]
TUDelft

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft Institute of Applied Mathematics

DNA Data Storage using Hamming and Reed-Solomon Codes

Thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

BY

Eva Slingerland

Delft, Netherlands

June 2019

Copyright (©) 2019 by Eva Slingerland. All rights reserved.

]
TUDelft

BSc thesis Applied Mathematics

“DNA Data Storage using Hamming and
Reed-Solomon Codes”

(Dutch title: “DNA Data Opslag met Hamming en
Reed-Solomon Codes”)

E. Slingerland
4572580

Delft University of Technology

Supervisor

Dr.ir. J. H. Weber

Thesis committee

Dr. B. van den Dries Dr. D. C. Gijswijt

June, 2019 Delft

Preface

This thesis is the final step for the Bachelor Applied Mathematics at the Delft University of
Technology. Like most high schools, my school required students to do a small research in one of
their profile courses. This is where my interest for the topic of this thesis started, since I decided
to research cryptographic methods. More specifically, 1 looked into the story of Alan Turing
and his contributions to the Second World War. This interest made me attend a symposium
called ‘The Key to your Privacy: the Science behind Cyber Security’ in the first year of my
bachelor. My interest grew more and more and I chose to follow the elective course called
Applied Algebra: Codes and Cryptosystems, which taught me more about the mathematics
behind those cryptographic methods and about coding theory. Therefore, when I heard that
I could do my thesis on the topic of coding theory, I immediately said yes. Furthermore, the
research was combined with another subject that I have always found really interesting: DNA,
which I had only come across during my biology classes, though it was one of my favourite topics
there.

Before I started, I had never heard of the opportunity to save data on DNA. However,
when I began reading more about the topic, it made sense. Within our society, a lot of data
is produced. Therefore, it seems logical that problems will occur if people try to save all of it
because servers and computers have a limited storage capacity. DNA has many advantages, of
which the most important one is that it can store a lot of information , thus it is an obvious
choice. Moreover, DNA based data storage is a topic that is currently being researched a lot.
For example, the paper from Takahashi et al. in [1], that I mostly focused on, was published in
the beginning of this year. So even after finishing this thesis, I will definitely keep an eye out
for new developments in this field.

Lastly, I would like to thank my supervisor J. Weber for his great guidance. He gave me a
lot of feedback during the writing process and helped me out whenever I did not understand
something. Finally, I would like to express my gratitude to the thesis committee for reading and
reviewing this thesis.

Eva Slingerland
Delft, June 2019

v

Abstract

Nowadays, enormous amounts of data are produced on a daily basis. Whether it is a cute family
picture, a funny cat video, or a scientific paper, all of the data is stored. The challenge in data
storage nowadays is about finding a way to store a lot of data, in such a way that it will stay
preserved for many years without too much maintenance and such that if errors occur, the data
can still be retrieved. DNA is a great choice for this, since the DNA from extinct species that
lived 10,000 years ago can still be retrieved, it does not need maintenance and it is estimated that
it can store 5 PB per gram [2]. However, in reading and writing DNA, substitution, insertion
and deletion errors occur, so the data needs to be protected against these errors. Therefore,
several coding methods have already been invented and researched. Takahasi et al. [1] designed
a full automated system for writing, storing and reading data, which consisted only of the word
hello, using DNA.

This thesis focuses on the coding method used by [1], namely a Hamming code, and compares
it to the implementation of a DNA based Reed-Solomon code, applied to the same data. An
analysis is made based on the net information density, GC-weight, homopolymer runs and
the error detection and correction properties. As expected, there is a trade-off between the
net information density and the error detection and correction properties. Although the net
information density of the Reed-Solomon code is lower, it can correct more errors and it has the
potential of also being applied to a bigger data set.

Contents

1 Introduction

1.1 Motivation e e e
1.2 Thesis Statement
1.3 Organisation of thesis L

2 Prerequisites

2.1 DNA .« e
2.2 Datastorage e
2.3 From data to DNA e e
24 Coding theory

3 Previously researched methods

3.1 Constraints e e e e e
3.2 The Church et al. Method
3.3 The Goldman et al. Method
3.4 The Grasset al. method
3.5 Comparison of techniquessofar. o L L.

4 Hamming code
4.1 General properties of Hamming code

4.2 Hamming code applied to DNA

4.3 Encoding data to DNA using Ham(31,26) code
4.4 Decoding DNA to data using Ham(31,26) code

4.5 Examples of errorso
4.6 Error simulation e
4.7 Analysis

5 Reed-Solomon code
5.1 Introduction to Reed-Solomon codes

5.2 Reed-Solomon applied to DNA

5.3 Encoding data to DNA using the RS(9,5) code
5.4 Decoding DNA to data using the RS(9,5) code

5.5 Examples of errors L

5.6 Error simulation

5.7 Analysiso
6 Comparison

6.1 Net information density and error detection and correction

6.2 Implementations e

6.3 Applicability of Hamming code to bigger data

6.4 Applicability of Reed-Solomon code to bigger data,
7 Conclusion and discussion

7.1 Conclusion e

7.2 DiIscussion
Bibliography

vi

B~ e W W e e

[NoBRo IEN BEN I eI}

10
10
10
11
12
13
14
15

17
17
17
17
18
19
19
20

22
22
22
23
23

24
24
24

26

A Extra examples
A.1 Extra examples for Section 4.5
A.2 Extra examples for Section 5.5

vil

1 Introduction

The beginning of this thesis will discuss why the topic of DNA based data storage should be
investigated and what part of it this thesis researches. Also, an overview is given of what each
chapter is about.

1.1 Motivation

As explained by Bornholt et al. in [3], more and more data is being produced on a daily basis.
A big fraction of all the data is archival data, which is also called cold data. This means that the
data is meant for being stored away and that it does not need to be accessible at every moment.
Archival data is typically stored on magnetic and optical media, but there are some downsides
to this approach. Despite the fact that the storage density is about 100 GB/mm?, it would
be impossible to store zettabytes, so billions of gigabytes, of data without needing millions of
units and a lot of space. On top of that, this type of media is not durable and needs a lot of
maintenance, since they only last up to 30 years right now. Therefore, there is a desperate need
of an alternative to store the enormous amounts of data.

In [3], the researchers also explain why DNA seems to be a perfect solution: it is eight orders
of magnitude denser than tape, it has a storage capacity of 5 PB, so 5 million GB per gram
DNA, it is self-replicating and it stays intact for at least several thousands of years without
high maintenance costs as long as it is preserved in a dry, cold an dark environment [2]. But,
DNA also comes with downsides, since quite a lot of errors occur in the reading and writing
processes of DNA [4]. This is were coding theory comes in, to secure the data before it is
written on DNA. A lot of research has been done, with different codes like the Huffman code
[5], Reed-Solomon codes [6][2][7] and Fountain codes [8]. Several have already been successful
in completely retrieving their data, or in implementing random access, but a lot of chemical
and biological processes in this are involved as well. Therefore, in order to be able to actually
implement DNA based storage, more research needs to be done into a system that automatically
takes care of those processes and secures the data at the same time.

1.2 Thesis Statement

One recent research paper attracted our attention: “Demonstration of End-to-End Automation
of DNA Data Storage” by Takahashi et al. [1]. In that paper, a fully automated system is
described for encoding data, writing it on DNA, reading the DNA and decoding the data again.
This seems like the first real step into practical use of DNA based data storage. However, the
data only consisted of the 5 byte string hello and a Hamming code was used, which can only
detect 2 errors and correct 1 error, and which had not been used by researchers before in this
context. Therefore, we decided to look into this code and to improve it by using a Reed-Solomon
code that was altered for DNA use.

In this thesis, methods that have been developed so far will be studied first. Next, the
Hamming code from the previously stated paper will be explained an analysed, before it is
investigated whether it is possible to use the Reed-Solomon code instead. So, this thesis inves-
tigates whether it would be better to use the Reed-Solomon rather than the Hamming code for
DNA based storage.

1.3 Organisation of thesis

This section describes how the remainder of this report is organised and what each chapter is
about.

Chapter 2: Prerequisites. In this chapter, an overview of prerequisites containing nec-
essary concepts that are used throughout this thesis is given. It will provide an introduction to
DNA, data storage and coding theory. All this information is needed in order to understand the
problem and the researched methods that are discussed in Chapter 3.

Chapter 3: Previously researched methods. This chapter will begin by discussing
some constraints and properties to build a code and to measure the quality of it. Then three
methods that were the first to describe large scale DNA storage will be explained and a short
overview is given on what has been done since then.

Chapter 4: Hamming code. Firstly, this chapter will give a general introduction to the
Hamming code. Then it will explain what parameters are chosen to apply it to DNA. Next, it
will give a step-by-step description on how encoding and decoding works, before examples are
worked out to show how errors are handled. More examples can be found in Appendix A.1. The
next step is to implement an error simulation to test the code, and finally a detailed analysis of
this code is given based on the net information density, GC-weight, homopolymer runs and the
error detecting and correcting properties.

Chapter 5: Reed-Solomon code. This chapter has the same structure as Chapter 4.
So, firstly a general introduction to the Reed-Solomon code is provided. Next, the parameters
are chosen and justified, before the encoding and decoding mechanisms are explained. Again,
examples are worked out, with additional ones in Appendix A.2. Then the error simulation is
implemented and lastly the whole process will be carefully analysed.

Chapter 6: Comparison. In this chapter the results from the previous chapters are
summarised and compared. The trade-off between the net information density and the error
detection and correction of both methods is analysed. Moreover, the comprehensibility of the
implementations and the applicability of both methods to a bigger data set is evaluated.

Chapter 7: Conclusion and discussion. This final chapter will conclude the results that
have been found in this thesis. It will also discuss these results and give recommendations for
further research.

2 Prerequisites

This chapter will explain the basics of DNA, data storage and coding theory. In Section 2.1,
the structure of DNA together with the process of writing and reading DNA is explained. Next,
Section 2.2 gives an introduction to data storage, after which Section 2.3 describes how to use
DNA to save data. Lastly, Section 2.4 describes basic concepts within coding theory.

2.1 DNA

In order to be able to explain the process of storing data on DNA, a short introduction on the
basic properties of DNA will be given. The information below is retrieved from [3] and [9].

DNA, which is short for deoxyribonucleic acid, can be found in the cells of all organisms.
It is a source for storing information. For example, it encodes the genetic information that
instructs a cell how to make proteins. DNA is made up of two strands of paired nucleotides(nt)
that are wrapped around each other in a so called double helixz form. These nucleotides are
sometimes also referred to as the building blocks of DNA, since the order in which they appear
contains the most important information of the DNA. A nucleotide consists of a five-sided sugar,
a phosphate group and a base. There are four different types of nucleotides, each defined by
a specific base: A (Adenine), C (Cytosine), G (Guanine) and T (Thymine). Throughout this
thesis the abbreviations A, C, G and T will be used. Two single strands of DNA bond together
in a specific way based on the nucleotides to get the double helix form: A and T are always
paired together and C and G are always paired together, in the sense that they are always each
others opposites in the two strands. This is called complementary base pairing.

DNA replication is the process in nature where DNA molecules are copied or created. This
is done by all living cells and occurs typically as part of cell division. During this process, the
DNA strands are separated under the influence of the enzyme helicase, where each strand serves
as a template for the production of the counterpart. DNA polymerase is the enzyme that reads
the existing DNA strand and produces two new strands that match the existing ones. After
the copy is made, the copied strands are put together to form a new strand of DNA that can
again be copied. To start this whole process, primers are needed, which are short pieces of DNA
where the DNA polymerase enzyme can bind to. They indicate the beginning and end of the
region that needs to be copied.

This whole process can luckily also be done artificially in a laboratory, by a so called poly-
merase chain reaction (PCR). Then, also DNA polymerase and primers are used. It is frequently
applied to make a huge amount of copies of a certain DNA strand that needs to be analysed.
The process of creating DNA molecules, either naturally or artificially, is called DNA synthesis.
Thus, this technique can be used to ‘write’ a certain strand of DNA. When talking about artifi-
cial DNA, the term oligonuclotide comes up quite often. This is a short piece of single stranded
DNA, and is often used for genetic testing, research and forensics.

Another interesting process is called DNA sequencing, where the order of the nucleotides
in a strand of DNA is determined. This can also be seen as a way to ‘read’ the DNA. Again,
PCR is used and primers are needed, since having a lot of copies makes it easier to read the
DNA. Illumina is the platform that is most used right now and overall has the best performance
of modern sequencing technologies in terms of yield and accuracy. However, there are also
other options like the Pacific Biosciences single-molecule real time technology and the Oxford
Nanopore sequencing systems. Unfortunately, the costs of the first one are fairly high and the
error rates are significantly higher than those of Illumina sequences. For the second one, a
hand-held device called MinlON has been developed, which is relatively cheap. However, it
again comes with high error rates, so it is not a good alternative [4]. This thesis is mostly be

concerned with encoding and decoding DNA and therefore the details of these processes will not
be discussed in further details.

Nonetheless, the errors that appear in these processes are interesting for this research. There
are 3 types: deletion errors, insertion errors and substitution errors. One of the aspects on
which the coding methods will be evaluated is if and how these errors are handled. Since the
topic of DNA data storage is already quite challenging and because of the limited time for
this thesis, it was decided to focus on substitution errors, since they are easier to detect and
correct in comparison to deletion errors and insertion errors. Also, according to Yazdi et al.
[4] substitution errors are most frequently encountered. By putting certain constraints on the
coding schemes, the number of errors that are made in the synthesis and sequencing processes
can be decreased. This will be explained more thoroughly in Section 3.1.

2.2 Data storage

When data is saved, whether it is a movie, a picture or just a text file, the data is converted
to bits. This thesis only considers text files. In [10], it is explained that to save text, a letter
or symbol is first converted to an ASCII number. ASCII stands for American Standard Code
Information Interchange and is a numerical representation of letters, characters and certain
actions, with values between 0 and 255. Then this number is written in bit form, with a total
of 8 bits. Therefore, 1 letter equals 1 byte, so 8 bits. In abbreviations, a small b corresponds to
a bit, and a capital B corresponds to a byte. This distinction is important, since for example
the difference between MB and Mb is confused a lot. One MB is equal to 10% bytes, so 8 x 10°
bits. However, to prevent some of the confusion, Mb is often written as Mbit. Other important
units from big to small are given below.

17ZB=10° EB =10° PB=10° TB = 102 GB = 10> MB = 10"® kB = 10*' B

2.3 From data to DNNA

According to [2], it is estimated that one gram of DNA can hold 5 PB of data. This, together
with the fact that DNA does not need maintenance and that DNA from extinct species from
10,000 years ago can still be recovered, makes it an excellent alternative for the normal data
storage that is used nowadays [4]. But how exactly should data be represented in DNA?

There are three basic steps for DNA data storage. First, binary data is encoded to DNA
strands, so strings with a quaternary alphabet consisting of the letters A, C, G and T. Next,
the DNA strands are synthesised and the data is stored. Finally, the DNA strands can be read
using DNA sequencing to retrieve the data.

This thesis is mostly concerned with the first step of transferring data to DNA. The problem
is that data is represented binary, so in bits that are either zero or one, and that DNA consists
of four nucleotides: A, C, G and T. So the question is: what is a safe way to transfer from a
binary to a quaternary alphabet, taking into account the big amount of errors that are made
during DNA synthesis? For this, the existing coding techniques need to be altered in such a way
that they can be applied to a quaternary alphabet.

2.4 Coding theory

Using information from [10], basic concepts from coding theory will now be explained. There is
not a unique definition of the word coding, but in this thesis it is defined as a way of securing
data such that, if a limited number of errors occur, the data can still be retrieved. Suppose that
certain information s needs to be stored. Then this is converted to bits to get a message word

m, which contains all of the information. Next, extra bits are added to secure this information,
which is called redundancy. There is a consideration to make in this: storing data costs money,
so the more data there is, the more expensive it will be. On the other hand, if the data is not
secured in a proper way, so if not enough redundancy is added, then the data might not be
retrievable due to errors. Thus, a balance needs to be found in the amount of redundancy that
is added. Adding redundancy to m yields the codeword c. Encoding is defined in this sense
as converting a message word m to a codeword c, and decoding is the operation the other way
around. The length of a message word is denoted by k£ and the length of a codeword is denoted
by n. Therefore, the amount of redundancy is equal to n — k.

The way in which the codewords are constructed, so how the redundancy is added, is deter-
mined by which coding method is used. This thesis discusses the Hamming and Reed-Solomon
codes in DNA context. To clarify which parameters are chosen, this is denoted by the Ham(n, k)
and RS(n, k) codes.

To make sure that errors can be detected and corrected, it is necessary to ensure that not
all words are codewords. In that way, if a word is retrieved that is not a codeword, it is certain
that an error has occurred. For example, one can add a parity bit to a codeword m that is
equal to 0 if the number of ones in m is even, and the parity bit is 1 if the number of ones in m
is odd. In this way, all the codewords will have an even number of ones. If a word is retrieved
with an odd amount of ones, there surely must be an error. In this case, the distance between
codewords is at least two, since two codewords have at least at two places in which they differ.
One error can be detected, but it cannot be corrected since it is not known where the error is.
When two errors occur, it may not be possible to detect them, since two errors could change one
codeword into another codeword. The minimum distance d of a code is the smallest distance
between any two codewords. Then the code can detect d — 1 errors and correct L%J errors.

In Sections 4.1 and 5.1, more details are given on how the Hamming and Reed-Solomon
codes add redundancy to message words to obtain codewords. Note that in the explanation and
example above, codes were applied to bits and this does not necessarily have to be the case.
Since the goal is to use DNA to save data, in this thesis codes are also applied to quaternary
digits, so {0, 1, 2, 3}. For convenience, these symbols are called quads from now on.

3 Previously researched methods

In this chapter, various methods that have been used by researchers to encode data on DNA
are discussed. Firstly, several constraints that are used are explained and motivated. Next, the
basic principles of the methods of Church et al. [11], Goldman et al. [5] and Grass et al. [6],
are described since they are often seen as the founding fathers of archival DNA-based storage
[4] and it shows how the used methods differ a lot from each other. Finally, a comparison of the
aforementioned methods and recent developments will close off this chapter.

3.1 Constraints

This section explains and motivates certain constraints that are used in the design of DNA based
codes. These constraints reduce the amount of synthesis and sequencing errors [4] and can be
used to analyse the quality of a code.

Net information density
One easy approach for representing data in DNA would be to map every two bits to one base.
For example, one could propose to let 00 correspond to A, 01 to C, 10 to G and 11 to T'. This
gives a DNA string of n/2 bases from a string of n binary bits. Unfortunately, this easy solution
does not work properly, since many substitution, insertion and deletion errors are made during
the synthesis and sequencing steps and these errors can not be detected or corrected with this
method [3]. However, Erlich et al. [8] explain how this actually provides an upper bound on the
amount of information that can be stored in each nucleotide. Therefore, they concluded that the
information capacity of a nucleotide can reach 2 bits. It is thus interesting to calculate the net
information density for different methods, which represents the amount of information stored
on one nucleotide, since this is a way to compare different methods. This is why this property is
also included in Table 2. The closer the net information density is to the information capacity,
the better the method is in terms of storage efficiency. It can be calculated by the formula
below. Note that primers and file identification information are not included in the calculation.

number of input information bits

net information density =
Y= humber of bases in resulting DNA string

GC-weight
Another requirement for DNA strands is that they should have a certain GC-weight, or GC-
content. This is the percentage of G and C nucleotides in a DNA strand. Insertion and deletion
errors in sequencing are caused by a GC-weight of more than 60% [12]. Furthermore, the DNA
strands will be more stable for GC-weight close to 50%, therefore making the computation less
error prone [4]. This is why the GC-weight of a DNA strand should be close to 50%.

Homopolymer runs

Repetitions of the same nucleotide is called a homopolymer run. For example, in the sequence
TGAAAACAGT there is a homopolymer run of Adenine with length 4. According to Blawat
et al. [2], a sequence of more than 3 identical nucleotides could lead to difficulties during
sequencing. Schouhamer Immink et al. [13] argue that there is a significant higher chance of
sequencing errors when the same nucleotide is repeated. This is because every DNA nucleotide is
read as a signal in DNA sequencing. If nucleotides are repeated, a machine may read them as a
single signal, therefore dropping the nucleotides while sequencing [12]. This explains why a long
homopolymer run that consists of more than 3 nucleotides can result in an increase of insertion
and deletion errors. Therefore, long runs should not be allowed in order to avoid sequencing
errors. This kind of constraint is also called the runlength constraint.

3.2 The Church et al. Method

Church et al. [11] were the first to describe a large scale method for DNA storage. Their method
works by a one-bit-per-base encoding, in contrary to previous works who all encoded two bits
per base. Each bit 0 was converted to either A or C' and each bit 1 was converted to either G or
T. The choice between the nucleotides was made based on the runlength constraint, which was
set to 3. So, no homopolymer runs of length greater than 3 were allowed. In this way, there was
also control over the GC-weight. Next, they cut the long DNA strand into information blocks of
96 nucleotides. This was done because long synthetic DNA strands can be hard to assemble. A
unique block identification code of 19 nucleotides was added to each information block. Lastly,
primers of 22 nucleotides were added at the beginning and end of each block, where the primer
at the end was the reverse complement of the primer at the beginning. This gave data blocks
consisting of 159 nucleotides.

This method was tested with a data set of approximately 5.27 Mb, so 5.27 x 10° bits,
consisting of an html-coded draft of a book that included 53,426 words, 11 JPG images and one
JavaScript program. So in total the data consisted of 658,776 bytes. This was a huge increase
in data storage, since no research before this had encoded more than 10,000 bits, so more than
1250 bytes [11]. In the end, there were 54,898 data blocks of 159 nucleotides. All of them
were recovered with a total of 10 bit errors out of 5.27 million bits. Most of those errors were
found at the end of the oligonucleotides where there was only single coverage during sequencing.
However, in the DNA 22 errors were made, but only 10 of them led to bit changes. For example,
when an A was changed to a C, then the resulting bit stayed a 0 even though there was an error.

Their paper made a huge step towards DNA based data storage, but it had some flaws. For
example, there was no system to detect and correct the errors that were made. Therefore, if
errors were made, it was impossible to retrieve the original data. Luckily, soon Goldman et al.
[5] came up with an improved system.

3.3 The Goldman et al. Method

It was only a year after the publication of Church et al. when Goldman et al. [5] published a
paper about practical, high-capacity, low-maintenance information storage in synthesised DNA.
Their encoding method was more complex, but seemed a safer way to store data. Firstly,
they compressed the data by converting every byte through a Huffman code into 5 or 6 base 3
digits, or ternary digits, which are also called trits. Next, Goldman et al. solved the problem
of homopolymer runs by using a special table as shown in Table 1. This ensured that every
nucleotide was different from the one before it.

next trit
previous nt | 0 1 2
A C G T
C G T A
G T A C
T A C G

Table 1: Goldman’s table for encoding the trits to the nucleotides [5].

The next step was to divide the DNA strand into segments of length 100 such that every
segment overlapped in 75 bases with the adjacent segments. In this way, every base was covered 4
times in different DN A segments. Also, the reverse complement was taken of alternate segments.
Again indexing information was added, which consisted of 2 trits of file identification, 12 trits

indicating which information block it was, 1 parity check trit for the previous information and
1 base at the beginning and end indicating whether the segment was reverse complemented or
not. Finally, primers of 33 nucleotides were added at the beginning. In that way, every DNA
strand had a total of 150 nucleotides.

Their method was a big improvement compared to the one described by Church et al. For
example, the maximum length of a homopolymer run was 1 and every base was covered four
times. Therefore, the chances of sequencing errors were lower and if an error occurred, the data
could still be retrieved. On top of that, they reverse complemented alternate segments for data
security and added a parity check in the indexing information.

They tested their method on data of 757,051 bytes, which is more than what Church et
al. stored. It consisted of 5 files: all 154 of Shakespeare’s sonnets, a scientific paper in PDF
format, an JPEG image, an MP3 file of Martin Luther King’s 1963 ‘I have a dream’ speech and
a Huffman code. In the end, there were 153,335 data blocks of 117 nucleotides.

Unfortunately, not all DNA sequences could be decoded without intervention, so this method
was still not perfect. Although this way of encoding data might look save, there are some
downsides to it. For example, only a single parity-check and four fold coverage were used as
error correction methods. This is not efficient in terms of redundancy, since every information
base is copied 4 times in total, so this will result in high sequencing costs. Plus, research by
Yazdi et al. claims that using the Huffman code can lead to huge errors due to sequencing noise
[14]. Therefore, it is fair to say that also this method does not fulfil all requirements for DNA
data storage.

3.4 The Grass et al. method

To improve the error correction and detection problem of previous methods, Grass et al. [6]
used a coding method that is well known for correcting a lot of errors: the Reed-Solomon code.
This code will be explained more thoroughly in Chapter 5. Thus, this section only gives a short
explanation of their method.

Firstly, every two bytes of a digital file were mapped to three elements of the Galois Field
of size 47, so F(47), which is a base conversion from 2562 to 473. The resulting B information
arrays had dimension m X k and were denoted by My, b = 1,..., B. The next step was called
outer encoding. Here, a RS(n, k) code over F(47) was applied to each block Mp, resulting in
codeword blocks Cj. Next, a unique index of length [was added to each column to produce
vectors my 1, ..., My, of length K = [+ m. The inner encoding step now used a RS(N, K) code
to obtain codewords ¢ ;. Finally, each element in these codewords was written as a string of
three nucleotides of which the nucleotides in the second and third position were not equivalent.
For this, a codon wheel was designed to map every element of F(47) to a unique DNA strand
with the above mentioned property. In that way, it was ensured that no more than 3 nucleotides
were repeated in the total DNA string. So, the resulting total DNA string had length 3N, before
primers were added to the beginning and end.

This method was again tested on data, this time of 82,895 bytes, so approximately 83 KB.
It consisted of the Swiss Federal Charter from 1291 and the English translation of the Method
of Archimedes. Encoding it resulted in 4991 sequences of 117 nucleotides. Adding the primers
gave a total length of 158 nucleotides. An average of 0.7 nucleotide errors per sequence had to
be corrected by the inner code. Of the total sequences, the outer code had to account for a loss
of 0.3 % and correct 0.4%. In the end, all the data was recovered error-free.

Again, there are some downsides to this method. The biggest one is that only 83 kB of data
was stored in the experiment, so the question is whether it is also applicable to larger amounts
of data.

3.5 Comparison of techniques so far

After describing the first successful DNA based data storage techniques, not all details from new
developments will be discussed, since there has been a lot of research and not all of it is relevant
for this thesis. Instead, in Tables 2 and 3 the information from the research in [11], [5], [6], [14],
[3], [2], [15], [8], [7] and [1] is summarised.

Authors Year | Size of data (MB) | Net information density (bits/nt)
Church et al. [11] | 2012 0.65 0.83
Goldman et al.[5] | 2013 0.75 0.33

Grass et al. [6] | 2015 0.083 1.14
Yazdi et al. [14] | 2015 0.017 1.58
Bornholt et al. [3] | 2016 0.15 0.88
Blawat et al. [2] | 2016 22 0.92
Yazdi et al. [15] 2017 0.011 1.72
Exlich et al. [8] | 2017 2.11 1.57
Organick et al. [7] | 2018 200 1.10
Takahasi et al. [1] | 2019 5.0 x 1076 1.25

Table 2: Properties of researched DNA based storage methods.

Authors Year | R.A. | Full recov. | Method for robustness | Error det./cor.
Church et al. [11] | 2012 | No No None None
Goldman et al. [5] | 2013 | No No Repetition Detection

Grass et al. [6] 2015 | No Yes RS Correction
Yazdi et al. [14] | 2015 | Yes Yes BRDS Correction
Bornholt et al. [3] | 2016 | Yes No Repetition None
Blawat et al. [2] | 2016 | No Yes RS Correction
Yazdi et al. [15] | 2017 | Yes Yes Homopol. check Correction
Erlich et al. [8] | 2017 | No Yes Fountain Correction
Organick et al. [7] | 2018 | Yes Yes XOR rand. and RS Correction
Takahasi et al. [1] | 2019 | No Yes Hamming Correction

Table 3: Continuation of properties of researched DNA based storage methods.

The tables above contain properties of the different coding methods that are explained in the
cited papers. The net information density has already been discussed and it can be calculated
that the average net information density is 1.13. R.A. denotes whether random access was
available. If this is the case, then part of the data can be accessed without having to read all
the DNA. Another way of looking at it is like this: it is the question of when looking for a
sentence in a book, the whole book has to be read or not. This is sometimes also considered as
a constraint on codes for DNA. Most of the time, random access is achieved by exploiting the
primers, as explained in [3]. Full recovery is achieved when the information was fully retrieved
without any error or intervention. From the column that states the methods that are used for
robustness, it can be concluded that many different coding methods are used. These include
repetitions, Reed-Solomon codes, Bounded Running Digital Sum codes, Fountain codes and
Hamming codes. The last column classifies if errors could be detected and corrected. For more
information and details we refer to the cited works.

4 Hamming code

This chapter will explain how the Hamming code can be used for DNA data storage. Section
4.1 gives a general introduction to the Hamming code. The next three sections describe what
parameters are chosen in [1] and how to encode and decode the Hamming code applied to DNA.
Next, some examples will be worked out in Section 4.5 and in Section 4.6 the error simulation
is described. Finally, in Section 4.7 an analysis is made of this method.

4.1 General properties of Hamming code

Before the Hamming code is applied to DNA, this section will give a general introduction to the
Hamming code, using information from [10]. The Hamming code is a linear code, which means
that it is a subspace of a vector space, so all its elements can be described in terms of a basis.
A generator matriz is a matrix G whose rows form a basis for this code. For a Ham(n, k) code,
G is a k x n matrix. So, multiplying a message word m of length k£ with generator matrix G
will give a codeword c of length n. When G is of the form [I}, | A |, then G is in standard
form. In that case, encoding comes down to adding extra symbols behind the message word.
A parity-check matriz is an n x (n — k) matrix H where all columns are linearly independent
and where it holds that ¢ is a codeword if and only if cH = 0. It can be used for both error
detection and error correction, because if the outcome of cH does not equal 0, then it indicates
where an error was made. For a Hamming code, all the rows in H are different and no row is the

multiple of another row. If H is of the form , then H is in standard form. For a linear

Ig
code it holds that G is in standard form if and only if H is in standard form. Also, when a code
has a minimum distance d, then every d—1 rows of H are linearly independent. For a Hamming
code, the minimum distance is always equal to 3 and every word has a unique closest codeword.
This provides information about how many errors can be detected and corrected. The minimum
distance between any 2 codewords is equal to 3, so if one or two errors occur in a codeword,
then the resulting word will never be a codeword. This is because then at least three errors
should happen, so the Hamming code can always detect two errors. If one error occurs, then the
unique closest codeword is equal to the original codeword. However, if two errors occur, then
the unique closest codeword is not the original codeword, so if the error would be corrected, it
would be incorrectly decoded. Therefore, the Hamming code can correct only 1 error.

4.2 Hamming code applied to DNA

In [1], the Ham(31,26) code is used to encode the data. The data was quite simple and consisted
only of the string s = hello. The main aim of that research was to build a fully automated DNA
data storage system that could encode the data into a DNA strand, then synthesise the DNA
onto a oligonucleotide, after which it was read and decoded again. Using the matrix A that is
shown below, they constructed the 26 x 31 generator matrix G by taking G = [Isg | — A | and

the 31 x 5 parity-check matrix H by taking H = [A}

I
11011010101101010101010101T
1 0110110011011 0O01100110©011
A=|f011 1 0001111000111 1000O01T1T11
oo0oo0oo0111111100O0O0O0O0O0O0OO0O0OT1T 1111111
ooooo0o0000OO0OOT1T11171T1T111111111

10

Note that the code is constructed over Z4 = {0, 1,2, 3}, which is not a field. In the supplementary
information of [1], the Python code that was used for encoding and decoding was given. In order
to understand the encoding and decoding procedure, this code was analysed and it will now be
discussed more thoroughly.

4.3 Encoding data to DNA using Ham(31,26) code

This section will explain step-by-step how data is encoded using the Ham(31,26) code in order
to save it on DNA.

Step 1. Firstly, the string s = hello is converted to data. For this, the letters are first
converted from s to ASCII symbols, where the UTF-8 encoding that is standard in Python
is used. Next, those ASCII symbols are converted to base 4 numbers and concatenated. The
resulting message is denoted by m. As explained in Section 2.4, a number that is either 0, 1, 2
or 3 is called a quad, just like a number that is either 0 or 1 is a bit. So, the elements in m are
quads.

letter — ASCII — base 4
h — 104 — 1220
e — 101 — 1211
I — 108 — 1230
I — 108 — 1230

o — 111 — 1233

So, this results in the message m = 12201211123012301233 of 20 quads.

Step 2. The next step is to add a cyclic redundancy check (CRC) that consists of SHA-256,
which is a Secure Hash Algorithm. This is a cryptographic hash function that uses the input
data to compute a unique string of symbols. This is put into base 4 form, and the 6 right-most
quads are taken. The output of this is denoted by h, which is in this case equal to h = 110213.
Concatenating m to h gives a, which is given by a = 12201211123012301233110213. This has a
total length of 26 quads.

Step 3. This is where the matrix G that was previously defined comes in, since in this step
G is used to encrypt the message a. To do this, a is multiplied with G and the result is denoted
as b. Since G is in standard form, this comes down to adding redundancy quads to a. Using a
that was calculated in Step 2, this yields aG = b = 1220121112301230123311021321131, with
31 quads in total.

Step 4. A parity check quad p is added at the beginning. For this, the sum of b is taken,
modulo 4. Therefore, when the parity is checked after an error has occurred, the error can be
detected. In this case, the parity quad is 3, so this is added to the beginning of b. This gives
the final codeword ¢ = 31220121112301230123311021321131, consisting of 32 quads.

Step 5. The final step is to convert ¢ to DNA. This is done by simply mapping {0,1,2,3} to

{A,C,G, T}, so a 0 becomes an A, a 1 becomes a C, etc. This mapping yields the DNA string
d =TCGGACGCCCGTACGTACGTTCCAGCTGCCTC.

11

4.4 Decoding DNA to data using Ham(31,26) code

The previous section explains how to encode data such that it can be saved on DNA. The ques-
tion that remains is how to decode a DNA sequence and what errors can be corrected in that
process. So, suppose a DNA strand d is retrieved after sequencing. In the steps below, the tilde
is constantly used to emphasise that errors might have occurred.

Step 1. The first step is to convert d back to quads, i.e. back to a codeword c.

Step 2. Next, € is split up into b and the parity quad p, and b is decoded. For this, the
parity-check matrix H is used to calculate an error vector e = bH. Based on e, the error
position and error value can be calculated. The error value indicates the difference between the
received quad and the original quad. There are 3 situations to distinguish:

a) If e = 0, then no errors have been detected. However, it is not completely sure that in this
case there has not been any error, both because there could be an error in the parity quad
and because this code is only able to detect single and double errors. So, it could be that
e = 0 but that there are 3 errors or more. In any case, 0 is returned for both the error

position and the error value. See Example 4.1, and Examples A.1 and A.4 in Appendix
Al

b) If the non zero entries in e are all the same, then e can be used to obtain the value and
position of the error. For example, if e = [33000], then it is certain that there is an error.
Again, it could be that there are actually two errors, for example if one error occurs in the
parity quad, or if two errors occurred in such a way that the non zero entries in e are all
the same. See Example 4.2, and Examples A.2 and A.3 in Appendix A.1.

c) If the non zero entries in e are different numbers, so for example if e = [12300], then there
are multiple errors. In that case, None is returned for both the error position and value.
See Example 4.3.

Step 3. In situation b) from above, the data can be fixed and decoded into bee. This is
done by subtracting (modulo 4) the error value from the quad in the error position to obtain the
original quad. For example, if the error value is 3 and the received quad in the error position is
0, then the original quad is equal to 0 —3 = —3 mod 4 = 1. Apparently, in that case a C was
replaced by an A in the DNA string. So, bge. is returned as decoded data. In situation a) and
¢) from above, Bdec =b and Bdec = None, are returned respectively.

Step 4. For this step, the parity quad p is checked with our potentially fixed data Dec-
Based on this, and the information before, the type of error is determined and returned.

(-1, if too many errors are detected

, if no errors are detected

error_type = ¢ 1, if the parity quad mismatches

0
1
2, if there is a correctable error
3

L3, if there is a correctable error and the parity quad mismatches

Step 5. Taking the first 26 quads of bge. yields a. The cyclic redundancy check is now used to
see if there are any errors left in a. For this, a is split into the first 20 quads, denoted by m, and

12

the last 6 quads, denoted by h. The CRC for m is computed and compared to h. This check
will return True or False.

Step 6. Finally, m is converted to s in the reverse order of Step 1 of encoding s. For this, the
first four quads of m are read as a base 4 number. Then this number is converted to an ASCII
number, after which it is converted to a string symbol. Then, the next four quads of m are read
as a base 4 numbers and using ASCII converted to a string symbol, which is joined with the
first string symbol. This is done until there are no more quads to convert. The resulting string
is denoted by § and is returned together with the result of the CRC check.

4.5 Examples of errors

This section illustrates how different types of errors are handled by this code. Additional exam-
ples can be found in Appendix A.1.

Example 4.1. No errors

d = TCGGACGCCCGTACGTACGTTCCAGCTGCCTC
¢ = 31220 1211 1230 1230 1233 110213 21131
b = 1220 1211 1230 1230 1233 110213 21131
err_type =0

e = [00000]

(err_pos, err_val) = (0,0)

a = 1220 1211 1230 1230 1233 110213

m = 1220 1211 1230 1230 1233

CRC pass = True

sSs=hello

Example 4.2. One error: non-parity base
d = TAGGACGCCCGTACGTACGTTCCAGCTGCCTC
¢ = 30220 1211 1230 1230 1233 110213 21131
b = 0220 1211 1230 1230 1233 110213 21131
err_type = 2

e = [33000]

(err_pos,err_val) = (0, 3)

a = 1220 1211 1230 1230 1233 110213

m = 1220 1211 1230 1230 1233

CRC pass = True

S=hello

Example 4.3. Two errors: 2 in non-parity bases

d = TAAGACGCCCGTACGTACGTTCCAGCTGCCTC
¢ = 30020 1211 1230 1230 1233 110213 21131

b = 0020 1211 1230 1230 1233 110213 21131

err_type = —1

e = [13200]

(err_pos, err_val) = (None, None)

a = *Error: too many errors made*

M= —

CRC pass = -

§=-

13

4.6 Error simulation

In [1], groups of 4000 reads were collected for decoding. In order to test the error detection and
correction properties of this code, a simulation was made where random errors were inserted.

The DNA strand d = TCGGACGCCCGTACGTACGTTCCAGCTGCCTC is presented
as a string in Python. Unfortunately, strings are immutable in this programming language. So
to make the simulation easier, and because the mapping from the bases to the quads is the
same, quads were randomly changed in ¢ = 31220121112301230123311021321131 to simulate
substitution errors. It is possible to change the values in ¢ in Python, since it is not a string but
an array.

Firstly, ¢ was copied 4000 times. These copies are also referred to as samples. Next, the
desired total number of substitution errors is specified. For now, a certain number is taken,
though it is also possible to choose a random number between some boundaries for this. Next,
a random number between 0 and 3999 is chosen to indicate in which sample an error will be
inserted, and a random number between 0 and 31 is chosen to indicate in which position in
the sample, so in which quad, the error will take place. If there has already been an error in
that sample at that spot, so if the combination of the two random numbers has already been
generated before, two random new numbers are generated, since it is unfavourable to make an
error twice in the same place in the same sample. Finally, a random quad is chosen that is
not equal to the quad that is in the place where the error will be inserted. In this way, it is
guaranteed that an error will actually take place.

Therefore, by replacing the quad in the sample that was randomly chosen, in the position
that was randomly chosen, by a quad that was randomly chosen, errors are inserted with as much
randomness as possible. Note that the results can differ for different runs of the implementation.
Therefore, a seed value was set, which was chosen to be equal to zero, to be able to compare
the results from the Hamming and Reed-Solomon codes.

In order to make an analysis about how the Hamming code performs on the samples after
errors have been inserted, the total number of error needs to be determined. In [2], a mean error
rate of approximately 3.3 x 1073 is found. In [7], a substitution rate of 4.5 x 10~3 was found in
the payload region, so the region without the primers. In total, there are 4000 x 32 = 128, 000
bases in the samples. So, if 500 substitution errors are made, then the error rate is equal to
500/128,000 = 3.9 x 1073, which is in accordance with the results from [2] and [7]. This is why
the decision was made to insert a total of 500 substitution errors in the samples.

Since the decoding scheme of the Hamming code specifies what type of error is made, an
analysis can be made of the amount of times a certain type of errors was made.

Type of error | Amount
-1 17
0 3528
1 10
2 435
3 10

Table 4: Amount of errors of a certain type when making 500 errors.

From Table 4, it can be seen that in 3528 samples, no errors were made at all. Furthermore,
in 435 samples there was a correctable error, but in 17 samples, too many errors were made to
decode the message.

Unfortunately, the conclusion that the program draws about the type of error, is not always
correct. For example, when two errors occur it could be that e contains the same non-zero

14

values, so the code thinks it is a correctable error, though it should be type -1 error. Also, when
three errors occur, it could be that e = 0, in which case it is marked as a type 1 error, in stead
of a type -1 error. Examples of this have been worked out in Appendix A.1.

The question that is actually interesting is in how many cases the code incorrectly decodes the
message and in how many cases it cannot decode the message. From the previously described
decoding procedure, it is clear that the sample was incorrectly decoded when the CRC pass
returns False. This is because the CRC determines if there are any errors left after decoding.
These errors cannot be corrected anymore, so the decoded string will not be equal to s. Therefore,
this is classified as an incorrect decoding. If after decoding None is returned, then it was
impossible to decode since too many errors were detected. Thus, this is called an impossible
decoding. Making this distinction when decoding will give the results that are shown in Table 5.

Type of decoding | Amount
Successful decoding 3978
Incorrect decoding 5
Impossible decoding 17

Table 5: Amount of decodings of a certain type when making 500 errors.

In this sense, it can be concluded that, when 500 random errors are made, 22 of the 4000
samples could not be decoded successfully, either because it was impossible to decode or because
the decoding was incorrect.

4.7 Analysis

In this section, several qualities of the code are examined, including the net information density,
the GC-weight, the maximum homopolymer run and the error detecting and correcting proper-
ties.

Net information density
As explained in Section 3.5, the net density it equal to the amount of input information bits
divided by the total number of bases in our DNA string. Our input was the string s = hello,
consisting of 5 bytes, so 40 bits. Our DNA string d has 32 bases. Therefore, this yields the
following result.

number of input information bits 40

net information density = =1.25

number of bases in resulting DNA string 32

Looking at Table 2, it can be seen that this is a bit above the average of 1.13, so using the
Hamming code to encode the data is quite good in terms of net information density.

GC-weight
The resulting DNA string was equal tod = TCGGACGCCCGTACGTACGTTCCAGCTGCCTC.
To calculate the GC-weight, the total number of G and C' bases in d needs to be counted.

Base ‘ Amount

A 4
C 8
G 13
T 7

15

Using the table above, the GC-weight of this method can be calculated.

number of G and C bases 21
-weight = = — = 065.
GC-weight total number of bases 32 65.63%

This is quite high, since the GC-weight needs to be below 60% to avoid deletion and insertion
errors and to improve the stability [4] [12].

Homopolymer runs
Again, the DNA string d is examined. Determining the maximum homopolymer run is easy,
since the only things that needs to be done is to look for repetitions of the same base.

d =TCGGACGCCCGTACGTACGTTCCAGCTGCCTC

So, it can be concluded that the maximum homopolymer run is equal to 3. As explained in
Section 3.1, a sequence of more than 3 identical nucleotides could lead to difficulties during
sequencing and a significant higher chance of sequencing errors [2] [13]. Therefore, this result is
good enough. However, no method was used to limit this number, it was pure coincidence that
it did not exceed 3.

Error detecting and correcting properties

This encoding and decoding scheme has three ways of securing the data: first there is the parity-
check matrix H, then there is the parity quad that was added, and there is the CRC pass. So
suppose one error occurred during sequencing and d is retrieved. Then the parity-check matrix
H can detect and correct this error. However, if the error was made in the parity quad p, then
H will not detect it, but the error in p does not influence the decoding so s can still be retrieved.
Now suppose two errors occurred in El, that are both not in p. In that case, H will detect that
there was an error. If e contains different non-zero values, then multiple errors have occurred,
so no attempt is made to decode, since the code is not able to correct more than one error.
However, it could happen that two errors occur but e contains the same non-zero values. Then
the assumption is made that only one error has occurred and therefore an attempt is made to
correct it. H can only detect and correct one error, so it will incorrectly decode d. This is
where the parity quad p comes in, since it is now checked whether the received p matches the
parity that is calculated of the incorrectly decoded d. These will probably not match, so it can
be concluded that additional errors have taken place and therefore the CRC pass will then also
return False. A worked out example of this can be found in Appendix A.1. So, if multiple errors
occur, then the CRC can sometimes still detect them. In that way, this code is a SECDED code,
so a Single Error Correcting, Double Error Detecting code. This means that only one error can
be corrected and if two errors are detected, they cannot be corrected. This can be improved by
implementing the Reed-Solomon code that can correct multiple errors.

16

5 Reed-Solomon code

In [2], [6] and [7], Reed-Solomon codes are used for encoding the data. One of the main advan-
tages of this encoding technique is that it can correct multiple errors. Therefore, an attempt was
made to try to improve the results from the previous chapter by using a Reed-Solomon code.
This chapter explains how the Reed-Solomon code can be used for DNA based data storage. The
same structure as last chapter is used. So, firstly a general introduction of the Reed-Solomon
code is given. Next, the choice of parameters is motivated and the encoding and encoding pro-
cedures are explained. Again, an error simulation is implemented and finally an analysis will be
given of the Reed-Solomon code applied to DNA.

5.1 Introduction to Reed-Solomon codes

Using information from [10], this section gives an introduction to Reed-Solomon codes. Reed-
Solomon codes are defined over a finite field F(p"), with p prime and r a positive integer. For
example, when F(2%) is used as field, a symbol consists of 8 bits, one of which is 10101010 for
instance. Then, in total there are 28, so 256, possible symbols. This field is actually used a
lot, since the ASCII table consists of 256 symbols to represent letters and characters. Normally,
for a Reed-Solomon code over F(p”) with minimum distance d, n =p" —land k =2" —d — 1
are taken as parameters. With these parameters, a total of L"gkj errors can be corrected. For
this code, not a generator matrix, but a generator polynomial g is used as a basis. This is of
the form g(z) = (z + a)(z + a?)... (z + 1), where « is the primitive element of F(p"). The
parity-check polynomial h is of the form h(z) = (2™ — 1)/g(z). From polynomials g and h,
generator matrix G and parity-check matrix H can be obtained.

5.2 Reed-Solomon applied to DNA

In order to apply the Reed-Solomon code to DNA data storage, the field F(256) is used. This
choice is logical, since the code needs to be applied a string, namely s = hello, so ASCII symbols
can be used to represent the letters. In order to improve the Hamming code from previous
chapter, the goal is to be able to correct at least 2 errors. Therefore, it is necessary to choose n
and k such that [“5%| = 2. Since F(256) is used, it might seem logical to choose n = 255 and
k = 251. However, the string s consists of only 5 symbols, so it is more convenient to have k = 5.
This is why a shortened Reed-Solomon code is used. Shortening a RS(n, k) code with minimum
distance d by a symbols will yield a RS(n — a, k — a) code with minimum distance d. Therefore,
the RS(255,251) code is shortened into a RS(9,5) code. This means that, when each symbols in
the codeword is converted to a base 4 number, the total number of quads will be equal to 36,
so the DNA string will consist of 36 nucleotides. This is longer than the DNA string that was
used for the Hamming code. However, this was necessary, since choosing n = 8, so shortening
from RS(255,252) to RS(8,5) would yield 32 nucleotides, but in that case only one error can
be corrected. Because the encoding and decoding schemes of the Reed-Solomon code are fairly
complicated, it was decided to not implement this ourselves. Therefore, the unireedsolomon 1.0
package that was available on PyPI under an MIT license was applied. This package can encode
and decode a possibly shortened Reed-Solomon code over F(256) for a given n and k.

5.3 Encoding data to DNA using the RS(9,5) code

This section will explain step-by-step how data is encoded using the RS(9,5) code.
Step 1. Firstly, the strings = hello is converted to ASCII symbols. This is needed, since it
will return values between 0 and 255 and the field that is used is F(256). This yields the message

17

m = 104 101 108 108 111. Here, it is important to notice that the length of m is five, since
each ASCII symbol is counted as an element with length 1, so 104 is one symbol in F(256).

Step 2. In this step, the message m is encoded with the RS(9,5) code. Here, k = 5 means
that the message m consists of 5 symbols, and the encoded message b will have 9 symbols.
Encoding is done by the previously mentioned package using a generator polynomial g, which
comes down to adding 4 symbols from F(256). This results in
b = 104 101 108 108 111 127 24 174 193. If wanted, this can be converted back to a string,
which will be equal to s’ =hello 7T ®A, but for the next step the ASCII symbols of b are
needed. Note that symbol 127 is converted to a white space.

Step 3. Translating the ASCII symbols to base 4 numbers and concatenating them, yields
c = 122012111230123012331333012022323001, which is quite similar to ¢ that was found in
Section 4.3. However, in this case ¢ has length 36, so it contains 36 quads instead of 32.

Step 4. The final step is again to convert quads to bases. The same mapping as before is
used, so from {0,1,2,3} to {A,C,G,T}. This results in the DNA string
d = CGGACGCCCGTACGTACGTTCTTTACGAGGTGTAAC.

Note that the main difference between the encoding schemes of the Hamming and Reed-
Solomon codes is the order in which the data is encoded and is converted to quads. For the
Hamming code, the string s was first converted to quads, before the CRC and the matrix G were
used to encode the message. However, for the Reed-Solomon code, the string was first encoded
and it was converted to quads afterwards. This also changes the order of the decodings steps,
which are described in the next section.

5.4 Decoding DNA to data using the RS(9,5) code

This section describes how a DNA strand that was encoded using the Reed-Solomon code from
above can be decoded. For this, suppose that the DNA strand d is retrieved after sequencing.

Step 1. In the first step, the bases in d are converted back to quads to gain c.

Step 2. Next, ¢ is divided into parts of 4 quads. Each of those parts is then read as a base 4
number, and converted to an ASCII symbol, so to an element of F(256). Putting these together
yields b that has length 9.

Step 3. It is now time to start decoding and checking b. For this, the Reed-Solomon de-
coding function from the previously mentioned package is used. This will return bgee. Also, a
RS check is performed to check if baec is a valid codeword. All codewords are multiples of the
generator polynomial g, so bec is a codeword if g divides Baee. If this check returns True, then
Bdec is a valid codeword. However, if the check returns False, then Bdec is not a codeword, so
the decoding was incorrect.

Step 4. To find m, the first 5 symbols of b are taken. The final step in decoding the DNA

string that was encoded with the RS(9,5) code is to translate these ASCII symbols back to
characters to form string s.

18

5.5 Examples of errors

This section illustrates how different types of types of errors are handled by the RS(9,5) code.
Additional examples can be found in Appendix A.2.

Example 5.1. No errors

d = CGGACGCCCGTACGTACGTTCTTTACGAGGTGT AAC
¢ = 1220 1211 1230 1230 1233 1333 0120 2232 3001

b = 104 101 108 108 111 127 24 174 193

baee = 104 101 108 108 111 127 24 174 193

RS check = True

m = 104 101 108 108 111

Ss=hello

Example 5.2. Two errors: in different parts

d = AGGAAGCCCGTACGTACGTTCTTTACGAGGTGT AAC
¢ = 0220 0211 1230 1230 1233 1333 0120 2232 3001

b = 40 37 108 108 111 127 24 174 193

bgee = 104 101 108 108 111 127 24 174 193

RS check = True

m = 104 101 108 108 111

Ss=hello

Example 5.3. Three errors: in different parts

d = AGGAAGCCAGTACGTACGTTCTTTACGAGGTGTAAC
¢ = 0220 0211 0230 1230 1233 1333 0120 2232 3001

b = 40 37 44 108 111 127 24 174 193

baee = 40 37 44 108 111 127 24 174 193

RS check = False

m = 40 37 44 108 111

s=(%,1lo

5.6 Error simulation

To evaluate the error detection and correction properties of this code, again an error simulation
was made, in the same way as in Section 4.6. So again, 4000 copies were made of
c = 122012111230123012331333012022323001 and errors were inserted randomly.

In this case, the code does not return what type of error has been made, but again a
distinction can be made based on the type of decoding. When the RS check returns False, the
decoding was unsuccessful, since there are still errors left. Therefore, this type of decoding is
called an incorrect decoding. If too many errors are made, the code will raise an error and not
decode anything. In that case, it is classified as an impossible decoding. Inserting 500 errors
randomly and making this distinction yields the results that are shown in Table 6.

Type of decoding ‘ Amount
Successful decoding 3999
Incorrect decoding 0
Impossible decoding 1

Table 6: Amount of decodings of a certain type when making 500 errors.

19

Remember from Section 4.6 that after 500 errors 22 of the 4000 samples could not be decoded
successfully. However, in this case, only 1 out of 4000 samples cannot be decoded successfully,
so this is an improvement.

5.7 Analysis

Just like Section 4.7, this section analyses the different properties of the RS(9,5) code, based
on the net information density, the GC-weight, the maximum homopolymer run and the error
detecting and correcting properties.

Net information density
The input is the same string s = hello as before, consisting of 5 bytes, so 40 bits. However, the
amount of bases in the DNA string d is higher when using the RS(9,5), because instead of 32
bases, it contains 36 bases. Therefore, this results in the following net information density:

number of input information bits 40 111
number of bases in resulting DNA string 36 '

net information density =

This is worse than the net information density that was calculated for the Hamming code. It
could be improved by taking the RS(8,5) code, but as explained, then only one error can be
corrected. Therefore, by improving the error correction, the net information density decreased.
Though, the result is not even that bad since it is just below the average of the net information
densities of Table 2.

GC-weight
For the GC-weight, the DNA string d is evaluated, which was equal to

d = CGGACGCCCGTACGTACGTTCTTTACGAGGTGTAAC. The table below shows an
overview of the occurrence of each base, which is then used to calculate the GC-weight.

Base | Amount

A 7
C 10
G 10
T 9

number of G and C bases 20
-weight = = — ~ 55,
GC-weight total number of bases 36 55.56%

This is smaller than 60%, so within the wanted boundary. Therefore, the DNA will be more
stable during synthesis.

Homopolymer runs
Once more, the DNA string d is analysed to determine the maximum homopolymer run.

d = CGGACGCCCGTACGTACGTTCTTTACGAGGTGTAAC

Again, the maximum homopolymer run is equal to 3. Like before, this is still within limits.
Unfortunately, this result was again due to coincidence, so it would be wiser to construct a
method to control this.

20

Error detecting and correcting properties

The Reed-Solomon code was chosen because it could improve the error correction. As explained
earlier, by choosing the parameters n and k specifically, one can choose for themselves how many
errors the code can correct in the field that it is applied to. In this case, it was necessary for
the code to correct at least 2 base errors. However, by the way it was applied to DNA data
storage, it can actually correct up to 8 base errors. This is because the Reed-Solomon code that
was used works in F(256) and can thus correct 2 errors in the ASCII symbols. In the DNA,
every ASCII symbol is represented by four bases. So, if multiple errors occur in the bases that
represent one ASCII symbol, it corresponds to only one ASCII symbol changing, which means
that the Reed-Solomon code can still correct it. A worked out example can be found in A.2.
Therefore, this is a big improvement in terms of error detection and correction compared to the
Hamming code.

21

6 Comparison

In this chapter the Ham(31,26) and RS(9,5) codes are compared. For this, the information from
previous chapters is used. In Section 6.1, the net information density and error detection and
correction of both methods is compared and the trade-off between the two qualities is discussed.
Section 6.2 evaluates the implementations of both methods. Finally, Section 6.3 and Section 6.4
explain if and how both methods could be applied to a bigger set of data.

6.1 Net information density and error detection and correction

In Section 4.7, the net information density for the Hamming code was calculated, which was
equal to 1.25. This was because for the Hamming code only 32 nucleotides were needed. For
the Reed-Solomon code, in Section 5.7 the net information density was calculated, which was
equal to 1.11 because 36 nucleotides are used. So, in terms of the net information density the
Hamming code is better.

However, when looking at error detection and correction, the Reed-Solomon code clearly
outperforms the Hamming code, since it can correct 2 errors in stead of 1. On top of that, as
explained in Section 5.7, in a lot of cases it can correct even more than 2 errors when multiple
errors take place in the same part of the DNA that corresponds to one symbol of F(256). The
error simulations in Section 4.6 and Section 5.6 also proved this, since it was observed that
when 500 errors occur, the Reed-Solomon could not decode 1 sample successfully, opposed to 22
samples of the Hamming code.

The error simulation was also executed with a RS(8,5) code, which has the same net infor-
mation density as the Ham(31,26) code, and in that case the performances were similar in terms
of failed decodings. It is clear that improving the error correction decreases the net information
density. Therefore, there seems to be a trade-off between the net information density and the
error detecting and correcting properties. The net information density gives an indication of
how much data can be stored on a nucleotide. So the higher this number, the less nucleotides are
needed and thus the lower the costs for synthesising and sequencing. For many years, the costs
for DNA synthesising and sequencing techniques were pretty high, so it was important to have
a high net information density. However, according to Organick et al. [7], the biotechnology
industry has made substantial progress to lower the costs. This means that in our opinion, the
small difference in net information density between the Hamming and Reed-Solomon code will
not cause a big difference in the final costs nowadays. Hence, the advantage of being able to
correct more errors is a more important factor in this trade-off.

The error simulation was expanded to compare the results of both methods. Here, the
number of successful, incorrect and impossible decodings for any number of errors between 0
and 4000 was calculated. In this, it was observed that when 1000 errors occur in total, almost 100
of the 4000 samples could not be successfully decoded using the Hamming code, in contrast to
only 5 unsuccessful decodings with the Reed-Solomon code. Again, this shows the big difference
in the error correction properties of the methods. As expected, the Reed-Solomon code indeed
performed better than the Hamming code for any number of errors.

6.2 Implementations

In the beginning of this thesis, the Python code from the research of Takahashi et al. in [1]
was studied. Their code had a quite simple structure: firstly two functions were determined:
one for converting a number to a base 4 number and one for creating the generator matrix G
and parity-check matrix H, based on k. Then, a class was build with several functions: one for

22

converting the string to data, one for encoding the data, one for converting the encoded data
to DNA, one for converting DNA back to data, several ones for decoding and lastly one for
converting the decoded data to a string. This implementation was pretty straightforward and
good to understand. In the implementation of the Reed-Solomon code that could be applied to
DNA a similar structure was used.

The Hamming encoding and decoding steps were easy to understand and follow. However,
for the Reed-Solomon code, this was different since the unireedsolomon 1.0 package was used
for encoding and decoding, which consisted of multiple files that all contained a great deal of
lines. Despite the attempt to understand it, it was not possible to completely figure out how the
used encoding and decoding functions work. So although the implementation works fine, it is
harder to get a full picture of how it exactly works. It was also observed that the Reed-Solomon
error simulation was slightly faster than the Hamming error simulation. Therefore, it can be
concluded that the Hamming code was easier to understand and implement than the Reed-
Solomon code even though the Reed-Solomon code performs better in terms of error correction
and it is a bit faster.

6.3 Applicability of Hamming code to bigger data

So far, the Hamming code was only applied to the simple string s = hello. It is questionable
whether it is realistic to apply this to a bigger data set. Encoding was done trough the generator
matrix G that was given in Section 4.2. This matrix was created for the Ham(31,26) code.
Although of course a new generator matrix can be made for a higher value of n and k to be
capable of applying the Hamming code to larger data, this does not seem useful. Not only
because in that case quite some changes need to be made to the Python code, but also because
the distance d of a Hamming code is always equal to 3. Therefore, if a different value is chosen
for n and k, then the error correction will not improve, so it will not be possible to correct more
errors. However, if n is larger, so if the oligonucleotide is longer, then there will actually be
more errors since it consists of more nucleotides. Therefore, it is expected that the larger the
data, the worse the performance of the Hamming code. Consequently, the Hamming code is not
suitable for bigger data.

6.4 Applicability of Reed-Solomon code to bigger data

For now, the RS(9,5) code was used, since the string s = hello of length 5 needed to be encoded.
However, this could of course be expanded to a bigger code like the RS(255,223) code, that
can correct 16 errors. This can already be implemented with the current Python code, as it is
suitable for any input parameters n and k. In that case, the net density would increase greatly
to gggii = 1.75. The GC-weight depends on the input string, so it unknown if that will still be
lower that the set boundary of 60%. For this thesis, the main goal was to improve the code that
was used in [1]. Therefore, expanding the code to make is applicable to bigger data was not
researched any further. We do believe that Reed-Solomon codes should be used for DNA data
storage, seeing their many advantages and the fact that the research in for example [7] looks

promising.

23

7 Conclusion and discussion

In this chapter, a short summary from the previous chapters is given and the results are con-
cluded. These results are then discussed and recommendations for further research on this topic
are given.

7.1 Conclusion

This thesis was aimed at improving the encoding and decoding method that was described in
the paper “Demonstration of End-to-End Automation of DNA Data Storage” by Takahasi et al.
[1] for DNA based data storage. In order to do this, methods that have been researched before
that paper was published were analysed and certain properties of a code to measure its quality
were investigated: net information density, GC-weight, homopolymer runs and error detecting
and correcting properties. The method of Takahashi et al. was based on a Ham(31,26) code,
which was compared to a RS(9,5) code in this thesis. An introduction to both methods and
a description of the encoding and decoding steps were given. By working out examples, both
codes were investigated to see how they responded to errors. Then, error simulations were made
where randomly 500 errors were inserted in 4000 copies of the data, after which a careful analysis
of both methods was made, before they were compared.

In Section 6.1, it was observed that the net information density for the Hamming code is
better than the net information density for the Reed-Solomon code. However, when the effect of
the net information density on the synthesising and sequencing costs was inspected more closely,
it was concluded that this difference was not too important.

Another property where the Hamming code seemed to be better than the Reed-Solomon code
was the implementation, since the Hamming code was much easier to understand. Again, the
claim was made that this difference does not necessarily make the Hamming code better. This
is because nowadays, quite a lot of methods, like for example neural networks, are implemented
and used even though they are far too complex for a human being to understand. However,
since computers can do a lot of sophisticated operations, their output is used even though it is
not exactly certain how that was generated from the input. Therefore, the conclusion is that
the fact that the Reed-Solomon code excels in other important qualities like error correction
weighs heavier than the fact that the implementation is not as simple as the implementation of
the Hamming code.

Unfortunately, the Hamming code had a GC-weight of more than 60%, which could lead to
more deletion and insertion errors, as well as more unstable DNA in general. On top of that,
the Hamming code could only correct one error, which caused quite a lot of failed decodings
in our error simulation. These two things are both improved by the Reed-Solomon code, with
a GC-weight of 56% and the ability to correct at least 2 errors. Although it is not possible to
measure the influence of the improved GC-weight, the error simulation showed that in only one
sample the Reed-Solomon was not successful in decoding.

In Section 6.3 and 6.4, it was concluded that the Reed-Solomon code also has more potential
to work properly on a bigger data set, since for a larger k£ and n, the number of errors that the
code is able to correct can increase. This is not the case for the Hamming code.

Counting up all these arguments, it is fair to conclude that the Reed-Solomon code is more
suitable for a DNA based storage system than the Hamming code.

7.2 Discussion

The focus of this thesis was to create a DNA based Reed-Solomon code and compare it to the
Hamming code that was used in [1]. However, multiple remarks can be made about this research.

24

The biggest one is probably the fact that only one word, namely hello, was encoded. The
choice for this was motivated by the fact that the goal was to mainly look into the research that
was described in [1]. In order to implement DNA based storage systems in reality, more research
needs to be done into bigger sets of data. Also, it was only researched how to encode and decode
the data itself, and nothing was investigated about the primers and file identification that should
be added. For bigger data sets, this needs to be researched as well, because according to Blawat
et al. [2] modern synthesizers can produce olignucleotides of 250 nucleotides with acceptable
errors. For longer oligonucleotides the error rates increase drastically, so for a big file the data
needs to be cut into pieces, and every oligonucleotide needs to contain extra information about
which part of the file it is representing. In that case, also random access and rewritability of the
data could be investigated.

Furthermore, only substitution errors were implemented in the simulation and deletion and
insertion errors were not. However, according to Yazdi et al. [4], these are less common than
substitution errors. Moreover, according to that research there is an indication that error rates
are higher in regions where there is a homopolymer length longer than 15. So far, only ho-
mopolymer runs of length 3 occurred. Unfortunately, this was pure coincidence since nothing
was done to prevent homopolymers runs of a certain length. The same holds for the GC-weight,
which also was not controlled in any way. Every time, the same mapping was used to map an
Atoa0,aCtoal,aGtoa?2andaT toa 3 and the other way around. In our opinion, more
research could be done into this mapping. For example, one could also first encode the data,
and then count the resulting zeros, ones, twos and threes. Based on that, one could choose the
mapping in such a way that a good GC-weight is achieved. The information about which map-
ping is chosen then needs to be added as additional information to the oligonucleotide. This was
looked into and it was observed that this would improve the GC-weight, but the effects could
not been researched since the DNA synthesising and sequencing were not actually performed.
Thus, the effect of an improved GC-weight is unknown and therefore this was not included in
this thesis. This immediately introduces a new discussion point, since in this thesis the errors
were simulated and the data was not actually stored on DNA. So, another recommendation is
to encode and decode data with the described Reed-Solomon code using DNA.

Therefore, it is recommended that more research is done in finding a method that is applicable
to a big set of data, includes primers and additional file information, prevents long hompolymer
runs and has a good GC-weight.

25

References

1]

2]

8]

[11]

[12]

[13]

C. N. Takahashi, B. H. Nguyen, K. Strauss, and L. Ceze, “Demonstration of End-to-End
Automation of DNA Data Storage,” Scientific Reports, vol. 9, p. 4998, 12 2019.

M. Blawat, K. Gaedke, 1. Hiitter, X.-M. Chen, B. Turczyk, S. Inverso, B. W. Pruitt, and
G. M. Church, “Forward Error Correction for DNA Data Storage,” Procedia Computer
Science, vol. 80, pp. 1011-1022, 1 2016.

J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss, “A DNA-Based
Archival Storage System,” IEEE Micro, vol. 37, no. 3, pp. 98-104, 2016.

S. M. H. T. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and O. Milenkovic, “DNA-
Based Storage: Trends and Methods,” IEEE Transactions on Molecular, Biological, and
Multi-Scale Communications, vol. 1, pp. 230-248, 7 2015.

N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Bir-
ney, “Towards practical, high-capacity, low-maintenance information storage in synthesized
DNA,” Nature, vol. 494, pp. 77-80, 2 2013.

R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical preser-
vation of digital information on DNA in silica with error-correcting codes,” Angewandte
Chemie - International Edition, vol. 54, pp. 25522555, 2 2015.

L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin, K. Makarychev, M. Z.
Racz, G. Kamath, P. Gopalan, B. Nguyen, C. N. Takahashi, S. Newman, H.-Y. Parker,
C. Rashtchian, K. Stewart, G. Gupta, R. Carlson, J. Mulligan, D. Carmean, G. Seelig,
L. Ceze, and K. Strauss, “Random access in large-scale DNA data storage,” Nature Biotech-
nology, vol. 36, pp. 242-248, 2 2018.

Y. Erlich and D. Zielinski, “DNA Fountain enables a robust and efficient storage architec-
ture.,” Science (New York, N.Y.), vol. 355, pp. 950-954, 3 2017.

I. Miko and L. LeJeune, “Essentials of Genetics,” Cambridge: MA: NPG Education, 2009.

S. Ling and C. Xing, Coding Theory: A First Course. Cambridge: Cambridge University
Press, 2004.

G. M. Church, Y. Gao, S. Kosuri, and C. T. Clelland, “Next-generation digital information
storage in DNA.)” Science (New York, N.Y.), vol. 337, p. 1628, 9 2012.

D. Limbachiya, M. K. Gupta, and V. Aggarwal, “Family of Constrained Codes for Archival
DNA Data Storage,” IEEE Communications Letters, vol. 22, pp. 1972-1975, 10 2018.

K. A. Schouhamer Immink and K. Cai, “Design of Capacity-Approaching Constrained
Codes for DNA-Based Storage Systems,” IEEE Communications Letters, vol. 22, pp. 224—
227, 2 2018.

S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A Rewritable, Random-
Access DNA-Based Storage System,” Scientific Reports, vol. 5, p. 14138, 11 2015.

S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and Error-Free DNA-Based
Data Storage,” Scientific Reports, vol. 7, p. 5011, 12 2017.

26

A Extra examples

A.1 Extra examples for Section 4.5

Example A.1. One error: parity base

d = ACGGACGCCCGTACGTACGTTCCAGCTGCCTC
¢ =0 1220 1211 1230 1230 1233 110213 21131
b = 1220 1211 1230 1230 1233 110213 21131
err_type = 1

e = [00000]

(err_pos,err_val) = (0,0)

a = 1220 1211 1230 1230 1233 110213

m = 1220 1211 1230 1230 1233

CRC pass = True

Ss=hello

Example A.2. Two errors: 1 in parity base, 1 in non-parity base
d = AAGGACGCCCGTACGTACGTTCCAGCTGCCTC
¢ = 00220 1211 1230 1230 1233 110213 21131

b = 0220 1211 1230 1230 1233 110213 21131

err_type = 3

e = [33000]

(err_pos,err_val) = (0,3)

a = 1220 1211 1230 1230 1233 110213

m = 1220 1211 1230 1230 1233

CRC pass = True

Ss=hello

Example A.3. Two errors: e contains the same non-zero values
d = TCGGACGCCCGTACGTACGTTCCAGCTTGCTC

¢ =3 1220 1211 1230 1230 1233 110213 32131

b = 0220 1211 1230 1230 1233 110213 32131

err_type =3 (wrong conclusion)

e = [11000]

(err_pos,err_val) = (0,1)

a = 0220 1211 1230 1230 1233 110213

m = 0220 1211 1230 1230 1233

CRC pass = False

s=(ello

Example A.4. Three errors: such that e = 0.

d = TAGGACGCCCGTACGTACGTTCCAGCTTGCTC
¢ = 30220 1211 1230 1230 1233 110213 10131

b = 0220 1211 1230 1230 1233 110213 32131

err_type = 1 (wrong conclusion)

e = [00000]

(err_pos,err_val) = (0,0)

a = 0220 1211 1230 1230 1233 110213

27

m = 0220 1211 1230 1230 1233
CRC pass = False
s=(ello

A.2 Extra examples for Section 5.5

Example A.5. One error

d = AGGACGCCCGTACGTACGTTCTTTACGAGGTGTAAC
¢ = 0220 1211 1230 1230 1233 1333 0120 2232 3001

b = 40 101 108 108 111 127 24 174 193

baeec = 104 101 108 108 111 127 24 174 193

RS check = True

m = 104 101 108 108 111

Ss=hello

Example A.6. Two errors: in the same part

d = AAGACGCCCGTACGTACGTTCTTTACGAGGTGTAAC
¢ = 0020 1211 1230 1230 1233 1333 0120 2232 3001

b = 8101 108 108 111 127 24 174 193

bgee = 104 101 108 108 111 127 24 174 193

RS check = True

m = 104 101 108 108 111

S=hello

Example A.7. Eight errors: in two parts

d = AAACAAAACGTACGTACGTTCTTTACGAGGTGTAAC
¢ = 0001 0000 1230 1230 1233 1333 0120 2232 3001

b=10108 108 111 127 24 174 193

Buee = 104 101 108 108 111 127 24 174 193

RS check = True

m = 104 101 108 108 111

Ss=hello

Example A.8. Six errors: in different parts

d = AGGAAGCCAGTAAGTAAGTTATTTACGAGGTGT AAC
¢ = 0220 0211 0230 0230 0233 0333 0120 2232 3001

b = 40 37 44 44 47 63 24 174 193

baec = *Error: too many errors made*

RS check = -

m=-

§—_

28

