’ strong Identity ‘ Example: Corda [101]

*’ Liabilities |

Figure 5.2: The addition of concepts to Proof-of-Work blockchains and examples of solutions that implement all
concepts up to that point.

this work

However, these concepts can also be viewed as the evolution toward individual account-
ability and decentralization of governance to replace network-wide verification. When
viewed in this manner, shown in Figure 5.2, we see the communication costs of solutions
lessen as individual accountability is increased. As communication costs are tied to the
environmental impact of blockchains [12], it follows that the concept of liabilities is the
next logical step to investigate, which we do in this work.

The four concepts we present are highly reminiscent of digitized governance and fi-
nancial infrastructure in the physical world and, therefore, applicable to digitize these
processes. For example, a person may use their physical credit card (an identity) to with-
draw physical money (a liability) at a physical bank (a node). Of course, to limit risk, the
bank will disallow the person to withdraw more money than their credit card limit allows.
If the transaction succeeds, banks will engage in clearing and settlement with each other
(logic that needs consensus) and record the overall exchange of money between banks
(consistency) in their ledgers. Another example is the casting of votes: a person may
show their passport (an identity) to cast a vote (a liability) at government office (a node).
The different offices then check whether duplicate votes have been cast (logic that needs
consensus) and tally the votes (consistency) to record election results.

5.3 Design constraints to enable a local-first approach

We now determine to what extent the concepts presented in Section 5.2 can be applied
and to what extent their application changes the smart contract execution model. In order
for a system to integrate these concepts into a local-first system model (Figure 5.1), we
derive the design constraints which we use to create a prototype solution. The findings
are summarized in Table 5.1.

Any system that executes smart contracts requires incentive compatibility. In gen-
eral, no rational user performs more work than necessary. Inherently, a decentralized
system like a smart contract system is prone to freeriding, which must be alleviated by
implementing either a payment or a reciprocity scheme [81]. Traditional blockchains opt
for the former, requiring payment for both proposing—and interacting with—a contract.
However, the payment approach provides an unfortunate link between contract execution
and payment through cryptocurrency, coupling the low throughput of cryptocurrencies
to contracts. Therefore, the dependency on payments can only be broken by using reci-

90 5 A Local-First Approach for Green Smart Contracts

Table 5.1: Differences between GSCs and smart contracts that use traditional (PoW) blockchains.

Property Smart Contracts GSC
incentive payment reciprocity
fork detection majority probabilistic
impartiality majority randomness
use case assets liabilities
finality probabilistic consensus configurable

procity (its implementation is discussed in Section 5.4), leading to Constraint 1: Green
smart contract execution and dissemination should only depend on reciprocity between users,
not on payment.

A fork detection mechanism requires scalability with respect to the number of users.
Smart contracts may have a large volume of interactions, e.g., up to 20000 interactions
per day have been observed [180]. Of course, multiple contract invocations fit inside a
block but Proof-of-Work blockchains both have a limited number of blocks per day (e.g.,
Bitcoin roughly sees one block per 10 minutes) and require the majority of the network to
observe and accept each newly proposed block. To this end, to overcome the limitations of
Proof-of-Work, relaxations to the consistency and consensus models of blockchains have
been proposed (Section 5.2). However, these relaxations change the nature of the smart
contract invocations, which can no longer be assumed to be finalized through consensus
but should be assumed to be tentative and part of an ephemeral state. Therefore, in order
to leverage these novel probabilistic approaches, our second constraint is formulated as
Constraint 2: Green smart contract execution should build on probabilistic fork detection, not
consensus.

A green smart contract system should ensure that the processing of invocations re-
mains impartial to their contents. Traditionally, blockchains assume that the majority of
nodes in a network is sufficient to quell any individual nodes that are partial to the con-
tents of invocations (e.g., incentivizing the acceptance of valid invocations with a block-
mining bounty in Bitcoin [164]). However, issues with impartiality may arise even when
the majority of nodes in a network is used [203]. Furthermore, depending on the explicit
involvement of a majority of nodes conflicts with Constraint 2. Instead, more recent pro-
posals trust in the random selection of nodes to ensure impartiality. For example, Verifi-
able Random Functions have been proposed to elect verifiably random quorums [159] and
randomly selected nodes (witnesses) can be used for fault detection [95]. For invocation
processing to remain impartial, without violating Constraint 2, we impose Constraint 3:
Green smart contracts should use a random selection of nodes to ensure impartiality, not a
majority.

Greener smart contract systems can be decoupled from cryptocurrencies. Cryptocur-
rencies inherently require a system for asset management. To solve “double-spending” of
the assets (i.e., transferring ownership of a single asset to more than one user), a form of
consensus needs to be used. To avoid assets in their entirety, a liability-based interaction

5.4 A design for locality-based “green” execution 91

model (Concept 4) can be used to power smart contracts. By switching to liabilities as
the underlying primitive, the system model of smart contracts (Figure 5.1a) necessarily
changes into that of a local-first approach (Figure 5.1c). Asset management now becomes
a part of the application layer instead of the underlying substrate for contracts. We ex-
plore the resulting solution space by imposing Constraint 4: Green smart contract execution
should be based on liabilities, not on assets.

A greener smart contract system can exploit a relaxed consistency model. For example,
even Bitcoin uses a gossip network to share contract invocations (and blockchain blocks
in general) between nodes and later forms consensus on the finality of transactions based
on the longest chain of blocks [164]. By explicitly separating the consistency mechanism
from the consensus mechanism, recent works have shown the benefits of immediate avail-
ability of data in the system, fewer exchanged messages, and a higher throughput [9, 196].
However, the downside is that the invocations of users may not be deemed valid on the
application layer at a later time and they may be rolled back. For Bitcoin, the probabilistic
finality of transactions of six blocks (about one hour) [191] is sufficient for digital currency.
However, the finality requirement may change depending on the application layer. For
example, the Corda whitepaper [101] argues that a PDF document is binding even if it is
not even on a blockchain, as long as it was signed by an authority. Therefore, in order
to remain application agnostic, we postulate the following Constraint 5: Green smart con-
tracts should allow for configuration of their consensus mechanism, not provide a single fixed
mechanism.

5.4 A design for locality-based “green” execution

A greener architecture design that makes use of the concepts that we have presented is dif-
ferent from traditional blockchain architectures. We present the architecture of our GSC
prototype, that satisfies the design constraints presented in Section 5.3. Our prototype
architecture has five components: (1) a hash fabric storing smart contracts and their oper-
ations as an immutable history, (2) a consensus component to detect and resolve forks, (3)
a runtime for users to interact with contracts, (4) a virtual machine that runs the code and
operations captured in the hash fabric on every node, and (5) a networking protocol for
contract discovery. We now explain how these components interact and we discuss their
necessity, with Figure 5.3 as a visual reference.

The hash fabric is the central component of GSC architectures, persisting (i.e., both
storing and sharing between users) the content and operations of smart contracts (that run
in the virtual machine). The hash fabric replaces what would traditionally necessarily be a
single “main” (block)chain. For instance, traditionally, in Ethereum all executed user code
ends up in one chain. In contrast, due to weaker consistency and consensus models, the
hash fabric can represent a data structure that is no longer a single chain. For example,
next to a traditional single chain, the hash fabric may also use a mesh or a Distributed
Acyclic Graph. Nevertheless, the data structure that is used by the hash fabric should
form an immutable history.

As users interact with GSC architectures through an interface, they generate so-called
proposals to modify the underlying data structure. These proposals capture and hide the
semantics of the smart contract information in the hash fabric. Proposals are shared be-
tween users using a consistency mechanism of the hash fabric. The primary function of

92 5 A Local-First Approach for Green Smart Contracts

proposal |* state

API) (API)
contract Runti
(A PI) untime <
Contract /;rop0sal (s/f\aBtz
Discovery (ABl) v
contract Hash Fabric » Virtual Machine
code
(ABI) proposal |$
ABI) rollback state
Y (ABI)

Consensus [«

Figure 5.3: Main components of GSC architectures and their interactions.

the consistency mechanism is to synchronize new proposals with the network and to ap-
ply received proposals. Secondarily, the consistency mechanism may also be forced to
change the data structure itself, a rollback that invalidates proposals in the hash fabric,
in case of consistency violations. In short, proposals lead to the temporary—and possibly
inconsistent—states that are typical for a local-first approach.

Our prototype defines simple push and pull gossip messages to share proposals in
network overlays. Each proposal contains fields for its code, the consensus round it belongs
to, its proposal type (i.e., contract creation, operation, or rollback), its base address in the
virtual machine, and its block number in the hash fabric. Consensus rounds are necessary
when the hash fabric needs to decide between inconsistent proposals using a consensus
mechanism, which we describe shortly.

Figure 5.4 shows an example of how our prototype transforms proposals, received
through a network overlay, into blocks in its hash fabric. The first block contains the
contract creation proposal, followed by interactions with the contract. This first proposal
(Proposal 1) places its contract code at address 0x00000000 in the virtual machine com-
ponent, claiming block number 1 and participating in consensus round 0. Proposals are
rejected if they are proposed for a consensus round that has already finished. An arbitrary
consensus mechanism may decide to accept or reject blocks that are proposed in a certain
consensus round. Of course, one of the blocks necessarily has to be rejected if the order
of applying the proposals (Proposal 2 and Proposal 3) leads to different states. However, a
new ordering may be chosen in a consensus round, like Proposal 3 being placed in a new
Block 3 in round 1.

The consensus mechanism is tasked with evaluating the structure and semantics of
the hash fabric to select the dominant history from the valid histories captured by the hash
fabric. For example, one may select the “longest chain” as the dominant history (known
as Nakamoto consensus [241]) from multiple forks of valid blocks in a blockchain. Though
forming consensus on an entire history is certainly possible (e.g., in a relational database
or a simple log of executions), it is more efficient to only form consensus on new entries
in an append-only log as the data structure grows. Within the scope of this work, prob-
abilistic consensus is considered (Constraint 2), which may lead to multiple conflicting

5.4 A design for locality-based “green” execution 93

Messages (Push/Pull) Hash Fabric
Proposal 1 :
Code | 0x600x03 ... :
1 |Genesis block
Type CREATE :
Base Addr. | 000000000 : A
Block Num. 1
Round 0 : Block 1
Proposal 2 Proposal 3 : (Proposal 1)

Code | 0x610x10 .. Code |0x320x10..] ! [

Type OPERATION Type OPERATION \
Base Addr. | 0x00000000 Base Addr. | 0x00000000 | Block 2 Block 2
Block Num. 2 Block Num. 2 (Proposal 2) (Proposal 3)

Round 1 Round 1 :

Figure 5.4: How proposals (push/pull gossip messages) are captured in the hash fabric. Depending on the
proposals’ contents and the chosen hash fabric, the depicted blocks may cause a fork or form a legitimate state.

histories. The consensus mechanism determines the currently valid proposals and their
corresponding causal history (i.e., the “head of the chain” in traditional blockchains).

Not all contract interactions require consensus (e.g., inspecting the value of a variable
in a smart contract’s state). What interactions do need consensus can be derived through
the hash fabric and the virtual machine. Firstly, in the case that the hash fabric fails to
apply a proposal (e.g., when two proposals define the same block number when using a
single chain) consensus is needed. Secondly, in the case that the virtual machine fails to
apply a proposal (e.g., when two proposals write a different value to the same memory
address) consensus is once again required. In both cases, consensus is used to select a
single dominant history.

What proposals a user is required to store depends on the chosen consensus mecha-
nism. However, what users end up storing also depends on the trust between users. For
example, in theory, Bitcoin requires that all nodes wishing to add blocks to a blockchain
store the entire longest chain. In practice, “light nodes” may store only a subset of all
blocks and trust in other nodes that store the entire chain [88]. Within the scope of this
work, we acknowledge that more efficient storage schemes exist that exploit reciprocity
and randomness (Constraints 1 and 3) and trust, e.g., Timely Sharing with Reputation Pro-
totype [216], and we assume that they are leveraged by users to obtain the necessary data
to form consensus.

A runtime is needed for users to create contract code. This is a common approach, for
example found in Bitcoin and Ethereum [250], to make contracts version-independent and
portable. The hash fabric only provides the history of operations on the contract. From its
history, the runtime derives the current human-readable state of a contract to present to
the user. The state is calculated by applying the API abstractions to the result of executing
the operations captured in the dominant history of the hash fabric.

The GSC architecture compiles contract code written in a Domain Specific Language.

94 5 A Local-First Approach for Green Smart Contracts

In our prototype, contracts are written in the Solidity language. The creation of a new
contract causes two proposals, one for the hash fabric’s language API and one for its com-
piled equivalent, the application binary interface (ABI). We make the distinction between
the source contract and the actual compiled contract as the high-level language implemen-
tation may not produce the same compiled code for different virtual machines. However,
the API is still practically necessary for human interaction, as the ABI exposes users to
low-level details that are difficult to work with [206].

A virtual machine optimistically locally executes all compiled (ABI) code that is
received through a user’s network. Essentially, this is no different from how blockchain
solutions normally offer their transactions to their respective virtual machines [165, 221].
However, in contrast to normal execution of virtual machine instructions, GSC systems
explicitly maintain the state of all forks of the hash fabric (Constraint 2). In our prototype
implementation, we use the Ethereum Virtual Machine (EVM), which maintains a “main
chain” to execute contract code on (that is normally stored in blockchain blocks) [102]. To
execute code from any arbitrary preceding state, we select a previous state as the main
chain and execute code from that point.

New proposals, regardless of their semantics (both contract creation and operations
on contracts), consist of virtual machine instructions that have been compiled from an
API call. The virtual machine is responsible for retrieving the state from a given header
and applying given instructions to potentially persist a new state and header and—in case
of state changes—may return code to share with other users, just like in Ethereum [102].

The biggest difference between GSC’s proposals and traditional smart contract exe-
cution is the lack of currency (e.g., Ethereum’s “gas” [102]). In GSC systems, depending
on the chosen hash fabric and consensus mechanism, code is not necessarily pushed to
strangers that do not have an intrinsic benefit to run code (i.e., users that have no causal
relationship). Therefore, there is no need for currency to power a contract. However,
our prototype does still use the currency mechanism of the underlying EVM to protect
against infinite loops [102]. To do so, every execution is supplied with an ample amount
of artificial currency (equivalent to several millions of dollars).

Contract discovery, consistency, and consensus can be based on locality for GSC
systems, and blockchains in general [229], to make a system scalable. Whether or not an
application allows for this depends on the system configuration (Constraint 5). In other
words, if desired, contracts and their interactions may only be discovered by third parties
when they are interacted with. The ability to exploit locality depends on the second con-
cept for GSCs: strong decentralized identities. These strong identities make it possible
for users to determine that a particular contract belongs to the user presenting it, beyond
reasonable doubt (i.e., using cryptography [57]). The locality-based approach ensures that
network-wide consensus is not strictly necessary (but can still be applied) to establish own-
ership of—and interactions with—a contract. The absence of network-wide consensus can
make GSCs more energy-efficient (“green”) than traditional blockchains [12].

What constitutes locality may differ from application to application and governs the

permissible underlying networking technology [186]. For example, when a the GSC paradigm

is used to manage contracts that govern physical systems, networking technology like
Bluetooth or Wi-Fi Direct may suffice. Over the Internet, this locality may be a common
application-driven interest of multiple peers (e.g., a particular file in Bittorrent).

5.5 Consistency violations in a real-world smart contract 95

5.5 Consistency violations in a real-world smart contract

One of the key concepts of local-first software is that humans do not produce many “con-
flicts” when interacting with each other [118]. In smart contracts these conflicts would
materialize as forks. We explore the need for fork resolution in Green Smart Contracts by
running a real-world trace of an Ethereum smart contract, focusing on the time to resolve
inconsistencies between nodes in a network. The smart contract used in these simulations
is from the “CryptoKitties” game, which allows users to generate and trade cartoonish pic-
tures of cats. Conlflicts can arise on a high abstraction level when users attempt to “breed”
with each other’s cats or transfer their ownership, but also on a lower level when the
contract writes to a shared memory address in the virtual machine.

5.5.1 Data set

The CryptoKitties game consists of five smart contracts: the “Core” contract, “GeneScience”
contract, “Offers” contract, “SalesAuction” contract, and “SiringAuction” contract [110].
The latter three contracts are used to support the exchange of cat pictures and the “Gene-
Science” contract is used to support generation of entirely new pictures. Apart from these
supporting contracts, the core game logic is implemented in the “Core” contract, which
we focus on. We query bitquery.io, a website for blockchain analytics, for the first 5839
blocks of the CryptoKitties “Core” smart contract (defined at address 0x06012c8cf97bead5d
eae23707019587f8e7a266d). These blocks contain the first 9769 transactions, not evenly
spread over the blocks (shown in Figure 5.5a), between 543 unique addresses. The trans-
actions contain twelve distinct contract calls defined by the CryptoKitties contract, for
which we give the number of occurrences in the data set in Figure 5.5b.

Due to privacy concerns, bitquery.io omits the actual argument values of contract
calls. We do not attempt to circumvent this omission, but we replace the arguments with
random values. Of course, the referenced memory addresses do not change and conflicts
due to concurrent writes to these addresses are preserved. However, the random values
may lead to different logic being executed. For example, an “if”-statement may only trigger
a write to a memory address if a value meets a certain condition. Consequentially, the
smart contract may execute different instructions in the EVM. Therefore, the state of the
smart contract in our simulation is not expected to be equal to that of the real CryptoKitties
contract on Ethereum. To mitigate this limitation, our simulation does not keep track of
the instructions that were invoked but rather the number of times that the EVM was called
to execute any set of instructions.

5.5.2 Setup and methodology

Our data set consists of addresses calling methods on the CryptoKitties contract code,
mapped to a network of nodes that propose these method calls to a consensus mechanism.
We create a node for each address in our data set. We use a fully connected network
of nodes and we fix the latency for all messages between nodes to 50ms. This choice is
rooted in the network protocol of Bitcoin, in which up to 1000 peers can be discovered in
a single message without further communication, well more than the 543 users in the data
set [194]. Similar to a real blockchain, we use a list of blocks as the data structure for the
hash fabric and we adopt the oldest-known value to reach consensus.

96 5 A Local-First Approach for Green Smart Contracts

w
c
2
B 751
151
(2}
C
@ 50
k]
o 251
o
€
=) 0.
< v v v v
2020-12-03 2020-12-06 2020-12-09 2020-12-12
block acceptance date
(@
30004
12}
3
© 2000+
<
2
01000- .
) .
04 | I
c o < I o 5 o o 2 o = <
I [£ = > > > s D =
= = £ ko) < g < < H g o F
5 2 B 9 > © 06 2]
=] c < = = S =]
D © n = = = >
s 7 % g 2 5 z
“ ? g O ° 3
5] g E 2
£
contract call
(b)

Figure 5.5: The number of transactions per block (a) and the number of occurrences per contract call type (b) in
the CryptoKitties data set.

5.5 Consistency violations in a real-world smart contract 97

| E total . consensus E rollbacks . vmcalls

I
1=}
S

@
=
S

occurrences per node
s 3
S 1<)

= .1l

batr:hes spalced
strategy

o

Figure 5.6: Average number of occurrences of the four metrics per node for the CryptoKitties data set replay.

Our data set is replayed using a batches strategy that introduces transactions using
the data set timestamps and a spaced strategy that introduces transactions with a spacing
of 250ms. For the former strategy, every node in our network proposes its transactions
using the timestamps defined in the data set. The batches strategy leads to nodes that
have transactions in the same block attempting to claim the same block number in our list
data structure. Therefore, if any calls conflict, the consensus mechanism must select one
of the conflicting calls. For the spaced strategy, consecutive contract calls in the data set
are spaced by 250ms, causing all preceding transactions to be finalized before new ones
are initiated. Thereby, the second strategy maintains the order of the original transactions,
but not their timing. The intention of these strategies is to show the difference between
real contract interactions and artificial workloads.

We capture a total of five metrics. The first four metrics are occurrences relative to
the node count to expose any non-linear message complexity. Firstly, we keep track of
the total number of received messages. Included in the total number of messages are the
messages that may be needed to form consensus, to push messages, and to pull specific
messages (due to rollbacks, a single message may need to be pulled more than once). The
messages needed for consensus are also counted as the second metric, which is always
zero in this simulation but they will play a role in Section 5.6. Thirdly, the number of
rollbacks of (part of) the hash fabric is recorded. We also keep track of the required EVM
calls, as opportunistic execution implies higher CPU loads, which may be restrictive to
CPU-limited devices. The fifth metric is the time that nodes are in an inconsistent state,
which we call the convergence time. The convergence time is the time between when the
first consensus message is received for a particular consensus round (which corresponds
to its block height, see Figure 5.4) and the time at which the last consensus message is
received.

5.5.3 Results

We first discuss the metrics related to the number of messages, presented for both of our
strategies in Figure 5.6. As mentioned before, no consensus messages are sent due to the
choice of consensus mechanism. Even so, the replay of a real data set leads to relatively
few rollbacks, with 7 rollbacks for 54 EVM calls for the batches strategy and no required
rollbacks when the hash fabric is finalized between contract invocations. Therefore, we

98 5 A Local-First Approach for Green Smart Contracts

@ 204

convergenc
S

04 —

bat(;hes spalced
strategy

Figure 5.7: Box plot of the time until contract interactions have converged, when nodes interact concurrently
(“batches”) and when interactions are spaced out (“spaced”).

conclude that real smart contracts do not necessarily have a lot of conflicting interactions.
Regarding the different strategies, we see much fewer messages and EVM calls for the
batches strategy as opposed to the spaced strategy. This absence of messages occurs due
to conflicting interactions not being forwarded and applied in the network, which could
be resolved by a retry mechanism.

In Figure 5.7, we show the time it takes for contract calls to converge for both of our
strategies. Our results show that the batches strategy causes the convergence time to
reach into the order of several seconds, up to almost a minute. This is explained by nodes
attempting to claim the same list index in the list of blocks, necessitating some other non-
trivial consensus mechanism to select only one of the conflicting calls for the index. Our
second observation is that the convergence time goes to 0 seconds if each call is proposed
250ms after the last call finished (the spaced strategy). The chosen spacing allows each
node to receive the previous contract call and propose a new contract call with a list index
that does not conflict with the preceding transaction. Clearly, when a smart contract has
very little (or no) conflicting calls, no consensus mechanism is required for a consistent
state for all nodes.

5.5.4 Modeling conflicts

Our results support that little to no conflicts in the consistency layer enable a system in
which network-wide consensus is unnecessary. However, it may be unrealistic to assume
that no conflicts occur. For example, out of the proposed transactions to Ethereum an
estimated 3% fails [169]. In contrast, in our CryptoKitties replay we observed that 13%
of the proposed transactions fails due to consistency violations when using the batches
strategy. Furthermore, in our replay, the resolution of consistency violations is based on
the time a call was made. Currently, we do not know of technology that allows timestamps
to be (unconditionally) verified. Therefore, we do not have evidence for any system being
able to exist to benefit from that finding.

As, to our knowledge, systems that forego consistency violations in the hash fabric do
not exist, some form of consensus mechanism is required. Supported by the results of Sec-
tion 5.6.3, we believe using identities to provide conflict resolution is the next-best option
for real smart contracts. However, as mentioned in Section 5.3, using the GSC paradigm

5.6 Resolving consistency violations 99

and depending on identities is not compatible with all use cases that smart contracts are
currently serving. For asset-based use cases, the consensus model of traditional smart
contract execution is still the only viable option.

We use a simple model to validate the use of our local-first approach. Given the period
of time an invocation is vulnerable to conflicts f, the number of new invocations per
second r, and the probability of conflict between two transactions p, the expected number
of conflicts experienced by a single transaction is p x r x f. Our results yield p = 0.13
in the worst case of the batches strategy and our dataset has r = 0.011296 invocations
per second. Therefore, invocations succeed without conflict more often than not (when
pxrx f<0.5) if the time to reach finality for each invocation is f < 340.49 seconds. From
our results from the spaced strategy, we observe that f < 0.25 seconds. Therefore, the
inequality is satisfied and, at least in the case of CryptoKitties, invocations will succeed
without conflict more often than not, validating the use of a local-first approach. In fact, in
comparison to the 3% failures of Ethereum, i.e., 0.03 expected conflicts, our approach leads
to only a fraction of this, with 0.00036712 expected conflicts when p = 0.13, r = 0.011296,
and f = 0.25. Furthermore, given p = 0.13 and f = 0.25, our approach is applicable up to
r = 15.38 invocations per second per contract. As the most popular smart contracts receive
20000 invocations per day [180], i.e. r = 0.23, our approach offers 66.44 times the necessary
invocations per second.

5.6 Resolving consistency violations

Inconsistencies do occur in real smart contracts (Section 5.5), which are exacerbated in
a green local-first approach. GCS architectures must leverage a mechanism to decide a
dominant history (Section 5.4) and, depending on the use case, different consensus mech-
anisms may be used. For example, if a single leader is permissible, a publish-subscribe
communication pattern can be used. If a completely leaderless mechanism is required, a
metastable consensus mechanism like Snowflake [190] can be used. In this section we
conduct experiments in order to provide insight into the consequences of deploying a
selection of different consistency and consensus mechanisms.

5.6.1 Setup

Four different mechanisms are used as the consensus mechanism with our GSC prototype:
Raft® [171], metastable consensus (similar to Snowflake [190]), a publish-subscribe mecha-
nism, and adopting the oldest-known value. The chosen algorithms represent the breadth
of approaches to peer-to-peer agreements and we discuss them in further detail later.

To determine a node count for our experiments, we note that Raft was tested with
five servers [171], Snowflake was tested with up to 2000 nodes [190], and the remaining
two mechanisms depend on the limits of the communication substrate. We pick a middle-
ground of up to 1000 nodes for our experiments and we simulate networks of 10, 100, and
1000 nodes. We again use a fully connected network topology, rooted in the same rationale
as in Section 5.5 (even 1000 nodes can be discovered in a single message). We measure
the four metrics as in Section 5.5 that pertain to message handling (“total”, “consensus”,

*Specifically https://github.com/streed/simpleRaft

https://github.com/streed/simpleRaft

100 5 A Local-First Approach for Green Smart Contracts

pragma solidity *0.5.11;
contract SimpleContract {
uint value = 0;
function setValue(uint _value) external {
value = _value;
}
function getValue() external view returns(uint) {
return value;

}

}

Figure 5.8: A simple Solidity smart contract.

“rollbacks”, “vmcalls”). The smart contract shown in Figure 5.8, created by S. Verma®, is
used to run our experiments.

Two different mechanisms for consistency are used. Firstly, the simple list requires
all received blocks to have a unique list index. When two blocks attempt to occupy the
same list index, the consensus mechanism is invoked. Secondly, a conflict-free replicated
data type (CRDT) [202] represents the other extreme for consistency mechanisms and it is
the recommended data structure for a local-first approach [118]. The CRDT data structure
adds incoming blocks to the current index (a “merge” in a Sequence CRDT [166]) until
two blocks are found that are order-dependent and, therefore, require a decision from the
consensus mechanism (as discussed in Section 5.4). If the consensus mechanism requires
the nodes to take an initial vote, every one of them votes for the oldest block it knows of.

5.6.2 Methodology

Our methodology consists of introducing a conflict in the simulated network and waiting
until all nodes have accepted a new block, resolving the conflict. Our experiment follows
three synchronized phases: sharing the initial contract, creating the conflict and waiting
for it to be resolved.

The first phase of our experiment consists of sharing the contract code. Blocks are
created for two indices: the API code (“block 1”) and the ABI code (“block 2”). We then
wait for all nodes to receive both blocks, forming consensus according to the consensus
mechanism (without conflicts all nodes accept both blocks). We start counting toward our
metrics after this first phase has completed.

In the second phase we introduce a conflict using two nodes that invoke the API of
the contract (Figure 5.8). One node invokes setValue(11) and one node invokes set-
Value(13), which would leave the system in an inconsistent state if both transactions
were applied without ordering them (some nodes would have 11 and some nodes would
have 13 as the return value of getValue()). After introducing this conflict, we resume
communication between nodes and end the experiment (the final phase) by waiting for all
nodes to accept either value.

*https://medium.com/better-programming/part-1-brownie-smart-contracts-framework-for-ethereum-basics-
5efc80205413

5.6 Resolving consistency violations

101

| E total . consensus E rollbacks . vmealls

p
@

occurrences

0.54
0.04

B af af »

occurrences

100 1000
nodes

(c) List consistency and a single publisher.

96°101

8666
[00°z001
00°000+

occurrences per node

10 100 1000
nodes

(e) List consistency and metastable consensus.

LA

occurrences per node

100 1000
nodes

(g) List consistency and Raft consensus.

Figure 5.9: The number of occurrences of the “total”, “consensus”,

Q154

1.04

=l
o

o
=)

I

occurrences

100 1000
nodes

(b) CRDT consistency and the oldest-known value.

8 254
o

EE

100 1000
nodes

(d) CRDT consistency and a single publisher.

8
o 154 =i © a =
c o © o o
- = alis
[© © N B
Q10 =3 =3
@ 1O}
[0
2
g %
3
g 0" ; ; ;
10 100 1000
nodes
(f) CRDT consistency and metastable consensus.
3
o 154
<
5]
2 10+
[}
[0
2
& 57
=
=3
8 04
© 100 1000
nodes

(h) CRDT consistency and Raft consensus.

“rollbacks”, and “vmecalls”, metrics versus the

number of nodes, for the eight combinations of consistency and consensus mechanisms. Bars that go beyond
the vertical plotting range are labeled.

102 5 A Local-First Approach for Green Smart Contracts

5.6.3 Results

The consensus mechanism of adopting the oldest-known value is discussed first. Every
node, except for the two originators, only receives a total number of two messages, the
lowest number of messages out of all experiments. For the list consistency (Figure 5.9a)
the second message conflicts with the first message, which requires a rollback, leading
to two executed EVM calls. For the CRDT (Figure 5.9b) nodes attempt a merge of three
possible blocks: setValue(11), setValue(13) and the set {setValue(11), setValue(13)}.
The former two proposals are made by the originators, while all other nodes forward the
latter form. The latter form is reevaluated by the originators, leading to the average of just
over two EVM calls.

The results for a single publisher, given in Figure 5.9c and Figure 5.9d, are largely
similar to the results of the oldest-known value. For the list consistency (Figure 5.9¢) the
required number of rollbacks in the system is now equal to one. Only one of the conflicting
messages is published by the originating identity and the other one is rolled back on the
node that produced it. For the CRDT consistency layer, the conflicting messages can still
exist with the same identifier and this is only later corrected by the consensus mechanism.

Metastable consensus is the first non-trivial consensus protocol, shown in Figure 5.9¢
and Figure 5.9f (note the change in the vertical axis range). The number of messages
increases as the number of nodes increases, which is a direct consequence of the design
choice to avoid a leadership election protocol. Due to state deduplication in the EVM calls
and the consensus layer being able to freely add and remove messages for a given index,
the EVM call count is inflated.

Raft is the final consensus mechanism that we evaluate and its results, given in Fig-
ure 5.9g and Figure 5.9h, show a decrease in message count as opposed to metastable
consensus, largely due to its leadership election protocol [171]. Electing a single iden-
tity to resolve a conflict after its detection requires fewer messages, as opposed to having
all nodes converge to a single value over time, as with metastable consensus. However,
when then number of messages is a concern, having a pre-established leader (i.e., a single
publisher) is still superior.

All of the combinations of consensus mechanisms and consistency mechanisms suc-
cessfully resolve conflicts, though their environmental impact may be different. The choice
of CRDT consistency mainly causes a higher number of EVM calls and—from the perspec-
tive of environmental impact—is therefore less desirable due to the higher CPU utilization.
More traditional consensus mechanisms are known to have a higher environmental im-
pact [12]. Therefore, the choice of consensus mechanism is key to make GSCs environ-
mentally friendly. Applications should strive to make use of the concepts of GSCs as much
as possible, if they wish to reduce their environmental impact.

From the user’s point of view a CRDT solution may still be desirable. Even though
the higher CPU utilization leads to more environmental impact, this would mean that the
user is not confronted with rollbacks. A rollback is visible in the interface of a user’s
application, whereas higher CPU usage is not.

5.6.4 Model for environmental impact
We now define a model for environmental impact by estimating CO, emissions, based
on our observed messaging behaviors and their associated expected conflicts. We derive

5.6 Resolving consistency violations 103

Table 5.2: Behavior of our four metrics to resolve a conflict between two contract invocations given the number
of nodes (n), for the measured consistency and consensus mechanisms.

Consistency Consensus Total Msgs. Consensus Msgs. Rollbacks EVM Calls
List Oldest-Known 2n 0 n 2n
CRDT Oldest-Known 2n 0 0 2n

List Publish-Subscribe 2n 0 1 n
CRDT Publish-Subscribe 2n 0 0 2n

List Metastable n? n? 0 n
CRDT Metastable n? n? 0 % n?
List Raft 14n 8n n 2n
CRDT Raft 14n 8n 0 3n

the behaviors of our four metrics from our results, shown in Table 5.2. The behaviors
we define are a simplification of our actual results as they change with the number of
nodes. For example, though we model the total number of messages for CRDT and Raft as
14n, our results are actually 12.4n for 10 nodes, 13.84n for 100 nodes, and 13.98n for 1000
nodes. Our defined behaviors become more accurate as the number of nodes grows. As
related work suggests that the exchanged number of messages of a method is the primary
driver for environmental impact [12], we focus on three functions to describe the distinct
messaging behaviors (Table 5.2): b;(n) = 2n, by(n) = 14n, and bs(n) = n?.

For each conflict that is introduced, its total number of messages b;(n) are added to the
aggregate total number of messages for the entire network. In Section 5.5.4, we determined
that the number of conflicts is given by p x r x f. Therefore, the aggregated total number
of messages is given by p x r x f x b;(n). For fully connected networks, f is simply the
maximum latency [between nodes, while random graphs may have f = O(log(n) x [) and
linear topologies have f = O(n x [). By assuming, without loss of generality, that r is
measured per time unit /, we can eliminate [from our equations. Thereby, we obtain the
following three functions for the aggregated total number of messages: O(m;) = p x r x
0O(1) x bj(n), O(my) = px rx O(log(n)) x bj(n), and O(m3) = p x r x O(n) x b;y(n).

To tie the messaging behavior to CO, emissions, we require estimates for the energy
expenditure of transmitted messages and the emissions of the expended energy. Firstly,
a realistic upper bound for the energy expenditure per gigabyte is 0.2k Wh/GB [50]. Sec-
ondly, though the CO, emissions vary per region, we use the United States average of
0.603kgCO,/kWh to model emissions [10]. We use the Ethereum maximum smart con-
tract invocation size of 24kB as the message size, assuming that the overhead data needed
for consensus is negligible. Given these assumptions, we obtain a result of 0.0028944 gCO,
/message to estimate our carbon emissions.

We evaluate our model to calculate CO, emissions for the nine different combinations
of b; (by, by, and bs) and m; (m;, my, and ms). To compare between the different behaviors,
we fix the value p = 0.13 to match our CryptoKitties results. Our results are visualized in
Figure 5.10 and they highlight that a low node count or a low invocation rate trivially keep
carbon emissions down. However, when the node count and the invocation rate are both

104 5 A Local-First Approach for Green Smart Contracts

(@) by, my

(8) b3, my (h) bs, m, (i) bs, ms

Figure 5.10: Estimated carbon emissions as a function of the invocation rate and the number of nodes, given
functions b; for messaging behavior and functions m; for the aggregated total number of messages.

increased, the choice of consensus mechanism and messaging topology starts to matter.
With a local-first approach of fully connected nodes (m;), the choice of consensus mech-
anism is hardly an influence. For a more loosely-connected messaging topology (my and
ms), a fixed publisher or predetermined finalization strategy like “oldest-known” (b;) is
preferential. Given a typical peer-to-peer network with logarithmic message propagation
time and Raft consensus (i.e., by, my), even the worst-performing consensus mechanism
with local-first (i.e., b3, m;) has only 47.69% of the carbon emissions at n = 1000, r = 500.
In the majority of these cases, the Green Smart Contract approach is a greener approach.

To put these numbers into perspective, China produces roughly 12 gigatonnes of CO,
per year. Even in our worst presented case (using 1000 nodes that produce 500 invocations
per second with 13% chance of conflict), the Green Smart Contract approach only produces
1.58 x 107® gigatonnes of CO, per year. However, if the same configuration is used for a
billion nodes with 500 invocations per second, the estimated emissions would be—a much
less trivial—1.88 x 10'? gigatonnes of CO, per second. In contrast, our best presented case
would produce 0.00013 gigatonnes (130 million kilograms) of CO, per second for a billion
nodes and 500 invocations per second, or 342 times the emissions of China per year.

5.7 Related work 105

5.7 Related work

Throughout this chapter we have highlighted the individual works that are closely related
to the topics we addressed. We now position our contributions on a coarser scale. On the
coarsest scale, one can consider using solar panels to power the hardware of nodes [144],
which necessitates additional physical hardware, and the trade of emission certificates [40,
105], which requires a secondary market. For a more focused discussion, we regard work
that proposes changes to software architecture.

One of the key works that precedes our work and falls within our definition of a “recent
proposal” (Figure 5.1b) is the Hedera Hashgraph [18]. The Hedera Hashgraph proposes
both a weaker consistency model (in the form of a Directed Acyclic Graph data structure)
and a weaker consensus model (which they call “asynchronous Byzantine Fault Toler-
ance”). Furthermore, the consensus layer is optionally permissioned (i.e., configurable).
Whereas Hedera is similar to our Green Smart Contracts in its relaxations, it falls short of
going to the extreme of a local-first model and it uses the traditional blockchain model for
users to offer interactions to nodes. Our work goes one step further and actively embraces
a new paradigm for user interactions with smart contracts.

Our work is closely related to the “local-first software” proposal by M. Kleppmann et
al. [118], that mainly focuses on change-based updates to shared data structures. Our work
builds on their findings and uses a local-first approach to the consistency layer in smart
contracts. However, the work of Kleppmann et al. is mainly focused on how humans
interact to form a shared data structure. One of their conclusions is that “conflicts are not
as significant a problem” because “users have an intuitive sense of human collaboration
and avoid creating conflicts”. Whereas we have found that there are certainly less conflicts
in a real-world smart contract than in a lab setting (see Section 5.5), with a 13% failure rate,
we believe conflicts are a significant problem for smart contract execution.

Smart contract execution is the next evolution after the state machine replication move-
ment (which came after shared memory systems). Even though smart contract execution
does away with any trust assumptions between nodes, Byzantine Fault Tolerance (BFT)
in its execution model is still shared with the domain of state machine replication. Very
few works explore execution without a critical dependency on BFT consensus. Of partic-
ular note is Eve [112], proposing state machine replication with tunable fault tolerance
to speed up execution. Their proposal is to first agree on an order of operations, then to
execute those operations, and lastly to verify the resulting state. In contrast, our work
proposes to execute operations opportunistically, verify the resulting state, and then to
agree on an order only when a conflict is found. However, just like our work, Eve exposes
a design space of “nondeterminism introduced by allowing parallel execution”. Our work
argues this design space consists of liability-based applications.

Our proposal of making contracts the central point of interaction is closely related
to the publish-subscribe communication pattern. However, regarding the execution of
program code, most works only consider the publish-subscribe pattern to distribute exe-
cutable tasks to nodes (for instance, works by M. Sadoghi et al. [195] and by J. Dayal [59]).
In their work, L. Jehl et al. explore a publish-subsribe-based state machine model, based
on broadcasts in the presence of Byzantine failures [106]. In contrast to the aforemen-
tioned work (and in agreement with local-first software), we believe a single publisher (a
contract) and its subscribers (the users that interact with the contract) naturally emerge

106 5 A Local-First Approach for Green Smart Contracts

from smart contract use and do not require additional reliable broadcast.

5.8 Conclusion

Green Smart Contracts are able to challenge Bitcoin and Ethereum as ubiquitous technol-
ogy, to serve all applications. This chapter has identified the concept of liabilities, to re-
place the established model of cryptocurrencies serving as the primitive to support smart
contract execution. By depending on liabilities as a primitive, Green Smart Contracts are
able to maximally leverage weak consistency and probabilistic consensus to form a novel
green “local-first” architectural paradigm for smart contract execution. The requirement
of stronger identity management for such architectures can be overcome without violating
the context of permissionless and trustless smart contract execution. The benefit of our
local-first approach is that the requirements of applications that use liabilities are severely
lowered, as opposed to applications that depend on assets. Going forward, smart contract
applications should carefully examine their application domain to potentially make use of
the communication improvements offered by the Green Smart Contract paradigm. Future
digitization and automation can become greener and more performant.

107

Conclusion

This thesis has sought to answer what technology is appropriate to enable Self-Sovereignty
for a Web3 ecosystem. We considered the three domains of identity, public infrastructure,
and shared code, and we introduced four more research questions to help answer our
thesis-overarching research question. We summarily enumerate our conclusions, one for
each research question, that relate to the necessary technology to enable Self-Sovereign
existence of users and Self-Sovereign collaboration between these users. We then conclude
if, and how, technology can enable this existence and collaboration for Web3 ecosystems.
This chapter ends with the enumeration of open questions, future work, that we have
uncovered in the pursuit of Self-Sovereign Web3 technology.

6.1 Conclusions
The conclusions of our four supporting research questions are as follows:

1. In Chapter 2 we presented the deployed and matured solution of TrustChain IDen-
tity (TCID) for truly Self-Sovereign identity. Our solution is practical, modular,
and has sufficiently low overhead for practical use. We have exposed that Self-
Sovereign Identity has been relatively over-explored from the angle of cryptogra-
phy and under-explored in its network layer. We conclude that it is indeed possible
to create a Self-Sovereign Identity solution that addresses even the most stringent
use case of serving as a passport analog.

2. In Chapter 3 we introduced the SybilSys mechanism, which avoids Sybils by expos-
ing their lack of network latency diversity. We have shown that SybilSys is capable
of significantly increasing the monetary cost of performing Sybil attacks without the
need for trust or a centrally governed infrastructure. Using real users, our research
has shown that latency can serve as a reliable first-hand metric to avoid Sybils. We
conclude that SysbilSys allows peers to avoid Sybils in the network layer using only
network latency.

3. In Chapter 4 we have presented our carrier-selection mechanism of Timely Sharing
with Reputation Prototype (TSRP) to maintain public infrastructure. These carriers

108

6 Conclusion

are peers that store, and share, the data needed to maintain public infrastructure. We
have provided a proof that carriers can be selected, using their reputation, in such
a way that public infrastructure is maintained. The TSRP mechanism successfully
scales the number of copies carried by peers with respect to the reputations of the
locally-known peers. Furthermore, we have shown how our mechanism does not
necessarily introduce many more copies of data in the network than structured (cen-
tralized) approaches would. We conclude that our TSRP mechanism allows public
infrastructure to leverage locally-calculated reputations to be efficiently maintained.

. In Chapter 5 we introduced the Green Smart Contracts (GSC) paradigm for smart

contract execution. We have shown how probabilistic consensus mechanisms, weak
consistency models, and decentralized strong identities can be leveraged to execute
smart contracts. Our local-first approach to the execution of smart contracts signif-
icantly decreases the number of messages sent between peers. We derived that our
approach leads to a novel model for (digital) Web3 economies that is based on liabil-
ities instead of assets. We conclude that our GSC paradigm allows peers to execute
shared code in an environmentally-friendly, and local-first, fashion.

We derive the following high-level conclusions for these domains based on our earlier

conclusions:

5. Humans can exist and interact in the digital world in the same Self-Sovereign fash-

ion as they exist in the physical world. We have shown that identity wallet tech-
nology can enable even the most stringent use case of serving as a passport analog
(Conclusion 1). Even the most notorious attack on peer-to-peer software, the Sybil
attack, can be mitigated in a Self-Sovereign fashion, using a mechanism that depends
only on network latency measurements (Conclusion 2).

. Self-Sovereign users can share and maintain public infrastructure to reliably exe-

cute program code. We have shown a mechanism that only locally calculates rep-
utations to maintain public infrastructure (Conclusion 3). Program code can even
be collaboratively executed between Self-Sovereign individuals while sparing the
environment (Conclusion 4).

All in all, this thesis has showcased Self-Sovereign systems for the three domains of iden-
tity, public infrastructure, and shared program code execution. Thereby, we have shown
what technology can be used to enable Self-Sovereignty for a Web3 ecosystem.

6.2 Future Directions

This thesis has provided an exploratory analysis of the solution space of Self-Sovereignty.

Therefore, there is still much to be explored beyond what is presented in this thesis. We
now provide several promising directions for future work per chapter:

1. In Chapter 2 we presented the architecture of our TCID Self-Sovereign Identity so-

lution. In order to provide anonymity on the network layer, we presented a com-
munication substrate that uses intermediary peers to route data. We motivated

6.2 Future Directions 109

that this communication substrate is a necessity for the Internet. However, future
works may explore different substrates that guarantee network anonymity without
any additional anonymization measures. Considering the focus on mobile comput-
ing devices, future 6G (or even 7G) implementations may serve to reduce the Self-
Sovereign Identity stack complexity if anonymity is guaranteed by the substrate.
Therefore, the research question that we pose is: “How can a communication sub-
strate like the Internet be both anonymous and efficient?”

2. In Chapter 3 we introduced SybilSys to avoid connections to Sybils using only net-
work latency. As our focus was only on network latency, we have left the explo-
ration of other complementary mechanisms out of scope, like those that use social
networks to infer if identities are Sybils. Future works may explore coupling other
mechanisms to SybilSys to improve Sybil avoidance and the first research question
that we pose is: “To what extent can Sybil-avoiding mechanisms reinforce each other
to avoid Sybils?” Furthermore, Enhanced SybilSys uses a heuristic in an attempt to
cause messages to occupy the buffers of routing hardware at the same time, while
treating the network topology as opaque. The heuristic could be enhanced by using
network-topology-aware methods to guarantee message flow joins and the second
research question that we pose is: “How can the structure of peer-to-peer network
topologies be discovered without using data from other peers or third-party hardware?”

3. In Chapter 4 we introduced TSRP for reputation-based carrier selection to maintain
public infrastructure through the replication of records. We have proven that the
manner in which reputation is established is inconsequential for record replication.
However, the mapping of reputation to a number of records in a system remains un-
explored. Therefore, future works should explore both how reputation is calculated
and how many copies should be made available in relation to the known reputations.
The research question that we pose is: “In what manners can the carrying, storage
and sharing, of data be incentivized using reputation?”

4. In Chapter 5 we showed how the GSC paradigm can greatly reduce the number of
messages in a smart contract system. Our results are based on experiments with
applications (and their traces) that were not created for liability-based economies.
The impact of creating smart contracts that are specifically made for this use case
remains unexplored and the first research question that we pose is: “To what use
cases can smart contracts based on liabilities be applied?” Furthermore, we have not
explored hybrid models for consensus. Within our model, it is possible for different
smart-contract calls to form consensus in a different way in a network. For example,
some calls may need to be only agreed upon with a local clique in the network
whereas other calls may need a majority vote in the entire network. Therefore, the
second research question that we pose is: “How can decision making in program code
be characterized to derive its applicable consensus procotols?”

111

Bibliography

References

(1]

Andreas Abraham, Felix Horandner, Olamide Omolola, and Sebastian Ramacher.
Privacy-preserving eid derivation for self-sovereign identity systems. In Inter-
national Conference on Information and Communications Security, pages 307-323.
Springer, 2019.

Rafael Accorsi. Automated privacy audits to complement the notion of control for
identity management. In Policies and Research in Identity Management, pages 39-48.
Springer, 2008.

Muneeb Ali, Jude Nelson, Ryan Shea, and Michael] Freedman. Bootstrapping trust
in distributed systems with blockchains. USENIX; login, 41(3):52-58, 2016.

Christopher Allen. The path to self-sovereign identity, April 2016. URL http://
www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.
html.

Gergely Alpar, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs, Wouter Lueks,
and Sietse Ringers. Irma: practical, decentralized and privacy-friendly identity man-
agement using smartphones. In 10th Workshop on Hot Topics in Privacy Enhancing
Technologies (HotPETs 2017), pages 1-2, 2017.

Mansour Alsaleh, Abdulrahman Alarifi, Abdul Malik Al-Salman, Mohammed Al-
fayez, and Abdulmajeed Almuhaysin. Tsd: Detecting sybil accounts in twitter. In
2014 13th International Conference on Machine Learning and Applications, pages 463—
469. IEEE, 2014.

Elli Androulaki, Seung Geol Choi, Steven M Bellovin, and Tal Malkin. Reputation
systems for anonymous networks. In International Symposium on Privacy Enhancing
Technologies, pages 202-218. Springer, 2008.

Arthanareeswaran Angappan, TP Saravanabava, P Sakthivel, and KS Vishvaksenan.
Novel sybil attack detection using rssi and neighbour information to ensure secure
communication in wsn. Journal of Ambient Intelligence and Humanized Computing,
12(6):6567-6578, 2021.

Alex Auvolat, Davide Frey, Michel Raynal, Francois Taiani, et al. Money transfer
made simple: a specification, a generic algorithm, and its proof. Bulletin of EATCS,
3(132), 2020.

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html

112

Bibliography

[10]

(11]

(12]

[13]

(14]

[15]

(23]

Inés M Lima Azevedo, M Granger Morgan, and Lester Lave. Residential and regional
electricity consumption in the us and eu: How much will higher prices reduce co2
emissions? The Electricity Journal, 24(1):21-29, 2011.

DS Baars. Towards self-sovereign identity using blockchain technology. Master’s
thesis, University of Twente, 2016.

Abigael Okikijesu Bada, Amalia Damianou, Constantinos Marios Angelopoulos,
and Vasilios Katos. Towards a green blockchain: A review of consensus mechanisms
and their energy consumption. In 2021 17th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 503-511. IEEE, 2021.

Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and per-
sonalized pagerank. Proceedings of the VLDB Endowment, 4(3):173-184, 2010.

Johannes Bahrke and Charles Manoury. Commission proposes a trusted and secure
digital identity for all europeans. European Commission, June 2021. URL https:
//ec.europa.eu/commission/presscorner/detail/en/IP_21_2663.

Chong Bai. State-of-the-art and future trends of blockchain based on dag struc-
ture. In International Workshop on Structured Object-Oriented Formal Language and
Method, pages 183-196. Springer, 2018.

Peter Bailis and Ali Ghodsi. Eventual consistency today: Limitations, extensions,
and beyond. Communications of the ACM, 56(5):55-63, 2013.

Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine
fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 34, 2016.

Leemon Baird, Mance Harmon, and Paul Madsen. Hedera: A public hashgraph
network & governing council. White Paper, 1, 2019.

Paul Baran. On distributed communications networks. rand corporation. P-2626),
Santa Monica, September 1962, 40 pp, 32:168-267, 1962.

Paulo C Bartolomeu, Emanuel Vieira, Seyed M Hosseini, and Joaquim Ferreira. Self-
sovereign identity: Use-cases, technologies, and challenges for industrial iot. In 2019
24th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1173-1180. IEEE, 2019.

Rida A Bazzi and Goran Konjevod. On the establishment of distinct identities in
overlay networks. Distributed Computing, 19(4):267-287, 2007.

Roman Beck, Christoph Miiller-Bloch, and John Leslie King. Governance in the
blockchain economy: A framework and research agenda. Journal of the Association
for Information Systems, 19(10):1, 2018.

Nicole Lang Beebe, Sonia D Stacy, and Dane Stuckey. Digital forensic implications
of zfs. digital investigation, 6:5S99-S107, 2009.

https://ec.europa.eu/commission/presscorner/detail/en/IP_21_2663
https://ec.europa.eu/commission/presscorner/detail/en/IP_21_2663

References 113

[24]

[25]

[26]

[27]

[37]

Tal Be’ery. Ethology: A safari tour in ethereum’s dark forest, 2020. URL https:
//zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/.

Juan Benet. IPFS-content addressed, versioned, p2p file system (draft 3). arXiv
preprint arXiv:1407.3561, pages 1-11, 2014.

Timothy] Berners-Lee. Information management: A proposal. Technical report,
CERN, 1989.

Patrik Bichsel, Carl Binding, Jan Camenisch, Thomas Grof, Tom Heydt-Benjamin,
Dieter Sommer, and Greg Zaverucha. Cryptographic protocols of the identity mixer
library. In Technical Report, volume 99740, page 3730. 2009.

Ken Birman. The promise, and limitations, of gossip protocols. ACM SIGOPS Oper-
ating Systems Review, 41(5):8-13, 2007.

Kenneth P Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and
Yaron Minsky. Bimodal multicast. ACM Transactions on Computer Systems (TOCS),
17(2):41-88, 1999.

Alex Biryukov and Daniel Feher. Recon: Sybil-resistant consensus from reputation.
Pervasive and Mobile Computing, 61:101109, 2020.

Alex Biryukov and Ivan Pustogarov. Bitcoin over tor isn’t a good idea. In 2015 IEEE
Symposium on Security and Privacy, pages 122-134. IEEE, 2015.

Alex Biryukov and Sergei Tikhomirov. Deanonymization and linkability of cryp-
tocurrency transactions based on network analysis. In 2019 IEEE European sympo-
sium on security and privacy (EuroS&P), pages 172-184. IEEE, 2019.

Eric Blais, Joshua Brody, and Badih Ghazi. The information complexity of ham-
ming distance. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In Providing Sound Foundations for Cryptography: On the Work
of Shafi Goldwasser and Silvio Micali, pages 329-349, 2019.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. Verifiable delay func-
tions. In Annual international cryptology conference, pages 757-788. Springer, 2018.

Yogita Borse, Anushka Chawathe, Deepti Patole, and Purnima Ahirao. Anonymity:
A secure identity management using smart contracts. In Proceedings of International
Conference on Sustainable Computing in Science, Technology and Management (SUS-
COM), Amity University Rajasthan, Jaipur-India, 2019.

Dhruba Borthakur et al. Hdfs architecture guide. Hadoop Apache Project, 53(1-13):
2, 2008.

https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/
https://zengo.com/ethology-a-safari-tour-in-ethereums-dark-forest/

114

Bibliography

(38]

(39]

Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander
Shraer. Brahms: Byzantine resilient random membership sampling. Computer Net-
works, 53(13):2340-2359, 2009.

Eyuphan Bulut and Boleslaw K Szymanski. Exploiting friendship relations for effi-
cient routing in mobile social networks. IEEE Transactions on Parallel and Distributed
Systems, 23(12):2254-2265, 2012.

Umit Cali, Komal Khan, Shammya Shananda Saha, Tamara Hughes, Farrokh Rahimi,
Leonard C Tillman, Islam El-Sayed, Pablo Arboleya, and Sri Nikhil Gupta Gourisetti.
Smart contract as an enabler for the digital green transition. In 2022 IEEE PES Trans-
active Energy Systems Conference (TESC), pages 1-5. IEEE, 2022.

[41] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.

(42]

[49]

(50]

In International Conference on Security in Communication Networks, pages 268-289.
Springer, 2002.

Kim Cameron and Michael B Jones. Design rationale behind the identity metasys-
tem architecture. In ISSE/SECURE 2007 Securing Electronic Business Processes, pages
117-129. Springer, 2007.

Robson A Campélo, Marco A Casanova, Dorgival O Guedes, and Alberto HF Laen-
der. A brief survey on replica consistency in cloud environments. Journal of Internet
Services and Applications, 11(1):1-13, 2020.

Ming Cao and Chai Wah Wu. Topology design for fast convergence of network
consensus algorithms. In 2007 IEEE International Symposium on Circuits and Systems,
pages 1029-1032. IEEE, 2007.

Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding the
detection of fake accounts in large scale social online services. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12), pages 197-210,
2012.

Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S Wal-
lach. Secure routing for structured peer-to-peer overlay networks. ACM SIGOPS
Operating Systems Review, 36(SI):299-314, 2002.

Eric Y Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick Tague.
Oauth demystified for mobile application developers. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, pages 892—903, 2014.

Usman W Chohan. Are cryptocurrencies truly trustless? In Cryptofinance and
Mechanisms of Exchange, pages 77-89. Springer, 2019.

Lin William Cong and Zhiguo He. Blockchain disruption and smart contracts. The
Review of Financial Studies, 32(5):1754-1797, 2019.

Vlad C Coroama and Lorenz M Hilty. Assessing internet energy intensity: A review
of methods and results. Environmental impact assessment review, 45:63-68, 2014.

References 115

[51]

[52]

(53]

[56]

[57]

(58]

[59]

Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks for p2p sys-
tems. In International Workshop on Agents and P2P Computing, pages 1-13. Springer,
2004.

Pierluigi Cuccuru. Beyond bitcoin: an early overview on smart contracts. Interna-
tional Journal of Law and Information Technology, 25(3):179-195, 2017.

Weverton Luis da Costa Cordeiro, Flavio Roberto Santos, Gustavo Huff Mauch,
Marinho Pilla Barcelos, and Luciano Paschoal Gaspary. Identity management
based on adaptive puzzles to protect p2p systems from sybil attacks. Computer
Networks, 56(11):2569-2589, 2012. ISSN 1389-1286. doi: https://doi.org/10.1016/].
comnet.2012.03.026. URL https://www.sciencedirect.com/science/article/pii/
S$1389128612001417.

Weverton Luis da Costa Cordeiro, Flavio Roberto Santos, Marinho Pilla Barcellos,
Luciano Paschoal Gaspary, Hanna Kavalionak, Alessio Guerrieri, and Alberto Mon-
tresor. Making puzzles green and useful for adaptive identity management in large-
scale distributed systems. Computer Networks, 95:97-114, 2016.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decen-
tralized network coordinate system. In ACM SIGCOMM Computer Communication
Review, volume 34(4), pages 15-26. ACM, 2004.

Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability. In 2020 IEEE Sympo-
sium on Security and Privacy (SP), pages 910-927. IEEE, 2020.

Anwitaman Datta, Manfred Hauswirth, and Karl Aberer. Beyond "web of trust™
Enabling p2p e-commerce. In EEE International Conference on E-Commerce, 2003.
CEC 2003., pages 303-312. IEEE, 2003.

Sinclair Davidson, Primavera De Filippi, and Jason Potts. Economics of blockchain.
Available at SSRN 2744751, 2016.

Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Podhorszki. Flexpath:
Type-based publish/subscribe system for large-scale science analytics. In 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages
246-255. IEEE, 2014.

Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. The
anatomy of a scientific rumor. Nature Scientific reports, 3:2980, October 2013. doi:
10.1038/srep02980. URL https://doi.org/10.1038/srep02980.

Rubén de Juan-Marin, Hendrik Decker, José Enrique Armendériz—iﬁigo, José M
Bernabéu-Aubéan, and Francesc D Munoz-Escoi. Scalability approaches for causal
multicast: a survey. Computing, 98(9):923-947, 2016.

https://www.sciencedirect.com/science/article/pii/S1389128612001417
https://www.sciencedirect.com/science/article/pii/S1389128612001417
https://doi.org/10.1038/srep02980

116

Bibliography

[62]

(68]

[69]

(70]

(71]

Rodrigo Couto de Souza, Edimara Mezzomo Luciano, and Guilherme Costa Wieden-
hoft. The uses of the blockchain smart contracts to reduce the levels of corruption:
Some preliminary thoughts. In Proceedings of the 19th Annual International Confer-
ence on Digital Government Research: Governance in the Data Age, pages 1-2, 2018.

M.A. de Vos. Decentralization and Disintermediation in Blockchain-based Market-
places. PhD thesis, Delft University of Technology, 2021.

Murat Demirbas and Youngwhan Song. An rssi-based scheme for sybil attack de-
tection in wireless sensor networks. In 2006 International symposium on a world of
wireless, mobile and multimedia networks (WoWMoM’06), pages 5—pp. ieee, 2006.

Varun Deshpande, Hakim Badis, and Laurent George. Btcmap: mapping bitcoin
peer-to-peer network topology. In 2018 IFIP/IEEE International Conference on Per-
formance Evaluation and Modeling in Wired and Wireless Networks (PEMWN), pages
1-6. IEEE, 2018.

Yvo Desmedt. Abuses in cryptography and how to fight them. In Conference on the
Theory and Application of Cryptography, pages 375-389. Springer, 1988.

Rachna Dhamija and Lisa Dusseault. The Seven Flaws of Identity Management:
Usability and Security Challenges. IEEE Security & Privacy Magazine, 6(2):24-29,
March 2008. ISSN 1540-7993. doi: 10.1109/MSP.2008.49.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, Naval Research Lab Washington DC,
2004.

Darcy DiNucci. Design & new media: Fragmented future-web development faces a
process of mitosis, mutation, and natural selection. PRINT-NEW YORK-, 53:32-35,
1999.

John R Douceur. The sybil attack. In International workshop on peer-to-peer systems,
pages 251-260. Springer, 2002.

Randall E Duran and Paul Griffin. Smart contracts: will fintech be the catalyst for
the next global financial crisis? Journal of Financial Regulation and Compliance,
2019.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-
Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. In 2012
IEEE Symposium on Security and Privacy, pages 332-346, San Francisco, CA, USA,
May 2012. IEEE. ISBN 978-1-4673-1244-8 978-0-7695-4681-0. doi: 10.1109/SP.2012.
28.

Helen Eenmaa-Dimitrieva and Maria José Schmidt-Kessen. Creating markets in no-
trust environments: The law and economics of smart contracts. Computer law &
security review, 35(1):69-88, 2019.

References 117

[74]

[75]

[76]

O. Ersoy. Incentives and Cryptographic Protocols for Bitcoin-like Blockchains. PhD
thesis, Delft University of Technology, 2021.

Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent
dishonesty: front-running attacks on blockchain. In International Conference on
Financial Cryptography and Data Security, pages 170-189. Springer, 2019.

Obinna Ethelbert, Faraz Fatemi Moghaddam, Philipp Wieder, and Ramin Yahyapour.
A json token-based authentication and access management schema for cloud saas
applications. In 2017 IEEE 5th International Conference on Future Internet of Things
and Cloud (FiCloud), pages 47-53. IEEE, 2017.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International conference on financial cryptography and data security, pages 436—
454. Springer, 2014.

E Ezhilarasan and M Dinakaran. A review on mobile technologies: 3g, 4g and 5g. In
2017 second international conference on recent trends and challenges in computational
models (ICRTCCM), pages 369-373. IEEE, 2017.

[79] José G Faisca and José Q Rogado. Decentralized semantic identity. In Proceedings of

[80]

(83]

[84]

the 12th International Conference on Semantic Systems, pages 177-180, 2016.

Giulia Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley Denby, Shruti
Bhargava, Andrew Miller, and Pramod Viswanath. Dandelion++: Lightweight
Cryptocurrency Networking with Formal Anonymity Guarantees. Measurement
and Analysis of Computing Systems, 2(2):1-35, June 2018. ISSN 2476-1249. doi:
10.1145/3224424.

Michal Feldman and John Chuang. Overcoming free-riding behavior in peer-to-peer
systems. ACM sigecom exchanges, 5(4):41-50, 2005.

Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication across
network address translators. In USENIX Annual Technical Conference, General Track,
pages 179-192, 2005.

The SelfKey Foundation. Selfkey, September 2017. URL https://selfkey.org/
wp-content/uploads/2019/03/selfkey-whitepaper-en.pdf.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated
learning poisoning. arXiv preprint arXiv:1808.04866, 2018.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. The limitations of federated
learning in sybil settings. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 301-316, 2020.

P. Gao, B. Wang, N. Z. Gong, S. R. Kulkarni, K. Thomas, and P. Mittal. Sybilfuse:
Combining local attributes with global structure to perform robust sybil detection.
In 2018 IEEE Conference on Communications and Network Security (CNS), pages 1-9,
May 2018. doi: 10.1109/CNS.2018.8433147.

https://selfkey.org/wp-content/uploads/2019/03/selfkey-whitepaper-en.pdf
https://selfkey.org/wp-content/uploads/2019/03/selfkey-whitepaper-en.pdf

118

Bibliography

(87]

[91]

[92]

[96]

[97]

Gartner. Digitalization =~ will ~make most heritage financial
firms irrelevant, 10 2018. https://www.gartner.com/en/doc/
338356-digitalization-will-make-most-heritage-financial-firms-irrelevant.

Arthur Gervais, Srdjan Capkun, Ghassan O Karame, and Damian Gruber. On the
privacy provisions of bloom filters in lightweight bitcoin clients. In Proceedings of
the 30th Annual Computer Security Applications Conference, pages 326-335. ACM,
2014.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51-68. ACM, 2017.

Paul A. Grassi, Michael E. Garcia, and James L. Fenton. Nist special publication
800-63-3: Digital identity guidelines. 2017. doi: 10.6028/NIST.SP.800-63-3.

Jesper Grolin. Corporate legitimacy in risk society: The case of brent spar. Business
Strategy and the Environment, 7(4):213-222, 1998.

Andreas Griiner, Alexander Miihle, and Christoph Meinel. An integration archi-
tecture to enable service providers for self-sovereign identity. In 2019 IEEE 18th
International Symposium on Network Computing and Applications (NCA), pages 1-5.
IEEE, 2019.

Roch Guérin and Vinod Peris. Quality-of-service in packet networks: basic mecha-
nisms and directions. Computer networks, 31(3):169-189, 1999.

Gilles Guette and Bertrand Ducourthial. On the sybil attack detection in vanet. In
2007 IEEE international conference on Mobile Adhoc and sensor systems, pages 1-6.
IEEE, 2007.

Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical
accountability for distributed systems. ACM SIGOPS operating systems review, 41(6):
175-188, 2007.

Abdelatif Hafid, Abdelhakim Senhaji Hafid, and Mustapha Samih. Scaling
blockchains: A comprehensive survey. IEEE Access, 8:125244-125262, 2020.

Jan Hajny and Lukas Malina. Unlinkable attribute-based credentials with practical
revocation on smart-cards. In International Conference on Smart Card Research and
Advanced Applications, pages 62-76. Springer, 2012.

Omar Hasan, Lionel Brunie, Elisa Bertino, and Ning Shang. A decentralized privacy
preserving reputation protocol for the malicious adversarial model. IEEE Transac-
tions on Information Forensics and Security, 8(6):949-962, 2013.

Samer Hassan and Primavera De Filippi. The expansion of algorithmic governance:
from code is law to law is code. Field Actions Science Reports. The journal of field
actions, (Special Issue 17):88-90, 2017.

https://www.gartner.com/en/doc/338356-digitalization-will-make-most-heritage-financial-firms-irrelevant
https://www.gartner.com/en/doc/338356-digitalization-will-make-most-heritage-financial-firms-irrelevant

References 119

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Hideaki Hata, Mingyu Guo, and M Ali Babar. Understanding the heterogeneity of
contributors in bug bounty programs. In 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 223-228. IEEE,
2017.

Mike Hearn and Richard Gendal Brown. Corda: A distributed ledger. Corda Tech-
nical White Paper, 2016, 2016.

Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Da-
ian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, et al.
Kevm: A complete formal semantics of the ethereum virtual machine. In 2018 IEEE
31st Computer Security Foundations Symposium (CSF), pages 204-217. IEEE, 2018.

Vincent C Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin,
Robert Miller, and Karen Scarfone. Guide to attribute based access control (abac)
definition and considerations. 2014. doi: 10.6028/NIST.SP.800-162.

Yong Huang, Wei Wang, Yiyuan Wang, Tao Jiang, and Qian Zhang. Lightweight
sybil-resilient multi-robot networks by multipath manipulation. In IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pages 2185-2193. IEEE, 2020.

Fabien Imbault, Marie Swiatek, Rodolphe de Beaufort, and Robert Plana. The green
blockchain: Managing decentralized energy production and consumption. In 2017
IEEE International Conference on Environment and Electrical Engineering and 2017
IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pages
1-5. IEEE, 2017.

Leander Jehl and Hein Meling. Towards byzantine fault tolerant publish/subscribe:
A state machine approach. In Proceedings of the 9th Workshop on Hot Topics in De-
pendable Systems, pages 1-5, 2013.

Mark Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten Van Steen.
The peer sampling service: Experimental evaluation of unstructured gossip-based
implementations. In ACM/IFIP/USENIX International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing, pages 79-98. Springer, 2004.

Mark Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten Van Steen. Gossip-based peer sampling. ACM Transactions on Computer
Systems (TOCS), 25(3):8—es, 2007.

[109] Jing Jiang, Zifei Shan, Wenpeng Sha, Xiao Wang, and Yafei Dai. Detecting and vali-

[110]

[111]

dating sybil groups in the wild. In 2012 32nd International Conference on Distributed
Computing Systems Workshops, pages 127-132. IEEE, 2012.

Xin-Jian Jiang and Xiao Fan Liu. Cryptokitties transaction network analysis: The
rise and fall of the first blockchain game mania. Frontiers in Physics, page 57, 2021.

Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrust
algorithm for reputation management in p2p networks. In Proceedings of the 12th
international conference on World Wide Web, pages 640-651, 2003.

120

Bibliography

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and
Mike Dahlin. All about eve: Execute-verify replication for multi-core servers. In
10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 237-250, 2012.

Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-spending fast pay-
ments in bitcoin. In Proceedings of the 2012 ACM conference on Computer and com-
munications security, pages 906-917, 2012.

Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes of social networks via
biased sampling. In Proceedings of the 20th international conference on World wide
web, pages 597-606. ACM, 2011.

Anne-Marie Kermarrec, Alessio Pace, Vivien Quema, and Valerio Schiavoni. Nat-
resilient gossip peer sampling. In 2009 29th IEEE International Conference on Dis-
tributed Computing Systems, pages 360-367. IEEE, 2009.

Dmitry Khovratovich and Jason Law. Sovrin: digital identities in the blockchain
era. 2017.

Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew Miller, and
Michael Bailey. Measuring ethereum network peers. In Proceedings of the Internet
Measurement Conference 2018, pages 91-104, 2018.

Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan.
Local-first software: you own your data, in spite of the cloud. In Proceedings of the
2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pages 154-178, 2019.

Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure Computing, 2(2):93-108,
2005.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic op-
timization and gossip algorithms with compressed communication. In International
Conference on Machine Learning, pages 3478-3487. PMLR, 2019.

Daniel Kondor, Marton Pésfai, Istvan Csabai, and Gabor Vattay. Do the rich get
richer? an empirical analysis of the bitcoin transaction network. PloS one, 9(2),
2014.

Galia Kondova and Jorn Erbguth. Self-sovereign identity on public blockchains and
the gdpr. In Proceedings of the 35th Annual ACM Symposium on Applied Computing,
pages 342-345, 2020.

Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. Handling im-
balanced datasets: A review. GESTS international transactions on computer science
and engineering, 30(1):25-36, 2006.

References 121

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

Eleni Koutrouli and Aphrodite Tsalgatidou. Taxonomy of attacks and defense mech-
anisms in p2p reputation systems - lessons for reputation system designers. Comp.
Sci. Review, 6(2-3):47-70, 2012.

Mirja Kithlewind and Bob Briscoe. Chirping for congestion control-implementation
feasibility. Proceedings of PELDNeT 10, 2010.

Bogdan Kulynych, Wouter Lueks, Marios Isaakidis, George Danezis, and Carmela
Troncoso. Claimchain: Improving the security and privacy of in-band key distribu-
tion for messaging. In Proceedings of the 2018 Workshop on Privacy in the Electronic
Society, pages 86-103, 2018.

Jitendra Kurmi and Ankur Sodhi. A survey of zero-knowledge proof for authentica-
tion. International Journal of Advanced Research in Computer Science and Software
Engineering, 5(1), 2015.

Ruggero Donida Labati, Angelo Genovese, Enrique Murfioz, Vincenzo Piuri, Fabio
Scotti, and Gianluca Sforza. Biometric recognition in automated border control: a
survey. ACM Computing Surveys (CSUR), 49(2):1-39, 2016.

Ashwin Lall. Data streaming algorithms for the kolmogorov-smirnov test. In 2015
IEEE International Conference on Big Data (Big Data), pages 95-104. IEEE, 2015.

Raul Landa, Joao Taveira Araujo, Richard G Clegg, Eleni Mykoniati, David Griffin,
and Miguel Rio. The large-scale geography of internet round trip times. In 2013 IFIP
Networking Conference, pages 1-9. IEEE, 2013.

Jonathan Ledlie, Paul Gardner, and Margo I Seltzer. Network coordinates in the
wild. In NSDJ, volume 7, pages 299-311, 2007.

Jei Young Lee. A decentralized token economy: How blockchain and cryptocur-
rency can revolutionize business. Business Horizons, 62(6):773-784, 2019.

[133] Jintae Lee. An end-user perspective on file-sharing systems. Communications of the

[134]

[135]

[136]

[137]

ACM, 46(2):49-53, 2003.

Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. Trinc: Small
trusted hardware for large distributed systems. In NSDI volume 9, pages 1-14, 2009.

Brian Neil Levine, Clay Shields, and N Boris Margolin. A survey of solutions to the
sybil attack. University of Massachusetts Amherst, Amherst, MA, 7:224, 2006.

Chenxin Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei Xu, Fan
Long, and Andrew Chi-Chih Yao. A decentralized blockchain with high throughput
and fast confirmation. In 2020 USENIX Annual Technical Conference (USENLX ATC
20), pages 515-528, 2020.

Frank Li, Prateek Mittal, Matthew Caesar, and Nikita Borisov. Sybilcontrol: Prac-
tical sybil defense with computational puzzles. In Proceedings of the seventh ACM
workshop on Scalable trusted computing, pages 67-78, 2012.

122

Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Harry C Li, Allen Clement, Edmund L Wong, Jeff Napper, Indrajit Roy, Lorenzo
Alvisi, and Michael Dahlin. Bar gossip. In Proceedings of the 7th symposium on
Operating systems design and implementation, pages 191-204, 2006.

Shancang Li, Shanshan Zhao, Po Yang, Panagiotis Andriotis, Lida Xu, and Qindong
Sun. Distributed consensus algorithm for events detection in cyber-physical sys-
tems. IEEE Internet of Things Journal, 6(2):2299-2308, 2019.

Wenjie Li, Sharief MA Oteafy, and Hossam S Hassanein. Streamcache: Popularity-
based caching for adaptive streaming over information-centric networks. In 2016
IEEE International Conference on Communications (ICC), pages 1-6. IEEE, 2016.

Jian Liang, Rakesh Kumar, and Keith W Ross. The kazaa overlay: A measurement
study. Computer Networks Journal (Elsevier), 49(6), 2005.

Jian Liang, Naoum Naoumov, and Keith W Ross. The index poisoning attack in p2p
file sharing systems. In INFOCOM, 2006.

Rolf Lindemann. The evolution of authentication. In ISSE 2013 Securing Electronic
Business Processes, pages 11-19. Springer, 2013.

Juan Liu, Jun Lv, Hasan Dincer, Serhat Yiksel, and Hiisne Karakus. Selection of
renewable energy alternatives for green blockchain investments: A hybrid it2-based
fuzzy modelling. Archives of Computational Methods in Engineering, pages 1-15,
2021.

Yue Liu, David R Bild, Robert P Dick, Z Morley Mao, and Dan S Wallach. The
mason test: A defense against sybil attacks in wireless networks without trusted
authorities. IEEE Transactions on Mobile Computing, 14(11):2376-2391, 2015.

Thomas Locher, Stefan Schmid, and Roger Wattenhofer. equus: A provably robust
and locality-aware peer-to-peer system. In Sixth IEEE International Conference on
Peer-to-Peer Computing (P2P’06), pages 3—11. IEEE, 2006.

Thomas Locher, David Mysicka, Stefan Schmid, and Roger Wattenhofer. Poisoning
the kad network. In International Conference on Distributed Computing and Network-
ing, pages 195-206. Springer, 2010.

Scott Locklin. Token economics, 2018. URL https://basicattentiontoken.org/
static-assets/documents/token-econ-2018.pdf.

Matt Lockyer, N Mudge, and J Schalm. Erc-998 composable non-fungible token
standard. Ethereum Foundation (Stiftung Ethereum), Zug, Switzerland, 2015.

Alexander Loser, Felix Naumann, Wolf Siberski, Wolfgang Nejdl, and Uwe Thaden.
Semantic overlay clusters within super-peer networks. In International Workshop on
Databases, Information Systems, and Peer-to-Peer Computing, pages 33-47. Springer,
2003.

https://basicattentiontoken.org/static-assets/documents/token-econ-2018.pdf
https://basicattentiontoken.org/static-assets/documents/token-econ-2018.pdf

References 123

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Georgios Loukas and Giilay Oke. Protection against denial of service attacks: A
survey. The Computer Journal, 53(7):1020-1037, 2010.

Wouter Lueks, Gergely Alpar, Jaap-Henk Hoepman, and Pim Vullers. Fast revoca-
tion of attribute-based credentials for both users and verifiers. Computers & Security,
67:308-323, 2017.

Cristian Lumezanu, Randy Baden, Neil Spring, and Bobby Bhattacharjee. Trian-
gle inequality variations in the internet. In ACM SIGCOMM conference on Internet
measurement. ACM, 2009.

Daniele Magazzeni, Peter McBurney, and William Nash. Validation and verification
of smart contracts: A research agenda. Computer, 50(9):50-57, 2017.

Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov,
Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller. Candid:
Can-do decentralized identity with legacy compatibility, sybil-resistance, and ac-
countability. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1348-1366.
IEEE, 2021.

Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In International Workshop on Peer-to-Peer Systems,
pages 53-65. Springer, 2002.

Sigurd Meldal, Sriram Sankar, and James Vera. Exploiting locality in maintaining
potential causality. In Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, pages 231-239, 1991.

Michel Meulpolder, Johan A Pouwelse, Dick HJ Epema, and Henk J Sips. Barter-
cast: A practical approach to prevent lazy freeriding in p2p networks. In 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages 1-8. IEEE, 2009.

Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In 40th
annual symposium on foundations of computer science (cat. No. 99CB37039), pages
120-130. IEEE, 1999.

CNN Money. Napster: 20 million users. URL https://money.cnn.com/2000/07/19/
technology/napster/index.htm.

Seyed Hossein Mortazavi, Bharath Balasubramanian, Eyal de Lara, and Shankara-
narayanan Puzhavakath Narayanan. Toward session consistency for the edge. In
USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), 2018.

Alexander Miihle, Andreas Griiner, Tatiana Gayvoronskaya, and Christoph Meinel.
A survey on essential components of a self-sovereign identity. Computer Science
Review, 30:80—-86, 2018.

Matthieu Nadini, Laura Alessandretti, Flavio Di Giacinto, Mauro Martino,
Luca Maria Aiello, and Andrea Baronchelli. Mapping the nft revolution: market
trends, trade networks, and visual features. Scientific reports, 11(1):1-11, 2021.

https://money.cnn.com/2000/07/19/technology/napster/index.htm
https://money.cnn.com/2000/07/19/technology/napster/index.htm

124

Bibliography

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
2008.

Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. Fabriccrdt: A conflict-
free replicated datatypes approach to permissioned blockchains. In Proceedings of
the 20th International Middleware Conference, pages 110-122, 2019.

Brice Nédelec, Pascal Molli, Achour Mostefaoui, and Emmanuel Desmontils. Lseq:
an adaptive structure for sequences in distributed collaborative editing. In Proceed-
ings of the 2013 ACM symposium on Document engineering, pages 37—46, 2013.

Sina Rafati Niya, Benjamin Jeffrey, and Burkhard Stiller. Kyot: Self-sovereign iot
identification with a physically unclonable function. In 2020 IEEE 45th Conference
on Local Computer Networks (LCN), pages 485-490. IEEE, 2020.

Kieron O’hara. Smart contracts-dumb idea. IEEE Internet Computing, 21(2):97-101,
2017.

Vinicius C Oliveira, Julia Almeida Valadares, Jose Eduardo A. Sousa, Alex
Borges Vieira, Heder Soares Bernardino, Saulo Moraes Villela, and Glauber
Dias Goncalves. Analyzing transaction confirmation in ethereum using machine
learning techniques. ACM SIGMETRICS Performance Evaluation Review, 48(4):12-
15, 2021.

Cathy O’Neil and Rachel Schutt. Doing data science: Straight talk from the frontline.
” O’Reilly Media, Inc”, 2013.

Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC 14), pages
305-319, 2014.

Nouha Oualha and Yves Roudier. Reputation and audits for self-organizing stor-
age. In Proceedings of the workshop on Security in Opportunistic and SOCial networks,
pages 1-10, 2008.

Lasse @verlier and Paul Syverson. Improving efficiency and simplicity of tor circuit
establishment and hidden services. In International Workshop on Privacy Enhancing
Technologies, pages 134—152. Springer, 2007.

Sehyun Park, Seongwon Im, Youhwan Seol, and Jeongyeup Paek. Nodes in the bit-
coin network: Comparative measurement study and survey. IEEE Access, 7:57009-
57022, 2019.

Christos Patsonakis, Katerina Samari, Aggelos Kiayiasy, and Mema Roussopoulos.
On the practicality of a smart contract pki. In 2019 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPCON), pages 109-118. IEEE,
2019.

Dave Peck and the PSL Team. An engineer’s hype-free observations on web3 (and its
possibilities), 2021. URL https://www.psl.com/feed-posts/web3-engineer-take.

https://www.psl.com/feed-posts/web3-engineer-take

References 125

[177]

[178]

[179]

[180]

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Annual international cryptology conference, pages 129-140.
Springer, 1991.

Kun Peng and Feng Bao. An efficient range proof scheme. In 2010 IEEE Second
International Conference on Social Computing, pages 826—833. IEEE, 2010.

Liam Peyton, Chintan Doshi, and Pierre Seguin. An audit trail service to enhance
privacy compliance in federated identity management. In Proceedings of the 2007
conference of the center for advanced studies on Collaborative research, pages 175-
187, 2007.

Andrea Pinna, Simona Ibba, Gavina Baralla, Roberto Tonelli, and Michele Marchesi.
A massive analysis of ethereum smart contracts empirical study and code metrics.
IEEE Access, 7:78194-78213, 2019.

[181] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scal-

[182]

able off-chain instant payments, 2016. URL https://lightning.network/
lightning-network-paper.pdf.

Serguei Popov. The tangle. White paper, 1(3), 2018.

[183] Johan A Pouwelse, Pawel Garbacki, Jun Wang, Arno Bakker, Jie Yang, Alexandru

[184]

[185]

[186]

[187]

[188]

[189]

Iosup, Dick HJ Epema, Marcel Reinders, Maarten R Van Steen, and Henk] Sips.
Tribler: a social-based peer-to-peer system. Concurrency and computation: Practice
and experience, 20(2):127-138, 2008.

Thomas Puschmann. Fintech. Business & Information Systems Engineering, 59(1):
69-76, 2017.

Krishna Ramachandran, Irfan Sheriff, Elizabeth Belding, and Kevin Almeroth. Rout-
ing stability in static wireless mesh networks. In International Conference on Passive
and Active Network Measurement, pages 73-82. Springer, 2007.

Muhammad Raza, Venkatesh Samineni, and William Robertson. Physical and logical
topology slicing through sdn. In 2016 IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 1-4. IEEE, 2016.

David Recordon and Drummond Reed. Openid 2.0: a platform for user-centric iden-
tity management. In Proceedings of the second ACM workshop on Digital identity
management, pages 11-16, 2006.

Drummond Reed, Manu Sporny, Dave Longley, Christopher Allen, Ryan Grant, and
Markus Sabadello. Decentralized identifiers (dids) v1.0, April 2020. URL https:
//www.w3.org/TR/did-core/.

Dan Robinson and Georgios Konstantopoulos. Ethereum is a dark forest, 2020. URL
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/.

https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/

126

Bibliography

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

Team Rocket. Snowflake to avalanche : A novel metastable consensus protocol
family for cryptocurrencies. 2018.

Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Giin Sirer.
Scalable and probabilistic leaderless bft consensus through metastability. arXiv
preprint arXiv:1906.08936, 2019.

Hosam Rowaihy, William Enck, Patrick McDaniel, and Thomas La Porta. Limiting
sybil attacks in structured p2p networks. In IEEE INFOCOM 2007-26th IEEE Interna-
tional Conference on Computer Communications, pages 2596—-2600. IEEE, 2007.

Muhammad Saad, Victor Cook, Lan Nguyen, My T Thai, and Aziz Mohaisen. Par-
titioning attacks on bitcoin: Colliding space, time, and logic. In 2019 IEEE 39th In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 1175-1187.
IEEE, 2019.

Muhammad Saad, Songqging Chen, and David Mohaisen. Root cause analyses for
the deteriorating bitcoin network synchronization. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), pages 239-249. IEEE, 2021.

Mohammad Sadoghi, Martin Jergler, Hans-Arno Jacobsen, Richard Hull, and Ro-
man Vaculin. Safe distribution and parallel execution of data-centric workflows
over the publish/subscribe abstraction. IEEE Transactions on Knowledge and Data
Engineering, 27(10):2824-2838, 2015.

Ermin Sakic and Wolfgang Kellerer. Decoupling of distributed consensus, failure
detection and agreement in sdn control plane. In IFIP Networking 2020, page 9, 2020.

Chinmay Saraf and Siddharth Sabadra. Blockchain platforms: A compendium. In
2018 IEEE International Conference on Innovative Research and Development (ICIRD),
pages 1-6. IEEE, 2018.

Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. A trustless privacy-
preserving reputation system. In IFIP International Conference on ICT Systems Secu-
rity and Privacy Protection, pages 398—-411. Springer, 2016.

[199] Johannes Sedlmeir, Hans Ulrich Buhl, Gilbert Fridgen, and Robert Keller. The en-

[200]

[201]

ergy consumption of blockchain technology: beyond myth. Business & Information
Systems Engineering, 62(6):599-608, 2020.

Tallat M Shafaat, Ali Ghodsi, and Seif Haridi. A practical approach to network size
estimation for structured overlays. In International Workshop on Self-Organizing
Systems, pages 71-83. Springer, 2008.

Savva Shanaev, Arina Shuraeva, Mikhail Vasenin, and Maksim Kuznetsov. Cryp-
tocurrency value and 51% attacks: evidence from event studies. The Journal of Al-
ternative Investments, 22(3):65-77, 2019.

References 127

[202]

[203]

[204]

[205]

Marc Shapiro, Nuno Pregui¢a, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Symposium on Self-Stabilizing Systems, pages 386—400.
Springer, 2011.

Voshmgir Shermin. Disrupting governance with blockchains and smart contracts.
Strategic Change, 26(5):499-509, 2017.

Micah Sherr, Matt Blaze, and Boon Thau Loo. Veracity: Practical secure network
coordinates via vote-based agreements. In USENIX Annual Technical Conference,
2009.

Atul Singh et al. Eclipse attacks on overlay networks: Threats and defenses. In In
IEEE INFOCOM, 2006.

[206] James E Smith and Ravi Nair. The architecture of virtual machines. Computer, 38

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

(5):32-38, 2005.

Manu Sporny, Dave Longley, Markus Sabadello, Drummond Reed, Orie Steele, and
Christopher Allen. Decentralized identifiers (dids) v1.0: Core architecture, data
model, and representations. Technical report, W3C, 2022.

Mudhakar Srivatsa and Mike Hicks. Deanonymizing mobility traces: Using social
network as a side-channel. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 628—637, 2012.

Alexander Stannat, Can Umut Ileri, Dion Gijswijt, and Johan Pouwelse. Achiev-
ing sybil-proofness in distributed work systems. In International Conference on Au-
tonomous Agents and Multiagent Systems, 2021.

Moritz Steiner, Taoufik En-Najjary, and Ernst W Biersack. Exploiting kad: possible
uses and misuses. ACM SIGCOMM Computer Communication Review, 37(5):65-70,
2007.

Moritz Steiner, Taoufik En-Najjary, and Ernst W Biersack. A global view of kad.
In Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pages
117-122, 2007.

Quinten Stokkink and Johan Pouwelse. Deployment of a blockchain-based self-
sovereign identity. In 2018 IEEE international conference on Internet of Things
(iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber,
physical and social computing (CPSCom) and IEEE smart data (SmartData), pages
1336-1342. IEEE, 2018.

Quinten Stokkink, Can Umut Ileri, Johan Pouwelse, and Jan S. Rellermeyer.
Latency collision measurements. 4TU.Centre for Research Data. Dataset.
https://doi.org/10.4121/uuid:34850d65-1908-4249-b446-8e87c6d21ba0, 2020.

Quinten Stokkink, Alexander Stannat, and Johan Pouwelse. Foundations of peer-
to-peer reputation. In Proceedings of the 1st International Workshop on Distributed
Infrastructure for Common Good, pages 25-30, 2020.

128 Bibliography

[215] Quinten Stokkink, Georgy Ishmaev, Dick Epema, and Johan Pouwelse. A truly self-
sovereign identity system. In 2021 IEEE 46th Conference on Local Computer Networks
(LCN), pages 1-8. IEEE, 2021.

[216] Quinten Stokkink, Can Umut Ileri, and Johan Pouwelse. Reputation-based data car-
rying for web3 networks. In 2022 IEEE 47th Conference on Local Computer Networks
(LCN), pages 283-286. IEEE, 2022.

[217] Miha Stopar, Manca Bizjak, Jolanda Modic, Jan Hartman, AnZe Zitnik, and Tilen
Marc. emmy-trust-enhancing authentication library. In IFIP International Confer-
ence on Trust Management, pages 133-146. Springer, 2019.

[218] Emilio Calvanese Strinati and Sergio Barbarossa. 6g networks: Beyond shannon to-
wards semantic and goal-oriented communications. Computer Networks, 190:107930,
2021.

[219] Kalika Suksomboon, Saran Tarnoi, Yusheng Ji, Michihiro Koibuchi, Kensuke
Fukuda, Shunji Abe, Nakamura Motonori, Michihiro Aoki, Shigeo Urushidani, and
Shigeki Yamada. Popcache: Cache more or less based on content popularity for
information-centric networking. In 38th Annual IEEE Conference on Local Computer
Networks, pages 236—243. IEEE, 2013.

[220] Karl Taeuscher. Uncertainty kills the long tail: Demand concentration in peer-to-
peer marketplaces. Electronic Markets, 29(4):649-660, 2019.

[221] Yuechen Tao, Bo Li, Jingjie Jiang, Hok Chu Ng, Cong Wang, and Baochun Li. On
sharding open blockchains with smart contracts. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE), pages 1357-1368. IEEE, 2020.

[222] DeGate Team. An analysis of ethereum front-running and
its defense solutions, 2021. URL https://medium.com/degate/
an-analysis-of-ethereum-front-running-and-its-defense-solutions-34ef81ba8456.

[223] Anjan V Thakor. Fintech and banking: What do we know? Journal of Financial
Intermediation, 41:100833, 2020.

[224] Elise Thomas, Albert Zhang, et al. ID2020, Bill Gates and the Mark of the Beast: how
Covid-19 catalyses existing online conspiracy movements. JSTOR, 2020.

[225] Gunnar Thorvaldsen. Censuses and census takers: A global history. Routledge, 2017.

[226] Muoi Tran, Akshaye Shenoi, and Min Suk Kang. On the routing-aware peering
against network-eclipse attacks in bitcoin. In 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[227] Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian, and Sherman SM Chow.
Optimal sybil-resilient node admission control. In 2011 Proceedings IEEE INFOCOM,
pages 3218-3226. IEEE, 2011.

https://medium.com/degate/an-analysis-of-ethereum-front-running-and-its-defense-solutions-34ef81ba8456
https://medium.com/degate/an-analysis-of-ethereum-front-running-and-its-defense-solutions-34ef81ba8456

References 129

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]
[240]

[241]

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Buen-
zli, and Martin Vechev. Securify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 67-82, 2018.

Lewis Tseng. Eventual consensus: Applications to storage and blockchain. In 2019
57th Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pages 840-846. IEEE, 2019.

F Vogelsteller and V Buterin. Erc-20 token standard. ethereum foundation (stiftung
ethereum), zug, switzerland (2015).

Shermin Voshmgir. Token Economy: How the Web3 reinvents the Internet, volume 2.
Token Kitchen, 2020.

Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and Yiannis Psaras.
Gossipsub: Attack-resilient message propagation in the filecoin and eth2. 0 net-
works. arXiv preprint arXiv:2007.02754, 2020.

Chundong Wang, Likun Zhu, Liangyi Gong, Zhentang Zhao, Lei Yang, Zheli Liu,
and Xiaochun Cheng. Accurate sybil attack detection based on fine-grained physical
channel information. Sensors, 18(3):878, 2018.

Fennie Wang and Primavera De Filippi. Self-sovereign identity in a globalized world:
Credentials-based identity systems as a driver for economic inclusion. Frontiers in
Blockchain, 2:28, 2020.

Honghao Wang, Yingwu Zhu, and Yiming Hu. An efficient and secure peer-to-
peer overlay network. In The IEEE Conference on Local Computer Networks 30th
Anniversary (LCN’05) I, pages 8—pp. IEEE, 2005.

Sage A Welil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceedings of the 7th
symposium on Operating systems design and implementation, pages 307-320, 2006.

Sage A Weil, Scott A Brandt, Ethan L Miller, and Carlos Maltzahn. Crush: Con-
trolled, scalable, decentralized placement of replicated data. In SC’06: Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, pages 31-31. IEEE, 2006.

Moritz Wendl, My Hanh Doan, and Remmer Sassen. The environmental impact of
cryptocurrencies using proof of work and proof of stake consensus algorithms: A
systematic review. Journal of Environmental Management, 326:116530, 2023.

Phillip Windley. How sovrin works. Sovrin Foundation, pages 1-10, 2016.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1-32, 2014.

Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of distributed
consensus protocols for blockchain networks. IEEE Communications Surveys & Tu-
torials, 22(2):1432-1465, 2020.

130

Bibliography

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

Atsushi Yamamoto, Daisuke Asahara, Tomoko Itao, Satoshi Tanaka, and Tatsuya
Suda. Distributed pagerank: a distributed reputation model for open peer-to-peer
network. In 2004 International Symposium on Applications and the Internet Work-
shops. 2004 Workshops., pages 389-394. IEEE, 2004.

Haifeng Yu, Michael Kaminsky, Phillip Gibbons, and Abraham Flaxman. Sybilguard:
defending against sybil attacks via social networks. ACM SIGCOMM Computer Com-
munication Review, 36(4):267-278, 2006.

Haifeng Yu, Phillip Gibbons, Michael Kaminsky, and Feng Xiao. Sybillimit: A near-
optimal social network defense against sybil attacks. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pages 3-17. IEEE, 2008.

Adja Elloh Yves-Christian, Badis Hammi, Ahmed Serhrouchni, and Houda Labiod.
Total eclipse: How to completely isolate a bitcoin peer. In 2018 Third International
Conference on Security of Smart Cities, Industrial Control System and Communications
(SSIC), pages 1-7. IEEE, 2018.

Sebastian Zander and Steven] Murdoch. An improved clock-skew measurement
technique for revealing hidden services. In USENIX Security Symposium, pages 211-
226, 2008.

Niels Zeilemaker, Boudewijn Schoon, and Johan Pouwelse. Dispersy bundle syn-
chronization. TU Delft, Parallel and Distributed Systems, 2013.

Qingji Zheng and Shouhuai Xu. Secure and efficient proof of storage with dedupli-
cation. In Proceedings of the second ACM conference on Data and Application Security
and Privacy, pages 1-12. ACM, 2012.

Philip R Zimmermann. The official PGP user’s guide, volume 5. MIT press Cambridge,
1995.

Aviv Zohar. Bitcoin: under the hood. Communications of the ACM, 58(9):104-113,
2015.

131

Curriculum Vitee

Quinten André Stokkink

1991/03/29 Date of birth in Leiderdorp, The Netherlands

Education

The following is a list of only higher eduction followed leading up to this thesis, omitting
individual courses and summerschools.

2017-present Ph.D. Computer Science
Dissertation title: Systems for Digital Self-Sovereignty
Distributed Systems
Delft University of Technology, Delft, The Netherlands

2013-2017 M.Sc. Computer Science
Thesis title: Multi-core architecture for anonymous Internet
streaming

Parallel and Distributed Systems
Delft University of Technology, Delft, The Netherlands

2011-2012 Minor Strategic Management in a High Tech Environment
Delft University of Technology, Delft, The Netherlands

2009-2013 B.Sc. Computer Science
Thesis title: Closing the gap between the Web and Peer to Peer
Delft University of Technology, Delft, The Netherlands

Work Experience
The following is a list of all paid work during the making of this thesis.

2023-current Researcher
Distributed Systems
Delft University of Technology, Delft, The Netherlands

132 Curriculum Vite

2022-2023 Technical consultant; synthesis of visual data for audio using
Artificial Intelligence
Emfa Music, Queensland, Australia

2022 Expert consultant; technical guidelines on security measures
for providers of wallets with Blockchain
European Union Agency for Cybersecurity (ENISA), Athens,
Greece

2017-2022 Ph.D. Candidate
Distributed Systems
Delft University of Technology, Delft, The Netherlands

Open Source Software Contributions

The following is a list of major open source initiatives that were contributed to during the
making of this thesis, omitting smaller projects.

Project Language URL

cryptography Python https://pypi.org/project/cryptography/
py-ipv8 Python https://pypi.org/project/pyipv8/
Tribler Python https://www.tribler.org/

apng R https://CRAN.R-project.org/package=apng

133

PR4

List of Publications

Quinten Stokkink, and Johan Pouwelse. A Local-First Approach for Green Smart Con-
tracts Distributed Ledger Technologies: Research and Practice, ISSN 2769-6472. ACM, 2023.

Quinten Stokkink, Can Umut Ileri, Dick Epema, and Johan Pouwelse. Web3 sybil avoid-
ance using network latency. Computer Networks, 227:109701, 2023.

W Won best poster award at Delf University of Technology EEMCS PhD Event 2019.

Quinten Stokkink, Can Umut Ileri, and Johan Pouwelse. Reputation-Based Data Carrying
for Web3 Networks. In 2022 IEEE 47th Conference on Local Computer Networks (LCN), pages
283-286. IEEE, 2022. Acceptance Rate 26.2% (26/99).

Quinten Stokkink, Georgy Ishmaev, Dick Epema, and Johan Pouwelse. A truly self-
sovereign identity system. In 2021 IEEE 46th Conference on Local Computer Networks (LCN),
pages 1-8. IEEE, 2021. Acceptance Rate 27.34% (35/128).

Quinten Stokkink, Alexander Stannat, and Johan Pouwelse. Foundations of peer-to-peer
reputation. In Proceedings of the 1st International Workshop on Distributed Infrastructure for
Common Good, pages 25-30, 2020.

Georgy Ishmaev and Quinten Stokkink. Identity management systems: Singular identities
and multiple moral issues. Frontiers in Blockchain, 3:15, 2020.

Quinten Stokkink and Johan Pouwelse. Deployment of a blockchain-based self-sovereign
identity. In 2018 IEEE international conference on Internet of Things (iThings) and IEEE green
computing and communications (GreenCom) and IEEE cyber, physical and social computing
(CPSCom) and IEEE smart data (SmartData), pages 1336-1342. IEEE, 2018. Acceptance Rate
15.3% (26/170).

v Nominated for best poster award at ICT.OPEN 2018.

B Included in this thesis.
W Won a best paper award.

