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Abstract

For my bachelor’s graduation project, I did an internship at TNO, working on a project for the Ministry
of Defence. This thesis describes and discusses the project that looked for a prediction model for the
magnetic background field on a naval ship. The prediction model that was developed during this project
separates the magnetic background field from other existing, observed magnetic fields. Determination of
the magnetic background field on naval ships helps the reduction of detection risk. Further research and
fine tuning of this model might be of use to The Royal Dutch Navy in order to avoid any risk of detonation
of naval mines in threat areas.
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Chapter 1

Introduction

1.1 Motivation

We could say that the earth is one big magnet. Earth’s core is fluid iron, which means that the iron can
move around. This induces a magnetic field around the earth, not only making the earth itself a magnet,
but making every object on earth of metal material, magnetic too. We call this field the (earth’s) magnetic
background field. This project specifically looked at the magnetic background field of a naval vessel and
explains how it is determined

Because naval vessels are made of steel, which is a ferromagnetic material, they disturb the earth’s
magnetic field locally. This disturbance is called the magnetic signature of a naval vessel, and can be
detected by modern naval mines, by means of a magnetic sensor. The notion of magnetic signature will
be further explained in section 1.1.1. After detection, localization and classification of a naval vessel by a
naval mine, the mine can decide to actuate. As the Royal Dutch Navy often operates in areas where naval
mines are present, the risk of any detonation must be avoided, for higher chance of mission success.
The motivation for this research is the threat naval vessels face at sea in areas where the threat of naval
mines is high.

Figure 1.1: The magnetic signature of a naval vessel, which can be detected by a mine resting on the
bottom of the ocean [1].

Today, the Netherlands Organization for Applied Scientific Research (TNO), is working together with
the Delft University of Technology (TUD) for the Dutch Ministry of Defence to reduce the threat against
naval vessels and improving its safety. They are developing advanced numerical models for the next
generation of marine ships to further reduce the risk of detection by naval mines.

7
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1.1.1 The magnetic signature of a naval vessel

The signature of a naval ship is the complete collection of influences a naval ship has on its environment,
see Figure 1.2. Because a naval mine is able to detect the signature of a naval ship, our goal is to
manipulate and minimize the influences of the vessel. This project only contemplates the magnetic
influences, or magnetic signature of a naval ship. To reduce the risk of magnetic visibility to a naval mine
that is able to observe the magnetic signature, we have to know accurately what the value of the magnetic
signature is.

Figure 1.2: The collection influences of a naval ship [3].

So far, two different types of magnetic fields have been mentioned. The magnetic background field
and a magnetic field of a naval ship. We define these two as followed as the difference should be clear.

• Magnetic background field. This is a field induced by earth’s fluid iron core, earlier called earth’s
magnetic field. So essentially, this field is always present. The magnetic background field is also
considered to be locally uniform because the direction of the magnetic background field changes
very little over long distances.

• Magnetic distortion field. When a steel object (i.e., a ship) is placed anywhere on earth, the
magnetic background field is disturbed by another field, induced by the presence of the steel object.
This other field is defined as the magnetic distortion field.

Now that we know the difference between these two fields, we can define what the magnetic signature
is. The magnetic signature of a naval ship is defined as the magnetic distortion field that consists all other
distortion fields caused by the steel objects in or on the naval vessel, and the vessel itself. The sum of
the magnetic background field and the magnetic distortion field are defined as the total magnetic field
around a naval vessel.

Imagine no ship is present, then the magnetic background field remains undisturbed. The Figures
1.3a and 1.3b show what happens to the background field when a ship passes by. Thus the new field,
illustrated in Figure 1.3b is the total magnetic field consisting of the magnetic background field, illustrated
in Figure 1.3a, and the magnetic distortion field caused by the ship. Now, we are interested in this
disturbed field, because a naval mine detects the difference between Figures 1.3a and 1.3b, that influence
of the magnetic signature.

1.1.2 The naval mine

The first naval mine was deployed against the British fleet by the colonialist during the American
Revolutionary War. This mine was actually a floating tar covered beer keg filled with gunpowder. These
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(a) A uniform, undisturbed field at
sea.

(b) The disturbed field, caused by
a steel object.

Figure 1.3: The influence of a naval ship on the magnetic background field.

old mines would actually only detonate when they came in contact with the target [6]. These mines
were eventually found to be unreliable due to their touchy firing mechanism and wet gunpowder. Further
development of contact mines resulted in many different mines, some working and some ineffective.

The modern influence mine

One of the mines that is considered effective, is the modern influence mine, resting on the bottom of the
ocean in shallow waters. This means we can not simply sail around it, because we can not see where it
is. It uses modern magnetic mine technologies to detect the influences of near ships. By influences, we
mean the signals as shown in Figure 1.2. Examples of signals a naval vessel unintentionally generates
include magnetic fields, electric fields, acoustic waves and pressure waves. These signals are detectable
by all kinds of sensors on the influence mine and a clever algorithm will determine if a ship is nearby
(localization), after which it can decide to actuate. The exact activity within a naval mine is currently
classified, and so it is not clear what a naval mine further classifies before detonating.

Figure 1.4: The Italian MN103 Manta mine, resting on the bottom of shallow waters [2].

1.2 Defence’s ultimate goal

To avoid detonation of naval mines, we need to reduce the magnetic signature. In order to do that,
we require an accurate description of the magnetic signature. Right now, we are not able to come
up with that description as there are some complications. We are able to measure the magnetic field
at a certain location, using a magnetic sensor, but the complication lies in the fact that the magnetic
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field we measure with a sensor is the total magnetic field and not just the magnetic signature. By the
principle of superposition, we know that this total field consists of the magnetic signature and the magnetic
background field. Thus at sea, we are not able to measure just the magnetic signature of a ship directly.
Because a ship is made completely out of steel, we will always measure the disturbed, total magnetic
field because of its magnetizing ability.

Now the ultimate goal to reach safety, is to reduce the magnetic signature to such an extent that naval
mines no longer measure the change the steel vessel causes. However, because we measure the total
magnetic field, instead of just the magnetic signature, the goals are as followed:

• Monitoring magnetic signature. If we are able to detect and visualize the magnetic signature, we
are able to start reducing the threat to naval vessels.

• Reduce the magnetic signature of a naval vessel. When there has been found a way to monitor
solely the magnetic signature of a naval vessel, the ultimate goal is to reduce the magnetic signature.

These goals go beyond this project and the research goals for this project will be defined later on in
chapter two. Evidently, the goals for this project align with the interests of the ultimate goal.

1.2.1 Existing methods to reducing the threat

It may seem like detecting the magnetic signature of a naval vessel to avoiding threat is completely
impossible. Naturally, that is not true as there are some methods today that reduce threat against naval
ships caused by naval mines. The last naval vessel of The Royal Netherlands Navy that was hit by a
naval mine was possibly in the Second World War [6].

Minehunters and minesweepers

A minehunter is a naval vessel that actively seeks, detects and destroys naval mines. It uses sonar
images to detect the targets and sends out an nonmagnetic minehunting explosive [7]. There are also
minesweepers, who differ in prior detection of targets. A minesweeper is a small amagnetic naval warship
that just cleans up all the mines in the water by diffusing the detonation-mechanism [7].

(a) The USS Raven MHC 61, an
American minehunter

(b) A minehunting ROV of the Ger-
man Navy

(c) The Dutch Hr.Ms.Mercuur, an
old minesweeper

Figure 1.5: Examples of nonmagnetic vessels [7].

A degaussing system

Today, a naval vessel is able to degauss a magnetic field. Degaussing is the process of decreasing or
eliminating a magnetic field. This process is named after the gauss, a unit of magnetism. Degaussing is
done by a degaussing system which is a system that consists of several electromagnetic coils, spread
throughout the ship. Each coil is placed in either the x, y or z-direction. A degaussing system can be
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found in the hull of a naval vessel. In order for a degaussing system to optimally reduce the magnetic
signature, the magnetic background field is needed. This is obtained by placing a sensor in the mast.

A sensor in the mast

Not being able to measure the magnetic signature separately on board, does not mean measuring
on board is totally useless. This method places a sensor in its mast and measures the magnetic field
around it. Because of the lack of any algorithm or dipole model, naval ships assume this field to be
the undisturbed magnetic background field and uses this field to monitor the magnetic signature and to
reduce it, using the degaussing system.

Figure 1.6: Measuring the magnetic background field with a sensor in the mast.

Figure 1.7: The works of a degaussing system to reduce the magnetic signature.

The plane below the ship represents a certain location where the naval mine is still able to detect the
vessel’s magnetic signature. Reducing the magnetic signature would mean the imaginary plane rises
closer to the ship. The goal is to do this to such an extent that the distance between the plane and the
naval mine is sufficiently large such that the magnetic signature is not detected by the mine anymore.

The Royal Dutch Navy uses the sensor in the mast together with a degaussing system on board.
The sensor in the mast measures the magnetic field and as mentioned earlier, it is assumed that this
collection of fields is the magnetic background field. Then an algorithm, depending on a measured
magnetic background field, controls the flow of electricity to the degaussing system, manipulating the
magnetic signature. The magnetic background field of the earth can not be manipulated, but a successful
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algorithm will reduce the magnetic signature. However, for practical reasons, it is not possible to reduce a
magnetic field completely to zero.

An important note of this method is that one sensor only gives one data point that actually measures
a collection of fields, but assumes this measurement to represent the undisturbed, magnetic background
field. Therefore, we are again questioning the reliability of this method. In reality, this method works quite
well and is actively in use, but this research serves to find another method where this assumption is not
made.

1.3 The goal of this research

We have come to aim of my project. To formulate the research goals properly, we take a look at the
problem up until this point.

The problem

To reduce the risk of detection by naval mines, we want to reduce the magnetic signature of a naval
ship. The magnetic field around a naval vessel is acquired by measuring on board, however when this
is done, we measure the total magnetic field, when we actually just want the magnetic distortion field
(magnetic signature). Knowing that the total magnetic field is the sum of the magnetic distortion field and
the magnetic back ground field, we can determine the magnetic signature if the magnetic background
field is known to us.

The goal

The aim of this research is to develop a prediction model, to determine the background field, based
on magnetic measurements in the vicinity of a magnetic disturber such as a ship. Furthermore, we
try to improve the method used today, which measures with one sensor in the mast and assuming the
measured field to be the magnetic background field. We investigate if there is any added value in a new
method using a sensor array, instead of the single sensor, to obtain a more accurate estimate of the
background field.

Figure 1.8: The idea of the use of a sensor array to obtain a more accurate magnetic background field.

The summary of these goals allows to define two main goals of this project:
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• Determination of the magnetic background field. The first main goal is to determine an accu-
rate approximation of the magnetic background field using a dipole model and sensor array for
measurements.

• Improve the current method. The second main goal is to improve the method that is used today,
obtaining data by a single sensor.

1.3.1 The process to achieving the goal

This prediction model is tested on a setup, smaller, but resembling the situation of a naval vessel at sea.
We constructed a small mast consisting of seven sensors. We use this device, the Seven Sensors, to
create two situations:

• The Seven Sensors can be used as a sensor array used to obtain several data points, to determine
an accurate magnetic background field.

• Considering only one sensor of the Seven Sensors-array, the method we have today is recreated. We
can measure the magnetic field using one sensor, and assume this to be the magnetic background
field.

In this thesis, we consider the following topics essential to the main goal of this project:

• Determination of a correct formulation of the prediction model. The model we use to determine
the magnetic background field formulates a so-called forward problem and solves an inverse problem,
which will be fully explained and demonstrated in later chapters.

• Accuracy of the prediction model using the sensor array. If the obtained magnetic background
field is found to be accurate, we are one step closer to finding out if this new method has any added
value to the method the navy uses today.

• Reproducing the existing method using one sensor. In order to improve the method used today,
we should have some comparison material. Therefore, we compute the magnetic background field
using one sensor, recreating the method the Royal Dutch Navy uses today.

• The value of the prediction model using the sensor array. Lastly, we perform simulations and
conduct an experiment to see if the model developed during this project is able to compute a more
accurate magnetic background field than if we were to use the existing method.

In this report the above research topics are considered and answered.
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1.4 Chapter outline

To get a clear image of what this thesis will contain, the content of the chapters are outlined as followed. In
chapter two, we derive an analytical; expression for the magnetic induction field B, which can be used to
compute any magnetic field H. In chapter three, the prediction model is explained and we see that it relies
on a forward problem and an inverse problem which will both be explained and formulated in the following
two chapters. Chapter five also discusses a criterion, based on approximation errors, that determines
if the prediction model accurate. As there is always some noise in real data, we also considered white
Gaussian noise for this project. Chapter six describes the noise model and where numerical instability in
solving the model might come from. In particular, we look at the use of singular value decomposition for
the model which causes some unrealistic results. Chapter seven discusses regularization methods and
the revised model, using a regularization method is tested in a simulation in chapter eight. Finally, chapter
9 will perform the experiment on the Seven Sensors and we see if the developed prediction model works.
Chapter 10 discusses and analyzes the results after which we have arrived at a conclusion.



Chapter 2

The magnetic field of a magnetic point dipole

In chapter 1, several kinds of magnetic fields are mentioned. This chapter defines these fields as
mathematical objects and constructs an expression for the magnetic field of a magnetic point dipole. We
can consider a magnetic point dipole to be a small magnetic object that is used to model any steel object.
The idea is that one or several point dipoles have the same magnetization as a naval ship, inducing the
same disturbance.

Suppose we have a steel object Ω at location d and we observe the magnetic field around Ω from
location r, also the sensor location. We can define these positions as vectors in R3:

r := r(x, y, z) and d := d(x, y, z)

We define r̂ as the difference vector in R3, between r and d. In Figure 2.1 a figure can be found that
shows the relation between r,d and r̂. A magnetic point dipole also has a magnetic moment m. The
magnetic moment of the point dipole in the x, y and z-direction is given by

m := m(x, y, z)

Figure 2.1: The red dot represents a steel object Ω

We define the magnetic field strength H and magnetic induction field B at location r(x, y, z) as vectors
in Rn.

H := H(r) and B := B(r)

A summary of the symbols defined can be found in the Table 2 .

15
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H is the magnetic field strength in ampères per meter [A/m]
This field is often referred to as the magnetic field, as was done in chapter one.

B is the magnetic induction field in tesla [T]
This field is also often referred to as the magnetic field.

d represents the location of the steel object Ω (i.e., the ship), in meters [m].
r is the sensor location in meters [m]
r̂ = r− d is the vector difference of the sensor and ship location [m]
m represents the magnetic moment of a steel object

and it is given in ampéres squared meter [Am2]

Table 2.1: Symbols used to define the current situation.

When we measure a magnetic field with a sensor, we do not immediately obtain the H-field. We
obtain the magnetic induction field B. Therefore, an important equality that we use is

B = µ0H (2.1)

Why we are allowed to assume the equality (2.1), will be explained in the next part of this chapter.
Now to get back to the physics and the goal of this project, the goal is to find the magnetic background
field. Because the magnetic background field is assumed to be locally uniform, the magnetic background
field is given by

H0(r) = H0

However, a measurement obtains the B-field, so we will use B0 in the future, as the background field
we are looking for. We denote the total field that is actually measured on board by B. Recall that the
magnetic distortion field or magnetic signature is the magnetic field induced by a disturber Ω, hence, we
will denote the magnetic distortion field at location r by

BΩ(r)

In order to construct a successful model, we disregarded considering the steel of a large naval vessel.
We started by looking at smaller magnetic objects first. In this chapter we imagine a little piece of steel.
Hence, suppose we do not have a large ship behaving as a magnet, but suppose we have a single point,
a magnetic dipole. A dipole is a point containing two poles, north and south, often used to model small
magnetic objects, such as magnets. A point dipole has volume that approaches zero, unlike a volume
dipole. A magnetic dipole has a magnetic moment m and therefore a magnetic induction field B around
it, just like our naval vessels. We start by computing the magnetic induction field B of one dipole, after
which we look at more dipoles. More dipoles give us more variety in B, which allows us to model the
B-field for a ship more accurately. Considering this, the red dot in Figure 2.1 can be considered a dipole.

The magnetic induction field at some location r of a point dipole at the origin is given by

B(r) =
µ0

4π

[
3(m · r)r

‖r‖5
− m

‖r‖3

]
(2.2)

where d is the location of the dipole, m is its magnetic moment and r is the observation point of the
magnetic induction field (e.g., a sensor location).

We have come to this equation by deriving the magnetic induction field B using the Maxwell Equations.
Instead of starting with a point dipole, we have derived B for a three dimensional magnetic rod, a volume
dipole, and by subsequently shrinking its volume to a point dipole, without changing its magnetic moment.
In the limit, what remains is the magnetic dipole.
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2.1 Maxwell’s Equations

It all starts with Maxwell’s equations, the origin of all electromagnetic theory and modeling [6]. So before
we can start any work on deriving the magnetic induction field B for a dipole, we have to look at Maxwell’s
equations.

James Clerk Maxwell was a Scottish physicist and mathematician who published an early form of the
Maxwell’s equations around 1860 [6].

The equations are given in differential form by

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B∂t
∇×H = J + ∂D

∂t

where D is the electric flux density in coulomb per meter2 [C/m2] and E is the intensity of the electric
field in volts per meter [V/m]. The electric current density is given by J in units of ampères per meter2

[A/m2] and ρ is electric charge density in coulombs per meter3 [C/m3].
Maxwell’s equations are based on the following laws in the next section.

2.1.1 Gauss’ Law

The first two Maxwell equations are Gauss’ Law written in differential form.

∇ ·D = ρ states that electrical charges produce an electric field

∇ ·B = 0 states that there are no magnetic mono poles

2.1.2 Faraday’s Law

∇×E = −∂B
∂t

This equation is actually called the Maxwell-Faraday equation and it is a modification and generalization
of Faraday’s Law. This law states that electric fields are produced by changing magnetic fields.

2.1.3 Ampère’s Law

∇×H = J +
∂D

∂t

The last equation is the differential form of Ampère’s Law. It states that magnetic fields are the result
from currents and changing electric fields.

2.1.4 Magnetostatic form of Maxwell’s equations

Earth’s magnetic field and magnetic fields of naval vessels change very slowly in time, so we may consider
them static in nature. Because of this, we can ignore the time dependence and induced electric fields in
Maxwell’s equations. So we use Gauss’ Law and Ampère’s Law where J ≡ 0. We also ignore ∂

∂t and the
density of electric charges ρ. We get a new set of equations under this current-free condition to describe
the static magnetic field, given by ∇ ·B = 0

∇×H = 0
(2.3)

We can use these equations to describe the current-free problem and derive a solution.
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2.1.5 Current-free problem

Solving this current-free problem means that we will determine the magnetic induction field B, that is
produced by some magnetization M. In this section we will solve the current-free problem, given by

∇ ·B = 0

∇×H = 0

B = µ0(H + M)

(2.4)

Here, µ0 = 4π · 10−7 henries per meter [H/m] is the magnetic permeability in everywhere in R3. The
relation B = µ0(H + M) in (2.4) holds for every location in vacuum, inside a steel object. When outside
of a vacuum space, M = 0. The resulting relation

B = µ0H (2.5)

holds for every location r on a steel object Ω in R3 (see also equation (2.1)). Because we consider the
magnetic fields outside a steel object, we use the equality (2.5) , where M = 0.

Because ∇×H = 0, there exists a magnetic scalar potential ϕ such that

H = −∇ϕ (2.6)

Combining the equations in (2.4) and and the potential (2.6), we find:

∇ · µ0(H + M) = 0 (2.7)

Using the linearity of the divergence operator, we can rewrite this as followed

µ0(∇ ·H +∇ ·M) = 0 (2.8)

∇ ·H = −∇ ·M (2.9)

It follows from equation 2.6 that ∇ · (∇ϕ) = ∇ ·M resulting in

∆ϕ = ∇ ·M (2.10)

As ∆ϕ describes the change or generation of magnetic charges, which induces a magnetic field, we
can assume ∇ ·M is the source of the magnetic induction field B. Note that equation (2.10) is of the form

∆u = f

This is a non-homogeneous Poisson equation. Suppose there is a Φ such that ∆Φ = δ0. We find that the
solution u is given by the convolution between Green’s function for the Laplace operator in R3 and the
source ∇ ·M and so

u(r) =

∫∫∫
R3

Φ(r− r′)f(r′)dr′ , with Φ(x) = − 1

4π

1

‖x‖

With Φ(x) being Green’s function for the Laplace operator in R3. We apply the equation above to
equation (2.10) and we find that the potential for any magnetization in R3 becomes

ϕ(r) = − 1

4π

∫∫∫
R3

1

||r− r′||
∇′ ·M(r′)dr′ (2.11)

We will use this potential later on.
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Figure 2.2: The three-dimensional rod Ω

2.2 A three-dimensional rod

Using circle-cylindrical coördinates (x, ρ, ϕ), suppose we have a rod of length 2`, a radius a and a
magnetization in the x-direction. Denote the rod by Ω.

The magnetization in the x-direction, only exists inside the rod. So we use a Heaviside-function U(x)

to define:

M =
M0

Vol(Ω)
ux [U(x+ `)− U(x− `)]U(a− ρ) (2.12)

Note that M = 0 everywhere outside the rod.

The magnetic dipole moment of the rod is obtained by integrating M over the entire volume.

m =

∫∫∫
V∞

MdV =

∫ ∞
x=−∞

∫ ∞
ρ=0

∫ 2π

ϕ=0−∞

M0

Vol(Ω)
ux [U(x+ `)− U(x− `)]U(a− ρ)dx · dρ · dϕ

=
M0

Vol(Ω)
ux ·

∫ ∞
x=−∞

[U(x+ `)− U(x− `)] dx ·
∫ ∞
ρ=0

U(a− ρ) · ρdρ ·
∫ 2π

ϕ=0

dϕ

=
M0

Vol(Ω)
ux · 2` ·

∫ a

ρ=0

ρdρ · 2π

=
M0

Vol(Ω)
ux · 2π · ` · a2 =

M0

Vol(Ω)
ux · VolΩ = M0ux

(2.13)

Note that
∫ a
ρ=0

ρdρ = 1
2a

2 and 2π`a2 is the volume of the magnetic rod Ω. Also observe that m is
constant and independent of the dimensions of the rod Ω.

2.2.1 Shrinking the rod, part 1

Because we want to shrink the three-dimensional magnetic rod to a single point, we have to shrink some
dimensions of the rod, part by part. We start by letting the radius a approach zero. Note that the magnetic
dipole moment should stay the same. Therefore, if we shrink the volume of the rod, while keeping the
same magnetic dipole moment, we have to increase the magnetization.

So suppose the magnetization of the shrunk rod, now a line, is

M = c · ux [U(x+ `)− U(x− `)] δ(y) · δ(z) (2.14)

With δ a dirac delta and c a constant yet to be determined.

Figure 2.3: The three-dimensional rod, now a line



20 CHAPTER 2. THE MAGNETIC FIELD OF A MAGNETIC POINT DIPOLE

We are going to determine c such that the magnetic dipole moment of the line dipole and the magnetic
rod are the same. By definition of the magnetic dipole moment, we find:

m =

∫∫∫
V∞

MdV

=

∫ ∞
x=−∞

∫ ∞
y=−∞

∫ ∞
z=−∞

c · ux [U(x+ `)− U(x− `)]δ(y)δ(z)dx · dy · dz

= c · ux · 2`

(2.15)

Now choose c = M0

Vol(Ω)πa
2 and we find that the magnetic dipole moment of the line is:

m = c · ux · 2`

=
M0

Vol(Ω)
πa2 · ux · 2`

= M0ux

(2.16)

Note that this is the magnetic dipole moment for the three dimensional rod, see derivation (2.13).

2.2.2 The potential

To summarize what we have found so far, we look back for a little bit. We have found the potential ϕ such
that H = −∇ϕ, meaning we are able to calculate the magnetic field H, or the magnetic induction field
B, see equation (2.5). However, we are not quite there yet. The potential that we have found holds for
any magnetization in R3. But now we are going to look at the potential for a more specific situation: the
potential for the magnetized rod.

We apply the potential given by equation (2.11) to the rod that has been shrunk to a line, we integrate
over its entire volume, this gives us

ϕ(r) = − 1

4π

∫∫∫
V∞

1

‖r− r′‖
(∇′ ·M′)(r′)dr′ (2.17)

We substitute the magnetization M in equation (2.14) with the constant c and do another few calcula-
tions. We find

M′ = M0πa
2ux · [U(x′ + `)− U(x′ − `)] δ(y′)δ(z′) (2.18)

∇′ ·M′ =

∂x
′

∂y′

∂z′

 ·
M

′
x

0

0

 = ∂x′ ·M ′x = M0πa
2 [δ(x′ + `)− δ(x′ − `) · δ(y′)δ(z′)] (2.19)

The equation for the scalar potential becomes:

ϕ(r) =
1

4π
·
∫ ∞
x′=−∞

∫ ∞
y′=−∞

∫ ∞
z′=−∞

1

‖r− r′‖
·M0πa

2[δ(x′+ `)− δ(x′− `)] · δ(y′) · δ(z′) · dx′dy′dz′ (2.20)

Note that the observation point is given by r = (x, y, z) and r′ = (x′, y′, z′). So we can rewrite the
distance between the two

ϕ(r) = − 1

4π
·M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

∫ ∞
z′=−∞

[δ(x′ + `)− δ(x′ − `)] · δ(y′) · δ(z′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

· dx′dy′dz′ (2.21)

By properties of the dirac delta function, we find the potential

ϕ(r) = − 1

4π
M0πa

2

[
1√

(x+ `)2 + y2 + z2
− 1√

(x− `)2 + y2 + z2

]
(2.22)

The derivation from equation (2.20) to (2.22) can be found in the appendix.
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2.3 Shrinking the rod, part 2

We were able to calculate the potential of the magnetic line, using its magnetization. Its magnetization
was derived from the magnetization of a rod. Now we want to shrink the line to a single point. We do this
by letting its length ` approach zero, meanwhile increasing the magnetization so that the dipole moment
remains the same.

To make things easier, we rewrite equation (2.22) such that letting ` approach zero is easy. For this,
we use the definition of the central derivative of a function f(x)

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h

We use this definition later on. We rewrite equation (2.22):

ϕ(r) = − 1

4π
M0πa

2

[
1√

(x+ `)2 + y2 + z2
− 1√

(x− `)2 + y2 + z2

]

=
1

4π
M0πa

2 · 2` ·
1√

(x+l)2+y2+z2
− 1√

(x−l)2+y2+z2

2`

(2.23)

Recall that the magnetic dipole moment of the line is given by mx = M0πa
2. So equation (2.23)

becomes

ϕ(r) = − 1

4π
mx ·

1√
(x+`)2+y2+z2

− 1√
(x−`)2+y2+z2

2`
(2.24)

This is where the definition of the derivative comes in. Let

f(x) =
1√

x2 + y2 + z2
(2.25)

and

f(x+ `) =
1√

(x+ `)2 + y2 + z2
(2.26)

f(x− `) =
1√

(x− `)2 + y2 + z2
(2.27)

Using this, we rewrite equation (2.23)

ϕ(r) = − 1

4π
m · f(x+ `)− f(x− `)

2`
(2.28)

Now let ` approach zero. Using equations afgeleide1, (2.26), (2.28) and the derivative of f(x), we find

ϕ(r) = − 1

4π
m · lim

`→0

f(x+ `)− f(x− `)
2`

= − 1

4π
m · f ′(x)

= − 1

4π
m · −1

2
(x2 + y2 + z2)−

3
2 · 2x

= − 1

4π
m · − x

‖r‖3

(2.29)

Note that this is the potential for a line dipole, whose length ` is approaching zero, in other words a
point dipole. Now we use

H = −∇ϕ

to calculate the magnetic H-field.
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−∇ϕ = −∇
(

1

4π
m · − x

‖r‖

)
= − 1

4π
·m · ∇

(
x

‖r‖

) (2.30)

And so we find, by using the partial derivatives

H = − 1

4π
·m ·

[(
1

‖r‖3
− 3x2 · 1

‖r‖5

)
ux − 3xy

1

‖r‖5
uy − 3xz · 1

‖r‖5
uz

]
(2.31)

We take a look at what this derivation has achieved so far. We have found H of a dipole with magnetic
moment m = M0πa

22`ux. Also, we used equation (2.25) and its derivative f ′(x) with respect to x, to let
` approach zero. We can generalize this result for a dipole with a magnetic moment

m = mxux +myuy +mzuz (2.32)

And suppose

f(r) = f(x, y, z) =
1

‖r‖
The potential with f(r) is computed as followed:

ϕ(r) =
1

4π
(mxfx +myfy +mzfx)

=
1

4π

(
mx · −

x

‖r‖3
+my · −

y

‖r‖3
+mz · −

z

‖r‖

)

= − 1

4π

mx · x+my · y +mz · z
‖r‖3

= − 1

4π

m · r
‖r‖3

In conclusion, we find:
ϕ(r) = − 1

4π

m · r
‖r‖3

(2.33)

We can obtain H by using equation (2.6) :

H = −∇

(
m · r

4π ‖r‖3

)

= −∇

(
m · r

4π ‖r‖3

) (2.34)

To make things a little easier to work with, we call

P = m and Q =
r

4π ‖r‖3
(2.35)

This results in

H = −∇(P ·Q)

= − [(P · ∇)Q+ (Q · ∇)P + P × (∇×Q) +Q× (∇× P )
(2.36)

Because m is not dependent on r. it follows that (Q∇)P, P × (∇) and Q× (×P ) are zero and therefore

H = − [(P · ∇)Q]

We find
H = − [(P · ∇)Q] =

1

4π

[
3(m · r)r

||r||5
+

r

||r||3

]
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In conclusion, for a point dipole at the origin we have

B(r) =
µ0

4π

[
3(m · r)r

‖r‖5
− m

‖r‖3

]
or B(r) =

µ0

4π

[
3(m · r)r

‖r‖5
− m

‖r‖3

]
(2.37)

We can generalize the solution in (2.37) for a dipole that located anywhere in R3. We consider the
dipole position d:

B(r) =
µ0

4π

[
3(m · r̂)r̂

‖r̂‖5
− m

‖r̂‖3

]
(2.38)

where r̂ = r− d.





Chapter 3

A model for determining of the magnetic
background field

Now that we know more about magnetic dipoles, and that their field is dependent on the magnetic moment
m and position r, we can start looking at our goal.

The goal is to determine the magnetic background field H0 at some location r at sea. Note that
magnetic sensors do not measure the H-field, but the magnetic induction field B. Therefore, we speak of
measuring B and determining the magnetic background field B0. Recall that when on board at sea, the
sensors do not just measure B0, making the task much more of a challenge. We actually measure a total
field B. This measured field is a combination of the magnetic background field and other magnetic fields
that are induced by various steel objects. We define the following symbols:

B is the total magnetic field measured at location, in tesla r [T]
B0 is the magnetic background field to be determined in tesla [T]
Ω is a steel object that induces a magnetic field
BΩ is the magnetic field induced by the steel object Ω in tesla [T].

Table 3.1: The symbols used to define the model.

With these symbols, we can say that the total field that is measured at location r is given by

B := B0 + BΩ1 + BΩ2 + ...+ BΩn (3.1)

Where Ω1,Ω2, ...,Ωn, with n a finite number are n steel objects. For the topic of our research, we can
imagine the steel of a naval vessel, the steel of the coils of its degaussing system and other steel objects
on board to be among these n steel objects. Because we can not keep track of the magnetic field of
every steel object on board, we simply define the total magnetic field at location r as

B(r) = B0 + BΩ (3.2)

Where BΩ is the magnetic field induced by all the steel of and in a naval ship. Looking at equation
(3.2), we see that if we know the total field B and the magnetic field induced by Ω, that is BΩ, we can
determine the magnetic background field B0. The total field B is something we can measure with the use
of sensors. Currently, the Royal Dutch Navy uses only one sensor for this. This prediction model will use
a sensor array to obtain measurement data. For the other field, BΩ, we model the naval ship with one or
several dipoles and we use the prediction model to compute BΩ. If we were to model the naval ship Ω

with just one dipole, we can calculate BΩ analytically with the expression for the dipole we derived in the
previous chapter.

25
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The image below illustrates the idea behind modeling a ship with a dipole in the x, y and z plane. This
chapter further explains the concept of the prediction model and how it came about.

Figure 3.1: A ship at sea at location r(x, y, z)

3.1 The concept

Today, measurements of the background field at sea are done by equipping the mast with a single sensor,
see Figure 3.2. This sensor measures the magnetic field around the mast and assumes this field to be
solely the magnetic background field B0 we are looking for. As explained in chapter 1, this magnetic
background field is then used for degaussing the magnetic signature of the vessel, which needs the
proper information of B0. However, the magnetic field that is measured by the single sensor in the mast,
presumably B0, might still consist of more than just the original background field. In other words, the
sensor in the mast might still measure the magnetic field induced by the steel of the ship.

Figure 3.2: The Zr.Ms. Van Amstel (1993) imagined with a measure location in the mast.

Figure 3.2 also encourages this intuition, because we see that the sensor in the mast, is close to a lot
steel, namely the vessel it self. These are also realistic proportions as the Zr.Ms. Van Amstel is a frigate,
a typical object on which a sensor array could be implemented.
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The concept of our new method is that, apart from determination of the magnetic background field,
we try to enhance the accuracy of the measurements, by doing more than a single measurement. We do
this by arranging multiple sensors in the mast to create a sensor array, see Figure 3.3, and see if there is
any added value to higher the amount of sensors in the mast.

Figure 3.3: An array of sensors in the mast.

3.2 From a naval vessel to a single point

As we did in chapter 2, we do not consider shape of a naval vessel. We assume the magnetic field of
a naval vessel can be modeled by multiple magnetic dipoles. We view the surface of the ocean as the
x, y-plane, see Figure 3.1. We start with measuring the magnetic field in the x, y-plane containing one
dipole. Later we increase the number of dipoles mimicking the disturbance of a naval vessel. See Figure
3.4d.

3.3 An expression for the magnetic field of a dipole

In the previous section we derived an expression for the magnetic field H of a dipole. However, as
mentioned earlier this chapter, the sensors measure the magnetic field B. Therefore, instead using the
dipole expression for H, we use an expression for B. Using the following important equality, explained in
section 2.4

B = µ0H (3.3)

We use the following expression for B:

B(m, r) =
µ0

4π

[
3(m · r)r

‖r‖5
− m

‖r‖3

]
(3.4)

We use this expression in defining the magnetic field BΩ induced by steel object Ω or dipole .
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(a) A ship with sensors along the z-axis
(b) Modeling a naval vessel as a
single dipole in the x, y-plane

(c) Increasing the number of
dipoles to N

(d) Modeling a steel object Ω with
multiple dipoles

Figure 3.4: Modeling a steel object Ω by multiple dipoles

3.4 The prediction model

Recall that the concept of the prediction model revolves around solving

B = B0 + BΩ for B0.

The model that we formulated to determine the background field is based on forward and inverse modeling.
We start by solving a forward problem followed by solving the inverse problem.

By forward, we mean, if B0 and the sources in Ω are apriori known, then we can forwardly calculate
calculate the B-field using the expression for the dipole, a complete formulation can be found in the next
chapter. The forward problem results in the magnetic field B at location r.

By solving the inverse problem, we mean that we predict BΩ, and in particular B0 from the forward
computed B-field at location r. B. We are interested in the solution B0, therefore we concentrate on a
formulation of the inverse problem. If we know how to solve the inverse problem, then we have a our
prediction model.
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Apriori B0

and known
sources in Ω

B-field
Prediction of B0

and the sources
in Ω

inverse
problem

forward
problem

Figure 3.5: The relation between the forward and inverse problem.

Simulations use both the forward and the inverse problem. In chapter 8 we test the prediction model
on simulated data. This data is not measured by sensors, but simulated by apriori defining B0 and the
sources in Ω and solving the forward problem. Afterwards, the simulation experiment determines the
magnetic background field B0 with the prediction model.

In reality, we do not solve the forward problem. The sources in Ω are not apriori known, and we use
measurements via the sensor array to obtain the (total) B-field at location r, resulting in a data set we
can use for the prediction model. Therefore, we can visualize the model in a flow chart, see Figure 3.6.

Measured
B-field

Prediction of B0

and the sources
in Ω

inverse
problem

Figure 3.6: The prediction model

Recall that this research also determines if the use of the sensor array for obtaining data has any
added value to the approximated B0, in comparison to obtaining data with one sensor. Note that if the
true magnetic background field B0 and the prediction of B0 do not differ from each other too much, we
have a successful model that determines B0 accurately using measured data B. The prediction model
consists of the last two blocks of the flow chart in Figure 3.5. To visualize how the prediction model works,
see Figure 3.6.

To keep notation consistent, consider the following symbols:

B0 the magnetic background field that is to be determined [T]
Bc

0 the approximation of B0, determined with the prediction model [T]
BΩ the magnetic field around object Ω [T]

Table 3.2: Symbols used to define the forward problem.





Chapter 4

The forward problem

When looking at what our model is supposed to do, the forward problem should satisfy the following:

Apriori B0

and known
sources in Ω

B-field
forward
problem

Figure 4.1: The forward problem.

To formulate the forward problem, we consider the magnetic field of N dipoles µ1, µ2, ..., µN instead of
considering the magnetic field of a steel object Ω. Therefore, we use the expression of the magnetic point
dipole as derived in chapter 2, as followed:

BΩ = Bµ1 + Bµ2 + ...+ BµN (4.1)

We use equation (4.1) to formulate the forward problem.

The forward problem. Given a uniform background field B0, magnetic dipoles µ1, µ2, ..., µN with
positions d1,d2, ...,dN and magnetic moments m1,m2, ...,mN . For N dipoles, calculate the magnetic
induction field B in locations rj , with j = 1, ...,M :

B(rj) = B0 +

N∑
i=1

µ0

4π

[
3(mi · r̂ij)r̂ij
‖r̂ij‖5

− mi

‖r̂ij‖5

]
(4.2)

Figure 4.2: An example of a sensor denoted at location r measuring the magnetic field with a single
dipole at the origin

In the formulation of the forward problem, we use equation (3.2) that states that the magnetic field at
location r is given by

B(r) = B0 + BΩ
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.
Table 4 enlightens the symbols used in equation (4.2).

B(rj) the magnetic induction field at location rj , with j ∈ {1, ..,M} [T]
B0 the magnetic background field [T]
µi one out of N dipoles
Bµi the magnetic field induced by dipole µi [T]
di represents the location of the ith dipole [m]
mi represents the magnetic moment of the ith dipole [A·m2]
rj sensor location j < M [m]
r̂ij = rj − di the vector difference of the jth sensor and ith dipole location [m]

Table 4.1: Symbols used to define the forward problem.

When modeling a steel object Ω with a dipole, the forward problem computes the B-field of object Ω

by computing Bµi of dipole µi, with j ∈ {1, 2, ..., N}. We suppose the true fields B0 and di and mi are
fixed. Consider B0 first.

4.1 The magnetic background field B0

To solve the forward problem, we will define B0 as earth’s true magnetic background field and expect the
solution of the inverse problem to return the same values for the approximation of Bc

0. The strength of the
earth’s magnetic background field varies between 25 and 65 microteslas µT (10−6T) [8], we can use a
value between 25 and 65 for an experiment later on. Consider B0 below.

B0 =

 Bx

By

Bz

 (4.3)

4.2 The magnetic field Bi of the dipole µi

Now consider Bµi . In this forward problem, we previously stated that we fix the sources in µi in advance.
We know from chapter 2 and equation (3.4) that Bµi is dependent on mi and sensor location rj and

Bµi(rj) =
µ0

4π

[
3(mi · r̂ij)r̂ij
‖r̂ij‖5

− mi

‖r̂ij‖3

]

Where r̂ij = rj − di. Here, rj is the location of the sensor j, in other words, the location of our
measuring point and di is the position of the dipole µi. Using equation (3.4) we can calculate Bi by
defining mi and di in advance as the "true" magnetic moment and dipole position.

4.2.1 A fixed location d of the dipole

So for the forward problem, the total magnetic field B(rj) at sensor location rj is not measured with
sensors, but calculated using Bi, that is dependent on the fixed magnetic moment and fixed dipole
location, and B0. We have to solve the following to determine B(rj):

B0 + Bµi = B(rj) (4.4)

This is equivalent to:
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Figure 4.3: The magnetic field of a dipole at the origin

 Bx

By

Bz

+
µ0

4π

[
3(mi · r̂ij)r̂ij
‖r̂ij‖5

− mi

‖r̂ij‖3

]
(4.5)

It is easy to calculate B(rj) if mi and r̂ij are known. In this problem, they are, as the forward problem
apriori fixes mi and di. The next step is to formulate and solve the inverse of the problem.

So inversely, suppose B(rj) is known, and we want to calculate Bi. Because r̂ij = rj − di with both
di and mi unknown, it becomes a lot harder to solve for Bi. Especially if we were to do more than one
measurement. Which we will, because we do N measurements along a naval ship’s mast. For example,
if we do M measurements and obtain B(r1),B(r2), ...,B(rM ), and we place one dipole in vicinity of the
sensors with magnetic moment m unknown and B0 is known, we get the nonlinear system:

B(r1) = B0 + µ0

4π

[
3(mi·r̂1)r̂1
‖r̂1‖5

− mi

‖r̂1‖3

]
B(r2) = B0 + µ0

4π

[
3(mi·r̂2)r̂2
‖r̂2‖5

− mi

‖r̂2‖3

]
B(r3) = B0 + µ0

4π

[
3(mi·r̂3)r̂3
‖r̂3‖5

− mi

‖r̂3‖3

]
...

B(rM ) = B0 + µ0

4π

[
3(mi·r̂M )r̂M
‖r̂M‖5

− mi

‖r̂1‖3

]
(4.6)

For this reason, we disregard the unknown dipole location in this project. We choose a fixed location
for the dipole. This makes the system linear in m, which is obviously easier to solve.

4.3 Solving the forward problem

In conclusion, we define B0 and Bµi to calculate B(rj). Solving the forward problem is easy, as we
simply put in the predefined values, which returns a vector B(rj), which is the total magnetic field at
some location rj . This can be done analytically or using MATLAB. Examples with one and several dipoles
and measurements will be shown later on.





Chapter 5

The inverse problem

We have formulated the forward problem, and we know how to solve it. In this section it is explained how
we solve the inverse problem.

Recall the inverse problem given by Figure 5.1.

Measured
B-field

Prediction of B0

and the sources
in Ω

inverse
problem

Figure 5.1: The prediction model

Instead of trying to calculate the magnetic field B, it is known to us by the use of sensors. So we
obtain B(rj) by measuring the magnetic field at location rj . The magnetic background field B0 and
magnetic fields of the N dipoles Bµi , with i = 1, 2, ..., N , are now unknown instead.

5.1 A formulation of the inverse problem

The output of this model is the computed magnetic background field Bc
0 and the calculated magnetic

moment mc, on which Bµi is dependent.

The inverse problem. Given the measured induction field B(rj), known sensor positions rj with
j = 1, 2, ...,M and known dipole positions di, where i = 1, 2, ..., N . Find the magnetic background field
B0 and magnetic moments mi, for i = 1, 2, ..., N .

Here, B(rj) is a (3M × 1)-vector, depending on the amount of measurements M .

5.2 The inverse problem as a linear system

Solving the inverse problem is a little bit more difficult than simply plugging in the measured values of the
B-field. Therefore, we reformulate the problem in such a way that it is easier to solve.

We know that the solution of the inverse problem has to result in Bc
0 and Bµi . Let us start by rewriting

what we know, see equation (3.2), the inverse problem should satisfy:

B(rj) = Bc
0 + Bµi (5.1)

Now we rewrite equation (5.1) such that we have a linear system, which is easier to solve. We start by
considering one measurement and one dipole.
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For one dipole with magnetic moment m and location d, and for one measurement at location r, we
have

B(r) = Bc
0 +

µ0

4π

[
3(m · r̂)r̂

‖r̂‖5
− m

‖r̂‖3

]
(5.2)

We can factor out the 1
‖r̂‖3 , so now equation (5.2) is equivalent to

B(r) = Bc
0 +

µ0

4π ‖r̂3‖

[
3(m · r̂)r̂

‖r̂‖2
−m

]
(5.3)

We can rewrite the second term of the right hand side. Suppose

r̂ = r− d =

rxry
rz

−
dxdy
dz

 =

xy
z


This results in a (3× 3)-matrix K which we use to define the inverse problem:

Bµi =
µ0

4π ‖r̂‖3

[
3(m · r̂)r̂

‖r̂‖2
−m

]
=

µ0

4π ‖r̂‖3


3x2

‖r̂‖2 ·mx + 3xy
‖r̂‖2 ·my + 3xz

‖r̂‖2 ·mz

3xy
‖r̂‖2 ·mx + 3y2

‖r̂‖2 ·my + 3yz
‖r̂‖2 ·mz

3xz
‖r̂‖2 ·mx + 3yz

‖r̂‖2 ·my + 3z2

‖r̂‖2 ·mz

−
mx

my

mz



=


(

3x2

‖r̂‖2 − 1
)
·mx + 3xy

‖r̂‖2 ·my + 3xz
‖r̂‖2 ·mz

3xy
‖r̂‖2 ·mx +

(
3y2

‖r̂‖2 − 1
)
·my + 3yz

‖r̂‖2 ·mz

3xz
‖r̂‖2 ·mx + 3yz

‖r̂‖2 ·my +
(

3z2

‖r̂‖2 − 1
)
·mz



=

(
3

(
r̂

‖r̂‖

)(
r̂

‖r̂‖

)T
− I3

)
︸ ︷︷ ︸

K

m

= Km

(5.4)

where I3 is the (3× 3)-identity matrix and:

K(r) =

(
3

(
r̂

‖r̂‖

)(
r̂

‖r̂‖

)T
− I3

)
(5.5)

We plug in the new expression for Bµi , given by equation (5.4), in the previously formulated inverse
problem, see equation (5.1). Note that because K(r) and r̂ = r− d, with r and d fixed, we are left with
the following problem to solve for B0 and m.

Bc
0 +Km = B(r) (5.6)

We are now closer to finding a formulation of the inverse problem that is easier to solve. Because
the problem is linear in m, we formulate the problem as the linear equation which we know how to solve
using linear algebra. So suppose

Ax = b (5.7)

where A is an (m×n)-matrix, b is a (n× 1)-vector with m,n ∈ R3 and x is the column vector of solutions..
We rewrite equation 5.6 to the linear system given by equation 5.7, by multiplying Bc

0 in equation (5.5)
with the (3× 3)-identity matrix I3.
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I3 ·Bc
0 +Km = B(rj) (5.8)

This is equivalent to the following problem:

[I3 K]︸ ︷︷ ︸
A

x = B(rj)︸ ︷︷ ︸
b

, where x =

[
Bc

0

mc

]
=



B0
c
x

B0
c
y

B0
c
z

mc
x

mc
y

mc
z


(5.9)

where A is an (3M × 3 + 3N)-matrix, b is a (3M × 1)-vector. In this case, M = 1 and N = 1 because
we do one measurement and consider one dipole. x is the column vector of solutions containing the
unknown magnetic moment m and the magnetic background field Bc

0. We see that equation (5.9) is in
the form of a linear equation as shown in equation (5.7). If we can find the solution x, we will have found
the values for the magnetic background field Bc

0.

The linear formulation of our inverse problem that we need to solve for x becomes:

[I3 K]x = B(rj) (5.10)

We have to keep in mind that this only applies to a problem where we want to measure the magnetic
background field with one dipole, and one measurement.

5.3 Solving the inverse problem: the method of least squares

In the previous section we formulated the inverse problem our model will solve. As the system given in
equation (5.10) is linear, we formulated the problem as a linear equation (for one measurement and one
dipole). And a problem of this form, we know how to solve. It could be done with Gauss elimination, but
as the system will grow for more than one measurement and more than one dipole, we use the method of
least squares to solve the inverse problem.

The method of least squares. Suppose A is an (m× n)-matrix, b is an (m× 1)-vector and x is an
(n× 1)-column vector. Given a over determined system of linear equations:

Ax = b

The solution for x is given by the well known solution:

x̂ = (ATA)−1ATb (5.11)

We use this solution for x to solve the inverse problem given by

[I3 K]x = B (5.12)

We set A = [I3 K].
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5.4 The model for M measurements and N dipoles

We have formulated the forward and inverse problems to develop our model to find the magnetic back-
ground field B0. However all earlier formulation only apply to problems where we do one measurement
with one dipole. Figure 5.2 shows what happens to the magnetic field when more than one dipole is
placed inside the field.

Figure 5.2: The influence on the magnetic field when more dipoles are placed

In this section we extend the model for determining the magnetic background field forM measurements
and N dipoles.

Figure 5.3: Extending the model to M measurements and N dipoles

5.4.1 Formulation for M = 2 measurement and N = 1 dipole

An important note is that, in order for the linear system, given by equation 5.12, to be determined, one
measurements for one dipole is not enough. We need at least two measurements. The explanation for
this is given at the end of the next section. For M = 2 and N = 1 the total magnetic field at locations r1

and r2 is given by

B(r1, r2) =

[
B(r1)

B(r2)

]
= Bc

0 +Km (5.13)
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Because B is now a (6× 1)-vector, we must change the dimensions of Bc
0 too. This remains to be the

magnetic background field, but we define simply repeat the x, y and z-components.

Bc
0(r1, r2) =

[
Bc

0

Bc
0

]
(5.14)

Also because we have one dipole, measured from two different locations we obtain a K as followed:

K =

[
K(r1)

K(r2)

]

Where K(r1) is the matrix K with r̂ = r1 − d and K(r2) is the matrix K with r̂ = r2 − d. After rewriting
equation (5.13) to a linear problem Ax = b, the solution x, will only contain Bc

0 once, so we still have:

x =

[
Bc

0

mc

]
=



B0
c
x

B0
c
y

B0
c
z

mc
x

mc
y

mc
z


We assume Bc

0 is the same for both r1 and r2 because earth’s magnetic field is locally uniform.

When M = 2 and N = 1, we can solve the problem analytically. But the problem becomes harder
to solve when M,N > 1 because the dimensions of B(rj),B

c
0 and Bi = Km continue to grow. The

dimensions can be in the table found below

Description Dimension
B(r1, r2) The measured magnetic field, measured by the sen-

sors. The sensors measure the total B-field in the
x, y and z-direction at locations r1 and r2

6× 1

Bc
0 The computed magnetic background field. A vector

describing the magnetic background field in the x, y
and z-directions

3× 1

K A matrix used to linearize the problem 3× 3

A A matrix used to linearize the problem 2× 6

x̂ The solution vector containing Bc
0 and m 6× 1

We will see that for M,N > 1, the dimensions indeed grow and we will look at in what manner they
will do so in the next section. This helps us determine how to formulate the problem for M measurements
and N dipoles and what restricts our model.

5.4.2 Formulation for M measurements and N dipoles

Going back to what we know, we have

B(rj) = B0 + Bµ1 + Bµ2 + ...+ BµN

In this section we see what this expression means and what it looks like for M measurements and N
dipoles.

Suppose we have M measurements: B(r1),B(r2), ...,B(rM ). We define the measured magnetic
field B(rj) as followed:
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B(rj) =


B(r1)

B(r2)
...

B(rM )

 (5.15)

Each B(rj) is a (3× 1)-vector at some location rj for j ∈ {1, 2, ...,M}. So B(rj) for M measurements
consists of each x, y and z-component of each measured field at locations r1, r2, ..., rM . Now suppose
we have N dipoles on locations d1,d2,d3, ...,dN . Then the magnetic field of the dipole µi with location
di, for i ∈ {1, 2, ..., N} and sensor location rj is given by

Bµi =
µ0

4π

[
(mi · r̂ij)r̂ij
‖r̂ij‖5

− mi

‖r̂ij‖3

]
(5.16)

So now we can rewrite equation (5.4.2), and we can conclude that it is equivalent to the equation
(5.17), where each component is another (3× 1)-vector.

B(r1)

B(r2)

B(r3)
...

B(rM )


=



B0

B0

B0

...
B0


+



Bµ1
(r1) + Bµ2

(r1) + Bµ3
(r1) + ...+ BµN (r1)

Bµ1
(r2) + Bµ2

(r2) + Bµ3
(r2) + ...+ BµN (r2)

Bµ1
(r3) + Bµ2

(r3) + Bµ3
(r3) + ...+ BµN (r3)

...
Bµ1

(rM ) + Bµ2
(rM ) + Bµ3

(rM ) + ...+ BN (rM )


(5.17)

To find the magnetic background field B0 from equation (5.17), we introduce another matrix K ′ and
another matrix A′ similar to the matrices in equation (5.5) and equation (5.9), but extended to different
dimensions. Afterwards, we solve the inverse problem with the method of least squares.

B(r1)

B(r2)

B(r3)
...

B(rM )


︸ ︷︷ ︸

B(r)′

=



B0

B0

B0

...
B0


︸ ︷︷ ︸

B′0

+



Bµ1
(r1) + Bµ2

(r1) + Bµ3
(r1) + ...+ BµN (r1)

Bµ1
(r2) + Bµ2

(r2) + Bµ3
(r2) + ...+ BµN (r2)

Bµ1
(r3) + Bµ2

(r3) + Bµ3
(r3) + ...+ BµN (r3)

...
Bµ1

(rM ) + Bµ2
(rM ) + Bµ3

(rM ) + ...+ BN (rM )


︸ ︷︷ ︸

Bµi (rj)
′

(5.18)

We know from section 5.2 that we can rewrite

B(r)′ = B′0 + Bµi(rj)
′

as a linear inverse problem with the possibility to be solved with the method of least squares. We use a
matrix K ′ and A′ for M measurements and N dipoles. Recall

K(r) =

(
3

(
r̂

‖r̂‖

)(
r̂

‖r̂‖

)T
− I3

)
with A = [I3 K]

to solve [I3 K]x = B(rj). By the method of least squares, we find x in:

Ax = [I3 K]



Bc
0x

Bc
0y

Bc
0z

mx

my

mz


= Bm (5.19)
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The vector r̂ represents the difference between the jth measurement location and the ith dipole.
Therefore if we have M measurements and one dipole at location d1, so N = 1, then we would get:

r̂ = rj − di =



r1 − d1

r2 − d1

r3 − d1

...
rM − d1


(5.20)

Note that j = 1, 2, ...,M .
Now for one measurement at location r1, so M = 1 and N dipoles with magnetic moments

m1,m2, ...,mN , we find that the magnetic field of N dipoles, all observed from location r1, is given
by

Bµ = Bµ1
+ Bµ2

+ Bµ3
+ ...+ BµN

= K1,1m1 +K1,2m2 +K1,3m3 + ...+KN,1mN

= [K1,1 K1,2 K1,3 .... K1,N ]



m1

m2

m3

...
mN


(5.21)

Here, K1,i is the matrix K with r̂ = r1 − di for i = 1, 2, ..., N .
If we combine the expression obtained in (5.21) with the formulation of the non linear inverse problem,

we find that for M measurements and N dipoles.

Bc
0 + Bc

Ω = B(rj)

is equivalent to the following:

I3 Bc
0

I3 Bc
0

I3 Bc
0

...
...

I3 B0c


︸ ︷︷ ︸

[I3 Bc0
′]

+



K1,1 K1,2 K1,3 .... K1,N

K2,1 K2,2 K2,3 .... K2,N

K3,1 K3,2 K3,3 .... K3,N

...
...

...
...

...
KM,1 KM,2 KM,3 .... KM,N


︸ ︷︷ ︸

K′



m1

m2

m3

...
mN


︸ ︷︷ ︸

m′

=



Bm,1

Bm,2

Bm,3

...
Bm,M


︸ ︷︷ ︸

B(rj)′

(5.22)

[I3 Bc
0]′ +K ′m′ = B(rj)

′ (5.23)

Where Bc
0 is the magnetic background field we are looking for, Kj,i is the (3× 3)-matrix K we need to

solve the inverse problem for the jth measurement and ith dipole, with i = 1, 2, 3...,M and j = 1, 2, 3, ..., N

. The magnetic moment for each dipole at location di is given by mi and each measured magnetic field
at sensor location rj is given by B(rj).

In the same way as for one measurement and one dipole, we can define the (3M × (3 + 3N)-matrix
A′ and the solution x̂′ found with the method of least squares:

A′ =



I3 K1,1 K1,2 K1,3 .... K1,N

I3 K2,1 K2,2 K2,3 .... K2,N

I3 K3,1 K3,2 K3,3 .... K3,N

...
...

...
...

...
...

I3 KM,1 KM,2 KM,3 .... KM,N


and x̂′ =

[
Bc

0

m′

]
=



Bc
0

m1

m2

m3

...
mN


(5.24)
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Before using (5.3) to determine B0 we should look at the dimensions first.

Description Dimension
B(rj) The measured magnetic field, measured by one of

the M sensors
3M × 1

Bc
0
′ The computed magnetic background field for M mea-

surements. This means its repeats Bc
0 M times

3N × 1

K ′ A matrix used to linearize the problem 3× 3

A′ A matrix used to linearize the problem 3M × (3N + 3)

Bµ The sum of all calculated magnetic fields ofN dipoles 3M × 1

x̂′ The solution vector containing B0c and m (3N + 3)× 1

Note that when solving the inverse problem, the amount of unknown variables should not exceed
the amount of known variables. In this case we have M known measurements of the total B-field, this
means we have 3 known components for each unknown B-field, resulting in 3M known variables. We
have N unknown B-fields of each dipole, resulting in 3N unknown variables. Lastly, we have 3 unknown
components of the magnetic background field B0 we want to determine. In order for the unknown not to
exceed the known, we should choose the amount of dipoles and measurements in any experiment such
tat

3M > 3 + 3N

In the next chapters, when referring to the linear system we want to solve

Ax = b

we mean the linear system given by equation (5.19) where the solution x contains the computed magnetic
background field Bc

0 and the determined magnetic moments m.

5.5 An acceptable result

Before testing our model on some data set for M measurements and N locations, we have to define what
makes the result for B0c acceptable. If we’ve found an acceptable solution, we can try to improve it if
needed.

There are two ways in which we can obtain some information on an acceptable solution. We can
construct images to compare the result B0c to the true background field B0, or we can look at the
approximation errors: the absolute and relative error.

5.5.1 The absolute error

Given some value v and its approximation v′, we define the absolute error by

ε = ‖v − v′‖ (5.25)

So when looking at the absolute error, we’re simply considering the magnitude of the difference between
values v and v′. This can give us some insight on how much our calculated differs from the true magnetic
background field.

5.5.2 The relative error

Given some value v and its approximation v′, we define the absolute error by

τ =
‖v − v′‖
‖v‖

(5.26)
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Multiplying the relative error by a 100% gives us the percentage error and this gives us some insight on
how much percent the approximation v′ differs from the exact value v.

We can expand these definitions to vectors in Rn, which we do for our research as well. As a rule
of thumb, we use that if the relative error is no greater then 0.10 or equivalently, if the approximation v′

differs no more than 10% from the exact value v, we have an acceptable approximation.

We use this rule of thumb to determine whether our calculated Bc
0 is an acceptable approximation for

the true B0.





Chapter 6

Noise and numerical instability

For this research, we used the model on real data. But in reality, the sensors, especially cheap ones, are
not fully trustworthy. There is always some noise in the measurements because the sensors are not fully
consistent. This means that we have to adjust our model keeping in mind that we will have to correct
some of the noise we detect with the sensors. We correct the errors because of the noise with the use of
regularization, something that is explained in chapter 7. In this chapter we adjust the model by including
a certain amount of noise.

6.1 Noise model: Gaussian Noise

Every data point we acquire with the sensors includes a certain amount of noise. Consider e to be the
noise vector we measure in addition to the true measured field. Each δi for i = 1, ..,M is the noise for
every ith measurement. We have

e =


δ1

δ2
...
δM

 (6.1)

To avoid any confusion, we will call Be the exact measured magnetic field without noise. The measured
field at location r that includes noise is then given by

B(r) = Be(r) + e (6.2)

To model each entry δi of e we use the Gaussian Noise model. Gaussian noise arises in images due
to sensor noise caused by natural sources such as thermal vibrations of atoms in conductors, shot noise
or electronic circuit noise [9].

For each measurement vector without noise Be, we have that

δ ∼ N(µ = 0, σ2I3) (6.3)

where the probability density function of a Gaussian random variable z is given by

pG(z) =
1√
2πσ

e
−(z−µ)2

2σ2 (6.4)

Here z represents the grey level, µ the mean value and σ the standard deviation.
To know exactly what e is, we need σ to model each entry δi. It is stated in [1] that when we measure

the magnetic field inside a steel object using a sensor, experience finds that the measurement can deviate
no more than 300 nanotesla for each sensor location r, so
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Figure 6.1: Gaussian probability density function PG(z) [9]

‖Be(r)−B(r)‖ ≤ 300 nT (6.5)

This results in a reasonable value for σ given by

3σ =
1

3

√
3 · 300 · 10−9 and µ± 3σ = 99

This is equivalent to

σ =
1

9

√
3 · 100 · 10−9 (6.6)

6.2 Revised model including noise

We now have a revised model that includes the noise real sensors would measure. The measured
magnetic field is the sum of the exact, sole measured magnetic field Be and the noise e

B = Be + e

Applying this to our inverse model, we find that the inverse problem can be formulated by

Ax = Be + e (6.7)

Where x is the solution containing the computed magnetic background field B0 and A is still the matrix
containing the (3× 3)-identity matrices and (3× 3)-matrices K.

Depending on the physical properties of A, there might not always be an exact solution x̂ to the
problem (6.7). The method of least squares uses singular value decomposition to find a solution near x̂.
In the next chapter we will see why some linear systems of the form Ax = b are unstable.

6.3 Singular value decomposition

Consider the inverse problem without noise, a linear system of the form

Ax = b (6.8)

If A were to be a square matrix, it would be easy to find a solution. But that is not necessarily the case
for A, as the dimensions of A depend on the amount of measurements M and the number of dipoles N .
To such matrices, we apply singular value decomposition.
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Theorem 6.3.1. Singular Value Decomposition (SVD). Let A ∈ Rm×n be a matrix of rank r. Then there
exist orthogonal matrices U ∈ Rm×m and R ∈ Cn×n such that

A = UΣV T , Σ =

[
Σ1 0

0 0

]
(6.9)

where Σ ∈ Rm×n,Σ1 = diag(σ1, σ2, ..., σr) with σn the singular values of A, and

σ1 ≥ σ2 ≥ ... ≥ σr > 0

The singular values of A are defined by
Avn = σnun

with un and vn are the columns of the matrices U and V respectively.

If there is no exact solution to the system in expression (6.8), we can approximate its solution xe using
the pseudo-inverse of A given by A† and the solution x†. We have

x† = A†b (6.10)

And the pseudo-inverse of A can be written as

A† = (UΣV T )† = V Σ†UT (6.11)

This results in an expression for the best-approximate solution x† of xe, which is the exact solution of
the linear system Ax = b. See the derivation of x† below. We have

x† = A†b = (UΣV T )†b = V Σ†UTb (6.12)

So we found
x† = V Σ†UTb (6.13)

Recall V = [v1 v2 ... vn] , U = [u1 u2 ... um] and

Σ =

[
Σ1 0

0 0

]
with Σ1 =



σ1 0 · · · · · · · · ·
0 σ2 0 · · · · · ·
... 0

. . . 0 0
...

... 0 σr 0
...

...
... 0 0


for r eigenvalues

The pseudo-inverse of A is defined by A† = (ATA)−1AT , [1]. We can also write

Σ† =

[
Σ−1

1 0

0 0

]
and UTb =


uT1 b

uT2 b
...

uTmb

 (6.14)

We substitute the expressions in (6.14) in equation (6.11). We find for the solution x†:

x† = V Σ†UTb

= V


1
σ1

uTb
1
σ2

uTb
...

...
1
σr

uTb

 =

r∑
i=1

(
uTi b

σi

)
vi
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The method of least squares uses this solution

x† =

r∑
i=1

(
uTi b

σi

)
vi (6.15)

as it will look for the "nearest" solution to xe. Therefore x̂ = A†b is exactly the least squares solution
of the linear system Ax = b. This concludes that we can easily find a solution that approximates xe of
Ax = b if we know the singular value decomposition of A.

6.4 Numerical instability

The solution we acquired in equation (6.15) will not always provide the best solution. We also ignored the
possibility of noise in computing a solution via the singular value decomposition. Suppose we want to
solve the system Ax = b, where b is subject to noise:

b = be + e

We consider xe to be the exact solution of Ax = be where there is no noise present.

The condition number κ(A) of a matrix A gives us some insight on whether a solution is reliable. The
condition number measures how much the output of a function can change for a small change in the input,
meaning we can measure the sensitivity of a function. The condition number of a problem depends on
the physics of the matrix A that is to be inverted in the problem. A problem with a low condition number is
considered well-conditioned, and a problem with a high condition number is said to be ill-conditioned.

The condition number of a problem Ax = b is defined as

κ :=
σmax
σmin

(6.16)

where σmax = σ1 ≥ σ2 ≥ ... ≥ σr = σmin > 0 are the singular values of A.

We see that if that for singular values σmin ≤ σi << 1, the condition number κ(A) becomes very large.
The consequence of a large condition number can be explained with the following theorem:

Theorem 6.4.1. Suppose that A ∈m and b, e ∈ Rm nonzero vectors. Assume that Axe = b and
Ax = b + e hold. Then

‖x− xe‖
‖xe‖

≤ κ(A)
‖e‖
‖b‖

This lemma implies that a matrix with a large condition number, hence and ill-conditioned matrix A,
computes solutions that are very sensitive (small) perturbations e. When solving the system Ax = be + e

using the pseudo inverse and singular value decomposition, we find:

x† := A†(be + e) =

r∑
i=1

uTi be
σi

vi +

r∑
i=1

uTi e

σi
vi (6.17)

A short derivation of equation (6.17) can be found in chapter eight.

When we have singular values σmin ≤ σi << 1, the noisy term in equation (6.17) becomes very large
and therefore having great influence on the solution x†. This causes a great difference between the exact
solution xe and x†.

In this research, we use the condition number in the same sense that an ill-conditioned problem
means that small noise or measurement errors can influence the output greatly, which can be explained
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with Theorem 6.4.1. As a rule of thumb, if κ(A) ∼ 10k, then the solution loses up to k digits in accuracy
on top of what would already be lost in numerical methods, in comparison to arithmetical methods. We
also say that a problem has a large condition number if it is in the order of k ≥ 6 [1]. In the next chapter
we see that there is a way where we do not have to deal with the smallest singular values.





Chapter 7

Regularization methods

The current situation requires us to solve an inverse problem Ax = b using the method of least squares,
a direct solving method. This method relies on the singular value decomposition of A. Depending on
the physics and singular values of A, the solution we obtain via the method of least squares, may not
be the most optimal or feasible. In this section we take a look at some other methods, more advance
solvers, where we try to make the problem less sensitive to noise by changing the problem, this is called
regularization.

Regularization is the process where we reduce the influence of noise, by adding more information
to the solution x to produce an augmented set of feasible solutions [1]. In this section, we look at two
regularization methods.

Suppose we have the usual linear system to solve

Ax = b

And suppose this is a system where b is subject to noise e so A is the m× n forward matrix and we have

b = be + e

The exact solution we are looking for is the solution of Ax = be, that is xe. We obtain this solution by
decomposing A as we did in the previous chapter via the singular value decomposition. We decompose
A as followed

A = UΣV T , and σ1 ≥ σ2 ≥ ... ≥ σr > 0 the singular values of A.

We obtain the following solution:

x† = A(be + e)

= A†be +A†e

=

r∑
i=1

uTi be
σi

vi +

r∑
i=1

uTi e

σi
vi

(7.1)

Note that the noisy term e results in x† drifting away from the exact solution xe. If a matrix A were to
be ill-conditioned, then the second summation in (7.1) becomes a large term, influencing the solution.
Now we apply regularization to reduce the influence of the second summation, reducing the difference
between the solutions x† and xe.

7.1 Truncated singular value decomposition

Suppose we have a matrix A that is ill-conditioned and has both small and large singular values σi. The
truncated singular value decomposition makes a clear distinction between the two. This method only
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takes into account those singular values that have the least influence on x†. Hence, the singular values
for which

r∑
i=1

uTi e

σi
‖vi‖ ≈

r∑
i=1

uTi be
σi
‖vi‖

We see that this is the case for σi >> 1, that is the first few singular values σ1, ..., σk for k < r. So for
this new solution, we only take into account the first k components of the solution obtained in (7.1). The
rest of terms, dominated by the noise, are simply chopped off. How we choose this k depends on the
singular values which can be divided two groups singular values. We take into account the large values
σ1, σ2, ...σk and we neglect the small values σk+1, σk+2, ..., σr.

The truncated singular value decomposition changes the matrix A to a matrix Ak using the regu-
larization parameter k < r = rank(A), such that κ(Ak) < κ(A) for the condition numbers of A and
Ak.

For the matrix A we take into account all singular values 1 > σ2 > ... > σr and define the condition
number as:

κ(A) =
σmax
σmin

=
σ1

σr

For the matrix Ak we only take into account the larger singular values, so all σ1 > σ2 > ... > σk for k < r.
We define the condition number as:

κ(Ak) =
σmax
σmin

=
σ1

σk

Because σk > σr, we find that κ(Ak) < κ(A) resulting in a better conditioned problem, and therefore
more stable than before the regularization.

The solution we obtain is called the truncated singular value decomposition solution xk and is given by

xk =

k∑
i=1

uTi b

σi
vi for some k ≤ r (7.2)

Now we can question what value we should choose for the regularization parameter k. Obviously we
choose k such that the noise dominant terms are ignored, but what the exact value is, depends on the
specific problem that requires solving.

7.2 Conjugate gradient least squares

Another method we can try is the conjugate gradient least squares method. This method computes the
least squares solution by iterating k times, expanding the span of solutions. Every iteration comes up
with a more accurate solution than the previous iteration. The prediction model for this research uses the
TSVD and therefore a more detailed explanation of this method, the CGLS, can be found in [10].



Chapter 8

A twin experiment

In this section we do a twin experiment, meaning we solve a forward problem followed by the inverse
problem. The forward problem provides us with a simulated data set and the inverse problem computes
the magnetic background field. The result of this experiment answers our question about whether the
the system in our model is consistent and whether the solution obtained by our model produces an
acceptable result. If we have a consistent model, we are ready to test the model on real data obtained by
the Seven Sensors.

For this experiment we choose M = 4 measurements and N = 3 dipoles. Note that this amount of
dipoles meets the requirements for the maximum amount of dipoles (see section 5.4.2).

Suppose all our dipoles have a different magnetic moment, in each a different direction. We arbitrarily
choose:

m1 =

 100

0

0

 , m2 =

 0

20

0

 , and m3 =

 0

0

120


We place our dipoles in the following positions:

d1 =

 −1

0

0

 , d2 =

 0

0

0

 , and d3 =

 1

0

0


The measurements along the z-axis are done in the following sensor locations

r1 =

 1

0

0

 , r2 =

 2

0

0

 , r3 =

 3

0

0

 , and r4 =

 4

0

0



8.1 Forward simulation

For the forward model we have to define a true magnetic background field B0 and we can calculate the
magnetic induction field Bµi for each dipole µ1, µ2, µ3 with the dipole expression derived in chapter 2.

As stated in section 4.1, earth’s magnetic background field varies between 25 and 65 µT. In this
experiment we define the magnetic background field as 50 µT in the y-direction:

B0 =

 0

50

0

 · 10−6 (8.1)
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Figure 8.1: The situation on which the twin experiment is done.

We calculate each Bµi forward, with i = 1, 2, 3 using MATLAB. We use these vectors to calculate the
supposed measured, total magnetic field B on locations rj with j = 1, 2, 3, 4. Solving the forward problem,
means we have to calculate this B(rj). We use the following:

B(rj) = B0 +

3∑
i=1

Bi (8.2)

8.2 Inverse simulation

Now, for solving the inverse problem, suppose the vector of measurements B(r), given by (8.2), is known.
The magnetic background field B0 and induction field of every dipole Bµi is unknown. Using the three
different methods, we try to find the original magnetic background field B0. We use the method of least
squares (a direct solver), truncated singular value decomposition, and the method of conjugate gradient
least squares. The field we obtained by solving the inverse problem via these three different methods is
denoted by Bc

0. To determine if the model computes an acceptable solution, we will compare B0 and Bc
0

in this experiment using the approximation errors.

The direct solver does not need any choosing of parameters. However, we do need to choose a
regularization parameter for the TSVD.

8.2.1 Regularization parameter for the TSVD

For the TSVD, the singular values σi for i = 1, .., r of a matrix A that is to be in inverted, and r = rank(A)

are ordered from larger values to smaller values on the diagonal of a matrix Σ. The regularization
parameter k with k < r should be chosen such that only the first k singular values are taken into account.
In this twin experiment with M = 4 measurements and N = 3 dipoles, we have a linear system with a

(12× 12)-matrix A. This means there are r = 12 singular values of A. If we compute Σ and look at the
diagonal with ordered singular values, we find:

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
2.0 2.0 2.0 1.7 · 10−7 1.0 · 10−7 9.0 · 10−8

k=7 k = 8 k = 9 k = 10 k = 11 k = 12
9.6 · 10−9 6.3 · 10−9 3.7 · 10−9 4.5 · 10−10 3.8 · 10−10 2.8 · 10−18
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We see that there is jump from larger values to smaller values at the fourth and eleventh singular value.
We can choose either which produces a better solution. For this experiment we choose the regularization
parameter k = 11.

8.2.2 Running the solvers

Using this regularization parameter k = 11 for the TSVD, we have found the following solution for Bc
0:

Bc
0 =

 0.11

49.9

0.12

 · 10−6 (8.3)

Each component of Bc
0 represents the area density of the magnetic flux in the x, y and z-directions

respectively. One could say the
Running the iterative solver, we find the following solution using the CGLS:

Bc
0 =

 −0.30

49.8

−0.08

 · 10−6 (8.4)

Recall the true magnetic background field B0 to be:

B0 =

 0

50

0

 · 10−6

We can see both solutions obtained with the TSVD and CGLS are almost the exact same as the true
magnetic background field B0 we defined in the forward problem. However the direct solver does not work
so well. Now that we have calculated B0c with three different solvers, we will do a proper comparison
between the three solutions.

8.3 Comparison between the solutions

As explained in section 5.5 we can use the approximation errors to determine whether the solutions
obtained above are acceptable, telling us whether the system is consistent. We have calculated both the
absolute and relative error for all three solvers. The results are shown below.

Method Absolute error Relative error
Direct solver NaN NaN

TSVD 2.18 · 10−6 4.35 · 10−2

CGLS 9.87 · 10−7 1.97 · 10−2

We see that the direct solver computes ’NaN’, meaning the solver can not compute a number. This
means the method is not working well at all. This disastrous result was to be expected because the
condition number of the problem is very high, namely κ(A) ∼ 1017, which is why we need regularization.
Also, as explained in section 6.4, the method relies on dividing by the singular values of A and as we can
see in the table above, these values are incredibly small, causing the solution obtained by the method of
least squared to blow up, this causes the ’NaN’-result.

The TSVD and CGLS both have a error percentes of less then 10%, making both solutions an
acceptable approximation of B0. Also, the difference between the solutions obtained by the TSVD and
CGLS abd the true B0 is nearly zero. The TSVD has a smaller absolute and relative error than the CGLS,
meaning that for this particular experiment, the TSVD is a better method.
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8.4 Further experimenting

In order to make sure the conducted twin experiment is not a special, lucky case, where the prediction
model, using the TSVD or CGLS, performs well, we can experiment further with the placement of the
dipoles or magnetic moments. The actual research consisted of experimenting with the amount of
measurements M and amount of dipoles N . The results of several cases can be found in the appendix.
For every experiment we find that the prediction model computes an accurate approximation of the
magnetic background field.

8.5 Concluding the twin experiment

We have found three different solutions to a linear system Ax = b, where A is the matrix depending on
the amount of measurements M = 4 and amount of dipoles N = 3, and b is the vector containing the
measurements on locations rj with j = 1, 2, 3, 4.

We used three different solvers, a direct solver: the method of least squares, a regularization method:
the truncated singular value decomposition and the conjugate gradient least squares. After comparing
the three solutions, using the approximation errors, we have come to the conclusion that the direct solver
does not work well, as predicted. But using the TSVD or CGLS, we have a consistent model as we’re able
to calculate a magnetic background field B0 within the margins of error. Knowing that our model computes
a good solution, we can start testing the model on real data obtained by the Seven Senors-array.



Chapter 9

The Seven Sensors Experiment

In this chapter we explain how the Seven Sensors experiment was conducted. The results can be found
at the end of this chapter. The Seven Sensors is a sensor array that consists of seven magnetic sensors
arranged as an array along a line. We can use this sensor array to create data of certain situations we
wish to retrieve data of (i.e. measurements along a ships mast). We created two different situations:

• A setup that mimics the method the navy uses today. This method considers only one data point
obtained from a single sensor in the top of the mast of a naval vessel, where a disturber (i.e. a ship)
is present. We can use the Seven Sensors to recreate this situation by considering the top sensor,
the seventh one, to be the sensor in the top of the mast and to put a steel plate below the sensors
as the disturber. We simply ignore the data the other six sensors pick up.

• A setup that creates an environment for the new method. The new method uses the measurements
of complete sensor array. Therefore, instead of only considering the top sensor, we consider all
seven sensors.

We run the model on the data set from both situations and we see if there is any added value to the new
method.

Figure 9.1: A schematic drawing of the Seven Sensors-array.

57



58 CHAPTER 9. THE SEVEN SENSORS EXPERIMENT

9.1 The setup

As mentioned before, the Seven Sensors is an sensor array consisting of seven sensors. It is attached to
a little wooden plate (note that wood is non-magnetic material) with an arduino on it, see Figure 9.1. An
arduino, see Figure 9.2, is a piece of computer hardware, a small computer, for building digital devices
and interactive objects that can sense and control objects in the physical world. The sensors measure
the magnetic field and the arduino converses this to a set of data points. We can connect the arduino to a
laptop or computer, using a USB-cable, to take a look at the data and to use it for the model.

Figure 9.2: An arduino, attached to the wooden plate.

It is important that we implement the exact same measurements of the setup into our model. In the
twin experiment, we chose the sensor locations with an distance of one meter from each other. However,
this setup has a height of 35.7 centimeters and is obviously a much smaller setup than the simulated
setup of the twin experiment. Therefore, we have to change the input for the sensor locations and the
dipole locations according to the measurements of the setup, see Figure 9.3a.

(a) A side view of the setup. (b) A top view of the setup.

Figure 9.3: The measurements of the setup.

The setup shown in Figures 9.1, 9.3a and 9.3b is used to measure the true magnetic background field
where no disturbance or dipoles are placed in its vicinity. When we want to measure the magnetic field
when a disturber is in the vicinity of the sensors, mimicking a ship being near to sensor(s) in the mast, we
put one or several steel plates below the Seven Sensors to create a disturbance. See the Figures 9.4
and 9.5.
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We have four different plates of various thickness, all 30 by 30 centimeters. The idea behind this is
that we increase the strength of the magnetic field. The more plates we consider, the more steel we have
and thus a stronger field strength for the sensors to measure. We consider the place where the array is
attached to be the origin and the array to be the z-axis. Appendix shows pictures of the setup.

Figure 9.4: A side view of the setup with steel plates below the Seven Sensors.

Figure 9.5: A top view of the setup with steel plates below the Seven Sensors.



60 CHAPTER 9. THE SEVEN SENSORS EXPERIMENT

9.2 The Method

Every sensor does one measurement of the magnetic field in the x, y and z-direction. This means one
sensor on location rj provides a vector B(rj) ∈ R3, where j ∈ {1, 2, ..., 7}. This would mean that with
seven sensors, we get seven vectors B(r1),B(r2), ...,B(r7). For one experiment, we consider only one
j ∈ {1, 2, ..., 7} to reproduce the current method that uses only a single sensor, whereas for the other
experiment, we consider all j = 1, 2, ..., 7. To keep track of all the different notions and to distinguish
between all the fields in this experiment, see Table 9.2.

B0 The true magnetic background field [T]
Bm

0 The measured magnetic background field. This notion is explained in section 9.2.1 [T]
Note that this field is obtained by the use of all sensors. A disturber is not present.

B(rj) The magnetic field measured by the sensor at location rj [T]
Note that this field is obtained by the use of one sensor. A disturber may be present.

Bc
0 The computed magnetic background field, obtained by the prediction model [T]

Note that this field is obtained by using all seven sensors. A disturber is present.
Bs

0 This field is B(rj) at location rj , that is to be assumed the magnetic background field [T]

obtained by a single sensor
Note that this field is obtained by the use of one sensor. A disturber is present.

Table 9.1: Symbols used to conduct the Seven Sensors experiment.

To see if the prediction model and use of the sensor array have any added value to the current method,
we test both methods by comparing them to the original magnetic background field. Afterwards, we look
at the approximation errors to determine which method predicts B0 more accurately. Before we do any
comparisons between the existing method and the new method, we need some material to compare
it to. In other words, we need to know what the true magnetic background field on the location of our
setup is before we can run the model on both described situations. Therefore start by measuring the true
magnetic background field.

9.2.1 Experiment 1: The true magnetic background field

The magnetic background field, denoted by B0, is the field we measure before running the prediction
model. In other words, we observe no disturbers in this field. We compare the obtained Bs

0 and Bc
0 to

this magnetic background field B0 to see if the prediction model computes accurate solutions for B0.
We obtain the true magnetic background field B0 by measuring the field Bm

0 in each sensor without
a disturber (i.e., one or all of the steel plates). As the measurements are contaminated by noise, the
magnetic background field in each sensor will differ slightly from the other. This is not what is supposed to
happen as the earth’s magnetic background field should be the same at every sensor location. To solve
this problem, we consider a an average of all the measured values of the magnetic background field:

B0 := Bm
0 =

1

7

7∑
i=1

Bi (9.1)

where Bi is the magnetic field at location ri when no disturber is present. This constructed B0 is
considered to be the true magnetic background field. The flow chart in Figure 9.6 describes what happens
in experiment 1.
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The Seven
Sensors array B0

measure without
a disturber

Figure 9.6: Measuring the true, uniform, magnetic background field.

9.2.2 Experiment 2: The method used today

To reproduce the the method we have today, which uses a single sensor on board a steel ship, we only
consider the seventh sensor of the sensor array with a disturber present. We assume that the seventh
sensor measures B0. The measured, magnetic field at location j ∈ {1, 2, ..., 7} is denoted by B(rj). The
magnetic background field this single sensor acquires is assumed to be this B(rj) and is denoted by Bs

0.
In this experiment, we used j = 7, as we imagined the top of the array to be the top of the mast where
the sensor is placed in reality. Comparing Bs

0 = B(rj) to B0 shows us that this method works sufficiently
well as the error’s rule of thumb is satisfied. The results can be found in chapter 10.

The Seven
Sensors array

B(ri)
(3 × 1)

Bs
0

measure at one rj

with disturber
assumed

to be

Figure 9.7: Assuming the measured field to be the amgnetic background field.

9.2.3 Experiment 3: The new method

The new method uses the whole sensor array. Therefore, instead of only considering one data point, we
consider the complete data set the Seven Sensors provides. This means we measure all B(rj), where
j = 1, 2, ..., 7. This results in a data set consisting seven data points, that is 21 different values because of
the seven sensors times three components. We run the prediction model on this data set and find a new
approximation for the magnetic background field, denoted by Bc

0. This method also works sufficiently well.

The Seven
Sensors array

B(rj)
(21 × 1)

Bc
0

measure at all rj

with disturber

prediction

model

Figure 9.8: The model consisting of so

Now that we have conducted the complete Seven Sensors experiment on all situations, we can
compare the results. The goal of this project, as stated in chapter one, is to find an accurate approximation
Bc of B0 with the sensor array and prediction model and see if Bc is a better approximation of B0 than
Bs is. The results are found at the end of this chapter.

9.2.4 Additional measurements 1

In experiment 2, we used the seventh sensor of the sensor array. However, looking at the dimensions of a
naval ship, we see that the first or second sensor would make more sense as the sensor in the top of the
mast, see Figure 9.9. For this reason, some additional measurements were done to see if Bc

0 could be
more accurate than Bs

0 measured at all locations. Thus when analyzing the results we consider Bs = Bi,
for every i ∈ {1, 2, ..., 7}.
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Figure 9.9: The difference between the dimensions of a naval ship and the Seven Sensors array

9.2.5 Additional measurements 2

Following up on section 9.2.4, we measure B(rj) at all seven locations r1, r2, ..., r7 and in chapter 10
we compare Bc

0 to each field at every different location, to see if Bc
0 is more accurate than Bs

0 for every
sensor. However, this means that, if we were to consider the second sensor to be the sensor in the top
of the mast for the current situation, than in terms of the dimensions of the Seven Sensors-setup which
has all its sensors 5 centimeters removed from each other, we do not have room for five more sensors
above that second sensor. This means, for the new method, we can only consider the second sensor and
everything below it, in other words, we have a sensor array of two sensors.

This second additional measurement compares the solutions Bs
0, where Bs

0 is measured at r2, and
Bc

0, where the sensor array only consists of two sensors.



Chapter 10

Results and prediction model analysis

This chapter reveals what we have found after conducting the measurement experiment and analyzes it
after which a conclusion can be drawn.

10.1 Results

10.1.1 Experiment 1

In experiment 1, we measured the magnetic background field in each sensor. Because each measurement
is slightly different from the other, which is not possible for the locally uniform background field, we
assumed the mean of all measurements to be the magnetic background field. A plot of the x, y and
z-components of the magnetic backgroundfied B0 can be found in Figure 10.1.

Figure 10.1: The measured magnetic background field in all seven sensors.

10.1.2 Experiment 2

For experiment 2, we measured the magnetic field in each sensor at location rj , with j = 1, 2, ..., 7. The
current method assumes one of these measured fields B(rj) to be the magnetic background field. Hence,
the current method assumes the following:

B0 = Bs
0 = B(rj)
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Figure 10.2 shows the true magnetic background field B0 compared to the field measured in each sensor,
with a disturber present. We can see that the approximation

B0 = Bs
0 = B(r7)

is very close to the true background field. This is possibly because, the method works really well or the
seventh sensor is too far away, meaning the total measured field does not contain any distortion any
more.

Figure 10.2: The magnetic field measured in each sensor, compared to the magnetic background field.

10.1.3 Experiment 3

One of the main goals was to determine if we could compute a more accurate magnetic background
field using a dipole model and the sensor array. For experiment 3, we measured the magnetic field in
each location rj and we computed an approximation Bc

0 of the magnetic background field B0 with a
prediction model. Figure 10.3 shows a comparison between the true magnetic background field, the
magnetic background fields obtained with a single sensor and the magnetic background field computed
with a prediciton model and sensor array. Our approximation, the dotted lines are continuously closer to
B0 than any Bs

0 is.
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Figure 10.3: All experiments 1, 2 and 3.

10.2 Validation of the prediction model

The first goal of this research is to correctly formulate a prediction model that accurately determines the
magnetic background field, using the sensor array. The prediction model, using the truncated singular
value decomposition, computes an approximation for the magnetic background field B0. To determine if it
is accurate, we need some reference material. Therefore, we measured the true B0 (experiment 1). See
Figure 10.1. After running the prediction model we computed an approximation Bc

0 of B0. Table 10.2
shows the components of B0 and Bc

0 in microtesla. To determine if this result Bc
0 for B is accurate, we

calculated the approximation errors. See the table below.

component B0 Bc0
x −3.80 −4.53

y 14.2 13.57

z 41.4 41.4

Table 10.1: The true magnetic background field (left) and its the approximation (right) in microtesla.

Method Absolute error Relative error
Direct solver 1.32 5.67 · 10−1

TSVD 9.67 · 10−1 2.20 · 10−2

CGLS 9.64 · 10−1 2.20 · 10−2

Table 10.2: The approximation errors between of Bc
0

We see that the approximation with the prediction model, using the TSVD, computes an acceptable
solution. The absolute error is less then one, meaning every component in the approximation Bc

0, differs
no more than 0.97 µT from the components of the true magnetic background field. Also, the relative
error shows us that the percent error of 2.20% is also within the acceptable error margin of 10%. We can
conclude that we have determined an accurate description of the magnetic background field with Bc

0.
Therefore, the prediction model we formulated can be considered as valid.
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10.3 Added value of the prediction model

We have seen that we can determine an accurate magnetic background field with the sensor array, and
Figure 10.3 shows us that there is certainly some added value to the prediction model. The second goal
of this research was to improve the method used today. Therefore, we conducted experiment 2 and
compared the results to experiment 3.

component B0 Bc0 B(r1) B(r2) B(r3)3 B(r4) (r5) B(r6) B(r7)

x −3.84 −4.53 −8.29 −6.39 −5.64 −5.16 −4.96 −4.92 −4.61

y 14.2 13.6 4.76 7.64 10.1 11.6 12.4 12.9 13.2

z 41.4 41.4 36.0 38.6 40.0 40.1 40.1 41.2 41.2

Table 10.3: The magnetic background field for all different situations, using TSVD for the prediction model.

As previously stated, each B(rj), with j ∈ {1, 2, ..., 7} represents the magnetic field at location rj .
Each magnetic background field Bs

0 obtained by the current method, so measured with a single sensor, is
assumed to be the B(rj) for j ∈ {1, 2, ..., 7}. For example, to see if Bc

0 is a more accurate approximation
than the field measured with just the seventh sensor, we compute Bs

0 = B(r7). Finally, for every j we
compare

Bs
0 = B(rj)

and Bc
0 independently to B0 to see if there is any added value to the prediction model. We have already

determined that Bc
0 is an accurate magnetic background field, however, to see if it is more accurate than

Bs
0 we calculated the approximation errors once more, see Table 10.3. We also see in Figure 10.1 and

Figure 10.3.

Method Absolute error Relative error
Sensor 1 11.8 2.68 · 10−1

Sensor 2 7.60 1.73 · 10−1

Sensor 3 4.75 1.08 · 10−1

Sensor 4 3.02 6.87 · 10−2

Sensor 5 2.24 5.10 · 10−2

Sensor 6 1.74 3.96 · 10−2

Sensor 7 1.32 3.01 · 10−2

Direct solver 1.32 5.67 · 10−1

TSVD 9.67 · 10−1 2.20 · 10−2

CGLS 9.64 · 10−1 2.20 · 10−2

Table 10.4: The approximation errors between the sensor array and the seventh sensor.

We see that, for every sensor, both the absolute error and the relative error are smaller when using
the sensor array and the TSVD or CGLS. This means the use of the sensor array computes a more
accurate approximation of B0 than the current method does, using only one sensor. It does not matter
which sensor would be the sensor in the top of the mast, as Bc

0 is more accurate for B0 than the fields
measured in all sensors. Also, we see that the CGLS is able to compute a smaller absolute error, but as
the difference is really small, we could take either the TSVD or the CGLS as the relative errors are the
same.
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10.4 The result of additional measurements

The previous section already shows us that, if we have an array of seven sensors, it computes a more
accurate magnetic background field than if we were to consider only a single sensor. However, to take
into consideration more realistic dimensions of the problem, we also looked at a sensor array of two
sensors and Bs

0 = B2. We found the following:

Figure 10.4: All experiments 1,2 and 3 when using a sensor array of two sensors

With the following components and approximation errors:

component B0 Bc0 B(r2)

x −3.84 −5.28 −6.39

y 14.2 9.32 7.63

z 41.4 40.1 38.6

Table 10.5: The magnetic background field for all different situations, using TSVD for the prediction model.

Method Absolute error Relative error
Sensor 2 7.60 1.73 · 10−1

Direct solver 5.27 1.20 · 10−1

TSVD 5.27 1.20 · 10−2

CGLS 5.27 1.20 · 10−2

Table 10.6: The approximation errors between the sensor array and the seventh sensor.

When looking at Table 10.4, we see that the relative error is larger than the thumb rule of 10%.
However, when we look at Figure 10.4, we see that the sensor array consisting of only two sensors, is still
able to compute a more accurate magnetic background field Bc

0 than a single sensor would. We see that
for M = 2 measurements, and N = 1 dipole, the direct solver performs good too. It might be that the
linear system Ax = b is directly solvable when A is only a (6× 6)-matrix.





Chapter 11

Conclusion

The end of the Seven Sensors experiment concludes this research. This conclusion recalls the problem
and research goals and summarizes the process to achieving the two main goals.

A naval mine is able to detect the change of the magnetic field around it from a certain distance. A
possible cause for this change is a naval ship passing by. The steel of a naval ship induces a magnetic
field, also called the magnetic signature of a naval ship, which disturbs the magnetic field the naval mine
is observing and the change is detected. The magnetic sensor on a mine constantly measures the total
magnetic field at some location which consists of the earth’s magnetic background field and any other
magnetic field induced by steel objects at that same location.

The ultimate goal, that is a goal beyond this research, is to reduce the magnetic visibility of a naval
ship such that a naval mine will not detect any change in the magnetic field. In other words, if it is possible
to reduce the magnetic signature with a degaussing system to such an extent that the naval mine no
longer measures change, there is a greater chance at avoiding risk of detonation.

In order to reduce the magnetic signature we have to know the magnetic background field, therefore
this project focused on determination of the magnetic background field. The two main goals of this
research, as defined in the introduction, are as followed:

• Determination of the magnetic background field. The first main goal is to determine an accurate
approximation of the magnetic background field using a sensor array for measurements.

• Improve the current method. The second main goal is to improve the method that is used today,
obtaining data by a single sensor.

The prediction model, based on inverse modeling, separates the magnetic background field from other
existing, observed magnetic fields (i.e., the field induced by a ship). We tested the model on a simulation
and afterwards on a smaller setup to investigate the possibilities for a larger naval ship. The goals of this
research are achieved by investigating four essential topics. The topics as defined in chapter one are:

• Determination of a correct formulation of the prediction model.

• Accuracy of the prediction model using the sensor array.

• Recreation of the existing method using one sensor.

• The value of the prediction model using the sensor array.

The next section walks through every topic to explain how we can conclude the main goals are
achieved.
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11.1 Determination of a correct formulation of the prediction model using the
sensor array

The prediction model is introduced in chapter six and revised after discussing the regularization methods
in chapter eight, resulting in a correct formulation of the model that we tested and used. The prediction
model consists of solving an inverse problem.

We know that the total magnetic field B measured at some location r is given by the sum of the
magnetic background field B0 and the magnetic field induced by the steel object Ω.

B = B0 + BΩ

We replaced the steel object Ω by several magnetic point dipoles and the dipole model computes the
solution Bc

0, which is an approximation of the magnetic background field B0.
Therefore the prediction model solves the following inverse problem as stated in chapter 5:

The inverse problem. Given the measured induction field B(rj), known sensor positions rj with
j = 1, 2, ...,M and known dipole positions di, where i = 1, 2, ..., N . Find the magnetic background field
B0 and magnetic moments mi, for i = 1, 2, ..., N . We solved the inverse problem, by rewriting the

problem as a linear system

Ax = b

The new method that uses a sensor array and a dipole model, performs truncated singular value
decomposition to solve the linear system:

When translating this to the physics of a naval ship at sea, the matrix A is dependent on the
sensor locations, the ship’s location and the magnetic moment of the ship. The vector b represents the
measurements obtained by the sensors in the array.

We have seen in chapter nine, that the prediction model performs a good approximation of a simulated
magnetic background field. Because we were able to establish that the formulation of the model was
correct, we were good to go on testing the model on real data. In addition to the twin experiment, we have
found that the prediction performed works well on the experiment using real data too. For explanation of
the validation of the model, see the next topic. The validation of the prediction model tells us that the
computed solution is a good approximation of the original background field. Therefore, we can conclude
that a correct formulation for the prediction model, that uses the sensor array, is achieved.

11.2 Accuracy of the prediction model using the sensor array

The previous topic confirms that the formulation of the prediction model is correct. Determining whether
the prediction model computes an accurate approximation, is first discussed in chapter nine, where the
twin experiment takes place. We use the approximation errors and a rule of thumb to see if the correct
formulation of the prediction model also computes an accurate approximation of the magnetic background
field.

The approximation errors are given by:
Approximation errors. Let a value v′ be the approximation of v, then the absolute error is given by

ε = ‖v − v′‖

And the relative error is given by

τ =
‖v − v′‖

v
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We see that the approximation errors are almost zero, meaning our solution for the simulated
background field is more or less the exact same as the original simulated background field. However, in
order for the prediction model to work, we had to perform regularization.

We used the truncated singular value decomposition to make the problem less sensitive to noise. We
found that after regularization, the condition number of the matrix A of the linear system was lower than
before regularization. A high condition number of A means we might have an ill-conditioned problem and
therefore we should be more careful when interpreting the solution.

Having established that the prediction model seems to work, we tested it on the Seven Sensors
data and we came to find that, with the use of the TSVD, the prediction model works well again. The
computed magnetic background field has a maximum error of 0.97 µT. This means that the components
of the computed magnetic background field differs no more than 1 µT from the original background field.
Intuitively, this can be considered as good, but in addition, the relative error also tells us that the prediction
model computes an accurate solution. We have a relative error of 2.20%. This satisfies the rule of thumb
that says, the solution is not allowed to deviate more than 10% from the original solution.

A visualization of the solution also confirms that the approximation of the magnetic background field is
accurate. The image below tells us that the computed solution obtained by the Seven Sensors is indeed
very close to the original solution.

Figure 11.1: All experiments 1, 2 and 3.

11.3 Recreating of the existing method using one sensor

Besides formulating a prediction model to determine the magnetic background field accurately, the other
goal of this research was to see if the new method with prediction model and sensor array has any
added value to the current method. The current method does not use any dipole and only uses one
sensor. In order to explore possible improvements of the current method, we recreated it for the purpose
of referencing. We used the Seven Sensors to create data as the current would do. Thus instead of
taking on all the data the Seven Sensors provided, we considered only one sensor and compared it to
our computed solution. We did this for all sensors and analyzed the results, to see if we came up with an
improved method. For a summary of the results see the next topic.
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Considering only the seventh sensor can be seen as the worst case for our model. Because of the
low magnetizing ability of the steel, a seventh sensor would be almost too far away, and the steel would
not be detected anymore. Meaning the field measured in the seventh sensor is always going to be very
close the original magnetic background field. However, more realistically, one should consider the first or
second sensor when conducting this experiment. Comparing the dimensions of a naval vessels (e.g., a
frigate), which has dimensions 122× 14 meters, to the dimensions of 0.3× 0.3 meters of our plate, the
first or second sensor would agree with a realistic sensor and mast.

11.4 The value of the prediction model using the sensor array

We researched the value of the prediction that uses the sensor array. We compared our solution Bc
0 to

every magnetic background field Bs
0 that was obtained by measuring the magnetic field B0(rj) at each

sensor location

rj

with i = 1, 2, ..7. We came to find that even for the worst case for our model, the seventh sensor, the
prediction model still approximated the original background solution more accurately than the current
method. Both visualization and approximation errors show us that, for every sensor, the prediction model
works better than the current approach, see Figure 10.3.

Taking into consideration the dimensions of a frigate, we also compared the approximations of B0

obtained by taking the second sensor as the single sensor and obtained by using a sensor array consisting
of two sensors. The approximation errors tell us that the computed magnetic background field Bc

0 via
the sensor array and prediction model is not accurate enough. However, we can see that is still more
accurate than the current method that uses a single sensor.

Figure 11.2: All experiments 1,2 and 3 when using a sensor array of two sensors

11.5 Further research

Even though the goals for this project, for seven sensors, were achieved, there is so much more to further
investigate. This section explains only a few short ideas that could be considered as further research.



11.5. FURTHER RESEARCH 73

11.5.1 Dimensions of the setup

During this project, a prediction model was developed and tested on a small setup. Obviously, it is a
stepping stone, but the dimensions do not come close to a real naval ship. The idea of the Seven Sensors
was to consider the seventh sensor as the sensor a mast of a naval ship would have on its mast. However,
the dimensions of the Seven Sensors are not in proportion to the dimensions of the steel and mast of a
real naval ship. When considering the dimensions of a naval ship, we should not compare our computed
solution to the solution obtained by the seventh sensor, but the first or second sensor is more likely.
Further research where the setup is expanded to greater dimensions, will possibly me more trustworthy
as the prediction model would be tested on a more realistic setup..

11.5.2 The magnetic moment of the dipole

The prediction model that inversely solves the linear system

Ax = b

actually computes a solution that contains, not only the components of the magnetic background field,
but also the magnetic moment of the dipole. Recall that the solution obtained with the truncated singular
vlaue decomposition is given by:

x̂ =



B0x

B0y

B0z

mx

my

mz


We have complete neglected these values for m = [mx my mz] in this project. This is also where

a lot of difficulties lie, hence, further research, one could take these values into consideration and try to
approximate the magnetic moment of a steel object accurately.

It also would not matter if we considered either the seventh, the second or any other sensor as the
single sensor. Table 10.3 tells us that a sensor array of seven sensors will always compute a more
accurate magnetic background field





Appendix A

Derivation of equation (2.22)

Note that the dirac delta function has the following properties:∫ ∞
x=−∞

f(x)δ(x)dx = f(0) (A.1)

∫ ∞
x=−∞

δ(x− a)φ(x) = φ(a) (A.2)

In chapter 2, we had derived the following for the potential ϕ(r)

ϕ(r) =
1

4π
M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

∫ ∞
z′=−∞

[δ(x′ + l)− δ(x′ − l)] · δ(y′) · δ(z′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

· dx′dy′dz′

Integrating with respect to z′, makes [δ(x′ + l)− δ(x′ − l)] · δ(y′) a constant, and so

ϕ(r) =
1

4π
M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

[δ(x′ + l)− δ(x′ − l)] · δ(y′)

·
∫ ∞
z′=−∞

1√
(x− x′)2 + (y − y′)2 + (z − z′)2

· δz′ · dz′dy′dx′

Now we use property (B.1) and suppose f(z′) = 1√
(x−x′)2+(y−y′)2+(z−z′)2

.

We find

ϕ(r) =
1

4π
M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

[δ(x′ + l)− δ(x′ − l)] · δ(y′) · f(0) · dy′dx′

=
1

4π
M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

[δ(x′ + l)− δ(x′ − l)] · δ(y′) · 1√
(x− x′)2 + (y − y′)2 + (z − 0)2

· dy′dx′

=
1

4π
M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

[δ(x′ + l)− δ(x′ − l)] · δ(y′) · 1√
(x− x′)2 + (y − y′)2 + z2

· dy′dx′

Now we integrate with respect to y′ and this goes in the same manner, using property (B.1).

ϕ(r) =
1

4π
M0πa

2

∫ ∞
x′=−∞

∫ ∞
y′=−∞

[δ(x′ + l)− δ(x′ − l)] · δ(y′) · 1√
(x− x′)2 + (y − y′)2 + z2

· dy′dx′

=
1

4π
M0πa

2

∫ ∞
x′=−∞

[δ(x′ + l)− δ(x′ − l)] ·
∫ ∞
y′=−∞

1√
(x− x′)2 + (y − y′)2 + z2

· δ(y′) · dy′dx′

=
1

4π
M0πa

2

∫ ∞
x′=−∞

[δ(x′ + l)− δ(x′ − l)] · f(0) · dx′

=
1

4π
M0πa

2

∫ ∞
x′=−∞

[δ(x′ + l)− δ(x′ − l)] · 1√
(x− x′)2 + y2 + z2

· dx′

Summarizing everything we have found, the potential is given by
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ϕ(r) =
1

4π
M0πa

2

∫ ∞
x′=−∞

[δ(x′ + l)− δ(x′ − l)] · 1√
(x− x′)2 + y2 + z2

· dx

=
1

4π
M0πa

2

([∫ ∞
x′=−∞

δ(x′ + l) · 1√
(x− x′)2 + y2 + z2

· dx

]

−

[∫ ∞
x′=−∞

δ(x′ − l) · 1√
(x− x′)2 + y2 + z2

· dx

]

=
1

4π
M0πa

2

(
1√

(x+ l) + y2 + z2
− 1√

(x− l) + y2 + z2

)
by property (B.2)

We used property (B.2). Note that that in the first term of the equation, we used that δ(x−a) = δ(x′+ l)

and a = −l. In the second part of the equation, we used that δ(x− a) = δ(x′ − l) and a = l.
In conclusion, we’ve found equation (2.12)

ϕ(r) =
1

4π
M0πa

2

[
1√

(x+ l)2 + y2 + z2
− 1√

(x− l)2 + y2 + z2

]



Appendix B

Results of the twin experiment

Method Absolute error Relative error
Direct solver NaN NaN

TSVD 2.07 · 10−7 4.15 · 10−3

CGLS 3.51 · 10−7 7.02 · 10−3

Method Absolute error Relative error
Direct solver 1.32 · 10−7 1.32 · 10−7

TSVD 7.05 · 10−7 1.41 · 10−2

CGLS 8.96 · 10−7 1.79 · 10−2

d1 = [−1 0 0]T d1 = [1 0 0]T

d2 = [0 0 0]T d2 = [0 0 0]T

d3 = [1 0 0]T d3 = [1 1 0]T

m1 = [100 0 0]T m1 = [200 0 0]T

m2 = [100 0 0]T m2 = [0 0 0]T

m3 = [100 0 0]T m3 = [100 0 0]T

Method Absolute error Relative error
Direct solver NaN NaN

TSVD 1.99 · 10−6 3.99 · 10−2

CGLS 8.38 · 10−7 1.68 · 10−2

Method Absolute error Relative error
Direct solver NaN NaN

TSVD 2.0725 · 10−7 4.1450 · 10−3

CGLS 3.5107 · 10−7 7.0214 · 10−3

d1 = [−1 0 0]T d1 = [1 0 0]T

d2 = [0 0 0]T d2 = [0 0 0]T

d3 = [1 0 0]T d3 = [2 0 0]T

m1 = [50 10 0]T m1 = [0 100 0]T

m2 = [0 20 0]T m2 = [0 10 0]T

m3 = [0 0 100]T m3 = [0 0 100]T

Table B.1: The approximation errors of experiments with varying dipole location and magnetic moment.
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Appendix C

Photos of the Seven Sensors setup

Figure C.1: The Seven Sensors array with a disturber

Figure C.2: A disturber (i.e., a steel plate or naval ship)
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Figure C.3: The front view of the Seven Sensors

Figure C.4: The top view of the Seven Sensors
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