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Abstract

"Roviden: optimista vagyok. Hiszem, hogy jot hoz a jové.
Es, ha csekély mértékben ehhez én is hozzajarulhattam,
akkor meg vagyok elégedve."

"Briefly: I'm optimistic. I believe in a bright future. And if I
could contribute to this just a little bit, I'm already
satisfied."

Theodore Von Kdrmdn

This thesis work is a starting point for the Flettner-rotor field of the wind-assisted ship
propulsion research of TU Delft and POLIMI. During the development of this project,
the flow around a bare spinning cylinder is investigated, introducing the Flettner-rotor
without its end plate. The simulations were carried out in 2D and 3D with the commercial
CFD package FLUENT 15. The main assumptions for the simulation are: the flow in the
transcritical regime, a Reynolds number of 140 000, keeping the ratio between the cylinder’s
peripheral velocity and the incoming flow velocity in a value of 2.

As part of this project, comparisons among several turbulence models are performed. The
models chosen are: the Smagorinsky-Lilly, the Wall-Adapting Local Eddy-Viscosity (WALE),
the k —¢, the SST k —w and the RSM stress —w. As a consequence of the rotational speed
set for the simulation, the vortex shedding in the wake of the cylinder is suppressed, thus
with the RANS models steady runs were also performed.

In high Reynolds number shear flows better accuracy is expected from the LES approach. In
the first part of the project, an accurate LES run is sought. Afterwards, during the second
part of the project, the evaluation of the RANS runs is based on the comparison with the
reference LES results.

A new concept of the boundary layer around the spinning cylinder is introduced. This
concept subdivides the boundary layer to an inner portion and to an outer portion. The
inner portion moves bonded to the surface of the cylinder, while the outer portion flows in
the direction of the free stream. The WALE analysis will show that only the outer portion
should be turbulent. Contrary, the Smagorinsky-Lilly model produces a fully turbulent inner
layer. The main difference between these two models is the lack of an appropriate damping in
the near wall region for the subgrid viscosity in the case of the Smagorinsky-Lilly model. As
an outcome of the simulations, it is shown that the turbulent boundary layer is significantly
thicker. The thickness of the inner layer influences the pressure distribution around the
cylinder, leading to differences in the aerodynamic forces for the two subgrid models.

A comparison between the RANS results and reference WALE is executed, based on the
aerodynamic coefficients and the velocities in the wake. As a result of the simulations and
comparison, the 2D steady SST k — w model due to its prominent cost-accuracy ratio and
the 3D unsteady RSM stress — w model because of its accuracy are suggested for further
work.
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1. Introduction

1.1. Wind-assisted ship propulsion

Today, in an engineer’s dictionary the expression environmental friendly has become as
important as performance or cost-effectiveness. Indeed, if we do not create a sustainable
future our beautiful Earth would be perished within a few hundred years. Probably one of
the most known harmful effects to the environment is the global warming which is mainly
caused by the augmented concentration of C'Oy in the atmosphere. The emission of C'Oq
has been growing from the industrial revolution and it has been dramatically rising over
the 20" century. As a result, the total concentration of COs in the atmosphere increased
by almost 50% ! from the start of the industrial revolution until 2015. A very significant
part, almost 20% 2 of the total emission is attributed to the transportation sector, in which
shipping plays a very important role. As stated in the Third IMO Greenhouse Gas Study |[1]
in 2012, 618 million tonnes of C'Os were released to the atmosphere from the most typical
ship types. In Figure 1.1 we can see that this is comparable with the total COs emission of
Central-Europe and the Baltics.

Central Europe and the Baltics (2013) [N, 71 5
Total top five ship types N ¢ ¢

Chemical tanker [} 55
Generalcargo [l 68
Oil tanker [N 124
Bulk carrier [ 166
Container ship _ 205

0 200 400 600 800

CO, emissions (million tonnes)

Figure 1.1.: C'O5 emission from different ship types in 2012. Taken from: Third IMO Green-
house Gas Study [1]

It is important to mention that apart from C'O4 ships emit other pollutants as nitrogen oxides
(NOg) and sulfur oxides (SO,) Besides, from a ship’s engine hydrocarbons (HC), particulate
matters (PM) and carbon-oxide (CO) are also discharged to the environment. NO, itself
is carcinogenic, moreover it reacts with sunlight and the outcome contains ground level
ozone. Ozone is only desirable in the upper atmospheric region, since it causes respiratory
problems in humans and damages plants. Furthermore, (NO,) together with (SO;) is the
main contributor to acid rain. PM and HC are carcinogens and cause smog; finally CO

!Based on the data of National Oceanic and Atmospheric Administration (NOAA).
2 According to the data of Emission Database for Global Atmospheric Research (EDGAR).




is only a very weak direct greenhouse gas, but it has important indirect effects on global
warming. The above mentioned pollutants are the direct products of combustion. Every
now and then a new International Convention for the Prevention of Pollution from Ships
(MARPOL Convention) comes into force. These MARPOL Conventions are assigned to
regulate the emission of pollutant materials. Thanks to these conventions over the last 20
years the amount of emitted pollutant materials has decayed significantly. Nonetheless, as
long as we use combustion engines the augmentation of the concentration of C'Oy in the
atmosphere is inevitable. Although alternative fuels have gained ground in the shipping
sector, in the near future diesel engines as primary energy sources will remain dominant.
Recently a new concept for the reduction of C'O2 emission started to spread in maritime
design. Wind-assisted ship design as its name suggests, uses the the energy of the wind as
an auxiliary power source, thereby mitigating the thrust requirement from the main engine
so that its fuel consumption. However, wind-assisted ship propulsion as a technique itself
is not new, it has already popped up in design as an economical alternative for the high
crude oil prices. In 1973 the first oil crisis blew up the price of crude oil and the price of a
barrel tripled in one year. Between 1975-1979 the prices kept growing, but in a significantly
smaller pace, so the market was more or less stable. Nevertheless, in 1979 the second oil
crisis came and the prices rocketed again. Altogether, from 1973 until 1980 the market
experienced a 6-fold increase in the price of crude oil. In these times, ship owners were
desperately seeking a new possibility to decrease the fuel consumption. Commercial vessels
with huge sails and kites started to pop up on the oceans. Responding to a new demand
of the market in design usually takes 3-4 years, conversely to set back the design to the
original state just lasts for a moment. Wind-assisted ship design became the victim of this
very simple phenomenon. By the time wind-assisted shipping would have spread the oil
prices collapsed. In the beginning of the '80s company owners either did not know about
the hazard of pollution or simply they ignored it, the only goal was to maximize the profit.
As such, the interest towards these solutions has faded out. Nonetheless, nowadays in a
sector like shipping where the vast amount of emission is that evident a company without
an environmentally-aware profile cannot survive and hence wind-assisted ship propulsion
has ’sailed’ back to the picture. Although the base concept has not changed, the design
has adopted the development of the last 30 years. The current solutions are typically fully
automatised. The computers always set the propulsors to a thrust maximizing position.
Moreover, the ship’s track can also be optimized for the prevailing weather conditions, thus
in this type of shipping 'the shortest is the cheapest’ consideration almost never holds. The
main types of the wind propulsors are listed below and in Figure 1.2 a realization for each
type is depicted.

— Wingsails: rigid sails that are similar to airplane wings and are often used with flaps.

— DynaRig: a square shaped entirely automated canvas sail system, that has no rigging
and is fully rotatable

— Towing kites (SkySails)

— Flettner rotors: cylindrical shaped spinning structures that deployed on the deck and
spun by a built-in engine. The lift is generated via the Magnus-effect.




(c) Kite (d) Flettner rotors

Figure 1.2.: Different wind-assisted sail propulsion designs 3

As one can see the propulsors have large dimensions and (except the kite) are deployed
on the deck of the ship. To allow passage under short constructions the system should be
recovered in any case which is obtained through reefing (Dynarig, windsail, Flettner rotor),
turning the propulsors down (Flettner rotor) or simply recover them (kite).

In Figure 1.3 an example for the power saving is shown. The graph belongs to the Enercon
E-ship (Figure 1.2d), which operates with 4 Flettner-rotors. Obviously, like in sailing there is
a limit in effectiveness with respect to the wind angle. Moreover, it is important to mention
that due to the physics of Flettner rotors, they cannot produce thrust in 'running’ either.
Nonetheless, in the useful area the power saving percentage is almost always double-digit
with a maximum of 45%. This double-digit fuel saving can easily be reached by any type of
wind-assisted propulsion, this fact makes the concept of wind-assisted ship propulsion to be
very promising.

3 sources:

http://www.motorship.com/ _ data/assets/image/0021/411708/12.jpg
http://i0.wp.com/fairtransport.eu/wp-content /uploads/2014 /03 /Fairtransport-

Ecoliner _aft.png?w=1080

https://commonknowledge.files.wordpress.com/2008,/05/mv_beluga skysails 16001.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6e/Cargo E-Ship 1, Emder Hafen, CN-
02.jpg




Power saved in [%] vs. Wind (true) = 24kn/6 BFT
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Ship Speed = 16,0kn
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Figure 1.3.: Power saving diagram Taken from: Enercon E-Ship 1 2]

1.2. Research at TU Delft and POLIMI

A shared research project between Delft University of Technology (TU Delft) and Politecnico
di Milano (POLIMI) about wind-assisted ship propulsion launched in 2014. The research
consists of two main areas:

— Examination of the aerodynamic interaction among the propulsors

— The effect of the propulsors on the hydromechanics behaviour of the hull (for instance
ships with wind propulsors, similarly to sailing yachts, will operate under a heel angle)

The final goal of the project is to create a Power Prediction Program (PPP) which by
analogy to Figure 1.3 would calculate the contribution of the auxiliary wind propulsors to
the thrust force as a function of wind angle and speed. It is important to mention, that this
PPP would be used in the preliminary state of the design. It would be a tool to the designer
that allows to try out the effect of the number of propulsors and their positioning. As such,
outstanding accuracy is not, but big freedom in terms of number, type and position of the
propulsors is expected from such a prediction tool. The resultant aerodynamic force of the
propulsors can be analytically calculated (with vortex methods) or it can be obtained via
regression formulae. For the latter a built-in database which is filled up with results of wind
tunnel experiments or CFD simulations is necessary. Obviously, the regression formulae
would give higher accuracy. Nevertheless, as was mentioned above, in the PPP rather just
an acceptable accuracy is the goal which might be achieved by the analytical results too.
The vortex lattice method in the research of Caponetto [3] or the even simpler horseshoe
vortex method in the paper of Roncin and Kobus [4] produced surprisingly good accuracy
for the interaction of sailing yachts. Encouraged by these results, in the research vortex
methods started to be put into use for wind-assisted sail systems (Wingsails, Dynarigs).




The accuracy of the methods will be tested with CFD simulations and with the wind-tunnel
experiment which was carried out in Milan, in April 2016. The results of these examinations
are still under evaluation when this thesis work is written. Unlike sails, Flettner rotors so
far have not been investigated in the research of TU Delft and POLIMI and this thesis work
is intended to be the starting point in this field. Here we should mention that in this work
the Flettner rotor is introduced in a simplified form without the so-called end plate. The
end plate is a circular disc at the end of the rotor with a diameter larger than the diameter
of the cylinder. Consequently, this work examines the flow around a spinning bare cylinder.
As one can see, testing the viability of the vortex methods is a very essential part of the
research. However, it is important to note that this work will not deal with the testing of
these vortex methods for rotors. The reason for this is quite simple: so far in the research
neither numerical nor experimental results have been obtained for rotors. As such, the main
goal here is to contribute to the build-up of an accurate CFD model with which the vortex
methods would be compared in the future.

1.3. The main scope of the thesis

Flow around a stationary cylinder is probably one of the most examined problems in fluid
dynamics and one can also find huge amount of research for the case of a rotating cylin-
der. However, Flettner rotors rotate relatively fast and their huge dimensions results in a
Reynolds number # of the flow to order of one million even at a moderate apparent wind
speed. Later we will see that the flow field around a spinning cylinder is strongly dependent
on the Reynolds number as well as on the speed of rotation. Unfortunately, the number of
published researches decreases radically when someone looks for cases from high Reynolds
number and rotational speed. The situation is even worse if one seeks studies about interac-
tion among spinning cylinders. To the author’s knowledge there is no published work which
examines the interaction of spinning cylinders in the high Reynolds and rotational speed
regime. The lack of data for validation prevented this thesis work from starting the investi-
gation immediately with the interaction of the cylinders and hence here only the flow around
1 cylinder will be examined. Furthermore, as we see later, already for 1 spinning cylinder
there is only one experimental study where the speed of the cylinder and the Reynolds num-
ber of the flow at least are similar to the current simulation. Among the numerical works
one finds mainly Reynolds Averaged Navier Stoke (RANS) models with one exception where
Large Eddy Simulation (LES) was considered. In the present problem the strong shear layer
in the wake of the cylinder suggests that the LES technique will give superior results to the
RANS results.

If in the future it turns out that neglecting turbulence completely poses a huge error on the
interaction then the idea of vortex methods should be discarded and a built-in database for
the PPP will be inevitable. Unfortunately, the cost of LES simulations is orders of magni-
tude higher than the cost of RANS simulations. Consequently, this database can only be
produced by experiments or by RANS simulations. Therefore, the main goal of this work is
to examine how different RANS models perform on this type of flow. This will be realized
through the following:

“In the thesis: Re = %, where U: free stream velocity, D: diameter of the cylinder, v: kinematic viscosity
of the fluid.




1. We seek an LES model which is as accurate as possible

2. With the same domain type RANS runs will be performed and the results will be
compared with the reference LES run. Paying in mind that in the future work cylinders
will be placed in the wake of the investigated cylinder, in the comparison the main
interests are:

e lift and drag coefficients with different models
e the velocities in the wake

Although it is not listed above, the cost of the RANS simulation is also a very important
question, that will also be taken into account in the final evaluation. In the end of this
work an accurate and a economicRANS model will be suggested for the future, interaction
involving work.

1.4. Case

Figure 1.4 shows a typical Flettner-rotor and the cylinders that were used for the simulations.
In the simulations the free stream is coming in the horizontal direction (along the x axis),
while the cylinder rotates counterclockwise around its vertical axis (& = (0,0,w,)).

a=2

Re =1.4+10°

02% a7

(a) Flettner-rotor with (b) Models and operational regime
its operational condition for the CFD simulations

Figure 1.4.: Flettner-rotor and computational models

Apart from the lack of the end plate another big difference is present in the aspect ratio.
In the current simulation it is imagined that the cylinder is built up from segments, like
those that are depicted in Figure 1.4b and whose height is either 1 or 2 cylinder diameter.
Furthermore, the flow field is considered to be the same in each segment, which means
in practice that a ’periodic boundary condition’ was used on the top and bottom face of
the domain. Consequently, the aspect ratio in the simulations is infinite. With the above
described simulation set up, the mean velocity of the flow in the third direction is expected




to be statistically zero ((w) = 0). Nevertheless, real 3 dimensional (real in a sense that
they are not extruded 3D structures from a 2D base, such as a vortex street behind a
stationary cylinder in low Reynolds number flow) are expected to develop in the wake. The
3 dimensionality of the domain therefore is intended to make possible the evolution of these
structures. In Figure 1.4 one can see that the Reynolds number and the rotational rotational
ratio®: o, which is the ratio between the circumferential velocity of the cylinder and the free
stream velocity has been changed too. Both are scaled down by an order of magnitude for
the simulation. The reasons behind the choice of Re = 140000 and o = 2:

— Doing LES simulations with Reynolds number of the order of one million is still very
challenging because of the high involved costs.

— Most of the numerical studies are from that particular Reynolds number, rotational
speed pair

— As we will see in the following chapter the nature of the flow around a spinning cylinder
is the same for the two sets of Reynolds number rotational ratio pairs depicted in Figure
1.4

5In the thesis, the names: rotational rate or rotational speed will also be used for .







2. Basic flow physics

2.1. Flow around a stationary circular cylinder

Flow around bluff bodies, especially around cylinders is a widely investigated area of fluid
dynamics. Already at Re = 4 — 5 flow separation happens from the surface of the cylinder.
The two shear layer demarcate the wake and meet downstream in the so called confluence
point. The bounded near wake cannot remain stable for Re > 30 — 40 and sinusoidal
oscillation of the vortex trail starts in the confluence point (Figure 2.1a). The amplitude of
the oscillation grows with Reynolds number and finally for Re > 40 — 65, the shear layers
roll up and the well-known Kdrmdn-Bénard vortex street (Figure 2.1b) ! starts evolving.
With further increasing the Reynolds number a beautiful staggered array of laminar eddies
form the wake (Figure 2.1c).

(c) Developed vortex street. Re = 102

Figure 2.1.: Evolution of the Kdrmdn-Bénard vortex street. Taken from Homann [5]

As we can see the wake behind the cylinder is strongly dependent on the Reynolds number.
In Figure 2.2 the different wake patterns for different Reynolds regimes are summed up.

!Henri Bénard was the first who visualised the vortex street in 1908, whilst Theodore von Karméan provided
a descriptive mathematical model (by means of stability analysis) for the phenomena in 1911.
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Figure 2.2.: Different flow regimes of flow around a stationary circular cylinder. Picture is
taken from Mutlu and FredsQe, [6]

The first 3 pictures were already described above. The transition from laminar to turbulent
flow happens first in the wake further downstream of the cylinder at Re & 200. Subsequently,
the transition gradually spreads upstream until at Re ~ 300 it already occurs during the
formation of the vortices. Once the wake becomes fully turbulent, transition gains ground
in the shear layers too. After the wide transitional regime of the shear layers the vortex
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street becomes fully turbulent at Re ~ 3-10°. Finally, transition takes place in the boundary
layer. Vortex shedding dies out during this last process, nonetheless, it is re-established after
the boundary layer arrives at a fully turbulent stage (transcritical regime) at Re = 4 - 10°.
The turbulent boundary layer is capable of staying attached longer to the surface than the
laminar one, thereby reducing the width of the wake and allowing a higher pressure regain
at the back of the cylinder. As a result a sudden decrease in the drag coefficient can be
seen after the boundary layer starts becoming turbulent, this phenomenon is known as drag
crists. In the transcritical regime the drag coefficient grows with Reynolds number up to a
certain limit and finally it becomes independent of the Reynolds number.

2.2. Flow around a rotating circular cylinder

The flow field around a smooth, infinite length rotating cylinder is dependent on the
Reynolds number as well as on the rotational-ratio.

Due to the rotation of the cylinder, the free stream flow experiences deceleration on the side
which rotates against: pressure side, whilst acceleration on the side which rotates with the
free stream: suction side. The velocity difference on the 2 sides of the cylinder implies a
pressure drop which yields a lift force. The pressure drop along the cylinder forces the free
stream to bend toward the lower pressure side, hence demolishes the statistical streamwise
symmetry of the wake around the centerline of the cylinder. Besides, with the increase of the
rotational speed the stagnation point moves azimuthally downstream and further from the
cylinder on the side which rotates opposite to the free stream (on the pressure side). As a
result, the vertical component of the resulting pressure force along the cylinder grows, while
the horizontal reduces. In flow around stationary or spinning cylinders the pressure forces
have a significantly larger contribution to the aerodynamics forces than the frictional forces,
thus the lift coefficient increases, whilst the drag coefficient reduces with «. Furthermore, it
was found that the rotating cylinder only produces vortex shedding until a critical rotational
velocity: a.. a. is a function of Re number, usually with a value approximately 2. Figure
2.3 sums up the above mentioned considerations for a slowly rotating cylinder:

~Upper Separation point

/

! -Upper boundary layer
&EeT A

~Boundary layer

/ origin
U.

\\\\LStngnntlon point

Jake

~
“~~Lower boundary
layer

Wake boundary
layer -

S Lower separation point

Figure 2.3.: Representation of the flow around a slowly rotating cylinder. Re = 40000,
a = 0.2. Picture is taken from Swanson [7|
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2.3. Boundary layer of the rotating circular cylinder

The boundary layer around a spinning cylinder is of special interest. The rotation forces
the stagnation point to move azimuthally to a greater angle and away from the cylinder
surface (see explanation later) at the side where higher pressure is present. The transition
from laminar to turbulent as well as the separation points are functions of the boundary-
layer length Reynolds number. In aerodynamics, in case of flow around stationary bodies
the origin of the boundary layer is defined to the stagnation point. However, in a spinning
cylinder case the rotation introduces an additional shear on the free stream flow. As a result,
at the stagnation point the cylinder moves exactly with the same speed but opposite to the
direction of the bulk. Another problem with considering the stagnation point as origin is
that the stagnation point no longer lays on the cylinder’s surface. Therefore, it is more
logical to place the boundary layer origin at the point where the relative velocity between
the cylinder’s surface and the fluid velocity is zero. Figure 2.4 shows the velocity profiles
around the cylinder for two rotational rates:

(a) Nature of the boundary layer (b) Nature of the boundary layer at
at =1 a=2

Figure 2.4.: Nature of the boundary layer at different rotational ratios. Pictures are taken
from Swanson [7]

The rotating wall drags the fluid in the vicinity of the cylinder’s surface forming the inner
portion of the boundary layer, what we call rotating boundary layer (RBL). RBL increases
the velocity of the flow through entrainment on the side which rotates in favour of the free
stream (suction side), hence causing a general deflection of the wake. On the opposite side
(pressure side) the free stream slides over the RBL, which triggers the transverse deflection
of the free stream. In Figure 2.5 one can see that even at a moderate rotational speed, the
stagnation point is pushed away from the cylinder’s surface. Besides, the separation point
on the lower pressure side (suction side) and the corresponding vortex formation are also
moved away from the cylinder.
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Figure 2.5.: Streamlines of an LES simuation of flow around a spinning cylinder. Cylinder
rotates counterclockwise, flow comes from the left. Re = 140000, o = 1.3.
Taken from: Karabeles [8]

Furthermore, with further increase of the rotational speed, after a certain point the rotational
boundary layer will possess everywhere higher velocities than the velocity of the free stream.
As a result the separation point on the high pressure side likewise moves away from the
cylinder’s surface allowing an evolution of a continuous RBL along the surface of the cylinder.
Such a situation is depicted below:

Figure 2.6.: Streamlines of an LES simulation of flow around a spinning cylinder. Cylinder
rotates counterclockwise, flow comes from the left. Re = 500000, o = 5. Taken
from: Rolfo et al. [9]

So far we have introduced the RBL, the part of the boundary layer which is the direct
consequence of the rotation. However, if we are strict to the common definition of the
boundary layer, then the boundary layer should end where the velocity in the boundary
layer is 99% of the free stream velocity. Consequently, RBL is just the inner portion of the
total boundary layer. Apart from the RBL, the total boundary layer consists of an outer
portion, which comes from the free stream. Depending on the location this outer portion
slides over or slides with the RBL. In between the two portion a shear layer or a recirculation
region is present. To have a better imagination of the portions, Figure 2.7 shows a velocity
plot in the boundary layer. The results belong to one of the LES simulation of the thesis
and depicts a situation where only a strong shear layer is present between the portions. As
we will see later such a velocity plot belongs to a region before separation on the front cap
of the top side of the cylinder.

13



U

i

Figure 2.7.: Velocity vectors in the boundary layer. Red dots: separation points, orange dot:
stagnation point.

The drag reduction due to laminar to turbulent boundary layer transition for a stationary
cylinder was introduced in the previous section. In the stationary case the flow is symmet-
rical, thus transition statistically happens at the same angle on both sides of the cylinder.
However, the situation is different for rotating cylinders because of the RBL. RBL moves
with the incoming flow on the suction side, hence the relative velocities in the shear layer
of the boundary layer are decreased, conversely the relative velocities are increased on the
pressure side. Consequently, the local Reynolds number in the shear layer of the pressure
side is higher. As such, transition first occurs on the pressure side and it is delayed on the
suction side. It is crucial to point out here that the transition happens in the shear layer.
Turbulence is introduced to the flow in the shear layer and makes the outer portion of the
boundary layer to be turbulent. However, the inner portion, the RBL which moves bonded
to surface of the cylinder should not to be turbulent. Indeed, as we will see later, the fact
whether the RBL is modelled as laminar or turbulent would make substantial differences
in the results! After transition in the outer portion on the pressure side, a longer attached
boundary layer and hence a bigger area of suction is present on this side which results in
a lift reduction. This reduction can be as big to change the sign of the lift! In the transi-
tional regime the boundary layer is very vulnerable even for the smallest disturbances. The
RBL transports turbulence from the pressure side and hence it feeds with disturbances the
incoming flow. As a result, laminar to turbulent transition starts in the outer portion on
the suction side as well. Finally, the effect vanishes once the outer portions of the boundary
layers become fully turbulent on both sides. In literature the above described phenomena
is called Inverse Magnus Effect. The effect already occurs for Re = 35800. It is more
pronounced for lower rotational rates and for v > 1 it totally disappears.
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3. Summary of previous works

3.1. Early works of flow around spinning cylinders

Flow around spinning cylinders has first become of interest to researchers in the middle of
the 1920’s. Anton Flettner designed his first rotor ship: Buckau in 1924 which was a refitted
schooner with 2 rotors approximately 15 metres high, and 3 metres in diameter:

R

£R-ROTOR

Figure 3.1.: Buckau, the first rotor-ship in the history. The ship was constructed by the
famous Germaniawerft (Germania shipyard). Taken from: Wikipedia

In the design of Buckau Ludwig Prandtl also took part. He was devoted to have a better
insight in the flow physics, thus he carried out his first experiments with spinning cylinders
in 1925. Prandtl [10] from his experimental results determined the maximum lift coefficient
as ¢"** = 4m. Although recent studies have revealed (for instance Rolfo [9] or Craft et
al. [11]) that he had been incorrect in terms of the maximum obtainable lift coefficient,
his works and Flettner’s successful crossing of the Atlantic Ocean (already with his new
ship: Barbara), had encouraged other scientists to work on the problem. One of the most
interesting experiments was done by Thom [12] in 1934. He examined the flow around a
Flettner rotor as well as a case where he added evenly distributed discs with a diameter of
the original rotor’s end plate to the cylinder’s surface. For rotational speeds greater than 4
he found a radical lift increase for the cylinder equipped with discs. Unfortunately, recent
studies like Clayton [13| or Craft et al. [14], [11] have not had success in reproducing the very
promising phenomeon reported by Thom. Just after that Barbara has sailed in the history,
diesel engines started to gain ground in marine propulsion as well. Albeit, rotor-ships were
faster than sail-boats, they were still dependent on the weather conditions. As a result of
this, the interest towards Flettner rotors, and hence towards spinning cylinders has faded
out. After a long break, the oil crisis in the 1970’s has brought back wind-assisted ship
propulsion to the picture. Nevertheless, as it was already mentioned in the introduction, the
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oil prices had collapsed and the interest has disappeared again. Finally, the last revolution
of wind-assisted ship propulsion started in the 2000’s and it is still lasting. This is due to
the fact that now the main aim is to reduce the emission of COy which is an environmental
goal. Of course, in research a similar trend can be observed. When there is interest in design
more paper are released and hence most of the papers that will be introduced subsequently
are from the 2000’s.

3.2. Works with low and moderate Reynolds number

Lam [15] carried out PIV measurements on a flow around rotating cylinders. The Reynolds
number ranged from 3600 to 5000 and « was from 0 to 2.5. Although this Reynolds regime
is almost 2 orders of magnitude smaller than the regime of the current simulation, his work
is very important since he made extensive observations on the wake topology. He found that
as « increases the wake deflects towards the pressure side and also gets narrower, besides the
two vortex trails get closer together. Furthermore, he measured that the vortex shedding
frequency slowly increased with a up to a. = 2 where finally the shedding died out. In a
stationary cylinder case a distance of 2.5 D was needed behind the cylinder for the formation
of the large-scale vortices which are then shed in the form of a vortex street, for the spinning
case this distance became smaller as « raised. These findings are depicted below:
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Figure 3.2.: Locations of vorticity crests and valleys in the ensemble of 100 PIV snapshots:
(4) positive vorticity; (o) negative vorticity. Flow comes from the left, cylinder
rotates clockwise. Taken from: Lam [15]
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He also observed a significant diminution in the strength of the vortices which was associated
with the smaller size and lower vorticity magnitudes of the vortices. The reduction in size is
explained by the higher shedding frequencies which yield a growth in the convection speed
of the vortices. Due to the faster convection, the large-scale vortices cut off faster from the
shear layers. Consequently, the size of the large-scale vortices diminishes tremendously with
Q.

The findings for the vorticity levels are summed up in Figure 3.3.

Figure 3.3.: Variation of peak vorticity levels with downstream locations for vorticity crests
and valleys. Positive vorticity (+) belongs to the lower side of the wake, whilst
negative vorticity (o) belongs to the upper side of the wake. Taken from: Lam
[15]

The rotation results in a stronger shear layer and thus in higher vorticity magnitudes just
behind the cylinder on the upper trail, nevertheless after cutting off there is no supplier
shear layer anymore, the vortex starts diffusing, and the vorticity magnitudes drops down.
As a result, the average vorticity magnitudes of the large-scale vortices reduce too. It is
also important to mention that the shed vortices along the two trails possessed fairly equal
strength at particular rotational rates.

Lam also measured that the wake behind a rotating cylinder recovers at a much faster rate
as « increases. This finding is shown in Figure 3.4
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Figure 3.4.: Lateral profiles of mean streamwise velocity. Downstream stations at z/D =

0.5, 1, 1.5, 2, ..., 5, 5.5, 6: first and last stations at /D = 0.5and 6 in bold
lines. Taken from: Lam [15]

Although Lam described extensively the wake topology, he did not publish any results either
for the pressure distribution along the cylinder’s surface or for the aerodynamic forces. The
next important work is the numerical study of Mobini and Niazi [16]. They carried out
Large Eddy Simulation (LES) of a spinning cylinder at Re = 3900 — 10000 with « ranging
from 0 to 2. In the simulation a modified Smagorinsky model which accounted for the near
wall regions through a Van Driest damping function was used. A rectangular domain shown
in Figure 3.5a was considered, the extension in the spanwise direction was wD.

10D X

5D 15D

(a) Computational domain (b) Grid in the vicinity of the cylinder

Figure 3.5.: Computational grid and domain. Pictures are taken from Mobini and Niazi [16]

A uniform inflow condition was imposed to the inlet boundary, while at the outlet, the
flow is assumed to be fully developed. Symmetry conditions were used on the side walls
and periodicity was assumed to the spanwise direction. The computational mesh consisted
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of 108 800 cells, it was of C type with O type refinement (shown in Figure 3.5b) in the
near cylinder area. A fully implicit finite volume method was used to solve the unsteady 3
dimensional incompressible Navier-Stokes equations. For the spatial and time discretization
central differencing scheme with second order accuracy was considered.

At this Reynolds regime the nature of the flow is subcritcal i.e. the boundary layer on the
surface is entirely laminar, however once the separation happens the flow becomes turbulent
and unstable. For higher rotational speeds, similarly to Lam [15] they also observed a
narrower wake with weaker and smaller vortices. However their simulation also revealed that
the length of the vortices grew with the rotational speed so that they became elongated.
For higher Reynolds number the inclination of the wake reduced, while the wake was even
more stretched. These results can be examined in the following velocity plots:

(a) Re = 3900 (b) Re = 5000 (c) Re = 7000 (d) Re = 10000

Figure 3.6.: Velocity contours around the cylinder for the spin ratio of 1.5. Results are taken
from: Mobini and Niazi [16]

In the report, the effect of the Reynolds number as well as the rotational rate on the
aerodynamic forces were also examined. The following results were found:

— ¢ increases with «

c; decreases with Re
— ¢4 decreases with o
— c¢g4 decreases with Re

For higher a’s the increase in ¢; and the diminution in ¢4 are due to the azimuthally greater
dislocation of the stagnation point and the corresponding displacement of the high pressure
area.

However, the location of the stagnation point is expected to be approximately constant at a
particular « regardless of the Reynolds number. The unchanged location of the stagnation
point is related to the fact that the angular velocity grows on the surface with Re (provided
that o and v are constant). The higher angular velocity tends to increase the azimuthal
displacement of the stagnation points while the larger Reynolds number implies higher
velocities on the surface of the cylinder and hence the stagnation point is dragged more
upstream, so that the two effects cancel each other out. As such, the variation in ¢; and ¢y
with Re should be explained by the changed wake area. The decline in ¢; with Re is due
to the reduced inclination of the wake. The higher Re number free stream basically blows
away the wake, hence making the separation retarded on the pressure side which results
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in an extended suction area and lower pressure on this side. The decrease in ¢, at higher
Reynolds number is associated with the fact that if the Reynolds number augments the wake
becomes more stretched and narrower. Therefore, at the back of the cylinder the overall
pressure increases which results in drag reduction. changed wake area behind the cylinder.

3.3. Works with high Reynolds number

In the main simulations of the thesis the two parameters were chosen to be: Re = 140000
and o = 2. According to Figure 2.2 at Re = 140000 the boundary layer is fully laminar
in the stationary case. However, if the cylinder rotates, as we saw in the description of
the boundary layer, the outer portion of the boundary layer is already fully turbulent at
Re = 35800 for a > 1. Consequently, with Re = 140000 and o« = 2 the simulations will
be in the transcritical regime. The current computations can only be directly compared
with numerical results since there are no available experimental results for this particular
Reynolds number and « pair. Nevertheless, as long as the flow is in the transcritical regime,
experimental results can be used for validation. Thus, a first part of this section sums up few
experimental works and the second part will give an insight into relevant numerical studies.

3.3.1. Experimental studies with high Reynolds number

The first important experimental results are from Reid [17]. He carried out experiments with
Reynolds number: 32 000, 45 000, 64 000 and 96 000. The rotational ratio was ranged from 0
to 4.32. The length-diameter ratio of the cylinder was infinite. Although the results are very
old, they show good agreement (except in the transitional period) with other experimental
data. Furthermore, the biggest value of the paper is that it gives results for o < 1 as well
(we will see later that, unfortunately, this is not always the case).

Swanson [7| was the first who ever measured the inverse Magnus effect. In his study the
Reynolds number ranged from 35 800 to 501 000 and the rotational rate from 0 to 1. The
cylinder had infinite span length. It was found that the inverse Magnus effect already
appears for Reynolds number as low as Re = 35800 and it is still visible at Re = 501 000.
Moreover between the values Re = 120800 and Re = 501000 it is that strong to even be
capable of swapping the sign of the lift! The first occurrence of the effect depends on the
Reynolds number and «. Although in the measurements depending on the Reynolds number
there was big variation in the starting point (o = 0..0.5), the effect ended for all Reynolds
number at @ = 0.9. Once the effect died out he found Reynolds number independent lift
coefficients. The azimuthally greater location of the stagnation point as « increases and the
inverse Magnus effect both have drag reducing effect, thus in the ¢4 measurement the effect
was not shown that distinguishable.

Aoki and Ito [18| carried out experiments for Re = 60000 and Re = 140000 with 0 <
a <1 (¢ at Re = 140000 was only measured for o < 0.5 though). Apart from the
experiments they also made an attempt to attain same results numerically. The inverse
Magnus effect was successfully captured by the experiments, however the numerical model
has failed to reproduce it. The experimental results showed a similar trend to Swanson’s
results, nonetheless the effect started at higher o and for Re = 60000 the lift reduction
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was not as noticeable as in Swanson’s experiments. In the numerical simulation the 2D
unsteady Navier-Stokes equations, using the RNG k — € turbulence model were solved with
a fully implicit finite volume method in FLUENT. For the spatial derivatives the first order
upwind, while for time derivatives first order implicit scheme were used. The velocity-
pressure coupling was realised by the SIMPLE method. A rectangular domain was used,
uniform horizontal velocity with 1% turbulent intensity was imposed on the left vertical edge
as an inflow condition, at the right vertical edge a pressure outlet of p = 0 was considered.
The top and bottom horizontal edges were treated as walls. Their mesh was unstructured
and consisted of about 52 000 grid cells. As it was anticipated, the wall functions were
incapable of dealing with the curved transitional boundary layer. As a result, the numerical
simulation showed a totally different trend from the experimental results in the transitional
regime. Moreover, the computation significantly overpredicted the lift and underpredicted
the drag coeflicients for o’s at which the inverse Magnus effect was already not shown by the
experiments. This was the first indication that RANS models have difficulties with handling
the transitional boundary layer and they might give overpredicted lift for the fully turbulent
state.

Badalamenti and Prince [19] recently performed experiments on spinning cylinders. The
main purpose of their experiments was to investigate the effect of mounting endplates to
the cylinders, thus they worked with a finite cylinder height (AR! = 5.1). The Reynolds
number was ranged from 16 000 to 95 000 while « is from 0 to 8. The inverse Magnus effect
was captured for Re = 72000 and for 92 000. The lift coefficients showed an outstanding
agreement with other experimental data up to a = 1.5, then the effect of the finite length
became more pronounced. Interestingly, the ¢; curve plateaued at 4.5 at « = 3. Such a
limit of ¢; is not indicated in other studies and it is presumed to be present here due to the
relatively low aspect ratio. By contrast, the drag curves not gave back that accurate results
and showed discrepancy with the reference values even for low rotational ratios. However,
it is important to note that to accurately measure the drag is more challenging than the lift
and there is a big scatter among other experimental data as well.

The most relevant experimental results from the above mentioned four experiments in terms
of lift and drag coefficients are depicted below:

'In the thesis AR: aspect ratio
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Figure 3.7.: Experimental results for the lift coefficient
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Figure 3.8.: Experimental results for the drag coefficient

3.3.2. Numerical studies with high Reynolds number

In the past 10 years simulations of high Reynolds number flow around spinning cylinder
gained ground in CFD. The University of Manchester made special efforts to use URANS
for the simulation of the flow around Flettner rotors and as a starting point the bare cylinder
situation was always published. The rationale behind URANS is that Flettner rotors are
operating at higher rotational rates, at o &= 5— 7, where the transition of the boundary layer
has surely happened and a fully turbulent boundary layer is present around the cylinder.
Consequently, URANS models only need to handle the larger scale turbulence at the shear
layer in the wake (which is by the way still challenging for them). Nonetheless, if we speak
about shear layers at high Reynolds number Large Eddy Simulation seems to be the best
choice (see explanation in the "Required resolution for LES" section of A.3.3). LES might
also tackle the boundary layer transition, provided that the turbulent kinetic energy is well
resolved in the near wall area. Apart from the work of Manchesterian scientists, in 2010
Karabelas [8] published his LES study of a flow around a spinning cylinder. In this section
a brief summary of the above mentioned articles will be given.

LES study of flow around a spinning cylinder

Karabelas [8| carried out LES simulation of flow around a spinning cylinder for 0 < o < 2
at Reynolds number of 140 000. The domain is of O-type with local refinement close to the
surface of the cylinder. Its size is L = 20 D in the radial and z = 1 D in the axial direction.
In the z direction 32 equivalent layers are distributed uniformly. Each layer contains 125
points in the radial as well as 125 in the azimuthal direction, resulting in a total of 500
000 grid points. The resolution of the grid close to the surface of the cylinder is such that
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yT < 5 everywhere for each rotational ratio. Figure 3.9 depicts the computational domain
with the grid:

(a) Computational domain (b) Computational grid

Figure 3.9.: Computational domain and grid. Picture is taken from Karabelas [8]

A uniform, perturbation free horizontal velocity inlet is imposed on the inflow I boundary,
far away from the cylinder on S; and S; symmetry condition is applied while on O an
outflow condition is prescribed. On the surface of the cylinder (C) the velocity is U =

(O‘%"" ) Z x 7(x,y) (where Z is the unit vector in the z direction). Finally, periodicity of the

flow is assumed in the spanwise direction. In FLUENT 6.3 the 3 D incompressible time-
dependent Navier-Stokes equations were solved. Finite-volume discretization was applied
to the governing equations, a central differencing scheme was used for the spatial and fully
implicit second order scheme for the time discretization. In each time step the pressure
correction was carried out by the PISO velocity-pressure coupling. For the subgrid-scale
modelling FLUENT’s Smagorinsky model (see in A.3.3 "Implementation in FLUENT, the
WALE model") was used. In the simulation the dimensionless time-step was dt’ = dt UD°° =
0.001, with this time-step the Courant—Friedrichs-Lewy Number (CFL number) was kept
below 1 everywhere in the solution domain.

Figure 3.10 depicts the streamlines for each rotational rate. In the stationary case two
vortices of equal form are seen, but once the cylinder starts rotating the deflection of the
wake towards the pressure side is evident. RBL on the pressure side pushes away the
incoming flow allowing hence a more expanded vortex formation on the top. Contrary, on
the suction side the flow is dragged with the RBL causing the contraction of the lower
vortex. The o« = 2 is of special interest for this thesis work. At this rotational speed the
upper vortex is found to be not as elongated as it was expected to be from the previous
results, nevertheless the deflection of the wake is still the greatest at this speed. The lower
vortex is totally collapsed, which was explained by the combined action of the position of
the upper vortex together with the high momentum of the fluid coming from the suction
side. The stagnation point was found to be at 6 = 332° and dislocated from the cylinder.
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Figure 3.10.: Streamlines for 0 < o < 2. Taken from Karabelas |8|

In the study the loads started becoming stable at & = 1.3 and after &« = 1.5 no vortex
shedding was found. The mean drag coefficient shows quite good agreement with the exper-
imental results of Aoki and Ito [18]. As such, it is not highlighted here, but it is depicted
with the drag coefficients of other numerical studies in Figure 3.18. However, the mean lift
coefficient as function of « is shown here in Figure 3.11, since, surprisingly the results rather
follow the trend of the laminar solution.

-N W s OO

02 04 06 08 1 12 14 16 18 2
spin ratio

Lift coefficient in abs value

Figure 3.11.: Magnitude of lift coefficients for 0 < ao < 2. Taken from Karabelas [8]

The inverse Magnus effect was not captured at all. Furthermore, what is even more eye-
catching, is the big discrepancy between the experimental result of Aoki and Ito [18] and
Karabelas’s results at a = 1. The difference is around 70 %. Although the Reynolds numbers
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are not the same in the simulation and in the experiment, according to Figure 3.7 the ¢; values
do not show significant scatter for different Reynolds numbers as long as these Reynolds
numbers lay in the same regime. Moreover, the experiments demonstrate the trend which
was also observed by Lam [15]; namely that ¢; decreases with Re. Hence, the deviation is
even bigger when it is compared with Swanson’s results, indicated in Figure 3.7. Conforming
to the experimental studies of Swanson [7], Badalamenti and Prince [19] and Aoki and Ito
[18] the inverse Magnus effect has surely had to die out until o = 1, thus the deviation should
emerge due to another reason. Unfortunately, in the paper this big overprediction in the
lift was not explained. Furthermore, comparing the mean lift coefficient values of Karabelas
with Reid’s [17] values in Figure 3.7b we can see that, despite the higher Reynolds number
the mean lift coefficients of Karabelas’s simulation show again higher values for each o > 1.
However, it should be noted (see Figure 3.17) that all numerical simulations give similar ¢
values to Karabelas’s results at @ = 1, moreover they also reproduce that ¢; increases with
Re in the transcritical regime. The source of these discrepancies is still not known.

In the study the total resolved kinetic energy (ky) as well as the kinematic Reynolds-shear
stress in the xy plane ((u'v’)) were also plotted. These results make an important part of
the comparison with the current results, thus they are presented here briefly:

spin ratio 0 spinratie 0 5 Spin o 1

Figure 3.12.: Total resolved kinetic energy (k) for 0 < o < 2. Taken from Karabelas [§]

26



Figure 3.13.: Kinematic Reynolds stress in the xy plane ((u/v')). Taken from Karabelas [8]

As a general trend one can see that the magnitudes of ky and (u'v/) decreases with a.
This is explained by the stability of this type of flows. The low frequency oscillations
are attributed to the vortex shedding, whilst the high frequency variations belong to the
turbulent fluctuations. As we have seen before vortex shedding is getting to be suppressed as
« increases, however at the same time turbulent fluctuations become more pronounced (this
was conformed by the observed higher vorticity values close to the upper surface). Vortex
shedding forms a larger part of the fluctuation energy than turbulent motions, this yields
the diminution in ky and (u'v'). In the stationary case the transition lies downstream of
the separation point. As the rotation starts, the plots show a similar deflection towards the
pressure side as was reported for the streamlines. Furthermore, the flow becomes turbulent
both at # > 90° and close to the point where the free stream deflected from the upper
surface. It was also reported that for & > 1 the downstream region attached to the cylinder
is entirely turbulent. Furthermore, for o = 2 it was found that the flow is highly turbulent
everywhere close to the surface of the cylinder.

RANS studies of flow around spinning cylinders

Craft with his team in Manchester published several papers [20], [21], [14] and [11] in con-
nection with Flettner-rotors. The group extensively examined the effect of endplates and
evenly distributed discs (as suggested by Thom) along the cylinder. The applied computa-
tional mesh and calculation methods are the same from article to article, furthermore the
most recent paper always contains the results of the previous ones. Therefore, here only the
last paper [11]| from 2013 will be introduced in detail.

In this work URANS simulations were carried out at Re = 140000, Re = 800000 and
Re = 1000000. The rotational speed ranged from 0 to 8. The 3 D incompressible URANS
equations were discretized on a non-orthogonal multi-block collocated mesh with about 500
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000 points (for a cylinder height of 1 D). The mesh was equipped with grid refinement in
the near cylinder area and had a C-type form, as can be seen in Figure 3.14:

Figure 3.14.: Computational mesh. Note presented results in thesis are from the bare cylin-
der case. Taken from Craft et al. [11]

The grid extended either 1 or 3 diameters in the axial direction. The inflow boundary was
located eleven diameters upstream from the rotor whilst the outlet was placed 16.5 diameters
downstream from it. The equations were solved by a customized version of the STREAM
code. The convective flux terms were discretized by the UMIST scheme, whereas temporal
discretizaton was realised by second-order accurate Crank-Nicolson scheme. With the time-
step applied the maximum CFL numbers were reported to be of order of unity. Turbulence
was modelled either by the k—e eddy-viscosity model (with a constraint to limit the near-wall
length scale) or by the two-component-limit (TCL) stress-transport closure. The latter was
developed by the lead author and it solves transport equations for the kinematic Reynolds
stresses (u;u;> At the inlet a uniform inflow boundary condition is imposed, while at
the outlet an outflow condition is applied and on the cylinder’s surface a no-slip condition
is defined. In the boundary layer two types of wall functions were tested: standard wall
functions and analytical wall function (AWF). AWF is again developed by Cralft, it prescribes
the viscosity distribution near the wall and hence it can capture the near-wall skewing of
the velocity profile.

The obtained aerodynamic coefficients are shown with other numerical simulations’ data in
Figure 3.17 and in Figure 3.18. In the results significant differences can be seen between
the two and three dimensional results. The Q-criterion plot reveals that indeed real 3
dimensional vortical structures are formed in the wake of the cylinder. Furthermore, mean-
flow streamlines show remarkable deviation at higher rotational rates (o = 5) for the 2D
and 3D cases. These findings are depicted below:
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Figure 3.15.: Q-Criterion isosurfaces at Q = —0.05. Re = 800000, o = 5. Flow comes from
the left, cylinder rotates counterclockwise. Taken from Craft et al. [11]

(a) Streamlines for 2 D (b) Streamlines for 3 D. AR =1

Figure 3.16.: Streamlines at Re = 140000 and o = 5. Flow comes from the left, cylinder
rotates counterclockwise. Picture is taken from Craft et al. [11]

Despite the differences in 2D and 3D, once the flow was treated as 3 dimensional the aspect
ratio of the cylinder did not have significant impact on the flow (the aerodynamics coefficient
were equal until hundredths).

Aerodynamic summary of numerical studies with high Reynolds number

By analogy to the experimental section, in Figure 3.17 and in Figure 3.18 the obtained
magnitudes of the aerodynamic coefficients as functions of the rotational ratio are depicted
in single figures:
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4. Numerical models

The cumpotations in the thesis were carried out in FLUENT 15. The computations highly
involve turbulence. Those of the readers who are not experienced in the usage of FLUENT
or in the field of turbulence, especially in eddy-viscosity, Reynolds stress and Large Eddy
Simulation models is very recommended to read the "Turbulence modelling" chapter in
Appendix A.

4.1. Computational domain

A direct comparison will be made between our computations and Karabelas’s results. There-
fore the by far most logical decision was to choose exactly the same O-type computational
domain which is depicted in Figure 3.9a. The diameter of the cylinder was chosen to be:
D = 1m. The extension of the domain in the axial direction is either 1 D or 2 D.

4.2. Computational meshes

The grids are again very similar to the one which was used by Karabelas. In the azimuthal
direction 126 points are considered (Karabelas used 125). However, in order to keep the
growth ratio between cells below 1.05 a more significant modification was made in the
distribution of the points. In Figure 3.9b we see a jump in the length of the cells in the
azimuthal direction. It is obvious that at the boundaries of the jumps the ratio between
the azimuthal length of the cells exceeds 1.05. In the current work with introducing 1 more
point and redistributing the points the jumps were smoothed out. In order to obtain the
best results in LES simulations, FLUENT suggests to keep the wall unit around 1. To fulfil
this recommendation, in LES simulations a finer resolution than Karabelas’s resolution was
used. The growth rate limit for RANS simulations is 1.3 which allowed us to use coarser
grids while keeping wall y* values low. The meshes consist of 32 points per 1 diameter
length in the axial direction. Examples of an LES and a RANS computational mesh are
shown in Figure 4.1, while Table 4.1 sums up the main features of the used computational
grids.
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(a) G3 (b) G5

Figure 4.1.: Examples for the computational meshes

Grid | Extension in z | Points in xy | Points along z | total points Used for

Gl 1 Diameter 20 160 32 645 120 LES

G2 1 Diameter 22 932 32 733 824 LES

G3 2 Diameter 22 932 64 1467 648 LES

G4 1 Diameter 12 600 32 403 200 URANS / RANS
G5 - 20 160 - 20 160 URANS / RANS
G6 1 Diameter 7 560 32 241 920 URANS

Table 4.1.: Computational meshes

4.3. Boundary conditions

As indicated in Figure 3.9a the free stream is coming from the left and the cylinder rotates
counterclockwise. At the inlet (/) a uniform horizontal velocity 1 m/s without any pertur-
bation is prescribed. The rationale behind choosing the characteristic length (diameter of
the cylinder) together with the characteristic velocity to be unity is that the plots (like k,
<u;u;> etc.) and the simulation time will be non-dimensionalised automatically. An outflow
boundary condition is applied at the outlet (O), whilst along the side boundaries (S; and
Sy) a symmetry condition was chosen. The cylinder rotates around the axial axis, on its
surface (C') no-slip shear condition is imposed, while the desired « is set by the angular
velocity. Periodicity of the flow is assumed in the axial direction. In the 2D cases the
boundary conditions are the same, obviously without using the periodicity due to the 2D
nature.
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4.4. Turbulence models

Several runs were performed with different turbulence models. The previous chapter ex-
plained the physics behind these models, thus here only the names of the models with the
applied near wall treatment are listed in Table 4.2:

stress-w

Model Type Model Near wall treatment
M1 LES Smagorinsky-Lilly Default FLUENT’s
treatment (see in App. A)
M2 LES WALE Default FLUENT’s
treatment (see in App. A)
M3 | URANS / RANS Realizable k — € Enhanced wall
treatment
M4 | URANS / RANS SST k —w Incorporated
in the model
M5 | URANS / RANS | Reynolds stress (RSM), Incorporated

in the model

Table 4.2.: Used turbulence models

4.5. Discretizational schemes

4.5.1. Pressure coupling and temporal discretization

In each time-step for the velocity pressure coupling the PISO scheme was solved. Besides,
the temporal discretization was always FLUENT’s second order implicit scheme (see 25.3.2
and 25.5.4 in FLUENT User’s Guide [22| for details). The spatial dicretization schemes
are depicted in Table 4.3. Detailed description of the spatial discretization schemes can be
found in 25.3.1 and 25.3.3 FLUENT User’s Guide [22].

Model | Grad. p Mom. k € w (uju’)

M1 LS 2nd CD - - - -
Order

M2 LS 2nd CD - - - -
Order

M3 LS 2nd | 2nd Order | 2nd Order | 2nd Order - -
Order | Upwind Upwind Upwind

M4 LS 2nd | 2nd Order | 2nd Order - 2nd Order -
Order | Upwind Upwind Upwind

M5 LS 2nd | 2nd Order - - 2nd Order | 2nd Order
Order | Upwind Upwind Upwind

Table 4.3.: Spatial discretizational schemes. Note: Grad.: Gradient, Mom.: Momentum,

CD: Central Differencing, LS: Least Square Cell Based
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4.6. Simulation set-up

In the thesis seceral unsteady (LES and URANS) and steady (RANS) simulations were
carried out. In the unsteady simulations the time-step was chosen to be: dt = 0.001. In
general, with the chosen time-steps maximum CFL numbers were falling between 0.2-0.4.
For the convergence criteria, both in the steady and unsteady runs all residuals were set
to 107%. Unless the solution converged faster, in the unsteady simulations the number of
iterations per time-step was 20.
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5. LES Results

The main purpose of this chapter is to introduce the results of the LES computations. In high
Reynolds number shear flows a general superiority is expected from LES . In the subsequent
chapter a quantitative comparison between the LES and RANS computations is intended
to be carried out. Comnsequently, it is very important to choose from the LES results the
simulation which most likely reproduces the real flow field around the cylinder. According to
Table 5.1 LES simulations were performed at Re = 60000 and at Re = 140000 with o« =0
and a = 2. The Re = 60000 @ = 1 and Re = 140000 @ = 0 pairs used for experimental
validation while as mentioned earlier Re = 140000 with o = 2 are the main parameters of
the simulation. The simulations usually were ran until 100 dimensionless time. All of the
simulations were initialised either by unsteady 2 D SST k — w results or by previous LES
results which let the solutions to converge faster. After the initial effects have died out, in
FLUENT the data sampling for time statistics command was turned on.

Id. Model Grid | o Re

L1 | Smagorinsky (M1) | G1 | 2 | 140 000
L2 | WALE (M2) GL | 2 | 140 000
L3 | WALE (M2) G2 | 2 | 140 000
L1| WALE (M2) G3 | 2| 140 000
L5 WALE (M2) G3 | 1| 60000
L6 WALE (M2) G3 | 0 | 140 000

Table 5.1.: Different LES runs

5.1. LES results at a =2

The main interest of the thesis is the o = 2 case. As a starting point the aerodynamic
coefficients will be examined for the different LES runs. Later, the two used subgrid scale
models: the Smagorinsky-Lilly and the WALE will be compared. Finally, the effect of grid
refinement and domain extension will be examined with the chosen model. The Reynolds
number was kept at 140 000 in these runs.

5.1.1. Lift and drag coefficients

Figure 5.1 and 5.2 show the time evolution of the lift and drag coefficient respectively. In
Table 5.2 the mean values of the magnitudes of the coefficients together with other works’
results are shown. In the calculation of the mean values the initial effects were removed, the
averaging started after 10 dimensionless time scales.
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Figure 5.2.: Drag coefficients at Re = 140000 with o = 2

As one can see, the choice of the turbulence model has bigger impact on the aerodynamic
forces than the resolution of the grid or the extension of the domain. In general, we can
say that the present results are the closest to the only available experimental data. Unfor-
tunately, the Reynolds number in Reid’s experiment was much smaller than here, therefore
it is more relevant to compare the results with the other numerical data. Surprisingly, the
current simulations show better agreement with the RANS results of Craft than with the
LES results of Karabelas. L1 with the Samgorinsky model gives identical lift and very simi-
lar drag to the results obtained by Craft [11] with the k — e model. The WALE runs slightly
differ from the Smagorinsky and from the k — ¢ models, however they perfectly match with
the results of TCL.
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Id. Model Re a | Cmean [—] | ¢dmean [—]
L1 Smagorinsky-Lilly | 140 000 | 2 4.8046 0.1743
L2 WALE 140 000 | 2 4.5708 0.1336
L3 WALE 140 000 | 2 4.5309 0.1387
L4 WALE 140 000 | 2 4.4711 0.1514
Karabelas | Smagorinsky-Lilly | 140 000 | 2 ~ 5.23 ~0.13
Craft k—e 140 000 | 2 4.8 0.186
Craft TCL 140 000 | 2 ~ 4.56 N/D
Reid Exp. 45 000 | 2 ~ 4.06 ~ 0.67

Table 5.2.: Mean lift and drag coefficients. Exp.: experimental; N/D: no data

5.1.2. Smagorinsky-Lilly vs WALE model

For the comparison of the two subgrid scale models L1 (with the Smagorinsky-Lilly model)
and L2 (with the WALE model) were chosen (Table 5.1). In the only available LES reference
from Karabelas [8], the subgrid model was modelled by the Smagorinsky-Lilly model. As
a reference, here Karabelas’s results with a = 2 will be indicated again. Figure 5.3 shows
the streamlines based on the time and space averaged (averaged in the z direction) resolved
velocities.

The general trends are the same on all graphs. The free stream on the pressure side slides
over a counter rotating layer and deflects horizontally, while on the suction side the flow
is dragged with the surface of the cylinder and the streamlines mimic the inviscid case.
However, in the wake one can see significant differences. Probably the most eye-caching one
is the number of vortices. Karabelas’s result shows that the lower vortex collapses at o = 2
while in the current simulation there is no indication about collapse and clearly two vortices
are formed behind the cylinder. An exact explanation cannot be given to this phenomenon,
although some guesses exist for the discrepancies. Albeit, G1 and Karabelas’s mesh have the
same dimensions, G1 consists of about 15 % more grid points, thus the wake area is surely
better resolved. Furthermore, the jumps in the length of the grid cells in the azimuthal
direction are removed, hence the growth ratio between cells is kept below 1.05. Besides, in
FLUENT for discretizing the momentum equations two central differencing schemes exist,
the "Central Differencing" and the "Bounded Central Differencing" and from Karabelas’s
description it is not evident that which one he took. Finally, neither the convergence criteria
nor the maximum number of iteration steps were mentioned in the paper.
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Figure 5.3.: Streamlines around the cylinder at Re = 140000 with @ = 2. Last picture is
taken from Karabelas [§]

After a closer look, we find deviations between the Smagorinsky-Lilly (M1) and the WALE
(M2) results as well. In case of the Smagorinsky-Lilly model the vortices are noticeably
larger. The vortex formation ends at 1D behind the cylinder while for the WALE model
recirculation are not be visible for z > 0.75 D. In addition vortices possess a larger extension
in the vertical direction too. In case of the Smagorinsky-Lilly model the upper vortex
penetrates more into the free stream hence causing a larger deflection of the wake.
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The behaviour of the flow is different for the two models near the upper separation point too.
As was explained in the Chapter of Basic flow physics the separation does not happen on
the surface. Consequently, the well-known process of capturing the separation point by the
point where the friction force disappears is not applicable for this type of flow. Instead, the
separation point was detected with the help of the radial velocity component, more precisely
by determining the point where the radial velocity first becomes positive from negative:

0.8
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>
0.4 0.4
0.2 0.2
S 3159
0 \_o|.4\ L \_0|.2\ I |3\ I \0!2\ 1 \o!4| 0
x

(a) Radial velocities with (b) Radial velocities with
Smag.-Lilly model (M1) WALE model (M2)

Figure 5.4.: Positive and negative radial velocity areas around the upper half of the cylinder
at Re = 140000 with a = 2. Green: negative velocity, orange: positive velocity,
blue: borderline

According to the plots in both cases separation of the free stream on the pressure side
(marked with a blue dot) starts at 6, ~ 315°. In the figures with blue colour the borderline
between the negative and positive velocities is highlighted. One can see that in case of WALE
simulation the borderline stays closer to the surface of the cylinder over a larger distance.
Or in other words with the WALE model as we are moving further and downstream from the
surface of the cylinder, the radial velocity component swaps sign from negative to positive in
a slower pace. Oppositely for the Smagorinsky-Lilly model we see that, the free stream gains
positive radial velocities faster, so separation happens under a larger angle. Conforming to
the notation of Figure 5.4 this means Sy < Bg. The slower separation pace associated
with a longer suction area on the pressure side. As a result, the lift diminishes for the
WALE model (M2), which is consistent with Table 5.2. Figure 5.5shows the time and space
averaged cp values on the cylinder’s surface.
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Figure 5.5.: Mean peressure coefficients along the cylinder. Blue data set is taken from
Karabelas |8]

In conjungtion with the above mentiond considerations, we see higher cp values between
the stagnation point (fg., ~ 335°and it is further from the cylinder!) and 6 = 250°.
Comparing the cp curve of the WALE model with the one obtained by Karabelas, we can
see that Karableas’s simulation likewise was failed to capture the pressure reduction on the
top of the cylinder. His results shows similar trend to our Smagorinsky-Lilly simulation,
the extrema of the curve are on the same location as well. Nevertheless, his minimum value
is significantly smaller. To have a better understanding about the differences between the
Smagorinsky-Lilly and the WALE model in Figure 5.6 and in Figure 5.7 the turbulent kinetic
energy as well as the kinematic Reynolds stresses of the resolved field in the xy plane were
plotted. Again these plots are space and time averaged results.
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Figure 5.6.: Resolved turbulent kinetic energy (k,) at Re = 140000 with o = 2. Last picture
is taken from Karabelas 8|

The Smagorinsky-Lilly run shows quantitatively very similar values to Karabelas’s results.
However, as is clearly seen, significantly larger values are obtained in the vicinity of the lower
separation point. In order to explain this discrepancy first we make the assumption that
the residual motions have negligible contribution to the turbulent kinetic energy so that the
whole turbulence is resolved (k = k,). Hence, the variation of k, can be calculated by Equa-
tion (A.30). Applying the consideration that the resolved flow is statistically homogeneous
in the z direction and based on Equation (A.31) one can write for the production term of k:
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P = —p{(@— )7 - @)><‘3—§ v %> - —p<u'v'><§—z ¥ g—;> (5.1

In Figure 5.7c and in Figure 5.7a one can see that the resolved kinematic Reynolds stresses
have a positive sign and are approximately same for the two simulation in the inspected
region. As such, the difference should come from the spatial variations of the resolved
velocities. According to the streamlines and in accordance with (/v') > 0 in the investi-
gated area: (0(u)/0dy) < 0, (0@ /0x) > 0 and (O @) /Iy)|> [(0(v)/0z)|. In case of our
Smagorinsky-Lilly run a vortex occurs in this region, which yields that the variation of the
horizontal velocity component in the vertical direction is more pronounced, so the difference
emerges from the presence of the lower vortex formation.

X X

(a) < u'v’ > with the Smag.-Lilly model (M1) (b) < w'v" > with the WALE model (M2)
spin ratio 1

(c) < u'v’ > from Karabelas [§]
with Smag.-Lilly model

Figure 5.7.: Kinematic Reynolds stresses at Re = 140000 with o = 2. Last picture is taken
from Karabelas (8]
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Comparing the results of the Smagorinsky-Lilly (L1) and WALE runs (L2) one can see that
the maximum value of k, is almost twice for the WALE run than for Smagorinsky-Lilly run.
Although not that pronounced, but a difference in the magnitude of < u’v’ > in favour of
the WALE run is present as well. Furthermore, after having a closer look at the region close
to the top of the cylinder in Figure 5.8, it is clearly seen that in case of Smagorinsky-Lilly
run the high regions of k. pop up at a larger distance from the wall:

0.75
07
0.65
06
.55
05
0.45

0.4

0.35
P T T T T T T YN S o b b b b L

L
-0.3 -0.2 -0.1 0 0.1 -0.3 -0.2 0.1 0 0.1
X X

(a) kr with the Smag.-Lilly model (M1) (b) kr with the WALE model (M1)

Figure 5.8.: A closer view on the resolved turbulent kinetic energy (k) on the top side of
the cylinders. In the simulation: Re = 140000 and a = 2.

This is consistent with the wider vortex formation after the separation point. So far we have
seen that the size of the vortices has a huge impact on the flow, so here an explanation is
given for the different vortex formations. First, we recall the rotating boundary layer (RBL)
from Chapter 2, which was the fluid layer bonded to the cylinder. We have also seen that
apart from the RBL (inner portion), the total boundary layer consists of an outer portion,
which comes from the free stream that (depending on the location) slides with or over the
RBL. In between the two portion a shear layer or a recirculation region is present. Here
we focus our attention on the region between the stagnation and upper separation points,
where only one strong shear layer separates the two countermoving portions. As was men-
tioned, in the original Smagorinsky-Lilly model the subgrid mixing lengthscale (Smagorinsky
lengthscale, lg) solely depends on the volume of the grid cell and on the Smagorinsky co-
efficient, which is constant everywhere and hence the different regions in the flow cannot
be distinguished. However, one can see in Appendix A. (Equation (A.89)) that FLUENT
uses a modified model which limits the Smagorinsky lenghtscale in the wall region. This
limit sets the maximum of the Smagorinsky lenghtscale to be lg = kd (where: k is the Von
Karméan constant and d is the distance to the wall) in case of grids which are not enough fine
to resolve the large eddies in the near wall area. In the RANS discussion of Appendix A.
this xd (Prandtl-mixing lenght hypothesis) was found to be the mixing length of the large
eddies in the log layer. Furthermore, in the LES section of Appendix A. we called the above
described approach LES with near wall modelling (LES-NWM).

The use of either the lenghtscale of the log-layer or the original Smagorinsky lenghtscale
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throughout the whole boundary layer implies that in FLUENT’s Smagorinsky-Lilly model,the
lenghtscale in the wake region and in the viscous wall region is overpredicted. The latter
fact is because neither the original Smagorinsky lenghtscale nor the Prandtl’s mixing length
hypothesis can account for that in the near wall area —u/v' ~ y® and consequently v, ~ 3>
(since (u) ~ y in the viscous wall region; see the whole deduction in Pope [23] p. 283 and
p. 634). Unlike the Smagorinsky model, the WALE model ! damps the turbulent viscosity
correctly in the near wall region and hence v, is scaled as v, ~ y3. Indeed, careful inspec-
tion of v, (not plotted here for brevity) reveals that the subgrid turbulent viscosity ratio
(vp/v) in the RBL is 3 orders of magnitude higher for the Smagorinsky-Lilly model than
for the WALE model (vM!/v = 8 and v?2 /v = 0.007 respectively). The undamped turbu-
lent viscosity causes a highly turbulent RBL for M1, while in the WALE model turbulence
first generated by the separating shear layer so that the RBL is laminar everywhere around
the cylinder. The turbulent RBL is significantly thicker than the laminar one, thus it is
more capable of deflecting the free stream. Hence the inclination effect is stronger with the
Smagorinsky-Lilly model even before the separation point. The greater deflection lets the
evolving vortex to grow bigger and also explains why the radial velocity component swaps
sign in faster pace for the Smagorinsky-Lilly model. Finally, let us plot the tangential ve-
locities in the vicinity of the upper half of the cylinder. The colours clearly reveals the big
deviation in the thickness of RBLs.

:
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Figure 5.9.: Positive and negative tangential velocity areas around the upper half of the
cylinder at Re = 140000 with @ = 2. Green: negative velocity, orange: positive
velocity

In conclusion, we can say that the different results of the Smagorinky-Lilly model and the
WALE model come from the fact that FLUENT’s Smagorinsky-Lilly model cannot distin-

Tt is noteworthy to mention that the WALE model accounts for the near wall area by modifying the
subgrid mixing velocity scale. Hence it ensures that both for the near wall modelling (LES-NWM) and
near wall resolution model (LES-NWR) in the near wall area v, ~ y°. See deatails in 12.9.3 FLUENT
User’s Guide [22]
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guish the different regions in the boundary layer. As we have seen, the Smagorinsky-Lilly
model produces too much viscosity in the near wall area and thereby causes the RBL to be-
come turbulent and hence to be thicker. Oppositely, the WALE model appropriately damps
vy close to the wall, thus transition first occurs in the separating shear layer. Therefore, the
WALE model mimics the involved physics better in the boundary layer and consequently,
this model was chosen for further simulations.

5.1.3. Effect of grid refinement and domain extension

As we have already seen in Table 5.2, the grid refinement and the domain extension had
only minimal effect on the aerodynamic forces. However, a general goal was to find the
"best" LES result for the RANS comparison. Due to the refinement the maximum y*
values reduced from 3 to 1.2. In the following figures the streamlines, k. and < u/v" > plots
are shown for M3 and M4 respectively.

(a) Streamlines with L3 (b) Streamlines with L4

Figure 5.10.: Streamlines around the cylinder at Re = 140000 with a = 2.

X X

(a) k, with L3 (b) k, with L4

Figure 5.11.: Resolved turbulent kinetic energy (k,) at Re = 140000 with a = 2.

45



0.5 0.5 0.5

o

0.1

0.08
0.06
0.04
0.02

o
3

-0.5

I
o

0.5

-0.02
-0.04
-0.06

o
y
[S)

L e e L B e B e e e e B e

4 [P N P IR S B |
171 -0.5 0 0.5 1

(a) < u'v’ > with L3 (b) < w'v' > with L4

Figure 5.12.: Kinematic Reynolds stresses at Re = 140000 with a = 2.

The additional grid points mainly were put in the near wall area, so the flow is surely
better resolved there, thus a general superiority in favour of the two refined LES WALE
run (L3 and L4) is approved. However, the choice between the two domain sizes is not that
straightforward. Moreover, as we see there is almost no difference between the results of
L2, 1.3 and L4. The streamlines give back very similar shapes and RBL is laminar for each
simulation. From the radial velocities (not plotted here for brevity) we get 052 ~ 316.25°
and QsLéo ~ 316.9°. Very small quantitavely differences between L3 and L4 are present in
the k, and < u/v" > plots, but again based on these differences it is impossible to make a
decision. In LES simulations it is always desirable to have as little as possible turbulence in
the subgrid model. As such, in the evaluation of the L3 and L4 we will rely on the subgrid
viscosity ratio values. Subsequently, we will use the wake of the cylinder for comparison, so
the values were examined in this area:

(a) vr/v with L3 (b) vy /v with L4

Figure 5.13.: Subgrid viscosity ratios at Re = 140000 with o = 2.
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In Figure 5.13 one can see that in the wake of the run with double extension in the z direction
(L4) less turbulence is modelled, therefore this model was chosen for further comparison.

5.1.4. Experimental validation

In order to verify the choosen WALE run with experimental data two WALE runs were
performed at Re = 140000 with o = 0 and at Re = 60000 with o = 1. Both simulations
were ran on G2 with dt = 0.001 dimensionless time-step until 100 dimensionless time. The
results are summed up below:

Id. Model | Dimension Re a | Cmean [—] | cdmean [—]
L4 WALE 3D 140 000 | O 0 1
Breuer [24] Smag. 3D 140 000 | O 0 0.97
Breuer [24] (finer mesh) | Smag. 3D 140 000 | O 0 1.05
L5 WALE 3D 60 000 | 1 1.27 0.5
Aoki and Ito [18] exp. 3D 60 000 | 1 1.16 0.58

Table 5.3.: Mean lift and drag coeflicients.

According to Table 5.3, the stationary run shows outstanding agreement with the numerical
results, while magnitude of the lift in the rotating case is also falls within 10% of the results
of Aoki and Ito [18]
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6. RANS results

In this chapter the RANS results will be summed up and compared with the reference LES
run (L4). Altogether 3 different types of RANS models were used: the k — e, the SST k — w
and the RSM, stress-w. The basic idea was to perform a steady (since it is proven that there
is no vortex shedding at @ = 2) and an unsteady run in 2D as well as in 3D with each model.
In case of the 2D steady RSM run, the domain was too small, reversed flow at the outflow
boundary was detected, so that the flow could not be fully developed and the simulation
finally crashed. As a consequence, in the table below only 11 runs are indicated:

Id. Model Grid | « Re Dim. Type
Rl | k—e(M3) | G4 | 2| 140000 | 3D | Unsteady
R2 | k—e(M3) | G4 | 2| 140000 | 3D | Steady
R3 | k—e(M3) | G5 | 2 | 140000 | 2D | Unsteady
R4 | k—e(M3) | G5 | 2| 140000 | 2D | Steady
R5 | k—w (M4) | G4 | 2| 140000 | 3D | Unsteady
R6 | k—w (M4) | G4 | 2| 140000 | 3D Steady
R7 | k—w (M4) | G5 | 2] 140000 | 2D | Unsteady
RS | k—w (M4) | G5 | 2 | 140000 | 2D | Steady
R9 | RSM (M5) | G4 | 2 | 140000 | 3D | Unsteady
R10 | RSM (M5) | G4 | 2 | 140 000 | 3D Steady
R11 | RSM (M5) | G5 | 2 | 140 000 | 2D | Unsteady

Table 6.1.: Different RANS runs

In Table 6.1 one can see that 2 types of grid are used in the RANS runs. The grids are
not only different in their 2 or 3 dimensional nature, but according to Table 4.1 also in the
number of points in the xy plane. The by far smaller involved computational costs allowed
us to use a finer mesh (which has the LES grid resolution in the xy plane) for the 2D cases.
Although the different resolution gives distorted picture about the differences between the
2D and 3D cases, our final goal is to compare each RANS run with the reference LES run
and hence finer resolution is more desirable. The convergence criteria in case of unsteady
runs remained the same as in the LES case i.e. residuals smaller than 10™% or maximum 20
iteration steps per time step.

The residuals were set to 10~ in the steady runs as well. It is important to mention that with
the 3D steady cases this convergence criterion could not be fulfilled either with the k—e (R2)
or with the RSM (R10) models. Although the relaxation factors were significantly decreased
and for the pressure-velocity coupling many models were tested after a certain limit further
diminution in the residuals could not be reached. The residual of the continuity equation got
stuck at around 2-10~% in case of the k — e run. In Figure 6.1a we do not see any variation in
the drag coefficient, which suggests that the eddy-viscosity models are capable of handling
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the problem as steady. Consequently, it is very likely that the convergence criterion might
be achieved with the k — € on a different domain or grid. Nevertheless, as we will see later
the general performance of the k — € is the poorest, thus additional 3D steady k — € runs
were not done. Unlike the k — €, the steady RSM model "wants to become" unsteady and
reasonable fluctuations can be seen in the drag coefficient (Figure 6.1b). The residuals of the
continuity and kinematic Reynolds stress equations could not go below 1073, Furthermore,
we should mention that the discretization scheme for the Reynolds stresses and for the
specific turbulence dissipation rate were only first order accurate. Therefore, the results
with R10 can be only examined with some suspicion.

¢, curve of R2 c, of R10

0.62 ¢

0.09 ¢

0.089 -

0.088

0.087 ¢

0.086 |

©° 0.085
0.084
0.083 }

0.082 +

0.081 -

0.08 > 0.5
3 3.05 31 3.15 3.2 3.25 33 28 2.85 29 295 3

Iteration number <10° Iteration number <10°

(a) 3D steady run with k — ¢ (b) 3D steady run with RSM

Figure 6.1.: Examples for drag coefficient variations

6.1. Lift and drag coefficients

As a first step of the comparison in Table 6.2 we look at the magnitudes of lift and drag
coefficients of each model.

Id. | Model Type Dim. | clmean [—] | cdmean [—]
R1 k —¢€ | Unsteady | 3D 6.1073 0.0896
R2 | k—e Steady 3D 6.0969 0.0856
R3 | k—e¢€ | Unsteady. | 2D 6.0914 0.0799
R4 | k—e¢ Steady 2D 5.9960 0.0893
R5 | k—w | Unsteady | 3D 5.4284 0.1025
R6 | k—w Steady 3D 5.3601 0.0947
R7 | k—w | Unsteady | 2D 5.3680 0.1012
R8 | k—w Steady 2D 5.3728 0.0913
R9 RSM | Unsteady. | 3D 5.0431 0.1471
R10 | RSM Steady 3D 4.7308 0.5480
R11 | RSM | Unsteady | 2D 6.1073 0.0896
L4 | WALE | Unsteady 3D 44711 0.1514

Table 6.2.: Mean lift and drag coefficients.
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Looking at the results of the & — € and the kw models in Table 6.2, probably the most eye-
catching finding is the small differences between the 2 and 3 dimensional cases. Similarly,
with the eddy viscosity models, the steady or unsteady nature has only a minor effect on
the results. To investigate the 3 dimensional structures in the 3D unsteady runs we used

the Q-criterion. By definition the Q values are:

1

in which:

Sij = 2 <8xj

is the rate of strain and

Qij - 5 <8I] -

is the rotation tensor.

ou;
+ a;) (6.2)

Ou;
8:132-) (6.3)

By plotting isosurfaces of constant Q values, the 3D structures can be visualized better
than by a vorticity plot where the high vorticity values in the boundary layer would gives
us a distorted picture. Figure 6.2 ! shows isosurfaces of Q-criterion for the unsteady 3

dimensional cases:

!These Q-criterion plots are based on the instantaneous mean velocity field
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(c) 3 D unsteady RSM, Q = 1572

Figure 6.2.: Q-Criterion isosurfaces

After very careful inspection one can see creases in the Q-criterion plots for the eddy-viscosity
models. However, it is fair to say that 3 dimensional structures, in a sense that they are
not extruded 2 dimensional structures only can be seen for the RSM run. From the two
eddy-viscosity models, the k —w shows closer values in terms of drag as well as lift coefficient
to the reference LES results. Unambigiously, the unsteady 3D RSM run gives back most
accurately the results of the LES run. This is the only simulation where the deviation of
¢; and ¢g from the reference does not exceed 15%. The steady RSM run shows extremely
good agreement with the ¢; (and at the same time extremely bad agreement with c¢4) of
the reference run. Nonetheless, due to the previously mentioned issues, the results of R10
should be rather discarded. It is important to mark the steady 2D k — w run. The steady
2D k — w run converged within 5 minutes, while for the 3D unsteady run almost 1 day of
computational time was required. For this cheap price, the ¢; results of R8 is more than
acceptable. Although for Flettner rotors the drag coefficient has only secondary importance,
it is worth noting that all of the eddy-viscosity models significantly underpredict the ¢4 of
the LES run. As a conclusion from the comparisons of the drag and lift coefficients 2 cases
seem to be promising: the unsteady RSM run due to its accuracy and the steady 2D k — w
because of its cost efficiency. In the next session the velocities in the wake of the cylinder
will be examined, which has even higher impact on the interaction.
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6.2. Velocities in the wake

In this section a realistic example is shown about how the incoming flow is influenced for a
second cylinder which is placed in the wake of the first one. Enercon E-ship 1 was already
shown in the introduction of the thesis in Figure 1.2d and in Figure 6.3 it can be seen from
another angle. The ship is owned by the wind turbine manufacturer Enercon GmbH. She
is in service from August 2010 so she is one of the first pioneering ships in the rebirth of
wind-assisted shipping. Each of her 4 Flettner rotors has a diameter of 4 meter (without the
end plate) and a height of 27 meter. We have seen in Figure 1.3 that thanks to her rotors
fuel saving up to 45% can be achieved. The beam of the ship is 22.5 meter and according to
Figure 6.3 the rotors have a base which is wider than the diameter of the rotors. Between
the side of the deck and these bases there is a space enough to walk. Conforming to this,
the distance between the rotational axis of two rotors which are at the same longitudinal
coordinate is approximately 4 diameter.

Figure 6.3.: Enercon E-Ship 1

A good indication of the wake effect is if we look at the incoming flow’s velocities along a
vertical line which is located just before the second cylinder. This line is marked with red
in Figure 6.4 and in the following we refer to it as affected region. The choice of the position
and the length of 3 diameter for the affected region are somewhat arbitrary.
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u=?,v="7?

3D

Figure 6.4.: Affected region

Furthermore, we should emphasize that the real flow field would obviously be different in
the affected region since as we have seen in the streamlines plot the flow is already very
disturbed because of the second cylinder. To take into account the effect of the second
cylinder would be the subject of interaction study between the 2 cylinders which would be
a topic of further work. Here, solely the effect of the first cylinder is considered and the
performances of the different RANS models are tested by comparing the RANS runs with
the reference LES run (L4).

From the time and space (averaged in the z direction) averaged flow field horizontal (along
x axis) and vertical (along y axis) velocities were extracted along vertical lines at distance of
1.5D, 3D and 3.5D from the cylinder in the wake as depicted in Figure 6.5. Let us assume that
the apparent wind is coming in the horizontal direction, the distance between the rotational
axes (based on the E-Ship 1 example) is 4D and the cylinders rotate counterclockwise. By
analogy to the first 2 rotors of E-Ship we imagine that the rotors are at the bow of the ship.
In Figure 6.5 the dark grey marks the bow and consequently the angles (noted here as ©)
are the angles between the ship’s direction and the apparent wind or in other words they
are the heading angles to the apparent wind.
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Apparent wind

15D

3D

3.5D

Figure 6.5.: Position of the second cylinder and the ship

In addition, one can see red and green segments on each vertical line. These segments mark
the affected regions as in Figure 6.5, where the heading angle is: © > 90°. In the following
pages the velocity plots for the unsteady 3D RSM (R9) and for the 2D steady k — w (RS)
are depicted because of their importance. The velocity plots for the other runs can be found
in Appendix B. The notation of the affected regions was kept for the graphs too. Green
segments belong to © < 90° and the red ones to © < 90°. In the plots, with black and
blue '+’ signs the velocities at the vertical coordinate of the center of the second cylinder
(so these points are at (-0.5,0) in a coordinate system fixed to the second cylinder) are also
marked.
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Looking at the results we see similar behaviour to the lift and drag values i.e. the k — ¢
performs the poorest and the RSM is the most accurate.

In general, one can see that the relative velocity difference from the reference LES run is
greater in the vertical velocity component. Except a very tiny region which is close and
almost behind to the first cylinder in Figure B.10 (the figure of the steady 2D k — €) run,
the & — € model always overpredicts the vertical velocity component. At the same position
but over a wider region the k£ —w model (Figure B.13, Figure B.16, Figure B.19 and Figure
B.22) also underpredicts the vertical velocity component, otherwise the vertical velocities are
overpredicted again. Since the inspected area where underpredicted velocities are popped up
is not in the affected region, we can conclude that for this arrangement the second cylinder
always experiences higher vertical velocity components with the eddy-viscosity models. The
RSM models (Figure B.25-Figure B.33) do not always follow the trend of the eddy-viscosity
models. Sometimes they give back smaller vertical velocities than the reference vertical
velocities even at further distances from the cylinder. Nevertheless, the unsteady 3D RSM
run which based on the aerodynamic coefficients was deemed to be the most accurate RANS
model behaves similarly as the eddy-viscosity models, so in the affected regions it always
gives back overpredicted vertical velocities.

After having a closer look at the horizontal velocity plots one can see a universal trend: the
horizontal velocity component of the reference LES run is overpredicted for the negative y
coordinates while it is overpredicted for most of the positive y coordinates. The change in
the trend always happens in the region: 0 < y/D < 1. To be exact, here we need to mention
that the steady 3D RSM (R10) run shows a different trend (Figure B.28, Figure B.29 and
Figure B.30). This fact, however just further strengthens the assumption that those results
should be discarded. Generally, the further we go downstream from the cylinder the smaller
the deviation from the reference is. However, close to the cylinder, especially in the plots of
30° and 150° which belong to the 1.5D distance from the cylinder huge differences can be
seen! In the region: 0 < y/D < 1 the reference horizontal velocity can be underpredicted by
20% even with the most accurate unsteady 3D RSM (R9) model (Figure 6.9) and by 40%
with the economical 2D steady k¥ —w model (R8) (Figure 6.6). In the affected regions the
velocities of the RANS runs show a quite good match with the velocities of the reference LES
(L4) for the arrangement of 30° and 150°. However, we should not forget that the distance
of 4D for the cylinders’ rotational axes was arbitrarily chosen. If the cylinders were closer
to each other the affected regions would move closer to the horizontal centerline of the first
cylinder (as it does with 4D for higher angles) and touch the highly underpredicted regions.
Consequently these findings suggest that there is a lower limit for the distance between the
cylinders. In case of the distance between the cylinders does not exceed this limit, there
will be highly undepredicted incoming velocities for the second cylinder. Next, let us have
a look at the plot of 61° and 119° and the plot of 90° which belong to distance: x = 3D
and x = 3.5D respectively. One can see that in these plots the red affected region and the
region of the most distorted velocities coincide. The most important findings, now solely for
the two most viable models, so for the 2D steady k¥ — w (Figure 6.7 and Figure 6.8) and for
the 3D unsteady RSM (Figure 6.10 and Figure 6.11):

— For 119° the horizontal velocities are almost identical with the reference LES velocities
in the affected region for both runs

— For 61° according to the '+’ signs the bigger deviation from the reference horizontal
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velocities are on the suction side of the second cylinder. With the & — w run closer to
the cylinder the velocities are underpredicted while away from the cylinder, in the end
of the affected region the velocities are overpredicted. The RSM run underpredicts
the velocities everywhere on the suction side, however its global deviation from the
reference LES velocities is significantly smaller than that of the £k — w model. On the
pressure side with both models the velocities are almost identical with the reference,
they are just slightly underpredicted.

— Contrary to the case of 61°, for 90° the suction side is the side where the velocities
almost match perfectly with the reference velocities for both runs.

Considering the effect of these changes in the incoming flow field without involving the
interaction effect cannot be done accurately. Nonetheless, there is one finding whose conse-
quence at least seems to be evident, namely the overpredicted vertical velocity component.
Even with the most accurate RSM model the vertical velocity component is overpredicted
by 10-15% everywhere in the affected regions. The higher vertical velocity component will
provide additional pressure to the suction side, which results in lift reduction. However,
the bigger vertical velocity component surely will influence the location of the separation
points too. The larger vertical velocity will accelerate the separation and also its pace on the
pressure side. Besides, by pushing the flow towards the surface of the cylinder it makes the
flow stay attached longer and the lower separation points might move to the pressure side.
Such displacements of the separation points are in favour of lift production. Consequently,
in terms of lift production the larger pressure on the suction side and the displacement of
the separation points counteract. Depending on which effect is the stronger we have lift pro-
duction or reduction from the changed velocity field. Or in other words, even what seems
to be evident is not evident. Therefore further guesses for the effects of the changed flow
field on the second cylinder are not presented here, and a thorough examination with two
cylinders is suggested.

Finally, let us have a closer look at the results of the unsteady 3D (Figure B.13, Figure B.14
and Figure B.15) and the steady 2D k —w (Figure 6.6, Figure 6.6 and Figure 6.6) runs. The
biggest deviations can be seen in the horizontal velocity component for the 30° and 150°
arrangements. The area of the differences is behind the pressure side of the first cylinder
(0.5 < y/D < 1). Although there are differences at further distances from the cylinder but
the most pronounced ones belong to the 30° and 150° arrangement so to 1.5D distance from
the first cylinder. Consequently, as long as someone does not choose the distance between
the cylinders’ axes to be small (for distances close to the cylinder the mentioned area is kept
out from the affected region) the 3 dimensionality and the unsteadiness do not provide too
much further information.

6.3. Grid dependency

As we have seen the first step was to examine the viability of the RANS models. Therefore,
the resolution of the grid in the previous analyses was chosen to be fine. However, after
knowing that the k¥ — w and the RSM models could be used for filling up the database of
the PPP, a cost reduced solution is desirable. Here, the 3D unsteady case with the k — w

99



model and with the RSM model will be tested. In Figure 6.12 one can see the used grid’s
structure.

Figure 6.12.: G7 the computational mesh for the coarse RANS runs

The grid remained very fine close to the wall (wall y* is smaller than 5 everywhere around the
cylinder), thus a big variation in the aerodynamic coefficients is not excepted. Nevertheless,
one can see that the growth ratio between cells has increased significantly and hence this
grid is significantly coarser in the wake area. A very important question is whether the poor
resolution of the wake spoils the wake velocity results. Table 6.3 shows the identification
and the main parameters of the runs:

Id. Model Grid | « Re Dim. Type
RI2 | k—w (M4) | G7 | 2 | 140 000 | 3D | Unsteady
R13 | RSM (M5) | G7 | 2 | 140 000 | 3D | Unsteady

Table 6.3.: Coarser RANS runs

Table 6.4 shows the lift and drag coeflicients with the original and with the coarser grid:

Id. | Model Type Dim. | Grid | chnean [—] | ¢dmean [—]
R12 | £k —w | Unsteady | 3D | coarse 5.3787 0.1002
R5 | k—w | Unsteady | 3D fine 5.4284 0.1025
R13 | RSM | Unsteady | 3D | coarse 5.0100 0.1025
R9 | RSM | Unsteady. | 3D fine 5.0431 0.1362

Table 6.4.: Mean lift and drag coefficients with the original and the coarser mesh for the 3D
unsteady runs with the & — w and the RSM models

As was expected there is just a very small variation in the coeflicients. The results for the
wake velocities were plotted together with the fine grid’s result and can be found in Figure
6.13-Figure 6.18. One can see that there are differences, however just moderate ones. The
area of the biggest differences is the wake behind the pressure side so it is the same region
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as it was in the RANS-LES comparison cases. The almost identical velocity results for the
areas outside 0 < y/D < 2 suggest that the grid could be made even coarser in these regions.
The saved grid points then could be used to refine the grid in the wake behind the pressure
side and hence improving the accuracy in that area. As a result even more accurate data
could be obtained while keeping the costs to be low. In conclusion, we can say that although
the solution is not grid independent, the results obtained with the coarser grids are more
than acceptable. In addition, the observed weak sensitivity for the grid resolution of the
RSM model makes that model very promising for the future research.
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7. Conclusion and recommendation for
further works

7.1. Conclusion

In the present work thorough examination was carried out with a flow around a spinning
cylinder. The Reynolds number and the rotational ratio was chosen to ensure that the flow
is in the regime which is representative for flow around Flettner-rotors (transcritical regime).
The goal of the examination was to evaluate the performance of different LES and RANS
turbulence models.

First we compared two LES subgrid models: the Smagorinsky-Lilly and the WALE models.
The analysis showed that the boundary layer around a rotating cylinder is complex and it
comprises of:

— an inner portion: a portion which moves bonded to surface of the cylinder and it was
called rotating boundary layer (RBL)

— an outer portion: which flows in the direction of the free stream. Depending on which
side we look at, this stream slides over or slides with the RBL.

According to the WALE model the boundary layer is significantly thinner than it was ob-
served with the Smagorinsky model. The main difference comes from the fact that the
Smagorinsky model produces too large subgrid viscosity in the near wall area, and hence it
makes the RBL fully turbulent. On the contrary, in the WALE model a correct damping
of the subgrid viscosity is incorporated, which ensured the RBL to stay laminar everywhere
around the cylinder. The laminar RBL is less capable of deflecting the incoming flow as a
result:

— A significantly thinner vortex formation was present on the pressure side with the
WALE run

e This thinner vortex does not penetrate as much into the free stream as the vortex
of the Smagorinsky model does.

e The smaller penetration results in smaller wake deflection.
— The flow separates under a smaller angle in the WALE model.

e Because of the smaller separation pace the overall pressure reduction in the quad-
rant which belongs to the front cap of the top side of the cylinder was greater for
the WALE case.
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e This pressure reduction was clearly seen in the pressure coefficient plots. The
pressure coefficients for the two models were identical in all but the mentioned
region.

e The lower pressure of the area reduced the lift coefficient by 5% and the drag
coefficient by 23% for the WALE model.

Contrary to the choice of the subgrid model, the grid refinement and domain extension for
LES simulations have shown only minor effects. Finally, the WALE run (L4) with the refined
mesh and with a 2 cylinder diameter height was deemed to be the most accurate simulation.

In the second part of the analysis several RANS runs were carried out with the k& — e,
SST k —w and RSM stress —w models. The evaluation of these simulations was based on
the comparison of the aerodynamic coefficients and the wake velocities with the reference
LES run (L4). The 3 dimensionality of the flow has only been clearly seen for the RSM case.
Besides, the fact that the flow is in the regime where vortex shedding has died out, raised the
question whether a steady and an unsteady run would give the same results. The results of
the eddy-viscosity models showed very little difference for the steady and the unsteady case.
However, the RSM model was more sensitive for the unsteadiness: convergence could not
be reached with the steady RSM 3D case and the domain we used was not appropriate for
the steady 2D RSM case. The fluctuation of the lift and drag coefficient with the steady 3D
RSM run suggests that the RSM model still regards the flow to be unsteady. The comparison
has suggested two models for further work, namely:

— 3D unsteady RSM run because of its accuracy.
— 2D steady k — w run because of its prominent cost-accuracy ratio.

Grid dependency analysis was performed for the 3D unsteady RSM and the 3D unsteady
k —w models. The analysis has shown that the models have a weak sensitivity on the grid’s
resolution, which is very promising for the main research.

The required time for the simulations is very important in terms of the future research.
During the thesis qualifiers 'faster’ and ’slower’ have been used many times. To have a
clearer picture about the meaning of these qualifiers for the present work, in Table 7.1 the
run-time of some jobs is indicated. The unsteady simulations have been ran on the same
cluster and they depict the required simulation time for 100 dimensionless time-steps. The
two 2D steady runs show the required simulation time for their convergence. These steady
simulations were running on a significantly slower cluster, but still their simulation time is
just a moment comparing to the simulation times of the unsteady ones.
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Id. | Model Type Dim. | Time [hrs] Comment
L4 | WALE | Unsteady | 3D 119 Double span!
R1 k —¢€ | Unsteady | 3D 11 -

R4 k—e Steady 2D 0.1 Slower cluster
R5 | k—w | Unsteady | 3D 22 -

R8 | k—w Steady 2D 0.08 Slower cluster
R9 | RSM | Unsteady | 3D 41 -

R12 | k—w | Unsteady | 3D 8 Coarser grid
R13 | RSM | Unsteady | 3D 8.5 Coarser grid

Table 7.1.: Simulation times

It is very important to note that only the WALE run with the height of 2 cylinders diameter
was running on this powerful cluster. Since the resolution of the grid was kept constant and
only the height of the domain doubled, the WALE run with 1 diameter height would last
for around 60 hours. One can see that due to the larger number of equations (comparing
to LES +8 equations) on a fine grid the RSM stress — w model has comparable run-time
to the LES run-time. However, the coarser grid yielded a 5-fold decrease in the simulation
time. Although this is a significant cost reduction, the cost of the 3D unsteady RSM model
with the coarse grid is still 85 times higher than that of the 2D steady k — w. The question
whether the 3 dimensionality is necessary for the interaction can be only answered after runs
for 2 cylinders. Morover, at a further stage the research should involve true Flettner-rotors
with end-plate, where obviously a 2D model cannot be used. The physics of the flow in the
vicinity of the end-plate is complex so that to handle it with RANS models surely will be a
challenge. Nevertheless, at least this thesis work has proved that the RSM stress —w model
can operate with a good accuracy-cost ratio on a flow around a spinning bare cylinder.

7.2. Recommendations

As we can see this thesis work is a starting point of the Flettner-rotor field of the wind
assisted ship propulsion’s research of TU Delft and POLIMI. Hence, there are many things
to do. Here some of the most interesting recommendations are mentioned:

— Although it is not strongly connected to the research, it would be interesting to see
whether the WALE model is capable of capturing the boundary layer transition (i.e.
the Inverse Magnus Effect) for smaller rotational speed. Some trials were performed
during the thesis work. Those results did not show transition and confirmed that even
if there is transition with the WALE model, the grid should be extremely fine to be
able to tackle it.

— Trying out another RSM models apart from the RSM stress — w would make sense.

— It is also advisable to continue the grid dependency analysis. For instance by making
finer the grid in the wake behind the pressure side and coarser elsewhere.

— Surely it is not an easy task, but due to the fast simulation time with tuning the
coefficients in the eddy-viscosity models the accuracy of the 2D steady runs might be
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increased.
— With the results of this work it is already worth to start the vortex methods analysis.

— The research has arrived to the stage where the examination for more cylinders is
already possible.
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A. Turbulence modelling

In this chapter a summary about the used turbulence models is intended to give. Turbulence
is a very broad topic in engineering, thus here only the basics can be discussed. Apart
from deriving the governing equations special emphasis will put on the implementation in
FLUENT.

A.l1. Introduction

The present problem is governed by the incompressible Navier-Stokes equations. The con-
tinuity:

6ui _
52, = ° (A1)

and the 3 momentum equations:

% +u'8ui B _1 Op 1/82u2-
ot Tox;  pOx; am?

(A.2)

In fluid dynamics it is conventional to introduce the material or substantial differential
operator:

D _ o

With the help of the above mentioned definition Equation (A.2) can be rewritten as:

Du; 1 0p 0%u;

Dt~ pow U oa?

(A4)

Due to the advection term (2"¢ term on the left hand side in Equation (A.2)) the Navier-
Stokes equations are non-linear differential equations. Mathematicians have been struggling
with finding a solution for this type of equation for long time. They had no success in it so
far. The problem is that with increasing the Reynolds number the effect of the nonlinear-
term is more pronounced, hence the flow becomes more complicated. As a result, in most
of the cases there will be more than one solution for the equations. Among the solutions,
one will find time-dependent and unstable ones too. Unstable solutions can grow in time
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and quickly dominate the flow, thereby making the flow more and more complicated or even
chaotic. In fluid dynamics we refer to these chaotic situations as turbulent flows.

In these type of flows turbulent motions extract energy from the flow through fluctuating
motions. The fluctuations cause local instabilities inside the flow, as a result of these in-
stabilities vortical structures, eddies pop up in the flow. These large eddies (the macro
structures of the flow) are scaled with the characteristic length scale of the main flow:

ug ~ U (A5)

lo~L (A.6)

in which scales denoted by capital letters refer to the scales of the main flow, whilst scales
with lowercase letters and 0 subscripts to the scales of the macro structures. Furthermore,
the energy extracted from the bulk is used for feeding these large eddies. Large eddies are
unstable, thus they break up to smaller ones. This procedure continues till the eddies reach
a size at the Kolmogorov lengthscale where they are stable. Finally, the energy extracted
by the turbulent fluctuations dissipates at the Kolmogorov scale, increasing the internal
energy of the fluid. This process is called Richardson energy cascade and is summed up in
Figure A.1. Between the production conducted large and dissipation dominated Kolmogorov
scales in the energy transport one more scale is present. This is the inertial subrange where
production and dissipation are equally important.

e=T()=P

dissipation € production P
into heat (energy from mean flow)
u(l)?*
l
transler of energy
lo smaller scales
. e, W et ¥

T(l) =

(log scale) /) lpi lgg lo L
dissipation inertial subrange energy-conlaining
range range
micro-structure / macro-
universal equilibrium range structure

Figure A.1.: Schematic diagram of the energy cascade. Taken from Breugem [25]

According to the Richardson cascade the amount of turbulent energy extracted from the
bulk is determined by the large eddies which are in the energy containing range. Figure
A.2 shows the nature of the flow in the energy containing range as well as in the dissipation
range.
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(a) Anisotropic macro-structures

(b) Isotropic micro-structures

Figure A.2.: Different scales in a turbulent mixing layer. Picture is taken from Van Dyke
28]

The pictures unambiguously depict the enormous difference between the two lengthscales’
size. Furthermore, it is very important to note that the motions are not only different in
their size but in their nature as well. The flow is strongly anisotropic at large scales, since
the direction of the large eddies is determined by the bulk flow, whilst at Kolmogorov scale
it is not possible to determine any dominant direction in the flow, so that small eddies
are isotropic. Therefore, as one is moving towards smaller and smaller scales, inevitable
information loss emerges about the creation of the smaller eddies and regarding the nature
of the main flow.

We have seen that the Navier-Stokes equations cannot be solved (at least according to the
current stage of science) analytically. However, they can be solved numerically and this is
the subject of computational fluid dynamics. In order to numerically solve the Navier-Stokes
equations one should either:

— discretise them on a grid which has resolution until the Kolmogorov scale, and directly
solve them without turbulence modelling, this what we call direct numerical simulation
(DNS), or

— apply turbulence model(s) in which the whole or just a fraction of the fluctuating part
of the velocities is modelled.

In the next sections the two aforementioned approaches will be summed up. The current
computations were carried out with RANS models as well as with Large Eddy Simulation
(LES), thus these methods will be introduced in more detail.

A.2. Direct Numerical simulation (DNS)

The main disadvantage of the DNS is its computational cost, which makes it simply infeasible
for high Reynolds numbers. The viscous dissipation rate scales as:

3
€~ 20 (A7)

lo

With the help of the viscous dissipation we can define the Kolmogorov length and velocity
scales:
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3 1/4
0= () (A-8)

Uy = (ev)/* (A.9)

So for the Reynolds number of the Kolmogorov scales we get that:

1/4
(ev) M/t (”)
Re, = 221 = =1 (A.10)

1% 1%

This proves the previous assumption that the viscous dissipation can play a role in a scale,
where Re ~ 1. Let us assume two flows with the same geometry but different Reynolds
number. The change in the Reynolds number is thus either associated with growth in the
flow’s velocity scale (and hence growth in the velocity scale of the macro structures) or
diminution in viscosity. According to Equation (A.7) in case of greater velocity scale the
large eddies provide more energy to the smaller scales than in the smaller velocity scale
case. This implies that w,, should increase too. In order to keep the Reynolds number equal
to 1 n should decrease. In other words, small eddies are still too energetic, they should
break up even further to reach the stable case where Re ~ 1 so that they can be dissipated.
Now, we consider the case where the velocity scale remains unchanged and the viscosity
decays. In agreement with (A.7) the provided energy by the large scales does not vary
either. However, conforming to Equation (A.8) the Kolmogorov lengthscale should decrease
again. This means that in both cases we need to increase the resolution of the grid to be
able to capture the smaller motions. With the help of Equation (A.8) the ratio between the

micro and macroscales:
l l 3/4 UL 3/4
o, <U0 0> ~ () = Re/* (A.11)
n v v

so that the number of grid cells should scale with Re?/* as well in order to fulfil the required

resolution which really reveal the infeasibility of DNS for high Reynolds number.

A.3. Turbulence models

Unlike DNS, turbulence models cannot directly calculate all fluctuations in the flow field.
As it was mentioned in the introduction, turbulence is represented by stochastic signals.
In concern with Figure A.3 a stochastic signal can be decomposed into a resolved and
a residual part. The base of turbulence modelling is that only the resolved part of the
stochastic signals is calculated and the effect of the residual part is modelled. In order to
obtain turbulence models one should apply operators on the Navier-Stokes equations and
solve these model equations. Depending on the nature of the operator we can distinguish
two distinct modelling techniques:

76



— the mean variables are calculated and all the turbulence fluctuations reside in the

model

— certain amount of the turbulent fluctuations are calculated and only a fraction of the
turbulent fluctuations is modelled

The most used Reynolds Averaged Navier-Stokes (RANS) model belongs to the first category,
whereas Large Eddy Simulation belongs to the second.

Figure A.3.:
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Stochastic signal and its decomposition. Upper picture: the signal itself, middle
picture: the mean of the signal, lower picture: the fluctuating part of the signal.
Taken from Breugem [25]

A.3.1. RANS models

According to the Reynolds decomposition an arbitrary signal can be divided into a mean
and a fluctuating part (see also in Figure A.3):

f=N+r (A.12)
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where ( ) indicates the mean value and ’ marks the fluctuating part.

RANS equations

In the Reynolds Averaged Navier-Stokes models one applies the Reynolds averaging opera-
tor on the continuity Equation (A.1) together with the momentum Equations (A.2). The
resulting RANS equations:

8<ul> _

9o =0 (A.13)
0 (i) Oy _ _10() 0°(w) _Ofuu))
5 T (W) o0~ pows TV 52 o, (A.14)

By analogy to Equation (A.3), we can also apply the Reynolds averaging operator to form
the mean material derivative operator:

@EQ+@.V (A.15)

Rewriting Equation (A.14) with Equation (A.15) we arrive to a more compact form of the
RANS equations:

D)) _ 100) | ) )

Dt p 0x; g 8x? 0z

(A.16)

The RANS equations have a similar form to the Navier-Stokes equations. However a new

A/, . . . .
term:— <g;?]> popped up on the right hand side of the momentum equations. We call this

term: Reynolds term which is a symmetrical 3 dimensional tensor and it is the direct result
of averaging the nonlinear term. After rewriting Equation (A.16) one arrives to the following

form:
0 (u;) 0 (u;) 0 ,
Tor j =5 ij i Al
p( 8t + <uj> 85[7] 01’] <UZJ> +Tl] ( 7)
in which:
(o) = P)oij — pr2(Sy) (A.18)
isotropic deviatoric
part part

is the mean molecular stress where:
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is the mean rate of strain and

oty = pld) (A.20)
is the Reynolds stress. The interpretation of the Reynolds stress is that turbulent fluctua-
tions act on the mean flow as if they induce an additional stress. The RANS equations in
their current form are not closed, since we have 4 equations and 10 unknowns (3 velocity
components, pressure, 6 Reynolds stress components), thus a closure model is needed for
the Reynolds stress. The most widely used closure models are based on the Boussinesq
hypothesis.

Boussinesq hypothesis

The Boussinesq hypothesis assumes that similarly to the mean molecular stress tensor o;;,
the turbulent stress tensor Ti’j also could be divided into an isotropic and a deviatoric part.
Furthermore, as the deviatoric part of (0;;) is connected to the mean rate of strain (S;j)
through the molecular viscosity v as the result of the constitutive equation, the deviatoric
part of 7/; could be connected to the rate of strain of the mean flow field (S;;) via an artificial
eddy-viscosity v¢. For introducing the Bousinnesq hypothesis, first let us define the turbulent
kinetic energy, which is half the trace of 7;;:

1 1

1 1
k= 57’7;/7; =35 W' + 3 ) + B W' (A.21)
With k& we can decompose TZ-/jZ
/ 2 , 2
Ty= gk 4| Ty — Pkl (A.22)
——
isotropic part —_—
(Turbulent pressure) deviatoric part

(Turbulent shear stress)

The Turbulent pressure in Equation (A.22) usually is not modelled, rather it is added to the
mean pressure term in Equation (A.17) and the overall pressure is calculated. Nonetheless,
for the Turbulent shear stress a closure model is set up, which is the Boussinesq hypothesis:

2
3

/ p—

pkéi]‘ = —thQ <Sz > (A.QS)

in which: 14 is the eddy-viscosity.
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Thus, one can see that according to the Boussinesq hypothesis the additional stress originates
from advective transport of mean momentum by turbulence fluctuations. Finally, after
substitution of Equation (A.23) into Equation (A.22) one can write:

2
3

I

pkdi; — pri2(Sij) (A.24)

Equation (A.24) is often referred to as Boussinesq approzimation in literature.

Let us have a closer look at the Boussinesq approximation. It is evident that with defining
vy the RANS equations are closed, therefore models which use this approximation are called
Eddy-viscosity models. The main advantage of these models is the simplicity. Nevertheless,
we need to reveal the biggest drawback of the Boussinesq approximation: the approximation
is inherently wrong, since it assumes that turbulence is isotropic in the flow. We have already
seen the isotropy of the flow only holds at the Kolmogorov scales, however in RANS models
all of the turbulence is modelled, thus the strongly anisotropic energy containing range
is calculated according to isotropy too. In spite of this drawback, eddy-viscosity models
perform very well for various flows, especially when the turbulence is local. Also what we
loose in accuracy with modelling all of the turbulence, we gain back in computation time,
since RANS models can be ran on relatively coarse grids. As such, they are widely used in
industrial applications.

Scaling of eddy-viscosity in RANS models

The dimension of the eddy-viscosity is the same as the molecular viscosity’s i.e [14] = [v] =
[m? /5], hence v should scale with a product of a velocity and length scale. Large fluctuations
belong to the energy containing range, thus eddy-viscosity should scale with the mixing
length and velocity of the energy containing range:

vy ~ uglo (A.25)

Consequently, to define v one should first find the mixing velocity: ug and the mixing length:
lp of the large eddies and this is the subject of the Two-equation eddy-viscosity turbulence
models.

Two-equation eddy-viscosity turbulence models

The first two equation model was the k — ¢ model introduced by Jones & Launder in 1972,
the other very popular model is the k — w by Wilcox in 1993. Here w denotes the frequency
of the turbulent eddies: w = €¢/k Nowadays, in any industrial package many varieties of
these two basic models can be found. Moreover, new models keep turning up, increasing the
accuracy or just simply customising the basic models for a certain type of flow.

The models are based on the proportionality between the turbulence kinetic energy and the
mixing velocity, as well as between the viscous dissipation and the mixing length:
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ug ~ Vk (A.26)

g~ e = (A.27)

Transport equations can be derived for k and € or for k£ and w. The solver then simultaneously
solves the 2 equations and obtains an eddy-viscosity through a constant for every iteration
step:

— yfork—e

ki2
Vy = CH? (A28)

— v for k — w: N
Vg = Cw; (A29)

where C, and C,, are model constants.

Here we only present the transport equations of the standard k& — e model, since in the thesis
we refer to them.

— for k:
<D> k 0 V¢ ok
—_p.L 2 L Dhthly A.
Dt L 8$j (V+ O’k)al'j ¢ ( 30)
in which:
0 (u;) 0 (u;)
P = —p{uiu}) P _Ti/jaTj (A.31)
in concern with the Boussinesq hypothesis:
Pk = 2Vt <SZ > <Sz > (A32)
— for e:
(Dye € 0 v\ Oe €2
—— =Ca-P,+ — — = — Coa— A.
Dt Clk‘ k+3:vj (V—I_ae)@wj 02k‘ (A.33)

In Equation (A.30) and in Equation (A.33) ok, 0., Ca and Cey are model constants which
have been tuned to a variety of flows.
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A.3.2. Boundary layer

In this section we suppose that the boundary layer is 2 dimensional (the extension in the z
direction is 0 and the free stream flows in the x direction) and it is of zero gradient boundary
layer type, which means that the pressure only varies in the horizontal direction.

Eddy-viscosity models in their current form: Equation (A.28) and Equation (A.29) cease to
be valid in the boundary layer. The presence of the wall has a double effect on the flow:

— Eddies very close to the wall cannot have a size that scales with the main flow because
they are blocked by the wall

— Eddies very close to the wall cannot have a velocity that scales with the main flow
because they are slowed down by the wall

As a result of these assumptions, we need to define new velocity and length scales in the
boundary layer. It was found that the variation of the flow along the wall is negligible
comparing with the variation in the wall normal direction. Thus, if the mean flow flows over
a flat horizontal plate, the total shear stress reduces:

T =

—pl/M + p /v’ (A.34)
8y ——"
SN=——~—" turbulent

viscous shear  stress: T
stress: o,

Due to the no-slip and no-penetration boundary conditions, the turbulent stress in Equation
(A.34) disappears at the wall, hence the wall shear stress becomes:

0 (u)

= pl/
oy 0

Tw = —7(0) (A.35)

Viscous scales

It is obvious that in the near wall region the viscosity and the wall shear stress are important
parameters. Therefore the length and velocity scales of this region are connected to these
parameters and they are defined as:

— friction velocity:

Tw
Ur = 4 | — A.36
p (A.36)
— wiscous length scale:
5, = ui (A.37)

With the help of these scales we define two dimensionless quantities, namely:
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— dimensionless velocity:

ut = ) (A.38)

— wall unit:

yt = 51 - (A.39)

Regions in the boundary layer

One can notice that y™ is similar to a local Reynolds number, so it is expected that when
yT is small (close to the wall) the viscous stress whilst for large y™ (remote from the wall,
but still in the boundary layer) the turbulent stress will govern the flow. Figure shows the
fraction of the turbulent and viscous stress normalized by total shear stress in the near wall
area:
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Figure A.4.: Profiles of the fractional contributions of the turbulent stress and viscous shear
stress to the total stress. DNS data of Kim et al. [30]: dashed lines, Re = 5600;
solid lines, Re = 13750.

We should note that Figure A.4 shows a result for a plane channel flow. The behaviour of
the flow is not exactly the same in a plane channel and in the case of a boundary layer flow,
however it is very similar. A plot about the contribution of the stresses would give almost
identical results for a boundary layer. According to the DNS data of Kim et al. [30] depicted
in Figure A.4, very close to the wall the viscous shear stress gives the whole contribution to
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the total shear stress. Moving further from the wall, the turbulent stress grows rapidly and
the two stresses become equal at y ~ 12. After this the turbulent stress slowly but surely
overtakes the dominance. Finally, for y* > 50 the viscous shear stress is negligible since its
contribution drops below 10 %. Consequently, the near-wall flow can be divided into two
distinct regions:

— yt < 50: wviscous wall region,
— yT > 50: outer region,

In the viscous wall region for y* < 5 the effect of turbulence stress disappears, thus this
subregion is called: wviscous sublayer.

Another division of the boundary layer exists which has mathematical considerations and it
is used to determine the dimensionless velocity profiles as functions of wall unit. According
to this the boundary layer comprises of:

— y < 0.19,: inner layer: the mean velocity profile is determined by the viscous scales
and by the distance to the wall: y. The velocity profile is independent of the free
stream velocity: Uy and the boundary layer thickness: §,

— yT > 50: outer layer': the mean velocity profile is independent of 6, but it is depen-
dent on: Uy, J,, y and u,

In concern with these considerations one can write:

0 (u)

Ty = f(yv Ur, 6I,y) (A4O)

for the mean velocity gradient in the boundary layer. In Equation (A.40) we have 5 variables
and 2 dimensions (length, time). Hence, according to the Buckingham II theorem, the
dependence of the variables can be written by 3 dimensionless group:

yolw _ (Y ¥
w0y (I)(é,,’ 533) (A.41)
Law of the wall

As it was stated before in the inner layer the mean velocity profile depends only on : u,, y
and J,. As a consequence, Equation (A.41) reduces to:

y o) _ 4 (@/> (A.42)

ur 0y oy

Or equivalently:

The outer region and the outer layer are equivalent. Their different names just stand for distinguishing
the way how they have been defined.
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Ou” :43;¢1(y+) (A.43)

oyt oyt
After integration one can write:
ut = fy <y+> (A.44)
In which:
o
n 1
fw(y ) = gézuody (A.45)
0

Equation (A.44) is known as the law of the wall. The most important outcome of the law of
the wall is that in the near-wall region u™ solely depends on y™. After having a closer look
at the law we will see that the behaviour of f,,(y1) is different in very close to the wall (in
the viscous sublayer) and remote from the wall.

The viscous sublayer

The boundary conditions for f,(y™) at the wall: f,,(0) = 0 and f}(0) = 1. The Dirichlet
type of boundary condition is due to no slip at wall (v = 0), whilst the Neumann type

is obtained by normalizing Equation (A.35) with the viscous scales (ggi = 1). One
y =
can write the Taylor expansion for f,(y") for small y:
fuly™) = fuw(0) + f,(0)y* + HO.T. = y* (A.46)
which yields:
ut =yt (A.47)

in the near wall region. Experimental results, like the one which is depicted in Figure A.5,
have revealed that the linear relation in Equation (A.47) holds in the whole viscous sublayer,
so until y* < 5. The other region of the inner layer will be introduced later.

Velocity-defect law

Contrary to the inner layer, in the outer layer the effect of viscosity is negligible, so that
Equation (A.41) becomes:

y 0w y
By = Do ((5‘%) (A.48)
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or equivalently:

() fu;) 1 y
oNy/dz) (y/éx)q)O((sx) (A.49)

After integrating Equation (A.49), one arrives to the velocity-defect law:

Uo— W _ p <y> (A.50)

Ur O

where:

vy _
y

1
/ ;cbo@c@ (A51)
[0z

Overlap region

According to the definitions of the inner and outer layer for 50 < y* < 0.14,/d, we have
an owverlap region. Consequently, the overlap region comprises of the outer region of the
inner layer and the inner region of the outer layer. The general consideration is that in this
region the flow is sufficiently remote from the wall for neglecting the effect of viscosity and
similarly it is enough far from the end of the boundary layer, so the dependency of 9§, is still
not important. This yields that the ® functions on the right hand side of Equation (A.42)
and Equation (A.48) can be represented by a single constant:

1
O (y*) = dp (;) = in the overlap region (A.52)

in which:

Kk =0.41 (A.53)

is the Von Karman constant. After substitution of Equation (A.52) into Equation (A.43)
one gets:

—=—— A.54
oyt kyt ( )
Equation (A.54) integrates to:
+_ 1 + :
uT = —In (y > + B log law for inner layer (A.55)
K
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Where B is a constant. In literature there is some variation for the exact value of B. In
general, we can say B ~ 5.2. Now let us substitute Equation (A.52) into Equation (A.49)
so that we arrive to:

o) /ur) 1 1

== A.56
0w/e)  x (/e 450
Which integrates to:
- 1
Uou(u) = —Eln (;) + By log law for outer layer (A.5T)

Depending on the nature of the flow: B; ~ 0.2..0.7. Both Equation (A.55) and Equation
(A.57) are known as the log(arithmic) law. If one adds the log law formulation for the inner
(Equation (A.55)) and for the outer layer (Equation (A.57)) together the friction law is
obtained which provides a solution for u,:

Ur K =

Yo _ 11n(§”> +B+B (A.58)

Although the overlap region is confined to 50 < y™ < 0.14,./d, it was found that the log law
is valid for: 30 < y* <0.20,/4,

Velocity-defect law reconsidered

The log law describes the inner region of the outer layer until y/d, =~ 0.2. However, for
y/0, 2 0.2 the mean velocity gradients deviates from the log law. In turbulence we refer to
this discrepancy as: wake contribution. Cole |26] provides a formula which incorporates the
wake effect, thus the velocity defect law can be written through the whole outer layer:

-t _p, (;) _ _im@ 5 _jw(§> (A59)

velocity-defect law log law for outer layer law of the wake

in which:

| (A.60)

In Equation (A.59) w is the wake function and II is the wake strength parameter (Coles
parameter). The wake strength parameter is flow dependent, whereas for the wake function
the commonly used approximation:
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Y ) —osin2w| T Y
W<5w> = 2sin W<2 51) (A.61)

So far in the boundary layer we have tracked all but the region: 5 < y* < 30. This is the
buffer region and it got its name because this is the transition region between the laminar
and the turbulent region. It is known that the production of turbulent kinetic energy peaks
at this region, thus it is essential to capture this region accurately. To determine the mean
velocity profile in the buffer layer in Pope 23] an empirical guess provided by Van-Driest is
given which is not written here in details for brevity. The base of the Van-Driest method
is to create a smoothing function for the mean velocity from the velocity profiles in the
viscous sublayer as well as from the log-layer. At the lower limit (y™ = 5) the influence of
the log-layer disappears, oppositely at y™ = 30 the mean velocity is defined by the log-law.
Commercial packages also uses smoothing functions for the buffer layer. The nature of the
smoothing function is defined differently in every package.

Buffer layer

Figure A.5 compares the solution obtained from the described laws with experimental results.
One can see that in each region the laws are capable to give a very accurate approximation
for the mean-velocity.
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Figure A.5.: Mean velocity profile of a smooth-flat-plate turbulent boundary layer plotted in
log-linear coordinates with viscous scales normalizations. Taken from: Perlin
et al. [31]
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Finally let us give a summary of the position of the different layers and regions which were
mentioned in this section:

1074 103 0.01 0.1 0.2: 1
1 l | VA T J

lwa ke |

region

INNER LAY
viscous wall region
buffer layer

viscous sublayer
2 3 i
! L1 k) 2 A 1 |

! 5 10 30:50: 100 1,000 10,000

Figure A.6.: Different layers and regions in a turbulent boundary layer

Eddy-viscosity in different layers

Similarly to the core of the flow eddy-viscosity should scale with the velocity and the length
scale of the local large eddies. According to Figure A.6 the boundary layer can be divided
to a viscous wall region, a log-law region and a wake region. We focus here our discussion
on the overlap region.

Turbulent boundary layer and plane channel flow are identical all but in the wake region,
hence for determining the turbulent viscosity in the log-law region one can again rely on plane
channel flow results in Figure A.7. In this flow the log-layer is demarcated as: 50 < y* < 120.
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Figure A.7.: Profiles of DNS of channel flow at Re = 13750. Results are obtained from Kim
et al. [30]

With the help of the law of the wall as well as according to Figure A.7 one can write the
three fundamental properties of the log-layer:

— the mean velocity gradient:

out 11 Oy  lu,
- il A.62
oyt myt dy Ky (4.62)
— the local balance of production and dissipation:

— the local constancy of the normalized kinematic Reynolds stress:

1,0
W)~ 03 or ~ -1 (A.64)
k uz
For expressing the turbulent viscosity in the log-layer we use the local length (mixing-length:
) and velocity scales (mixing-velocity: uy) as:
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Vp = Uslm, (A.65)

Let us implicitly define the mixing-velocity:

uy = | (W02 (A.66)

After substitution of Equation (A.66) into Equation (A.65) together with the use of the
Boussinesq hypothesis for the boundary layer ((u/'v') = 14(0(u) /dy)) and the first property
((0(w) /Oy) = ur/(ky)) one arrives to:

1% (A.67)

According to the third property |(u/v')|~ u2. With the help of this consideration, in the
log-layer:

— the velocity scale of the large eddies: .,

— the mixing length of the large eddies: l,, = ky which is known as: Prandtl’s mixing
length hypothesis. The most important result of Prandtl’s mixing-length hypothesis is

that eddies scales linearly with the distance to the wall. With this result it is just a
matter of algebra to deduce that %;0, P, = —p /) % and € vary inversely, whilst
k

the turbulent time scale 7 = 7 varies linearly with y in the log-layer.

Finally we can write:

Ou) | _
(93/‘ = urKy (A.68)

Vi = Ul = 12,

for the turbulent viscosity in the log-layer.

The mixing length hypothesis is usually embedded into the standard wall functions’ formu-
lation in each solver, however the way how the other two regions are handled is different
from package to package. Furthermore, only the mixing length in the log-layer has funda-
mental outcomes, thus the mixing lengths for the remaining regions are not introduced here
in details . Nonetheless, it is worth to note that the mixing lengths are less than [,,, = ky
in both the viscous wall region and in the wake region.

Implementation in FLUENT

In the beginning of this section we shall mention that the k£ —w model explicitly incorporates
the near-wall treatment, thus the below decribed methods are only applicable for the k — ¢
model.

In FLUENT two fundamental methods exist to handle the boundary layer: "wall functions"
and "near-wall modelling". In the standard k& — ¢ model both methods use Equation (A.28)
in the outer layer, however the viscosity affected inner layer is treated differently. In case of
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"wall functions" approach the viscous wall region is not resolved. To bridge the viscous wall
region between the wall and the fully-turbulent outer layer semi-empirical "wall functions"
are used. "Near-wall modelling" uses modified turbulence models in the vicinity of the wall,
hence it is capable of resolving the viscous wall region too. Figure A.8 sums up the main
difference between the two approaches:

! terbudent core

* b“"‘" .k
USDAVe =3 E 1 3
(a) Wall functions modelling (b) Near-wall modelling

Figure A.8.: Boundary layer modelling in FLUENT. Taken from: FLUENT User’s Guide
12.10.1 |22]

Standard wall functions modelling method belongs to the "wall function" approach. It uses
either the linear relation between ™+ and y™ or if the node is outside the viscous sublayer the
log-law employed. Since, nodes that are placed to the buffer layer are treated as they would
be in the log-layer, it is highly recommended to not to put nodes there. In concern with
the above mentioned wall laws, the mean velocity can be calculated. The friction velocity,
u,; can be obtained for instance from a node which is placed in the log-layer according
to Equation (A.58). However, we should take into consideration that in a general CFD
simulation neither the boundary layer thickness nor Uy are known priory. Nonetheless,
these quantities are functions of each other, thus they can be solved iteratively. The "k":
Equation (A.30) is solved till the wall. The boundary conditions for k at the wall: £ =0
and 0k/0On = 0 respectively. The derivative to the normal direction of the surface is only
zero exactly at the wall, and hence moving more remote from the wall the production term
G}, starts growing. FLUENT calculates the value of Gy in the wall adjacent cells on the
basis of the local equilibrium hypothesis so that it assumes that these points are in the log-
layer. The transport equation for € is not solved, instead € is calculated likewise assuming
local balance of production and dissipation. Standard wall functions are widely used in the
industry since they are robust and cheap. Nonetheless, the "wall function" approach ceases
to be valid when the flow departs too much from the ideal case. In our simulation due to
the fast rotation in the vicinity of the cylinders a strong body force is applied on the flow.
As such, standard wall functions only could have been used with caution and it was wiser
to fully resolve the boundary layer even though this made the computation more expensive.

Due to the limitations of standard wall function in FLUENT, a more elaborate treatment is
also available. This is the enhanced wall treatment, which can also properly handle the nodes
that are placed in the buffer layer. This treatment comprises of two sub-methods: two-layer
model and enhanced wall functions. Depending on the resolution of the mesh FLUENT
switches between the two sub-methods.

The two-layer model is used in case of finer meshes, where the mesh is fine enough to be
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able to resolve the laminar sublayer (typically y* ~ 1). This model can again be subdivided
into a viscosity-affected region and a fully-turbulent region. The categorization of the nodes
in the boundary layer are carried out according to the local turbulent Reynolds number
(Rey, = yVk/v). As it was mentioned before the standard model is used in the fully
turbulent region. In the region very close to the wall the one-equation model of Wolfstein is
applied. This one-equation model solves transport equations for the "momentum" and "k"
according to Equation (A.16) and Equation (A.30). Nonetheless, transport equation is not
solved for €, it is instead calculated from "k". Furthermore, the most important thing is
that eddy-viscosity is calculated differently from Equation (A.28). In the rest of the viscous
affected region a blending function is applied which combines the two eddy-viscosity such
that close to the wall the eddy-viscosity will be identical with the result from the Wolfstein
model, while close to the outer layer eddy-viscosity approaches the standard model and in
the region between a smooth transition is produced.

If the mesh is not fine enough to be able to fully resolve the viscous sublayer, but it is fine
enough to contain points in the buffer layer enhanced wall functions are used for determining
the velocity profiles in the boundary layer. Since this method is also a wall function method,
similarly to the standard wall functions only the transport equation for "k" is solved until
the wall, the mean velocity and e are calculated. The boundary conditions for "k" are the
same as in the standard wall function case. Nevertheless, G in the near-wall region is
computed using the obtained velocity gradients from the wall functions. In the buffer layer
the procedure is the same which was written in the previous section : the buffer layer is
calculated via a smoothing function which combines the results from the viscous sublayer as
well as from the log-law. Furthermore, enhanced wall functions are slightly different from
the standard ones.

The goal of this section was to give a general overview of the applied wall functions for
RANS calculations. The exact description of the above mentioned methods can be found in
FLUENT User’s Guide 12.10 [22]

Reynolds stress model (RSM)

So far we introduced the eddy-viscosity models which are based on the Boussinesq hypoth-
esis. Another (and possibly more straightforward) solution for the closure is to derive and
solve transport equations for each component of the Reynold stress. The main benefit of this
model is its capability of accounting for anisotrophy. Nonetheless, many times the biggest
part of error comes from the fact that the whole turbulence is modelled. As such, the ad-
ditional cost involved in RSM (+2 equations in 2D or +5 equations in 3D comparing with
eddy-viscosity models) does not always pay off in better accuracy. In the present problem
the strong recirculation area in the wake of the cylinder definitely makes the turbulence
non-local, therefore a superiority is expected from this model.

A.3.3. Large Eddy Simulation

In Large Eddy Simulation filtering operators are applied on the Navier-Stokes Equations
(A.1)-(A.2). As a result of the filtering process, the large scales (eddies) are directly calcu-
lated while the residual motions (in the so-called subgrid-scales) are modelled. In a perfectly
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resolved LES these subgrid-scales lie in the universal equilibrium range (see in Figure A.1).
Unlike RANS, LES simulations cannot be carried out effectively on 2D grids. Turbulent
eddies are fundamentally known to be 3 dimensional, and since in LES we directly calculate
the large eddies a 3D computational domain is inevitable. The main rationales in directly
calculating the large eddies are:

— By far the biggest fraction of the turbulent kinetic energy is stored in the large fluc-
tuations. Furthermore, momentum, mass and other passive scalars are transported
mostly by large eddies as well.

— Large eddies are anisotropic. The boundary conditions as well as the geometry mainly
influence the large eddies.

— Contrary, small eddies are more isotropic and hence, turbulence models that assume
isotropy (like the eddy-viscosity models) can model them effectively.

Due to these considerations one can expect that LES is superior to RANS when large
unsteadiness plays an important role in the flow, such as for flow over bluff bodies (where
vortex shedding and unsteady separation appear), so also in the present problem. RANS
and LES, as it will be shown later are very similar in many senses. This is not surprising
since averaging is also a filtering process. Hence RANS can be regarded as the upper limit
of LES where the filter is that wide to only be capable of resolving the fluctuations of
the mean flow and the residual fluctuations i.e. the whole turbulence resides in the subgrid
model. Therefore, the derivation of the LES or RANS model equations have exactly the same
analogy. Due to the similarities, RANS knowledge comes in very handy in the explanation
of LES. We will also refer back to the RANS section and make comparisons between the two
models. Nevertheless, one should always keep in mind that despite the similarities, RANS
is just a special case of filtering and consequently LES is a more general model, this fact
will yield substantial differences between the two models.

Required resolution for LES

The easiest way to imagine the LES calculation is if we apply the filtering operator to a real
signal e.g. to an experimental or to a DNS result. To further simplify the problem this time
we only take the horizontal component of the velocity field. In Figure A.9 such a velocity
component together with its filtered and residual part is depicted:
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Figure A.9.: Upper curves: a sample of the horizontal component of the velocity field U(x)
together with its filtered field U(x) (bold line), residual field U (z) and the

filtered field of the residual field U%(x) (bold line). Taken from Pope [23|

In the LES procedure as we mentioned before the filtered part of the velocity component is
directly calculated taking into account the effect of the residual part through a turbulence
model. As such if one defines LES as a physical process, a filter with filter width /A should
be sought which in the wave number space of the solution effectively annihilates all Fourier-
modes whose wave numbers are greater than the cut off wave number and in the same time it
has no effect of the lower wave number modes. Subsequently, the obtained filtered equations
can be solved numerically on a grid with spacing h. This procedure simplifies further if we
consider LES as a numerical method, which is the subject of computational fluid dynamics.
In this case finite volume discretization already incorporates the filtering procedure which
means: A = h. Or in other words the finer the mesh the larger the number of the resolved
eddies is and the less fraction will be modelled. Then, the trivial question rises: how fine
should the resolution be of the computational mesh?

Before answering this very important question it is wise to clarify the main goal of an LES.
The main purpose of an LES simulation is to achieve statistical equality between the real
and the filtered flow field. We will demonstrate this with an example for the velocity field
Let us apply the filtering operator to a real flow field such as shown in Figure A.9:

U= U + U (A.69)
v v
filtered  residual
part part

One can apply a statistical operator to this field:
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QY = Q{U;} (A.70)

The aim of the LES is to apply a filter on the flow field which leads to statistical equality
between the real and the filtered flow field:

QU = Q" (A.71)

Therefore, /A should be as small to be able to assure that the residual part only has negli-
gible statistical influence. One can also notice that A is very dependent on the boundary
conditions and flow type. A good example for the boundary condition: at the wall, compar-
ing with the rest of the flow field "there are no large eddies" and hence, the mixing length
is changed. The influence of the flow type could be easily understood through turbulent
combustion, where the rate-controlling processes of molecular mixing and chemical reac-
tion occur at the smallest scales. Obviously these examples require smaller A than a high
Reynolds number free-shear flow where the information is mostly represented by the large
scales. It is generally accepted that if at least 80 % of the turbulent kinetic energy resides
in the filtered velocity components the two terms in Equation (A.71) tend to be equal.

Now let us assume that one defines a filter which ensures the equality in Equation (A.71).
Next, we can apply a decomposition to the numerical model:

m; = w; -+ 1 (A.72)
~—~ ~—~
resolved  residual
part part

in which:

m;: is the numerical velocity field

w;: is the resolved part of the numerical velocity field
r;: is the residual part of the numerical velocity field

and we also apply the statistical operator:

Q™ = QU +Q" (A.73)

The main discrepancy between the physical and the numerical decomposition is that while
in the physical LES the resolved part is perfect, in the numerical LES it is modelled. Conse-
quently, the resolved field’s statistics, Q"¢ depends on the filter, on the discretization scheme
and on the model as well. We note here that U; cannot be equal to w; even if we assume that
the residual part is perfectly modelled. This is the direct result of the fact that both U; and
w; are random 3 dimensional fields so that their future evolution is not determined by their
current state. In order to emphasize the difference, the experimental results are written with
capital, whilst the calculated ones with lowercase letters. From the numerical LES point
of view therefore the main goal is to use an appropriate spacing h on which the turbulence
model as well as the discretization scheme are capable of operating with negligible error and
can assure the statistical equality:
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Qui = QUi (A.74)

Unambiguously, if the resolution is bad, i.e. h is too big a significant information will be
in the residual part of the numerical model. Since (see later in the Smagorinsky model)
the residual motions in LES are modelled much simpler than in the RANS case, a not fine
enough grid resolution completely spoils the results and we can produce an LES calculation
which is rather a poor RANS.

In real life no one is interested in the equality in Equation (A.75), instead we directly try to
achieve:

QU = Q™ (A.T5)

which points out how the filtering and discretizing merge together: A = h in the numerical
LES case. Nevertheless, this equality unfortunately cannot always be reached due to the
previously mentioned strong dependency on the flow type. Figure A.10 illustrates Q™ and
QY , Q" in two different flows. The figures belong to unrealistically high Reynolds number,

where the intermediate asymptote Q7" in the inertial subrange is known to be present.

o H Q=07

b) Q¥ and Q™ as a function of A in a flow with-

m; . . .
(a) @™ as a function of A in a flow with control- out controlling processes in the Kolmogorov
m;

ling processes in the Kolmogorov scales. Q" scales. o ¢ indicates the statistics of the
indicates the statistics of the DNS solution DNS solution

Figure A.10.: LES statistics in two distinct flow types. Taken from: Pope 2004 [27]

One can see that in Figure A.10a (which roughly represents a turbulent combustion) the
desired equality in Equation (A.75) is only achieved in the Kolmogorov scales, so the grid
resolution should be in the order of DNS resolution. As a consequence, this flow type is
not recommended for LES modelling. Contrary, in Figure A.10b (which loosely can be
interpreted as a free-shear flow case) the contribution of Q" disappears in the beginning
of the inertial subrange, yielding statistical equality between the LES and the DNS field
Le: QU = Q™ = Q7" = Q" = QY. Or in other words: with only resolving the
energy containing range we can calculate the statistics of DNS, this fact makes Large Eddy
Simulation the most accurate turbulence model.

In Figure A.10 two extreme cases were depicted. Real flows are somewhere between these
two examples. In terms of LES simulation it is desirable to approach the free-shear flow case
so that to oppress the statistical influence of the residual part. To finally draw a conclusion,
in a flow which is applicable for LES, it is deemed that if h < Ig; then Q™ ~ Q" = QYi.
In order that the residual statistics do not have a significant contribution i.e.: Q% ~ Q" =
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TR Qp = QY the 80-90% of the turbulent kinetic energy should be resolved. The
amount of resolved kinetic energy is not known priory, moreover it changes with the flow
in each iteration step. Nevertheless, it can be estimated after the simulation to get insight
regarding the resolution.

Computational cost of LES

In computational cost LES falls between RANS and DNS. Comparing with DNS, the enor-
mous computational cost arising from resolving the Kolmogorov scales is saved. To have an
idea about the saving, Figure A.11 shows the solution domain in wavenumber space for a
DNS calculation of isotropic turbulence:
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Figure A.11.: The solution domain in wavenumber space for a DNS of isotropic turbulence.
Only 0.016% of the modes lie within the sphere of radius Kpj, representing
motions in the energy-containing range and in the inertial subrange. Taken
from Pope [23]

In consonance with Figure A.11 there are orders of magnitude difference between the cost
of DNS and LES. On the other hand, unfortunately LES is orders of magnitude more
expensive than RANS. The finer grid radically raises the computational cost. It is known
that halving the spacing h increases the required memory and CPU time by factors of 8
and 16, respectively. Furthermore, according to Figure A.10 LES is extremely sensitive for
the resolution: results from a too coarse grid are inferior to RANS results, on the contrary
refinement in the inertial subrange does not contribute to better accuracy but higher prices!
Apart from the higher resolution, in LES the flow field will be unsteady even if the mean
flow does not change in time. Accordingly, to obtain accurate statistical results, LES should
be ran for significantly longer time (i.e. more iteration steps are needed) than in RANS.
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We have seen that LES could be feasible for higher Reynolds number than DNS, however in
case of resolving all the energy containing range i.e. h < g the resolution scales with the
Taylor microscale, the scale of the inertial subrange, see in Figure A.1. The ratio between
the Taylor microscale and the Integral length scale is:

zé = V10Re™1/? (A.76)
0

which implies that the resolution should also scale with \/ﬁRe_l/ 2, Moreover, in the near
wall regions, due to the smaller scales of the local large eddies even finer resolution is needed:
hwali << l%?in flow ~ As mentioned before, computational cost scales with =%, hence with
local refinements one can easily trigger a cost explosion. Consequently, keeping the resolved
turbulent kinetic energy above 80% also in the near wall region is not feasible for very high
Reynolds number and the use of wall functions (even if y* & 1!) are inevitable.

To sum up, LES might become one day the Holy Grail of CFD. Nevertheless, nowadays,
accuracy still comes with a high price.

The filtered Navier-Stokes i.e. the LES equations

By analogy to the Reynolds decomposition, an arbitrary signal can be decomposed to a
filtered and a residual part:

f=f+rt (A.77)

The filtered Navier-Stokes equations read:

ng =0 (A.78)
ow; _ 0u; o |__ R
-— | = —— | 53; o A.79
p(@t +u]axj> 0x; Oij + Tjj ( )
in which:
75 = by — pv25; (A50)
is the filtered molecular stress where:
— 1{({0w; Ou;
Si= = v J A .81
J 2 <8m] + (91}) ( )

is the filtered rate of strain and
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ot = p(ww; - m; ) (A.82)

is the Reynolds stress of the residual motions. We can see that the LES and RANS equa-
tions indeed have exactly the same form, nevertheless in the definition of T,L-I;L we can find

a substantial difference, namely: the filtered residual field is not 0: 1? # 0. We note here
that the mean of the residual field is not 0 either: (uf) # 0. According to the equations a
closure is needed here as well, this is the subject of the next section

Smagorinsky model

The Smagorinsky model was introduced by Smagorinsky in 1963 and it was generalised to
its current form by Lilly in 1967. Although this model is deemed to be by far not the most
accurate closure for LES, it is a base of many subsequently evolved LES model, hence its
demonstration is mandatory. The Smagorinsky model is very similar to the RANS eddy-
viscosity models in a sense that both use the Boussinesq hypothesis. However, unlike RANS
eddy-viscosity models, the Smagorinsky model explicitly defines the length and velocity
scales and hence transport equations are not needed.

Similarly to the RANS deduction, let us introduce the residual kinetic energy, which is the
half of the trace of 7'5‘:

kR

| =

i (A.83)

With the help of &k the anisotropic residual stress tensor:

2
Tr- = *ka(sij (A.84)

zj—Tij_g

Like in the RANS case the isotropic residual stress is not modelled, rather it is added to the

filtered pressure p. Finally, 77. is connected to the filtered velocity field via the Boussinesq

ij
hypothesis:

75 = —pvr2Si; (A.85)

in which the eddy-viscosity of the residual motions is modelled by analogy to the mixing-
length hypothesis (Equation (A.65):

v, =128 (A.86)
where S is the charactersitic filtered rate of strain:

5= (257,-5,)1/ ’ (A87)
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and lg is the Smagorinsky lengthscale which is taken to be proportional to the filter width
through the Smagorinsky coefficient, Cg:

12 = (Cg)? (A.88)

In the Standard Smagorinsky model Cg is constant and according to Lilly [29] in high
Reynolds number turbulent flows with a filter in the inertial subrange: C's = 0.17. Keeping
Cys to be constant everywhere in the flow yields that the standard model cannot distinguish
the fundamentally different regions in the flow. For example, in the laminar region Cg should
be 0 and because of the reduced turbulent scales in the near wall area, C's must be decreased
compared with its value in the core region. Another problem is that in real flows there can
be local backscatter which is an inverse energy transfer process i.e the energy is transferred
from the residual motions to the filtered motions. Obviously, this effect cannot be captured
either by any eddy-viscosity or by a Smagorinsky model. Furthermore, in transitional flows
as well as for homogeneous flows the Smagorinsky model is too dissipative, i.e. too much
energy is transferred to the residual motions.

Despite its drawbacks the Smagorinsky model is widely used in industry, since it is cheap.
Besides, we will see later that with a little modification its performance can be tuned in the
boundary layer.

Implementation in FLUENT, the Smagorinsky-Lilly and the WALE model

Since in the standard model Cg is constant everywhere in the flow, in the log-layer it is
inherently incapable of producing a wall distance dependent lengthscale and hence giving
back the logarithmic velocity profiles. In order to correct this in the Standard Smagorinsky
model of FLUENT a slightly different Smagorinsky lengthscale is applied which accounts
for the log-layer:

ls = min (/id, CSV1/3> (A.89)

in which:

k: von Karman constant

d: distance to the closest wall

Cg: the Smagorinsky constant, here Cs = 0.1
V. volume of the computational cell

However, this model still cannot reproduce the correct wall asymptotic behaviour (very
close to the wall (u'v') ~ —y3, see in Figure A.7) for wall bounded flows. As such, in the
simulations the Wall-Adapting Local Eddy-Viscosity (WALE) Model was used which can
correctly model this area as well. The detailed description of the model can be found in
12.9.3 FLUENT [22].
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Near wall treatment in LES and its implementation in FLUENT

In LES, for he near wall treatment two fundamentally different approaches exist:

— LES with near wall resolution (LES-NWR): a very fine grid is used which is capable
of resolving the 80 % of the turbulent kinetic energy even in the whole wall region.

— LES with near wall modelling (LES-NWM): a coarser grid is used and like in the
introduced FLUENT’s models in the wall region a smaller lengthscale is applied when
the mesh is not fine enough

Obviously, LES-NWR, gives more accurate results. Nevertheless, resolving the boundary
layer extremely increases the computational cost and beyond a Reynolds number LES-
NWR is simply not feasible. To demonstrate this we estimate the required dimensionless
grid spacing in the log-layer of a zero-gradient boundary layer (the one which was introduced
in the RANS case) for Reynolds number of our simulation, i.e. for Re = 140000. Combining
Prandtl’s mixing length hypothesis with Equation (A.76) gives the required dimensionless
grid spacing for a good resolved LES in the log-layer:

AT () = At (yh) = la'(y+)\/ERe_1/2 = kyTV10Re /2 (A.90)

in which the terms with plus sign in the superscripts are made dimensionless by 9,,.

Substitution of Re = 140000 gives:

A1 x0.001833y (A.91)

In a mesh for LES calculation, as a rule of thumb, the growth rate between cells should be
kept under 1.05 thus, the local refinements close to the walls imply global refinement of the
grid, hence leading to a cost explosion.

In FLUENT the default LES wall functions use the linear relation between u™ and y™ in
the viscous sublayer and in the log-layer the log-law is applied. In the buffer layer the two
laws are blended by analogy to the RANS enhanced wall treatment. It is worth noting that
these wall laws were deduced from the RANS equations, and hence applying them to LES
means that in the wall adjacent cells the filtered velocity field is represented by the modelled
mean velocity field. Although this does not seem to be theoretically correct, in practice,
usually it gives good results, obviously with same limitations as for RANS. Alternatively,
the Werner-Wengle wall functions can be used, which is a sort of two layer method based on
the wall shear stress. In the simulations the default wall functions were used. The detailed
description of the wall functions can be found in FLUENT User’s Guide 12.10.6 [22]

Further closure models for LES

Due to the limitations of the Smagorinsky model, new models have been recently developed.
Here we intend to give a brief summary about the two most important models.
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The dynamic Smagorinsky model was introduced by Germano in 1991. The base of the
method is that with applying a double filtering process on the velocity field Cg (z; ,t) can
be calculated. Hence this model accounts for the different lenghtscale regions. Additionally,
in the calculation of i Cg (i, t) is introduced, unlike in the standard model where CL% was
used. Consequently, the dynamic model also can capture the backscatter.

The normal and dynamic Smagorinsky models assume local equilibrium between the ex-
tracted energy at macroscales and the dissipated one at micro scales. This is the direct
result of the algebraic nature of the models, that only incorporates information from the
filtered flow field. In accordance with this T[j is related to w; at the same time and in the
neighbourhood of z;. It is more realistic to account for history and non-local effect, so that
similarly to the one-equation RANS models, instead of defining the subgrid mixing velocity
as lgS, one can calculate the mixing velocity by solving an additional transport equation
for kf.

Although the dynamic Smagorinsky as well as a model which includes transport equation
for k% are capable of accurately modelling the turbulence in the residual motions, they all
have their shortcomings too. The dynamic model can be unstable because of the backscatter
and solving one more transport equation always raises the computational cost. Besides, in
LES calculations the main goal is to resolve the energy containing range as much as it is
possible. In such well resolved cases, the involved cost and complexity of these models are
not justified by a guaranteed increase in accuracy.
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B. Velocities in the wake
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