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Abstract—We present a data driven method of full 
waveform inversion in one dimension. This means that the 
inversion is carried out as a sequence of processing steps. The 
first step is known as Marchenko redatuming. In this step we 
retrieve focusing functions from the measured data. In the 
second step we isolate the last event in the focusing function to 
obtain the local reflection coefficient of a particular reflecting 
boundary. This is done for the dissipative and equivalent 
effectual model. An effectual medium amplifies a propagating 
wave in the same way as a dissipative medium attenuates it. 
From these two models the reflection coefficient of the 
corresponding lossless medium can be computed. This is then 
inverted for the electric permittivity. Once the permittivity is 
found, the individual layer thicknesses are obtained from the 
travel times. The ratio of the reflection coefficient in the 
physical and effectual medium provides an estimate of the 
attenuation in each layer from which the conductivity in each 
layer can be found. We show that in this case the full waveform 
inversion is a linear problem. We need reflection and 
transmission data measured at two sides of the medium. We 
use an unconditionally convergent iterative technique to 
compute the focusing functions. The method only needs the up- 
and downgoing parts of the electric field at the receiver levels. 
A 1D numerical example with a lossy model shows that the 
proposed GPR inversion method is effective on modeled data. 

Keywords— Ground Penetrating Radar (GPR); Marchenko 
inversion;  focusing function; separated wavefield; lossy model;  

I. INTRODUCTION 

 Ground penetrating radar (GPR) is increasingly being 
used for subsurface and civil engineering applications [1][2]. 
Geophysical inversion is a technique that aims at providing 
quantitative information for subsurface or material 
characterization [3]. This is done by defining a cost function 
that expresses this difference in computed and measured data 
by a single number. On measured data, inversion is often 
difficult due to lack of source control. Source amplitude and 
source repeatability are necessary information for full 
waveform inversion techniques. Because the exploration 
targets are always complicated leading to complex 
geophysical profiles. Inversion becomes very important in all 
geophysical methods [4]. At present, most of the works on 
GPR inversion are based on model driven methods. There 
are some weaknesses of model driven inversion [5][6][7]. 
For instance, a good starting model is mandatory because the 
problem is ill-posed and suffers from non-uniqueness in the 

model solution. In addition, at every iteration a new data set 
has to be computed by forward modelling and an estimate of 
the inverse Hessian has to be computed, which is time 
consuming. A crucial parameter in the forward modeling 
steps is the source and receiver antenna effects, the source 
time function or its amplitude and phase at each frequency, 
which are particularly difficult to obtain or model when 
antennas are deployed at or close to the surface. Finally, once 
the data misfit is reduced to user specification there is no 
guarantee that the correct model is approximately found. 

It has been shown that the focusing function can be 
computed from the reflection response by the Marchenko 
method [8]. It can be used to eliminate the effect of internal 
multiples in a seismic or GPR image [9][10][11]. A GPR 
inversion method for lossless medium based on Marchenko 
method has been developed [12]. This is a data-driven 
method, but it can deal only with lossless media and still 
needs to know the source signature. A 3D Marchenko 
redatuming method for dissipative acoustic media has also 
been derived [13].To circumvent the need to know the source 
time function, a new implementation was derived for marine 
seismic data [10].  

Here we show how a Marchenko-type scheme can be 
used for a dissipative GPR model. We assume the up- and 
downgoing components of the electric field can be obtained 
from the GPR data. Then we define the actual dissipative 
medium and the equivalent effectual medium. The effectual 
medium is characterized by negative conductivity and is a 
non-physical medium. Its response can be computed from 
reflection and transmission responses at two side of the 
physical dissipative medium. We use an unconditionally 
convergent iterative technique (e.g., LSQR) to solve the 
resulting Marchenko equations. Finally, we formulate full 
waveform inversion using the focusing function and show 
that it is a stepwise linear problem. We end with a numerical 
example showing the inversion results with accompanying 
errors of the retrieved parameters. 

II.  REFLECTION RESPONSE OF AN EFFECTUAL 

MEDIUM AND GENERALIZED LOCAL REFLECTION 

COEFFICIENT 

Consider a N-layered model with isotropic homogeneous 
layers. Free space magnetic permeability, µ0 , is used in each 
layer. We define two media, one dissipative and the other 
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effectual with negative dissipation. The wavefields in the 
dissipative medium are denoted with an over hat (~), e.g. 
෩	ܧ ሺݖ; ߱ሻ denotes the electric field in the dissipative medium. 
Each layer has a constant permittivity ε [F/m] and 
conductivity σ [S/m]. The wavefields in the corresponding 
effectual medium are denoted with an overbar (-). We define 
a generalized local reflection coefficient: 

k k

n
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n n
k

r r e
 2

1

a-

=

=   
(1) 

Where αk denotes the attenuation of the kth layer, dk 
denotes the thickness of the kth layer, rn denotes the local 
reflection coefficient of the nth boundary in the lossless 
medium. For a lossless medium αk =0. For a dissipative 
medium αk >0. For effectual medium αk <0.  

We use these coefficients to invert for the subsurface 
parameters: layer thickness, permittivity and conductivity. 
Reflection and transmission responses measured at the actual 
dissipative medium can be used to compute the reflection 
response of the corresponding effectual medium [13].  

III. ELECTROMAGNETIC MARCHENKO 

EQUATIONS FOR A DISSIPATIVE MEDIUM 

To derive one-way convolution type Marhchenko  
equation, we define two non-identical electromagnetic wave 
fields (“state A” and “state B”, see Fig.1). The investigation 
area in state A is identical to the actual dissipative medium, 
and outside of this area it is reflection-free. For state B, we 
choose the actual dissipative medium.  

   

Fig. 1 (a) The configurations for the fields in the medium with the focusing 
functions of state A; (b) The configurations for the fields in the medium 
with the reflection data of state B 

In our 1D example (see Fig. 1), the convolution type 
reciprocity relations of one-way electromagnetic wave is 
given by [14] 

       
r f

B A B A A B A B

z zE H E H E H E H
                   

 (2) 

Where ܧି and ܧା  are the up- and downgoing 
components of the electric wavefield in the frequency 
domain respectively; ܪି and ܪା are the up- and downgoing 
components of magnetic wavefield in the frequency domain 
respectively.  

In a similar way, the correlation type reciprocity 
relationship of one-way electromagnetic wave is given by 

           * * * *

r f

A B A B A B A B

z zH E H E E H E H
                  

 
(3) 

Equation (3) requires one media is dissipative and the 
other one is effectual. If we define magnetic field of state A 
(See Fig. 1a) as a focusing wavefield ଵ݂ሺݖ; ߱ሻ, then in the 
dissipative medium, we can express the upgoing part of the 
magnetic field for a receiver at zf and a source at zS in terms 
of the up- and downgoing parts of the measured electric 
field and the focusing function at the receiver level zr and 
with its focus level at zf. All fields are in the dissipative 
medium. On the other hand, the downgoing part of the 
magnetic field in the dissipative medium for a receiver at zf 
and a source at zs can be expressed in terms of the up- and 
downgoing parts of the computed electric field in the 
effectual medium and the focusing function in the 
dissipative medium at the receiver level zr and with its focus 
level at zf . We can interchange the dissipative and effectual 
media to obtain similar expression for the up- and 
downgoing components of the magnetic field in the 
effectual medium[13]. They are given by  

1 1( ; ; ) 2 ( ; ; ) ( ; ; ) ( ; ; ) ( ; ; )f S r S r f r S r fH z z E z z f z z E z z f z z            
     (4) 
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Equations (4) and (5) form one set of equations that can 
be solved in the time domain for the up- and downgoing 
parts of the focusing wave field in the dissipative medium if 
the up- and downgoing components of the electric field at 
surface are known in the dissipative and in the effectual 
medium. Equations (6) and (7) form a similar set that can be 
solved for the focusing wavefield in the effectual medium 
using the same data. Here, we present how to solve (4)-(5). 
Transforming (4)-(5) to time domain gives 
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In state B, we let the source be exited at t=0 and the first 
arrival is recorded in z=zf at ݐ ൌ ;ݖௗሺݐ ;ݖௗሺݐ ௌሻ. whereݖ  ௌሻݖ
is the direct arrival time from zS to zf. Therefore, before 
;ݖௗሺݐ  ௌሻ, the magnetic wavefield is zero, i.e. both left-handݖ
sides of (8)-(9) are zero. In state A, we let the focusing point 
be located in z=zf  and focus the wavefield at t=0, so it is a 
non-causal wavefield. Moreover, in state A, below ݖ there 
is a non-reflecting half-space, and the focusing wavefields 
do not exist for |ݐ|  ;ݖௗሺݐ  ሻ. So equations (8)-(9) can beݖ
simplified as 
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At the instant ݐ ൌ ;ݖௗሺݐ∓ ሻݖ , ሚ݂
ଵ
ି
൫ݖ; ;ݖ ൯ݐ ൌ 0  but 

ሚ݂
ଵ
ା
൫ݖ; ;ݖ ൯ݐ ് 0 . To focus the field at depth, we can write 

the downgoing part of the focusing wavefield as 



 

1 1 1( ; ; ) ( ; ; ) ( ; ; )r f d r f m r ff z z t f z z t f z z t       (12) 

Where ሚ݂ଵௗ
ା ሺݖ; ;ݖ  ሻ denotes the first arrival of the inverseݐ

of the transmission response between zr and zf ; ሚ݂ଵା ሺݖ; ;ݖ  ሻݐ
represents the coda following the first arrival.  

Substituting (12) in (10)-(11), we obtain the Marchenko 
equations: 

11 1 12 1 1mf f d     (13) 

21 1 22 1 2mf f d     (14) 

Where 
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When the source signature is not a single delta-like event 
in the measured data, equations (13)-(14) cannot be solved 
by the Neumann-type iterative scheme. However, these 
equations can be solved by direct matrix inversion, or 
unconditionally convergent iterative methods such as LSQR. 
Iterative methods are preferred because we do not need to 
compute the system matrix but only its action on the fields. 
Analysis has shown that LSQR method is more accurate and 
stable than other methods [15][16]. We choose LSQR to 
solve (13)-(14). 

IV.  DATA-DRIVEN INVERSION 

The advantage of the present formulation is that the 
measured data does not need to be deconvolved by the 
source wavelet. Once (13)-(14) are solved, we have obtained  
ሚ݂
ଵ
ିሺݖ; ;ݖ ሻ. We assume ሚ݂ଵௗݐ

ା ሺݖ; ;ݖ  ሻ is a delta-function inݐ
time, we observe that the last event of ሚ݂ଵିሺݖ; ;ݖ ሻݐ  is the 
local reflection coefficient ̃ݎ in the dissipative medium. In a 
similar way, the local reflection coefficient ̅ݎ  in the 
effectual medium is obtained as the last event in 
݂ଵ̅
ି
ሺݖ௨; ;ݖ  ሻ. From (1), the local reflection coefficient rn inݐ

the lossless medium can be approximated by [13] 

( )n n n nr sign r r r    (21) 

Once the local reflection coefficients in the equivalent 
lossless medium are obtained, we start in the air with n = 0 
where the receivers are present and work our way down into 
the layered medium. Starting by assuming we know the 
medium parameters in air, εr = 1, σ0 = 0, we find the solution 
recursively for the layer below an interface. Once we have 
the electric permittivity, we know the propagation velocities 
inside each layer and can transform the one-way vertical 
travel time to depth. Using the electromagnetic parameters 
and the depth information, we can find the solution for the 
conductivity of each layer.  

We start at the first reflector and obtain an estimate for 
the electric permittivity below the reflector from the general 
expression, which can be made explicit as  
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Where εr,i is the relative electric permittivity of the ith 
layer. Once we obtain the electric permittivity εi+1 of the 
(i+1)th layer, estimate the thickness of the (i+1)th layer as 
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Where μ ൎ ߨ4 ൈ 10ି	ሾܪ/݉ሿ. ti we can pick from the 
imaging times that correspond to the time of the maximum 
amplitude. To invert for the electric conductivity σ, we take 

n
n

n

r
P

r
ln( )=  (24) 

The attenuation coefficient α of the (n+1)th layer can be 
solved by: 
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As we know, the attenuation coefficient α of the (n+1)th 
layer is given by 
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Combining (26) with (25), the conductivity is estimated as 
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To quantify the accuracy of the retrieved parameters in 
terms of data prediction, we use the inversion parameters to 
compute the reflection data ei and compare that data with the 
reflection data Ei to estimate the errors. The global 
normalized root mean square error is given by 
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where nt denotes the number of data points in the data. This 
error will be used to evaluate inversion quality. 

V.  NUMERICAL RESULTS 

To illustrate the modified Marchenko inversion method 
in a dissipative medium, we give a numerical example. The 
transmitter emits a Ricker wavelet with 250 MHz center 
frequency. The model consists of a layered medium with 7 
reflecting interfaces below the source and receiver. The 
layered model is given in Table I. The source and receiver 
depths are zs = -0.84 m and zr = 0 m. In the dissipative 
medium, the up- and downgoing components of the data are 
shown in Figure 2a). In the effectual medium, they are 
shown in Figure 2b). This data are used to find the upgoing 



 

focusing function for all possible times available in the data 
from (13)-(14). In a similar way, we find the upgoing 
focusing function in the effectual medium. 

TABLE I.  MODEL PARAMETERS. 

Finally, ߝ  , σ and the thickness of the layers are 
computed from (22)-(27) and the results are shown in Table 
2. We compare the retrieved parameters with the model 
values. The errors shown in the table are computed 
according to following generalized formula Err. = 
100*(|Umod − Uinv|)/Umod, where U can be ߝ , σ or d. 

Fig. 2  The up- (solid blue line) and downgoing (dash red line)component 
of reflection data: a) The electric field  data in the dissipative medium; b) 
The electric field  data in the effectual medium 

TABLE II VALUES FOR INVERTED MODEL PARAMETERS AND THEIR ERRORS  

 From Table II, it can be seen that the largest error 
occurs in the permittivity of layer 2 where ε is overestimated 
by 0.34%. The largest error occurs in the conductivity σ of 
layer 5 where ߪ  is underestimated by 5.98%. The largest 
error occurs in the thickness estimate of layer 2 is 
underestimated by -0.17%.  In practice, we do not know the 
true parameter values and use the global normalized root 
mean square error, ρ, between the data modelled with the 
medium parameters obtained by inversion and the original 
reflection data. The global normalized root mean square 
error for this example is 0.36%.  

VI. CONCLUSION 

We have presented a Marchenko inversion scheme for 
1D GPR data. This constitutes a full waveform inversion 
method that obtains all model parameters from the data. It 
does not require any model information. We have 
reformulated Marchenko redatuming such that we need only 
to separate the up- and downgoing parts from measurements.  

A disadvantage for field applications of this method is its 
requirement to have two-sided access to the medium to 
measure the reflection response and transmission responses. 
This is necessary to compute the reflection response in the 
effectual medium. How to implement Marchenko inversion 
for lossy medium which do not need to put the source inside 
the medium remains to be investigated. The second challenge 

is to generalize the current method to 2D and 3D models. 
Finally, the behaviour with noisy data remains to be 
investigated. 
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d (m) 0.84 0.82 0.30 0.33 0.37 0.31 0.32 ∞ 
 13.5 12.2 13.8 11.4 15.9 10.1 4.3 1.0 ࢘ࢿ

σ (mS/m) 0 3.9 11.1 20.7 12.9 8.7 9.9 7.5 

layer ࢘ࢿ Err.(%) σ(mS/m) Err.(%) d (m) Err.(%) 

1 1.00 - 0.00 - 0.84 - 
2 4.31 + 0.34 3.91 + 0.22 0.82 -0.17 
3 10.13 + 0.29 11.47 + 3.37 0.30 -0.15 
4 15.89 -0.07 20.39 -1.48 0.33 +0.03 
5 11.42 + 0.22 12.13 -5.98 0.37 -0.11 
6 13.79 -0.07 8.67 -0.38 0.31 +0.03 
7 12.23 + 0.27 10.15 + 2.56 0.32 -0.14 
8 13.50 +0.025 - - - - 
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