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Edge-Based Image Restoration
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Abstract—In this paper, we propose a new image inpainting
algorithm that relies on explicit edge information. The edge
information is used both for the reconstruction of a skeleton
image structure in the missing areas, as well as for guiding
the interpolation that follows. The structure reconstruction part
exploits different properties of the edges, such as the colors of
the objects they separate, an estimate of how well one edge
continues into another one, and the spatial order of the edges
with respect to each other. In order to preserve both sharp and
smooth edges, the areas delimited by the recovered structure
are interpolated independently, and the process is guided by
the direction of the nearby edges. The novelty of our approach
lies primarily in exploiting explicitly the constraint enforced by
the numerical interpretation of the sequential order of edges,
as well as in the pixel filling method which takes into account
the proximity and direction of edges. Extensive experiments are
carried out in order to validate and compare the algorithm both
quantitatively and qualitatively. They show the advantages of
our algorithm and its readily application to real world cases.

Index Terms—Edge structure reconstruction, image restoration,
inpainting, sequentiality, T junctions.

I. INTRODUCTION

AN important part of the scientific and cultural heritage
of the modern times has been stored in the form of film

and photo archives. Unfortunately, the classic storage media
for these information sources are bound to gradually decay in
time, risking the total loss of the valuable information they are
carrying. Fortunately, with the arrival of the digital era, the
digitized films and photographs can now be copied easily and
virtually without information loss. An equally important aspect
is the opportunity of doing restoration in superior ways, never
possible in the past. As such, information that disappeared
completely from its physical support can now be restored thanks
to advanced algorithms developed in the restoration community.
Modern technologies have brought along economical benefits,
too. The digitized content is now cheaper and easier to store,
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search, reuse and distribute. The digitally broadcasted content
will take full advantage of these benefits. But today’s quality
requirements will only be fulfilled when digital restoration is
applied to the degraded archived content.

The current restoration algorithms for image sequences ex-
ploit both spatial and temporal information, and perform quite
well, in general [1], [2]. However, they fail when there is diffi-
cult motion in the sequence [3], [4], in particular, for the detec-
tion and correction of blotches. Blotches are artefacts typically
related to film that are caused by the loss of gelatin, or the pres-
ence of dirt particles on the film [5]. Due to the difficult object
movements, wrong motion vectors are extracted from the se-
quence. As a result, the spatiotemporal restoration process that
follows may introduce unnecessary errors that are visually more
disturbing than the blotches themselves. The extracted temporal
information becomes unreliable, and a source of errors itself.

Instead of protecting the blotches from being restored [4], in
our view, the detected artefacts should be restored based on spa-
tial information alone [6], [7], discarding the temporal infor-
mation. In the BRAVA project [8] of the European Union, we
have devised a novel restoration algorithm that takes advantage
of the available spatial information in order to restore the de-
graded film frames. This algorithm is not intended to replace
the spatiotemporal algorithms, rather, to complement them in
places where they fail. Because of its spatial nature, the algo-
rithm can also be applied for the restoration of missing areas in
damaged (usually old) photographs, for the automatic interpo-
lation of damaged pixels from the CCD sensors in new digital
cameras, or for the concealment of errors in compressed data
due to transmission errors. Another area of application is the re-
construction of occluded objects when they are partly covered
by other objects. This can be useful for assessing the correctness
of a segmentation procedure, as well as for determining the rel-
ative depths of objects [9]. The proposed algorithm only deals
with the problem of filling in the missing information.

The task of artefact detection represents a separate problem.
With some exceptions, the artefact detection and the restoration
are usually treated in different algorithms. In this paper, we ex-
plicitly assume that the artefact mask is detected by another al-
gorithm and contains no holes.

A. Related Work

Several spatial restoration approaches for missing data have
been proposed already in the literature. They address the
problem of filling in missing data from different points of view.
In the following, a short categorized overview is given that
presents the most popular approaches.

Restoration Based on Partial Differential Equations and
Variational Methods: A recent category of algorithms centered
around the idea of ”image inpainting” has shown promising
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results on restoring image structure for large, piecewise smooth
patches. Masnou and Morel, for example, present in [10] a
simple, but effective, approach for filling in missing areas based
on the connection of the level lines (i.e., isophotes) that have
the same values on the artefact contour. The method was further
developed in [11]. In [12]–[16], Ballester et al. and Bertalmio
et al. propose more complex variational approaches for joint
interpolation of grey levels and gradient/isophotes directions.
In [17]–[19], Chan et al. present several inpainting methods
based on total variation models, curvature driven diffusions,
and Euler’s elastica. In [20] and [21], Bertalmio et al. further
refine the aforementioned methods by trying to combine in
one algorithm different approaches for structure and texture
interpolation.

Structure-Based Restoration: Atzori and De Natale propose
a spatial restoration method for recovering missing blocks
(corresponding to data packets) in video transmission over
packet networks in [22]. They use only the information existing
in the same frame, by making a “sketch” of the edges around
the missing blocks. These edges are connected in a pairwise
fashion, if possible, and a smooth interpolation takes place sub-
sequently in the areas delimited by these sketched edges. While
this paper uses a spline interpolation to recover the shapes of
the edge connections, in [23], they present an alternative based
on Bezier curves. In [24], Atzori et al. present a spatiotemporal
algorithm which first uses a temporal interpolation and then
applies a spatial, mesh-based warping to reduce the temporal
restoration errors mainly caused by complicated motion. In
[7], we present a spatial algorithm for the reconstruction of
artefacts based on explicit information about the surrounding
edges. The main assumption here is that edges are (locally)
straight. Simple edge information is extracted from the image
and used to recover the edges inside the artefact. The straight
edges reconstructed inside the artefact are then used to guide a
smooth interpolation between the edges.

Convolution- and Filter-Based Restoration: With their nor-
malized and differential convolution, Knutsson and Westin [25]
defined a general method for interpolating -dimensional data
through convolutions based only on valid data. Their approach is
more general and flexible than some restricted convolution, by
allowing the association of certainty values to each data point
and an applicability operator to the filters to be applied. In [26],
Khriji et al. presented a restoration technique based on spatial
rational filters.

Texture-Based Restoration: In [27], Efros and Leung present
a nonparametric texture synthesis algorithm based on Markov
random fields. Their approach restores pixels based on the sim-
ilarity between their local neighborhood and the surrounding
neighborhoods. From the candidate neighborhoods, one is ran-
domly selected and the value of its central pixel is pasted at
the current location, a process which is able to intelligently
imitate the natural randomness of textures. Bornard et al. [28]
have further developed the aforementioned texture synthesis
for image sequences by incorporating temporal information
and imposing some local consistency constraints which allow
the algorithm to also synthesize structured objects that do not
have random appearances. In [29], a method is presented by
Criminisi et al. that also extends the approach of Efros and

Leung by imposing higher priorities in the restoration order
for pixels lying in the neighborhood of edges, thereby pre-
serving better edge sharpness and continuity. In [30], Kokaram
presents a parametric texture synthesis algorithm which em-
ploys two-dimensional autoregressive models (combined with
the Gibbs sampler) in a Bayesian approach. In [31] and [32],
he introduces a more general framework for restoring image
sequences, based on the Markov chain Monte Carlo method-
ology. A solution is proposed for jointly detecting and restoring
missing data and motion vectors, while also handling occlusion
and uncovering situations. In [33], Jia and Tang describe a
novel technique based on tensors. Here, edge structure is first
reconstructed, followed by texture synthesis. Both steps use
adaptive tensor voting. Another way of synthesizing texture
is presented in [34] by Acton et al. Their approach is based
on a diffusion generated by partial differential equations, and
a simultaneous reaction based on Gabor filters and AM-FM
dominant component analysis. In [35], Hirani and Totsuka
combine spatial and frequency information to reconstruct the
missing image structure/texture, in a framework of projection
onto convex sets.

Connections With Proposed Method: Our approach relates
most to the sketch-based method of Atzori and De Natale [22].
It generalizes the algorithm presented in [7] and employs higher
level features extracted from the image. Our approach also bears
some similarity with the algorithm of Jia and Tang [33] in what
concerns the main steps of the algorithm. Each of these steps
is, however, differently approached. The novelty of our method
consists of the approximation of the incoming edges with circle
arcs, the use of the spatial order of edges, and the directional in-
terpolation scheme that restores missing areas parallel to the re-
covered edges. As opposed to the classic texture-based restora-
tion algorithms, which do not preserve object shapes, we prefer
(together with Atzori and De Natale and Jia and Tang) to use
explicit edge information to capture the image structure. Our
main motivation comes from two observations. On the one hand,
edges generally separate areas with different content. Therefore,
the interpolation should take place independently on both sides
of an edge. On the other hand, edges are more robust against
intensity changes such as local shading, thereby being more ro-
bust than isophote-based algorithms, for example.

Throughout this paper, we compare our proposed algo-
rithm with the related restoration scheme of Atzori and De
Natale, both qualitatively as well as quantitatively. We also
present a qualitative comparison with the algorithm of Masnou
[11], which uses a variational approach applied to the image
isophotes.

B. Outline

In Section II, we present the main steps of the algorithm. Sec-
tion III concentrates on how the structure of the missing areas
is recovered. Section IV describes our interpolation method,
which takes into account the structure recovered in the previous
section. Section V is devoted to presenting and discussing ex-
perimental restoration results, as well as comparisons with other
algorithms. Finally, Section VI draws conclusions and outlines
future work.
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Fig. 1. (Left) General algorithm outline and (right) an illustration of the inputs/outputs for each stage.

II. ALGORITHM OVERVIEW

The spatial restoration algorithm that we propose consists
of three main steps, depicted in Fig. 1: 1) edge detection and
edge feature extraction; 2) image structure reconstruction; and
3) edge-based inpainting.

The input to our algorithm is an image and an artefact mask.
Here, we assume that the artefact mask is detected by another
algorithm. For the sake of simplicity, but without loss of gener-
ality, in the remainder of this paper we consider that the mask
consists of only one artefact, and that the image is grey-valued.

Assuming that the artefact location, size and shape are inde-
pendent from the image content, then the structure of the orig-
inal image inside the artefact area is a continuation of the struc-
ture outside it. More specifically, the edges inside the artefact
are continuations of the outside edges. We, therefore, use the
edge information explicitly to guide the restoration process.

In the first step, edges are detected around the artefact, based
on the contours of the segments that result from a watershed
segmentation. Ideally, these edges separate two objects (or at
least two different homogeneous regions), both of which are par-
tially occluded by the artefact. The object edges are extracted in
clockwise order, from a point of view lying inside the artefact.
Simple edge features are extracted for each edge, such as the lu-
minance values on both sides of the edge, and the local gradient
magnitude along the edge. Only relevant edges are then kept for
the next steps (e.g., those that have at least a certain gradient
magnitude).

In the second step, we try to recover the structure of the image
within the artefact area. This problem is ill-posed: Virtually any-
thing could have existed in the area covered by the artefact, be-
fore the degradation took place. We have to “invent” content
in places where it was lost, based on some assumptions about
the usual image properties. In our case, we have modeled the
edges as locally circular shapes (equivalent to a second order
polynomial). This modeling was subject to several constraints,
such as color matching, and noncrossing of the object edges.
Our model tries to couple edges that are strongly related to each
other, thereby reconnecting the pairs of edges that were part of

Fig. 2. Intensity feature for a group formed by the edges couplesA –A ,B
– B , and C – C .

the same object contour. The matching of the edges is on the
one hand based on the similarity of the aforementioned edge
features, and on the other hand on continuity and sequentiality
criteria. For an edge couple (e.g., – , – , or –

in Fig. 2), the continuity is measured by fitting a circle to
the pair of edges and measuring the goodness of the fit (e.g.,
the spatial deviation of both edges from the fitted circle). Un-
likely edge couples are ignored and the remaining ones are it-
eratively joined into edge groups (see Fig. 4). An edge group
is a (as large as possible) set of consecutive edge couples such
that no two couples cross each other. Based on the set of possible
groupings, specific configurations that represent potential image
structures within the artefact are created. Each configuration is
then rated by its “sequentiality,” which is a measure indicating
the likeliness of a particular configuration (essentially trying to
minimize the number of crossing couples). The score of a con-
figuration is based upon the sequentiality together with the other
features that estimate the continuity and similarity of edges. The
best configuration is then found by selecting the configuration
that minimizes this score. After finding the best configuration,
spare edges [e.g., – in Fig. 5(a) and (b) or – in
Fig. 7(c)], i.e., edges that were not included in any edge couples,
are traced one by one into the selected configuration. They are
traced up to the point where they meet another edge (or edge
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couple), or, alternatively, they gradually vanish toward the op-
posite side of the artefact. In this way, the structure of the image
is recovered inside the artefact area.

Finally, in the third step, the artefact is restored by inpainting,
taking into account the recovered image structure. Essentially,
the inpainting procedure restores a pixel based on the sur-
rounding recovered edges. The surrounding edges indicate
which pixels on the artefact border are used for the interpo-
lation. Then, based on the distance to these border pixels, the
pixel inside the artefact is interpolated.

The sketch-based interpolation of Atzori and De Natale [22]
follows the three main steps presented in Fig. 1. Since the first
step does not concern the restoration directly, we address the dif-
ferences between our scheme and the one of Atzori and De Na-
tale for the other two steps. In step two, the differences concern
the set of features used, and, additionally, the way we combine
them in order to characterize the overall acceptability of the re-
constructed structure. In the last step, our interpolation method
tries to draw strips “parallel” to the nearby edges, resulting in
smooth patches. Atzori and De Natale have used a “patch repe-
tition” approach, in which the areas around the artefacts are mir-
rored across the artefact edge. Many other smaller differences
between the two methods exist as well in the above steps (e.g.,
in step two, the way we normalize the values of different fea-
tures in order to bring them in the same range).

III. IMAGE STRUCTURE RECONSTRUCTION

The structure reconstruction step is crucial to our proposed
restoration scheme, since the explicit image structure that is re-
covered represents the “skeleton” of the restoration process. The
input to this step represents a list of edges coming into the arte-
fact, in clockwise order. The output of this step is a list of edge
couples arranged in groups of edges, and a list of spare edges.

To build accurate pairwise connections between edges, we
make use of local features, as well as global features. Local
features describe how well two edges match each other if they
were part of the same edge couple. Global features express the
goodness of a complete configuration of edge couples. The local
features are 1) the two luminance values on both sides of each
edge in the edge couple, 2) the local gradient magnitudes of both
edges, and 3) the degree to which the edge couple fits a common
circle. The global feature expresses the degree to which edge
couples do not cross each other within a configuration. The
overall cost of a particular configuration is given by

(1)

where represents the configuration of groups of edge couples,
is the cost related to the four local features, and is the

cost associated with the single global feature. All costs have
values between 0 and 1, with 0 indicating a perfect match and 1
indicating a complete mismatch. The process of building up the
final configuration is presented later in this section.

A. Local Features

Before specifying the couple-related costs, we first give
intensity and magnitude representation of an edge. The set of
intensities ( ) on the clockwise side of the edges is given by:

, where represents
the intensity image, is the vector of pixels on the artefact
border between edge and the (clockwise) next edge,
is the median operation, and is the number of edges.
The set of edge gradient magnitudes ( ) is given by:

,
where is the gradient magnitude of (obtained after some
smoothing, in order to remove noise), is the ordered vector
of edge pixels, with its head lying on the artefact border and
its tail stretching outwards, is a weighted median operation,

represents the vector of weights
used by , giving more weight to the edge pixels near the
artefact border, and is the maximum number of pixels
in an edge (we used in our experiments). and

, together, are not redundant, since is not always directly
related to . In fact, indicates the smoothness of
edge .

The weighted median is used to calculate because, as we get
farther from the artefact, it is obvious that the local properties of
the edge tend to become less and less related to the missing edge
inside the artefact. It may also happen that a third object present
in the image lies close to the artefact, without touching it. In this
case, the actual edge is partly occluded, and the detected edge
bends to follow the border of the third object. As a result, the
edge tail is not related to the structure to be recovered in the
artefact. Weighing the tail less than the head tries to overcome
this situation.

The cost related to the local features of a configuration ,
, is computed by averaging the costs of every edge couple

within that configuration

(2)

where , are the groups of edge couples in
configuration , is the number of edge couples in group

, and is the individual cost of edge couple (the th
couple of group ) [see (3), shown at the bottom of the next
page].

The cost of a specific couple indicates how well the
two edges within the couple match each other, i.e., whether they
describe the border of the same object. Since they belong to the
same object, it seems natural to require that the intensities on
both sides of the edges have similar values [first two terms in
(3)] and that the strength of the edges match as well [third term
in in (3)]. Further, we assume that the object edges continue
each other smoothly, without abrupt changes of direction (fourth
term in the same equation). The cost is then defined by the
formula in (3), with representing the intensity on side of
edge ( ) in the couple, as shown in Fig. 2. The side
index indicates whether the intensity belongs to the side lying
in clockwise ( ), or in trigonometrical ( ) direction.

represents the gradient magnitude along edge of couple
. The intensity and gradient subscript notations are different

here in order to reflect the affiliation of the edge to couple
from group . are flags indicating whether the
next edge on side of edge “1” from edge couple belongs to
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Fig. 3. Behavior of the circle-fitting related measures. (a) Both the spatial deviation and the angular consistency indicate a good edge couple. (b) The spatial
deviation indicates a good edge couple, whereas the angular consistency indicates a bad one. (c) Both the angular consistency and the aperture quality indicate a
good edge couple. (d) The angular consistency indicates a good couple, whereas the aperture quality indicates a bad one.

a couple in the same group ( ) or not ( ). These bi-
nary flags effectively switch off cost contributions of the respec-
tive luminances and gradients in places where they are rendered
irrelevant by spare edges (e.g., spare edge between edge cou-
ples – and – in Fig. 2 prevents the comparison of

with ), or by edge couples from other groups. is
the cost of fitting a circle to couple .

Let us discuss in more detail why the fourth term in (3), ,
is essential. First, when an edge couple has spare edges on both
sides, none of the first three features is of any help. Therefore,
we need a supplementary feature in order to be able to do the
matching. Second, when there are more objects with similar ap-
pearance that are occluded by the artefact (e.g., the fingers of
a hand), the three intensity-based features alone are not suffi-
cient to discriminate between them. Third, exploiting the conti-
nuity of the edges within a couple can help in selecting the right
couples. For example, the shape of the potential edge couple
– in Fig. 4(b) is less natural than the shape of the couple

– . Obviously, the reconstruction of object shapes is an
ill-posed problem which we need to avoid. We do it by putting
constraints on the edge reconstruction. Namely, we use smooth-
ness and convexity constraints that we implement by means of
a model fitting (to ensure reliable parameters).

The naturalness of a couple is a psychological term, rather
than a physical measurement. It describes the way humans
perceive the edge continuation, and not the deviation from
a theoretically objective ground truth (which does not exist
in practice). Naturalness is discussed in the Gestalt theory
on perceptual grouping, the grounds of which were laid as
early as 1923 by psychologist Max Wertheimer [36]. This
theory has shown that some visual cues, such as proximity,
similarity, good continuity, closure, etc., allow us to group
parts of an image into objects (or groups of related objects).
For example, in Fig. 4(b), the naturalness of edge couple
– is expressed by a combination of properties such as
similar local direction (i.e., tangent) and constant curvature.

These observations led us to define the naturalness of a couple
by how well they fit a circle.1 The cost of fitting a circle to
the edge couple is defined by

(4)

where is the spatial deviation of the couple from the fitted
circle, is the angular consistency factor, and is the aper-
ture quality factor. returns values between 0 (ideal case) and
1 (worst case). For the , and parameters, the signif-
icance of these values is reversed (0 represents the worst case,
while 1 represents the ideal case). This enables us to propagate
a “worst case” value identified with either , or , to the
circle fitness measure .

The spatial deviation, , indicates how far on the average the
edge pixels lie with respect to the fitted circle. First, a distance

that represents the median of the distances from the edge
pixels in couple to their closest points on the fitting circle is
defined

(5)

where and are the two edges of couple , concatenated
here in a single vector for the median operation, and are
the radius and the center of the fitting circle, respectively, and

represents the euclidean distance. In order to bring the value
of between 0 and 1, we use the following normalization:

(6)

where is a constant chosen to calibrate in such a
way that if it is above a predefined threshold, it indicates a valid
edge couple.

1To avoid numerical problems for straight edge couples (i.e., a large radius
of the fitted circle), all radii above a certain threshold (10 ) were limited to that
threshold.

(3)
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The spatial deviation determines how well the couple fits
a circle, but does not take into account the “direction” of the
edges. From Fig. 3(a), one can observe that the normal edge
couple lies on the fitted circle in the following clockwise order:
tail 1 – head 1 – head 2 – tail 2, while an erroneous edge couple
lies in the order tail 1 – head 1 – tail 2 – head 2 [see Fig. 3(b)].
In both cases, the spatial deviation is small. To penalize these
incorrect continuations, we introduce the angular consistency

(7)

where , with and being the angles mea-
sured from the center of the fitted circle to the head and tail of
the edge, respectively, and a small value to avoid a
potential division by zero. The operator “ ” defines the smallest
angle (in absolute value) between two angles and (both
between 0 and ) as follows:

if
otherwise

(8)
Finally, we also want to penalize very wide angles between

the heads of the two edges in a couple, since such configurations
are very unlikely. For example, the edge couple in Fig. 3(d) is
much less common than edge couple in Fig. 3(c). This is mea-
sured by the aperture quality

if

otherwise

(9)

where , , and .
The square roots in (9) are meant to approximately calibrate

the values returned by . Note that the aperture quality mea-
sure is (more or less) equivalent to the proximity property stated
by Wertheimer [36]. Moreover, the aperture quality is scale
independent, which is a desirable property of any extracted
feature.

B. Global Feature and Prediction of the Final Configuration

Besides looking at how well edges match within a couple,
we also take into account the global configuration that is cre-
ated, in order to exclude false edge couples. Here, we mea-
sure the edge order, or sequentiality of the edges, which vali-
dates the configuration. Suppose we are dealing with an arte-
fact that splits a number of horizontal objects in two, i.e., they
appear (once) on both the left and right sides of the artefact.
As an example see Fig. 4. If we inspect the artefact border in
clockwise order, the object edges on one side [such as edges

in Fig. 4(b)] appear in exactly opposite order com-
pared to the ones on the other side (edges ). This
is a very useful property of the edges around artefacts, since it
is extremely robust against noisy data. For example, Fig. 4(a)
shows how edges can be connected in a wrong way when only
the local features are accounted for. Here, the presence of noise
resulted in slightly tilted edges (which affected the circle fit-
ting cost), as well as distorted grey levels and gradient magni-
tudes (which affected the other costs). When the sequentiality

Fig. 4. Contribution of the sequentiality parameter. (a) Configuration
penalized by the sequentiality parameter. (b) Configuration given preference
by the sequentiality parameter.

Fig. 5. Reconstruction examples for fading spare edges.

of the edge couples is also taken into account, the right config-
uration can be better predicted [Fig. 4(b)]. Edge displacement
and changed grey levels do not change edge order so they do
not influence the sequentiality feature. The only way in which
noise can affect this feature is by hampering the edge detec-
tion process, introducing false edges, or missing existing ones.
However, the other edges still lie in the same consecutive order,
which contributes to the stability of the cost. Most probably, an
erroneously introduced edge, or the remaining pair of a missed
edge will be treated as spare edges, and, thus, the impact on the
sequentiality cost is reduced (since this cost is computed over
pairs of edges only).

The sequentiality represents a natural property of most object
edges. If edges are not sequential, then they should change their
order in the image very often, i.e., they should cross each other,
as in interwoven patterns. While interwoven patterns are not un-
usual, they are certainly not encountered very often.

It is worth pointing out that the sequentiality parameter does
not forbid a configuration containing crossing groups—rather,
it penalizes it. If the evidence coming from the local features
strongly indicates a crossing, separate groups are formed
accordingly [resulting in a configuration such as the one in
Fig. 4(a)].

Sequential configurations usually have smooth edge couples.
This does not mean that the features based on sequentiality and
circle fitting are the same: smooth edge couples are not nec-
essarily sequential. Besides, in practice, the detected edges are
sometimes displaced or tilted, which affects the smoothness fea-
ture. The sequentiality comes to correct for such cases.

Three problems arise when determining the sequentiality of
a configuration. First, we must find a way to express it as a
number. Second, despite the fact that it is used to calculate the
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Fig. 6. Pseudocode for the grouping procedure.

configuration cost, we can measure it only after the configura-
tion of edge couples has been formed, based on some cost that
does not depend on sequentiality. And third, the sequentiality
does not represent a measurement of each edge couple alone.
Rather, it is a measurement of the complete configuration, which
is an ensemble of edge couples. The latter problem gave rise ac-
tually to the formula in (1).

For the moment, let us assume that the configuration of edge
couples has already been found. The groups of edge couples
in the current configuration are denoted by , .
Equation (10) then defines the cost related to the global property
of sequentiality

if and

if and

otherwise
(10)

Operator rounds to the nearest smaller integer. Thus, the
term represents the maximum number of edge couples

that can be achieved out of the edges. To exemplify this
measure, the six couples in Fig. 4(a), have a sequentiality cost
of , while the six couples in
Fig. 4(b), have a sequentiality cost of .
It is clear now that the global feature favors fewer but larger
groups of edge couples [e.g., Fig. 4(b)], and penalizes more, but
smaller groups [e.g., Fig. 4(a)]. As a result, it imposes a (desired)
natural constraint on the configurations (in most of the images,
edges do not cross each other locally).

The main steps for building up the final configuration are
summarized into pseudocode in Fig. 6.

C. Spare Edges Reconstruction

Before one can use the selected configuration to restore
the artefact, the spare edges must be integrated with the edge
couples. Ideally, we should be able to fit circles to spare edges,
similarly to what we did with the edge couples, and then calcu-
late where they intersect with the couples. Unfortunately, exper-
iments have shown that fitting circles to spare edges is unreliable
and frequently gives unnatural results. This happens mostly be-
cause 1) the edges are usually small (remember that when fitting
a circle to a couple, the two edges are relatively far apart, making
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Fig. 7. (a) Pixel similarity along edges: the value of P is closer to the values of A and B, rather than C or D. (b)-(d) Inpainting of side strips with continuous
contour. The side strips are bounded by: (b) an edge couple, (c) an edge couple and a spare edge, and (d) two spare edges.

the fit reliable), and 2) they could be quite noisy (spatially). This
motivated us to approximate the spare edges with straight lines
(a choice which was validated by experimental results).

To reconstruct the structure of the spare edge inside a strip of
the artefact, we iteratively pick the spare edge with the biggest
difference between the luminances on its two sides ,
approximate it with a straight line, and recover it. This is re-
peated until all spare edges have been traced.

When recovering a spare edge, two situations may occur. 1)
The recovered spare edge does not intersect with any other re-
constructed edge within the artefact area [e.g., edges –
and – in Fig. 5(a) and (b)]. 2) The recovered spare edge
intersects with another edge that was already recovered inside
the artefact [e.g., edge – in Fig. 7(c)]. In situation 1),
we are dealing with a fading edge, while, in situation 2), the
edge is part of a T junction. In Fig. 5(b), the reconstructed spare
edge increments the number of middle strips2 existing inside the
artefact. In all other cases, it only adds a new side strip,3 even in
Fig. 5(a), where the strip – – – – will be consid-
ered a side strip with fragmented contour. Fragmented contours
occur in places where a reconstructed fading edge intersects the
same contour a second time, cutting out a side strip and frag-
menting the old contour [e.g., in Fig. 5(a), the continuous con-
tours – and – become – ; – and
– ; – , respectively].

IV. EDGE-BASED INPAINTING

If the structure reconstruction step builds the “skeleton” of the
missing areas, then we could say that the inpainting step adds
the “flesh.” During the inpainting process, the middle strips and
the side strips will undergo different types of interpolation. In all
cases, however, we rely on the finding that the image structure
around an edge is usually “parallel” to that edge.

In the case where we have more edge groups [i.e., crossing
edge couples as in Fig. 4(a)], we have to assume that one group
lies in the front of the others. Since the information extracted
so far provides no guidelines as to which one is in the front

2A middle strip is an area that spans from one side to the other of the artefact
and is usually delimited by two consecutive edge couples from the same group
[e.g., strips A – E – E – A in Fig. 5(b), or A – B – B – A and A –
E – E – B – A in Fig. 7(b) and (c), respectively].

3A side strip is an area delimited usually by a single edge couple, or by one
or two spare edges [e.g., E – E – E , E – E – E or B – B – B in
Fig. 5(a), E – E – B in Fig. 7(c), or A – E – E in Fig. 7(d)].

and which one in the background, the choice is made arbitrarily.
Only groups consisting of a single edge couple (e.g., a horizon
line) are “pushed” to the background, since their reconstruction
in the foreground may cover entirely all other groups.

The following subsections describe our interpolation method,
starting with the simplest case.

A. Inpainting of a Side Strip With Continuous Contour,
Bounded Only by an Edge Couple

This is the simplest case of inpainting. We have a continuous
contour and we know that there is an edge at each of the two
ends of the contour [e.g., contour – in Fig. 7(b)]. When
the two edges form an edge couple, then a restoration “parallel”
to the edges is (broadly speaking) equivalent to drawing circle
arcs on both sides of the couple. These arcs are concentric with
the couple’s fitted circle, and span from one side of the artefact
to the other [e.g., the – – arc in Fig. 7(b)]. A pixel along
such an arc (e.g., ) is interpolated from the ending pixels of the
arc ( and , in our case), which lie on the artefact border.

To understand the reason why we restore in this way, consider
the example in Fig. 7(a). The missing area in region is likely to
be more similar to areas and , rather than or , although
the last two are closer spatially. In fact, and are probably
very different from each other, since they lie across edge couple

– , which means that they belong to two different objects.
Let us denote the circle fitted to edge by ,

[in Fig. 7(b), because and belong to the same
couple]. The circle that passes through , and is “parallel” to
(i.e., concentric with) is denoted by . It intersects with the
artefact border at two points, and . These
two pixels are called the source pixels from which the intensity

of pixel is calculated as follows:

(11)

where , , is inversely proportional to the distance
from to : . represents the intensity
of pixel .

B. Inpainting of a Side Strip With Continuous Contour
Bounded by an Edge Couple and a Spare Edge

This is a slightly more complicated case. As an example see
Fig. 7(c). Now the side strip is not bounded by a single edge
couple, but an edge that belongs to a couple, and one spare edge.
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To ease the discussion, the straight line fitted to the spare edge is
also denoted as a circle. Like in the previous situation, we strive
toward restoring the artefact as much as possible parallel to the
edges. This means that, if we are close to one of the edges, for
example, then we should interpolate from points on the artefact
border close to the circle fitted to that edge. Again this is accom-
plished by defining two source pixels on the artefact border (one
for each bounding edge) from which pixel is interpolated, but
now one of them is related to the spare edge and the other one
to the edge couple.

In Fig. 7(c), the first source pixel is created from the edge
by intersecting with the artefact border. The other source

pixel is then found by intersecting (based on the spare edge
) with the artefact border. The intensity of pixel is now

calculated from the source pixels and according to

(12)

where , , is inversely proportional to both the dis-
tance from to as well as the distance from to

(13)

where is used for protecting against potential divi-
sions by zero, as well as for avoiding unusually large weights
due to the proximity of pixel to either of the circles and .

represents the euclidean distance between a pixel with
coordinates and the closest point on circle . The weights
place more emphasis on source pixels close to pixel . Also, in
the immediate neighborhood of a reconstructed edge, the source
pixel that is close to that edge will dominate, thereby preserving
the edge sharpness.

Notice that a side strip with continuous contour can also be
formed by two spare edges, for example – – –
in Fig. 7(d). Here, and are created in a similar way, by
intersecting circles and (corresponding to spare edges
and , respectively) with the artefact border. The intensity of
point is then again estimated with the formulas in (12) and
(13).

C. Inpainting of a Middle Strip With Continuous Contours

The next case of inpainting is a middle strip. In its simplest
form, it is only bounded by two edge couples from the same
group (see Fig. 8). Again, the interpolation is driven by the struc-
ture defined by the bounding edge couples.

Similarly to the side strip case, source pixels from the arte-
fact border are calculated, upon which the interpolation is based.
Since we now have two bounding edge couples, two sets of
source pixels are created, and , each based
on one of the two edge couples, and , respectively. From
the two source pixels that belong to the same part of the contour,

and , two virtual source pixels are created:
and . The position of such a virtual source pixel (see also

Fig. 8) is defined by

(14)

where is defined as in (13).

Fig. 8. Inpainting of a middle strip with continuous contours.

The intensity of these virtual source pixels are defined as

(15)

Based on the coordinates and intensities of the virtual source
pixels and , the intensity of pixel can now be determined
as follows:

(16)

where is inversely proportional to the distance from point
to the virtual source pixel .

D. Other Cases

When a side strip or a middle strip has fragmented contours
[e.g., Fig. 5(a)], they are interpolated similarly to the strips
with continuous contours. However, in this case, a virtual
source pixel is calculated for each fragment independently
[e.g., one for fragment – and one for fragment –

in Fig. 5(a)] and then the virtual source pixel of the entire
fragmented contour ( – ; – ) is computed as a
weighted average of its fragments’ source pixels. The rest of
the procedure is similar to the previous subsections.

If no edges are detected around the artefact, then the artefact
lies probably in a smooth area. In such a case, the intensity of
an artefact pixel is simply the weighted average of the pixels
on the artefact border. The weights are inversely proportional to
the distance from to the border pixels.

V. RESULTS

A. Qualitative Evaluation

In this subsection the performance of our proposed algorithm
is demonstrated by some visual examples. Fig. 9(a)–(c) shows
an artificially degraded version of the “Lena” image, the re-
stored version and a zoom-in on one of the artefact areas in the
restored image (for every artefact, the restored structure con-
sisted of a single group of coupled edges). Fig. 9(d)–(f) shows
an example of interpolated spare edge (a T junction). Visual in-
spection of these results shows a good restoration quality. Both
sharp and smooth edges are well recovered.

One of the strengths of our restoration scheme comes from
its capability of finding and interpolating crossing structures.
Fig. 10(e) shows such an example. Here, a group of two edge
couples (the margins of the dark grey bar) is crossed by another
group of two edge couples (the margins of the light grey bar).
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Fig. 9. Restoration results. (a) “Lena” image, degraded with artificial artefacts. (b) Restored “Lena.” (c) Zoom-in on the restored image. (d) “Lena” image,
artificially degraded over a T junction. (e) Zoom-in on the original image. (f) Zoom-in on the restored image.

Fig. 10. Comparison on an artificial example with crossing structures. (a) Original image. (b) Degraded image. (c) Restoration by the algorithm of Atzori and De
Natale [22]. (d) Structure recovered by the algorithm of Atzori and De Natale. (e) Restoration by our proposed algorithm. (f) Structure recovered by our algorithm.

The restoration shows that the proposed algorithm is capable of
reconstructing the correct configuration [Fig. 10(f)].

Obviously, our algorithm works well for objects which fit our
assumptions. When edges are neither straight, nor circular (e.g.,
wiggly edges), the structure reconstruction will not be able to
reproduce the initial image content. Also, when the structure
becomes complex (e.g., in textured areas), the structure recon-
struction step will fail, unless there is a dominant structure ori-
entation (e.g., an image of straws). In these complex cases, the
abundance of edges will make the algorithm more prone to er-
rors than in usual cases. Similarly, if many of the edges detected
around an artefact are spare edges, the structure reconstruction
becomes a very difficult task. In such a case, the luminosity-re-
lated costs of most edge couples are cancelled by spare edges,
so the final costs may become dependent on circle fitting and se-
quentiality costs only. Since less features are taken into account,
the edge matching gets less reliable than in a normal case, so the
probability of mismatches grows. Some edge couples may get
treated as two spare edges, or they become coupled with wrong
edges, while some spare edges may get erroneously assigned to
couples. A thorough analysis of the reconstructed structure can

only be done if a large database with manually segmented im-
ages would exist.

B. Quantitative Evaluation

Besides using visual inspection, we have also assessed the
performance of the algorithm in a quantitative manner. A set of
experiments was performed on a set of seven 512 512 images
(see the name list in the legends of Fig. 11). These images were
chosen because they exhibit some local structure. We have con-
ducted the following series of experiments for each image. Arte-
facts with random shapes and locations were generated, having
sizes of 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000,
and 10000 pixels. For each size and each image, a single arte-
fact was generated and restored in 100 consecutive experiments
(each time with a different, random shape and location). For
each restoration, the mean-square error (MSE) was measured
between the original and the reconstructed image. The MSE
plots are shown in Fig. 11(a), with artefact sizes on a logarithmic
scale. For each size and each image, the median MSE for the
100 experiments was plotted (this was chosen in order to avoid
the influence of a small percentage of outliers). The MSE values
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Fig. 11. Plots for the experiments done on the image test set. Each point represents the median result of 100 experiments done on the same image, with random
artefacts of the same size. (a) Median MSE, calculated on the grey-value images (grey range: 0 . . . 1). (b) Average restoration time, under Matlab (interpreted code).

Fig. 12. Real case example of film restoration. (a), (e) Original frames, with artefacts of interest surrounded by a white box. (b), (f) Same frames, with main
artefacts restored. (c), (g) Zoom-in on the areas of interest in the original frames. (d), (h) Zoom-in on the areas of interest in the restored frames.

stay within acceptable ranges, in general. A growing trend for
bigger artefacts is present, as expected (the trend seems to ac-
celerate at larger sizes because of the logarithmic scale used).

Additionally, the associated restoration times are displayed
in Fig. 11(b). The artefact sizes are presented here on a linear
scale, in order to show the almost linear dependency between
the restoration time and the artefact size. The plot also shows a
constant overhead, regardless of the artefact size. This overhead
is related to the first part of the algorithm, in which object edges
are detected, pixels on the artefact borders (together with the list
of edges) are arranged in clockwise order, and edge features are
computed.

From a perceptual point of view, our algorithm performed sat-
isfactorily for MSE values up to about 0.005. Above this value,
the quality of the restoration degraded in a more visible manner.
This value is only a rough estimate and should not to be taken
as an absolute reference, since the MSE is not strictly corre-
lated with the visual quality. Depending on the textural content

and the structural complexity of each image, the restoration er-
rors may start becoming visible at smaller or larger MSE values
and/or artefact sizes.

All experiments have been done with the same parameter set-
ting. This showed that the parameter setting was not really sensi-
tive to different images (i.e., different structure configurations),
nor to different artefact shapes. Also, adding together costs with
different variances did not seem to have a significantly negative
impact on the quality of the restoration.

C. A Real Case Experiment

We also demonstrate the algorithm performance on a real case
of degraded old film. Each row in Fig. 12 contains, from left to
right, an original frame from a degraded film and the same frame
in which the main artefacts were subject to restoration using our
algorithm (we concentrate only on those artefacts which cover
areas containing structure and moving objects). White boxes are
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Fig. 13. (Dark bars) Comparison of the median MSE for the proposed algorithm and (light bars) the algorithm of Atzori and De Natale [22], for artefact sizes of
(a) 16� 16 pixels and (b) 16� 32 pixels.

Fig. 14. Comparison with the algorithm of Atzori and De Natale [22]. (a) Original image (zoomed in). (b) Restoration by the algorithm of Atzori and De Natale.
(c) Restoration by our proposed algorithm. (d) Full degraded image. (e) Structure recovered by the algorithm of Atzori and De Natale. (f) Structure recovered by
our algorithm.

used in the original frames to mark artefacts of interest for our
algorithm. These areas of interest are enlarged and displayed
next to the full-size frames. The examples from Fig. 12 show
that the algorithm performs equally well in real cases of de-
graded films.

D. Comparisons With Other Algorithms

We have performed a comparison of our algorithm and the
sketch-based interpolation of Atzori and De Natale [22]. For
each of the seven images from our test set, we have gener-
ated artefacts with different sizes and random locations (1000
iterations for each size). For reasons of compatibility with the
code we received from Atzori and De Natale, the artefacts were
chosen to be only rectangular, having 16 16 or 16 32 pixels.
In order to allow a proper comparison of both algorithms, the
code of Atzori has been modified such that the input edges for
both algorithms are the same, namely, the edges extracted in the
first step of our algorithm.

The median MSE of all experiments for each image was mea-
sured for both algorithms. The comparison graph is displayed
in Fig. 13. For both artefact sizes, our algorithm scored better in
five out of the seven images. The fact that both algorithms show
larger MSE values for the highly textured images is an indica-
tion that the edge detection step had lower performances.

Visually, the restoration quality was not strikingly different
for the two algorithms. This is not surprising, given the fact
that the algorithms share some similarities. There are, however,
more situations in which our algorithm outperforms the other
one. Fig. 14 shows an example taken from our quantitative
experiments. The circle fitting used in our algorithm enforced
a more natural continuation of the edges, by connecting the
upper-right edge with the lower-left one. Fig. 10 shows an
artificial example of two bars crossing each other and an artefact
covering their intersection. Our algorithm was able to detect
and reconstruct the right image structure, while the algorithm
of Atzori and De Natale failed. The fact that the input edge
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Fig. 15. Comparison with the algorithm of Masnou [11].( a) Original image. (b) Degraded image. (c) Restoration with the algorithm of Masnou. (d) Restoration
with the proposed algorithm.

mask is not 100% the same comes from the fact that Atzori’s
algorithm considers the edges to start right from the artefact
border, while we look at edges starting one pixel away from the
artefact (thus, the two algorithms never have exactly the same
edge input). At times, our algorithm benefited from the use of
the sequentiality. This global feature has contributed decisively
in cases where several edge connections were equally possible.

Due to the type of interpolation used in the last step, our al-
gorithm may sometimes produce smoother than normal areas.
However, the patch repetition used by Atzori and De Natale
(in this case a mirroring across the artefact border) may intro-
duce its own type of defects, for example when another object
lies close to the artefact. In this case, the patches that would be
pasted would repeat the object (or parts of it) inside the artefact,
although that object does not even touch the artefact. Patch rep-
etition may go wrong in other cases, too. If a strip that presents
a constant change of intensity is ”interrupted” by an artefact, the
mirroring process reverses the gradient direction in the artefact
area, introducing a sudden change of intensity in the middle of
the artefact. From the bar graphs presented in Fig. 13, it becomes
clear that our algorithm performs better for piecewise smooth
images, or moderately textured ones. For highly textured images
the algorithm of Atzori and De Natale performs better, mainly
due to their interpolation scheme based on patch repetition.

We have also performed a comparison with the algorithm
of Masnou [11], shown in Fig. 15. The comparison was per-
formed on the example presented in [11]. Both algorithms give
good results, as expected. While the two methods may perform
similarly in many cases, for overlapped structures or T junc-
tions (as defined in this paper) our algorithm would outperform
Masnou’s algorithm, which cannot handle them properly.

VI. CONCLUSIONS AND FUTURE WORK

We have presented here an algorithm for the spatial restoration
of images. Our goal is to restore frames from image sequences
that exhibit “difficult” object motion, making the temporal
restoration ineffective. The algorithm uses edge information
extracted from the area surrounding the artefact. Based on this
information, the missing structure inside the artefact (in the form
of object borders) is reconstructed and then the areas between
the reconstructed borders are filled by a smooth continuation
of the surrounding image data.

The algorithm performs best with piecewise smooth images.
In these cases, the restoration results are very good (both visu-
ally and numerically), as long as there is enough information
around the artefact that is strongly related to the missing data.
For highly textured images, the restoration is less effective be-
cause the image does not possess a certain “structure”—rather,
it is a pattern with some degree of irregularity. In these cases,
a texture interpolation method should be employed. This, how-
ever, would guarantee only a visually pleasing result, and not a
lower error.

One of the main advantages of our method, is that it makes
use of both local and global features of the edges in the image.
The use of a global feature that validates the edge couples with
respect to each other within the recovered structure is a new
approach to image restoration. To our knowledge, this is the
first algorithm which explicitly takes into account such a global
feature, i.e., the sequentiality. The way the interpolation is done,
along the reconstructed structures, is also new.

The validity of our structural model was demonstrated by
evaluating the algorithm both visually and numerically on
various images and across several artefact sizes. Moreover, the
same set of parameters was used for all experiments, which
demonstrates the robustness of our approach.

By reconstructing overlapped structures, our algorithm actu-
ally steps into the three-dimensional area, bringing one struc-
ture in front and pushing the others in the background. At this
stage, these abilities are rather rudimentary. A superior analysis
may certainly be added in the future to ensure the correct depth
order of the structures. In any case, since the edge groups that
cross each other may give us some depth information, applying
the proposed grouping scheme could reveal object occlusions in
undegraded images, provided that one can achieve a satisfactory
segmentation of the image.

One of the implicit assumptions made in this paper is that the
artefact masks do not have holes. Indeed, the overwhelming ma-
jority of artefacts from old films does not have holes. When they
do have them, a few solutions could be applied. The simplest
one is to simply consider that the artefact does not have holes,
restore it in the way presented in our paper, and then paste the
original content of the artefact holes back into the image (thus,
overriding a part of the restoration result). This, of course, ne-
glects the structure that may be present inside the artefact holes,
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which might help guiding the structure reconstruction process.
In some cases, this information may even be used to decide
which group gets painted in in the foreground. Another solu-
tion would be to split the artefact mask conveniently such that
no resulting sub-mask contains any holes, and then proceed with
the normal restoration algorithm.

There are several ways to improve the performances of our
algorithm. First, it should be noted that the algorithm presented
here uses only a one-pixel-wide layer of pixels around the arte-
fact. By increasing the amount of pixels taken into account, we
expect to get more reliable edge features and useful neighbor-
hood information, which will improve the results in situations
where the present algorithm has limited effectiveness.

Since the proposed algorithm works well with piecewise
smooth images, rather than textured ones, whereas tex-
ture-based restoration shows opposite behavior in general, we
expect that the combination of the two approaches would im-
prove the spatial restoration of images [20], [21]. Clearly, one
needs to be able to decide which scheme to use depending on
the surrounding area of the artefact. A special analysis module
should be employed for this purpose.

Finally, a more sofisticated approach can be developed for the
treatment of the available temporal information, along with the
spatial information. Useful information can be extracted about
the type of motion that causes the failure of motion estimation
[3], [6], and then used to further enhance the results of the cur-
rent algorithm. These subjects will constitute the focus of our
future research.
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