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Abstract

Lely is developing a tethered manure applicator robot, designed to work on the fields of farms. This
vehicle called the Jojo, is constrained in its movement due to the attached tether. It can not make tight
turns and can only reverse by backtracking the driven path. This thesis explores the path planning
issue and provides a novel solution. The problem is best described as the shortest path from a starting
point to a set of strokes that cover the field, with a constrained turning radius. We first explore existing
solutions and discover that none exist that are suitable. Further research finds that the behaviour of this
vehicle is best compared with steerable needles, but at a different scale.
First, we construct a simulation environment for the vehicle. This simulation is used to develop the
plan execution engine, path follower and safety checks. This is necessary for testing the solutions in the
simulation and in the real world.
Secondly, with some inspiration from the solutions provided for the steerable needles, we arrive at a
method for finding a Jojo path. The method makes use of a large graph that represents translations
associated with a given location. We also provide methods for attaching the starting point and
destinations in the form of strokes, either via the start or end of the strokes or via the middle. A Jojo plan
is then obtained by performing a directed Steiner tree approximation on this graph, where the starting
point is the root and the terminals are the strokes. In order to make the approach fast enough, we spend
a substantial amount of time profiling and analysing the program and design a number of performance
improvements. These allow for the approach to solve instances that are larger than necessary.
Thirdly, we test, compare and improve the approach. We look at both small instances to perform
numerical analysis in order to optimise a set of parameters. We then inspect larger instances that are
based on real world scenarios.
Lastly, we perform a set of real world tests using the vehicle. One of these tests highlights a shortcoming
of the algorithm, which we discuss and provide a solution for.
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Glossary

DSTP The Directed Steiner Tree Problem is the same
concepts as STP, but in a directed graph. Rather
than only specifying a set of required vertices,
the vertices should all be reachable from a given
starting point.

GNSS Global Navigation Satellite System (GNSS), the
Global variant of satellite geopositioning.

Jojo The tethered manure application robot.

PID controller Control loop mechanism commonly used for
continuous systems, the mechanism incorpo-
rates historical and live feedback to determine
the next set point. This mechanism is often used
with cruise control to determine engine power
output.

Pit The docking point for the vehicle.

ROS2 Robot Operating System 2, a software suite con-
sisting of libraries and tools for robot applica-
tions.

RPP Regulated Pure Pursuit. An improved version
of the carrot following algorithm.

RVIZ2 Software program for visualizing robot states in
a 3D environment.

STP The Steiner Tree Problem in graph theory, the
set of edges that connect all required vertices of
a graph with the least total cost.
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1
Introduction

This chapter is meant to familiarise the reader with the Jojo problem and explain the goal of this thesis. This research
is performed in collaboration with the company Lely [18]. Lely is a Dutch concern known for its autonomous
cow milking robots, automatic cow feeding robots and manure collecting robots. The world of dairy faces many
challenges regarding the environment and as such, Lely is currently developing a robot that aims to improve the
circularity in the sector. The concept is an ’on-demand’ manure distributing robot that tries to limit the time
between manure collection and application. The intended usage of the vehicle is for it to drive over each part of the
field and cover it in manure. The robot carries a ∼500 metres long hose that can be attached to docking points in
the fields, it is used to provide the manure by pumping it through, but the hose is also a contributor as to why
route planning for the vehicle is challenging. Unlike the often used drag hose manure applicators, this vehicle
does not drag the hose, nor does it move the hose, it unrolls it when driving forward and rolls it up when driving
backwards, hence the name Jojo. This means that reversing is always done by backtracking the already driven
path. Field coverage planning for agricultural vehicles is a well studied topic and so is the topic of tethered robots.
The intersection of these two however, makes for a novel problem, which this thesis aims to provide a solution
for. We first research the vehicle and the control mechanisms, the path planning problem that arises, investigate
multiple potential solutions and lastly perform real world tests. This chapter starts with an introduction to the Jojo
problem in 1.1, we then introduce the main research question and the accompanied sub questions in 1.2 and lastly
we summarize the contributions this thesis aims to make in 1.3.

1.1. Motivation
Lely already has a software suite designed for calculating mowing patterns for their robotic mower.
Lely now requires an algorithm that can be added to this suite, but rather than constructing routes
for the mower, it should construct routes for the Jojo. This suite is designed to be operated by trained
professionals and thus the algorithm has different requirements as opposed to a system without a
human in the loop. This for instance means that the calculation time should be in the scale of a few
minutes in order to allow for iterative improvements and still be user friendly, but we get the benefit of
manual interventions, insights and modifications. The current version of the software suite allows for
creating fields and generating strokes within these fields. These strokes are straight lines over which the
vehicle should drive and distribute manure. The missing piece is planning a route towards these strokes.
As we discover during this research, the problem at hand is challenging to solve due to the constraints
of the vehicle as well as the size of the problem instances. The goal of this thesis is to provide a software
solution that can aid a trained professional with constructing a route.

1



1.2. Research questions 2

1.2. Research questions
In order to reach the goal as presented in 1.1, we introduce the main research question to be formulated
as follows:

What is a suitable solution for calculating the optimal route a tethered solar powered manure applying
vehicle must follow, in order to reach a set of strokes located within a field?

We also formulate the set of sub-questions that we will use in order to be able to answer the main
question to be the following:

1. What would be ’suitable’ solution for the Jojo problem?
2. What is a supposed good method to structure and create the solution?
3. Does the solution scale sufficiently to allow for real world scenarios to be solved within a reasonable

amount of time?
4. How does the solution compare in different scenarios?
5. Are the generated solutions executable in the real world?

1.3. Contributions
The contributions of this thesis are the following:

• Develop a path following algorithm based on a trivial pure pursuit algorithm.
• Develop a Jojo plan execution engine.
• Integrate the path follower and execution engine to work in a vehicle simulation.
• Develop a novel and performant method for finding a curvature constrained shortest path from a

starting point to a set of end points.
• Develop a fast and memory saving graph representation.

– Investigate methods to best represent the problem instances to satisfy the performance
constraints.

– Develop a method to translate the Jojo problem into such a representation to then be solved
with the aforementioned path planner.

– Develop a method to translate the solution from the path planner into a Jojo plan which the
vehicle can execute.

– Develop and benchmarked multiple performance improvements made to allow the algorithm
to be used on large instances.

• Benchmark the proposed method on smaller scale instances to optimize the parameters and show
the difference between the used solvers.

• Benchmark the proposed method on large scale instances to show calculation times and discuss
the quality of the solutions.

• Perform real world tests on small instances that are chosen to contain the difficult to execute
scenarios.

1.4. Outline
This thesis aims to provide an algorithm for aiding a professional when constructing Jojo plans, that can
be integrated with the existing Lely software suite.

Chapter 2 discusses the related works, that highlight the novelty of the problem at hand. Chapter 3
introduces the reader to the Jojo system and explains the difficulty with controlling this vehicle. It also
provides an explanation of how the path follower is designed and how the vehicle is simulated. Chapter
4 is designed to explain the thought process behind the reason for ignoring some constraints and why
we opted to use a graph-based path planning approach. Chapter 5 is a large chapter that explains how
we represent and solve the problem to create a Jojo plan. This chapter also benchmarks subsections of
the algorithm to show why certain design decisions were made. Chapter 6 describes a set of conducted
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experiments with small instances to benchmark the method and optimize variables. We also use real
world scenarios from the farm on which the vehicle is currently located to generate multiple Jojo plans.
The latter instances are simulated to show execution times. Chapter 7 describes conducted experiments
using the real vehicle using small problem instances, but chosen to represent the difficult scenarios. The
last chapter 8 summarises and reflects on the proposed algorithm.



2
Relevant Literature

This chapter is meant to give an overview of the state of the art research that is regarded necessary for solving
the Jojo planning problem. It explores the basic concepts of tethered vehicles and the combination of coverage
planning for tethered vehicles. Especially helpful for the reader is the topic of agricultural path planning, as this
will highlight common difficulties of field segmentation and efficient vehicle usage. While a strong attempt is made
to provide reliable and accepted sources, the research will sometimes be from a less accepted sources, since tethered
vehicles are a niche topic and therefore not much research has been conducted. This chapter is responsible for
answering the first sub-question: "how are similar coverage planning problems described and solved in literature?"

2.1. Agricultural path planning
Route planning in the agricultural world is often the coverage planning problem. One has a field that
needs to be treated using a machine with specific constraints, think of driving width, overlap between
passes or allowed steering behaviour. The most common approach one finds in literature is to draw
parallel lines over the field in a suitable direction and come up with a method to best connect each line
with each other. Oksanen et al. [26] provide a more sophisticated method to design these lines whereas
the lines are often connected using a specific pattern. These path planning techniques are designed to
work with regular farm vehicles, not one that is attached to a tether. Although the generated strokes
seem usable, the generated headlands are not. Constructing optimized coverage patterns is difficult for
regular fields, but becomes increasingly difficult for irregular shapes.

2.2. Path planning
In general [9], but also specifically for robots, this topic is widely researched [14]. For this research we
focus on the planners that are compatible with the Jojo. This requires the planners to take maximum
steering angle and obstacles into account. The most used and proven doctrines are: Hybrid-A* and State
lattice. The implementation of these algorithms are also included in the Navigation 2 software stack
designed by Macenski et al [21]. The first algorithm runs the A* algorithm on a three dimensional grid,
where the last dimension is used to express rotation. The algorithm expands to locations on the grid that
are reachable for the vehicle, the most commonly used version for robots is designed by Dolgov et al. [6].
The latter makes use of the same grid, but uses a pre-calculated set of transitions to turn the grid into a
graph. These transitions are chosen to be suitable for the vehicle to execute, which makes traversing any
direction in the graph a feasible route for the vehicle. The commonly used implementation is based
on the design of Pivtoraiko et al. [28]. The topic of multi-goal steering constraint path planning is
also heavily researched. Think of the Dubins Travelling Salesman Problem [25]. The topic of being
constrained by a tether is quite unexplored, but will be discussed in the next section.

4
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2.3. Tethered vehicles
The idea behind a vehicle or robot that is attached to a cable, rope or commonly referred to as tether
is to use it as an advantage. One may use the tether as a way to power the vehicle, say for a robot
vacuum [15] or underwater robot. Others use the tether as a way to return back to base, often used for
exploration and rescue robots [2]. Another possibility is to use the tether as a force vector, this is often
done by hanging from the tether in order to reach previously inaccessible places, say craters on the
moon [23]. These vehicles all make use of strong and flexible tethers and the robots are often able to
rotate around their axle using differential drive [22]. One can conclude that although they look similar,
none of these robots are similar to the Jojo, which is designed around a fragile and immovable tether.
Another interesting and perhaps more similar field of research is steerable needles. They are attached
to a flexible and strong tether and are constrained in their ability to make turns. These needles are
curved and as a consequence moving forward causes a steering behaviour, moving straight requires
frequent rotation. The turning radius of these needles is restricted to the curve they are given. Due
to surrounding tissue, the needle can only return the way they came by means of pulling the tether.
Reaching multiple places is often done by retracting the needle and steering forward using a different
angle. These needles are used in scenarios where the target is hard to reach and the tissue is vulnerable,
this thus requires computer assisted path planning. Since the search spaces are relatively small and
the solution is of high value, researchers often make use of brute force methods to determine the best
path such a needle should take. Liu et al. [19] have developed a three dimensional greedy guided
fractal tree that expands until it reached the target. These trees are fast due to the GPU acceleration, but
are constrained to small working areas. Fu et al. [8] criticise these fractal trees by stating they are not
always correct due to the greedy nature, where the tree is steered based on a coarse resolution. One may
argue that increasing the compute ability would alleviate said problems, but the researchers introduce a
resolution complete motion planner for these needles, which is proven to run in finite time. This area of
research is mostly focused on finding the optimal path for a needle from A to B, but Lobaton et al. [20]
introduce a path planner for the multi-goal version. They construct a search space by randomly placing
circles with the circumference of the turning radius and connecting nearby circles. They then solve the
Steiner Tree Problem [10] on this search space in order to find the multi-goal shortest path. They show
that the cost of multi-goal optimisation is lower compared to individual path planning, but perhaps
more important for our use case is the creation of a search space that is kinematically feasible for the
needle to traverse to later be solved using a Steiner Tree solver.

2.4. Steiner Tree Problem
Also known as the STP is best described as a variation of the minimum spanning tree problem, but rather
than including all nodes, only a given selection of vertices is required. This problem also applies to a
directed graph and is named the DTSP. Both problems are regarded as NP-Hard, but the directed version
is seen as the most difficult [12]. Multiple approximation algorithms exist for the DTSP, but recently
Watel et al. [39] developed a novel approach that, although capable of creating bad approximations
gives good results for most instances.

2.5. Conclusion
In this chapter, we summarise and highlight relevant literature to help solve the Jojo problem. We find
that stroke generation on farm land for regular vehicles is trivial, but perhaps not entirely suitable for
the Jojo. Existing path planning algorithms are also found to be both sufficient and insufficient for
our use case. Planning a path from A to B is trivial, the same holds for multi-goal path planning, but
not for the tethered version. We continued with exploring existing tethered vehicles to find potential
solutions for the Jojo problem. We learned that although they appear similar, all tethered vehicles use
the tether in a different way compared to each other and compared to the Jojo. We do find a similar
field of research if we treat the Jojo as a steerable needle. These needles experience the same kinematic
constraints, are attached to a tether and have existing planners for multi-goal problems. Although these
planners are perhaps undesirable due to compute requirements and ability to scale due to the intended
use case, the topic is the most similar to the Jojo problem.



3
System & Control of the Jojo

In this chapter we first explore how the Jojo system is designed to work and explain the constraints that arise
from this. We then look at how the vehicle behaves and how it is controlled. For this, we design a custom vehicle
controller that is able to follow paths. Since the vehicle is large and heavy, we put special care in preventing sudden
movements by designing a custom acceleration control scheme and we provide additional safety mechanisms.

3.1. System
This section aims to give the reader an explanation of how the Jojo system is intended to work. This
section also looks at the current status of the prototype and its capabilities and limitations.

3.1.1. Vehicle

Figure 3.1: The Jojo

The vehicle, also known as Jojo, is designed to have two rigid rear wheels and a steering front axle,
also using two wheels. The weight of ∼2000kg and even more when filled with fluid, would normally
be regarded as a large, but in the agricultural setting this is ’lightweight’. A large reel is placed in the
centre of the vehicle and below the reel is a fluid applicator attached to the hose. This reel is where
the hose is stored. Driving forwards unrolls this hose, driving backwards rolls it back up. Important
to note is that unlike most tethered vehicles [35], the unrolled hose stays stationary on the floor when
the vehicle is moving; it is not pulled or pushed. As a consequence, the vehicle must always drive
backwards the same way it went forward. Failing to do so will break the hose as it is quite brittle. The
current prototype uses a hose of 250 metres, but in the future this can become more than 500 metres
depending on the farm size.

6
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Steering
The car like vehicle has a distance of 2.55 metres between the two axles. The theoretical steering angle is
55°, which gives a radius of 1.7 meters, however, this angle is not used due to the large slip forces acting
on the rear wheels and due to the hose not being able to make these tight turns. Note that the hose is
being guided by a cart. This cart moves left to right and back again when rolling and unrolling the hose.
As one can imagine, the position of the cart determines the maximum steering angle. If we make a left
hand turn, with the cart on the right, the hose will be more relaxed as it experiences a larger turning
radius than that of the vehicle, but if the cart is also on the left, the turning radius will be less than that
of the vehicle.

Field tests have shown that it is possible to steer with 45°angle (3.6 meter radius) when driving with
a hose and the cart in a favourable location, but, due to the forces still acting on the hose, in this scenario
it appears more comfortable to constrain the vehicle to 35°steering angles. 45°is even more difficult with
the cart in the unfavourable location and even though Lely is currently working on improving this, no
guarantees are given, therefore we conclude that the 35°limit is appropriate for our scenario. In practice
this means that an acceptable turning radius is about 3.6 meters. If the hose in in the unfavourable
position it experiences a turning radius of around 2.5 meters.

Localization
The vehicle uses a combination of sensors in order to determine its location. A dual-antenna GNSS
system with an accuracy of sub centimetre and sub degree yaw precision is primarily used, but the
encoders on the steering and drive wheels are also used to augment this precision. The latter is important
for distinguishing whether the vehicle is standing still or slowly moving, since GNSS jitter can also be
interpreted as minor movements while drive motors having an RPM of 0.0 can only mean the vehicle is
stationary.

3.1.2. Attachment points
In the grass fields on the farm, multiple attachment points are placed where the reel of the vehicle can
be attached to. These points are placed in such a way (in the middle of a field) that the vehicle is able to
reach all corners of the field. It is not possible to drive over these points and they should be avoided by
the vehicle. Figure 3.2

Figure 3.2: An attachment point with the hose attached
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3.1.3. Vehicle representation
Due to the flat nature of grass fields in the Netherlands, the spatial representation of the vehicle is done
using a 2-dimensional grid. The centre of the rear axle is chosen as the centre point of the vehicle. This
is often chosen in literature when working with car-like models [34], but is not mandatory. We, however,
have a good reason to use this centre point since the manure applicator is placed near the rear axle and
the unrolling mechanism of the hose is also placed nearby. When we use the center of the rear axle as
center point of the vehicle, we can use said point to track where the vehicle has already applied manure
and we can say that the tightness of a turn at this point is identical to the tightness the hose experiences.

The GNSS coordinates are translated to a X, Y and yaw with respect to a chosen 0 location. This
location is often chosen to be the corner of the farm, this is done to make all coordinates a positive
value. The yaw is set to 0 when facing North and increased anti clockwise. Due to the high static
and dynamic precision of the GNSS system used, we use this input as the default for determining
velocity and acceleration. However, when the vehicle is not in motion, the GNSS system has very small
fluctuations in the location. This is due to tiny inaccuracies, atmospheric disturbances and the vehicle
shaking due to winds. In order to properly determine the difference between slowly moving and being
completely stationary, the GNSS input is merged with feedback from the rear wheel encoders.

3.2. Control
In this section we look at the kinematic model of the vehicle and the control system used for navigating.
Both are necessary for simulating and controlling the vehicle. We look at the vehicle dynamics, steering
behaviour and path following algorithms in order to provide the basis for simulating and testing the
generated paths.

3.2.1. Vehicle kinematics
Since the environment is represented in 2D, the vehicle state can be represented using a 8-dimensional
state: (𝑋,𝑌, 𝑦𝑎𝑤, ¤𝑋, ¤𝑌, ¤𝑦𝑎𝑤, ¥𝑋, ¥𝑌). Although the vehicle has four wheels, it does not use the Ackermann
steering geometry as found in cars. The two front wheels rotate around one point. This makes it so that
the vehicle behaves more like a tricycle, where the front axle can be reinterpreted as a single virtual
wheel as shown in figure 3.3. Since the rear wheels do not steer this effectively makes the vehicle model
similar to that of a bicycle.

The robot frame kinematics are:

𝑣𝑥(𝑡) = 𝑣𝑠(𝑡)𝑐𝑜𝑠𝛼(𝑡)
𝑣𝑦(𝑡) = 0

Δ𝜃(𝑡) = 𝑣𝑠(𝑡)
𝑑 = 2.55 ∗ 𝑠𝑖𝑛𝛼(𝑡)

Where 𝑣𝑠 is the linear velocity, 𝛼 is the steering angle and 𝑑 is the distance between the rear axle and the
steering wheel, in our case 2.55 metres.

As such the robot kinematics in the world frame become:

¤𝑥(𝑡) = 𝑣𝑥(𝑡) ∗ 𝑐𝑜𝑠𝑦𝑎𝑤(𝑡)
¤𝑦(𝑡) = 𝑣𝑥(𝑡) ∗ 𝑠𝑖𝑛𝑦𝑎𝑤(𝑡)

¤𝑦𝑎𝑤(𝑡) = Δ𝜃

In practice the simplified representation is not accurate. The environment is not always 2D, the
wheels slip and are not inflated identically, the control of each motor is not perfect and neither is the
control of the steering angle. Tests show that when performing manual control the delay in setting a
steering angle and the vehicle reaching the angle is also between 0.5 and 2.0 seconds, depending on
travel distance. Accelerating and decelerating also gives noticeable but predictable delay. Since Lely is
currently also using a similar approach for controlling their vehicles and they work well, we say that the
simplified representation is deemed ’good enough’ for controlling and simulating the vehicle for now.



3.2. Control 9

Figure 3.3: The virtual third wheel is placed in the centre of the front steering axle

3.2.2. Attached hose
When the Jojo is attached to a docking point, the vehicle must manage the hose it is attached to. Driving
forward places down the hose, while driving backward retrieves it. This means that there are some
restrictions to driving when attached to the hose. For one, the velocity of the vehicle should be controlled,
but more importantly, the turning radius of the vehicle is reduced. Driving backwards must always
be done by following the path that was followed when going forward. Failing to comply to these
restrictions may result in damage to the hose or vehicle. Another limitation is the length of the hose,
which makes it so that the vehicle can not drive forward indefinitely. These restrictions are the reason
the route planning can be seen as unique. Literature often references tethered vehicles, but never
vehicles that can only backtrack along driven routes.

3.2.3. Simulation
In order to first test the control algorithms for the vehicle, a simulation had to be built. For this, the
bridge between software and hardware is disabled and replaced with a virtual bridge. The virtual
bridge receives the commands the vehicle would normally receive, simulating the behaviour and giving
feedback accordingly. The bridge uses a maximum linear acceleration and deceleration of 0.5 𝑚/𝑠2,
exceeding this value gives an error. The steering angle can be simulated with or without a delay in
reaching the position. A future improvement could be to better simulate the steering wheel behaviour,
by also simulating the PID controller that is normally running to control the angle. Visualisation of the
behaviour is achieved by using RVIZ2 as shown in figure 3.5.

3.2.4. Path Following
Controlling vehicles can be made as difficult as one may desire. Model predictive controllers can be
designed and tuned to both safe and reliably follow a path [4], but are difficult to implement. A carrot
follower is one of the simplest methods, where a ’carrot’ is placed before the vehicle and the steering
wheel is aimed directly at said carrot. If the vehicle moves forward, the carrot is also moved along this
path. The algorithm used for path following on the Jojo is a modified version of the Regulated Pure
Pursuit algorithm [5], which is an improvement to the carrot following algorithm. This is necessary
because the textbook implementation and the currently used one from the ROS2 navigation stack [21]
lacks safeguards and behaves poorly at the last metres of a driven path, where the remaining path is
shorter than the look ahead distance. In practice this leads to strong and abrupt steering corrections in
the last metres of a path. The improvements made to the controller are summarised in this section:

• Variable look ahead is used to improve accuracy at lower velocities. The Pure Pursuit algorithm is
normally given a fixed value for the look ahead distance. A shorter distance may cause the vehicle
to overshoot, a longer distance will cause the vehicle to converge undesireable slow towards the
target path. Since the Jojo has an identical reaction time on the steering wheel for both slow and
fast driving, it can be argued that when driving slow, the look ahead distance can be shorter
and while driving fast, the distance should be greater. This concept is not new and appears to
work quite well [1]. As such, the controller scales the distance within a range of 1.0 to 4.0 metres
depending on the actual velocity of the vehicle.

• Interpolated look ahead points is a small modification that makes it so that the look ahead point
is not tied to the resolution of the generated path points. As mentioned in the introduction of
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this section, when approaching the end of a path, the look ahead point comes to lie closer to the
vehicle than the intended look ahead distance. In practice the vehicle is often a few centimetres
removed from the desired path, when looking far ahead, this error results in a small steering
correction. When approaching and thus looking a small (<20cm) distance forward, this error
becomes large, resulting in strong steering corrections. The observed effect is that the vehicle stops
at the correct point, but has a wrong heading. In our case, it is more desired to have the xy-error
over the heading error. The simple fix is to stop steering when near the end of a path and just
drive straight. However, we choose to interpolate the path and select a look ahead point from that
interpolation. As a result, the vehicle no longer performs strong steering corrections at the end of
the path which has the trade off that the vehicle may reach the destination target with a greater
xy-offset than before. The benefit is that we increased the yaw precision.

• Variable velocity is used to address the issue of braking before cornering, which is preferred over
limiting the velocity according to the steering angle. The latter causes the steering wheel to move
before having reached the desired velocity that is tied to such a steering action, resulting in an
error in follower accuracy but also causing dangerous situations due to fast cornering. We resolve
this by calculating the velocity the vehicle needs when driving through a corner and expand these
values to extend to before and after the corner as well. This way we have careful control over enter
and exit velocity.

• Acceleration control is the last shortcoming that we solve. When designing vehicle controllers, one
design decision to make is regarding acceleration and deceleration: does the low level hardware
regulate this or the vehicle controller? The tables 3.1 3.2 explain the pros and cons of both
approaches. The approach for the Jojo is to use a hybrid approach. The low level hardware
regulates the acceleration and deceleration with high, but mechanically acceptable values. The
controller is designed to regulate the acceleration and deceleration within said values. Figure 3.4
shows an abstraction of the velocity curve the controller uses. The controller is given a maximum
acceleration value, a ’distance from target’ at which to start decelerating and a distance at which
the vehicle moves at minimal allowed velocity. The latter is used to slow the vehicle down to
the minimum speed of 0.05 𝑚/𝑠 at 0.1 metres away from the target, then roll forward until the
target is reached and hard brake at that location. This approach assures that the vehicle gracefully
accelerates and decelerates while also being able to stop exactly at the target location (Field tests
on concrete have shown that the vehicle is able to consistently go from 1.0 𝑚/𝑠 to standstill within
0.02cm of the desired location.)

Figure 3.4: Abstract diagram highlighting the difference acceleration and deceleration phases the controller uses.

Pros Cons
Acceleration variables can be dynamically mod-
ified depending on the driving scenario.
Sending a 0 velocity means the vehicle will stop
directly.

Higher risk of sudden acceleration and deceler-
ation.
More complex vehicle controllers are required.

Table 3.1: Pros and cons of high level acceleration & deceleration control
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Pros Cons
The vehicle will never accelerate or decelerate
faster than the set value.
Less prone to failure.

The vehicle will always be late with achieving
the desired velocities.
Stopping implies slowly coming to a standstill,
which may cause the vehicle to overshoot the
target.

Table 3.2: Pros and cons of low level acceleration & deceleration control

Lastly, the textbook version of the Pure Pursuit algorithm is often used in scenarios with small
vehicles in dynamic environments that are using localisation techniques that are inherently more
unreliable in nature. The control algorithms are designed to recover from faulty vehicle behaviour,
GNSS uncertainty which can result in jumps and change in environment. For the Jojo there is no desire
to recover from such situations, aborting is the suitable action. Scenarios that are detected include:

• failing to respond to movement instructions;
• deviation from the path above a set threshold;
• vehicle orientation compared to the path not being within the threshold;
• shake in the GNSS signal lowers the maximum velocity;
• loss of connectivity (GNSS requires a steady network);
• the pressurised path follower stops with working when the connection with the pump is lost.

Figure 3.5: RVIZ2 visualization of the vehicle following a path running in a simulation

3.3. Conclusion
This chapter first explores the system, where we look into the design and limitations of the vehicle.
We then look at how the vehicle is controlled. Since there was no existing path follower, we designed
a custom one more suited for the large, heavy and tethered Jojo. We also incorporated a set of extra
safety features which are important when are performing the real world tests with the vehicle. We
also make it possible to simulate the vehicle and use that simulation to confirm the workings of the
custom controller. In the end this chapter serves as the foundation for answering the sub questions of
both "what would be a ’suitable’ solution?" and "how would one go about validating such a generated
solution?", the first requiring the knowledge of the limitations of the system and both the path follower
and simulation being the foundation of answering the latter question.



4
Exploration

Due to the unconventionality of the "Jojo problem" we dedicate this chapter to searching for promising methods for
solving the problem. This chapter first defines a simplification of the problem and then looks at different approaches,
some self made and some from literature. We touch upon the workings of each approach and give a short analysis.
The most promising approaches are implemented, tested, reviewed and viewed in the scope of the non simplified
"Jojo problem". This chapter concludes that a novel approach performs much better than all others. As a result, the
next chapter will give a more thorough explanation of the approach when applied to the full problem.

4.1. Simplified problem
The most important aspect of the Jojo problem, but also the reason we are not able to use conventional
methods is the turning radius constraint. Therefore in order to initially develop and compare algorithms
we use an informal simplified representation of the Jojo problem, that combines the turning radius
constraint and shortest path to multiple points minimization into one problem. This approach is used
due to the novelty of the problem at hand, which warrants the exploration of multiple approaches
for solving the problem. As such, we define the simplified problem, explore multiple approaches for
solving said problem and give a short evaluation of the performance and lastly make a comparison
between the promising approaches. The most promising approach will then be used to solve the regular
Jojo problem.

The simplified Jojo problem is presented as an optimization problem using a set of variables:

• The orientated starting point given as 𝑃𝑠 = (𝑋𝑠 .𝑌𝑠 .𝜃𝑠).
• Outer boundary, described by a non complex polygon named 𝐵.
• A set of orientated destination points given as 𝐷 = {𝑃0 , 𝑃1 , 𝑃2...}.
• The turning radius of the vehicle given as 𝑅.
• The bounding box of the vehicle.

The constraint for the path are the following:

1. Turns in the path may not be sharper than the turning radius of the vehicle.
2. Jumps between two locations on the path are allowed.
3. Collisions between the bounding box placed anywhere on the path and the outer boundary are

not allowed.
4. Forks in the path are allowed.

The problem description would be: Find the shortest constraint satisfying path, starting from 𝑃𝑠 to
set 𝐷. Figure 4.1 shows a visual representation of the problem.

One can see that this representation will not suffice for solving the actual Jojo problem. Specifically
the lack of deciding at which end of a stroke the vehicle should enter and the hose having a maximum
length, makes this representation less than optimal, however, being able to solve problems like this is
fundamental to solving the latter.

12
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Figure 4.1: Visual representation of a simplified instance. Here the outer boundary is the polygon, the starting point is the red
circle, the destination points are in green

4.2. Planner based algorithms
In this section we list and discuss potential algorithms that are fundamentally designed to use path
planners that provide kinematically feasible routes between two given points. We effectively explore a
promising set of path planning algorithms from the PythonRobotics project [30] that seem usable for
our use case. We use this library since most path planners are implemented and are easy to use, which
allows for quick exploration. These approaches benefit from the fact that the generated paths are not
fixed to a grid and provide infinite precision. These planners are capable of finding a kinematically
feasible route from A to B. The drawback of relying on such path planners is the inability to create paths
that are less optimal for reaching a destination, but provide benefits in the future when navigating to the
next point. There is a fundamental difference between finding a shortest path from A to B and then from
B to C, and finding a shortest path from A to B and C. In short, these approaches do not think ahead.

• Naive is the simplest method. It simply calculates all routes from the root to the set of terminals
using the Hybrid-A* planner [6] and uses these paths as the solution. One can see that this
approach gives undesired results, but we include this approach in order to allow for a numerical
comparison between the other algorithms. The algorithm is also quite fast due to only needing to
calculate |𝐷 | paths.

• Greedy is a simple improvement made to the naive implementation. The algorithm finds all
shortest kinematically feasible paths from the starting position to the all destinations using the
same planner as before. In this case the best path is the shortest path, the other paths are discarded.
The algorithm then calculates the shortest paths to all non-reached destinations, starting from 𝑁
locations sampled over the already created path. The shortest path is added to the existing path.
The algorithm repeats the previous step until all destinations are reached. In order to improve
the performance of such an approach, we can use a type of gradient descent. The list of points
that need evaluation is sorted by distance from the closest destination point to the furthest. The
algorithm keeps working through these points, but if improvements in shortest path are not made
for a certain amount of samples, the algorithm stops further searches. This algorithm gives a
better solution than the naive approach due to the larger search space. Initial tests showed the
need for performance improvements due to the exponential nature of this approach. However,
even with the gradient descent improvements, 50x50 metres instances with about 10 terminals
resulted in computation times above 30 minutes.

• RRT or Rapidly exploring Random Tree was another interesting type of planner that could be
used. Not only is this a well-studied way of path planning, the solutions that can be found appear
quite similar to the kind of solution that we may desire. These algorithms are normally used for
path planning between two points. Kinematically constrained versions also exist [38]. For our
use case, we would use such an algorithm to construct a tree without a destination, starting from
the starting point and have the boundaries be the outer boundary. Then we need to attach each
of the destination points to the tree. For this step, we can use multiple motion planners, in our
case Dubins paths are used. With all the destinations attached to the tree we then keep removing
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all leaves that are not attached to a starting point or a destination. The resulting tree would be
the solution. Performance wise the RRTs seemed promising. Nevertheless, the solutions that
RRTs provide suffer due to the randomness introduced. The paths tend to swirl in suboptimal
directions and as a consequence makes the solution appear unstructured. During testing, we
also noticed that increasing the search area quickly introduces long computation times. The most
difficult part, however, is attaching the terminals to the tree. The question of where to best attach
is answered with "it depends". It depends on where the other terminals are attached. We are
effectively left with a variation of the problem we originally had.

In this section we explored promising looking path planners from the PythonRobotics project, but
next to receiving suboptimal solutions, we also quickly learned that the size of our problem will be
the biggest challenge. All small instances that we handmade are about 1% of the size of the regular
Jojo instances, but apart from the naive approach, the approaches already required multiple minutes to
run in order to find a solution. Trying the planners provided by the library to find paths from A to B
on the instances that we may encounter (500x500m) fields gave computational difficulty. As such, no
more effort is put in these approaches and we continue with a drastically different approach in the next
section.

4.3. Graph-based algorithm
Due to the undesired conclusion of the previous section, we continued exploring. This section explores
the usage of grid based graphs. The philosophy behind translating the problem into a graph is that this
allows for graph based algorithms to be used. In particular the Steiner tree problem [10] or short STP is
of interest here. It is defined as: "Given a directed graph 𝐺 = (𝑉, 𝐸) with weights on the edges, a set of
terminals 𝑆 ⊆ 𝑉 , and a root vertex 𝑟, find a minimal weight out branching 𝑇 rooted at 𝑟, such that all
vertices in 𝑆 are included in 𝑇." [41]. In our case, it means that the starting position is the root 𝑟 and the
desired points are the terminals 𝑆. The solution 𝑇 would then also be the shortest path. Note that we
cannot directly solve the Steiner tree problem due to the NP-Hard nature of the problem [12]. As such
in this section we explore the alternatives for solving the instances.

First, we start with constructing a graph instance that is similar to the problem instance for the
solvers to solve. We use the following procedure:

1. Create a grid that is aligned with the outer boundary;
2. For each point in the grid and a given orientation, test if it lies within the outer boundary. If so,

include it in the graph (this implies that on the same location, multiple nodes are present in order
to represent the amount of desired orientations (buckets) that are used);

3. For each node in the graph, search in a box around it for nodes that can be reached from the
location and orientation the node represents. If so, add the length of the path as an arc in the
graph.

We now have a graph where if the vehicle is placed on a point and it keeps following connected nodes,
it will never violate kinematic constraints.

Next, we look at a couple of solvers that we tested.

• Approximation algorithms were the first choice due to the bad scaleability observed for exact
solvers on the steinlib instances [16]. Multiple approximation algorithms exist for solving the
Steiner T problem. One naive approach is to calculate the shortest path to each terminal and return
the intersection of these paths, similar to the Naive approach attempted before. A more practical
approach is to find the shortest path between each terminal and the root using Dĳkstra’s algorithm,
then set the weights for that path to 0 and repeat until all terminals are reached. This approach
creates suboptimal paths due to the lack of thinking ahead. The paths are always the shortest
from A to B, not the shortest from A to B and C. This approach is similar to the Greedy approach
attempted before. However, quite recently (2016) the approximation algorithm GreedyFLAC [39]
was developed. Since the release it has been used for scheduling traffic in data centers [24] [31]
and can be seen as a breakthrough in approximation algorithms for the Steiner tree problem. The
approximation ratio is not as good due to unlikely edge cases, but in general the average ratio
is better than the Dĳkstra approach. As such, this became the algorithm of choice. The results
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of a simple test are shown in figure 4.2a and highlight the quality of the achieved solution. The
solution shown as the blue path is identical to the best possible solution.

• Ant colony optimisation was also used to attempted to solve the DSTP. We use ACO to find
the set of arcs in the graph that have the lowest total cost, but create a path starting at the start
node that branches out towards all desired endpoints. The algorithm used is a variation of
the one given by Prossegger, Markus, & Abdelhamid Bouchachia [29]. However, instead of
using an undirected graph, we implement it using the directed graph. An ant is placed on each
terminal and bootstrapped by first solving the path to the root using Dĳkstra’s algorithm and
applying pheromones accordingly. Then for each iteration, each ant traverses the graph until
either termination or reaching the root. The original algorithm dictates the use of the minimum
spanning tree in order to combine the generated paths for each iteration. However, the minimum
spanning tree is too hard to solve for the directed graph instance, thus we skip this step and
combine all paths directly. The cost of the created graph is calculated and pheromones are applied
to each arc accordingly. The idea behind using ACO was to allow simple incorporation of currently
unused constraints. The individual ants can be blocked or punished for violating for instance
the total length constraint. As such the algorithm was given a more critical evaluation. Initially,
the ant colony algorithm achieved decent results on small instances, increasing the instance size,
however, caused a large increase in computation time, which is why the bootstrapping of ants was
introduced. Nevertheless, even after allowing the algorithm to go on for ∼5 minutes, the result
as shown in figure 4.2b highlight the shortcomings of this approach. The ants manage to find
a route, but they fail at finding an optimal one. Giving the ants more time to run did not yield
better solutions. Larger instances appeared out of reach for the ant colony optimisation.

(a) GreedyFLAC (b) Ant Colony Optimization

Figure 4.2: Visual representation of the best solutions achieved on a simple instance.

4.4. Conclusion
The disappointing results from the previous section 4.2 were the reason an attempt was made to use a
graph-based approach. The idea of using graphs for route planning is not new, nor are these lattice
motion structures. The combination of such a structure with solving a Steiner tree problem in order
to find a valid path, is a new concept. The ant colony optimisation had high hopes due to the future
benefits, but testing showed that even with aid and tuning, the ants still had difficulty traversing large
instances. The other approach, using GreedyFLAC, originally thought to be less scalable, appeared to be
much more reliable and better performing than any other attempted approach thus far. The conclusion
of this chapter can also be translated into the answer to the sub question of: "what is a supposed good
method to structure and create the solution?", since it was shown that the graph-based approach worked
on the simplified problem. However, much work is still required to actually use this approach. Next
chapter will further focus on the design of such an approach, but on the non-simplified version of the
problem.



5
Algorithm design

Last chapter we arrived at the conclusion that graph-based approaches, which rely on approximation algorithms that
solve the Steiner tree problem, are most promising for solving our problem. This chapter aims to apply said approach
to the "Jojo problem". We first do a deeper dive in lattice graph construction and performance improvements that
were made. We look at ways to allow the vehicle to enter the strokes at both ends and even provide a method to
allow for entering in the middle and have the algorithm decide what approach is best. This chapter also goes over
some aspects of the problem that cannot be solved formally, but we do provide a "fix afterwards" solution. Another
important factor is the performance on larger instances. For this, we provide programmatic and algorithmic
solutions that when combined hopefully provide sufficient performance in order to have reasonable calculation
times. Lastly, we look at how the generated path is represented and stored in order for the vehicle to execute.

5.1. Design concept
As mentioned in the previous chapter, the idea behind the algorithm is to create a graph that is structured
like a two-dimensional grid. We use a transition lattice to link nearby nodes in the graph to each other. If
we carefully select the placement of the nodes and arcs, we can effectively create a graph that represents
the search space of the Jojo problem. If all the nodes and arcs in the graph are checked for collisions
with the boundary and the arcs represent feasible transitions, we can be sure that the vehicle can safely
transition over this graph. This graph can then be used to solve the Jojo problem. We mark the root
to be the starting location and the terminals to be the strokes, we can run a solver for the Steiner tree
problem and use the solution as a valid Jojo path. Figure 5.1 shows the concept as a flow diagram. The
first step is retrieving a Jojo instance, this is to be provided by the user interface. The second step is
the generation of strokes, as discussed before we classify this step as trivial due to the knowledge Lely
has and as such use a simple approach. The blocks highlighted in blue is what this chapter is about:
The algorithm receives a Jojo instance with the strokes already calculated, creates a directed graph and
approximates a directed Steiner tree solution, which is then used to construct a JSON formatted Jojo
plan. The last step being the execution of the plan, will be left for the testing chapters.

Figure 5.1: Flow diagram of the algorithm concept.

5.2. Stroke generation
The generation of strokes in agricultural settings is not new. [26, 27, 11] As such, we do not investigate
this topic much. As also explained in the introduction, Lely already has in house stroke generation
algorithms and desires only an algorithm that connects these strokes rather than one that also optimises
the strokes. As such, we use a simple implementation where we place strokes 3 metres apart (the width
of the vehicle) along the longest angle in the field polygon. This algorithm yields the results as shown in

16
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figure 5.2a. The algorithm starts of with an outer and inner polygon that represent the field that needs
manure and the boundary the vehicle may move inside of. We also use the location of the attachment
point as an extra boundary since it is both not allowed to apply manure in its vicinity and the vehicle
should not collide with it. This solution is also shown in figure 5.2b

(a) Simple field division. (b) Strokes near the attachment point.

Figure 5.2: Visual representation of the simple field division algorithm on the left, and zoomed in at the attachment point on the
right.

5.3. Lattice generation
Before we can start on graph construction, which is the next step in the program as shown in Figure 5.1,
we must first calculate the translations that this graph will use. In the previous chapter the construction
of the graph relied on manually-calculated transitions the vehicle could make between two nodes in the
graph. This section focuses on creating a larger and more complete and representative transition table
in order to better represent the capabilities of the vehicles. Paths constructed from chains of lattice arcs
are in general better if there are more types of arcs to choose from. A simple example would be a 3x3
lattice versus a 5x5 one: Reaching a point 2 forward and 1 to the right (2, 1) translation, would cost the
first lattice 2 steps of (1, 0) and (1, 1). The second lattice can perform a direct (2, 1) translation, which
yields a shorter path. We look at path generation using different parameter and define when the path
should be added to the transitions. As shown in figure, 5.3a the lookup table is designed to represent
transitions in a 𝑁𝑥𝑁 (𝑁 is odd) sized square, where the starting point is the center of the square. The
figured lattices also show that when the number of lattices and dimensions is increased, the number of
arcs also increases strongly.

These lattices can be configured in many ways, creating lattices with a large number of paths will
result in a large graph. This is clearly visible in figures 5.3a 5.3b, where doubling the number of buckets
results in an exponentially larger amount of arcs. The following list of parameters can be tuned:

• Maximum turning radius.
• Distance between nodes.
• Amount of angles (buckets) per location.
• Size of the lattice.
• Width of the cone.
• Turning penalty.

The dimensions of the lattice can be tuned accordingly. The bigger the lattice, the better representation
of reality the graph becomes, at the cost of an increase in graph size. Creating a lattice of insufficient
size can cause the graph to be too sparsely connected, making it so that certain nodes can be hard to
reach. Therefore, selecting a lattice is a balancing act between performance and quality. For now, we
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(a) 8 buckets. (b) 16 buckets.

Figure 5.3: Visual representation of a potential lattice with a 1.0 metre resolution and a 9x9 grid with 8 and 16 buckets.

define the default lattice to be used with a resolution of 1.0 metres and 36 buckets and be 7𝑥7 in size.
It is difficult to characterise the trade off between these variables. In general we can state that larger
lattices will yield larger grids, but the quality of the solution is not directly tied to larger lattices. In the
next chapter we will dedicate the section 6.2.3 to better understand the performance and quality trade
off between the lattice parameters.

5.3.1. Path generation
The calculation of a transition from the center of the square to any other point and orientation could be
done by drawing a circle between these two points, but we are better of using Dubins paths as they
provide the shortest feasible path between two points. However, instead of using the shortest obtained
path from the possible types (LSL, LSR, RSL, RSR, RLR and LRL), we test all six possible types for
validity. If multiple types satisfy, the shortest one is used. The test criteria consist of the following:

• The entire path should be contained in a cone of a given width. We normally use a 60°cone as this
seems to fit well with the turning radius, but this value can be modified at any time.

• No point in the path may have a distance from the start greater than the distance between the start
and end node.

These conditions effectively limit the path to be both contained within a cone and a circle around the
starting point. The appendix contains examples that show the arcs created for a set of configurations:
Figure 9.1 shows the paths created when using low resolution (3 metres between nodes) grid size and
figure 9.1 shows the same directional bucket but for a higher resolution grid size. Better methods exist
for selecting the optimal motion primitives [3], but for our use case it is deemed sufficient to use the
aforementioned approach.

5.4. Graph construction
This next step refers to the Graph construction step as shown in Figure 5.1. Construction of the grid
based graph is done by first creating an evenly spaced grid and finding all nodes on the grid that are
properly contained within the boundaries of the field and not near the docking point. This means that
per grid location all possible rotations (buckets) are added as a node. All points on the grid that are
at least a certain distance from any border are added straightaway. The bordering points are tested
for collisions between the bounding box and the field boundary for each possible rotation and only
the combinations that fit within the boundary are added to the graph. Next, for each node we use the
look up table created in the previous section and determine for each transition if the graph contains
the destination node also. If so, the transition is added as an arc in the graph, with the cost being
the precalculated path distance that is associated with the transition. Since all impossible states are
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not present due to the exclusion of impossible nodes, the next stop is to verify if no path contains an
impossible state. As such: if any of the two nodes involved in the transition is associated with a location
near the border of the boundary, the entire path must also be checked for collisions in order to prevent
jumps between small barriers. Figure 5.4 shows how a segment of these graphs could look like when all
the transitions are drawn.

Figure 5.4: Visual representation of the lattice structures applied to a grid.

5.4.1. Representation
Constructing a graph for a 500x500 metres field, using a grid with a one metre resolution gives ∼250.000
nodes. Using a lattice of size 7𝑥7 and 10°(36 buckets) rotation gives ∼5 million arcs. Originally, both
Guava’s graph and JGraphT were used, but it was quickly discovered that these graph libraries are not
designed for the intended usage. Therefore, a custom graph representation is used. In order to be both
memory efficient and have high performance, we use a convenient 32 bit representation for each node.
The first 6 bits represent the orientation, the remaining 2𝑥13 bits represent both X and Y locations in the
grid respectively. The arcs are represented using 64 bits, where the first 32 bits represent the "from" and
the last 32 represent the "to" in the arc. The graph is represented using two maps, that maps nodes to
lists of nodes. These lists are sorted in descending order depending on the associated arc cost. This
is done to facilitate the GreedyFLAC algorithm in the future. In addition to this, two maps are also
used to keep track of the cost per arc. One small map that is used to store the costs for each transition,
effectively replicating the costs associated with the transitions from the lattice. The latter map is used to
store "special" costs. Later sections will explain why and how this map is used. This means that when
finding a cost of an arc, we first check if the arc has a special cost associated with it. If not, we return the
value in the transition table.

5.4.2. Strokes
In the simplified problem from section 4.1, we searched for a path towards a set of locations. This
simplification lacks the real representation of a stroke, which, in reality, is able to be accessed from both
sides.

In order to be able to have the algorithm decide which side of entry is better, we use a virtual node.
This node has two incoming arcs, each coming from the nodes at each end of a stroke. This virtual node
is configured to be the desired node for the Steiner tree solver.

The figures 5.5 and 5.6 show how this is implemented. The stroke visualized in the first figure is
represented as shown in the second figure. The blue point corresponds to the "virtual" point and is not
effectively attached to a location.

5.4.3. Grid decoupling
A consequence of using the stroke representation as described in the previous subsection is the difficulty
of reprenting strokes that are not aligned with the grid. The grid, using a resolution of one metre, is
sufficient when all the strokes are spaced either vertically or horizontally, because the vehicle is exactly
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Figure 5.5

Figure 5.6

3 metres wide: being a multitude of one. The problems arise when the strokes are orientated in any
other direction. The strokes begin to either overlap or leave gaps. This is the inevitable shortcoming of
using a grid, which is why in order to address this issue, the strokes have to be decoupled from the grid.
This is done by calculating paths from nearby nodes to both of the side of the stroke, using the same
Dubins paths as earlier. This creates a large amount of arcs that all point to the earlier created virtual
node. These custom arcs are also the reason the graph representation has a second map for keeping
track of the custom arcs and associated cost as mentioned earlier. The figure 5.7 shows how this looks
like in practice. Per stroke, the search area is a half circle at both ends. All nodes that can be reached
from here are added as an arc to the virtual node as used in the previous section. The size of these areas
is determined by the resolution of the grid. These areas are not intended to create many arcs in the
graph, rather values of around 20 to 30 arcs is deemed reasonable. Smaller areas will lack substantial
options for reaching the node, where large areas quickly expand to produce a high number of arcs. This
is unnecessary and hits hard on performance.

Figure 5.7: Visual representation of the 2 search areas that are used per stroke.

5.4.4. Mid stroke insertion
Lastly, another improvement to the strokes is the ability for the solver to decide on splitting the strokes
and applying manure starting from the middle, rather than from one of the both ends. A mid intersection
is intended to avoid the scenario where the vehicle is placed near a stroke, but first has to drive to one of
the two ends to start applying manure. These intersections may produce small gaps relative to the size
of the strokes, but allow for great reductions in total path length. In order to facilitate this possibility,
we make further use of the grid decoupling approach. Not only the outer edges of a stroke are mapped
to the virtual node, but also the nodes in the middle segment of a stroke can be added if a ’fork’ can be
constructed. Figure 5.8 shows all three regions that are now used when coupling the stroke to the grid.
The middle segment is now added to allow mid stroke intersections.

Constructing a good fork can be quite difficult due to the many possibilities that are available. The
most important being the width of the stroke that is cut in order to allow for steering room. Small
widths create self intersecting forks, while increasing this size causes larger segments of stroke to be
ignored. Figure 5.9 shows how the vehicle can intersect the stroke in the middle when starting from a
node. In order to generate the forks we use the following approach:

1. Given a Point 𝑃 and a Stroke 𝑆, first check if 𝑃 lies in the boundary as shown in the figure 5.8.
2. Construct 2 circles with a size equal to the turning radius, one left of 𝑃 and one to the right, check

if these circles do not intersect the stroke.
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Figure 5.8: Visual representation of the 3 search areas that are used. The middle segment is used for mid attachments, the outer
segments are used for regular attachments to the grid.

3. If the point succeeds at these two tests, now interpolate along the vector associated to the point, to
find the intersection with the stroke 𝑆.

4. Find the shortest LSL and a RSR Dubins path respectively to the left and right of the intersecting
point as shown in figure 5.9.

5. If both paths can be constructed and are not too long, they can be added as virtual node to the
graph.

We also make sure that the remaining segments of the stroke are of sufficient length and allow
for adding a ’punishment’ in the form of an increased arc cost when choosing to use the mid stroke
intersection. Since this is more a preference than an optimisation, the usage of this variable is left for the
end user. We leave the punishment at 0, but the minimum stroke length is set to 15.0 metres.

Figure 5.9: Visual example of a possible mid stroke intersection.

Figure 5.10: Mid stroke insertions as shown in the simulation.

5.4.5. Docking point
As explained in the introduction chapter, the starting point for the vehicle is located a certain distance
away from the docking point. The vehicle first docks, drives forward for about ten metres and is only
then ready. Since the docking orientation is chosen by the end user, the algorithm only needs to make
sure that there are no strokes colliding with the docking point and enough safety margin is created.
The use of driving forward for about ten metres after docking is to provide enough distance between
the docking point and vehicle to allow the hose to touch the floor. Driving perfectly straight is no
hard requirement. The first ten metres of driving can therefore also be used to our advantage, in order
to align the vehicle with the grid. This means that unlike the strokes, the starting point requires no
decoupling. The starting point of the graph is therefore a node in the graph that is closest to the location
ten metres away from the docking point.
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5.4.6. Conclusion
In this section we explained how we translate any Jojo problem instance into a directed graph. The
idea being, that solving the directed Steiner tree problem on this graph will yield a suitable solution to
the Jojo problem. The graph building process is done by constructing a representative graph of the
environment and making sure all transitions are feasible for the vehicle. We then use abstractions for
the strokes in order to be able to represent them without coupling them to the grid. These abstractions
can be constructed to support end and mid insertions of the stroke. We also provide a method to
represent the docking points in such a way that the solvers can find the most optimal orientation for
the vehicle. Lastly, we make sure that this graph representation is represented in such a way to be
both performant and memory efficient. The assumption is that this representation, which is also an
abstraction, is sufficient for solving most of the instances. There are of course limitations which are to be
discussed at the end of this chapter. With the representation in order, we can now focus on solving the
directed Steiner tree problem, which is to be addressed in the next section.

5.5. Approximation algorithms
We compare three algorithms for approximating the Steiner tree problem.

1. Naive is a sanity check where we calculate the shortest route from the root to each other terminal
and use the set of all used arcs as solution. The performance of this method is heavily dependant
on the problem instance.

2. Guided Dĳkstra is a smarter version than the naive approach. We first find the shortest path
to any terminal, then set the cost of this path to 0 in the graph and repeating until all terminals
are reached. This approach will always yield better performance than the naive implementation.
It is even possible to steer this algorithm more by either setting the cost to a value below 0
or exaggerating the cost of all arcs. The latter is preferred due to the limitations of Dĳkstra’s
algorithm.

3. GreedyFLAC [39] is a flow simulation based approach for approximating the Steiner tree algorithm.
The algorithm expands from each terminal and combines flow strength when two or more terminals
collide. Since the approach includes each terminal in the calculation and is therefore able to
balance paths between multiple terminals and thus deviates from the shortest path from the root
to the terminals, it can find paths the other two approaches can not.

The difference in behaviour of these algorithms is best visually explained. Figure 5.11 shows a
clear difference in tree size between the naive algorithm and the other two. The difference between
GreedyFLAC and guided Dĳkstra is not directly visible, but is present. GreedyFLAC achieves a ∼10
metre shorter path due to the ’thinking ahead’. The Dĳkstra algorithm finds the shortest path to any
stroke, in this case the second from the left, it then keeps on finding the closest path. However, this initial
shortest path is already less optimal due to having to reverse further along this path in order to reach the
strokes on the right side. The GreedyFLAC algorithm is able to balance this more and will balance the
shortest path between all strokes, rather than the shortest path to just one. The authors of GreedyFLAC
[39] provide an evaluation suite that has the state of the art approximation algorithms implemented.
Using this suite, we created a few large graph instances and arrived at the same conclusion of the
original authors. GreedyFLAC performed either similar or better both in speed and solution quality.
This conclusion combined with the frequent decisions to use GreedyFLAC over other solvers in state of
the art research led to the decision to stay with these three algorithms.

5.6. Performance improvements
Constructing the graph is no simple task due to the scale of the problem. Large fields could be sizes of
up to 1000x1000 metres, using a grid size of one metre and ten°buckets would give 36 million nodes
and ∼800 million arcs. Therefore, as mentioned before: the graph, nodes and arc representations are
designed with such scale in mind.
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Figure 5.11: Visual representation of the generated routes, form left to right: Naive, Guided Dĳkstra and lastly GreedyFLAC.

5.6.1. Primitive types & libraries
Since the software suite from Lely is developed in Java, we also use this language. One of the drawbacks
is that the default data structures in this language make use of reference types. Since we are using a 32
and 64 bit representations, of which primitive types exist, it is more performant to use data structures
that are compatible with the primitive types. For this, we compare the usage of three performance
enhancing libraries for these primitive types. GNU Trove, fastutil and Eclipse Collection (Formerly
Goldman Sachs collection).

We test the difference in performance by constructing a naive grid and running GreedyFLAC to
find a shortest path to a set of random points. These grid graphs are not representative of instances
that we normally use, but they are useful when comparing performance. Testing revealed that in all
cases the primitive type libraries perform better than the regular types. However, there were large
differences between the libraries as well. Figure 5.12 shows the computation times for these libraries
when solving small instances. The GNU Trove quickly became to slow to solve the larger instances. This
both due to library limitations as well as slower performance for frequently used functionalities. The
differences between fastutil and Eclipse Collection were less apparent due to more similar functionalities.
Nevertheless, fastutil appeared both more performant and less memory intensive in all scenarios.

Figure 5.12: Simple comparison between the three performance enhancing libraries.

In order to better understand what parts of the computation that are problematic for performance
or were implemented wrongly, we use VisualVM [37], a realtime profiling utility for inspecting both
function times and total memory usage. Figure 5.13 highlights the extensive usage of primitive types.
The int array is responsible for ∼85% of the used memory. This way we also discovered that there are
some operations that may look fast, but are substantially slower than initially assumed. One example of
this is when using a Map that maps an Integer to a List. Inserting an item first requires the initialisation
of the List, which is done with the operation "putIfAbsent(idx, new List)". However, it is better to use
"computeIfAbsent(idx, () -> {new List}), due to only executing the closure after finding idx is absent in
the map and thus initializing List only when necessary.
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Figure 5.13: Screenshot from VisualVM when inspecting memory usage after a large graph is constructed.

5.6.2. Guided Dijkstra improvements
One of the approximation algorithms we use is a reiterative shortest path planning algorithm. The naive
implementation was quite slow since we first find all shortest paths and start from the shortest one. The
costs of the arcs for this shortest path are then set to 0. The algorithm then keeps finding the shortest
paths until are terminals are reached. If we increase the number of terminals, the computation time
drastically increases. The simple improvement made here is to rather than running Dĳkstra’s algorithm
for each terminal, we add extra arcs in the graph from each terminal to another "virtual" node that is set
as the destination. Dĳkstra will always yield the shortest path and thus the path taken will have passed
one of the terminals, which consequently has its arc to the virtual node removed. This effectively means
that this approach has the same runtime complexity as the naive approach.

5.6.3. GreedyFLAC improvements
For implementing GreedyFLAC, we start with the original source code from the paper [39], but
heavily modified. Where possible, we use primitive types and also rely on the fastutil data structures.
VisualVM also revealed that the NonEmptyIntersection operation and consolidating the Fibonacci
heap were responsible for most of the computation time. The complexity of GreedyFLAC is defined as
𝑂(𝑚𝑙𝑜𝑔(𝑛)𝑘 +𝑚𝑖𝑛(𝑚, 𝑛𝑘)𝑛𝑘2) and an approximation ratio of 𝑘 where 𝑘 is the number of terminals, 𝑛 is
the number of arcs and 𝑚 is the number of nodes. The improvements that we make in this section are
all based on programming improvements. The complexity stays identical, the relative performance is
increased.

Intersections
GreedyFLAC performs a sort of flow simulation, starting from each of the terminal nodes. When two of
these expansions collide, the expansion that originates from the collision is accelerated, depending on
how many terminal nodes have reached the node. The intersection is used to test if the flow simulation
performed collides. The original algorithm keeps a set per node to represent each terminal. Profiling
with VisualVM showed that this intersection method was responsible for half of the processing time
during GreedyFLAC.

The performance improvement comes from the fact that there is always a defined list of terminal
nodes. Therefore, rather than keeping a hash set of terminals per node, we keep a binary array of a set
size, where each bit represents one terminal. The collision is then simply tested by performing an AND
operation and verifying if the result is 0. Complexity wise, this change would yield no improvement, but
the constant time operation is accelerated in such a significant manner that the NonEmptyIntersection is
no longer a large contributor to the computation time.

Heap implementation
GreedyFLAC normally uses a Fibonacci heap due to the 𝑂(1) complexity of the decrease-key operation.
In literature, this heap is often used to prove that the complexity of an algorithm has a certain bound. In
practice, the Fibonacci heap has such a large constant cost for said operation that the actual performance
is worse off [7]. An attempt was made to use the Pairing heap, but testing showed that this yielded no
measurable increase in performance and sometimes even a decrease. Further investigation revealed that
the delete-min instruction is responsible for a large portion of the compute times of GreedyFLAC and
that both heap implementations required near identical times for the operation. Anecdotally speaking:
if the algorithm requires 25 seconds to run, this instruction is responsible for 13 seconds of computation.
Since the complexity of the Fibonacci heap is more favourable (𝑂(1) vs 𝑂(𝑙𝑜𝑔(𝑛)) we choose to keep the
Fibonacci heap over the Pairing heap.
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5.6.4. Other improvements
This section is to address design decisions that result in marginal performance gains, but do not warrant
a specific section.

• Java Topology Suite or JTS is used to perform the polygon based calculations. Testing collisions
and finding the points near the grid points are a good example. This library uses well programmed
polygon representations that make use of spatial indices in order to accelerate computations.

• JVM tuning is also used to improve performance. The Java Virtual Machine is able to be tuned
extensively [33] [13]. We made sure the heap allocations were of sufficient size and also used more
performance accelerating flags [36].

• JIT warmup is also used during benchmarking. We first run a couple of instances before
performing the actual tests.

5.6.5. Performance results
In order to show the performance differences achieved by programming improvements, we compare
the original code used for the introduction of GreedyFLAC [39] with the improved version. We create
simple graphs by creating a 𝑁𝑥𝑁 grid with 𝐵 buckets. The arcs are constructed in a 3x3 grid around
each node to each reachable node. Note that this approach creates a approximately ∼322 arcs per node,
this is a larger amount of arcs than we would normally use. We compare runtime and memory usage.
Both algorithms are executed on the same graph structure to create a fair comparison. Lastly, we also
made sure the received solutions were identical to make sure the implementations are correct.

Memory usage
We first look at the memory used before we run the approximation algorithm. One issue is that the
implementations use Java as language. This has the drawback that measuring memory usage is difficult
due to the unpredictable garbage collector. We therefore measure the size of the entire heap after
graph construction and force a garbage collection. The memory usage during execution is also difficult
to measure. Java will use more memory to boost speed if memory is available, which makes direct
comparisons less trustworthy. Nevertheless, since the differences are of such an order of magnitude, it is
important to highlight the difference to show how these improvements move the feasibility of execution
on large graphs from impossible to very reasonable. Figure 5.14 shows the log scale of memory used.
Note that the default version quickly reached high values and could not be tested further.

Figure 5.14: Chart that shows the difference in memory usage between the default graph implementation and the custom made
version when storing a grid based graph.

Execution time
Next, we inspect the difference in execution times. For this, we first compare the time it takes to construct
the graph with the time it takes to execute the GreedyFLAC approximation. For this, we create identical
problem instances with a set carefully placed terminals. The starting point is placed in the left lower
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corner and the terminals are placed in the middle and three other corners (this is a difficult scenario).
We also compare performance effects of increasing the amount of terminals. In order to create good
results, we use JMH to eliminate performance differences due to JIT warmup and we make sure the
computer has sufficient memory available.

We again stopped the default implementation after the 50x50x36 instance due to the memory
constraints. The results in figure 5.15 show that the execution time also improved with an average
factor of 15. We also see that the improved version shows signs of significant slowdown when at the
200x200x36 instance. The 300x300x36 instance is solvable, but runs into memory constraints.

Figure 5.15: Chart that shows the difference in execution times of GreedyFLAC between the default implementation and the
optimized version.

5.7. Jojo Plan
In the previous sections we managed to represent the problem in a graph and provide sufficient
performance improvements in order to solve large instances and create a tree that represents the path.
We must now create an instruction manual for the Jojo from this tree. In order to transform from a tree
to an instruction we move through the tree using a left first iterator. It behaves similar to a depth first
iterator, but has a preference for the most left path when approaching a split. Using this ordering makes
it so the vehicle moves along the tree with the least amount of movement.

The instructions that are generated using the left first iterator are stored using the following five
instruction types:

• DriveToStart is used as placeholder to represent the vehicle docking and driving to the starting
location of the created plan. This instruction uses the regular path follower.

• DriveForward is accompanied with a path that instructs the vehicle to move along this path. This
instruction uses the regular path follower with a reduced speed.

• DriveBackward is the same as DriveForward but the vehicle now moves backwards. This
instruction uses the regular path follower with a reduced speed.

• DistributeForward is accompanied either with a path or start and end location to represent the
stroke that manure needs to be applied on. This instruction uses the pressurized path follower.

• DistributeBackward is the same as DistributeForward, but now for the reversed motion. This
instruction uses the pressurized path follower.

Each of the instructions and accompanied information is then stored in a large JSON file. In order to
execute the program, the JSON is loaded into a queue and each action is executed after the other. As
a safeguard, a check is made whether the vehicle is at the right location for the action to be executed.
For the DriveToStart, DriveForward and DriveBackward instructions this means that the start position
has to be almost equal to the actual position, whereas for DistributeForward and DistributeBackward
actions allow for the vehicle to be positioned on anywhere on the path. The latter allows for the vehicle
to interrupt the distribute actions, which may be necessary.
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5.8. Limitations
The solution presented using a graph based approach also comes with limitations, this section aims to
highlight and discuss the shortcomings. We highlight the shortcomings and provide potential solutions
when possible.

• Approximation algorithms make mistakes. Figure 5.16 shows both the Dĳkstra approach and
GreedyFLAC making an obvious mistake for this problem instance. In both cases the path starting
from the blue marker should have steered more to the left in order to better reach the first stroke.
The GreedyFLAC approach appears to make a small correction to the left, causing only one stroke
to attach in a weird way. The Dĳkstra approach lacks this manoeuvre and fails to properly connect
the two left most strokes. We can always argue that the optimal solution does not differ that much
in cost to the given solutions, but it is still a shortcoming that we must address. GreedyFLAC
appears susceptible to making mistakes when a cluster of terminals is near each other. These
clusters will prefer to reach the terminal directly over adding a small path deviation to add a few
more terminals.

• Graph misalignment which is a result of translating polygons of infinite precision to a grid. Field
shapes can exist that are difficult to align with the grid, which can lead to an exclusion of possible
paths. Say for instance a narrow corridor where the vehicle can just fit through, if the grid is not
perfectly aligned with the corridor it will not be represented as a valid path. A possible solution
for this would be to detect these scenarios and then create special nodes in the graph, that move
the vehicle along this precise path.

• Maximum hose length is the most obvious limitation. The approach does not keep track of the
maximum hose length and whether the solution violates the constraint. As mentioned before, the
Steiner tree problem is already difficult to solve and adding this constraint makes it even more
difficult. There are limited solutions found in literature for the undirected instance [17]. Most of
them focus on the topic of wiring on microchips [32]. These solvers all have in common that they
are designed to work for small instances, not the large graphs that are used in this approach. As
for now, an alternative solver is deemed infeasible. Another argument one could make, is that the
likelihood of violating this constraint is not as high when the docking point is placed in a logical
location and the fields are of reasonable sizes. The reality is that the placement of the attachment
points is also decided beforehand and may be best determined by using this algorithm to find the
best placements. The vehicle is also tailored to each farm it is placed on, this means that the hose
length is also decided upon during installation.
Nevertheless, an attempt is made to provide multiple solutions for these edge cases. We start
with a set of recommendations for the user to keep the maximum length of each stroke within a
reasonable size. This may require the strokes to not be orientated to provide the longest strokes,
but rather in such a manner that they are not too long. Next, to keeping the strokes a reasonable
size, the fields and attachment point locations should also be designed in such a way that long
paths are avoided.
Another approach one can use is to iteratively run the naive Dĳkstra algorithm, where if a
generated path exceeds the maximum hose constraint, the intersection between the new path and
the partial solution can be viewed as too large. One can then modify the costs in the search graph
in such a way that the costs of the arcs in the partial solution are not all set to 0. An approach could
be to set the first half of this intersection to 0 and the rest of the partial solution to a very high
value. Rerunning the shortest path algorithm will then yield a result with a smaller intersection
between the new path and the partial solution, in effect reducing the distance to the root, if the
distance is still too much, the same steps can be repeated to find an even shorter path until the
distance constraint is satisfied.
The same approach can also be used to ’repair’ solutions created by GreedyFLAC, but as opposed
to fixing a violation during execution, this approach must do a retroactive repair. If a solution
violates the maximum hose constraint the path has to be analysed to find the reason the path is
deviating from the shortest path to a terminal which has the violated the constraint. The solution
is effectively to decrease the depth of the tree by better balancing the tree. This can be done either
automatically or by relying on manual intervention.
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• Branching from strokes is not possible. In this scenario, the vehicle first moves forward over a
stroke, then drives to the next stroke and completely drives over it, after which it drives backwards
and finishes the first stroke. Due to the design of the graph, the strokes act as a sink and thus do
not provide a method to extend the path after reaching a stroke. There may be a possibility to
implement this with more arcs and nodes, but the maximum hose length limitation mentioned
earlier, that has difficulties with long paths, led to the design decision not to solve this issue.

• Maximum size, even with the performance improvements is still a limitation. Using grid
resolutions in the range of centimetres or having extremely large instances could be desired, but
are not feasible. We are effectively on the edge of feasibility. Should the dimensions be doubled in
size again, we would not be able to calculate a solution within a reasonable amount of time using
a conventional computer.

Figure 5.16: Visual representation of the solutions created by GreedyFLAC on the left and Guided Dĳkstra on the right.

5.9. Conclusion
In this chapter, we presented an extensive explanation of how the simplified graph approach is
transformed to be applicable for the general Jojo problem. We first look into how the lattices are
generated and how they are used to construct the directed graph. We then look at how each aspect of
the problem is incorporated into the graph. Strokes can be approached from both ends and be split from
the middle, while disconnecting the strokes from the grid. We introduce the different approximation
algorithms that can be used and we provide an analysis of their workings.
In this chapter, we also learn that in order to achieve usable performance, extra effort has to be put into
constructing efficient software. Therefore, we also introduce multiple solutions for speeding up the
algorithm. The node representation is designed to be fast and the memory usage is also optimised.
Multiple attempts were made to improve the speed of GreedyFLAC, the switch to primitive types
proved to be most effective. Switching the underlying data structures for others yielded no substantial
difference. These performance improvements are also highlighted and discussed. In the end we
managed to accelerate the computations in such a manner that we moved this limitation beyond the
field dimensions that we aim to use.
In the next chapter we will look at how well the algorithm behaves, after which we can discuss whether
the proposed solution will fully answer the sub question of: "what is a supposed good method to
structure and create a solution?". For now the we can state that with the performed benchmarks on each
stage of the algorithm, that the full solution will probably be sufficient.
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Algorithm verification & testing

This chapter aims to evaluate and compare the quality of the generated Jojo solutions created using the algorithm as
explained in the previous chapter. This chapter is divided in two parts, where in the first we investigate the three
approximation algorithms and perform parameter optimisation. For this we use a large number of small test cases,
which enables us to perform numerical analysis. While in the second part of this chapter, with the information we
gathered in the first part, we use larger, more representative instances. These are based on the fields available to us
for future real world testing. For these instances, we provide a per instance comparison and discussion, where we
look at path length, simulation performance and integrate some user opinions.

6.1. Parameters
The graph construction algorithm and consequently the lattice generation have important variables that
can be tuned. The parameters and their respective default values are given in Table 6.1. The default
values are initially chosen based on an educated guess, but are to be optimised with the experiments in
this section. For this, we specify a range of suitable variables in order to compare. Note that we do not
disallow grid decoupling as the generated solutions are regarded as unsuitable as explained in chapter
5.

6.2. Generated instance experiments
In this section we will first define a test set of smaller auto generated instance, these are designed to be
solvable within a reasonable amount of time. We then provide a closer inspection of the different results
that the algorithms provide and try to explain the difference in the results. This section continues with
a set of experiments that run the algorithms on a large collection of instances while we vary the values
of the parameters. We conclude with an analysis of the results.

Parameter Data Type Default Values
Resolution (m) Float 1.0 {0.5, 1.0, 1.5, 2.0}
Turning radius (m) Float 3.6 [2.55-5.0]
Lattice dimensions Integer 7x7 {3, 5, 7, 9, 11, 13, 15}
Angle buckets Integer 36 {8, 12, 16, 20, 24, 28, 32, 36}
Cone width (degrees) Float 60.0 [45.0-90.0]
Grid decoupling Boolean True [True]
Mid insertion Boolean False [False, True]
Cost function Function Distance [Distance, Travel time]

Table 6.1: Table with the default parameters
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6.2.1. Instance creation
In order to both test and verify the algorithm we use a collection of hand made instances that encounter
edge cases and we make use of randomly generated instances. The initial was mostly used during
development and is now only used to verify the results of the algorithms in order to make sure no
implementation faults exist. The random instances are created by generating a shape and placing
random strokes within this shape and making sure they are all reachable. We also have the ability
to create random rectangles within the outer boundary, which are used to create blocks of strokes
as opposed to the random variant. Figure 6.1 shows a small collection of example instances with an
accompanied solution generated by one of the algorithms.

Figure 6.1: A collection of small instances with a potential solution.

6.2.2. Experiment 1: Approximation algorithms
In this first experiment we aim to understand the performance characteristics of the three approximation
algorithms. The assumption is that GreedyFLAC yields the best quality and performance. In order
to find out, we run all three algorithms on 100 generated instances using the default parameters as
specified in Table 6.1 and using four fields of the sizes 50x50, 100x100, 150x150 and 200x200 with 10 to
20 strokes. Each combination is represented equally for this test. Since each algorithm is deterministic,
we only have to run the solvers once per instance.

Results & Discussion
We randomly selected ten results to better show the difference in computation times. Figure 6.2 shows
the difference in path length between the naive and other approximation algorithms. The Guided
Dĳkstra and GreedyFLAC are both comparable, but GreedyFLAC always created an as good as, or
better solution over the Guided Dĳkstra.

Figure 6.2

The aggregated results are presented as an average score over all 100 and shown in Figure 6.3. The
story for the first ten instances can be retold here. For now the Dĳkstra and GreedyFLAC algorithms are
almost identical in performance.
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Figure 6.3

6.2.3. Experiment 2: Lattice optimization
This second experiment is aimed at optimising the three variables: Resolution, Lattice dimension and
Angle buckets. These three variables are tied together in multiple ways. For instance, increasing the
resolution of the lattice may give better results due to having more points represented in the grid,
but it may also lower results due to covering less surface with each lattice. Increasing the resolution
may even require more dimensions in order to make sure all points are reachable. The same analogy
can be made with the number of buckets, a reduction nets less arcs in total, but may also limit the
graph in such a way that not all possible vehicle movements are represented sufficiently. All three
variables essentially influence the size and quality of the search graph, which in turn has consequences
for performance. As such we try to optimize these variables by performing an exhaustive search. We
use the default parameters as specified in Table6.1 and the value ranges of the three variables to measure
the impact. Since this exhaustive search is time consuming due to the 224 possible combinations we
only use ten random instances on a 50x50 grid for the comparison. Due to the results of the previous
experiment, we only use the GreedyFLAC approximation algorithms. We also measure the time it takes
to both construct the graph and find the solution. This is due to the uncertainty the graph size has on
approximation performance.

Results & Discussion
The number of variables that we are representing is relatively large. Therefore, in order to show the
results, we plot the three variables on the respective XYZ axis and use color and size to represent
computation time and size to represent the score. Figure 6.4 shows the results when using GreedyFLAC
using a 3d plot. The raw data is given in appendix 9 in tables 9.1 and 9.2. As expected, the general trend
is that increasing the values results in both higher compute times and a better score. However, careful
inspection shows that the values with a high lattice dimensionality and resolution, but a lower amount
of bucket, still performs reasonable.
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Figure 6.4: Visualization of the results in a 3D Scatterplot when approximating with GreedyFLAC. The score is visualized using
colors and the computation time is represented with the size of the dots.

Say we specifically look at the best performing and slowest configuration of: (R=0.5, D=15, B=36)
and a neighbouring configuration of: (R=0.5, D=15, B=16). The average score lowers from ∼182 to
∼185 meters, but the total computation time is also lowered from 376 to 64 seconds. Also interesting to
note is when we compare the outer scenarios of (R=2.0, D=5, B=8) with (R=0.25, D=19, B=36), we get a
performance increase of ∼160x (410 seconds to 2.5), but only gain a distance improvement of ∼20%. A
potential conclusion one can make is that an increase in values is tied to an increase in computation
times, but not necessarily tied to a proportionate increase in quality. Figure 6.5 shows the connection
between lattice size and computation times. The colour filter based on the resolution exposes the linear
scaling trend in computation times compared to the size. If we look at the lattice size versus score
results using a fixed resolution shown in figure 6.6, we see that larger lattice sizes do trend towards
a better solution, but with diminishing returns. Since performance gains are relatively low and time
penalties high it is wise to pick lattice parameters that keep the size to a minimum.
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Figure 6.5: Visualization of lattice size compared to calculation times.

Future implementation may need to look at better methods of generating lattices as such as proposed
by Bergman Et al. [3], where the set of best combinations are programmatically determined. For now, a
reasonable set of parameters appear to be (R=1.0, D=9, B=16), the same as shown in figure 5.3b, the
score is ∼194 meters and can be calculated in ∼10 seconds.

Figure 6.6: Visualization of lattice size compared to score for the resolution of 1.0.

6.2.4. Experiment 3: Stroke count
This third experiment is aimed at understanding the performance impact of having more available
strokes. For this, we generate an increasing amount of stokes on the same 50x100 field and measure
the performance. The assumption is that more stroke means a larger computing time for all three
algorithms, but GreedyFLAC will experience the least relative impact as opposed to the other two
algorithms who will probably scale linearly with the number of strokes. This experiment only focuses
on the three approximation algorithms and therefore only measures the time it takes to run those and
not the time it takes to construct the graph as performance impact of adding strokes is negligible.

Results & Discussion
The results for this exceed the initial guess of performance scaling. Initially, we did not expect such a
large difference as we expected GreedyFLAC to also take a performance penalty, but the results in figure
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6.7 show how much the number of terminals changes the performance of each approximation. The
naive and Dĳkstra approach perform an iteration per node where GreedyFLAC performs the calculation
in one go and thus gains performance in that respect. The performance differences are of such an order
of magnitude that it can be argued that only GreedyFLAC is suitable for these larger instances. However,
it must be noted that the Dĳkstra approach can be made much faster by using only one iteration to
calculate the paths to each terminal.

Figure 6.7: Execution times per approximation algorithm of increasingly more strokes added to the same 50x50 grid.

6.2.5. Conclusion
In this section regarding the tests on generated instances where we compare the three approximation
algorithms, we arrive at the conclusion that GreedyFLAC gives better performance both time and
quality wise, especially on instances with a large number of strokes. During parameter optimisation,
we also notice that it is difficult to optimise the lattices due to the many variables that influence the
quality and size of said lattices. In general though the combination of chosen parameters should result
in a lattice that is both of sufficient size in order for all points in the grid to be reachable and not too
large to prevent high compute times. The quality of the final result is influenced less by the parameters
than initially thought, while performance is heavily dependant. Perhaps the two suitable conclusions
to this chapter are: lattice generation should be made smarter and GreedyFLAC as approximation
algorithm is deemed the most suitable due to slightly better results over Dĳkstra, but especially due
to the performance difference when confronted with many terminals (strokes). The small instances
gave a good insight in how results are influenced. In order to make a final assessment of the quality we
continue in the next section with more representative instances.

6.3. Real world instance experiments
In this section of the chapter, we will be conducting experiments and discussing representative scenarios.
We will also be using what we learned in the previous part of this chapter. Namely the parameters that
we optimised and the conclusion that GreedyFLAC delivers the best results. Also, rather than only
comparing the path lengths, we will be comparing the simulation performance of these instances as
well. For these experiments we will be using the same field the vehicle is normally operating on. Figure
6.8 shows the three fields with their solutions using GreedyFLAC. The other two approximations did
not yield a solution within a reasonable amount of time. Note that in the real world, the left most field
is the only one currently equipped with an attachment point. We also decided to use different stroke
angles for each field in order to test the algorithm behaviour under different angles. Figure 6.10 shows
the behaviour near the pits.
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Figure 6.8: Here the solution of the mid instance is pictured when zoomed in to be near the docking pit.

6.3.1. Simulations
The simulation makes use of different settings per part of the Jojo plan. The vehicle velocity when
driving over the strokes is set to 0.8𝑚/𝑠, while in any other case the velocity is set to 0.5𝑚/𝑠. For the
simulations, we also assume the vehicle never runs out of power or manure. As shown in the table
6.2, the lengths of both the drive and distribute segments are known, from which we can deduce
that the simulations require a substantial amount of time to complete since we know vehicle velocity.
Nevertheless, this guess would be an upper bound, since the vehicle controller as described in chapter 3
slows down for corners and uses slow accelerations. Also note that during each step in the simulation,
checks are run to verify if the vehicle is actually doing what it needs to do.

Figure 6.9: RVIZ2 visualization of the plans in the simulation.

6.3.2. Results & Discussion
Since the simulation takes a large amount of time to complete, we only run each instance once. The
results are given in table 6.2 and show how the length of the paths influence the simulation times.
Inspecting the generated paths as shown in figures 6.8 and 6.10 we see that the solutions make heavy
use of the mid stroke insertions. Perhaps the pit being positioned in the middle of the field is the result
of this. We also see in the pit area both how well the algorithm performs in finding a solution in such a
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Field Size (m2) Compute time (s) Path length (m) Drive length (m) Distribute length (m) Simulation time1(h)
Left 59,402 43.5 31,458 4,257 27,201 17
Middle 70,056 24.3 38,003 3,723 34,280 22
Right 60,255 60.8 32,202 2,911 29,291 19
1 Simulation may have introduced a slowdown during execution

Table 6.2: Table containing both heuristic and simulated results

situation, but also the shortcomings. The two branches on the left and right, which cover the strokes
that are cut in order to avoid the pit, branch of from the start of a mid stroke insertion. A better solution
would have branched off from the ends of such a mid stroke insertion.

During the simulation, we also noticed that the vehicle almost perfectly followed the path, the
simulation can perhaps be augmented to sometimes make localization errors. The simulation also
did not appear to run in real time due to computation power required, making it difficult to estimate
execution time. Since there is a strong connection between the path lengths and the execution times, it
can be argued that the times can be approximated in a faster way, rather than simulating each instance.
This approximation may even use the acceleration and path curvature as input to further increase its
accuracy. Nevertheless, the simulation was invaluable during both development and gaining confidence
in real world testing.

Figure 6.10: Visual representation of the fields and strokes for a solution on a real world instance at the middle field.

Lastly, we must also address an observed shortcoming of the planned path. We already discussed
the limitation of the vehicle not being able to continue the path either from the end or middle of a stroke.
Figure 6.10 shows how both the left and right branches that are forked from the vertical segments
require the vehicle to drive back to the start of a mid intersection, rather than branch of from such an
intersection. Figure 6.11 highlights this even better. The path could be improved by merging the branch
to the right with the end of a mid intersection. For the first two test fields we count a total of five of these
occurrences, for the last field we also count five. We can argue that in this case the extra driven distance
is not substantial, but we must assume that there are instances where this behaviour is more frequent.
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Figure 6.11: Visual representation of the fields and strokes for a solution on a real world instance at the middle field, zoomed in at
a suboptimal segment.

6.4. Conclusion
In this chapter we started with testing and optimising the algorithm as specified in the previous
chapter. We learn that the lattice parameters originally assumed to be chosen well, were actually not as
performant as thought. The better variables were found by an exhaustive search, which showed the
diminishing returns of solution quality at the cost of large computation times. We also investigate the
difference between the three approximation algorithms and learn that the modified Dĳkstra performed
quite well on the simple instances, but lost competitiveness to GreedyFLAC when increasing the number
of strokes resulted in a drastic increase in compute time.

In the second part of this chapter we continue testing, but on the aforementioned real world scenarios.
For this, we use the only field currently available to us and show that the algorithm indeed manages
to find a sufficient solution to the three instances within a very reasonable amount of time. We then
simulated the solutions to these three fields, although they take a long time to complete in the current
form, they show that the solutions are feasible for the vehicle to execute.

Considering that during the initial phase of development in this thesis the assumption was made
that even generating a suboptimal solution is difficult, all the solutions that we managed to get for
both random and real world scenarios appear both visually and numerically sound with minimal
suboptimalities, especially when the path lengths are dwarfed by the total driving distance. As such,
it is possible to argue that the answer to the sub question of: "how does the solution compare when
using different farm layouts?" can be partially answered with: performing above initial expectation, but
not completely due to the lack of comparisons as a result of both the novelty of the problem and the
proposed solution. Whereas the sub question of: "does the solution scale sufficiently to allow for real
world scenarios to be solved within a reasonable amount of time?" can be answered with a yes as we
have shown in section 6.3

Another interesting fact can be observed in table 6.2. The size of the calculated path is dwarfed
by the size of the distribute segments. Perhaps this opens the possibility for allowing worse path
approximations, but allow for the maximum hose constraint to be adhered.
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Experiments

In this chapter, we will be conducting real world experiments using the Jojo plans that we are able to generate
using the aforementioned methods. The experiments and simulations that we conducted in the previous chapter
are sufficient to show that the generated solutions perform as expected. This chapter takes it a step further by
performing a couple of real world tests intended to verify whether the solutions are also feasible in the real world.
In order to save time, we conduct a few experiments that perform the difficult segments of the solutions, rather
than the entire solution, since executing a route that would take at minimum 16 hours to complete is infeasible.

7.1. Parameters
For these experiments we use the variables listed in table 7.1 for generating the Jojo plans. These are the
variables we obtained during the variable optimisation performed in the previous chapter.

Parameter Data Type Value
Resolution (m) Float 1.0
Turning radius (m) Float 3.6
Lattice dimensions Integer 9x9
Angle buckets Integer 16
Cone width (degrees) Float 60.0
Grid decoupling Boolean True
Mid insertion Boolean True
Cost function Function Distance

Table 7.1: Table with the parameters used for the real world experiments

7.2. Experiment 1: Mid field intersections
This first test will investigate whether the vehicle is able to perform execute the mid field intersections.
This scenario appears to happen quite often and can also be deemed difficult for the vehicle to execute,
due to the sharp turns. Therefore these intersections warrant an experiment to test whether the
intersections in the current form are suitable. Figure 7.1 shows the constructed instance with the
associated solution. The route is executed by always preferring the left most branch before backtracking,
as explained in the previous chapter. This solution has a drive length of ∼196 meters, a distribute length
of ∼480 meters and the tightest corners have a radius of 4.0 meters. We will be testing the vehicle by
driving a velocity of 0.5 𝑚/𝑠 and look ahead distance of 2.0 meters on the drive segments and a velocity
of 0.8 𝑚/𝑠 and a look ahead of 4.0 meters on the distribute segments. Since we are interested in whether
the vehicle is able to perform these intersections, we need to record the path the vehicle follows. We
do this by logging the GNSS data on 1 second intervals. The second point of interest is whether the
attached hose experiences no damage during testing. An operator is continuously checking if the hose
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experiences no straining. If so the operator will halt the vehicle. This experiment will be repeated 3
times.

Figure 7.1: Visualisation of the generated solution containing multiple mid intersections in a row.

7.2.1. Results & Discussion

Figure 7.2: Picture of compressed grass after the vehicle drove over multiple times.

We specifically choose a patch of grass where the grass was quite high in order to visually show
the results. Figure 7.2 shows the compressed grass after the mid intersections. The grass is highly
compressed in the areas where the vehicle drove over 12 times due to the multiple iterations during the
experiment. The image appears to show good results, but for further investigation we will look at the
GNSS points. Figure 7.3 shows these traces. The results are quite promising: the vehicle can actually
execute the route and the vehicle follows the route quite well. The figure also shows the 3 traces laid
over each other: the repeated paths are almost identical. This is the result of both the route being valid
to drive and the path following algorithm working well. The largest area of improvement appears to be
related to the path follower experiencing understeer during corners, especially at higher velocities. This
can probably be reduced by decreasing the look ahead distance, but as mentioned in chapter 3 this may
introduce undesirably strong steering behaviour on straight segments.
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Figure 7.3: Visualisation of the 3 recorded GNSS series. The colors indicate the velocity.

We also executed a run with a 0.4 𝑚/𝑠 increase in velocity, figure 7.4 shows this behaviour. The
turning segments show signs of oscillation, a common issue with RPP due to a too small lookahead
distance. The distribute lines behave well due to the further lookahead distance of 4.0 meters as opposed
to the 2 meters during the drive segments. If the end user would want the vehicle to move faster, the
best approach would be to keep the driving velocities as is, but allow for the vehicle to go faster on
the distribute segments. However, perhaps the best solution would be to better tune the variable look
ahead functionalities as explained in a previous chapter in section 3.2.4.

Nevertheless, the results show that the vehicle was able to repeatedly execute the solution, showing
that a commonly used movement pattern in the solution can be executed well.

Figure 7.4: Visualisation of the GNSS series of a run with 0.9 𝑚/𝑠 velocity on the drive segments and 1.2𝑚/𝑠 on the distribute
segments.

If we now inspect the velocity graph shown in figure 7.5, we notice a few things:

• The vehicle indeed drove the configured speeds of 0.5 𝑚/𝑠 in the steering segments and 0.8 𝑚/𝑠
in the distribute segments.

• The repeatability of the execution is also confirmed by the almost identical velocities.
• The total execution time was about 1600 seconds or 27 minutes.
• The maximum velocity is not achieved during the steering behaviour, as configured.
• The vehicle spends a considerate amount of time at the velocity of 0 between each step of the Jojo

plan. On average this means that there is about ∼300 seconds lost to standing still between actions.
Out of scope for this research, but perhaps a good focus for future improvement.
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Figure 7.5: Visualisation of the 3 recorded velocities over time. The vertical axis is specified in M/S and the horizontal axis is in
seconds.

Lastly, we also investigated whether the hose managed to stay intact, which appears to be the case.
During execution the vehicle did not have to be stopped. Afterwards the hose was unrolled once more to
visually inspect the hose for any signs of damage. Even though the hose was not damages in the testing,
we do recommend that the current minimum turning radius should be increased. Partly because we
did observe minor straining in the corners, but more as a preventative measure for dealing with uneven
fields. During manual testing, we noticed that when the vehicle autonomously drives over uneven
ground, the vehicle may steer too much due to the GNSS antennas on the roof tilting and causing a
misrepresentation of the location. If such an unlucky bump is placed on the same location as where the
vehicle needs to turn, it may cause a too tight corner to be made and as a consequence break the hose.

7.3. Experiment 2: Docking point
This second experiment is designed to test if the behaviour near a docking point is desirable. For this
experiment we construct a solution without mid intersection, but with strokes placed over the docking
point. Figure 7.6 shows the generated solution. Note that next to testing the docking point, the tight
circle with a radius of 3.775 meters is also an interesting scenario. This experiment will again log the
GNSS data.

Figure 7.6: Visualisation of the generated solution with strokes placed over the docking point.

7.3.1. Results & Discussion
This experiment had to be aborted as the tight circle at the start was straining the hose beyond an
acceptable level. This behaviour repeated on the second try, as was expected with the repeatability
observed in the first experiment. The same is true for the conclusion of the previous experiment that
stated that the used minimum turning radius was too small, but not for the same reason.
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The straining of the hose was originally not observed when determining turning radius based on the
corners made in the lattices. Problems arise when these motion primitives are repeatedly chosen to
be the same tight corner. Put simply, a tight 90°turn exerts less force on the hose than a 180°turn of
similar tightness. The suspected reason for this behaviour is that after the first 90°there is a build-up
of tension, which results in an even greater build-up when performing another 90°turn in the same
direction. Perhaps the build-up also interferes with the unrolling mechanism, causing the increased
tension in the corners. The solution would be to increase the minimum turning radius to prevent such
straining. However, one can argue that the Jojo plan used in the first experiment consisted of corners
having a similar tightness and that increasing the turning radius would in turn reduce the quality of the
generated solution. The basis of this flaw stems from an assumption made in the first section in chapter
5: "If all the nodes and arcs in the graph are checked for collisions with the boundary and the arcs represent feasible
transitions, we can be sure that the vehicle can safely transition over this graph.", which as we can see is not
always the case.

We must conclude that this behaviour and the proposed solution can be seen as a shortcoming of
the plan generator since it does not make decisions based on existing tension in the hose.

Another problem that should be discussed can be seen in figure 7.6. The strokes surrounding the pit
should be cut out better. This is due to them being cut of in a circular shape. This approach, however,
does not take into account the size of the vehicle. Specifically the cuts in the second and 7th stroke
from the top are a consequence of this approach. In reality, these cuts are not required. At the end of
the stroke the vehicles bounding box is already touching the other side of the cut stroke, making the
cuts unnecessary. However, this problem can be solved using better grid division algorithms and as
discussed, are not the focus of this research.
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Conclusion

Solving the Jojo problem and testing the generated solutions required this thesis to discuss a multitude
of different topics and fields of study. We first discover that there exists a research gap concerning the
curvature constrained path to 𝑛 points that covers the least area. Many topics of research exist regarding
the flexible tethers that are focused on preventing tangling. The most similar area of research appeared
to be the topic of steerable needles, where only a small portion of work is focused on non exhaustive
search.

The Jojo however, is on many fronts not as similar to steerable needles as we discuss thereafter. In
order to get the vehicle to function we first had to implement a few core components as described in
chapter 3. The most important being the observed lack of sufficient path following capabilities and as
such, we explore the dynamics of the vehicle and design a custom path follower that suits the needs,
which can both be tested in a simulated environment and is regarded safer due to the constraints.

We then continue to focus on solving the Jojo problem in chapter 4, for which we introduced a
simplified version of the problem. Simple tests and observations were used to make the decision to
use a graph based approach with approximation algorithms for the DST-problem. At this point we are
aware of the potential shortcomings of this approach, but since we only observed reasonably scalable
behaviour from this approach, we deem this a fair trade off.

With understanding of the problem, vehicle and a promising approach, we design and implement
the graph based approach, but now on the full Jojo problem. This is done in chapter 5. We start with
lattice construction methods, for which we use a trivial approach and decide upon a memory efficient
method to represent the underlying graph. Next we introduce solutions to both the grid alignment
issue by introducing decoupling and also allow for the path to enter a stroke midway. We also introduce
the three approximation algorithms that we use for solving the DST-problem on the graph and highlight
performance improvements we made. We then continue with general performance improvements,
mostly due to on better programming decisions and extensive runtime inspections. Lastly, we also
present a method for the solution to be represented as and implement an execution engine that can
execute such a plan both in the simulation and real world.

In chapter 6 we test the algorithm on both small and large instances. The small ones are used to
benchmark performance and compare the different approximation algorithms. After an exhaustive
search we learn that the initially assumed to be reasonable variables for the lattices are actually not as
good. We also learn that the quality of the solution is not influenced as much by reducing the lattice
size, but compute times are lowered greatly. Nevertheless, we are able to confirm the workings of the
algorithm and reliably construct Jojo plans from a given problem instance.

The large instances are based on the farm the vehicle is currently at. We split a large field in three
parts and perform both numerical and visual analysis. Lastly, we also simulate the generated solutions to
determine the real world execution times and only learn that these are quite long and that the execution
engine works well. We observe that the calculated path only represents a small part of the total driving
distance since the strokes account for most of the distance and if we are critical does highlight that
perhaps the generated paths may be less optimal but apply more ignored constraints.

Lastly in chapter 7 we perform real world tests by generating small instances that are representative
of difficult to execute segments of a Jojo plan. The first experiment, designed to test the frequently used
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mid stroke intersections, performs well each try and mostly remarks the inaccuracies of the vehicle
controller, especially when driving at a higher velocity.

The second experiment is designed to test behaviour near the attachment points and also makes use
of long and tight corners. This experiment had to be interrupted due nearly damaging the hose due
to straining. Previously we verified only the driveability of the most difficult paths in the lattices and
made the assumption that any combination of the paths attached are also driveable. We observe that
tight corners introduce a strain into the hose which after performing another tight corner in the same
direction builds up even more strain. This eventually leads to critical straining and termination of the
experiment. The proposed solution requires the solver to use a greater minimum turning radius.

Nevertheless, we can conclude that we have developed a novel method to solve the Jojo problem on
large instances within a reasonable time. The shortcomings will be discussed in the next section, but
based on the initial difficulty assumptions and lack of related work, the obtained results are a promising
start.

8.1. Limitations
The proposed solution also has a list of shortcomings and limitations that we will summarise en discuss
as well.

• Maximum hose length also known as maximum depth in the tree is not a constraint this solution
is able to take into account. When using the graph based approach there exists no (fast) algorithm
that is able to solve the DST-problem while taking maximum delay into account. Even if such
an algorithm were to exist, we would still not be able to take this constraint into account since
the length of the strokes is not accounted for with the current method. We therefore made the
decision to ignore this constraint when calculating a route and present potential methods to fix
solutions that violate it. Nevertheless, we also argue that it is better to prevent scenarios where
the constraint is violated. Since this algorithm is intended to aid a human operator, we have this
luxury.

• Minimum turning angle is not the actual minimum but has to be artificially increased to make
sure the vehicle is able to execute a series of strain increasing transitions. Where one such transition
may be possible, a multitude is not. In order to solve this a higher minimum turning radius must
be used. One can see that since we a re limiting the vehicles movement set, the search space is
in turn decreased to accommodate said scenario, such a decrease may lead to less favourable
solutions.

• Branching from strokes and from the paths that connect the strokes to the grid, is not supported.
This also introduces a decrease of the search space, again potentially decreasing the quality of
a solution. However, there may exist a fix afterwards solution for this problem as well. We can
perhaps detect when a segment of the path can be replaced with branching off a stroke.

• Future performance could also be a concern. Currently the implementation is fast enough to be
user friendly, but larger problem instances for even longer hoses (think more than 1000 meters)
could pose a problem. We do believe that implementing the algorithm in a less constrained
programming language and using a more memory efficient graph representation can increase
the maximum size of problem instance, but the exponential nature of the problem will not be
overcome with a better implementations.

8.2. Future work & Recommendations
This thesis presents a novel method for solving the Jojo problem, which can in no doubt be improved and
perhaps also be used in different areas of research. In this section, we summarise the most important
areas of research to build upon using this research:

• 3D environments are perhaps the next frontier for this approach. As mentioned before, we used
the research topic of steerable needles as inspiration for this solution, the similarity of the problem
may allow for this approach to be used when it is modified to work in a 3D environment.
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• Cost functions currently used were limited to the length of the path since we assume this is
representative. Perhaps it is also interesting to see if the vehicle dynamics are used as a cost
function.

• Post processing methods should also be researched. We solution quality is limited by the grid
resolution. Perhaps if a post processing step that first generates all the ’splits’ and then uses a high
resolution planner to calculate the routes between these splits is used, the quality of the solution
would automatically improve. In the Jojo use case such an approach is probably necessary to
facilitate the end user who may wants change the routes slightly.

• Alternative solutions using completely different methods would also be beneficial to solving the
Jojo problem. Anecdotally: as a human, after observing the solutions presented by the algorithm,
it becomes intuitive to predict the outcomes. This may also be the case of an AI based approach. It
could also be possible to incorporate the field division with the path planner in order to be able to
optimise both.

• Dynamic scaling is perhaps another avenue to explore. The grid is currently constrained to a set
resolution. Perhaps it can be better to dynamically scale the grid to be of either higher or lower
resolution depending on the situation. Perhaps a low resolution grid can be used, but with a
higher resolution at constrained locations.

• Guided search space as seen with neural A* path planning [40], is perhaps also an inspiring direc-
tion. Neural A* guides the regular A* algorithm which is not something the DST-approximation
can make use of, but perhaps the idea of using a variation of this approach to decrease the total
search space could be a possibility. One can image a heat map an AI can generate based on a
problem instance, which can either determine the boundaries of the grid or be combined with the
aforementioned dynamic scaling.
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Figure 9.1: Visual representation of the paths created for a 5x5 lattice with 3m between the nodes and 10°buckets, specifically for
the 200°bucket

Figure 9.2: Visual representation of the paths created for a 11x11 lattice with 0.5m between the nodes and 10°buckets, specifically
for the 200°bucket
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resolution latticeDim buckets score time
0.5 9 12 253.69009850323772 29709340899
0.5 9 16 263.85624980349996 42452846101
0.5 9 20 313.381744821441 50255597000
0.5 9 24 253.0519334230242 74567712500
0.5 9 28 262.78864262637273 99529769200
0.5 9 32 258.7675390640471 138240370800
0.5 9 36 246.68194190896966 178542735100
0.5 11 12 254.50210451176295 44819722101
0.5 11 16 265.51044806044536 68122163200
0.5 11 20 263.5701557722499 81384004300
0.5 11 24 245.4577362547638 140408575000
0.5 11 28 252.4132904172208 183606338700
0.5 11 32 260.28022788479564 237991967100
0.5 11 36 245.18794214856035 303266840900
0.5 13 12 247.6558591119805 68078205700
0.5 13 16 242.20976063048118 100995865300
0.5 13 20 253.12867810508232 143816008499
0.5 13 24 237.8987836619836 233951475099
0.5 13 28 250.06598882543048 306204608399
0.5 13 32 240.16721958558347 394634742800
0.5 13 36 231.09251498833237 508904234300
0.5 15 12 253.5183780674525 92142517800
0.5 15 16 238.4895422037905 165767989300
0.5 15 20 249.0110825059438 202123202799
0.5 15 24 240.89786117512887 344829895900
0.5 15 28 242.88647984366807 473671967400
0.5 15 32 239.13420227134165 634432098501
0.5 15 36 235.15150088619126 811293579099
1 5 28 271.5083418590094 18144528001
1 5 32 290.51043381951854 18505597600
1 5 36 273.6095332618903 22539939800
1 7 12 297.3756247870839 6930124599
1 7 16 255.08584341519781 10884946801
1 7 20 265.86416898466496 17520460300
1 7 24 253.22234961603172 22061251100
1 7 28 251.06220906693002 29455642800
1 7 32 254.26854015675696 37194800000
1 7 36 249.93182490701537 46695707300
1 9 8 266.04366031971625 6873146100
1 9 12 251.89882543287504 12289673201
1 9 16 253.30676458596608 20699595999
1 9 20 251.61080359944896 30706437000
1 9 24 253.47429594976938 41996767300
1 9 28 251.3313717793604 60934499701
1 9 32 247.76861825292613 78328680500
1 9 36 248.33890680247995 94395368800
1 11 8 268.1457239501591 10391548901
1 11 12 260.0722684605633 21564482399
1 11 16 256.7603327151217 35549327200
1 11 20 247.89902327000846 59313497900
1 11 24 249.44402902381825 86022485500
1 11 28 245.95027537992837 114230166599
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1 11 32 243.7563589079785 148666031600
1 11 36 231.77333764329495 200492192200
1 13 8 267.55163188677886 18156675300
1 13 12 257.93506416747744 35617356400
1 13 16 254.1478847704438 63837107299
1 13 20 245.56722132736041 102492567399
1 13 24 242.372535467472 146787127700
1 13 28 240.0142140988234 219251188400
1 13 32 243.54185782484228 287609704600
1 13 36 238.38494521848673 408059409100
1 15 8 267.19435472344605 28186017900
1 15 12 257.62657877860823 56229746899
1 15 16 256.28567674113503 106375704599
1 15 20 250.16430344851682 186355656001
1 15 24 250.22222679076003 281527932700
1 15 28 242.80385693100501 402115198999
1 15 32 257.19776556095275 504517054500
1 15 36 236.68360381534984 695658904100
1.5 5 8 273.45732564285083 2449825500
1.5 5 16 276.150345002595 5431696699
1.5 5 20 294.56465635499666 6979173700
1.5 5 24 278.70233495965397 9195911100
1.5 5 28 268.8527458674578 11037397400
1.5 5 32 265.032123222924 14152723900
1.5 5 36 260.18818325296184 17031881900
1.5 7 8 275.0103301621732 3378043500
1.5 7 12 277.2947863019267 5833723200
1.5 7 16 260.7589925040867 8948714699
1.5 7 20 255.4092152169017 12123394700
1.5 7 24 261.9835817905725 19031420400
1.5 7 28 256.2680732651862 25006860301
1.5 7 32 255.3482436431944 31771184600
1.5 7 36 257.9102715382329 38773216700
1.5 9 8 275.4034063345214 5504193901
1.5 9 12 276.93899714387544 10605949800
1.5 9 16 265.89420270899075 15972168300
1.5 9 20 259.8563175003356 25582596000
1.5 9 24 254.84207604501086 37321473200
1.5 9 28 252.0031064130025 54504474600
1.5 9 32 253.4089086678478 65642488100
1.5 9 36 243.87616873180664 87447077400
1.5 11 8 268.7669017123877 8733338100
1.5 11 12 282.36570853546317 18899038300
1.5 11 16 265.5573480160797 32941587001
1.5 11 20 263.6312655708451 47066121400
1.5 11 24 258.8895758008287 73813036000
1.5 11 28 251.75623302935682 106429021900
1.5 11 32 260.85210840626104 137659995700
1.5 11 36 259.2466946513611 189143868600
1.5 13 8 271.0249835335232 13534029400
1.5 13 12 278.0435508457769 32237836400
1.5 13 16 268.02188274329717 55195384299
1.5 13 20 263.425703707739 82990182701
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1.5 13 24 270.97716255031867 134208929601
1.5 13 28 259.8229204566751 190494923600
1.5 13 32 264.3717345069539 251214497801
1.5 13 36 261.5370419136915 347778628200
1.5 15 8 275.39330832633357 19251660600
1.5 15 12 285.3068210754473 46167814101
1.5 15 16 269.7206790890024 79768359800
1.5 15 20 264.5550042734385 135461008700
1.5 15 24 271.3250408685527 210465854100
1.5 15 28 265.5208863965412 328689790501
1.5 15 32 264.65661795467867 408227695700
1.5 15 36 266.03188562717014 540245919300
2 5 12 286.59974974256136 2919819299
2 5 16 282.5676643455156 5034418300
2 5 20 293.65382519538605 6421253000
2 5 24 278.4709178711728 8413319000
2 5 28 283.89504785838716 10151064100
2 5 32 285.4582142693089 11758198600
2 5 36 266.3276151564615 14320538801
2 7 12 288.78438554307854 5727174401
2 7 16 288.384157348612 7985901500
2 7 20 285.7989842560129 11114060400
2 7 24 275.90988199161154 16943046600
2 7 28 278.64562682111193 21569670300
2 7 32 274.82473588084383 27099981701
2 7 36 268.4863250073605 34201426100
2 9 12 295.41674056348205 8923945500
2 9 16 295.6614750076086 14193070900
2 9 20 279.99002827765685 22252978100
2 9 24 281.13026228222503 34743807299
2 9 28 278.90940687631536 48288368001
2 9 32 276.4168359209266 61840431700
2 9 36 269.89331910702913 81719227199
2 11 12 294.5199326696751 15781933901
2 11 16 291.0477200166323 26058033700
2 11 20 280.19549525283105 42017335000
2 11 24 284.87372824211036 64497857000
2 11 28 275.81984658476557 87426398000
2 11 32 268.73471257929305 108883423300
2 11 36 277.61614028434803 152828447700
2 13 12 298.5662601631266 25070054200
2 13 16 301.4057032573338 41831654299
2 13 20 290.31491844812297 64562361100
2 13 24 288.40310287656746 101507193499
2 13 28 278.58508616792227 133578429299
2 13 32 272.7598340039498 177398931999
2 13 36 278.87898275963914 229526390701
2 15 12 298.50853442658376 35221280700
2 15 16 301.67717024154945 53151704900
2 15 20 296.79541161422196 86751456600
2 15 24 291.9738868922633 138155053400
2 15 28 283.82945363697934 170677232900
2 15 32 280.2709334968054 210848359201
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2 15 36 282.10344740288883 296631804300

Table 9.1: Lattice tuning results for modified Dĳkstra

resolution latticeDim buckets score time
0.5 9 12 191.19003660844908 12095312999
0.5 9 16 201.8635590382503 16392859600
0.5 9 20 234.21656108497808 21562120999
0.5 9 24 191.94140143347158 27859743000
0.5 9 28 203.9790323461996 44654782500
0.5 9 32 196.23065328963497 63063784699
0.5 9 36 182.1185192749186 67651284799
0.5 11 12 192.85121215018918 18496724399
0.5 11 16 203.49610955554425 27174655600
0.5 11 20 207.14792322891057 42113529600
0.5 11 24 192.5266032136379 59105328000
0.5 11 28 190.63885174689204 85632257399
0.5 11 32 192.83971798627994 109041102099
0.5 11 36 181.43302730944114 136672408801
0.5 13 12 193.1779481568407 33620999400
0.5 13 16 187.14170932936068 48070317900
0.5 13 20 191.93660294286315 68688663800
0.5 13 24 185.19507393153557 93878296700
0.5 13 28 186.94501714558137 136108767699
0.5 13 32 184.01179019335387 175114016400
0.5 13 36 184.9325919289602 243504015000
0.5 15 12 192.97704077778036 38729865001
0.5 15 16 185.70737203494656 63664884399
0.5 15 20 189.78977506215284 95962416101
0.5 15 24 184.24677132019045 132556738100
0.5 15 28 184.55082838725326 227904658400
0.5 15 32 180.5409033604289 305127461999
0.5 15 36 182.04951357787496 376523192200
1 5 28 212.06471957664593 10111363300
1 5 32 225.43951656075424 10759390999
1 5 36 223.72311794523551 13592227600
1 7 12 226.29281695478312 4323925700
1 7 16 202.82717433435167 6980525499
1 7 20 208.1375399869483 9778359500
1 7 24 201.77849424612685 13342828399
1 7 28 200.08000084394726 17429815101
1 7 32 195.40253890947878 21184624800
1 7 36 197.03055431981312 23627937700
1 9 8 218.587070726908 4037854000
1 9 12 197.68454005580043 6332748199
1 9 16 194.40631390590377 10307965900
1 9 20 196.60477979177745 18232502100
1 9 24 192.33908907758268 25718670300
1 9 28 190.8809888694831 31168361600
1 9 32 190.831524449033 42216225801
1 9 36 191.4611603422099 48767681200
1 11 8 213.14650027541106 5533400800
1 11 12 200.1468618884397 11856886699
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1 11 16 196.18689088261976 18287383200
1 11 20 193.15442718013148 30437284501
1 11 24 192.36932692447584 40642216801
1 11 28 187.34356167981053 55653860600
1 11 32 188.95266585130625 72169614399
1 11 36 184.55159491158145 90276516800
1 13 8 207.4238355613715 8032689000
1 13 12 199.15749878760715 17114295299
1 13 16 193.594197694957 27599795599
1 13 20 191.37660207921004 53827032199
1 13 24 190.90603719365544 78154220300
1 13 28 188.94726162595123 105465702199
1 13 32 186.98512923434083 126428146300
1 13 36 179.37865227163908 167572532199
1 15 8 208.82586127416874 12049741701
1 15 12 196.08683750386703 24756039900
1 15 16 194.72209521647872 42998203500
1 15 20 191.07825377941708 79196743599
1 15 24 190.97763622332883 111468483500
1 15 28 186.06794071561313 147867465200
1 15 32 189.1205978292923 195316112499
1 15 36 181.00309395722857 246012960400
1.5 5 8 227.38054596744286 1990935900
1.5 5 16 220.34699446212093 4753656101
1.5 5 20 235.94321670284435 6120999200
1.5 5 24 217.286161285094 7446759100
1.5 5 28 217.20449652917597 9099320499
1.5 5 32 205.08761548501326 11090255501
1.5 5 36 205.0911440994258 12925894200
1.5 7 8 223.89271971403937 2577117499
1.5 7 12 223.60647001903007 3967753301
1.5 7 16 211.77007683130265 6199586201
1.5 7 20 209.51674858084502 8207729101
1.5 7 24 206.82521463379527 11523925799
1.5 7 28 206.38316382755994 14138209700
1.5 7 32 200.4690220477484 17816487199
1.5 7 36 202.17398100631348 22421644500
1.5 9 8 219.97430131097025 3052716999
1.5 9 12 216.78507218248555 5884106999
1.5 9 16 206.31720631996168 9094313800
1.5 9 20 207.7838908337234 14671967600
1.5 9 24 207.37941366210538 20271946199
1.5 9 28 203.02328647385872 27459700200
1.5 9 32 199.1254916789639 32140231200
1.5 9 36 196.65425333431062 43370914301
1.5 11 8 216.70748225667876 4641502100
1.5 11 12 213.55440490240207 8818801200
1.5 11 16 202.38654839197304 14790270501
1.5 11 20 205.25365347818328 21318429400
1.5 11 24 206.05910071707095 33369667301
1.5 11 28 201.3528943263897 43418336800
1.5 11 32 197.27992255241278 55642699700
1.5 11 36 194.8711159448485 75327219400
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1.5 13 8 218.05972496014306 6152323001
1.5 13 12 213.24540368546036 12609534101
1.5 13 16 202.86066571256308 21403285000
1.5 13 20 205.17299555234163 33699149600
1.5 13 24 204.62344951761804 50075925699
1.5 13 28 202.5010283881923 67593836300
1.5 13 32 197.68776789255145 87805661300
1.5 13 36 196.24449532349902 118147532800
1.5 15 8 217.20815338626562 7653734800
1.5 15 12 213.92451417034016 16903491300
1.5 15 16 202.84878525491106 29957988300
1.5 15 20 203.26430313846495 48533161601
1.5 15 24 205.7722824902084 68693952101
1.5 15 28 199.819331807073 99094882200
1.5 15 32 197.6801317993806 126700022100
1.5 15 36 195.5997261635499 165930693100
2 5 12 234.7589167956593 2388926100
2 5 16 231.3938713582038 3399001499
2 5 20 237.76225177744385 4416617299
2 5 24 221.32479754683064 5492408500
2 5 28 217.33817430829535 6648238000
2 5 32 220.64354064526128 8091289001
2 5 36 213.36806334116017 9909613000
2 7 12 228.51498407010735 3282500901
2 7 16 228.52035874056386 5369987200
2 7 20 218.8436435246001 7082982100
2 7 24 216.05058002509514 9772562300
2 7 28 212.67923204316367 12389397701
2 7 32 214.70997854198262 15518668400
2 7 36 213.24548416233242 19635319900
2 9 12 228.32040087026266 4922369501
2 9 16 230.27918231964185 8138240700
2 9 20 220.50751633785003 12172113400
2 9 24 212.9858953873864 16491814899
2 9 28 212.11808740290576 22757788400
2 9 32 212.30841827919153 28521380500
2 9 36 212.441448343736 36216882301
2 11 12 230.68553885309365 7442739500
2 11 16 225.9503654499967 12129130100
2 11 20 220.4648470515188 19283689301
2 11 24 212.84507331997384 25825381701
2 11 28 212.0207082869212 36071768700
2 11 32 212.0613426853604 45257724399
2 11 36 212.30795312687778 57916596301
2 13 12 231.33321636114752 10206384399
2 13 16 225.89930911803276 17316646000
2 13 20 220.41203275582748 26643285200
2 13 24 212.81485549812004 35791111200
2 13 28 211.9316204654013 50968514401
2 13 32 208.32012662226845 66510373299
2 13 36 212.1563106493767 80976439100
2 15 12 231.31527003142452 13211255500
2 15 16 225.89930911803276 22346986399
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2 15 20 220.76467127545067 34713244800
2 15 24 212.8129431213065 48137755399
2 15 28 211.93142007992734 62166900199
2 15 32 208.32012662226845 80555768200
2 15 36 212.56518328981747 102932220699

Table 9.2: Lattice tuning results for GreedyFLAC
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