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Abstract

In the summer of 2020, ETH researchers installed a 9 km long fiber-optic cable on the Rhon-
gletscher (Switzerland), covering the whole glacier extent from accumulation to ablation zone.
The fiber was then interrogated with a DAS system, turning it into a distributed seismic an-
tenna. The DAS system recorded continuously for one month on more than 2000 channels
at 1 kHz sampling rate. The large data volume (~18 TB) renders manual event picking and
categorization practically unfeasible. For such DAS monitoring experiments, automatic event
detection and classification might become indispensable.
Different types of icequakes and meteorological effects are visible on the raw strain-rate record-
ings. Most cryoseismic events (stick-slip icequakes and surface crevassing) are of short-time
duration and small spatial extent. Since most events are only visible on fractions of the array,
the data is divided into smaller sub-windows in time and space.
Different array processing techniques are discussed to obtain a low-dimensional feature rep-
resentation of each sub-window. The output from the array processing is used as input for an
unsupervised clustering algorithm assigning a class-membership to each sub-window. This is
applied to parts of the Rhonegletscher dataset. Meaningful clusters are returned that corre-
spond to seismic events or noise.
The analysis yields a preliminary overview of signal types contained in the Rhonegletscher
dataset and their spatio-temporal distribution. This method can be used to obtain an event
catalogue of clustered signals. This could be used as basis for further analyses such as seismic
imaging, template matching or supervised machine learning.
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Chapter 1

Introduction

This chapter serves as a general introduction to the thesis topic and motivates the research.
The field of cryoseismology is briefly introduced and the basic principles of DAS are explained.
An overview of related work is presented and all following chapters are introduced.

1-1 Motivation

Glaciers are of great scientific and social interest as they are important indicators for global
climate fluctuations [Haeberli et al., 2007]. Furthermore, they constitute a valuable econom-
ical resource in mountainous regions. Glacial meltwater serves as a fresh water supply to
local communities, but can also be utilized for generating hydroelectric power. Alpine nat-
ural hazards are often linked to glacier dynamics [GLAMOS, 2017]. Increased mass loss of
glaciers can destabilize mountain slopes, potentially causing rock or ice avalanches. Where
glacial lakes are present, glacier receding may increase the risk of glacial outburst floods
[Harrison et al., 2018]. As a consequence, monitoring of glacier changes and dynamics with
glaciological and geophysical methods is a topical field of research.
Seismological methods help to detect and characterize dynamic glacier processes such as
surface crevasse formation, glacier sliding, ice flow [Podolskiy and Walter, 2016] and glacial
erosion [Gimbert et al., 2016]. To accurately monitor these processes, ground motion data
with high resolution in time and space is required [Jousset et al., 2018]. Dense arrays are
crucial for accurately recording spatial variations of waveforms. These lead to improved es-
timations of seismic source locations and a higher imaging resolution of subsurface features
[Zhan, 2019]. Traditional instruments record ground motion with high fidelity but the data is
often spatially aliased. This is because traditional seismic networks often exhibit a low cov-
erage density, largely owed to the high cost of individual sensors and typically large areas of
investigation. In addition, installation and maintenance of large seismic networks and arrays
are labor-intensive and can be challenging, especially in rough terrain and under harsh climate
conditions. These limitations can be overcome by Distributed Acoustic Sensing (DAS), which
repurposes a fiber-optic cable as a distributed strain sensor [Walter et al., 2020]. This allows
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1-2 Cryoseismology 2

to measure the strain-rate along the fiber with a high spatial sampling rate (<25 cm possible,
[Parker et al., 2014]) and over large apertures. Acoustic and elastic waves propagating along
the cable can be recorded by DAS. Compared to conventional geophone chains, installation
of DAS systems is straightforward, which makes it an ideal monitoring tool at study sites
with difficult access such as glaciers.
In spring 2019, ETH researchers deployed a 1 km long fiber-optic cable on the surface of the
Rhonegletscher (Switzerland) and collected DAS data continuously for one week. The DAS
system recorded surface and basal events, as well as a rock fall. Since the cable was installed
in a triangular configuration, estimating the locations of events with beamforming techniques
was possible. Furthermore, the shallow subsurface Rayleigh wave velocity was determined
by cross-correlations of ambient noise [Walter et al., 2020]. However, the experiment only
covered a small area of the glacier on the ablation zone. Therefore, a follow-up experiment
was conducted in the summer of 2020. A 9 km long fiber-optic cable was installed on the
Rhonegletscher surface, running from the accumulation zone to the tongue of the glacier. The
DAS system recorded continuously for one month. For most of the experiment, the strain-
rate was sampled every 4 m along the cable with a temporal sampling frequency of 1 kHz.
The resulting dataset has a size of about 18 TB. The huge data volume renders manual
picking and characterization of events practically infeasible. To efficiently process data of
DAS monitoring experiments, new processing tools are required. Machine Learning (ML),
also known as statistical learning, has been successfully used for automated noise clustering
on DAS recordings [Martin et al., 2018]. Potentially, this approach cannot only be applied to
detect noise but also signals of interest. The main part of this work combines array process-
ing techniques and unsupervised clustering to detect and categorize cryoseismic events on the
new Rhonegletscher dataset.

1-2 Cryoseismology

Cryoseismology refers to the study of ice or ice-rich Earth materials, structures and processes
through passive or active seismology [Aster and Winberry, 2017]. This includes the field of
glacial seismology. Glaciers are elastic structures that are governed by complex dynamic pro-
cesses. Various glacier processes release energy, part of which propagates as seismic waves
through the ice and the underlying bedrock/sediments. In consequence, glacier sites show high
seismic activity. The elastic properties of water ice at seismic frequencies are similar to shal-
low crustal rocks, making tools from solid-Earth seismology fully applicable in glacial settings
[Aster and Winberry, 2017]. In recent years, the number of publications related to seismolog-
ical studies of the cryosphere has experienced rapid growth [Podolskiy and Walter, 2016].
The ground perturbations caused by seismic waves in ice can be recorded by ground motion
sensors installed at the ice surface, in boreholes or at more stable sites in the vicinity of the
ice [Aster and Winberry, 2017]. Recorded seismic waves carry information about the medium
they propagated through, as well as their source mechanism. Seismic experiments provide
a window into the internal properties and structure of the ice body, which is otherwise only
accessible by expensive drilling [Podolskiy and Walter, 2016]. Moreover, seismological mea-
surements offer a sub-second temporal resolution. This is unrivaled by any other glaciological
method [Walter et al., 2020]. For these reasons, arrays of seismic sensors are an ideal tool
for monitoring glaciers. Potentially, seismological studies can help to better quantify effects
of climate fluctuations and help to predict natural hazards such as ice avalanches and glacial

2



1-2 Cryoseismology 3

Figure 1-1: Schematic illustration of various sources of cryoseismic events on a glacier. Record-
ings from mountain glaciers are dominated by surface events. Recent research often
focuses on stick-slip motion, as it potentially helps to improve our understanding of
glacier sliding. Figure from [Podolskiy and Walter, 2016].

lake outburst floods [Maurer et al., 2020].
Sources of cryoseismic events occur at all parts of the glacier: its surface, its interior and at
the glacier-bedrock/sediment interface. One of the most abundant sources of seismicity on
glaciers are the formation of crevasses. Deep cracks open at the surface when strain rates of the
glacier exceed a depth-dependent fracture criterion of the ice [Podolskiy and Walter, 2016].
In mountain glaciers with high melt or steep slopes, near-surface events make up the vast ma-
jority of all short-duration seismic detections [Aster and Winberry, 2017]. Surface icequake
waveforms are dominated by simple Rayleigh waves, typically with a frequency content be-
tween 10 to 50 Hz [Podolskiy and Walter, 2016].
Glacier sliding plays a crucial role in the evolution of glaciers and land-forming processes.
Sliding is strongly influenced by friction at the glacier-bedrock/sediment interface, as well as
by subglacial hydraulic conditions. Accordingly, glacier movement varies with the subsurface
conditions. Irregularities in the subsurface might oppose glacier movement. These locked
asperities, known as sticky spots, may oppose a substantial part of the driving stress and
produce basal icequakes with stick-slip source mechanism. Source mechanisms corresponding
to the shearing of the base of the ice body along sticky spots can be modeled by double-couple
moment tensors [Aster and Winberry, 2017]. Basal icequakes have been observed on glaciers
worldwide [Aster and Winberry, 2017]. In reverse, recordings of stick-slip events can provide
valuable insights about glacier sliding. Unfortunately, deep icequakes are often difficult to
discern midst many surface events. One approach to detect basal icequakes is to analyse the
spectral characteristics of recordings. Stick-slip icequakes often display signal with a broad
frequency range, commonly containing frequencies above 100 Hz. They usually show P- and
S-wave onsets [Podolskiy and Walter, 2016]. Additionally, stick-slip events often occur clus-
tered in time and space and show highly similar waveforms [Gräff and Walter, 2021].
Events originating at the base of the glacier are not necessarily related to a shearing source

mechanism. Crevassing not only occurs at the surface but also the base of glaciers. Col-
lapsing cavities are another potential source of seismic energy [Podolskiy and Walter, 2016].

3



1-3 Working principles of DAS 4

Different glacier processes acting as sources for cryoseismic events are illustrated in Fig. 1-1.
Hydraulic processes play an important role in various glacial processes. Temperate glaciers
are close to the melting point along the whole ice column and water flow may occur at the
surface and base. Storage and flow of water are central to glacial erosion, mass balance
and transport of heat. Seismicity due to water movement is mainly related to two physical
processes: Turbulent flow and resonance of water-filled cavities [Aster and Winberry, 2017].
[Gimbert et al., 2016] used recordings of seismic noise in combination with water discharge
measurements to infer changes in water pressure gradients, subglacial channel sizes and sedi-
ment transport.

1-3 Working principles of DAS

DAS is an emerging technology demonstrating great potential in active and passive seismic
surveys. By repurposing a telecommunication fiber-optic cable as a sensing element, the
strain or strain-rate along the cable can be obtained with high temporal and spatial resolu-
tion. Dense measurements over large cable lengths (10s of km and potentially over 100 km;
[Zhan, 2019]) are in the process of revolutionizing many areas of seismology. A strong incen-
tive is that dark fibers, existing unused fibers originally deployed for telecommunication, can
be connected to a DAS Interrogator Unit (IU) and used as a sensing element without extra
modification [Jousset et al., 2018]. Given the amount of dark fiber existing all around the
globe, this could greatly help to increase the coverage of the Earth’s surface with seismologi-
cal instruments.
A DAS system is composed of an optoelectronic IU attached to a fiber-optic cable. However,
there is no strictly defined architecture for DAS systems and a variety of different measurement
principles exist. For a detailed description of existing measurement principles, the reader is
referred to [Hartog, 2017]. Here, only the measurement principle known as Coherent Optical
Time-Domain Reflectometry (COTDR) is covered. This technology is utilized by the SILIXA
iDAS™ v2.4 system, which has been used in both Rhonegletscher experiments. The IU is
responsible for sending light into the fiber, receiving the reflecting energy and processing it in
real-time. It sends coherent laser pulses into the cable at a fixed pulsing frequency. Impurities
in the glass core of the fiber cause variations of the refractive index of light. These variations
cause Rayleigh back-scattering of the incoming laser pulse. The energy of the back-scattered
light is recorded at the IU, where it is converted from two-way flight time to distance along the
fiber using the known speed of light in glass (around 200,000 km/s. This allows to map each
time sample of the back-scattered light to its corresponding location in the fiber-optic cable.
If a cable segment is compressed or elongated between successive interrogations, this trans-
lates into a time or phase shift of the back-scattered signals. This phase shift is proportional
to the strain of that cable segment [Parker et al., 2014]. Therefore, by successively sending
laser pulses into the fiber, the strain-rate along all segments of the cable can be determined.
The measurement principle of COTDR is illustrated in Fig. 1-2.

The physical distance over which the strain-rate is determined is referred to as the gauge
length. Longer gauge lengths provide higher Signal-To-Noise Ratio (SNR) ratio of the data
but lead to a worse spatial resolution [Parker et al., 2014]. Waves with a wavelength less then
half the gauge length cannot be resolved anymore. Typically, a gauge length of 10 m is chosen
for seismological experiments [Jousset et al., 2018]. Measurements can be obtained every few
meters (or even <1 m) along the cable, depending on the high-speed data processing capabil-

4



1-3 Working principles of DAS 5

Figure 1-2: Illustration of the working principle of COTDR systems. The IU sends a laser pulse
into the fiber, where the light is scattered at impurities in the fiber core. The energy
of the back-scattered light is recorded back at the IU. When the fiber is stretched
from length L to L+ ∆L, the back-scattered light is offset by a time or phase shift
φ. By interrogating the fiber at a fixed frequency, the strain rate over arbitrary cable
sections can be determined. Figure from [Lowrie and Fichtner, 2020], courtesy of
Patrick Paitz.

ity of the IU [Parker et al., 2014]. Note that if the channel spacing is less than half the gauge
length, neighbouring channels carry some redundancy in their information.
For many advanced seismic techniques, it is of great importance that the seismic wavefield
is recorded with high fidelity of amplitude and phase [Parker et al., 2014]. Generally, strain
recordings of DAS channels can be compared to linear strainmeters. Both are highly sensitive
to waves propagating along the in-line axis and only weakly sensitive to wave propagating
broadside to the in-line axis [Zhan, 2019]. The instrument response of DAS still is not very
well established and is a field of ongoing research. [Paitz et al., 2020] compared DAS measure-
ments with co-located seismometers and strainmeters for which the instrument response is
well-known. After converting converting all instrument recordings to the same physical units,
they compared amplitude and phase information for all experiments. The seismic experiments
covered a wide frequency range from 3 mHz to 60 Hz. The DAS response is consistent over
this interval, meaning that DAS measurements are broadband and theoretically flat. For this
thesis project it is noteworthy, that the worst amplitude response (mean amplitude response
of 10.42 dB) was observed for an icequake on the Rhonegletscher, with main frequency con-
tent between 40 and 60 Hz. A possible explanation for the amplitude discrepancy could be
an imperfect co-location of the fiber sensor and reference instrument. Additionally, coupling
effects between the glacier and fiber cable could be responsible. In that experiment, the fiber
was covered in snow, which was likely damping high frequencies [Walter et al., 2020].

5



1-4 Context to related work 6

1-4 Context to related work

1-4-1 DAS for microseismic event detection

In the Earth sciences, DAS was first utilized by the energy industry in applications such
as vertical seismic profiling [Mestayer et al., 2012]. [Webster et al., 2013] were the first, who
utilized DAS for microseismic event detection. They deployed a DAS cable in a wellbore and
successfully detected P- and S-waves generated in the subsurface. Installations on the surface
have been described as being more challenging [Jousset et al., 2018], but have great potential
for many applications such as hazard assessment and seismic imaging [Walter et al., 2020].
Continuing improvement of DAS technology resulted in sufficiently high waveform fidelity
needed for earthquake detection and even seismic imaging [Parker et al., 2014]. This has been
verified in numerous field experiments (e.g. see [Zhan, 2019] or [Lindsey and Martin, 2021]
for excellent overviews).
DAS has also been used for microseismic event detection on ice. [Walter et al., 2020] were
able to detect basal and surface icequakes on the Rhongletscher. [Hudson et al., 2020] tested
various DAS configurations against co-located geophone recordings for event detection on the
Rutford Ice Stream, Antarctica. To investigate coupling effects between the cable and the
ground, they tested the different array configurations: a unburied linear cable, a buried linear
cable and a buried triangle arrangement. The latter exhibits sensitivity in both horizontal
directions, due to the angle between the legs of the triangle. Because of a near-surface firn
layer, P-waves from basal icequakes arrived with normal incidence, i.e. completely braodside
to the fiber. Therefore, only S-wave arrivals were visible in their data. Every DAS config-
uration detected less events than the geophone arrays. The triangle configuration detected
more than three times as many events as the buried linear configuration. The unburied linear
DAS configuration did not detect a single event. The authors mention, that their geophone
array had larger extension than the DAS configurations. A cable length comparable to or
longer than the ice thickness might provide better results. The 2-D nature of the triangle
arrangement seems to be very effective for microseismic event detection, as it partly mitigates
the broadside sensitivity inherent to DAS measurements. An unburied cable is subject to
increased meteorological noise, which can completely mask events of interest.
[Pretorius et al., 2021] applied a Convolutional Neural Network (CNN) for cryoseismic event
detection. They trained the network on a labeled set of englacial events recorded in a vertical
borehole on the Stock Glacier, West Greenland. The trained CNN was then applied to passive
records in order to identify new events.

1-4-2 Machine learning in seismology

ML methods have been successful in extracting key information from datasets for a wide
range of applications [Roscher et al., 2020]. ML is a data-driven approach that learns to per-
form tasks without being explicitly programmed to do so. This makes ML methods very
appealing for automating complex tasks that would otherwise require manual input from
experts. ML can also help to discover new patterns and relationships hidden in the data
[Bergen et al., 2019]. Especially exploration of large-scale datasets may demand automated
data processing.
ML has been applied in the Earth sciences for several decades but only recently gained broader
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interest. A major reason for this are recent performance breakthroughs in computing power
and the availability of large memory. Additionally, ML algorithms are constantly refined and
nowadays widely accessible through easy-to-use toolboxes [Bergen et al., 2019].
ML approaches can be grouped into two primary classes: Supervised learning and unsuper-
vised learning. In supervised learning, the ML algorithm is trained on a set of annotated
examples, known as training data. The model learns to make predictions of the likelihood
of input data to belong to a certain target. Since the ground-truth data is known to the
algorithm (input data and label), the accuracy can be monitored and backpropagation of
errors can be used to improve the model. Unsupervised learning methods detect patterns or
structure in data without relying on training data, i.e. no labels are known prior. Unsuper-
vised ML is often used for early data exploration and data visualization. The raw data of
the Rhonegletscher experiment is unlabeled, and unsupervised learning methods are used for
data exploration and visualization. Following, related studies leveraging unsupervised learn-
ing methods are discussed.
Clustering methods, such as k-means and self-organizing maps, have been successfully utilized
for unsupervised classification of DAS data. [Martin et al., 2018] used wavelet transforms for
feature extraction and subsequent clustering of noise sources. [Chamarczuk et al., 2019] used
array processing techniques for feature extraction on a large-N array at a mining site. The
resulting features were used for clustering and different event types could be determined.
[Shi et al., 2021] used array-based coherence of seismometer array above a fault zone to gen-
erate input for cluster analysis.
Instead of domain methods (e.g. wavelet transform, beamforming), feature learning could
be utilized to reduce the dimensionality of input data. [Valentine and Trampert, 2012] use
an autoencoder neural networksto to learn a feature representation of earthquake waveforms.
Feature learning can also be combined with clustering, as done by [Holtzman et al., 2018].
Semi-supervised learning methods are on the intersection of supervised and unsupervised
learning. Semi-supervised learning can be used with a small set of training data in combi-
nation with unlabeled dataset. The training data aides to train a model that find patterns
and relationships in the data. One example are pattern-mining approaches, a simple method
being template-matching. [Yoon et al., 2015] use a fast similarity-search to efficiently detect
weak earthquakes in one week of continuous data. Network-based techniques have also been
utilized for event detection by representing seismic arrays in graph structures, where single
stations are represented by nodes [Riahi and Gerstoft, 2017]. The edges between the nodes
are determined by the array covariance matrix. This helped to identify weak source only
visible by a fraction of the large-N array.

1-5 Thesis outline

This work is organized as follows.
The introduction chapter gives a general overview about the problem investigated in this
work. The principal motivation for the work is stated. The field of cryoseismology is in-
troduced and the basic working principle of DAS is explained. Context to related work is
discussed, in particular the use of DAS for microseismic event detection and application of
ML methods in seismology.
Chapter 2 describes the hybrid workflow applied in this work. Different wavefield transfor-
mations from the field of array processing are introduced. For the unsupervised classification
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part, hierarchical clustering is explained. Clustering is applied to the input features computed
with the wavefield transformations.
Chapter 3 gives an introduction to the Rhonegletscher dataset. The chapter starts with an
overview of the field campaign conducted by ETH researchers in Summer 2020 at the Rhone-
gletscher, Switzerland. The study site is described and the basic setup of the DAS experiment
is introduced. The different preprocessing steps involved in preparing the data for further
analysis are motivated. Additionally, the cloud setup utilized for the processing of the data
is described.
The first part of chapter 4 shows the results obtained during the thesis project. First, results
from the classical approach of manual picking of events are given. This was used to build
a primary icequake catalogue. Furthermore, the limitation of such a manual analysis are
discussed. Afterwards, the results obtained by the hybrid workflow are shown. Extracted
features of cryoseismic events are displayed and the subsequent cluster analysis is visualized.
In the second part of chapter 4, all results are discussed.
The final chapter concludes the findings of the thesis report. Suggestions for further research
are stated.

8



Chapter 2

Methods

This chapter describes all relevant methods applied within the framework of this work. The
general processing workflow is a combination of array processing techniques and unsupervised
classification. Various 2-D wavefield transformations are described which are used to extract
input features for the clustering algorithm. The generic concepts of clustering are outlined.

2-1 Hybrid workflow

This work follows a classification workflow comprised of two main parts: (1) feature extrac-
tion by means of array processing and (2) unsupervised classification using the extracted
features as input.
Feature extraction can be understood as a type of dimensionality reduction. Typically, the
raw data (or search space) contains a large number of data points. As an example, a DAS data
sub-window of 200 channels and 15 s length at 1 kHz sampling frequency contains 3 million
data points, i.e. it has a dimensionality of 3 million. Feature extraction helps to encode the
search space in a lower-dimensional representation. Ideally, the extracted features capture
interesting parts of the search space and help to classify it effectively [Khalid et al., 2014].
Finding a good feature representation is arguably the most important and difficult step in the
hybrid workflow. The quality of the clustering output primarily depends on the quality and
descriptiveness of the input features. Since DAS can be described as a seismic array/antenna
[Zhan, 2019], it is plausible to leverage array processing techniques for feature extraction.
This approach has been tested previously by [Chamarczuk et al., 2019] for unsupervised
classification of signals recorded by a large-N array monitoring an industrial mining site.
Different array processing techniques are candidates for such an analysis.
[Chamarczuk et al., 2019] use sum-and-delay beamforming, the InterLoc source loca-
tion and Power Spectral Density (PSD) for feature extraction. They mention other methods
such as the slant-stack, also known as time-frequency, (τ − p) transform, velocity spectral
analysis, the frequeny-wavenumber (f − k) transform, curvelets and kurtosis. However, it is
necessary that the output of the feature extraction does not depend on the absolute timing
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2-2 Array processing 10

Figure 2-1: Flowchart illustrating the hybrid workflow. Output from the array processing is used
as input features for an unsupervised clustering algorithm. In practice, clustering is
often an iterative procedure. Adapted from [Chamarczuk et al., 2019].

and position inside a sub-window. This is because the features should not be influenced
by translation of events inside a sub-window. It should not matter if a cryoseismic event
occurs at the start or end of a time window if it has the same characteristics. Hence, the
τ − p domain is not suited for feature extraction but the frequency-slowness (f − p) domain
potentially is.
It is noteworthy, that data preprocessing can also serve as a form of dimensionality reduction.
After a low-pass or bandpass filter, the data can often be downsampled, reducing the number
of data points. When filters are chosen appropriately, this does not result in a loss of
information. On the contrary, the main objective of preprocessing is enhancing the signal of
interest.

The complete workflow is shown in Fig. 2-1. After data acquisition, the raw data is
preprocessed. Array processing techniques are utilized for feature extraction for smaller
sub-windows in space and time. The extracted features are prepared for the unsupervised
classification by appropriate scaling, following conventional ML input feature preperation.
The output of the array processing is used as input features for the unsupervised clustering.
There exist a vast range of different clustering algorithms, based on different assumptions on
the underlying data structure [Xu and Tian, 2015]. The right selection of the algorithm and
similarity measure is usually an iterative process. After each run, the resulting clusters are
evaluated by common clustering metrics as well as manual inspection. Then, the algorithm
is adjusted accordingly and re-run until a satisfactory outcome is achieved. Finally, the final
result is interpreted on basis of the original problem statement.

2-2 Array processing

Distributed strain recordings provide point-wise measurements of the acoustic and elastic
wavefield along the cable. This yields a distributed network of seismic stations, with equal
spacing along the cable. [Schweitzer et al., 2012] define that a seismic array mainly differs
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2-2 Array processing 11

from a regular network of seismic stations by the processing techniques applied for analysing
the recorded data. A network of seismic stations can therefore be used as an array under
certain conditions. For most array processing techniques, a high spatial coherence across the
array is a necessary requirement. This leads to some constraints on the geometry and spatial
extent of the array geometry, as well as data quality [Schweitzer et al., 2012].
When considering a fiber-optic cable with large extent, most microseismic events are only
visible along fractions of the cable. This is due to the small amount of seismic energy released,
in combination with attenuation and geometrical spreading of wavefronts. As a consequence,
weak cryoseismic events are only coherent over small sections of the DAS array. It therefore
seems sensible to divide the cable into smaller sections. This ensures a small aperture and
high signal coherence across these shorter segments. Since the cable was predominantly laid
out in a straight line, some processing techniques like beamforming are not well suited for
analysis. DAS only measures one component (inline strain), which is not enough to constrain
the backazimuth and velocity of the arriving wavefront unambiguously. For this, a cross-line
or triangular configuration would be required [Zhan, 2019]. For the same reason, source-
location techniques are not very suitable for analysis of the Rhonegletscher dataset.
It is possible to view DAS data as a 2-D matrix, with distance along the cable being one
dimension and time being the other dimension. This gives a spatio-temporal representation
of the seismic wavefield, corrupted by noise [Fernández-Ruiz et al., 2020]. This makes 2-D
wavefield transformations a viable tool to analyse the data. In the following, the f − k
transformation and the τ − p transformation are introduced. Additionally, methods based on
array-coherency are presented.

2-2-1 Frequency-wavenumber transform

DAS surveys typically exhibit similar spatial sampling compared to conventional geophone
arrays deployed in active seismic surveys. The 2-D nature of the DAS data, allows for analysis
in the f−k domain by performing a 2-D Fourier transformation of the data. The wavenumber
k can be interpreted as the spatial frequency of a plane wave and is given by

k =
1

λphase
=

f

vphase
, (2-1)

where λphase is wavelength, f is frequency and vphase is the phase velocity of a plane wave.
Since DAS is only measuring inline strain, it is not possible to determine the true wavenumber,
but instead an apparent wavenumber kapp in the cable direction. Hence, it is not possible to
obtain the true phase velocity vphase = f/k but only an apparent phase velocity vapp. The
apparent velocity is a combination of the true phase velocity and the incidence angle θ of an
incoming plane wave and is given by the relation

vapp =
v

sin(θ)
=

f

kapp
. (2-2)

The f − k transform corresponds to a remapping of the data, with the output being the
signal power of the data for a specific frequency bin and wavenumber bin. Note, that we
are always dealing with bins because of the discrete nature of the data and corresponding
transformations. Equation 2-1 implies that events with the same apparent velocity in the
t− x domain are mapped onto a line through the origin in the f − k domain, with the slope
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of the line being the inverse of the apparent velocity, also called slowness or ray parameter p.
Consequently, events with different apparent velocities can be separated in the f −k domain.
This makes it an attractive method to differentiate events based on their wave type (different
velocity in ice) or source location. The f − k spectrum of a sub-window can be used directly
as an input feature. However, to reduce dimensionality, resampling and smoothing of the
f − k spectrum is necessary. A different application of the f − k transform is filtering, as
muting in the f − k domain can be used to discard signal that is not in the velocity range
of interest. An example would be muting all velocities below 1000 m/s, as we do not expect
seismic waves on ice with such a low apparent velocity.
Direct extraction of apparent velocities from an f − k spectrum require integration along
slanted lines. This implies interpolating the data in the f−k domain, which can be practically
challenging [Dietrich, 1990]. If direct extraction of apparent velocities is desired, it is more
sensible to perform the slant-stack transformation, where interpolation is only done in the
t− x domain.

2-2-2 Slant-stack transform

The slant-stack transform is another way to decompose a wavefield into its plane-wave com-
ponents [Yilmaz, 2001]. The slant-stack transform maps data from the t − x domain to the
τ − p domain, where τ is similar to the time-axis and p is slowness. This is achieved by
summing amplitudes along slanted paths in the t − x domain. The slowness p is the inverse
of the apparent phase velocity and given by

p = sin(θ)/v. (2-3)

The slowness corresponds to the slope of a slanted line of angle θ in the t − x domain, with
τ being the time-axis intercept of the slanted line at x = 0. The slant-stack transform is
usually implemented in a two-step process. First, a linear moveout correction is applied to
each trace. This can be implemented by the coordinate transformation

τ = t− px, (2-4)

where p is slowness, t is time, x is offset and τ is the intercept time. Second, the data is
summed along the offset-axis by

S(p, τ) =
∑
x

P (x, τ + px). (2-5)

Here, S(p, τ) describes a plane wave with slowness p.
A power spectrum in the f − p domain can be constructed by performing a 1-D Fourier
transform along the τ -axis [Yilmaz, 2001]. This results in a frequency-dependent description
of the apparent phase-velocity. This is very similar to the f−k domain, but bins corresponding
to the same apparent velocities are in a column instead of a slanted line. Therefore, no
interpolation is required in a frequency-dependent domain. It is possible to construct features
corresponding to a certain velocity and frequency range by summing along parts of a column
in the f − p domain.
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2-2-3 Covariance matrix analysis

Continuous DAS recordings provide dense spatial sampling of the seismic wavefield. Weak
sources cause coherent signal over sections of the cable. In seismology, statistical array pro-
cessing techniques have been successfully used to identify coherent time-series as a function
of time and frequency [Seydoux et al., 2016]. This approach can be used for identifying weak
signals embedded in background noise, as is typically the case for local microseismicity. One
major advantage is, that no prior knowledge of the study site is required.
The main idea was developed by [Bartlett, 1954] and [Lawley, 1956], who proposed that the
number of independent signals can be obtained from the eigendecomposition of the covariance
matrix, where larger eigenvalues correspond to the independent signals and smaller eigenval-
ues correspond to the background noise. Following, the construction and decomposition of
the array covariance matrix are described in detail.
The array data vector at a frequency f can be defined as

~u(f) = 〈u1(f), u2(f), ..., uN (f)〉, (2-6)

where ui(f) is the complex Fourier spectra of channel i and N is the total number of sensors.
The covariance matrix at a frequency f is defined as

Γ(f) = E[~u(f)~u(f)†], (2-7)

where E represents the expected value and † denotes the conjugate transpose. This means
that the outer product ~u(f)~u(f)† spans a N ×N matrix [Gerstoft et al., 2012].
The steps for computing the covariance matrix are discussed in [Shi et al., 2021]. The co-
variance matrix is built from the time average of Fourier cross-spectra matrices calculated
over a set of half-overlapping sub-windows. Two window sizes are involved for the construc-
tion of the covariance matrix. Shorter time windows, referred to as sub-windows, are used
to compute the Fourier cross-spectra matrices. A long time window, referred to as aver-
aging window, is composed of multiple half-overlapping sub-windows. The average of all
sub-windows inside an averaging window then gives the covariance matrix for that averaging
window. Mathematically this can be stated as

C(f) =
1

M

M∑
m=1

~um(f)~um(f)†, (2-8)

where ~um(f) is the array data vector of sub-window m and M is the total amount of sub-
windows in one averaging window. Note, that by definition the Fourier cross-spectra matrix
is Hermitian, meaning that Γ(f)† = Γ(f). Since the covariance matrix is an average of many
Hermitian matrices, it itself is also Hermitian and always diagonalizable. The length of the
averaging window gives the time resolution of the covariance matrix analysis.
[Gerstoft et al., 2012] consider the data vector as a linear model of signal ~sk, coherent prop-
agating noise ~nc and incoherent noise ~ni. For a number of K discrete sources with complex
amplitudes αk and under the assumption that the number of stations is much larger than the
number of discrete sources (i.e., K << N), the linear model can be stated as

~u(f) = ~nc + ~ni +

K∑
k=1

αk~sk. (2-9)
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Based on Eq. 2-9, the covariance matrix can also be denoted as

C(f) = Cs(f) + Cp(f) + Ci(f). (2-10)

Here, Cs denotes the covariance matrix of the coherent sources, Cp denotes the covariance
matrix of the propagating coherent noise and Ci is the covariance matrix of the incoherent
noise. [Gerstoft et al., 2012] give a statistical description of the noise covariance matrices
and [Seydoux et al., 2016] extended Cp by considering 2-D isotropic surface waves as the
dominant propagating coherent noise.
The eigenvalues 〈λ1(f), λ2(f), ..., λN (f)〉 can be obtained by solving the linear equation

C~v = λ~v (2-11)

at each frequency, with ~v being the corresponding eigenvectors.
Various metrics can be constructed from the resulting eigenvalue distribution.
[Seydoux et al., 2016] define the spectral width of the covariance matrix and use it as a
simple threshold trigger for earthquake detection at a volcano site. [Shi et al., 2021] use the
first eigenvalue, the Shannon entropy of the eigenvalue distribution, the coherency function
and the variance of the eigenvalues. They combined three of these metrics and used them as
input features for a clustering algorithm. For this study, the coherency function and the first
eigenvalue are identified as useful metrics.
The first eigenvalue λ1(f) is simply the largest obtained eigenvalue. The coherency function
is defined as the ratio between the dominating wavefield component and the full wavefield
[Gersztenkorn and Marfurt, 1999]. This can be expressed as the ratio of the first eigenvalue
and the sum of all other eigenvalues, i.e.

σc(f, t) =
λ1(f, t)∑N
i=1 λi(f, t)

. (2-12)

These two features are obtained for each frequency component at each time step, effectively
yielding a time-frequency representation of the wavefield. Since the data is divided into
smaller cable sections as well, we also obtain a spatial component.

2-2-4 Event triggering and data stacking

Processing the data channel-by-channel as in conventional seismological studies can quickly
become very time intensive for the large number of channels commonly encountered in DAS
surveys [Stork et al., 2020]. A possible solution is to stack multiple consecutive channels to re-
duce the data volume. Stacking can be performed linearly or non-linearly, e.g. phase-weighted,
semblance-weighted or Nth-root stacks [Schimmel and Paulssen, 1997]. Stacking can be per-
formed on the raw waveforms but also on derived functions thereof. This can be utilized in
a classic signal processing and triggering workflow. Following [Stork et al., 2020], the data
is pre-processed and subsequently the Short-Term Average/Long-Term Average (STA/LTA)
method is used to compute a characteristic function for each trace. Then, the characteristic
functions are stacked over a range of consecutive channels. Event triggering is performed on
the output from the stacking. This has two benefits: (1) A large amount of channels can be
represented by one single resulting function. (2) Individual channels often show a low SNR,
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and locally confined noise with large amplitude variations can easily trigger a false detec-
tion on a single channel. Stacking multiple DAS channels can increase the SNR significantly
[Hudson et al., 2020].
STA/LTA is by far the most common triggering algorithm in use today [Trnkoczy, 2009].
One main advantage is its simplicity and robustness. The basic algorithm includes to sliding
windows: The STA window calculates the amplitude average in a window with short-time
duration and the LTA window computes the same metric but given a window with longer
time-duration. The STA and LTA for a single channel can be stated as

STA(t) =
1

NS

NS∑
n=1

yn, LTA(t) =
1

NL

NL∑
n=1

yn, (2-13)

where NS is the number of samples in the STA window, NL is the number of samples in
the LTA window and y is the waveform data. Both windows are moved along the complete
time series sample-by-sample and the ratio R(t) = STA(t)/LTA(t) is computed at each time
sample. The basic idea is that the STA window will be high when it includes a signal onset,
while the LTA will be comparably low because it still contains the previous background noise.
A peak detection algorithm is then run on the characteristic function R(t) . To retain optimal
results, the STA/LTA parameters like the triggering threshold and window durations have
to be selected carefully. The right selection is often site-dependent [Trnkoczy, 2009]. The
characteristic functions can then be stacked over a range of channels. [Stork et al., 2020]
test various stacking approaches and ultimately decide for linear stacking, since it is very
time efficient and achieves a good performance on their test data set. Linear stacking of the
characteristic function is a simple mean, i.e.

Glin(t) =
1

N

N∑
j=0

|Rj(t)|, (2-14)

where j = 0, ..., N are indexes for all channels considered for the stack.
It is also possible to stack channels in a non-linear way. Here, we consider the Phase-Weighted
Stack (PWS) [Schimmel and Paulssen, 1997]. It assigns a weight to each trace based on the
coherence of the instantaneous phase. The analytical signal is given by

S(t) = y(t) + iH(y(t)) = A(t)eiΦ(t), (2-15)

where y(t) is the waveform of the channel and H(y(t)) is its Hilbert transform. The analytical
signal can also be expressed with a time-dependent amplitude A(t) and phase Φ(t). The
coefficients for the PWS can be computed by

c(t) =
1

N

∣∣∣∣ N∑
j=1

eiΦ(t)

∣∣∣∣, (2-16)

where N is the number of traces used in the stack. The coefficients range between 0 and 1 as
a function of time. For coherent signal, the amplitude of the coefficients are one, while zero
amplitude means that the traces summed up destructively [Schimmel and Paulssen, 1997]. In
essence, the idea is to mute channels which do not show coherent signal. The final stack is
obtained by weighting each trace by its time-dependent coefficient, i.e.

GPWS(t) =
1

N

N∑
j=1

yj(t)

∣∣∣∣ 1

N

N∑
j=1

eiΦ(t)

∣∣∣∣ν . (2-17)
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The PWS stack acts as a filter and its sharpness is controlled by the power ν. For ν = 0, the
linear stack is obtained. PWS can be used when stacking characteristic functions, but also
for the slant-stack in Eq. 2-5.

2-3 Clustering

Clustering, also known as unsupervised classification, is the task of constructing decision
boundaries based on unlabeled training data [Xu and Tian, 2015]. The objective is to find
natural groupings, called clusters, in multidimensional data, based on measured or perceived
similarity between the patterns. Clustering is often considered the most important problem
of unsupervised learning [Xu and Tian, 2015]. Clustering is a difficult problem to solve, since
clusters can have different sizes and shapes. Moreover, the number of clusters is often de-
pendent on the resolution on which we view the data. There is no universal definition of
clustering. A classical functional description was given by [Jain and Dubes, 1988]:

1. Instances in the same cluster must be similar as much as possible.

2. Instances in different clusters must be different as much as possible.

3. Measurements for similarity must be clear and have practical meaning.

Even with these functional definitions of a cluster, it is not easy to come up with an operational
implementation. One of the challenges is to select an appropriate measure of similarity to
define clusters. A sensible similarity measurement is generally both data (cluster shape) and
context dependent. [Xu and Wunsch, 2005] give the following standard steps for clustering
analysis:

1. Feature extraction and selection.

2. Designing the cluster algorithm to fit the problem statement.

3. Result evaluation.

4. Result explanation.

When compared to our hybrid workflow (see Fig. 2-1), the first step corresponds to the
array processing part while steps 2-4 are the unsupervised classification part. The choice of
the feature extraction method determines the density and shapes of patterns in the feature
space, on which the clustering algorithm operates. Based on the structure of the data in
the feature space, an appropriate clustering algorithm and similarity measurement has to
be chosen. Popular similarity measurements are Euclidean (L2) distance, Manhattan (L2)
distance or cosine similarity. The latter is an interesting choice, as is does not depend on the
actual magnitude of features but rather their shape. There exist a great number of different
clustering algorithm, based on different notions of what a cluster is. E.g. a cluster can be based
on distances between cluster members, point-density inside the clusters or by a description
with a statistical distributions.
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2-3-1 Hierarchical clustering

Hierarchical clustering is chosen as the basic clustering algorithm, as it can deal with arbitrary
shaped data and arbitrary types of attributes. Two kinds of hierarchical clustering exist,
which are based on an agglomerative and divisive clustering approach. In practice, only
agglomerative hierarchical clustering is widely used [Xu and Tian, 2015]. It works in the
following manner: In the initialization stage, each data point gets assigned its own cluster. In
the next step, similar clusters are merged together. This procedure is repeated until one single
cluster is formed which includes all data points. The complete procedure results in a tree-like
structure, called a dendrogram. Here, the final all-enclosing cluster represents the trunk of
the tree, while the data points are the leaves. This allows to easily detect the relationship
between different clusters [Xu and Tian, 2015].
Various methods, called linking criterion, exist on how to decide which clusters to merge
at each iteration. Examples are ward linkage, complete linkage, single linkage and average
linkage. The most suitable linkage criterion highly depends on the structure of the underlying
data. Complete linkage merges clusters on the maximum distance between elements in each
cluster.

2-3-2 Result validation

The cluster algorithm always converges and yields an output no matter the input and chosen
parameters. Hence, the results have to be validated in some way and potentially the clustering
workflow has to be adjusted. It is inherently difficult to validate unsupervised methods, as
they lack ground-truth data for comparison. There exist methods for quantitatively evaluating
clustering results. They are based on the classical notion of a cluster (see list 2-3). One widely
used metric for evaluating clustering results is the silhouette coefficient [Xu and Tian, 2015].
It gives a measure of how similar a point is to other points in his cluster, compared to points
in different clusters. The silhouette value ranges from -1 to +1, with a high value indicating
similarity to points in the same clusters.
Additionally, results are visually inspected. Events in the same cluster are inspected for
similarity and should be different to events in other clusters. It is also possible to take sub-
windows that we perceive as very similar and compute their distance, which should be low.
On the other hand, the computed distance should be high if we compare it to a sub-window
with a vastly different character.
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Chapter 3

Data

This chapter provides a general overview of the Rhonegletscher experiment and the acquired
data. The cloud setup used to access and process the data is described. The preprocessing
steps applied to enhance the signal of interest are demonstrated on an example time window.

3-1 Rhonegletscher experiment

3-1-1 Study site

The Rhonegletscher is a temperate valley glacier located in the central Swiss Alps. It has
a surface area of 14.64 km2 and a total length of 7.55 km [GLAMOS, 2020]. The glacier
flows southward from 3600 to 2200 m a.s.l. with an average slope of 10° [Walter et al., 2020].
Since 1879, the Rhonegletscher has retreated by more than 1500 m [GLAMOS, 2020]. Due to
increasing mass loss in the last two decades, a proglacial lake has formed at the glacier tongue
in 2005 [Tsutaki et al., 2011]. The ice-column is at melting-pressure [Gräff and Walter, 2021]
and during summer, increased surface melt occurs when the sun heats up the glacier surface.
In winter, most of the glacier is covered in snow. During the time the DAS experiment was
conducted, approximately the upper third of the glacier was still covered in snow, while the
lower part was bare ice. An orthophoto of the Rhonegletscher is shown in Fig. 3-1a

3-1-2 Data collection

In July 2020, a SILIXA iDAS™ v2.4 IU was installed and a 9 km long fiber-optic cable was
deployed at the Rhonegletscher site. The fiber covered most of the glacier from the ablation
zone down to the terminus. The cable layout is shown in Fig. 3-1b. The cable was not
actively buried in the ice/snow. However, it has a black coating and thereby warms up faster
than the surrounding ice. In the upper part of the glacier, the cable effectively melted itself
into the snow and the upper section of the DAS cable can be considered as buried. Below
the ice falls, there is no snow cover and surface melting occurs during the day. Therefore, the

18



3-1 Rhonegletscher experiment 19

(a) (b)

Figure 3-1: (a) Orthophoto of the Rhonegletscher and (b) cable layout of the experiment. The
cable covers the whole glacier extent from the accumulation zone to the ablation
zone. Source of aerial image in (a): Swiss Federal Office of Topography.

cable is not as well coupled compared to the upper section.
For most of the experiment, the pulsing frequency of the laser was set to 1 kHz, with a pulse
width of 50 nm. The gauge length, over which the strain measurement is computed, was
10 m for the entire experiment. The 10 m gauge length is prescribed by the iDAS™ v2.4
system and cannot be adjusted. In the first few days of recording, a channel spacing of 2 m
was chosen, but for the majority of the experiment, a 4 m channel spacing was selected.
For 4 m channel spacing, a total of 2225 channels were recorded simultaneously. However,
not all channels recorded useful signals. The complete cable was spliced together from three
separate smaller cables. In between the spliced sections are small cable drums, with fiber
coils of various length, of which the data has been disregarded in this thesis. Furthermore, to
reduce the tension along the fibre, small, loose loops were occasionally incorporated into the
cable layout.
Channel locations were obtained by measuring the location of a few channels with GPS,
performing a tap-test and linearly interpolating the remaining channel locations. This leads
to some uncertainty in the true channel locations.
The dense spatial sampling results in a huge data volume. One day of DAS recordings has a
size of >400 GB. The complete survey acquired 17.6 TB of data. All data was backed up on
external hard drives and additionally uploaded to the Amazon Web Services (AWS) cloud.

3-1-3 Data access

All collected data was converted to the Hierarchical Data Format (HDF) and then uploaded
to the AWS cloud. The Simple Storage Service (S3) was chosen as an appropriate web service,
as it is built for storing large data volumes and provides reasonably fast access. The HDF
was chosen, as it is a data format targeted for large datasets and parallel computing. The
Rhonegletscher data is stored in files of 30 seconds recording time, each file containing the
waveforms of all channels. All files are stored inside an S3 bucket, which is similar to a
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file folder on local computers. The bucket is organized in sub-folders corresponding to a
complete day of recording. The S3 bucket can be interacted with using the Command Line
Interface (CLI) tool provided by AWS. This allows for the copy of large amount of data from
the S3 bucket to a local machine or a different cloud web service.

3-2 Handling large-scale datasets

The enormous data volume of the Rhonegletscher dataset limits efficient analysis on personal
computers. To effectively handle the amount of data, a cloud-based solution was chosen.
Specifically, the Elastic Compute Cloud (EC2) webservice of the AWS ecosystem is used.
This is a very natural approach, as the data is already stored on AWS inside the S3 web
service.
Many computational operations like pre-processing are performed on a trace-by-trace basis.
This can become very time-consuming when computed in a serial fashion. For such operations,
computational cost can be improved significantly when using multiple cores and parallel
computing.

3-2-1 Cloud computing with AWS

To efficiently perform computations on the data, the EC2 of the AWS ecosystem was utilized.
EC2 allows for on-demand computing by creating instances with arbitrary technical specifi-
cation (e.g. memory size and number of cores) in near-real time. For this project, instances
from the C6g1 group were used, as they are designed for high-performance computing. EC2
instances cannot directly access objects stored in S3 buckets. Instead, instances can be con-
nected to Elastic Block Storage (EBS) volumes, which are similar to external hard drives. In
order to solve this problem, EBS volumes of 500 GB size were created and one day of data
was copied from the S3 storage to each EBS volume. After installing the necessary software
on the C6 instance, it can load the data from the EBS volume, process the data and save the
output to the corresponding EBS volume.

Processing of the data was done using self-written Python scripts. The data was read in
using the h52 library and subsequently converted to NumPy arrays. Signal processing was
done using the NumPy [Harris et al., 2020] and SciPy [Virtanen et al., 2020] libraries. Data
preperation and clustering was performed with the scikit-learn [Pedregosa et al., 2011] library.

3-2-2 Parallel computing

Many operations on the data are computed individually for each trace. This includes compu-
tationally relatively expensive steps like filtering in the time- and frequency domain. Com-
putational cost can be greatly reduced if such operations are not run in series, but parallel
on many cores. Since an operation on a single trace is independent on the same operation an
a different trace, no communication between different sub-processes is required. This means
that it is not necessary to implement complicated locking procedures or a message passing

1see https://aws.amazon.com/ec2/instance-types/c6/ for more information
2https://h5py.org/
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Figure 3-2: Schematic illustration of the cloud setup for processing the Rhonegletscher data.

interface.
A simple tool to parallelize Python scripts is the multiprocessing3 library. In its most basic
form, a function (e.g. containing all preprocessing steps) and an iterable (e.g. all traces) can
be passed to a mapping function. The mapping function then loops over the iterables and
sends each trace to a sub-process, where the function is applied to the trace. In this way,
multiple cores can work in parallel. Afterwards the result is collected and can be used for
further analysis.

3-3 Data preprocessing

3-3-1 Removing noisy channels

Since the cable sections and cable drums do not record in-line strain data, these channels have
been discarded for the analysis in this thesis. When the cable is not perfectly straight, distance
along the cable does not perfectly coincide with absolute distance. Channels corresponding to
loops in the cable were identified by their small absolute channel spacing. All channels with
less than 0.8 m offset to their neighbouring channel were removed. In total, 215 channels were
discarded completely and the remaining 2010 channels were used for all further analyses.
The raw recordings contain a lot of noise, making it impossible to discern any events on the
raw data. Due to varying coupling conditions, channels show different recording quality. Some
channels appear very quite, while others are very noisy. In order to balance this discrepancy,
trace normalization has to be performed. Otherwise, noisy channels with large amplitudes
will dominate the data.

3https://docs.python.org/3/library/multiprocessing.html
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3-3-2 Single channel data preparation

Signals of interest are located within in a certain frequency bandwidth. Surface crevassing
has dominating frequencies between 10 to 50 Hz, while basal icequakes can have significant
energy up to 100s of Hz. It would be interesting to monitor very low frequencies (e.g. down
to 0.1 Hz), but unfortunately that frequency band is dominated by background noise. This
noise is likely of meteorological nature, e.g. wind, temperature or surface melt. The snow
covering the upper third of the cable, dampens frequencies above 90 Hz [Walter et al., 2020].
To isolate signals of interest, a 4th order Butterworth bandpass filter is applied. After em-
pirically testing different bandwidths on events, 10 Hz was chosen as an appropriate lower
cutoff frequency and the high cutoff frequency was set to 90 Hz. After the filtering, there is
no energy higher than at least 100 Hz in the data, and it can safely be downsampled in time
by a factor of 5. The new samping frequency is 200 Hz, which is more than twice the higher
cutoff frequency (Nyquist theorem). This reduces memory cost and speeds up all subsequent
computations significantly.
Following [Bensen et al., 2007], spectral whitening was applied to each trace to balance the

amplitude spectrum. The motivation is, that dominant frequencies in a sub-window should
not dominate frequency-dependent data representations solely due to amplitude, but rather
phase. Furthermore, the influence of spikes in the amplitude spectrum is reduced. Spectral
whitening was implemented by transforming the data to the frequency-space (f − x) domain
and running a smoothing window along the frequency axis. A window length of 0.3 Hz
was chosen after testing different lengths. Afterwards, the data is transformed back to the
time-space (t − x) domain. To compensate for different coupling conditions, some sort of
normalization has to be applied to each channel. Three different normalization approaches
were tested: (1) normalization by maximum amplitude, (2) energy normalization and (3)
Automatic Gain Control (AGC) [Dondurur, 2018]. The latter performed the best as it di-
minishes the effect of large amplitude noise spikes without corrupting signal onsets. An AGC
window length of 2000 ms was used to balance the amplitude along individual channels. The
idea is to remove absolute amplitude information and calculate coherence solely due to similar
phase of coherent signals.
A significant issue during analysis were common modes of the IU. These occur when the IU
reverberates, e.g. when performing some task on the DAS system or the generator providing
the electricity. Common modes are easy to identify, as they appear as vertical lines with
infinite velocity. A simple solution would be to remove the mean along all channels for each
time sample. However, this alone does not solve the problem, as an multiple vertical artefacts
appear on the higher channels after applying amplitude normalization. This was solved by
applying a high-pass filter along the space axis, filtering out extremely low wavenumbers. This
filter has to be designed carefully in order to not cutoff useful signal or introduce artifacts.
The complete preprocessing workflow is illustrated on an example data chunk containing a
small event and an IU common mode in Fig. 3-3. As a last step, it is possible to normalize
each trace by its total energy (in the signal processing sense).
After the data is preprocessed, it is cut into smaller sub-windows of 200 channels and 15 s
length. Each window has 50% overlap in space with its neighbouring window. In time, a
5 second overlap between neighbouring windows was chosen. In space, a sufficient overlap
is required because large events are necessarily cut. The channel overlap ensures, that an
event is fully represented in at least one sub-window, if it would otherwise be cut right in the
middle. Theoretically, only a small time overlap is necessary, as most events are of sub-second
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Figure 3-3: Different processing steps applied to the same time panel containing a small event
and IU common mode noise. The following steps were applied to each sub-figure:
(a) raw; (b) AGC; (c) bandpass filter; (d) bandpass filter + AGC; (e) bandpass filter
+ AGC + spatial highpass filter; (f) bandpass filter + AGC + spatial highpass filter
+ energy normalization. Bandpass filters are from 10-90 Hz. In the final image,
there are no dominating channels and the common mode has been almost entirely
muted.
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time duration. The overlap was chosen as slightly longer in case certain filtering operation,
like an f − k filter are applied to each sub-window individually. In that case, the window
needs to be tapered and a larger overlap would be required in order to not lose information.
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Chapter 4

Evaluation

This first part of this chapter presents relevant results obtained by the hybrid workflow. Clus-
tering results for different input features are shown, steps for the cluster validation are demon-
strated and an interesting cluster is briefly analyzed. In the second part, all results and their
implications are discussed.

4-1 Results

4-1-1 Event detection with conventional signal processing

To get an initial idea of events hidden in the data, manual picking was performed on multiple
days of data. First, the data was preprocessed as outlined in section 3-3. Subsequently, a
reverse STA/LTA trigger was run on all channels. Cryoseismic events usually are of short-
time duration [Podolskiy and Walter, 2016] and an initial value of 0.3 s was chosen for the
STA window. The length of the LTA window was set to 10 times the STA window length, i.e.
3 s. An example of a small icequake and the corresponding characteristic functions is shown
in Fig. 4-1. The onset of the event is clearly captured by the triggering algorithm. Note that
individual channels are quite noisy and STA/LTA ratios above 2 occur regularly, even when
no coherent event is present. Due to the length of the STA window, the onset of the event is
somewhat smeared out. This allows to stack the characteristic functions without correcting
for moveout. The only condition is, that the STA window is longer than the maximum
theoretical moveout along the considered channel range. E.g. for a velocity of 1500 m/s and
an STA window of 0.3 s length, the maximum offset is 450 m.
An important decision is how many channels to use for stacking the characteristic functions.
If we choose a very large aperture, small events will be diluted by all the channels that did
not register it. If, on the other hand, we choose a too small aperture, local noise might
dominate the stacks. Stacking over 100 channels gave good results when tested on events
with multiple sizes. A sliding window with length 100 and step size 50 was shifted along
the spatial axis of the STA/LTA matrix. The linear stacks corresponding to Fig. 4-1 are
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Figure 4-1: Small cryoseismic event and the corresponding characteristic function. The apex of
the event is located at channel 1800 and it has a total extent of about 400 m.

Figure 4-2: Linearly stacked characteristic functions for Fig. 4-1. Each stack comprises 100
channels and there is 50% channel overlap between consecutive subplots.

shown in Fig. 4-2. The highest STA/LTA ratio is obtained for the stack of channels 1750
to 1850. This is logical since that exactly corresponds to the spatial extent of the event.
However, the other two windows also detect the event, even though it does not cover the
whole channel ranges of those windows. Instead of linear stacking, PWS was also tested. In
general, it gave similar results for stacking characteristic functions with high SNR. Therefore,
the simpler and faster linear stack was used for triggering. The outlined algorithm was run
on a single day of data at a time, in total for 7 days (July 15 - July 23). If the STA/LTA
ratio exceeded a certain threshold, an event was triggered. The start and end times, as well
as the corresponding channel range were saved in a catalogue. It is desirable, that triggered
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entries on neighbouring channels should be merged together, if they correspond to the same
event. Therefore, the resulting catalogue was post-processed. If channel ranges and event
time of entries overlapped, they were merged together in a single entry. In this way, we would
obtain just a single entry for the event in Fig. 4-2, even though it was triggered three times
separately with our windowing method. With a triggering threshold of 1.5, the maximum
amount of events triggered for a single day was 1436 (July 15). The least events triggered
for a single day was 485 (July 17). Most events were triggered on the upper cable sections
above channel 1100. Below, the data quality is significantly more noisy and the few triggered
events displayed poor SNRs.

4-1-2 Visualization of feature extraction methods

The processing techniques described in chapter 2 were applied to triggered events in order to
test their capabilities of discriminating between different events and noise. Fig. 4-3 shows a
cryoseismic event transformed to the f − k and f − p domain, respectively. The cryoseismic
event is shown in the appendix in Fig. A-1. Clear moveouts are visible in the f−k domain, with
energy travelling from North to South (defined as positive velocity) being more pronounced.
The f − p domain displays the frequency-dependence of the positive slownesses, that were
scanned by the slant-stack. Two separated regions of high slant-stack energy are visible,

Figure 4-3: Frequency-wavenumber and frequency-slowness spectrum for the cryoseismic event
shown in Fig. A-1. The right plot shows energy travelling from North to South. Low
values have been clipped for visualization purposes.
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likely corresponding to different seismic phases. The more pronounced phase has a apparent
velocity of 1600 m/s, while the less pronounced phase is significantly faster with an apparent
velocity of 3150 m/s. It is more difficult two discern the two separated velocities in the f − k
domain, as the image appears more noisy.
Both the f − k and f − p transform return outputs with a high dimension. Thus, they are
not directly suited as input features for clustering. In order to achieve a low-dimensional
representation of velocity information, the energy in the columns of the f − p domain was
summed up for certain frequency ranges. Summing the energies between 10 and 50 Hz results
in the left plot of Fig. 4-4. The output is scaled in such a way, that it sums up to 1. This is to

Figure 4-4: Extracted velocity features of the cryoseismic event shown in Fig. A-1. (a) Sum off
the energies along the frequency-axis of the f − p domain in Fig. 4-3 between 10
and 50 Hz. (b) Same as (a), but downsampled to 20 values, which can be used as
input features.

ensure, that the total energy of the event does not overly influence the features bu rather the
relative proportions of velocities present in the sub-window. To further reduce dimensionality,
the velocity series is downsampled to 20 values, as shown Fig. 4-4 b). The general shape of the
velocity distribution is preserved. Exactly the same process can be followed to obtain features
representing the negative slownesses. Using both positive and negative slownesses instead of
absolute slowness helps to discriminate between events travelling in opposite directions. A
window containing only noise is expected to have a level feature distribution without any
pronounced peaks.
For the coherence-based methods, the averaging window is set to the same length as the sub-
windows, i.e. 15 s. The short window used to compute the Cross-Spectra matrices was set
to 0.6 s. For each sub-window, a frequency-dependent measurement of the array coherence
is computed. The short window was set to 0.6 s. Only every 4th channel was used for
constructing the covariance matrix, in order to avoid channels with an overlapping gauge
length. Accordingly, 50 stations were used for every sub-window to construct the covariance
matrix. Fig. 4-5 shows the covariance matrix at 30 Hz for the cryoseismic event in Fig. A-1.
The matrix displays high covariance coefficients off the main diagonal. The main diagonal
gives the auto-correlation for the corresponding channel. The matrix was then decomposed
into its eigenvalues, which were ordered by their magnitude. Fig. 4-5 b) displays the 20 largest
eigenvalues of the covariance matrix ordered from largest two smallest. Clearly, the eigenvalue
distribution is dominated by the first eigenvalue. For comparison, the eigenvalue distribution
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Figure 4-5: (a) Covariance at 30 Hz for the coherent event in Fig. A-1. The covariance matrix
was constructed by using every 4th channel. (b) The first 20 ordered eigenvalues for
the covariance matrix in (a). The first eigenvalue clearly dominates. For compari-
son,(b) shows the first 20 ordered eigenvalues for the same channels, but 40 s later,
where there is only noise contained in the sub-window.

of a sub-window containing only noise is shown in Fig. 4-5 c). The eigenvalue distribution is
quite even, and does not exhibit abnormally high eigenvalues. The sub-window for the noise
stems from the exact same cable segment as the cryoseismic event, but 40 s after where no
coherent signal was present in the sub-window.

4-1-3 Clustering of wavefield features

The extracted features are used as input for a clustering analysis. The clustering algorithm
assigns a label to each sub-window. The exact number of labels that the algorithm assigns,
i.e. the number of clusters, has to be set in advance by the analyst. Since each sub-window
contains both space and time information, the clustering result can be organized in a matrix,
which is from now on referred to as the label matrix. This helps to easily visualize the clus-
tering result. For a given entry in the matrix, the row number provides the spatial location
and the column number gives the time stamp. The class membership of the entry can be
indicated by a color. Fig. 4-6 shows a 100 min long excerpt of a label matrix on July 25.
The clustering for this matrix was obtained based on the eigenvalues and coherency between
10 and 80 Hz of each sub-window. Hierarchical clustering with complete linkage criterion
was used and Euclidean distance chosen as the similarity measurement. The number of clus-
ters was set to 6, as will be justified in section 4-1-4. Most entries in the matrix belong to
cluster 0. The color for this cluster was set as white to facilitate visualization. Upon visual
inspection, it appeared that sub-windows corresponding to cluster 0 do predominantly not
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Figure 4-6: Clustering results using coherence-based features and hierarchical clustering for 100
min of data on July 25. The color of a matrix entry indicates the cluster membership
of each sub-window.

contain any coherent signal. All other clusters contain sub-windows which display events.
Note that the label matrix only shows channels from 1100 upwards. On the lower segment,
no events were registered for the displayed time frame. Effectively, all sub-windows belonging
to channels lower than channel 1100 were assigned to cluster 0. This was also confirmed by
the manual triggering. Therefore, lower channels were discarded for further analysis to speed
up processing. Fig. 4-7 also shows a label matrix computed with coherence-based features as
input but displays 30 min of data on July 15. Again, hierarchical clustering was utilized with

Figure 4-7: Cluster results for 30 minutes of data on July 15 using coherence-based features.
The color of a matrix entry indicates the cluster membership of the corresponding
sub-window.

complete linkage and Euclidean distance as similarity measure. Icequakes covering most of
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the cable extent belong to cluster 3. Sub-windows belonging to cluster 4 mainly occur on the
uppermost segment of the cable. Most sub-windows not belonging to cluster 0 are located on
the very end of the cable.
Fig. 4-8 shows clustering results for the same time frame as Fig. 4-7, but with velocity features
as input instead of coherence-base features. The general pattern is quite similar but there are

Figure 4-8: Cluster results for 30 min of data using features derived from spectral velocity analy-
sis. The color of a matrix entry indicates the cluster membership of the corresponding
sub-window.

distinct differences. Almost all sub-windows located on the very end of the cable are assigned
to a cluster other than cluster 0. Some of the larger events (vertical stripes) are similar for
both matrices. However, they are sub-divided between two clusters in Fig. 4-8 (blue and
yellow), while they do only belong to a single cluster in Fig. 4-7.
Fig. 4-9 shows representative events for each cluster in Fig. 4-8. Cluster 0 contains sub-
windows with no events and corresponds to background noise. Cluster 1 and cluster 2 both
belong to the excessive amounts of events detected on the uppermost channels. Cluster 1
exhibits larger moveouts and contains multiple repeating waveforms. In both cases, there
sometime appear moveouts with significantly higher velocities but they are weaker and at-
tenuated quickly (see first arrival for the representative event of Cluster 1). Events in cluster
3 are predominantly of large extent. Note that they are sometimes shared with cluster 4 (see
4-8). As mentioned before, this does not happen for the coherence-based clustering. Cluster 4
appears all over the array. It shows highly varying waveforms but they predominantly travel
down the fiber (from North to South).

4-1-4 Cluster quality control

The number of cluster to search for is a crucial parameter for the clustering analysis. This is
often done empirically and by trial and error. There exist a few quantitative ways to deter-
mine an appropriate selection of the number of clusters in the data. Fig. 4-10 demonstrates
the so-called elbow test applied to the label matrix of the velocity features shown in Fig. 4-8.
Hierarchical clustering was run multiple times with a different number of clusters as target.
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Figure 4-9: Representative events for the clustering result in Fig. 4-8
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Figure 4-10: Application of the elbow criterion to determine the appropriate number of clusters
in the data. For each number of clusters k, clustering is performed. The optimal
number of clusters reduces the distortion score while not introducing an excessive
amount of clusters.

I.e. the algorithm is told to cluster the data into to groups, then into three and so forth. Al-
ternatively, the dendrogram could be computed once and cut at different distances to achieve
the same outcome. The distortion score is computed each time after the clustering algorithm
is performed. For each sample, the Euclidean distance to its representative cluster center is
calculated. The sum of the distances of all samples gives the distortion score. Consequently,
it gives a measure how compact clusters are. The elbow test is performed in order to find a
trade-off between number of clusters and their compactness. Based on the distortion score,
an optimal number of clusters was around 6.
To validate the cluster assignments, the silhouette score was computed for each sample. Fig.
4-11 visualizes the silhouette scores for the same velocity features, for which the elbow test
was performed. The average silhouette score of all samples is 0.63, as indicated by the red
dotted line. The biggest cluster by far is cluster 0, which was already recognizable in Fig.
4-8. Cluster 4 and 5 contain a few samples with a negative silhouette coefficient, which means
that these samples are not well separated from neighbouring clusters. Most samples show a
positive silhouette coefficient value.
For quality control, it can help to visualize high-dimensional features by projecting them
onto two or three dimension. Subsequently, they can be plotted in order to gain some under-
standing of the data structure. Projection onto lower dimension can be done with linear and
non-linear methods. A linear method which is often chosen is the principal component anal-
ysis, where data is projected to its main principle components, where variance is maximized
[Shi et al., 2021]. Fig. 4-12 displays the projection onto two principle axes for the features
shown in Fig. 4-4. The plot has to be taken with great care, as the first two principal compo-
nents only account for 50.2% of the total variance in the feature space. Thus, points located
close-by in the 2-D space could be completely separated in higher dimensions. Consequently,

33



4-1 Results 34

Figure 4-11: Silhouette coefficient computed for each sample. The samples are grouped with
their cluster and displayed descending order. The average silhouette score of all
samples is indicated by the red dotted line. Cluster 0 contains the majority of
samples.

Figure 4-12: Projection of velocity features onto two dimension using principle component anal-
ysis. The original feature space had 60 dimensions. The cluster assignment (based
on the full feature dimension) is indicated by the color of samples. The first two
principal components account for 50.2 % of the total variance in the feature space.
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a projection of the input features to two or three dimension is not well suited for analysis
purpose in this study. However, even when projected onto only two axes, distinct groupings
of points are already recognizable. This seems to be well captured by the clustering results,
which were obtained for the high-dimensional input. There is only partly overlap between
clusters 0, 4 and 5. This is also displayed in the visualization of the silhouette score, where
clusters 4 and 5 contain a few values with negative silhouette score (see Fig. 4-11).

4-2 Discussion

4-2-1 Influence of coupling conditions

The Rhonegletscher dataset contains a plethora of cryoseismic events. Already the manual
analysis gave an idea about the wide range of signals present in the data. One major
difficulty with the dataset is the modest data quality. The cable was not actively trenched
during installation, mainly because of the difficult terrain. Consequently, meteorological
effects like wind and surface melt have partly corrupted the data quality. This is especially
true for the lower cable segment (below channel 1100) which was lying on bare ice. Overall,
the data is much quieter at night and for the upper cable segment (also visible in Fig.
3-3). During the day, sunshine heats up the glacier surface, causing surface melt. During
night, the temperature is much lower and commonly freezing conditions prevail. The upper
cable segments exhibit a better signal quality, as they were covered by snow. Due to the
black coating of the fiber, the cable melted itself into the snow. The effect of the coupling
conditions is dramatic, as almost all events are detected on the upper cable segment. The
cable lying on top of the bare ice did register only a small fraction of all events present in
the Rhonegletscher dataset. This does not at all mean that no events are occurring on the
lower part on the glacier but probably the noise level overshadows most signal of interest.
Previous studies by [Walter et al., 2020] and [Gräff and Walter, 2021] investigated areas on
the lower extent of the glacier and recorded plenty of events. The effect of the coupling
conditions agrees well with a recent paper from [Hudson et al., 2020], where DAS recordings
were acquired on the Ross Ice Shelf in Antarctica. They tested different array configurations
to investigate coupling conditions and array geometries. They recorded data for 6h in total.
Their linear unburied fiber did not register a single icequake in that time period, while 139
were detected with the buried linear cable. It appears that good coupling of the fiber and
protection from meteorological influences play a crucial role for microseismic studies on icy
terrain.

4-2-2 Limitations of conventional triggering

Compared to other seismological sensors, DAS data typically does not display good SNRs
on individual channels. In the very beginning of the project, triggering was performed on
single channels [Grimm, 2021]. This resulted in an event catalogue, where the vast majority
of entries were false detections. False detections on single channels are mainly due to the
abundance of high-amplitude localized noise with sharp onsets. This phenomenon is visible
in Fig. 4-1, where high STA/LTA ratios are not limited to the icequake but also occur when
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there is no coherent signal over the array segment. A prime advantage of DAS data is the
dense spatial coverage. Coherence across the DAS array can be exploited in various ways.
For manual triggering, this was achieved by stacking of characteristic functions. The idea is
the following: A high STA/LTA ratio must be present over a range of channels, in order to
trigger an event. This is somewhat similar to voting schemes in conventional seismometer
arrays. Stacking of characteristic functions successfully suppresses the false triggers caused
by localized noise. Often, this high-amplitude noise with sharp onsets can be traced over two
or three channels. This is because neighbouring channels carry some redundancy due to their
overlapping gauge length.
A very important choice to make is choosing the number of channels over which the stacks
are computed. If the cable extent is too long, small events will be diluted by all the other
channels that did not record the event. E.g. stacking characteristic functions over 1000
channels will not work well for detecting events which are only visible on 100 consecutive
channels. On the other hand, selecting only a small number of channels for stacking will
amplify the effect of high-amplitude noise with sharp onsets. Stacking over segments of 100
m channels achieves a good trade-off and provided satisfactory results. In the beginning
of the manual analysis, all triggering parameters were set quite conservatively. The goal
was to find only events with high SNRs and reduce the number of false triggers. Already
with an onset threshold of 1.5, over a thousand of events were detected for some days. The
conventional workflow would be to fine-tune the parameter combinations (STA window length,
LTA window length, trigger onset threshold, trigger offset threshold, number of channels for
stacking) of the STA/LTA algorithm. Typically, this is done empirically by testing different
combinations of parameters, trying to maximise the number of detected events while keeping
the proportion of false detections at a minimum. However, with a dataset of this volume,
this turns out to be extremely cumbersome. The complete Rhonegletscher dataset is stored
on the AWS cloud and only small chunks of it can be stored on the hard drive of an ordinary
personal computer. It is difficult to access a certain file on demand, as it must be downloaded
first, which introduces lag time. A possibility would be to save all waveforms corresponding
to triggered events and store them in a separate location. These waveforms could then be
downloaded to a local machine for further processing. This would result in in an enormous
number of smaller files which must be read in and processed one by one. For such large
data volumes as obtained by DAS monitoring experiments, this quickly becomes impractical
and highly time-consuming. It might be fully valid to use interesting data chunks found
by a triggering algorithm as the input dataset for an automated analysis. The automated
processing would then be performed on the pre-selected data and not the complete dataset.
This was done by [Gräff and Walter, 2021], who conventionally triggered icequakes recorded
by seismometers and afterwards applied clustering to group the detected events based on
their waveform similarity. For the aforementioned reasons, automated processing of DAS
monitoring experiments is highly desired and possibly indispensable.

4-2-3 Comparing different feature representations

The objective of the automated processing is not to only to detect events, but automat-
ically sort them into groups, where members of the same group are similar in some way.
[Bormann, 1998] mentions that ambient seismic noise recordings can be described by the fol-
lowing characteristics: energy, direction, velocity and frequency content. Hence, it seems
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plausible to extract features which describe these characteristics in some way, as was done
by [Chamarczuk et al., 2019] for a large-N array. Many array processing techniques directly
compute related attributes. [Chamarczuk et al., 2019] used sum-and-delay beamforming, as
well as a source localization algorithm to compute features for 10 s long time windows. Both
techniques are not available for the Rhonegletscher data, as the one-dimensional nature of
the linear DAS array permits unbiased estimations of backazimuths. In this work, mainly
frequency-dependent methods are discussed. The motivation is that different sources for
cryoseismic events can commonly be discriminated by their frequency content (e.g. surface
crevassing and stick-slip icequakes). Besides frequency, velocity of events is highly relevant, as
it might help to differentiate between different seismic phases. [Gräff and Walter, 2021] use a
P-wave velocity of 3750 m/s and an S-wave velocity of 1875 m/s in ice for estimating source
locations of basal icequakes on the Rhonegletscher. [Walter et al., 2020] extract a shallow
surface Rayleigh wave velocity of 1700 m/s on the ablation zone of the Rhonegletscher. Fre-
quently, apparent velocities around 1650 m/s are seen for events on the data investigated in
this work (e.g. see Fig A-3). Seismic velocities for DAS measurements on the accumulation
zone could possibly be lower than previous estimations on the ablation zone, as the fibre was
coupled to snow and not as deeply buried as in the experiment by [Walter et al., 2020]. Note,
that it is not possible to determine the true phase velocity with a linear DAS array. Instead,
only an apparent velocity, also depending on the incidence angle of the incoming wavefront,
can be estimated. Apparent velocity therefore is a combination of true phase velocity and
source direction, with an infinite amount of possible combinations resulting in the same ap-
parent velocity.
A frequency-velocity description of a sub-window can be obtained via different methods. Here,
the f − k and the τ − p transform were tested. The output from both transforms still lies
in a high-dimensional space. A simple way to extract features from the f − k domain is to
smooth the image and average over frequency and wavenumber bins. Effectively, this would
result in a very course version of the f − k image. This was tested but the clustering results
were not convincing. The clustering based on f − k features generally did not discriminate
well between different events and mainly clustered noise. Fig. 4-3 demonstrates, that phases
with different velocity are much better separated in the f − p domain. The general veloc-
ity information of the event is well preserved in the low-dimensional feature representation
(see Fig. 4-4 b). Consequently, the clustering results based on the f − p domain provided
encouraging results. One fundamental question is, how applicable both methods are given
the array geometry. The whole DAS cable does not trace a perfectly straight line, which is a
requirement for both f −k and τ −p transform. However, it turns out that most of the upper
half of the array can be well approximated by straight cable section (see Fig. 3-1b). Only
one small semi-circle cannot be well approximated by linear sub-sections. Nonetheless, even
when that approximation is violated, the transform can still be mathematically computed
even if the physical interpretation does not fully hold. In that case similar events from the
same source location should still map onto a similar feature representation.
PSD was also tested as a descriptive feature but not shown in the result section. For a sub-
window, the PSD was computed on a channel-by-channel basis and then linearly stacked.
Unfortunately, the clustering result did not discriminate cryoseismic events from noise. The
general pattern showed, that sub-windows belonging to the same channel ranges were grouped
together. This likely tells, that the feature representation of PSDs stacked over a segment of
channels is highly related to the coupling condition or noise exposure of that channel segment.
In essence, time-windows from the same spatial location are group together, no matter if they
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contain an event or not.
Finally, frequency-dependent measures of array coherence were used for clustering. Before
this report, this was only done by [Shi et al., 2021]. In contrast to this work stands, that
they use extremely long time windows (in the order of days) for computing array coherence.
They stated as a question for further research, if coherence-based features could also be used
for clustering windows of short-time duration. In this work, the theoretical limits of short-
time duration for covariance matrix analysis are tested. The practical computation of the
covariance matrix requires averaging over many Cross-Spectra matrices.The calculations of
the Cross-Spectra matrices themselves are based on a short time sliding window, for which the
slowest wave should be able to traverse the complete array segment. E.g. a plane wave with
an apparent velocity of 1400 m/s would travel 800 m (200 channels) along the fiber in 0.57 s.
Therefore, a time duration of 0.6 s was set for the short-term window. Only every 4th channel
is selected for computing the covariance matrix. This is to avoid redundant signal due to
the large gauge length. The redundant signal would cause artificially high cross-correlations
between directly neighbouring channels. For a sub-window with an extent of 200 channels,
only 50 channels are used for computing the covariance matrix. The number of snapshot
(Cross-Spectra matrices computed for the 0.6 s long time windows) for estimating the covari-
ance matrix should be at least equal to the number of channels. If set exactly equal and with
50 % overlap between the 0.6 s long short time windows, this gives an averaging window of
15 s. Hence, this is the absolute minimum for the time resolution. The only way to further
decrease this limit would be to use less channels or smaller spatial extents for sub-windows.
A channel range of 100 channels with 33 of those used for computing covariance matrices was
tested but did not deliver better results.
For the Rhonegletscher dataset, features with high values for coherency primarily correspond
to coherent cryoseismic events. Fig. 4-7 gives a good representation of the clustering results on
coherence-based features. Many events are detected in the rather short time-frame. Smaller
events, as well as larger events are detected and grouped in separate clusters. Exactly the
same time frame is shown in Fig. 4-8 but clustered on velocity-derived features only. This
allows for a direct comparison between the two approaches is. On a brief glance, the over-
all pattern seems to be similar. This shows that the general workflow is sound and gives
similar output for input features derived with different methodologies. However, there are
also differences between the two figures. The clustering based on velocity assigns more sub-
windows to clusters other than cluster 0. Especially the uppermost cable section is almost
constantly assigned to a cluster containing events. After manual quality control, this seems
to be more plausible. Fig. A-4 displays a 180 s long spectrogram, giving an idea about the
vast amount of events occurring on that channel range in the early morning of July 15, 2020.
One drawback of the clustering based on velocity seems to be that many events propagating
over larger channel ranges are cut into separate clusters (e.g. compare cluster 3 for both Fig.
4-8 and Fig. 4-7. This is probably because the sign of the velocity changes at the apex of
an event, i.e. energy travelling North-South will end up ind a different cluster than energy
travelling South-North. Inherently, this effect does not appear for coherence-based clustering.
It turns out that cluster 4 in Fig. 4-8 mainly contains events or parts of events that propagate
down-glacier. On the other hand cluster 3 contains events propagating up-glacier.
The nature of the events on the uppermost part of the glacier is still unclear at this point. It
appears very localized in time on the morning of July 15. Fig. A-2 and Fig. A-3 show an ice-
quake belonging to cluster 2 in the t−x and f−p domain respectively. The event propagating
at an apparent velocity of around 1650 m/s and has strong frequency contents above 60 Hz.
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In the t−x domain, a slightly faster phase is visible for small offsets. Possibly, this could cor-
respond to a P- and S-wave onset. The velocity of the slow phase does not seem dispersive, at
least between 10 to 60 Hz. In general, the velocities seems somewhat slow. But as mentioned
before, this could be due to the snow cover, where waves should be significantly slower than
on ice. A completely different source could be a thunderstorm. [Zhu and Stensrud, 2019]
recorded thunders on a DAS array and the spectrogram looked quite similar to the one shown
in Fig. A-4. However, this option seems unlikely due to the prevalence of events and the
duration during which they occur. More detailed analysis of these events is outside the scope
of this work and subject to further studies.
A practically very challenging part but crucial to the results is the cluster analysis itself. It
is inherently difficult to validate clustering results, as usually ground-truth data is lacking.
Hence, only vague quantifications of cluster quality can be computed, such as the silhouette
coefficient score. Still, the quality control shown in section 4-1-4 gives some confidence in
the obtained clustering results. Generally speaking, it is equally important to do a manual
quality control to see if the clustering results are sensible and provide expected results.
Fig. 4-9 shows representative events for the clustering of Fig. 4-8. Obviously this does not
display all the types of events present in the Rhonegletscher dataset. It is a proof of concept
that we can apply unsupervised classification to the dataset and retrieve meaningful clusters
containing cryoseismic events.
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Chapter 5

Conclusion and Outlook

This chapter summarizes the main findings of the thesis project. Suggestions for further
research are given.

In the summer 2020, ETH researchers installed a DAS system on the Rhonegletscher (Switzer-
land). The 9 km long fiber-optic cable covered the whole extent of the glacier from the accu-
mulation down to the ablation zone. This is one of the first times, that a complete glacier was
monitored at once by a DAS system. DAS data was acquired for one month continuously at
2000 channels with a 1 kHz sampling rate. The resulting dataset has a total size of (~18 TB).
The present work is one of the first, that actively investigated the Rhonegletscher dataset.
DAS monitoring experiments result in large data volumes, rendering manual event picking
and classification practically unfeasible. Thus, new automated processing tools are required.
Unsupervised clustering has been successfully applied previously to classify noise in a DAS
dataset [Martin et al., 2018].
This work investigated the possibility of utilizing unsupervised clustering methods for event
detection and classification on the Rhonegletscher dataset. The raw data displays meteoro-
logical effects as well as different types of cryoseismic events such as surface crevassing and
basal icequakes. Most cryoseismic events are only visible on fractions of the array and there-
fore the data was divided into smaller sub-windows in space and time. A hybrid workflow
was developed that combines array processing techniques with unsupervised clustering. The
array processing output serves as the input for the clustering analysis. Different processing
techniques were discussed to obtain a low-dimensional feature representation of the raw data.
Frequency-velocity and coherence-based feature representations were selected as the most
promising.
The developed method was then tested on the Rhonegletscher dataset. Clustering was per-
formed both on velocity-derived and coherence-based input features. The similarities and
differences between the results of the two approaches are compared and discussed. In general,
both feature extraction methods lead to sensible results, showing the stability of the general
workflow. In total, 6 clusters were determined as the optimal number of clusters for the data
processed as part of this work. Of those clusters, 5 correspond to cryoseismic events and the
other one shows background noise only. Cluster results were validated by standard cluster

40



41

metrics such as the distortion score and the silhouette score. Both metrics validated the clus-
tering results. Additionally, manual quality control was performed by checking the obtained
clusters for plausibility.
This work demonstrates, that unsupervised clustering can be applied to DAS data in order to
detect and classify signals of interest. However, these results are only preliminary and need
further validation. As a starting point, the obtained clusters need to better further inves-
tigated and understood. As a logical next step, larger portions of the Rhonegletscher data
should be processed with the developed method in order to proof its viability. Additionally,
other feature extraction methods and combination of those could be tested instead of the
velocity and coherence-based feature representations. Examples for other feature extraction
methods could be statistical methods such as change point detection and kurtosis.
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R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde,
D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,

45



Bibliography 46

A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020).
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272.
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Appendix A

Supplementary Figures

Figure A-1: Icequake for which all feature representations in chapter 4 were computed. For the
feature extraction, a window ranging from channel 1650 to 1850 was used, with 15
s length. a) Whole time extent. b) Zoom onto the event onset.
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Figure A-2: Cryoseismic event belonging to cluster 1. UTC 2020-07-15T03:59:20.719

Figure A-3: Representation of the event in Fig. A-2 in the f − p domain. The wave seems to be
non-dispersive, at least in the frequency range between 10 to 60 Hz.
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Figure A-4: 180 s long spectrogram for channel 1990. UTC 2020-07-15T03:58:50.719
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