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AbstrAct
Visible light positioning (VLP) based on the 

received signal strength (RSS) can leverage a 
dense deployment of LEDs in future lighting infra-
structure to provide accurate and energy-efficient 
indoor positioning. However, its positioning accu-
racy heavily depends on the density of collect-
ed fingerprints, which is labor-intensive. In this 
work, we propose a data pre-processing method, 
including data cleaning and data augmentation, to 
construct reliable and dense fingerprint samples, 
thereby alleviating the impact of noisy samples as 
well as reducing labor intensity. Extensive exper-
iments demonstrate that our proposed method 
achieves an average positioning error of 1.7 cm, 
utilizing a sparse dataset that reduces the finger-
print collection effort by 98 percent. Running 
a tinyML-based model for VLP on the Arduino 
Nano microcontroller, we also show the possibil-
ities for deploying RSS fingerprint-based VLP sys-
tems on resource-constrained embedded devices 
for real-world applications.

IntroductIon
While the global positioning system (GPS) is the de 
facto solution for outdoor positioning, the research 
for an equally pervasive solution for indoor posi-
tioning has remained intangible, despite extensive 
academic research and significant commercial 
value [1]. A large number of applications, such as 
smart retail and navigation through large public 
facilities like hospitals, shopping malls, assisted living 
in smart homes, and mechanical arm tracking in 
the industrial sectors, have led to exploring different 
wireless technologies including WiFi [2], Bluetooth 
[3], Zigbee [4], and ultra-wideband [5], for indoor 
positioning. Although such approaches have been 
developed for a long time, they still have limitations 
regarding low accuracy, electromagnetic interfer-
ence, and crowded spectrum resources [6]. The 
rapid adoption of the light emitting diode (LED) for 
illumination and the advancement of visible light 
communication (VLC) technology have made vis-
ible light positioning (VLP) a promising candidate 
for indoor positioning applications because it can 1) 
leverage pervasively available lighting infrastructure, 
2) has notable positioning accuracy, and 3) has
high-security characteristics. Also, LED light is in the
license-free spectrum band, and safe for humans,
which is especially interesting for operating rooms
in hospitals where the appearance of radio frequen-

cy (RF) signals is potentially harmful to patients and 
diagnostic devices. Furthermore, the influence of 
multi-path reflection on positioning accuracy is not 
as significant as in the case of RF [7].

To develop a VLP system, a variety of 
technologies have been proposed including 
angle-of-arrival (AOA) [8], time-of-arrival (TOA), 
time-different-of-arrival (TDOA) [9], and received 
signal strength (RSS) [10]. AOA can achieve 
good position estimation but relies on high com-
putational complexity and expensive equipment. 
TOA and TDOA require sensitive hardware at the 
receiver and also need perfect synchronization 
between transmitters and receivers. RSS-based 
positioning can be achieved with cost-effective 
hardware without requiring any synchronized 
infrastructure. Typically, multiple LEDs are used 
as transmitters, whereas photodiodes (PDs) or a 
camera act as the receiving terminal in the VLP 
system. The lower price and power costs make 
PDs preferable for universal applications.

In this work, we use RSS-based fingerprint-
ing to achieve an effective and accurate VLP on 
microcontrollers, empowered by tiny machine 
learning (TinyML). One of the advantages of 
machine learning (ML) algorithms is that prior 
knowledge of the physical model for VLP is not 
a prerequisite, as it is commonly embedded with-
in the training set. As such, we develop an RSS-
based fingerprinting VLP system where a variety 
of RSS fingerprints are built from different posi-
tions and stored in the database as a training set 
carried out by the offline phase, and the loca-
tion is determined by means of new RSS mea-
surements for the online phase. We propose the 
data cleaning and data augmentation strategies 
to relieve the burden of data collection and build 
reliable dense VLP fingerprints.

chAllenges In rss-bAsed VlP
For data-driven RSS-based VLP methods empow-
ered by ML, one important requirement is the 
density and quality of labeled fingerprints or 
anchors directly influence the final performance 
of VLP. Thus, the first challenge in RSS-based VLP 
is how to provide reliable dense VLP fingerprints 
over a wide area? To address this challenge, we 
leverage our dense LED testbed of 36 transmit-
ters and 4 receivers with off-the-shelf devices (Fig. 
1), provide centimeter-level RSS fingerprints at 
351,384 locations, and evaluate it with extensive 
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and realistic experimental setups. However, those 
collected RSS data recorded by PDs always con-
tain noise due to the device’s thermal noise or 
sampling noise. To solve this problem, we pro-
pose a data-cleaning strategy to confront noisy 
RSS by leveraging three measurements at each 
position and performing interpolation using sur-
rounding RSS information to obtain more reliable 
and accurate results.

High-performance RSS fingerprint-based posi-
tioning methods benefit from the dense collected 
data while collecting high-quality labeled finger-
prints is labor-intensive. Therefore, to increase the 
applicability and performance of methods, the 
second challenge is how to build the high-granu-
larity RSS fingerprint database with limited manual 
involvement? Most fingerprinting-based localization 
systems [11, 12], which aim at addressing the need 
for offline measurements, purely rely on the simu-
lation to construct the offline fingerprint map and 
compare the online RSS readings with RSS read-
ings stored in the database for localization. Howev-
er, simulating the fingerprint map of light intensity 
distributions using a simplified analytical model of 
LED illumination patterns lacks realism due to the 
absence of background noise and various reflec-
tions involved. In this article, we propose a data 
augmentation strategy, as an alternative solution, to 
relieve the burden of data collection.

However, traditional ML technologies typically 
require large amounts of computational resourc-
es and memory, limiting their applicability on 
resource-constrained embedded platforms. As 
on-device intelligence becomes increasingly 
important with the rise of edge computing in the 
internet of things (IoT), the next challenge is to 
enable practical and implementable ML systems on 
resource-constrained devices. To tackle this chal-
lenge, we deploy our ML-based positioning sys-
tem on the Arduino Nano BLE 33, an embedded 
platform with limited computational resources. To 
further expedite the realization, we utilize TinyML, 
empowered by the model compression technique, 
to enable intelligent decision-making at the edge.

buIldIng And oPtImIzIng the rss dAtAset
RSS fingerprint-based VLP has been extensively stud-
ied, based on data from either simulation [11, 12] 
or testbed [13, 14]. However, most of the reported 
datasets are much smaller than those encountered 
in real-world environments, both in terms of testbed 
size and sampling data volume, making it difficult to 
assess the practical applicability of their findings. In 
this section, we provide a new high-granularity RSS 
dataset from our testbed and detail the process of 
how we obtain reliable data points.

dAtA AcquIsItIon
We implement the system based on our Den-
seVLC testbed with off-the-shelf devices for data 
collection. The entire setup is depicted in Fig. 1. 
This system includes 36 LED transmitters (TXs) 
and 4 receivers (RXs). The TXs are mounted on a 
height-adjustable ceiling in a 6  6 array with an 
inter-TX distance of 0.5 m. We use the high-per-
formance LED CREE XT-E, covered by the lens 
TINA FA10645 to limit the field of the view of 
the LED. An NTR4501 power transistor is used 
to drive the LED The RXs are placed on the floor, 
controlled by 4 OpenBuilds ACRO Systems. 

Each RX is equipped with a photodiode S5971. 
A low-noise trans-impedance amplifier OPA659 
amplifies the photodiode current to a voltage. We 
use the analog-to-digital converter ADS7883 to 
digitize the signal and send it to the embedded 
computer BeagleBlone Black for further process-
ing. The whole area on the floor, with the size of  
3 m  3 m, is divided into 4 square grids with a 
cross-like gap in the middle. Each grid covers an 
accessible area of approximately 1.2 m  1.2 m, 
where the movement of the corresponding RX 
along the track can be decomposed into x and y 
directions.

Based on the data collection setup described 
above, each sampling fingerprint in the dataset 
comprises the RSS values from 36 LEDs and the 
corresponding x, y, and z coordinates of the mea-
surement position. We use Ijx,y,z to denote the 
RSS value of LED j captured at sampling position  
p = (x, y, z), in which j  {1, …, C}, and C denotes 
the number of LEDs. The measurements are con-
ducted at 1 cm intervals in both the x and y direc-
tions, resulting in a dataset with a size of 351,384 
samples. Specifically, for each RX at a specific 
height, there are 121 steps in the directions of 
both x and y. Note that in this article, we focus on 
2D localization. Without the loss of generality, the 
measurements are taken at two different heights 
(the vertical distance between the TX and the RX): 
172 cm and 196 cm. At every sampling position, 
the measurement is repeated three times.

dAtA cleAnIng
In Fig. 2(), we observe some abnormal readings 
within the collected data. The unstable device, sam-
pling noise, and varying ambient light may corrupt 
the PDs’ reading, which highlights the essential of 
data cleaning to remove these outliers. To this end, 
we propose a two-stage data-cleaning method. In 
the first stage, the fingerprint sample that best ful-
fills the continuity requirement of light intensity is 
retained out of three trials to maximize the retention 
of authentic environmental information. If the first 
stage fails to select the appropriate measurement 
at the target position, the second stage is activated, 
using the values of nearby data points to estimate 
the value at the missing or erroneous point.

The metric that evaluates the accuracy and 
consistency of the data is established by compar-
ing the continuity of RSS values at the target posi-
tion with those from the surrounding fingerprints, 
which is described by the following equation:

FIGURE 1. The setup to obtain our high-granularity RSS dataset for VLP from our testbed which has 6 6 = 36 LED 
transmitters: a) illustration and b) testbed.
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where DIx,y is the difference between the RSS 
value Ix,y at position (x, y) and the average RSS 
value from surrounding sampling points Is. We 
consider the RSS value Ix,y to be consistent when 
DIx,y is small enough to approach 0.

For the data interpolating in the second step of 
data cleaning, we follow the Lambertian model. 
The intensity of emitted light from an LED is mod-
eled by the Lambertian model [15]:

𝐼𝐼! = #𝐼𝐼
"𝐴𝐴(𝑑𝑑)cos#(ϕ) cos(ψ) ,			0 ≤ ψ ≤ ψ$
0,																																													otherwise				,	 

 (2)
where It is the lamp emission power, y is the inci-
dent angle, yc is the FoV of the LED lamp, f is the 
inradiation angle, 𝑚𝑚 =

– ln	(2)
ln	(cosϕ! "⁄ )

	 is the LED’s Lamber-
tian order in which f1/2 denotes the half power 
semi-angle, A(d) is a propagation loss function 
on distance d between the TX and RX. For finger-
prints in each grid of the data collection testbed 
captured by the same PD on the same plane, we 
can assume f = y.

For the pair of points p1 = (x1, y1, 0) and p2 = 
(x2, y2, 0) as shown in Fig. 3, their RSSs Irx1,y1 and  
Irx2,y2 follow the model in Eq. 2. Considering that 
the time consumed during the process of data 
acquisition is much smaller than the lifetime of 
jth LED with the known location which can be 

neglected, we assume that the LED emission 
power remains stable when PD collects the light 
intensity coming from this LED at different loca-
tions. By comparing their RSSs, we have the fol-
lowing ratio:
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where di can be easily obtained from the known 
locations of the corresponding LED and tar-
get points, cosf i = zj

led/di. The noisy RSS values 
that need to be cleaned can be easily obtained 
according to Eq. 3 by utilizing the reference fin-
gerprints in Is. We use the mean of the clean 
RSS values calculated from reference fingerprints 
as the final RSS values at the target location. As 
shown in Fig. 2(), the above functions provide 
a solution to ensure that the data is as accurate 
and complete as possible, retaining real sampling 
points while employing the data cleaning strategy 
to compensate for missing or erroneous data.

dAtA AugmentAtIon
For data augmentation, our objective is to gener-
ate a dataset with high-granularity fingerprints that 
can achieve centimeter-level positioning accuracy. 
Specifically, we aim to construct the 1 cm gran-
ularity dataset from sparse fingerprints such as 8 
cm. To this end, we divide the interesting posi-
tioning area of the testbed into equal grid cells 
of 1cm square and collect RSS values at known 
positions with a large spacing of 8 cm along the x 
and y axes, respectively. The collected RSS values 
form a square-shaped layout, which serves as the 
basis for generating fingerprints with 1 cm granu-
larity. We use the adjacent collected RSS values 
to interpolate the RSS values at points without 
measurements by utilizing the Lambertian radia-
tion model (i.e., Eq. 3), reducing the number of 
required measurements while maintaining high 
accuracy. As shown in Fig. 3, instead of fixing the 
number of nearest points, we utilize the best near-
est points so that reflections and the character-
istics of LEDs can be taken into account in the 
interpolation process.

To summarize, the data optimizing process 
first carries out the data cleaning on raw finger-
prints while maintaining the granularity. Data 
augmentation can be then employed to further 
enhance the granularity. In this way, the data 
collection overheads can be ameliorated up to 
98 percent when we augment the 8 cm coarse 

FIGURE 2. The visualization of light intensity emitted from the LED with index/ID 14 in different steps of data process. The black dot (highlighted in  and omitted in other sub-figures) indicates the 
projection of this LED onto the 2D floor plane. The augmented data () of 1 cm granularity is obtained from coarse sampling points with 8 cm intervals shown in . The color bar denotes the 
normalized light intensity.

FIGURE 3. The illustration of the: a) data cleaning process; b) data augmentation process. The green circle denotes 
the locations of known RSS values. The blue circle and star indicate the locations to be cleaned and interpolated, 
respectively.
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fi ngerprints (Fig. 2() to a 1 cm fi ne granularity 
(Fig. 2( )). In our experimental settings, these 
coarse fi ngerprints are obtained by downsampling 
the dense clean data (Fig. 2()) derived from the 
proposed data-cleaning strategy. To evaluate the 
effectiveness of this approach, we compute the 
mean absolute percentage error (MAPE) of the 
RSS values between the clean data and the aug-
mented data and yield an error of 4.9 percent, 
indicating that the augmented dense data closely 
approximates the real one.

eXPerImentAl eVAluAtIon

eXPerImentAl settIngs
Dataset: To avoid the biases arising from differ-
ences in the magnitude of the data and stabilize 
the training process of ML techniques, we use 
the min-max scaling data normalization method 
to scale each data sample Ix,y to a range between 
0 and 1 by subtracting the minimum RSS value 
from each data point and then dividing by the 
range (i.e., the diff erence between the maximum 
and minimum RSS values). In this way, the jth 
RSS value of normalized data sample Îx,y can be 
obtained. Then, all normalized data samples are 
randomly split into training, testing, and validation 
sets, accounting for 70 percent, 20 percent, and 
10 percent, respectively.

Positioning Methods: We evaluate the pro-
posed data cleaning and data augmentation 
strategies on the following common state-of-the-
art machine learning techniques: support vector 
machine (SVM), random forest, and multi-layer 
perception (MLP). SVM and random forest are 
trained using the scikit-learn framework. Note 
that there is no tuning on these models for the 
simple comparison. We employ a fi ve-layer MLP, 
with 256, 512, 1024, 512, and 256 hidden units 
respectively, and the Adam optimizer with the 
learning rate 1e–4 for gradient descent.

Positioning Error: We take Euclidean distance 
error Ep of the x-y 2D plane between the predict-
ed position and ground truth as metric. In this 
article, we adopt the average positioning error 
and the average of the top-90 percent positioning 
errors to evaluate the positioning performance. 
Besides, we leverage the cumulative distribution 
function (CDF) of positioning errors and 90th per-
centile error bound to detail the error distribution.

PerformAnce under VArIous tXs confIgurAtIons
The LED topology fi gure in Table 1 presents the 
common arrangements of LEDs, featuring diff er-

ent densities that can be easily replicated and 
implemented in practical settings. It can be clearly 
observed that the positioning error completely 
relates to the TX densities. Among three ML tech-
nologies applied to the same LED confi guration, 
random forest demonstrates the best position-
ing performance, followed by MLP with a slightly 
higher positioning error, while SVM performs the 
worst in all three data sources. This phenomenon 
can be attributed to SVM’s suitability for linear 
problems, while the VLP task involves the non-lin-
ear relationship between the light intensity of mul-
tiple LEDs and the target location. Additionally, 
random forest’s robustness to outliers and noise 
through the aggregation of decision tree votes is 
evident in Table 1, where it outperforms the other 
methods, particularly with raw data compared 
to clean and augmented data. MLP often suff ers 
from overfitting and computational complexity, 
negatively affecting its performance. These find-
ings highlight the potential of random forest and 
MLP for RSS fingerprint-based VLP applications. 
Depending on specifi c requirements, random for-
est could be preferable for faster training or limit-
ed training data, while MLP is better suitable for 
scenarios with more complex mapping relation-
ships and massive data.

The results from three data sources also show 
that positioning accuracy can be significantly 
improved by utilizing clean data as training data. 
This demonstrates data cleaning strategy plays 
a crucial role in improving the positioning per-
formance of all methods across all LED config-
urations. Specifically, the positioning error can 
be decreased up to 83.8 percent in Conf 3 
leveraging random forest. Besides, augmented 
data usage substantially decreases the average 
positioning error for each method, compared to 
using raw data directly. This is because augment-
ed data is generated by downsampling dense 
clean data (1 cm) to produce sparse clean data (8 
cm), which is then augmented to 1cm-granularity 
dense data using our proposed strategy. When 
deploying random forest for positioning, adopting 
augmented data still greatly improves the posi-
tioning performance even for sparse LED topol-
ogies such as Conf 2, 5, and 6. For dense LED 
configurations (Conf 1, 3, 4), augmented data 
results in a slightly higher positioning error com-
pared to raw data, while this can be off set by the 
advantage of reducing fi ngerprint collection eff ort 
by 98 percent. These results strongly support the 
eff ectiveness of our data augmentation strategy in 
achieving a balance between positioning accura-

TABLE 1. The average positioning error (cm) under various data sources using three positioning methods for diff erent TX topologies. Augmented data is interpolated based on 8 cm-interval fingerprints. 
The left figure indicates the proposed LED configurations. LEDs encircled by a certain color are included in that particular configuration.

Conf
Random forest SVM MLP

Raw Clean Augmented Raw Clean Augmented Raw Clean Augmented

Conf 1 0.97 0.4454.6% 1.3741.2% 3.94 1.1471.1% 1.3067.0% 2.23 1.4335.9% 1.7123.3%

Conf2 2.38 0.7966.8% 2.188.4% 14.41 6.2556.6% 6.4155.5% 3.11 1.1463.3% 2.0733.4%

Conf3 42.45 6.8983.8% 9.3078.1% 55.76 31.3143.8% 31.2344.0% 42.06 7.0583.2% 8.8479.0%

Conf4 1.22 0.5753.3% 1.7745.1 7.13 3.5750.0% 3.5750.0% 2.54 1.6136.6% 2.1515.4%

Conf5 2.40 1.7469.2% 4.35 22.91 18.10   2.8045.6% 3.9116.3%

Conf6 10.55 3.2069.7% 4.4957.4% 42.71 36.4614.6% 36.2215.2% 11.26 3.8965.5% 5.1354.4%
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cy and fingerprint collection density.
In addition, we create heatmaps to visualize 

MLP’s positioning performance. The positioning 
error for each position that can be reached in the 
testbed is color-coded and displayed, as shown in 
Fig. 4. There is no need for a TX configuration as 
dense as Conf 1, as even TX Conf 2 performs well 
with half the density. Therefore, there is potential 
for further reducing the density of TXs. This is due, 
in part, to the presence of a lens mounted on the 
LEDs in our setup, which focuses the beam of 
light. We also observe that the heatmap in Conf 6 
shows an accurate prediction can be made with-
in a radius of approximately 1.5 meters around 
a 2  2 TX grid. However, Conf 3 cannot yield 
reliable predictions. This can be linked to the dis-
tance between the TXs where 1.5 meters distance 
is obviously too large. These results guide LED 
grid density for target positioning accuracy. We 
show the CDF of positioning errors and the aver-
age of top-90 percent positioning errors for six TX 
configurations. The results reveal that the perfor-
mance of augmentation obtained from sparse fin-
gerprint collection is very close to that from dense 
clean data, and both outperform the positioning 
accuracy of raw data. Furthermore, we provide 
the 90th percentile error, underscoring that the 
majority of positioning errors are below 6 cm 
under a dense deployment of LEDs. Errors tend 
to increase for sparse LED deployments like Conf 

3 and Conf 6. However, even in the case of Conf 
3 with the most dispersed LED deployment, lever-
aging augmented data leads to an 80.6 percent 
reduction in the positioning error, from 118.6 cm 
to 22.9 cm, compared to using the raw data.

PerformAnce under resource-constrAIned scenArIos
The demand for highly intelligent edge devices 
in artificial IoT has been increasing significantly. 
This trend forces learning models deployed on 
resource-constrained microcontrollers to achieve 
low power consumption, real-time processing, 
and reduced latency. We employ TensorFlow Lite 
Micro to obtain a quantitative model and evaluate 
its performance on the Arduino Nano, a popu-
lar embedded platform with a small form factor 
and low power consumption The quantization 
process reduces the model size from 5.3 MB to 
1.27 MB, leading to a significant improvement in 
the model size and runtime, albeit with a slight 
increase in positioning error compared to the full-
sized model. Detailed analysis of the quantitative 
model’s positioning error is presented in Table 
2, where augmented data with varying sampling 
intervals are used for training. The results demon-
strate a decrease in positioning accuracy as the 
downsampling interval increases. However, our 
proposed data cleaning and data augmentation 
strategies successfully enable the VLP system to 
maintain high positioning accuracy even at large 
downsampling intervals. Based on these findings, 
our proposed approach holds promise in enabling 
the development of highly efficient and accurate 
VLP on embedded devices.

conclusIon
In this article, we proposed data cleaning and 
augmentation methods to achieve centime-
ter-level indoor visible light positioning (VLP). By 
evaluating our methods on Arduino Nano, we 
show the possibilities of achieving an RSS finger-
print-based centimeter-level VLP on resource-con-
strained embedded devices, which can be used 
in the future for real-world applications. We also 
studied the impact of various layouts of transmit-
ter deployment on positioning accuracy. Our cur-
rent solution has been validated only when the 
receivers are not tilted (i.e., are orthogonal to the 

TABLE 2. The positioning error of 1 cm-granularity augmented data under various data downsampling rates running 
MLP method on the embedded device for different TX configurations. AE and Top-90% indicate the average error 
and the average of the top-90% errors (cm), respectively.

Conf

Downsampling Interval

8 cm 4 cm 2 cm

AE Top-90% AE Top-90% AE Top-90%

Conf 1 2.67 0.78 1.35 0.59 1.14 0.34

Conf 2 2.79 1.13 2.19 0.76 1.93 0.48

Conf 3 10.46 9.02 9.31 8.25 8.79 7.43

Conf 4 4.07 2.30 3.33 1.33 2.68 0.67

Conf 5 6.77 2.27 4.63 1.69 3.20 0.79

Conf 6 7.54 6.72 5.64 3.99 4.23 3.51

FIGURE 5. The heatmap and the CDF of positioning errors using the MLP method for different TX configurations: representing the performance on various LED topologies. To effectively visualize the posi-
tioning performance patterns, the displayed 2D error is color-coded within an interval of 0 to 50 cm. The dashed curves denote the corresponding 90^th percentile errors.

0

50

100

150

200

250
y-

ax
is

 (c
m

)

x-axis (cm)

(f1) Conf 6

10

20

30

40

CD
F 

0

0 50 250100 150 2000 50 250100 150 200 0 50 250100 150 200 0 50 250100 150 200 0 50 250100 150 200 0 50 250100 150 200

0 10
error (cm) error (cm) error (cm)

0.
1.

1.
1.

1.94
.

(d2) CDF of Conf 4 (e2) CDF of Conf 5 (f2) CDF of Conf 6

error error 

0

1 1

error (cm) error (cm)
( 2) CDF of Conf 1 ( 2) CDF of Conf ( 2) CDF of Conf 

x-axis (cm)

( 1) Conf 
x-axis (cm)

( 1) Conf 
x-axis (cm)

( 1) Conf 
x-axis (cm)

( 1) Conf 
x-axis (cm)

( 1) Conf 1

error 

0 2 4 6 10 12 148
0.0

0.2

0.4

0.6

0.8

1.0

Raw Data
Clean Data
Augmented Data

Average of Top-90% error 

1.65
.1.1

1.33
33.

1 .4

error (cm)

7.39

0.9 0.9 0.9 0.9 0.9 0.9

11.65

18.9410.06

5.09

8.744.52

5.15

3.31

22.92

17.63

118.63

4.98

5.26

2.12

4.45

3.65
2.81

error 

.

.

.

.

error 

0 1

4.29

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 09:28:13 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • March 2024 53

floor). In precision-demanding industrial scenari-
os, this requirement can be achieved by placing 
the receiver carefully on top of the robots. We 
believe our methods can offer valuable insights 
applicable to diverse scenarios with distinct posi-
tioning accuracy targets. Also, they can provide 
guidance for optimizing the deployment of LEDs 
to achieve the required positioning accuracy.
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