
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Simulating the Delta
Finding the best modeling approach for simulating
disaggregated impacts during salinity intrusion in
the Vietnamese Mekong Delta

Engineering & Policy Analysis
J.A.M. van Alst



Simulating the Delta
Finding the best modeling approach for simulating
disaggregated impacts during salinity intrusion in

the Vietnamese Mekong Delta

by

J. A. M. van Alst

to obtain the degree of Master of Science
Engineering & Policy Analysis

at the Delft University of Technology,
to be defended publicly on July 15th, 2025

Student number: 5402409
Project duration: February 10, 2025 – July 15, 2025
Thesis committee: Prof. dr. ir. A. Verbraeck, TU Delft, 1st supervisor

Dr. C. N. van der Wal, TU Delft, Chair
M. A. van Aalst, Deltares, external supervisor

Cover picture: Nguyen, T. (2023). Integrated shrimp-mangrove farms in Vien an commune, in
Vietnam’s Mekong delta, in March 2023. Rainforest Journalism Fund.

https://rainforestjournalismfund.org/sites/default/files/styles/
orig_optimized/public/inline-images/image_574.jpeg.webp?itok=u-taYN75

An electronic version of this thesis is available at http://repository.tudelft.nl/.

https://rainforestjournalismfund.org/sites/default/files/styles/orig_optimized/public/inline-images/image_574.jpeg.webp?itok=u-taYN75
https://rainforestjournalismfund.org/sites/default/files/styles/orig_optimized/public/inline-images/image_574.jpeg.webp?itok=u-taYN75
http://repository.tudelft.nl/


Preface
This document is the final document I need to submit before graduating. However, I would not have
been able to complete it without all the wonderful people around me, and so I would like to take a
moment to express my gratitude.

It all started in November 2024 when I spoke with Maaike about this topic. Without any knowledge
of water systems, river deltas, or even non-Western cultures, she gave me her trust that day. I am
grateful for the opportunity she gave me to do my internship at Deltares. Thank you so much for the
guidance, for thinking along with me, and for all your knowledge. I also want to thank all the colleagues
who shared their ideas, gave me motivation, and answered all of my (sometimes stupid) questions. I
have learned a lot from all of you, thank you! Finally, thank you to Jari, it was an honor to be interns
together. Thank you for listening during all those cups of tea and hot chocolate.

I would also like to thank my graduation committee. Alexander, thank you for offering different
perspectives, for thinking with me when I couldn’t see a way forward, and for all the feedback on
(sometimes rather unstructured) work I had done. Without your structure and expertise, this thesis
would not exist. Natalie, thank you especially for contributing on the psychological side, for the feedback
during our meetings, and most of all for the optimism you gave me at the end.

Thank you to everyone who made the time for an interview. All your different perspectives helped
me better understand the system.

Lastly, thank you to all my friends, my boyfriend, and my family. Thank you for writing our theses
side by side, for giggling in the back of lecture halls, grabbing tea during breaks, or simply calling to
share a new insight. You know everything about the Vietnamese Mekong Delta now, without reading
my thesis. Thank you to my sister for proofreading at the last minute and offering advice, and thanks
to Mum and Dad for trusting me and giving me the confidence. The final thanks to my boyfriend, I have
lost count of how many times you said, ’Just take it one step at a time, and it will all be fine’. It will not
surprise you all, but that was indeed true.

Enjoy reading!

J.A.M. van Alst
Delft, July 2025

i



Summary
This thesis studied which modeling approach is most suitable to simulate the human behavior of in-
habitants in river deltas during environmental changes. The Vietnamese Mekong Delta (VMD) was
chosen as the test case. River deltas are currently experiencing an increase in salinity levels due to
sea level rise, land subsidence, and groundwater extraction. To assess the impacts on local popula-
tions, the following research question is addressed: ”What are the advantages and disadvantages of
different socioeconomic response modeling techniques in assessing the disaggregated or distributional
impacts for different subgroups in light of environmental change now and in future scenarios, tested
in the Vietnamese Mekong Delta?”. System Dynamics (SD), Discrete-Event Simulation (DES), and
Agent-Based Modeling (ABM) were compared. There were too few advantages of DES compared to
SD and ABM for this case, and therefore, only models were created in ABM and SD.

The ABM offers several advantages, such as the ability to realistically simulate individual human
behavior, including emergent behavior. It allows for clear differentiation between household types and
supports spatial modeling. However, not only is there a risk of overfitting given the current level of data,
but the model is also more complex to understand. In addition, due to its stochastic nature, multiple
runs are required to produce reliable results.

The SD model, on the other hand, is easier to understand, requires only a single run because it is
deterministic, and needs only aggregate-level data. The stock-flow structure provides a clear overview
of system dynamics, and the interactive dashboard with sliders makes the model more accessible.
But, this level of aggregation also has limitations: it is not possible to model individual behavior, and
the individuals cannot interact with each other. Instead, fixed probabilities determine the actions of
population fractions.

Due to the strengths and limitations of both techniques, the results of the two models differ con-
siderably. Nevertheless, the ABM model provides a more realistic representation, and it is therefore
recommended to the employees at Deltares to develop a model in ABM. It might even be useful to use
NetLogo for this, since technique combines the behavioral aspects of ABM with the visual clarity and
slider-based interaction of SD. SD can still be used, for example, to validate the data before using it
in the ABM. It is also advised to conduct long-term field research in which structured data is collected
over several years through targeted surveys that can serve as model input.

This is one of the few studies that developed both an ABM and an SD model using the exact same
variables and it is the first one related to river deltas and farmers. Moreover, an ABM that incorporates
salinity, yield, income, livelihoods, and migration had never been created before for the VMD. Little
has been explored yet regarding the use of SD for the socioeconomic aspects of the local population.
This study can be seen as a stepping stone for Deltares to continue its research towards developing a
socioeconomic model to simulate the impacts of inhabitants in the VMD.
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1
Introduction

River deltas play a crucial role in ensuring food security, but their function is currently at risk (Scown
et al., 2023). Deltas offer many advantages: they are flat, have fertile soils for agriculture, and have ac-
cess to fresh and salt water (Kuenzer & Renaud, 2012). In addition, river deltas contribute significantly
to a country’s GDP (Loucks, 2019). However, because these deltas are lying low, they are vulnerable
to flooding, sea level rise, and salinization (Scown et al., 2023). Combined with intensive development
in these regions, river deltas are becoming less sustainable (Loucks, 2019). More than 500 million
people live in river deltas worldwide, and the growing environmental impacts are causing an increasing
demand for change to prevent disasters (Kuenzer & Renaud, 2012). Despite that, the dominance of
agricultural land in the deltas leaves little room for alternative uses (Nicholls et al., 2020). Many people
are migrating to cities, and the key characteristics that make river deltas so valuable are beginning to
fade (Nicholls et al., 2020).

One of the main challenges in river deltas is salinity (Mukhopadhyay et al., 2021). According to
Rahman et al. (2019), salinization refers to the accumulation of salt in the soil and freshwater systems,
making it unsuitable for drinking or agricultural use. The low land in the river deltas, in combination with
dikes, allows saltwater to move easily inland during the dry season, increasing the salinization of the
land and water (Xuan et al., 2022). Moreover, groundwater is extracted faster than it can be restored,
leading to salinity. Increasing urbanization worsens the degradation of the land and, consequently, also
contributes to salinity. (Stouthamer et al., n.d.). Over time, not only does salinity increase, but ”salinity
shocks” occur more often as well. During these shocks, the salinity will increase drastically for a few
days, causing crop failures. These shocks are expected to occur more frequently, and according to Vu
et al. (2018), action is required to prevent severe disasters.

The focus of this research is the Vietnamese Mekong Delta (VMD). The area has more than 17
million inhabitants, consisting of agricultural and aqua-cultural farmers, wage workers, and people who
migrated from rural areas to Ho Chi Min, the main city in VMD. The main crop in VMD is rice, and
90 percent of the country’s rice for export is produced there (Dang et al., 2021). The VMD is chosen
because it is already heavily impacted by climate change (Kontgis et al., 2019). The delta is only 0.8
meters above sea level today, while it was 2.6 meters in the past (Minderhoud et al., 2019). There is
no long-term strategy to mitigate this problem of salinity in the VMD (Dang et al., 2021).

The problem is that Deltares currently does not know how to best model the impact of environ-
mental changes in the VMD. Several comparative studies have been conducted that evaluate different
modeling approaches, for example Maidstone (2012), but it is unclear what effect these will have when
applied specifically to the VMD. In addition, Deltares currently has experience with System Dynamics
(SD), but less with Agent-Based Modeling (ABM). Therefore, this research can be seen as a starting
point for Deltares in developing ABMs.

When looking at the current literature on simulations for the VMD, most of the studies are mainly en-
vironmental. They focus on land subsidence, salinization, or groundwater extraction (Tran et al., 2022a;
Tran et al., 2024; Vu et al., 2018). This approach is effective for studying environmental changes, but
human behavior is often neglected. The only simulation models related to human behavior are created
by Nguyen et al. (2021), Trinh and Munro (2023), and Truong et al. (2023). A limitation of these studies

1
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is, among others, that they focus only on the cumulative level instead of the individual. For example, in
the model of Truong et al. (2023), each agent has the same amount of land, and the focus is solely on
the cumulative income per province, but the possibility of migration is not taken into account. Nguyen
et al. (2021) and Trinh and Munro (2023) did incorporate migration, but did not focus on the changes
in labor, income, or adaptation strategies that residents might implement. In addition, most studies
focused only on a few regions in the VMD instead of the entire delta.

There is no general model available that takes into account all factors of the system. Furthermore,
only ABMs or statistical or stakeholder analysis have been performed (Quyen et al., 2017; Trinh &
Munro, 2023; Van Aalst et al., 2023), and no one has developed a human behavior system dynamics
model (SD) or a discrete event simulation (DES) for the inhabitants of the VMD.

This study contributes by studying the most promising socioeconomic modeling approach to model
human behavior in river deltas, using VMD as a test case. For two simulation approaches, conceptual
models have been created, and multiple computational models have been simulated. A distinction was
made between different subgroups, such as lower-skilled wage workers and rice farmers, as they each
respond differently to drought and salinity. Through this research, a larger model can be developed in
the future to simulate the behavior of inhabitants of river deltas. This can be seen as a first step for
creating socio-economic behavioral models in The Deltares Toolset for simulating and understanding
river deltas.

Based on the knowledge gap, the following research question will be answered:

What are the advantages and disadvantages of different socioeconomic response modeling
techniques in assessing the disaggregated or distributional impacts for different subgroups in
light of environmental change now and in future scenarios, tested on the Vietnamese Mekong
Delta?

The goal is to create an overview of the disadvantages and advantages of promising socio-economic
modeling approaches for simulating the inhabitants of river deltas. Two models are made and their
results are compared to identify the disadvantages and advantages of these models for the inhabitants
of the VMD.

To answer the main research question, four sub-questions have been formulated, which are ex-
plained below.

Sub-question 1: What are promising different modeling tools and approaches?
Three simulation approaches were distinguished: DES, ABM, and SD. The advantages and disadvan-
tages of these methods were studied, as well as the levels of aggregation at which they can be applied.
This has been done by conducting a literature review. Furthermore, a requirements document has
been created, together with Deltares, to see what they prefer in the simulation model. In the end, an
overview of the methods, aggregation levels, and their pros and cons will be provided.

Sub-question 2: How can these promising approaches be conceptualized, combined with their data
requirements?
After the approaches and tools were studied, conceptual models were created for two of the modeling
approaches. Furthermore, the conceptual models provided information on the data requirements. This
data was collected using the available datasets and analyzed to formalize and run the models.

Sub-question 3: How do ABMs and SD models differ in representing disaggregated impacts between
subgroups of farmers under environmental changes
Two computational models have been created, with the exact same variables, to simulate the inhabi-
tants of the VMD. The model output and sensitivities are also compared to each other.

To answer the sub-questions and subsequently the main research question, it was important to get
an overview of life in river deltas, especially in the VMD. First, a literature study was conducted; de-
spite this, gaining insight into the drivers of behavior and household dynamics of the inhabitants proved
challenging due to limited available data. Therefore, various interviews have been conducted with col-
leagues who are experts in the field and have experience with the area. These explained, for example,
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how debts work, what the area looks like, and what decisions farmers make in the VMD. Appendix A
gives an overview of these people, their function, and the date of contact.

Chapter 2 provides a complete system overview based on analyzed data, interviews with col-
leagues, and literature. In Chapter 3, three simulation approaches are compared, and requirements
are established that the final model must meet. Next, Chapter 4 presents the conceptualization of the
ABM model, and Chapter 5 discusses the results of the ABM model.

Chapter 6 presents the conceptualization of the SD model, and Chapter 7 shows the results of
the SD model. The results of the ABM and SD models are compared in Chapter 8, together with the
sensitivities of the model. Finally, conclusions and a discussion are presented in Chapter 9.

1

1During the development of the models and the writing of this document, two artificial intelligence-using software tools were
used. First, Writefull was used in Overleaf, this tool corrects grammatical errors and improves the structure of sentences. This
enhances the overall flow of the text. Each of the suggestions given by Writefull was considered individually and only accepted
when appropriate to ensure that the intended meaning of the text was maintained.

Second, ChatGPT was used to translate words and phrases from Dutch to English. ChapGPT also helped debug the ABM,
work with spatial data in QGIS, and help create some visual overviews. Although ChatGPT provided some good support, the
most valuable insights came from personal trial and error and individual problem-solving.
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System Description

A literature review was conducted, and colleagues from Deltares and other researchers were inter-
viewed to gain insight into daily life in rural areas of VMD. The system will be explained based on four
factors: inhabitants, environment, governmental impact, and migrations. When research is already
conducted on a topic or a model is created, this is also mentioned.

2.1. Inhabitants
2.1.1. Demographic characteristics and education
In terms of demography, the VMD has a high concentration of children and the elderly. Looking at data
from the 2019 Pop Housing Census 1 for rural areas, a quarter of the population is under the age of
15. This trend has only intensified in recent years. Compared to a study by Huynh (2011), the share of
the working population has decreased (from 68 percent in 2009 to 62.5% in 2019), while the proportion
of the elderly has increased (from 8 to 13.5%). This demographic change can be explained by the
migration of youth.

Between age groups, there are large differences in the level of education. Based on Pop Housing
Census 2009, it is striking to see that 17% of the people older than 59 years have no education, and
over fifty percent are below primary level. The percentages below the primary level in the groups 16-45
and 46-59 are also notably high (28 and 47 percent). Moreover, the share of people with education
beyond primary level is very low: only a quarter in the 16-45 years old group, and 11 percent in the
age group of 46-59. Nowadays, children have better access to education, and it is expected that these
levels will only increase over the years.

2.1.2. Occupations
The working population of the VMD is often divided into seven groups. Table 2.1 shows these types, a
short description, and an example.

However, unpublished data fromDeltares (personal communication, March 2025) showed that there
have been many labor shifts in the past years, due to, among others, the salinity shock in 2016. When
looking at the number of people per occupation, only 57% of the people who defined themselves as
’agricultural crop’ in 2016 were still in this sector in 2018. The lowest retention rate between 2014 and
2018 was in the ”Low-skilled Agri Wage” group: only 42% remained. This suggests that this group
experienced the greatest impact from the salinity shock.

In an interview with a Vietnamese sociologist (personal communication, April 2025), it was revealed
that efforts have been made in the VMD to introduce city life to rural areas to reduce outmigration. This
has been done by establishing factories in the countryside. According to M. van Aalst (personal com-
munication, April 2025), the goal of the VMD is to become a high-value agriculture business, where the
focus is on agriculture-related manufacturing. This is achieved, for instance, by processing mangoes to
make juice or jam. Based on VHLSS2020 data, 43% of the landless households main income source
is based on the processing of food.
1Pop Housing Census and VHLSS are purchased datasets that are not publicly available and were provided by Deltares
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Table 2.1: Seven types of occupations in the VMD

In recent years, investors of the VMD have also tried other industries, such as textile production.
However, these have not yet taken off. Based on the interview with M. Van Aalst (personal communi-
cation, April 2025), the VMD is mainly known for its agriculture and is less attractive to investors from
other sectors.

2.1.3. Ethnic and religious diversity
There are different types of ethnicity in the VMD. The Kinh is the largest group in Vietnam Nam and
the Khmer is one of the ethnic minorities. The Khmer live especially in the VMD, and 7 percent of the
VMD inhabitants are Khmer (Tuan et al., 2023). A study by Tung (2018) shows that the Khmer have
significantly lower income than, for example, the Kinh, which can be declared by the fact that they have
less land and a lower level of education. Furthermore, Vietnamese is not their mother tongue, which
can cause language barriers.

In addition to ethnicity, there are also various religions in the VMD. However, little research has been
done, as religion is often considered a non-essential aspect of life in this region (Nguyen et al., 2020).
As a result, there is limited research on the influence of religion. There are multiple traditional native
religions, but Buddhism and Christianity are also widely practiced (Nguyen et al., 2020). Catholicism
has a growing influence and, in addition to working (which is important in every religion), Catholics are
known for the emphasis on justice and charity (Ngô, 2023). Due to the lack of available research and
expert input suggesting that religion is not the most important factor to be considered, this factor was
not included in the current analysis (V. Sharma & M. van Aalst, personal communication, March 2025).

2.2. Environment

Figure 2.1: Environment in the
VMD, captured by M. van Aalst

The pictures shown in the interviews show that the landscape looks quite
similar to that of the Netherlands (V. Sharma & M. van Aalst, personal com-
munication, March 2025). There are pieces of land separated by ditches
to provide water to all farmers, as captured in Figure 2.1.

These small canals make it possible to pump water directly from the
river. The rest of the environment in the VMD can be described by multiple
factors. The most important is salinity, which causes crops to fail. How-
ever, dikes and sluices can influence salinity levels, and there are different
types of crops, and groundwater extraction and urbanization make these
problems worse. In addition, these land uses are changing over time.
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2.2.1. Salinity
Figure 2.2 shows the salinity levels of the VMD in 2014. This is the newest data available at Deltares,
provided by S. Eslami (personal communication, April 2025). When looking at the distribution of salinity,
the southern and coastal areas are particularly saline. This can be declared by the fact that they are
close to the sea, and saltwater is intruding inland. In 2016 and 2020, salinity shocks occurred, causing
salinity levels to increase for a few days. Crops that are sensitive to salt cannot survive these shocks,
leading to failed harvests.

In recent years, much research has been done on salinity levels in VMD. For example, Tran et al.
(2024) found that salinity started each dry season earlier and became more intense in the last 25 years.
This is in line with the research of Eslami et al. (2021), who also found that the VMD is becoming more
vulnerable, even duringmild events. Multiplemodels are created to simulate salinity levels, for example,
in combination with groundwater distribution, or to simulate the salinity levels since the Pleistocene era
(Gunnink et al., 2021; Pham et al., 2022). Trung et al. (2020) found that the loss of sediment and
nutrient transport and the decrease in water quality are the biggest changes caused by the increase
in salinity. The rise in sea level leads to saltwater intrusion (Vu et al., 2018). Using Machine Learning,
Tran et al. (2022b) made it possible to predict the intrusion of salinity in the VMD. In addition, Tran et al.
(2023) found a way to combine satellite data with numerical simulations and made it possible to predict
salinity levels as well.

Truong et al. (2023) created an ABM to study land use and adaptation strategies. They found that
there will be a decrease in income in the future for farmers due to failing crops during salinity increases.
When looking at the income decreases for different types of inhabitants in the VMD, households with a
lower socioeconomic status were more vulnerable to the impacts of salinity (Van Aalst et al., 2023). Hua
et al. (2024) created an ABM and found that collective government intervention was a useful strategy
to mitigate this problem.

Figure 2.2: Salinity levels in the VMD, in 2014

2.2.2. Dikes and sluice
Farmers can have low or high dikes, and both were originally created to protect rice from flooding
(Xuan et al., 2022). When a farmer has low dikes, the land floods once a year, while high dikes prevent
the land from flooding all year long. van Aalst et al. (2023) found that rice cultivation per season is
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higher when a farmer has low dikes: 8.1 tons/ha/season, while high dikes lead to 7.5 tons/ha/season.
However, only double rice cultivation is possible with low dikes (a farmer can harvest rice two times a
year), while triple rice is possible with high dikes. This causes the overall water demand to be lower
near low dikes: 54 USD/ha/year, compared to 72 USD/ha/year (van Aalst et al., 2023). Lastly, high
dikes use more fertilizer and pesticides, and the profitability of these farms is decreasing due to high
production costs (Tran et al., 2018).

In addition to the dikes, there are sluice gate systems to regulate the water levels. They are used
for agricultural resilience, flood management, and the prevention of salinity intrusion. The sluice allows
the farm to be closed for saline water or make more freshwater available for irrigation (Duy et al.,
2025). The interview with S. Eslami showed that the closing of gates could decrease the impact of the
salinity shock. However, a disadvantage of the sluices is that when someone more upstream in the
river closes their sluices, more downstream farms also have less water available (L. Hermans, personal
communication, April 2025).

The interview with a S. Eslami also revealed that most people pump their water out of the river,
and farmers do not use a lot of groundwater (personal communication, April 2025). Some farmers
have their own pumping systems, others have a contract with a farmer community, and have to go to
a community irrigation point (V. Sharma, M. van Aalst, personal communication, March 2025).

2.2.3. Groundwater and urbanization
The groundwater extraction and urbanization lead to the subsidence of land in the VMD, which in-
creases salinity levels (Tran et al., 2022a). The disturbance of groundwater over the last 25 years has
been studied, and the subsidence of the land will be between 1.1 and 2.5 cm per year due to ground-
water extraction (Minderhoud et al., 2017). Several studies have been conducted on this topic, such as
Minderhoud et al. (2020), and research is conducted on how to inform stakeholders about the problem
as well (Hoan et al., 2022; Tran et al., 2022a). They also analyze the impact of groundwater levels, and
it is indicated that a lower pumping rate is needed to restore groundwater levels (Tran et al., 2022a).

2.2.4. Land use
Multiple types of crops are cultivated in the VMD. These can be divided into different groups, such as
rice, annual crops, perennial crops, and aquaculture. Additionally, it is possible to combine crops, for
example, rice and shrimp, while forestry and livestock keeping are also common. Below is an overview
of examples based on the VHLSS2020 questionnaire.

• Rice can be divided into single, double, or triple cropping systems. This refers to the number of
rice crops that a farmer cultivates each year. The difference in double and triple rice is the extra
crop in November. Moreover, there are multiple types of rice, for instance salt tolerance rice,
glutinous rice, and specialty rice.

• Annual crops are all the crops that can be harvested annually, but are not rice. Examples are
maize, sweet potato, and cassava.

• Perennial crops are crops that take multiple years to grow. These are primarily tree crops, such
as citrus, coconut, mango, and durian.

• Aquaculture is mainly focused on shrimp and pangasius. Within shrimp, it is possible to choose
extensive, intensive, or mangrove shrimp farming. Intensive shrimp leads to a higher yield, but
also more risks and more chemical inputs (Joffre et al., 2015a). Mangrove shrimp means that
there is a mangrove forest, where the shrimp swim between trees. Lastly, it is possible to combine
shrimp with rice, where rice is grown during the rainy season and shrimp during the dry season.
The biggest disadvantage of aquaculture is the increased chance of diseases. These can be
cured by using antibiotics, but this also leads to a lock-in effect: the antibiotics penetrate into the
ground, and after 5-10 years, the ground is so polluted that the yield is not successful anymore.
The advantage of aquaculture is that it is salt-tolerant, and brackish water can be used (N. Mulder,
personal communication, April 2025).

• Livestock and hunting are common in the VMD, animals kept include horses, horses, goats,
chickens, ducks and pigs.
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There are different perceptions about the impact of the use of pesticides and antibiotics, as well
as the effects on surrounding farms. Some experts believed that a shrimp farm can co-exist next to a
rice farm without major problems. Others stated that neighboring farmers often feel forced to switch to
shrimp due to rising soil salinity and antibiotic contamination. In addition, pesticides used in rice farming
were mentioned as a factor that negatively affects shrimp quality (E. Eslami, N. Mulder, L. Hermans,
personal communication, 2025).

2.2.5. Land use changes over time
When looking at land use, this is in line with the salinity levels in the VMD. In the southern and coastal
regions, the focus is on aquaculture, while in other areas, double and triple rice is cultivated. An
additional effect of the environmental changes and increase in salinity levels affects food production
negatively (Mukhopadhyay et al., 2021). According to Wassmann et al. (2019), 44 percent of the total
rice area is prone to salinity. Vu et al. (2018) found that a salinity of 4 grams/liter will impact the rice
and that the salinity will penetrate 50-60 km of the river. That salinity can influence crop production is
also established by Anh et al. (2018) and Dang et al. (2020). Truong et al. (2023) found that it is best to
significantly reduce water use during the dry season. This also results in lower income. Unfortunately,
increasing irrigation and fertilization cannot prevent yield losses (Kontgis et al., 2019). But Tran et al.
(2018) found that the use of fertilizers and pesticides is increasing. Farms with more diversified crops,
behind lower dikes, are less impacted. In addition to salinity, farmers are also affected by sudden colds,
floods, and heavy rain, which also affect food production in a negative way (Huế, 2024).

Figure 2.3: Land use changes between 2000 and 2020 by Vu et al. (2022)

Due to the environmental changes, there have been changes in land use in the past 25 years (Vu
et al., 2022). In 2001, the vast majority of the land was still used for double rice cultivation, both in the
rainy and dry seasons. In the southern part of the VMD, there were small areas of aquaculture, but
also some land was used for ’other’ crops, such as perennial or annual crops. By 2020, the share of
aquaculture, mainly in the southern part of the region, had increased significantly. In addition, more
farmers switched from double to triple rice cultivation. These changes are mapped by Vu et al. (2022),
and shown in Figure 2.3. This can be explained by the fact that salinity levels have been increasing in
the south, as shown in Figure 2.2, and inland aquaculture is salt-tolerant.
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A study by Le et al. (2024) found that out of all rice farmers, 44 percent switched to safe rice, 33
percent to fruits, and 6 percent to vegetables. Also, 13 percent of the vegetable farmers switched to
fruit trees. Reasons to switch were higher profits and reduced water resources available. This is in line
with the research by Vu et al. (2022).

2.3. Governmental impact
In the VMD, there is a local government, a central government, and the Communist Party. The central
government is aware that a sustainable delta is required. However, the local government is several
years behind in its thinking and still favors triple rice cropping (M. van Aalst, personal communication,
March 2025). In the 1990s, there was a ”rice first” policy, where farmers were expected to grow rice
(Tran et al., 2018). This is now less strictly enforced, and farmers are allowed to switch from rice
to, for example, annual crops without punishment. However, only a few farmers are willing to take
the initiative to make this change independently. When farmers change practices without following
government guidance and fail, there is a possibility that they might receive no financial support. In
contrast, those who did follow government instructions and failed have a higher chance of receiving
support (V. Sharma, personal communication, March 2025).

In addition to the government, the Communist Party plays a powerful role and ultimately decides
what needs to be done. According to an interview with Thanh Tran, the Hội Nông dân Việt Nam (Viet
Nam Farmers’ Union) is particularly influential. This is the group that visits villages and informs farmers
about the agricultural calendar for the upcoming year (personal communication, April 2025). How-
ever, all interviewees have mentioned that not all villages are reached and there is no guarantee that
these visits occur annually. In addition, it was mentioned that there are commercial seed traders in the
agricultural business sector who sell seeds and fertilizers to farmers. These traders also provide in-
structions on how to use the seeds and how to achieve the highest possible yield (L. Hermans, personal
communication, March 2025).

2.4. Migrations
The VMD is the region from which most people migrate, often moving to the nearest major city (Ho
Chi Minh City), or the provinces above (Binh Duong and Dong Nai). Between 2005 and 2017, the
out-migration rates in some provinces were almost ten percent (Nguyen et al., 2021). There are two
main types of migration among those leaving the region: young individuals who no longer wish to live
in the VMD, and entire households that cannot sustain themselves financially. It should be noted that
there is also a third type: seasonal migration. These are individuals who are still considered part of
their household, but temporarily move to work in other areas. This often happens during the dry season
(de Brauw & Harigaya, 2007; Ngoc, 2022).

2.4.1. Youth migration
These are individuals between approximately 15 and 35 years old who leave the VMD. Research by
UNDP (n.d.) shows that in certain areas, for example, the Bao Thao Commune, up to 80% of the youth
labor force has migrated. They also found that migration is more common among people in poorer
areas, which often includes members of the Khmer ethnic group (UNDP, n.d.). According to internal
documents from Deltares, there are various reasons for leaving. Many cite a ”lack of opportunity” in
their hometowns or state that life in the countryside was depressing. Moreover, they were unable to
earn a stable income, and some were entirely without work. The step to migrate was easier if they
already had contacts in the city. Migrants mention that city life is more exciting, allows them to save
money, and provides a more reliable income (Deltares, internal document, 2025).

However, these migrants often leave their children behind in the countryside, and grandparents or
other relatives will take care of them. Approximately half of youth migrants can send remittances home
(UNDP, n.d.). These remittances are usually small and are mostly used to cover children’s education
costs. According to an interview with a Vietnamese student, this group is the most likely to return to
the VMD after a few years. Unpublished data from Deltares shows that 3.9 percent of total migrants
have returned to their hometowns. Reasons for returning include feeling obligated to take care of elderly
parents or to take over the family business as parents grow older. Others hope to start a small business
at home, or simply want to escape the high cost of living in the city (Deltares, internal document, 2025).
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2.4.2. Household migration
The second group of migrating inhabitants is the whole of households. There are multiple reasons,
but the main one is environmental changes. Unpublished data from Deltares showed that people leave
because the land has become too saline and dry, extreme weather conditions have damaged the trees,
and there has been a decline in the catch of wild seafood due to increased levels of pesticides in the
water (Deltares, internal document, 2025). In addition, small farms are particularly vulnerable to the
rising costs of inputs such as seeds and fertilizer, and cannot negotiate seed prices (van Aalst et al.,
2023). According to the interview with the Vietnamese student, this is the group of people who do not
return to the VMD but instead stay in the higher regions of Vietnam (Tran, personal communication,
April 2025). A research by Trinh and Munro (2023) found that crop-restrictive regulations were required
to prevent further migration in the future.

Nonetheless, life in the city is not always better. Unpublished data fromDeltares indicates that only a
portion of migrants receive support, despite the claims of the mass media that support programs exist
for them. Furthermore, they are often unable to enroll their children in school, it is difficult to obtain
temporary residence, working conditions are poor, and there is a lack of social cohesion (Deltares,
internal document, 2025).

An ABM considering out-migration is created by Nguyen et al. (2019a). They combined this model
with the Theory of Planned Behavior, and found in some provinces an out-migration of around 10
percent.



3
Modeling approaches

A model is a simplification of reality, and there are static and dynamic models. Static models focus on
the state at a specific point in time. An example used in Deltares is RIBASIM, which uses hydrological
water inputs to determine, for example, the flow of the river at a given moment (“Ribasim”, n.d.). Dy-
namic models, on the other hand, represent the state of a system, in this case, the VMD, over time. The
focus of this thesis will be on three types of dynamic models: System Dynamics (SD), Agent-Based
Modeling (ABM), and Discrete-Event Simulation (DES).

First, a requirements table was developed in collaboration with Deltares to identify the essential
criteria for the model. Then, the three model types are compared based on these requirements, and
the most promising techniques are identified.

3.1. Requirements
Together with colleagues at Deltares, requirements were established for what the final model should
be able to do. The MoSCoW framework was used for this, which means that the requirements fall into
four categories (Eduardo, n.d.):

• Must have = essential, must be included

• Should have = important, but considerable

• Could have = ideally included if resources allow

• Won’t have = out of scope/unfeasible

Table 3.1 gives an overview of the requirements. It is important for the model to be easily adjustable
(for example, the composition and number of people), to run quickly without an internet connection, and
to allow the implementation of scenarios and Excel data. Additionally, it should be easy to connect to
the data files and produce a clear and easy-to-understand output that is dynamic. Dynamic output
means that there are, for example, sliders that one can use to change the input variables, and the
graphics will change automatically.

3.2. Model comparison
3.2.1. System Dynamics
SD was developed in the 1950s by Forrester (Forrester, 2007). The dynamics of the system is, ac-
cording to Howick et al. (2024), based on two factors: feedback loops and the fact that the structure of
the system determines the behavior of the system. SD is a continuous simulation technique, and the
structure of the system is created by combining stocks, flows, feedback loops, and delays. Most SD
models are deterministic. Differential equations are used for the system specifications (Howick et al.,
2024).

The SD aggregation level is macro-level, making it possible to simulate large populations efficiently
(Maidstone, 2012). However, a disadvantage is that themodel can quickly become complex and difficult

11
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Table 3.1: Requirements defined with M. van Aalst, based on MoSCoW Framework

to manage when trying to includemany different subgroups. All subgroups should have different stocks,
and in this case, all stocks and flows should be connected to each other. The advantages of SD are
its fast runtime and the fact that the models are easy to understand (Brito et al., 2011). This makes SD
accessible, and the output is typically straightforward and interpretable. There are SD software tools,
for example Stella, that allow dynamic outputs. Using sliders, the input variables can be adjusted, and
in seconds, the updated output is shown in graphs (ISEE systems, n.d.).

A big disadvantage of SD is that it is not a behavioral model. It is not possible to simulate interactions
between individual inhabitants of the VMD, as SD works on an aggregated level (Maidstone, 2012).
Furthermore, SD can in some cases be integrated with GIS or other models, which is an important
requirement as well. This integration could be achieved by developing the SD model in a platform like
Python and subsequently connecting it to spatial data.

3.2.2. Agent-Based Modeling
ABM is a bottom-up approach (Maidstone, 2012), and the outcomes of the high-level system are de-
termined by the lower-level behaviors. These behaviors are determined by entities called agents. The
environment in which the agents occur has an impact on the agents, but the agents can also influence
the environment. ABMs are stochastic models, and the model should be run multiple times to get a
representative result (Howick et al., 2024). In most ABM approaches, there are discrete time steps,
and each agent wakes up every day to see if they can do something or not. This makes ABM slower
than other approaches (Caro et al., 2016; Railsback et al., 2017).

The advantage of ABM is that it can be used as a behavioral model. Through the use of agents,
individual behavior can be simulated and agents can interact with each other (Maidstone, 2012). This
leads to emergent behavior. Additionally, ABM can be linked to GIS, making it possible to include
spatial aspects in the model. Lastly, by creating multiple classes of agents, it is easy to differentiate
between the different types of inhabitants within the VMD.
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The downside of ABM is that it does not typically offer dynamic output and is not very accessible.
Based on discussions at Deltares and Maidstone (2012), it appears that ABMs are generally more diffi-
cult to understand and develop. However, the final model must be understandable for a broad audience.
Furthermore, developing an ABM often requires a large amount of data, or elsemany assumptionsmust
be made. It can also be challenging to calibrate the model to accurately reflect real-world behavior.
This can be addressed by modeling, for example, the past ten years, and calibrating the variables to
improve accuracy.

3.2.3. Discrete Event simulation
DES was also developed in the 1950s. One of the key characteristics of DES is that dynamic changes
within a system are divided into discrete events, and during simulation, each event is executed in the
correct chronological order. Between events, the state of the system remains constant. This makes
the method very fast (Collins et al., 2023). In most cases, DES is a stochastic model, which includes
randomness and requires multiple runs. This makes it hard to address stability in a system (Brito et al.,
2011).

The advantages of DES are its speed and effectiveness when there are clearly defined events.
However, it is more difficult to capture emergent behavior in DES compared to ABM. In DES, the
model is determined by the system, while in ABM, the agents have their behavior (Maidstone, 2012).
Furthermore, according to Brito et al. (2011), the user does not understand the underlying mechanics
within a DES.

3.2.4. Hybrid model
Brito et al. (2011) and Howick et al. (2024) described multiple hybrid models: ABM combined with
DES and DES combined with SD. An ABM is often combined with an SD model to simulate individual
behavior using agents, while SD is used to summarize the data and apply it in a broader system context
(Wu et al., 2019). A DES can be combined with an SD model, where SD simulates feedback loops and
DES represents the remaining processes (Xu et al., 2018).

Another option is to combine DES and ABM. MESA 3 currently supports combining these two ap-
proaches (Ter Hoeven et al., 2025). The advantage of this is that agents no longer wake up at every
time tick, but only when a specific event needs to occur. This significantly increases the speed of the
model.

It is also possible to combine ABM, DES, and SD into one model; this can be done using AnyLogic.
Another advantage of AnyLogic is its accessibility, as it requires little coding to build complex models.
However, the downside of AnyLogic is the high cost of the license (Howick et al., 2024).

3.3. Model choice and packages
When looking at the requirements for the different modeling approaches, there are some conflicting
factors. Dynamic output is only possible in Stella and Vensim, which are SD software. However, that
means that it will not be possible to be a behavioral model, and it is also not possible to model all the
different types of inhabitants. This is unfortunate since these are must-have requirements. However,
SD ensures accessibility and provides an easily understandable output, and Deltares already has ex-
perience with this method. In addition, there is not one requirement that cannot be achieved by SD
or ABM, while many requirements cannot be achieved by DES (for example, the modeling of human
behavior and the dynamic output).

Based on the requirements and advantages/disadvantages of each modeling approach, several
promising options became clear. These are outlined below, along with the reasons why they will or will
not be created:

When looking at the functional needs of the model, a combination of SD, ABM, and DES would be
ideal. This would allow for modeling different population groups in a fast and structured way, while also
enabling quick visualization. All of this is possible using AnyLogic software (Anylogic, n.d.). However,
Deltares currently does not hold an AnyLogic license, and obtaining one would be very expensive.
Therefore, this option has been discarded.

Another option that came up during an interview with J. Kucharski was asked to build an SD model,
convert it to Python, and connect it to a DES/ABM model. The output of the ABM/DES model would
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be aggregated per time step and used as input for the SD model. It is possible to build the SD model
in Vensim or Stella and then convert it to Python using PySD. However, it cannot be converted back.
This means that the interactive dashboard with sliders in Stella is no longer available (J. Kucharski,
personal communication, March 2025).

MESA 3.0 also offers a combination of two of the three techniques. This version incorporates the
DES features within ABM (Ter Hoeven et al., 2025). This makes it possible to assign actions to specific
agents during the model’s step function using a ”do” function. As a result, only selected agents are
activated, increasing the speed of the model compared to previous versions of MESA. The downside
is that it still runs slower than an SD model and, due to the stochastic nature, multiple runs are required
to obtain reliable results.

Another option is to build a standard SD model in Vensim or Stella. Stella is more dynamic, allow-
ing for the creation of a dashboard with sliders to observe how the model responds to different input
parameters. However, this is also possible to create in Vensim. Vensim was chosen for the familiar-
ity, but it is possible to convert a model between Vensim and Stella. However, the downside is that
the model can become very large very quickly, especially when trying to model all the different types
of inhabitants (for example, low-skilled wage workers, agricultural households) as separate stocks (J.
Kucharski, personal communication, May 2025).

All in all, it was decided to develop an ABM in MESA 3 and an SD model in Vensim. MESA 3 allows
the addition of DES elements, which increases the model’s performance. Moreover, this approach
allows for simulating emergent behavior and building it around the different types of inhabitants. The
disadvantage is the longer runtime, and that many assumptions have to be made. This is not the case
for the SD model, but it quickly becomes complex and cluttered when modeling all types of inhabitants
in separate stocks. Furthermore, the SD model is not a behavioral model. It is a continuity model that
shows changes in the system over time (Brito et al., 2011).

Both of the models are created, and their output is compared to create advice for which modeling
approach is most suitable.

3.4. Data analysis
To create the ABM and SD model, data was analyzed first. There were various datasets available from
Deltares to analyze. The first is the Pop Housing Census, which provides information on household
members’ age, education, occupation, and housing situation. It is available for the years 2009, 2014,
and 2019. The datasets from 2009 and 2019 contain panel data, in which the same individuals were
surveyed, allowing for direct comparison over time. However, only the first half of the questions of the
2009 data were about the VMD; in the remainder of the questions, the region was taken out. As a
result, questions about births, deceased members, and homes could not be used from the 2009 data.
Looking at the 2014 data, there is only a province and hoso column, but no district level is available.
Therefore, it was not possible to create a household ID and say something about the characteristics
within a household. In addition, the occupation and sector codes of the 2014 data were not available, so
it was not possible to determine what occupation people had. Therefore, it was decided not to include
any of the 2014 data. For data that was not available from 2009, the 2019 dataset was used.

The second dataset available is the VHLSS. This set is available for 2010, 2014, 2016, 2018, and
2020. Besides age, this data also provides insights into income and expenses, and for example, yields
from farmers’ crops. The disadvantage of this data is that it is very raw and contains many outliers.
Moreover, the weight of each respondent is unclear, making it difficult to look at as a representative
dataset. It was therefore decided to focus only on the VMD as a whole, and not per district, for this
dataset.

An overview of the data sources and their corresponding datasets is provided in the Appendix B.
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Agent-Based Model conceptualization

Creating socioeconomic ABMs is a relatively new concept for the department ”Climate Adaptation and
Disaster Risk Management” at Deltares. Therefore, this chapter attempts to explain all the steps and
considerations made during the conceptualization phase of the ABM. First, it is tried to define the agent
classes by looking at some way to classify the households in groups. Then, all household member
agents and household agents are explained together with their functions. The environment is created
in the model class, and all these come together in the conceptual models. The steps taken for the
initialization of the model are also demonstrated, together with the limitations and assumptions that
were made.

4.1. Agent types
There are different ways to categorize households in the VMD. Deltares previously distributed house-
holds based on the dominant income source or on which occupation the household spent the most
time. This resulted in seven household categories: low-skilled wage household, non-farm low-skilled
wage households, agri crop household, aquaculture household, other agriculture household, business,
of non-labour household. Table 2.1 describes these occupations.

In addition, Pham et al. (2022) categorized the VMD households based on their success rate. In
their research, there were proponents, opponents, fragile, and unaffected farmers. Fragile farmers
were, for instance, farmers with freshwater crops in a saltwater zone. However, not all household
types would be represented in each district. Furthermore, this classification does not provide insight
into the size of the farm or the type of crops cultivated.

It was tried to do a cluster analysis, based on the VHLSS data, to identify household types. However,
data analysis shows that many households have multiple sources of income. When household income
is divided into three categories (wage, self-employed agriculture, and self-employed non-agriculture),
only 43% of households earn income from a single category, which means that there are 57% of “di-
verse” households. As a result, a cluster analysis is not able to generate representable clusters.

Another option is to define a dominant income, which is based on the main income source if more
than 60% of the household income comes from that source. However, still 35% of the households
remain ”diverse” using this method. A second issue with this approach is that it overlooks the remain-
ing income sources. For example, if a household is classified as a “wage” household but 40% of their
income comes from rice cultivation, and the rice yield fails, that 40% income loss is ignored in themodel.

All in all, there aremany different options, but all have their disadvantages. Therefore, it was decided
not to classify households by type. Instead, a simple distinction is made between households with land
and without land. If they own land, they are further classified into three groups:

1. Small (0.3-0.5 ha)

2. Medium (0.5–2 ha)

3. Large (2-5 ha)

15
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If a household does not have land, it falls into the class of landless households.

Each household also consists of household members. Each member has an occupation, according
to the categories listed in Table 2.1, as well as an employment type: family worker, self-employed, or
employee. This structure allows households to generate income from various sectors.

4.2. Household agents
The two main types of households (land and landless) have different activities. Both types have yearly
activities, such as receiving interest on savings, and they may choose to migrate. In addition, land
households are responsible for harvesting crops and paying wage workers. They can also switch
crops, a decision that is determined based on social theories. These different functions are elaborated
below.

4.2.1. Yearly activities
Each household has annual activities. First, it is determined whether a child is born in the household,
based on the Pop Housing Census 2019. From an interview with a sociologist in Vietnam, it became
clear that there are high interest rates on savings (5%) and loans (10%) (personal communication, April
2025). These are received or paid accordingly, and land-owning households with loans also pay off
their debts.

In addition, there is a probability that a household has contacts in the city. This probability is equal
to the ratio of households that have already migrated. Thus, if more people have migrated in the
model, the chance that a household has contacts increases. The same logic applies to the facilities
in the neighborhood: the current number of service workers is divided by the initial number of service
workers. The more service workers migrate, the fewer local facilities remain.

Finally, for land households, it is determined whether they attended an information meeting that
year. These are meetings organized by, for example, commercial companies or the Hội Nông dân Việt
Nam (Vietnam Farmers’ Union). If the household is a member of the association, it is assumed that
they attended the meeting.

4.2.2. Cultivation of crops
Land households can cultivate crops. Within each sector (rice, annual crops, perennial crops, and
aquaculture), there are many possible crop types, but data is not available for all of them.

First, an interview was conducted with N. Mulder, who developed a serious game about the VMD for
Deltares. He selected crops based on diversity. Some of their crops were salt-tolerant, others provided
a high income, and others had high water demands. However, since the focus of this model is salinity,
not all those crops had clear data on how they perform under varying salinity conditions (N. Mulder,
personal communication, April 2025).

Therefore, it was decided to use FAO data (Blom-Zandstra et al., 2017). For each category, it was
looked at which crops were stated as ”promising” and which had salinity-related data available. For
annual crops, maize was selected, and for perennial crops, coconut. For aquaculture, research by
Joffre et al. (2015a) was used. They identified three types of shrimp farming (extensive, intensive, and
mangrove-shrimp), and found that extensive was implemented in 78% of the farms. Therefore, this
type was selected for the model.

The first step is to calculate the yield, based on the type of crop, the size of the land, if a shock
has occurred, and the human livelihood (this is explained in Section 4.2.3). For the yield per ha, FAO
data were used (Blom-Zandstra et al., 2017). The impact of salinity calculated using the salinity curve:
𝑌𝑖𝑒𝑙𝑑 = 100−(𝑠𝑙𝑜𝑝𝑒∗(𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑))/100 (Tanji & Kielen, 2002). The slope is the percentage
per dS/m, and means that when the salinity reaches this level, all yields for this crop will fail. The
threshold is in dS/m and is the salinity level at which the crops behave perfectly. Salinity is the current
salinity level. An example: for rice, the threshold is 3 and the slope is 12. When there is a salinity level
of 5, the farmer will have a rice yield of 76%.

A disadvantage of this approach is that this formula should use soil salinity, but in this model, only
water salinity is currently available for the VMD.

Talking to N. Mulder, it became clear that it is very hard to determine how effective certain measures
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are in preventing salinity shocks (N. Mulder, personal communication, April 2025). This has been
simplified by using knowledge and experience as a proxy. When these are high enough, the household
is considered better prepared and will be less impacted by salinity.

If a household cultivates shrimp, the model checks whether a disease outbreak occurs. The proba-
bility of this is based on Joffre and Bosma (2009). In the case of a disease, the household can choose
whether or not to use antibiotics, which currently depends on their knowledge, experience, and financial
situation. The benefit of using antibiotics is that the shrimp yield for that year is not reduced. However,
this comes at the cost of antibiotic accumulation in the soil. According to conversations with N. Mulder
and L. Hermans, after a few years of continuous antibiotic use, the concentration becomes so high
that it starts to affect water quality, which in turn impacts shrimp yield. This can be seen as a lock-in
effect: initially, yields remain high, but they drop quickly over time. Eventually, the household is forced
to abandon the farm due to severe soil contamination (personal communication, March & April 2025).

The second step is to calculate the total costs, which are linear to land size. However, there is
limited data available on this. The VHLSS data were not used, as they contained many outliers, and
the costs were aggregated for all annual crops, rather than separated by crop (for example, maize).
For rice costs, data were used from Pedroso et al. (2017) and Tong (2017). For maize, research of
Nassirou Ba (2017), Nguyen and Luxner (2024), and Pedroso et al. (2017) was combined. The shrimp
data was based on Joffre et al. (2015b) and Khai et al. (2018), and coconut from Nguyễn (2024) and
Yeswanth et al. (2024). An overview of all values in literature is provided in Figure B.3 in Appendix B.

Within the total costs, the wage costs are determined. These costs are based on four factors: the
number of man-days required per hectare per crop, the number of household members acting as family
workers, whether or not farm machines are used, and the salinity level. The assumption was made
that crops are supposed to be planted within 14 days. Rice is harvested within 7 days, while maize and
shrimp are harvested within 14 days. Furthermore, approximately 1/3 of the man-days are needed for
planting, and 2/3 for cultivation.

The model checks how many people are available as family workers. If more labor is needed
during planting and cultivation, external wage workers are hired. If the household uses machines,
the assumption was made that only half of the man-days are required during harvesting. If there has
been a salinity shock, for example, rice yield is only 75% instead of 100 percent, then only 75% of
the man-days during cultivation are needed, because there is less rice to harvest. Farm workers earn
an average wage of 200,000 VND per day (Pedroso et al., 2017). In the model, a distinction is made
between low-skilled (190,000 VND) and high-skilled (210,000 VND) wage workers.

In the case of maize, the total cost turned out to be less than the wages of the workers. This is
because the number of man-days per hectare for maize is quite high, 106 per ha per growth cycle.
(Pedroso et al., 2017), The total cost per hectare is relatively low (6.8 million VND). Compared with
rice: rice has a cost of 16.5 million VND/ha and only requires 48 man-days/ha (Pedroso et al., 2017;
Tong, 2017). Since this was a big difference, it was decided to use fixed costs for maize and add the
wage worker costs on top. Otherwise, all households would immediately abandon maize farming due
to its very low profitability.

After harvesting, the total household income is calculated for each household. This is based on the
harvesting of crops if the households have land, and the income from wage working or working in the
non-agricultural sector. The expenditure of the past time frame is calculated and subtracted from the
savings. To calculate expenditure, VHLSS2014 is used, including expenditures on food, non-food, and
housing. Then, the quartiles were calculated. For children, the 25th percentile value was used as their
estimated expenditure.

4.2.3. Sustainable livelihood theory
To check how land households are doing after receiving income, the Sustainable Livelihood Theory
was used. According to this theory, the well-being of a household is determined by five types of capital:
natural capital, physical capital, human capital, social capital, and financial capital (McLeod, 2001).
Each of these factors is assigned a score between 0 and 1, and then the average livelihood score is
calculated as the mean of these factor scores.

This theory has been applied before in the VMD. For example, Tran et al. (2020) applied a variation
of this theory, the livelihood vulnerability, to three districts in An Giang province. The main difference
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Table 4.1: Factors on which the livelihood factors are based

compared to the Sustainable Livelihood Theory is that this version also includes a livelihood strategy
and a natural disaster and climate change factor, and focuses on how vulnerable people are, rather
than how well they are doing. Based on their research, relevant variables used to determine the liveli-
hood scores were chosen, and these were later validated by a Vietnamese student (T. Tran, personal
communication, April 2025).

Table 4.1 shows an overview of the variables on which the livelihood factors are based. First, there
is the human livelihood. When looking at education, the average level of education of all household
members above 15 years of age is used. If someone has ”below primary education”, they receive a
score of 0. ”Primary education” is scored as 0.5, and, for example, secondary education is scored as
1.

If a farmer has cultivated the same crop for more than three years, the household has an experience
score of 1. When this is not the case, they do not have much experience, and their experience score
is 0. This three-year threshold is based on the Pop Housing Census 2019, which also uses three
years as a benchmark. In addition, it is checked whether the household uses machines. If at least one
household member uses machines, this variable is scored as 1; otherwise, it is 0. These values are
also based on the Pop Housing Census 2019.

Finally, disabilities within the household are taken into account. This is based on difficulties in
hearing, seeing, walking, and remembering, taken from the Pop Housing Census 2009. The dataset
includes a 5-point scale of disability severity. A household member with ”some difficulty” scores 0.5.
When there is ”a lot of difficulty”, there is a score of 0.75, and ”unable to do” scores 1. Then, the total
level of disability of the household is calculated. All individual scores a summed, and a total score of 1
gives a disability score of 1 for the household. This means that a minimum of 1 household member is
unable to do something, or two or more household members have some difficulties.

The social livelihood is based on the social situation of the household, and if someone in the
household is a member of an association. The social situation is calculated by dividing the current
number of households by the total number of households at the start of the model. The more house-
holds migrate, the lower the social situation. The household ismember of an association if one or more
members of the household are members, and this is based on the probabilities in the VHLSS2014 data.

The financial livelihood is calculated based on the savings and debt of the household. When
the savings are higher than 0, this score is 1. For debt, the ratio between the current debt and the
maximum allowed debt is used. The maximum value of debt is based on the value of the assets of the
households. These are defined by the land size and value of the house.

The physical livelihood is based on the size of the land and the quality of the house. For land size,
it was checked within each category how large the land is. For example, a medium-sized farmer has
land between 0.5 and 2 ha. If someone has a land of 1.8 ha, the factor will be 0.86. house quality is
defined using the Pop Housing Census 2019 and taking into account the main construction, roof, and
outer walls.

For the natural livelihood, the salinity level is taken concerning the crops cultivated by the house-
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hold. If the salinity level is below the crop’s threshold, the salinity suitability is set to 1. If the salinity
results in a yield of 75% or higher, the suitability is 0.5. For rice, this corresponds to a salinity level
between 3 and 6 dS/m, and for maize, between 1.7 and 4.2 dS/m. If the salinity level leads to even
lower yields, the suitability is 0, and as a result, the natural livelihood score is also 0.

4.2.4. MOTA framework
To determine whether land households are changing their crops or not, the Motivation and Ability frame-
work is used. This framework is based on actor analysis methods and also includes behavioral insights
(Pham et al., 2022). The framework starts with a trigger, which is, in this case, that the income is lower
than the expenditure. There are perceived threats and opportunities, and based on those, the farmer
has a motivation. On the other hand, the farmer also has abilities. These are categorized into technical
ability, financial ability, and institutional ability. Motivation and ability are scored on a scale of 0 to 1.
An action is defined by multiplying the motivation by the ability score. Figure 4.1 shows an overview of
this framework, applied to farmers in the VMD.

Figure 4.1: MOTA framework used for the farmers in the VMD

The MOTA framework has already been implemented for the VMD. For example, Korbee et al.
(2019), Nguyen et al. (2019a), and Pham et al. (2022) both focused on the Ben Tre province, and
Nguyen et al. (2019a) even on changing cropping systems. Based on their variables and the available
data, this framework is applied in the ABM.

Before this is implemented, it must be determined which crops households can switch to. If a
household has attended the information meeting or is a member of an association, it has received all the
relevant information about which crops are recommended based on their salinity levels. Furthermore,
all households can observe their neighbors: What kinds of crops are they cultivating? All of these crops
are collected into a list called ”possible next crops”.

The VHLSS 2020 data was analyzed to determine how many people switch crops and what the
average switching costs are. However, it also became clear that some crop switches were not made
at all, meaning that no cost data were available for them. An example might be that people are not
switching from shrimp to another crop, due to the lock-in effect.

Per crop, abilities and motivation scores are calculated. Ability scores are based on the abilities in
Table 4.2. Each variable will receive a score between 0 and 1. This will be averaged per factor, and
then the average of the three factors is calculated.

Financial ability checks if the household has enough savings to cover the costs of switching to the
new crop. If the household has sufficient savings, the financial ability is set to 1. If not, the model checks
how much the household could potentially borrow. If the expected profit over five years from the new
crop is greater than twice the loan amount (which ensures that other expenses can still be covered),
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Table 4.2: Variables required to determine ability

the household can take the loan, and the financial ability is set to 0.5. If the household cannot afford
the switch, the financial ability is set to 0.

Institutional ability is determined by the household’s human livelihood, which includes education
level, whether someone attended the information meeting, experience level, and disabilities within the
household. This human livelihood score is compared to the level of knowledge required to make the
switch, which is based on assumptions. For example, switching to shrimp is considered more difficult
than switching to coconut because shrimp farming requires precise antibiotic use; otherwise, the shrimp
farm will be unsuccessful.

Technical ability depends on the salinity level. If the ideal salinity level of the new crop is lower
than the current salinity level of the household, the technical ability is 1. However, for maize, there is
an additional requirement: production costs increase significantly when the land size is larger than 1
ha, and the household does not use machinery. This is because maize requires 103 man-days per
hectare per cycle, which requires the hiring of many wage workers. If the household lacks machinery
to compensate for the man-days, the technical ability is set to 0.

The average ability is calculated by taking the mean of the three abilities. However, if either the
financial or technical ability is equal to 0, then the average ability is set to 0 as well, since this means
that the farmer is not capable of switching to this crop.

In addition to abilities, there are also motivations. This motivation is based on future income. If
your expected income over five years is higher than your current annual income multiplied by five, and
you have a financial ability of 1, then your motivation is 1. This means that you can afford the switch to
your savings and you will become wealthier as a result. If you can only afford it by taking a loan, but
your income would still increase, your motivation is 0.5.

In the MOTA framework, the current crop of the household is also taken into account. If the annual
income from this crop is higher than your required income (that would happen, for example, in nor-
mal scenarios, and not during a salinity shock), the household receives a motivation of 1. Otherwise,
the motivation is set to 0.2. This is based on an assumption, but it was decided not to assign a value
of 0, since the household is already familiar with how the crop works and avoids the hassle of switching.

The finalMOTA scores are calculated for each crop. The crop with the highest MOTA score will be
implemented. When two crops have the same MOTA scores, a random choice is made between those
two crops. Furthermore, a threshold is set to 0.2; if the highest score is below the threshold, no change
will be implemented. This prevents farmers from switching to crops that are not suitable. However, 0.2
is an assumption.

Once the new crop is selected and differs from the current crop, a change should be implemented.
First, it is checked whether a loan needs to be taken out and the savings of the household are reduced
by (the remaining part of) the switching cost. The agent then changes sectors, based on the new crop.
Lastly, the household’s ”crops and land” variable is updated. If the switch takes place in July, it is not
possible to harvest the new crop as early as August, so a waiting period must be implemented. This
waiting time is six months. When these are finished, it is possible to harvest a new crop (at the correct
time of year).

There is an exception for coconuts, they take about five years to grow in the VMD. However, ac-
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cording to (Blom-Zandstra et al., 2017), it is possible to intercrop with rice or maize in the meantime.
The trees are not yet fully grown, allowing rice or maize to be cultivated between them. Therefore,
the crops and land variable will include rice and coconut or maize and coconut. Rice or maize will
then occupy only half of the land, as the other half is used for coconut cultivation. The waiting time for
coconuts is set to 60 months (5 years). After these 5 years, the household fully transitions to coconut
farming, and rice or maize is no longer cultivated.

4.2.5. Switch occupation
When wage workers are paid, the landless household calculates their total household income and
compares it to their expenditure. If the income is not sufficient to cover their expenses, they might
switch occupations instead of crops. The MOTA framework is not applied in this case.

Not all occupation switches are possible: Low-skilled agents can only switch to other low-skilled
jobs, and High-skilled agents can only switch to high-skilled jobs. If another household member is
already employed in a different occupation, they will check if switching would be financially beneficial.
If this comparison cannot be made, the household switches randomly. In this case, there is a chance
that income improves, but also a chance that it worsens. When that happens, they might switch back.

4.2.6. Migration
When income is too low and there are no savings left, or if too many antibiotics have been used on the
shrimp farm, a household will migrate. A Migrated Household agent is created, and each household
member becomes a Migrated Household Member agent.

If the household owns land that is still in good condition (which means that there is no antibiotic
surplus in the soil), neighbors have the opportunity to take over the land. Among neighbors, the one
with the highest financial livelihood is considered first. Then, it is checked whether this neighbor can
afford the new land. If so, the land is added to their land size. This may allow the neighbor to expand,
for example, from a small farm to a medium-sized farm. The neighbor also takes over the type of land.
For example, if the land was previously used for rice cultivation, the neighbor cannot immediately switch
it to aquaculture without incurring switching costs. The decision to switch will be made later using the
MOTA framework.

In addition to the entire household, it is also possible for individual household members to migrate.
This occurs among people between 15 and 35 years of age. At each step, there is a fixed probability
that they will migrate. This probability increases if the household has contacts in the city or if they have
seen a job advertisement about the city. The migrating household members are then removed from
the household and the model, and new migrated household member agents are created for them.

4.3. Household members
The individual household members also have a few functions. Each year, they become one year older,
and there is a chance they might die based on their death age. When this happens, the household
member is removed from both the household and the model. It is also checked whether they are older
than 59 and eligible for retirement. If so, they become a Non-labourer agent.

Besides the retired household members, there are many children in the model who fall under the
Non-labourer category. These children attend school, which increases their level of education. When
a child turns 15, the probability that they will continue their studies and complete higher secondary
education is assessed, based on data from the Pop Housing Census 2009.

If the child starts working, probabilities determine whether they will work in the agricultural or non-
agricultural sector. If the child is part of a land household and enters the agricultural sector, they work
on the land as an agricultural worker. If the household has no land, the child becomes an agricultural
wage worker. In the non-agricultural sector, the child can become either a manual worker or a skilled
service worker, with data showing approximately the same probabilities. The child is then determined
whether it becomes self-employed or an employee, based on data from the Pop Housing Census 2019.

If the child continues their education, there is still a high chance they will start working by age 17.
The same sector and employment status probabilities as for 15-year-olds are then used.
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4.4. Model Class
All of the above functions are controlled from the model class. But before this happens, first the to-
tal number of households that have not migrated yet is calculated, and the proportion of remaining
households is calculated. Second, it is checked if a shock has occurred. If that happened, the salinity
level of every land household would be multiplied by 1.5. Thirdly, the waiting time per crop for the land
households is reduced, allowing for, for example, harvesting coconuts. Fourth, the annual activities of
all agents should be carried out. This means that they get older, a child might be born, or some will die.
Lastly, based on the agricultural calendar, it is checked which crops can be harvested. An overview of
when each crop can be harvested is shown in Table 4.3.

Table 4.3: Overview of crop types to harvest in each month

After harvesting the crops, it is important to pay the wage workers. For each agent who has just
harvested, the number of man-days of wage workers required is calculated. An interview with P. Jans-
son revealed that the specific agricultural sector in which wage workers are employed is likely not to
matter. It is possible that they harvest rice one season and coconuts the next. It depends on where
the work is (p. Jansson, personal communication, May 2025).

Then, the number of low- and high-skilled agents is calculated. An assumption is made that they
work an equal number of hours. Each wage worker is paid based on the total number of man-days
needed and the number of workers available. Low-skilled wage workers receive 190,000 VND per
man-day, and high-skilled wage workers receive 210,000 VND per man-day.

Every month, non-agricultural workers are also paid. For low-skilled non-agricultural workers, the
model calculates how many of them are still working, compared to the start of the model in this occu-
pation. When more low-skilled non-agricultural workers have migrated, there is more work and higher
wages for those who remain. The same applies to manual workers and those in the ”other occupation”
category.

For service workers, wages are influenced both by reduced competition (due to out-migration of
others in the same role) and by demand. If many people have migrated in general, the demand for
their services decreases, which can reduce the income of service workers.

Once everyone has received income, the model checks the household income levels and may trig-
ger changes if income is too low. This includes land-owning households going through the MOTA
framework, and landless households potentially switching occupations. At this stage, migration deci-
sions are also made.

4.5. Conceptual models
All functions of the household agents and the agents of the household members are combined in the
ABM. Figure 4.3 presents a conceptualization of the land households, showing how these functions
are interconnected. On the left side, in blue, are the yearly activities shown. Green represents the
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harvesting process of the crops, and yellow represents the process of calculating income and paying
the wage workers. Following that, orange is the livelihood assessment process, the MOTA framework,
and the possibility of migration.

Figure 4.2 conceptualizes the process for landless households. The yearly activities are shown in
blue, and the yellow boxes represent the process of receiving income. The orange part shows the
possibility for migration and the changes in occupation. Lastly, the red boxes mean that the agent
becomes a migrated agent.

Figure 4.2: Conceptualization of the landless households in ABM

The conceptual models for individual households can be found in Appendix C.
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Figure 4.3: Conceptualization of the land households in ABM
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4.6. Model initialization
The first step is to create individual members of the household. These are then assigned to a house-
hold, and then the land households are placed on a map. An Excel file of the data analysis is used as
input for the initialization. An overview of the entire initialization process is shown in Figure 4.4.

At the start of the model class, the number of agents is defined: this is the number of household
members that will be created. First, all agents are assigned an age, based on the Pop Housing Census
2009. Based on their age, it is determined whether the agent is working or not. If they do not work,
they are placed in the Non-labourer class. Otherwise, a sector, occupation, and employment type are
assigned. This is done based on the Pop Housing Census 2019. For each sector, there is a probability
that an agent will have a certain occupation. In the aquacultural sector in the district Gò Công Đông,
there is, for example, a chance of 62% that someone will work as a low-skilled agri worker. Further-
more, the household member can be a family worker, employee, or self-employed. This distribution is
created within the sector and occupation distribution. For example, a low-skilled agri worker within the
aquacultural sector has a probability of 64% of being an employee, 18% of being a family worker, and
18% of being self employed.

Based on their occupation, household member agents will be added to a Class.

When all household members are created, it is time to create households. First, land households
are created, and this is based on the number of household members who are self-employed and work
in the agricultural sector. These agents are the ”owners of the farm”. Based on the Pop Housing
Census 2009 data, a Household size is defined, and themain crop is determined based on their sector.
Furthermore, land households have a land category (small, medium, large), and land size (for example,
0.6 ha). Lastly, a housing quality is defined based on VHLSS 2014.

Then, it is time to add household members to the land household. Based on the VHLSS 2014, a
distribution of household members within a certain type of household is calculated. For example, in
a small aquacultural household, there are on average 0.64 persons working in ”wage”, 2.34 persons
working in ”self agri”, and 0.23 persons working in ”self non-agri”. When the randomly generated
probabilities are high enough, someone in these types of work is added to the household. When the
household is not full yet, non-labourers are added.

De household agents are added to the model, and their agent class is based on their land size:
small, medium or large.

When all land households are created, it is time to create landless households. It is required that
each household has 1 adult, and when the adults are all assigned to a household, no new households
are created. Each household has a household size, based on the Pop Housing Census 2009, and the
household members are randomly added until the household is full.

After the creation of households, the land households are placed on amap. This map is created by
taking salinity point data from Deltares, which is transformed to a raster file using QGIS. The disadvan-
tage of this data is that this is water salinity, ad not soil salinity. This means that these data are not the
correct salinity for which the crops are impacted, but it is the only available data. There are different
formulas to transform water salinity to soil salinity, but all of these need other environmental factors,
for instance, temperature, and will not make it more reliable. An expert should investigate this.

The raster file is combined with district shapefiles of 2015 (Hijmans, 2015). This process can be
seen in the ”Create land for agents.ipynb” file.

When entering the correct district, the data is imported in the function gather shapefiles in the model
class. For each land household, the main crop is checked and a point is searched on the map that
matches this salinity level. When all agents are assigned, the three nearest nodes are defined as
”neighbors”.
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Figure 4.4: Initialization to create household member agents (blue), land households (green) and landless households (pink)



4.7. Assumptions and simplifications 27

4.7. Assumptions and simplifications
During the formalization of the model, some assumptions and simplifications have been made. Most
of them are already mentioned above, but this section gives a complete overview.

4.7.1. Assumptions
• The probability of households and household members migrating. It is difficult to estimate how
high the probability is each year and how much this changes when people have, for example,
contacts in the city. It was tried to tweak this to match past data from Deltares.

• Household members can easily switch jobs in the model, and if there is less work available, their
income will be lower. It is not clear whether this easy switch is possible in each province.

• During the crop switching process, it is checked if a crop switch is financially feasible based on
the condition that the profit over five years must be at least twice as the loan they take to pay the
switch. This is to prevent land households from making switches that they cannot pay. However,
it is not clear how this check is done in reality.

• The MOTA framework is used to check if agents are switching or not. However, this makes it
seem as if the crop changes are a rational decision, and the residents really check beforehand
if the crop change is a good idea or not. It is not known how rationally they actually think, and if
they know about their abilities.

• When looking at crop changes, a motivation score of 0.2 is assigned to an agent’s current crop
when their income is lower than their expenditure. This is because switching would be more of a
hassle. The 0.2 can also be, for example, 0.1 or 0.2, and is an assumption that might also differ
per land household.

• The smarter individuals are less impacted by salinity because they are ”smart enough” to take
appropriate measures. In the ABM, this is determined by having a human livelihood of 0.5.

• Land agents want to plant their crops within two weeks, and harvest within one or two weeks.
Additionally, one-third of the wage workers are required during planting, and two-thirds during
harvesting. If machines are available, only half the number of wage workers is required during
harvesting.

• The price to buy land from a migrating agent is 78 million VND / ha. This is a bit more than 2500
euros. A house costs between 1750 and 2600 euros.

• Each time a land household experiences a shock, its salt experience will increase by 0.2.

• Land households start with 20 million VND savings, and landless households 10 million VND.

• People retire at 59 years of age. However, if the household income is low, someone may continue
to work until they are 75 years old. The minimum age to work in times of need is 11 years old.

• When farmers switch to, for example coconuts, the assumption is made that there is a market for
coconuts and that they can sell their coconuts without issues.

4.7.2. Simplifications
• It was decided to model only one crop per sector. There is, for example, only triple rice available
in the rice sector, no double rice or salt-tolerant rice.

• Except for the coconut/maize and coconut/rice combination, it is possible to grow only one crop at
a time. It is not possible to combine, for example, shrimp and rice, to keep the model manageable.
In addition, forestry and livestock are left out.

• It is not possible to sell only a part of your land. The only option for land households is to migrate
and sell everything.
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• Migrated agents do not have a function in the model. In reality, there is a chance that they
send remittances back home or that households make decisions involving the migrated agents.
However, including this would require a complete sub-model for migrated agents, which was
beyond the scope.

• The probability that someone is migrating also depends on how far they live from a major city.
This factor was not included.

• Only salinity was considered, not other environmental factors, such as available water, although
they are correlated.

• Non-agricultural workers have a fixed income in this model, which is not the case for all household
members in reality. However, the extent of income variation is unknown.
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Agent-Based Model results

First, the model design is explained. It is explained what the scope of the model is and how many runs
are done. Furthermore, the model is verified by looking at the map placement, household composition,
and land area. Validation is done by face validation, historical data, and extreme conditions. The
model output will be shown for three key performance indicators, and sensitive factors for migration
are studied. The complete ABM can be found on GitHub: https://github.com/Juliettevanalst/Thesis

5.1. Model Design
5.1.1. Scope
The focus is on the rural areas of VMD, and therefore, people living in urban areas are not included in
the model. In addition, farmers and wage workers are taken into account. There is a group of people
in the VMD whose main income is of forestry or livestock, and these are not included.

The VMD has a population of 18 million inhabitants, with large differences in salinity levels and land
use across the area. Therefore, it was decided to perform the analysis at the district level. On average,
a district contains about 200,000 people. At the top of the model class, a district can be selected by
entering the name and number of the district. In the file Complete data analysis for districts.ipynb,
a district number can be selected, and the file will automatically generate an Excel file and load the
correct data.

To get a representative view of the different areas, three districts have been selected. District 894,
which is Thoai Son, is located in the northwest of the VMD and is not directly adjacent to the river.
This district has low salinity levels and is mainly focused on rice cultivation. They are not used to high
salinity, and therefore they should be impacted more by the shock. The second district is number 908:
An Biên. This is a coastal area in the western part of the VMD, and the main focus is aquaculture. The
third district number 824: Gò Công Đông. This district is located in the Tiền Giang province, which is
in the northeastern part of the VMD. It is a coastal district, and the bottom of the district connects to
a branch of the Mekong River. This district is interesting, since the salinity levels are high, while the
main crop is rice according to the Pop Housing Census 2019. The farmers in this district will be more
used to rice than the Thoai Son farmers. Figure E.1 in Appendix E shows these districts on the map.
The experiments and sensitivity analysis in this document will be based on district 824: Gò Công Đông.

The model will run each time for 300 steps, which represent 25 years. The start year is 2014, to
make it possible to compare the outcomes with historical data, and use the correct input data. The
model creates 1000 household member agents, which leads to approximately 250 households.

5.1.2. Number of runs
ABM is a stochastic modeling approach, which means that each run will lead to a different result.
Therefore, the model should run multiple time with different seeds to get a representative result. The
appropriate number of run is calculated using a convergence test. The data is collected at the last step,
and the expanding mean is calculated and standardized. It should be noted that the input variables stay
the same during these runs, but the randomly generated numbers and probabilities will differ. When the

29
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convergence is between [-1, 1], the model can be seen as stable. Figure 5.1 shows the convergence
for the number of annual crop agents and migrated households. It has been decided to run the model
150 times, since the running mean is around zero for both variables.

Figure 5.1: Convergence for annual crop agents (top) and migrated (bottom)

5.2. Verification
Verification is the process of checking whether the computational model matches the way it was in-
tended to be constructed. The following three factors are taken into account: the placement of agents
on the map, the composition of households with occupations, and the land area.

5.2.1. Map placement
The land agents are placed on the map of the district. The main problem was that there is only a small
part of land suitable for rice and annual crops, while the data showed that the main crops were rice and
annual crops in this area. Therefore, it has been decided to create an algorithm that finds a low-salinity
place for these farmers. Figure 5.2 shows the salinity levels, and the placement of the agents on the
district. There are 9 agents placed incorrectly. However, there are 105 agents, and the incorrect agents
are less than 10%. Furthermore, in reality, there is a chance that there are indeed farmers in the saline
area, due to the changing environment.

5.2.2. Household composition
Figure 5.3 shows the household composition for landless households, and large, medium and small
households.
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Figure 5.2: Agent placement on the district, based on salinity levels

The results of the land households are also in line with the expectations. When looking at the data of
district 824, it can be seen that in all land households, the percentage of non-agri workers is 0. The only
exception is the percentage of occupation in aquaculture, where 1.34% is a service worker. However,
the data also shows that 1% of the households are in aquaculture, and therefore this is not shown in
Figure 5.3.

The landless households are the ”rest group”. In the model, the land households are created, and
when no farm-owners are left, the other adults can start a household and fill this until the household is
full. This has no rules, and can therefore lead to chaotic results. When comparing this with the labor
data for landless households in district 824, 13. 5% is an agri worker, 64% a manual worker (this is
low-skilled non-agri, manual worker, and other combined) and 34% a skilled service worker. The skilled
service workers are a bit low, but this can happen due to the randomly generated numbers.

5.2.3. Land area
The land households have three land categories: small, middle, and large. Small is supposed to be
between 0.3 and 0.5 ha, middle between 0.5 and 2 ha, and large between 2 and 5 ha. Figure 5.4 shows
the distribution of land size per category. It can be seen that there are a few outliers, but the rest of the
land sizes are distributed perfectly. The landless households have no land, which is also in line with
the expectations.

5.3. Validation
The model is validated by looking at historical data and comparing this together with experts. Further-
more, extreme conditions are tested.

5.3.1. Face validation
In Figure ??, it can be seen that the model reacts strongly in the first few years. Many rice and annual
crop farmers switch professions and then hardly respond anymore to salinity shocks. However, in
reality, it is likely that they would continue to react. This is because the input data comes from many
different sources, and the expenditures are higher than the savings in the beginning. Afterward, people
have switched to their correct state and gradually become wealthier. All farms with too low an income
have already left, and the remaining farms can withstand the salinity shocks. However, L. Hermans said
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Figure 5.3: Household composition per occupation and household type

in a conversation that this is not so strange at all: the initial switches may be enthusiastic, but beyond
that, it is quite logical model behavior (personal communication, May 2025). Additionally, unpublished
data analyses of Deltares show that a significant portion of people migrated in the VMD after the first
salt shock (Deltares, internal document, 2025).

From the interviews with M. van Aalst, L. Hermans, and P. Jansson, it appears that the speed of the
switches may be due to one of the following factors:

1. The costs and revenues of the farmers is from different sources, different years, and sometimes
even different areas.

2. Nothing like a conservatism factor or similar was included. As a result, people switch immediately,
without considering whether they have been doing it for decades or perhaps lack the knowledge
entirely. The way the MOTA framework is implemented assumes that people can rationally reflect
on their choices, but this is not always the case.

3. Even before 2014, the farmers in the VMD were struggling. It is possible that they were already
nearing their limits, and the 2016 shock was the final push to trigger change. This is also sup-
ported by the unpublished migration data from Deltares, where a lot of people are changing after
the 2016 shock.

To see how the model reacts, it was decided to run the model in two alternative ways: first, when
the household’s expenditure equals its savings and second, when it is not possible to switch crops.
When crop switching is not allowed, several farmers still leave in the first few years. This is shown in
Figure E.6 in Appendix E. When switching is allowed but savings equal expenditure, many more agents
migrate, and the initial switches are also higher. This can be seen in Figure E.7 in Appendix E.

5.3.2. Historical data
The model outcomes are compared with historical data from 2014-2018, to see how people behaved
during and after the first salinity shock in 2016. Based on unpublished data by Deltares, it can be
seen that only 62% of the agri farmer households of 2016 were still agri farmer households in 2018.
2% of them switched to aquaculture, and the rest started non-agri work or migrated (Deltares, internal
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Figure 5.4: Distribution of land size per household type

document, 2025). These numbers are based on another region in the VMD, but show that a lot of
people stopped farming after the first shock. This trend is also happening in Figure 5.6.

5.3.3. Extreme conditions
Extreme conditions were used to test if the model would ”break” somewhere, and if unexpected behav-
ior would arise. For ten variables, the variable is halved or almost set to zero, and set two times as high
as normal. An overview of these variables and the system behavior per variable is given in Appendix
F. Table 5.1 gives an overview of the expectations and whether they are reached.

Almost all expectations weremet, and themodel never broke down. The only outstanding factor was
the possibility of debt. When there is no possibility of debt, the number of annual crop and aquaculture
farmers is higher. When there is a higher possibility, the number of rice farmers is a bit higher. After a
bad year, when a salinity shock has occurred, the farmer tries to switch crops immediately in the ABM
to receive more income. This results in switching costs, and when one does not have the money, they
will try to get a loan. Before, it was expected that when there was no debt, more people would migrate.
But as one can see in Figure 5.5, at the start of the model, a lot of farmers are switching between
crops, causing debts, which need to be paid of later. When there is no debt possibility, farmers who do
have savings will not switch, or switch only one time instead of going back and forth, since they cannot
pay for another switch. That declares that there are fewer rice farmers and more maize farmers and
aquaculture farmers in the situation without debt possibility.
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Table 5.1: Expected behavior and outcomes of extreme conditions test of ABM
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5.4. Model output
The ABM has three main outputs: the number of farmers over time in each crop category and land
size, the savings of these farmers, and the number of migrations.

5.4.1. Number of farmers
Looking at the number of small farmers over time in Figure 5.5, there is an interesting change in the first
few years, even before the 2016 salinity shock. For many farmers, their income is not enough to cover
their expenditure. At that moment, no salinity shock has occurred yet, and most farmers are switching
between rice and maize (salt-sensitive crops). Then in 2016, the salinity shock occurred: some farmers
switched back to rice, but many farmers are migrating. They do not have sufficient savings to survive
the shock and leave their land. Maize is even more sensitive to salinity than rice, and therefore, some
farmers switch back to rice. There is a very small increase in coconut farmers in 2016, but the number
remains low. This is because there are in some model runs 0 coconut farmers in the beginning, and if
farmers do not go to the information meeting, or do not see their neighbors have a farm, they do not
have information or an example on how to start the coconut farm. The same is for shrimp farming.
During the next shock, in 2020, the model has reached the ”steady state”, where farmers with too low
income have already migrated, and farmers have created enough savings to survive the shock.

The decrease and switches of farmers are less intense in farmers with medium land size. There
are a few switches at the start of the model and the number of maize farmers decreases after the 2016
shock. A few farmers decided to start a coconut farm in the first few years; however, the trees need
to grow for five years. During the 2016 shock, the farmers had a debt, and half their income from
rice/maize, and baby coconut trees. The shock decreased their savings, and this could not be fixed by
the half land full of maize or rice. As a result, they are also migrating after a few years.

Farmers with large land sizes are doing slightly better. Some farmers managed to buy land from
migrating farmers and have become large farmers. This happened after the 2016 shock, when all farm-
ers migrated. The maize farmers decrease slightly over time, and coconut and aquaculture increase
slightly. But overall, they have reached their steady state after the 2016 shock, for the same reasons
the small and medium farmers have reached that.

5.4.2. Migrations
In the ABM, there are two different types of migrations: households and individual members, especially
young adults between 15-35 years old. Figure 5.6 provides an overview of these migrations over time.

The highest migration rate is after the first salinity shock in 2016, where almost 20%of all households
migrated. In the next 23 years, this is increased by 10%, which is in line with the number of farmers seen
in Figure 5.5. The number of migrated individuals is increasing slightly over time, but only starts after
the 2016 shock, when households started migrating. This is because these migrations are influenced
by the migration rate.

5.4.3. Savings
Migrations are based on the savings of farmers and are visualized in Figure 5.7. It should be noted that
the savings are in VND. Small rice farmers have saved in 25 years 800.000.000 VND, which is a bit
higher than €25,000.- For small farmers, rice farmers are the richest, followed by maize, shrimp, and
coconut. This is logical, coconut farmers have had a ”start-up period” in which the coconuts grew, and
their income was lower for five years. It can be seen that in 2016, some coconut farmers had negative
savings, but took a loan.

For medium farmers, shrimp farmers are the richest. There are only a few shrimp farmers in the
model, but they have been able to not pollute their land and receive a decent amount of income each
step. This also shows that when correct measures are taken, shrimp farming can be successful. The
maize farmers are the poorest in this category, due to the really high required man days/ha, which leads
to high wage worker costs.

The same trends per crop type can be seen for the large farmers; however, their savings are
higher. A medium rice farmer has almost €80,000.- savings, while large rice farmers have approxi-
mately €200,000.- savings.
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Figure 5.5: Number of farmers per land size and crop type over time in ABM

Figure 5.6: Number of migrating households and household members over time in ABM
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Figure 5.7: Savings per crop type and land size over time in ABM
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5.5. Experiments
Experiments were conducted to study howmigration levels change in response to potential government
interventions. These experiments also provide insights into the model’s sensitivity to key variables. A
total of 100 runs were performed for each of the seven variables. In each case, the selected variable
was varied across a range from 0 to twice its baseline value, while all other variables and the random
seedwere held constant. At the end of the 25-year simulation period, the analysis focused on identifying
which households remained and which had migrated. Based on these outcomes, along with the results
of the extreme value tests, several conclusions were drawn.

5.5.1. Sensitive factors for migration
For each of the seven factors below, the number of household migrations after 25 years is studied
under different parameter values. The red lines represent the base value in the ABM. In addition, the
LOWESS line is visualized as well, to get a clear overview of the trend in the scatterplot. Migrations are
chosen as a performance indicator since they are based on savings and influenced by all of the factors
below. In addition, it would be nice if there are still households left in 2040, and focusing on migration
is therefore important.

Machines: Only 10% of the people in the VMD know how to use machines. Machines lead to
a lower required man days/ha, which leads to less work for wage workers, and therefore less wage
worker income. This decreases the savings and increases the percentage of migrations.

Figure 5.8 shows the results. It is interesting to see that when nobody uses machines, compared
to the current 10%, the number of migrations is higher. This is due to the number of man days/ha for
maize. Especially maize farmers have machines to prevent the high wage worker costs on a farm.
Without a machine, maize farming is not sustainable in the long term in the ABM. The maize farmers
are migrating when there are no machines, which is the peak at the start of the figure. Around 50%,
there is a switch, where the number of migrations is increasing again. This is the point where farmers
use fewer wage workers, and slightly more people are migrating.

Figure 5.8: Effect of machine use in the ABM on migration of households

Education level: When the education level increases, farmers are less impacted by the salinity
shock. This is happening when the education level is higher than 0.5, which means that the farmers
have an average household education higher than primary school. This effect is visualized in Figure
5.9. When the education level reaches 0.5, the percentage of migrated households decreases slightly.

Wage worker salary: The current wage worker salary per day is set to the minimum wage. When
the salary increases, farmers have more costs and there is a possibility they will have to migrate.
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Figure 5.9: Effect of education level in the ABM om migration of households

However, when the salary decreases, landless households do not have a sufficient amount of income
anymore, and will start migrating as well. This trend is also shown in the ABM, in Figure 5.10. It is
interesting to see that at the end, when the wage worker salary is really high, the number of migrating
households is decreasing again. The salary is so high that the wage worker’s income from household
members working on other farms compensates the wage worker costs per farm.

Figure 5.10: Effect of changing the wage worker salary in the ABM on the migration of households

Production costs: The fixed production costs differ for rice, maize, coconut and shrimp. Lower
production costs will lead to more savings, and therefore less migrations. Figure 5.11 gives an overview
of the effect of changing the production costs per crop type.

Most of the farmers in the model are rice farmers, and the majority of migration is driven by this
group. When rice production costs are zero, these farmers accumulate sufficient savings and income,
resulting in a very low migration rate. Increasing costs also lead to the expected increase in migrations.
Figure 5.11a provides a graph of this effect.

In contrast, changes in maize production costs have no significant effect on migration, as seen in
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Figure 5.11b. This is due to maize having fixed production costs of 3.4 million VND per hectare, in
addition to variable wage worker costs of around 13 million VND for a medium-sized farm. Adjusting
the fixed costs, therefore, has minimal impact, particularly if the harvest has already failed.

For coconut farming, a fluctuating pattern in migration can be observed in Figure 5.11c. As wage
worker costs increase, migration initially rises, but then declines again. In the model, agents switch
crops when projected income exceeds expenses, and they migrate once their savings are depleted.
When coconut production costs are very high, farmers immediately recognize the lack of profitability
and switch to alternative crops. These alternatives do not have such high production costs, reducing the
need to migrate. Lower production costs allow more coconut farms to remain operational. However, if
production costs are reduced to zero, coconut farming becomes profitable, and fewer people migrate.
Still, coconut farms require fewer wage workers compared to other crops, which results in a higher
migration rate among landless households, who generally have a lower income.

Shrimp farmers are the wealthiest group in the model, as shown in Figure 5.7, but there are also
only a few shrimp farmers in the model. Consequently, they do not face the issue of decreased savings
and rarely migrate. Changing the production costs has zero effect on the migration rate, as visualized
in Figure 5.11d.

(a) Effect of changing rice production cost in the ABM on migration (b) Effect of changing maize production cost in ABM on migration

(c) Effect of changing coconut production cost in ABM onmigration (d) Effect of changing shrimp production cost in ABM on migration

Figure 5.11: Effects of production cost changes on household migration in the ABM

5.5.2. Difference in characteristics after 25 years
Only a part of the households stayed in the VMD, and these households have no debt. The question
is: what is different about these households compared to the ones the model started with? What
characteristics do they have that prevent them from migrating? The household composition and crop
type per land category are studied.

When looking at household composition, Figure 5.12b shows that the remaining households have
significantly more high-skilled workers than the average household at the start of the model in Figure
5.12a. These individuals earn more income, which contributes to the household’s financial stability.
Additionally, the number of non-labourers in these households is considerably lower. Non-labourers
only generate costs and do not contribute to household income, so logically, the surviving households
have fewer non-labourers.
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(a) Average number of agents per land category in the first year (b) Average number of agents per land category after 25 years

Figure 5.12: Average number of agents per land category within a household

In addition, crop types were analyzed. At the beginning of the model, most farms were growing
maize and rice, as seen on the left side of Figure 5.13. After 25 years, only medium-sized rice farms
have remained, with almost no maize farms and very few small rice farms. Many crop combinations
have emerged, due to farmers buying up land from others. As a result, combinations like maize-rice,
rice-shrimp, and coconut-rice have developed.

(a) In the first year (b) After 25 years

Figure 5.13: Number of households per crop type

The size of the households was also studied, but no significant differences were found, taking into
account the fact that members could migrate as well.
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In addition to the ABM, a System Dynamics (SD) model was also developed. The SD model is created
with the ABM in mind and has almost the same factors as the ABM. In Appendix G, another SD model
can be found. This model is created together with Deltares, but has other factors as the ABM.

6.1. Conceptualization
The SD model contains four sub-models, which are explained below.

6.1.1. Households and occupations
There are four types of farmers: rice farmers, shrimp farmers, coconut farmers, and maize farmers.
Subscripts are used to differentiate between small, middle, and large land sizes. Small is 0.4 ha,
medium is 1.4 ha, and large is 2.5 ha. When the net income of farmers is too low, they will try to
switch crops. To prevent the model from becoming too chaotic, a few crop switches are possible: a
rice farmer can switch to coconut, maize, or shrimp, and a maize farmer can switch to coconut, shrimp,
or rice. However, shrimp farmers can only stop farming since their land will be too polluted to switch
to another crop. This happens after five years of antibiotic use, and therefore, a delay is implemented.
Furthermore, the assumption is made that coconut farmers (with a salt-tolerant crop) will not switch
back to salt-sensitive crops such as maize and rice. When farmers stop farming, they are migrating to
the city. In that case, it is possible that others take over their land, and the number of large farmers is
increasing.

In addition to farmers, there are also landless households. These are divided into three groups:
non agri, agri wage, and service worker. Within the agri wage stock, it is possible to be low-skilled or
high-skilled, using subscripts. Low-skilled agri workers receive less wage (190.000 VND/day compared
to 210.000 VND/day), and the distribution is based on education level. To avoid a mess between the
different households, it is not possible for landless households to switch between professions. They
can only migrate; this is happening when their savings are too low.

A conceptual overview of these groups is given in Figure 6.1.

6.1.2. Crop yield and crop farmers’ income
To calculate the crop yield for maize, rice, and coconut farmers, the same sub-model is used. This
model also differentiates between the three types of land size, using double subscripts. Figure 6.2
visualizes the model in a causal loop diagram.

The higher the salinity level, the higher the yield loss ratio will be. This ratio is based on the formula
by Tanji and Kielen (2002): 𝑌𝑖𝑒𝑙𝑑 = 100 − (𝑠𝑙𝑜𝑝𝑒 ∗ (𝑠𝑎𝑙𝑖𝑛𝑖𝑡𝑦 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑))/100. The slope is the
percentage per dS/m, and means that when salinity reaches this level, all yields for this crop will fail.
The threshold is in dS / m and is the salinity level at which the crops behave perfectly. Salinity is
the current salinity level. The yield loss ratio can be lower when the education level is higher than
0.5, which means that the average education is higher than primary education. It is decided not to
implement measures to prevent farmers from using salinity, since it is not known how effective they are
(N. Mulder, personal communication, April 2025).

42
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Figure 6.1: Conceptual overview of occupations in the SD model

Figure 6.2: Conceptual overview of crop yield and crop farmers’ income in SD model
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Based on the yield loss ratio, land size and yield/ha, the yield/household is calculated Blom-Zandstra
et al. (2017). Revenue is calculated on the basis of the market price and fixed costs are subtracted.
Based on this yield and the fixed costs based on land size, the household makes a profit. The fixed
costs represent the wage worker costs, and for example costs for seeds and pesticides. However,
the assumption is made that these costs stay the same each year. When a salinity shock occurs, the
number of wage workers is lower and the wages of the workers are reduced. But at the same time, the
farmer has more costs to prepare the land for the next crop season, which will increase the costs (M.
van Aalst, personal communication, May 2025). An exception is made for maize: When looking at the
literature, the fixed costs of maize were lower than the costs of wage workers (Pedroso et al., 2017).
Therefore, the costs of maize farming are the sum of fixed costs / ha and wage workers’ costs.

The wage worker costs for a farmer are based on the required number of man days per farm type
and the daily salary per wage worker. The farmer may also have family members working on the farm.
This decreases the required number of man days. When farmers have machines (in this case that is
set to True when more than 50% of the farmers have machines), they only need 2/3 of the man days.
It is assumed that each farm has the average distribution of low and high-skilled wage workers; in case
of Gò Công Đông this is 85% low-skilled, and 15% high-skilled wage workers.

Farmers also have additional income. Based on their crop type and land size, they have 0-3 people
working outside of the farm, working in non agri wage, or in the service sector. This data is based on
VHLSS2014 and work 20 days a month. In addition, it is possible for the agri wage workers to work on
other farms as well, to earn some extra money.

The agri wage stock number is multiplied by the average number of wage workers within an agri
wage household, and added to the total number of wage workers of the farm households. Based on
the total available number of wage workers, and the required number of man days, each wage worker
has a number of work days, and a salary. This salary is added to the savings of the household.

Lastly, each household has an expenditure, based on the VHLSS2014 data.

6.1.3. Shrimp farmers
Within the shrimp farmers stock, the distinction is made between farmers with disease and those with-
out disease, in combination with the small, medium, and large land size. This is done using double-
subscripts. For simplification and lack of data, shrimp farms are not impacted by salinity levels, and
whether the shrimp has a disease or not is determined by a fixed, predefined chance. In reality, salinity
levels can have an impact on water quality, and water quality itself has an impact on the chance that a
farm is infected or not (S. Eslami, personal communication, March 2025).

In addition, when there is a disease, it is possible to use antibiotics and have approximately the
same yield as a noninfected farm. However, it is not possible to distinguish in the model between the
farmers who buy antibiotics or not and those who stay infected. Therefore, it has been decided to let
every farm without disease pay for antibiotics; these are fixed costs/ha and are an assumption.

Based on the yield/ha and land size of the house, the different types of shrimp farmers have a
yield/household (Joffre et al., 2015a). The farming costs are calculated in the same way as for the
other crop farmers. Shrimp farmers also have wage worker costs, other household income based
on wage workers, and expenditure based on VHLSS2014. Figure 6.3 provides an overview of the
conceptualization using a causal loop diagram.

6.1.4. Landless households
The agri-wage, non-agri and service worker households also have a sub-model. Service workers re-
ceive income based on the overall migration rate of all types of households. When, for example, 20%
of the households have migrated, service workers have an income of 80%. However, their income can
also increase when more service workers migrate, and they have less competition. This last method is
also used for the income of non agri households. When more non agri households are migrating, there
is more work, and income will increase. The assumption is made that there is no stop to this, since, for
example, a factory will always have work to do. All service workers and non-agri-homeworkers work
20 days a month, and the working force within a landless household averages 2.

The agri-wage household earns money based on the average wage worker income, which is influ-
enced by the number of farmers and the number of available wage workers.
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Figure 6.3: Conceptual model of the shrimp farmers and their processes in the SD model
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Data from district 824, Gò Công Đông, was used as input data for the SD model. In addition, trends
of the ABM were implemented when the input data was insufficient. The SD model is deterministic,
and therefore, one single run is sufficient. The model runs for 25 years, starting in 2014. The time
step is set to 0.5 using Euler, to get the most realistic results. The model is verified by looking at
three factors: crop yield, Wage workers and wage worker income, and the possibility of switching
crops. Extreme value validation has been conducted as well, and the model outputs will be presented.
Lastly, the sensitivity is checked for five variables. The complete SD model can be found on GitHub:
https://github.com/Juliettevanalst/Thesis

7.1. Verification
Verification is the process of checking whether the computational model matches the way it was in-
tended to be constructed. The following three factors are studied: whether the crop yield is really
impacted by the salinity levels, if wage workers have higher income when more people are migrating,
and whether farmers switch crops.

7.1.1. Crop yield
The crop yield is expected to be lower during salinity shocks. This effect is also shown in Figure 7.1.
In the years 2016,2020, 2026, 2029, 2032, 2035, and 2038 is a salinity shock where the salinity level
reaches 5 instead of 3. That shock will lead to a yield loss ratio of 24% for rice, and this is in line with
the decrease in rice yield in Figure 7.1. In addition, the small land households have a land of 0.45
ha, while medium land is 1.4ha, and large land is 3ha. The small land size yield should be 6.6 times
lower than the large land size yield. For rice, 17500/6.6=2625, and this is the value shown for small
rice farmers in Figure 7.1.

7.1.2. Wage workers and wage worker income
Over time, the number of land households is decreasing and the number of wage workers should
also decrease. This is in line with Figure 7.2, which visualizes the number of wage workers on the
left, and the average wage worker income on the right. The number of wage workers is decreasing
since more farmers are migrating. Looking at the income on the right, the overall income is also slightly
decreasing. This is due to the high migration rate of farmers, which leads to less man days/ha required.
The decrease is not of the samemagnitude as the number of wage workers is decreasing, since income
is also increasing when there are fewer wage workers available.

In addition, income is decreasing during salinity shocks because less wage workers are required
during a shock.

It should be noted that this income is really low and that wage workers only work approximately 20
days a year. Therefore, wage workers are also working on their own farm, and there is income from
non agri workers and service workers in the family.

46
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Figure 7.1: Crop yield over time with different land types over time in SD model
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(a) Number of wage workers over time in the SD model (b) Average wage worker income in the SD model

Figure 7.2: Wage worker dynamics in the SD model

Figure 7.3: Crop switches over time in SD model

7.1.3. Switching crops
There is no social theory or behavioral model in the SD model. However, farmers still need to be able
to switch between crop types. These switches are based on the net income of farmers. When these
are too low, the ABM showed that 42% of the farmers will switch from crop to crop. It is checked if this is
happening, and Figure 7.3 shows the results. After each shock, the net income is too low, and farmers
are switching. From rice, the ABM trends showed that 86% switches to maize, 14% to coconut, and
almost none to aquaculture. This is in line with the left graph in Figure 7.3. For maize, 94% should
switch back to rice, only 5.5% to coconut, and 0.5% to shrimp. This is also shown in the right part of
Figure 7.3.

7.2. Extreme value validation
The model is validated by testing extreme values based on ten variables. These variables are either
halved/set to zero or doubled to observe whether the model breaks at any point. Table 7.1 provides
an overview of these tests. The model never broke. However, it did not always show the expected
behavior. This is in part due to thresholds in certain variables, such as contacts in the city or facilities
in the neighborhood, which only have an effect once a threshold of 0.5 is crossed. For instance, if the
model already has a value of 0.8 and this increases to 1, this has no impact on migration, even though
it realistically should.
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Table 7.1: Extreme value validation in SD model
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Additionally, when switching crops, the model does not take salinity levels into account. It bases
decisions purely on probabilities. As a result, increasing salinity does not necessarily lead to more
people switching to coconut or shrimp farming, even though that would be the most logical behavior.

Moreover, over time, people in the model accumulate so much savings that they are able to absorb
additional salinity shocks. This means that these shocks no longer lead to increased migration, which
may not reflect real-world dynamics accurately.

Finally, one would expect that if the migration probability increases, more people would migrate.
However, this probability is based on savings, and if savings do not drop below zero for a certain
group, those individuals will not migrate, regardless of how high the probability is set.

7.3. Model output
There are three main model outputs in the SD model: the number of farmers over time, the number of
migrations, and the savings per crop type and land size over time.

7.3.1. Number of farmers
The total number of farmers with small land decreases over time in the SD model, as visualized in
Figure 7.4. However, there are many switches between maize farmers and rice farmers. After each
salinity shock, these farmers tend to switch again to the other crop because their income remains too
low. The number of coconut farmers increases slightly with each salinity shock over time, but eventually
declines again, as small-scale coconut farming does not generate enough income. Shrimp farming is
the least common; the number of shrimp farms declines from 2020 onward due to increasingly polluted
land. While households are switching to coconut after each shock, they are not switching to shrimp.

Medium-land size farmers experience no switches at all, as their net income appears to be high
enough across all crop types. However, the number of shrimp farmers decreases after 2020, due to
the soil polluted by antibiotics after five years.

A similar effect is seen among farms with a large land size. The net income is sufficient to live
from, even during salinity shocks, and nobody is switching crops. There is one large shrimp farmer in
the model, and this one appears to be healthy. Otherwise, the number of shrimp farmers would also
decrease.

7.3.2. Migrations
Figure 7.5 provided an overview of the migrations over time in the SD model. Only households can
migrate as a whole in the SD model. After the first shock in 2016, the first households started to
migrate. The number of migrations increases steadily afterwards and is not influenced by the other
salinity shocks. Each timestep, there is a fixed probability a household will migrate, based on their
savings. Due to the level of aggregration and the fact that every household within a corp type and land
size has the same savings, each timestep a fixed number of people will migrate. This declares the
smoothness of the line.

7.3.3. Savings
The savings of the farms in the SD model are interesting, as shown in Figure 7.6. Starting with small
farmers: rice farmers are the wealthiest; their savings increase over time. The savings of the maize
farmers gradually decrease, but remain positive. It is also visible that savings are impacted by salinity
shocks, which makes sense since farm profits are lower during these periods. Coconut farming is not
profitable at all for small landholders, as their savings drop immediately and continue to decline further.
The most interesting case is shrimp farming: there is a decline in savings from 2023 to 2032, after
which savings begin to rise again. Shrimp farmer savings are calculated as the average of diseased
and disease-free farms. The number of diseased farms increases between 2023 and 2032, and then
decreases again. This explains the sudden decrease in savings followed by a recovery.

For medium-sized farmers, shrimp farms show the same trend: a sharp decline as more farms
become diseased, followed by an increase in average savings once these farmsmigrate. Maize farmers
are significantly poorer than rice farmers, while coconut farmers have experienced a turnaround: they
are now among the wealthiest farmers, while they were the poorest in the small land category. Medium
coconut farms have nearly twice as many non-agricultural wage workers compared to small ones.
Furthermore, a medium coconut farm has 25% more self-employed agricultural workers, who also
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Figure 7.4: Number of farmers per crop type and land size in SD
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Figure 7.5: Number of migrated households over time in the SD model

contribute to income.
The sharp decline in shrimp farming among small and medium farms is not seen in the large land

category. This is because there is only one shrimp farm in this category, and it is disease-free. As
a result, diseased farms do not decrease the average savings. Quite surprisingly, this farm is the
wealthiest of all. Maize, rice and coconut follow the same trend as observed in the medium land
category.

7.4. Experiments
Experiments were conducted to study how migration levels change if potential government interven-
tions were implemented. These experiments also provide insight into the model’s sensitivity to these
variables. In the SD model, migration is influenced by savings, making it a strong key indicator.

For each variable, 100 iterations were run, while all other variables were kept constant. The variable
in question was tested over a range from 0 to 2 times its original value, without accounting for interaction
effects. In each plot, the red line represents the baseline, which corresponds to the current value used
in the SD model.

7.4.1. Sensitive factors for migration
Machines: In the SD model, it is not possible to state that some people have machines and some do
not. Therefore, when the variable machine is greater than 0.5, the assumption is made that everyone
has machines and less wage workers are required during harvest time. The income of wage workers
decreases and farmers do not have enough money to stay. This is visualized in Figure 7.7.

Education level: When the education level is higher, farmers are less impacted by salinity shocks
and therefore the yield will be more stable. This leads to more savings and less migrations. But the
same problem is here: all farmers have the same education level in the SD model. When the level of
education is higher than 0.5, it is assumed that all farmers are educated enough and are less affected
by salinity. This effect is shown in Figure 7.8, where migrations decrease when the level of education
reaches 0.5.

Wage worker salary: A higher salary leads to higher additional incomes in the SD model. The line
in Figure 7.9 is decreasing in steps. When there is almost no salary, the migrations are the highest,
which is a logical relation. But then there is a small stagnation around 0.25-0.50% of the current salary:
for most of the farmers, this income is sufficient to live from. These are farmers with a low number of
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Figure 7.6: Savings per crop type and farm size in the SD model
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Figure 7.7: The effect of machine use on migration in the SD model

agri-workers in the family and a high number of non-agri-workers. This group exists for example out of
small rice farmers, they have the lowest number of agri workers, but their additional income is one of
the highest. However, large rice farmers have an average of 2.6 agri workers, and one of the lowest
non agri workers. They are really impacted by the changes in wage worker salary.

After another stagnation between 0.75-1.1 due to the same phenomenon, the number of migrations
is decreasing slightly.

Production costs: All farmers have fixed production costs, while for maize, production costs also
depend on the wage worker costs. Changing rice production costs has the greatest effect on migration.
When the production costs are doubled, migration rates more than double as seen in Figure 7.10a. The
rice farmers are leaving, but this means less work for wage workers. They receive less income and
other farms with a lot of agri-wage workers are also impacted.

Formaize, decreasing the production costs has no impact. This is due to the fact that maize farmers
have relative low fixed costs, and maize is the only crop for which wage worker costs are added sep-
arately. Maize still has high costs when fixed production costs are set to zero, and therefore, this has
no effect. Increasing the costs gives the expected result, as seen in Figure 7.10b, since more farmers
are migrating.

Coconut: Small coconut farms have the lowest savings, as can be seen in Figure 7.6. They are
really impacted when production costs are set to zero, and this can also be seen in Figure 7.10c. There
is a large switch when the costs are around 1.25e7 VND. The medium sized farmers have a positive
net income in this scenario, while it is negative during the normal coconut production costs. This is the
sudden increase in the graph. The same is for the small coconut farms when the costs reach around
2.4e7 VND.

Savings have zero effect on whether shrimp farmers are migrating or not in the SD model. Shrimp
farming migrations are purely based on if the farm has a disease or not. Therefore, changing shrimp
production costs has no impact, as seen in Figure 7.10d.
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Figure 7.8: Effect of education level on the number of migrations in SD

Figure 7.9: Effect of changes in wage worker salary on the number of migrations in the SD model
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Effects of production cost changes on household migration in the SD model

(a) Effect of changing production costs for rice (b) Effect of changing production costs for maize

(c) Effect of changing production costs for coconut (d) Effect of changing production costs for shrimp

Figure 7.10: Effects of production cost changes on household migration in the SD model
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Comparison ABM and SD model

An attempt was made to create both an ABM and an SD model using the same functions and input
variables. This section will discuss three points: What are the conceptual differences between the ABM
and the SD model, what are the differences in results, and what are the differences in sensitivity? Fur-
thermore, literature is used to see if the missing values in the SD model are crucial, and the differences
in the modeling process are studied.

8.1. Conceptual differences
Due to the differences in the modeling approaches, there are a few factors included in the ABM that
could not be implemented in the SD model. These are detailed below:

Crop switches: In the ABM, agents switch crops when income exceeds expenses. It is checked
whether people attended the information meeting, where they received a recommended crop based on
salinity levels and education. The agents then consider what their neighboring farmers are doing and
apply the MOTA framework to determine the most suitable crop for the farmer. In the SDmodel, no crop
recommendation is given during the information meeting, as it is not possible to make household-level
recommendations. The model also does not take into account neighbors’ behavior or apply the MOTA
framework. Instead, it considers trends observed in the ABM: when people switch crops, to which crop
do they switch? The vast majority switch to maize, and this percentage is then incorporated into the SD
model as a ”chance of switching to maize.” Based on income levels, there is a probability that farmers
will switch crops, which is then multiplied by this chance.

In addition, when a farmer switches to coconut in the ABM, there is an initial growth period of five
years. During this time, the farmer cultivates maize or rice on half of their land, which still generates
some income. However, this is not possible in the SD model: although it is possible to implement a
delay, these farmers would still need to generate income during that period. This might have been
possible by introducing an additional intermediate stock, but doing so would significantly reduce the
clarity and simplicity of the model.

Furthermore, in the ABM, farmers must pay switching costs when changing from one crop to an-
other, since the land needs to be prepared. In the SD model, this is not possible: farmers do not have
individual savings. All farmers in the same stock have the same savings based on averages. It is
therefore impossible to say ”one new farmer has joined, now all farmers in this stock must pay a certain
amount of VND in switching costs.”

Debt: In the ABM, it is possible to take out a loan when switching crops or when the savings of
a farmer are depleted. This debt is then repaid in subsequent years. However, the same limitation
applies in the SD model as with switching costs: since everything is aggregated, all farmers in a stock
would effectively have to repay the same debt. For this reason, debt was not included in the SD model.

Household composition: In the ABM, households consist of individual members, each with their
own occupation. These are combined to form the household, resulting in multiple professions and

57



58 8. Comparison ABM and SD model

income sources within a single household. In the SD model, this is approximated for farm households:
for each crop type and land size, a fixed number of household members is assigned to work in a given
sector. This distribution is based on district-level data analysis, which shows how many people work
as wage laborers or as self-employed non-agricultural workers. Wage workers are assumed to be
non-agri wage workers (otherwise they would be classified as self-agri), and self non-agri workers are
service workers. Thus, each household of a certain crop type and land size has the same composition
of household members.

For service worker households, non-agri wage households, and agri wage households, this level of
detail was not applied in the SDmodel. It is assumed that everyone in a service worker household works
as a service worker, and everyone in an agri wage household works as an agri wage laborer. Although
the total number of workers per category is still representative, the composition of the household differs.

Wage workers: In both the ABM and SD model, farmers employ wage workers. However, in the
ABM, agents can change roles: if total household income is too low, an agent may start manual work
if this yields more income. Agents can also switch back. These transitions are not possible in the SD
model, since all households within a stock earn the same income and have the same number of work-
ers in certain categories. When changing occupations, everyone in the stock would have to switch at
the same time, which is not realistic.

Youth migration: In the ABM, youth aged 15 to 35 years can migrate. This is not possible in the SD
model because households do not consist of individual members, and thus have no age structure. It
is impossible to determine whether a household has children who want to migrate. It would have been
possible to let a certain percentage migrate over time based on ABM trends. However, this would re-
quire reducing the number of wage workers in those households while keeping the number constant in
others. Due to the level of aggregation in the SDmodel, this was not feasible and therefore not included.

Salinity levels: In the ABM, each agent is placed on a spatial map and has a unique salinity level.
Some agents are therefore more affected by salinity shocks than others. In the SD model, everyone
has a fixed salinity level of three, which increases from three to five during salinity shocks.

Machines, experience and education level: In the ABM, each household has an experience level
per crop, can own harvesting machines, and has an individual education level. In the SD model, it is
not possible to differentiate between households. As a result, either all or none of the households have
machines based on averages, and a single average education level is used. This yields benefits if the
level is greater than zero point five. The level of experience per crop is not included at all in the SD
model.

Household attributes: In the ABM, a household agent could have sixty-four million VND in savings,
two agricultural workers, one non-agricultural worker, and cultivate rice. If that household switches to
coconut farming, it retains those characteristics, becoming a coconut farmer with the same savings
and workers. This is not the case in the SD model: if a small rice farmer switches to a small coconut
farmer, they immediately adopt the savings, wage worker numbers, and household composition of a
typical coconut farmer.

Lastly, all of the factors above influence the livelihood indicator in the ABM. This is a measure of
agent well-being. This factor was not included in the SD model because it would be the same for all
households. Due to the many assumptions required, the livelihood indicator was not further used in
the SD model.

8.2. Differences in results
Based on the conceptual differences, there are differences in the outcomes. The same variables were
used as model outputs for both models: number of farmers, migrations, and savings. To check for any
modeling errors, other variables were also compared, such as yield over time per crop type and land
size, profit from farming, wage worker costs per farm, and the total number of wage workers.
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8.2.1. Number of farmers
In both models, a farmer can switch crops if the net income is less than 0. The percentage of times this
switch occurs in the ABM was counted, as well as how often people continue with the same crop. The
switching percentage was 42% for rice and 55% for maize.

Figure 8.1 gives an overview of the number of farmers in the SD model and the ABM. For the small
farmers, there are significant differences: in the ABM, farmers switch crops at the beginning, reach
a steady state, and then stop switching. The ”strong farmers” remain and have found their optimal
crop category, meaning their income will always be sufficient. In the SD model, shown on the left side
of Figure 8.1, completely different behavior is shown: after each shock, the income of farmers is too
low, causing them to switch between maize and rice. The SD model does not differentiate over time
between ”stronger” farmers who can handle shocks and the ”weaker” farmers, as everyone in the SD
model has the same characteristics. This differentiation occurs in the ABM, which is why the switching
peaks are absent after the first few years. It is also noticeable that many more rice and maize farmers
remain in the SD model than in the ABM. In the SD model, the land size is fixed at 0.45, while in the
ABM, the land size for small farmers ranges from 0.3 to 0.5. This results in more small farmers dropping
out of the ABM for this category.

Furthermore, there are a large number of coconut farmers at the start of the model in the SD version,
whereas this peak is much smaller in the ABM. In the ABM, the next crop is determined by the neighbors
and the information meeting. If there is no salinity shock (such as in 2015), and none of the neighbors
grow coconuts, the farmer is unaware that coconut is an option. This leads to fewer small coconut
farmers in the ABM than in the SD model.

However, the opposite difference is observed for medium and large land size farmers: in the SD
model, there are hardly any medium and large coconut farmers, while they are present in the ABM.
This is because all medium land size farms in the SD model have an insufficient net income, as the
model uses averages. In the ABM, some ”weaker” farms do not earn enough income and must switch,
but there are also richer farms that can stay. This phenomenon also explains why there are switches
in the medium ABM graph, but not in the SD graph.

The number of large rice farmers in the ABM is increasing: These are farmers who take over land
from smaller rice farmers who quit. However, fewer small rice farmers quit the SD model, which means
that no land is taken over, even though this option was taken into account in the SD model.

It was possible to use a lookup table for the probability that a household switches crops over time,
which aligned themodel results. However, this lookup table would not have been created if the ABMhad
not been developed. In addition, the lookup was not implemented to highlight the difference between
the ABM and the SD model when exactly the same numerical values were used.

8.2.2. Migrations
Figure 8.2 shows the difference in the number of migrations between the ABM and SD models. In the
ABM, the number of migrations increases significantly from 2016 onward, as income and savings have
decreased during the first shock. After that, the number continues to rise slowly.

In the SD model, these migrations occur somewhat more slowly: small farmers are still actively
switching crops instead of migrating in 2016. However, the migration rate rises almost linearly, and
after 25 years, approximately the same number of households have migrated. In addition, there are no
migrated individuals in the SD model, as this is not possible within its structure.

8.2.3. Savings
The biggest difference between the models lies in the savings. In the ABM, each agent has their
savings, earns their own income, and carries their savings when switching. The ”poorer” agents migrate
to the city, and the wealthier agents remain. This does not happen in the SD model, which uses
averages. When the ”poor” agents leave, the average savings do not suddenly increase, since there
are no poor or rich agents represented individually. As a result, average savings are much lower in the
SD model than in the ABM.

There is also something interesting visible in the average shrimp farmer’s savings. The peak seen
in the shrimp farmers’ savings in the SDmodel (due to an increase in sick shrimp farmers) is not present
in the ABM: in the ABM, a shrimp farmer may be sick one year and healthy the next, so there are no
consistent savings drops among a few agents that pull down the average every year.
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Figure 8.1: The number of farmers per crop type and land size over time in the SD model (left) and ABM (right)

The same effect can also be seen in the savings of the landless households in Figure H.4 in Ap-
pendix H. The savings in the SD model are much lower than the savings in the ABM.

8.2.4. Comparison other variables
In addition to the three main outputs, other variables were also compared to observe differences. The
graphs for visualization can be found in Appendix H.

When looking at the yield per farm over time, there are no large differences. However, the yield/household
decreases faster in the SD model during a shock, while the decrease is much smaller in the ABM. This
is because in the ABM, each agent has a different salinity level, and the ”stronger” agents with favorable
salinity levels remain. These agents are less affected by shocks. At the start of the ABM, the impact
of the shock is also more intense than in the later years.

It is also visible that the yield of large farms is slightly higher in the ABM than in the SD model. This
is due to some outliers in farm size for large farmers in the ABM, which are defined between 2 and 5
ha, raising the average. In the SD model, farm size is a fixed value, set at 3. This is also reflected in
the profit per farm in Figure H.2.

The average wage worker costs per farm are also slightly different in the ABM and SD models. The
average values were used in the SD model, which results in the wage worker costs being zero for small
farmers. However, in the ABM, some small farmers do require wage workers, so there are indeed costs
for the small farmers. There is also a small difference in large farmers, which is again caused by the
outliers in land size in the ABM.

8.3. Differences in uncertainty
In addition to differences in model output, the sensitivity of both models was compared by studying how
changes in five variables affected the number of migrations.
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Figure 8.2: Number of migrated households over time in the SD Model (left) and ABM (right)

8.3.1. Machines
There is a clear difference in sensitivity between the ABM and SD models when looking at the number
of people using machines. In the SD model, there is a peak at 0.5: this is the threshold that was set,
and when more than 50% of the farmers use machines, everyone immediately adopts them. In the
ABM, this threshold was not needed, and if the value is 50%, then indeed only 50% of farmers have a
machine.

However, the SD model is much more sensitive: each farm has a fixed number of wage workers,
and this income decreases when everyone uses machines (since there is less work to do). The wage
workers cannot switch to, for example, manual labor; the household income drops, and subsequently,
the households are forced to migrate. In the ABM, wage workers can become manual workers when
less work is available, and still earn approximately the same income. Therefore, people do not migrate,
and the ABM is much less sensitive.

8.3.2. Education level
Both models show the same trend, as seen in Figure 8.5. There is a threshold at 0.5: if the education
level is higher than this, the impact of salinity is reduced, leading to higher yield, more savings, and
fewer migrations. In the SD model, the education level directly affects the reduction of salinity level
during a shock, and thus also the yield loss and income. In the ABM, the human livelihood variable
is used, which includes the level of education, but also whether someone attended the information
meeting, their experience, and the level of disability. This explains why the ABM reacts slightly less
strongly than the SD model.

8.3.3. Wage worker salary
Both models also show approximately the same trend, as seen in Figure 8.6. However, there is a small
peak around 1.75 in the ABM that does not appear in the SD model. In the ABM, small farms also
have wage worker costs, while in the SD model, small farmers do not have those, as shown in Figure
H.3. For maize farmers, wage worker costs directly impact total costs. So if wage worker costs rise,
there is less budget available, and farmers may need to migrate. Maize farmers in the SD model do
not experience this, which explains why there is no migration peak there.

8.3.4. Crop production costs
As shown in the comparison for savings in Figure 8.3, households are much wealthier in the ABM,
making them more resilient to changes. In the SD model, for rice, maize, and coconut, it is seen that
the higher the costs, the more migrations occur. For coconut and rice, this trend is less intense than in
the ABM, but still present, while for maize, it has no effect at all. For shrimp, there is no difference in
either model.
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Figure 8.3: Savings over time in the SD model (left) and ABM (right)

Figure 8.4: Effect of machine use on the percentage of migrated households in the SD model (left) and ABM (right)

Figure 8.5: Effect of education level on the number of migrations over time in the SD model (left) and ABM (right)
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Figure 8.6: Effect of changing the wage worker salary on the number of migrations, in the SD model (left) and ABM (right)
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(a) Effect of changing rice production costs on migrations in SD (left) and ABM (right)

(b) Effect of changing maize production costs on migrations in SD (left) and ABM (right)

(c) Effect of changing coconut production costs on migrations in SD (left) and ABM (right)

(d) Effect of changing shrimp production costs on migration in SD (left) and ABM (right

Figure 8.7: Overview of migration effects from changing crop production costs
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8.4. Implications of the absence of certain factors in the SD model
When looking at the factors that could not be included in the current version of the SD model (since it
was constructed to have the same structure and input variables as the ABM), it is important to consider
what effect the absence has on the results. This is done by checking if these factors are considered
important in the literature. Furthermore, it is studied whether these factors could still be implemented
in some way within the SD model. Table 9.2 provides an overview.

From this analysis, it becomes clear that the absence of the MOTA framework in the SD model does
not influence the high-level outcome. But, should the dynamics change in the future, these percentages
will remain fixed. This can be a problem, given that the literature still debates whether farmers will switch
to certain crops or not (Kaveney et al., 2023).

In contrast, the absence of crop switching costs, growth period, debt, occupational changes, youth
migration, spatial positioning on themap, and heterogeneity in machine use, experience, and education
level is more problematic. Literature identifies these as important factors that shape behavior and crop
decisions. In the current SD model, most of these variables have been incorporated via trend inputs
derived from the ABM, sometimes resulting in similar model behavior. Without the ABM, these trends
could not have been used as input, and the SD model would have required assumptions instead. An
example of this is the education level and machine use: by using averages, the SD model shows the
behavior of an average farmer. However, in reality, farmers have different characteristics, leading to
different individual behaviors, which then aggregate into a group average. Modeling only the average
skips over this individual variability.

Some of these features can technically be added to the SD model, in an attempt to replicate the
exact ABM behavior in the SD model. However, this often requires lookup functions based on ABM
trends. Without the ABM, it is unclear what impact these features would have or how strong their
influence would be. For example, the ABM MOTA framework showed that, on average, 42% of rice
farmers switch crops when income is too low. It showed that not all farmers can afford the switching
costs or have knowledge of alternatives. Without this insight, the SD model might have assumed: ”If
income is too low, everyone will switch.”, and there would be fixed assumptions. Should other variables
change, these fixed assumptions would need to change as well. This can be done by either using new
lookups or by re-running the ABM to obtain updated trends.

The last issue is the lack of household attributes in the SD model, since this gives an unrepre-
sentative view of reality. In the VMD case, many farmers switch between stocks, and each stock has
different attributes. When a switch occurs, it makes sense for a farmer to retain these attributes. For
example, if someone switched from rice to coconut, it would be strange if they suddenly had two fewer
self-agricultural workers. In the ABM, this does not happen, which allows one to observe what happens
to these agents over time and whether they perhaps perform better than the original farmers.
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Table 8.1: Implications of the absence of certain factors in the SD model, related to literature and how these could possibly be implemented.
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8.5. Comparison of modeling process
Several differences emerged during the development of both models, which are explained below.

First of all, SD models are easier to explain. In ABM, individual behaviors can lead to emergent
patterns at the aggregate level. For instance, a farmer might attend an informational meeting and learn
that perennial crops are a good idea. A neighbor might then see the coconut trees growing and think,
“That looks promising, I want to try that too,” and begin growing coconuts as well. Agents can decide
whether to develop themselves or not, based on probabilities, which can sometimes appear like a ”black
box” of code. This level of detail cannot be modeled in SD. Instead, SD would model this as: ”X percent
of the group transitions to perennial farming,” without incorporating the decision-making rules behind
individual behavior. In ABM, the behavior is modeled as: ”Each agent has a different probability X of
doing this, based on their factors Y and Z.” These variables X, Y, and Z can vary for each agent.

Besides explainability, SDmodels are also easier to build and interpret. In SD, one works with stocks
and flows. Adding a new stock can be done by simply clicking a button in Vensim. In ABM, adding
such a feature might require hundreds of lines of code. For outsiders, ABMs are harder to interpret.
There is no visual overview; it is just thousands of lines of code. Interviews with Deltares colleagues
revealed that the ABM was often vague and difficult to understand, which complicated communication.
The SD model, by contrast, offered a clear and intuitive overview right away, allowing colleagues to
quickly provide useful suggestions for improvement.

The output of an SD model in Vensim or Stella is also more interactive for Deltares (M. van Aalst,
Personal communication, May 2025). Dashboards can be created with sliders and graphs that update
instantly when a slider is moved. ABMs are stochastic and require many simulation runs to produce
reliable results. Furthermore, in ABM, model code must be modified to make changes since there are
no interactive sliders available.

However, one advantage of ABM is its flexibility in terms of visualization. SD models typically pro-
duce only line graphs, and customizing these is often not possible. For example, when plotting multiple
variables, Vensim frequently assigns inconsistent axes, making the interpretation difficult. To address
this, the SD output was exported as CSV files and visualized in Python. ABM is already built in Python,
where tools like Seaborn and Matplotlib allow much more refined and aesthetic visualizations than
Vensim’s default line graphs. If there is limited Python knowledge, this can be a disadvantage of SD.
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Conclusion and discussion

The purpose of this research was to explore the advantages and disadvantages of different modeling
approaches to study the distributed and disaggregated impacts on different types of inhabitants in the
Vietnamese Mekong Delta. To reach this goal, several sub-questions were answered. After answering
the research question, Deltares will receive recommendations, followed by a description of the strengths
and weaknesses, as well as the practical and theoretical implications. Finally, recommendations for
further research are presented.

9.1. Answers to research questions
First, all sub-questions will be answered. Based on these answers, the main research question will be
addressed.

Sub-question 1: What are promising different modeling tools and approaches for Deltares to model
the disaggregated and distributional impacts?
Three modeling approaches were considered: Discrete-Event Simulation (DES), Agent-Based Model-
ing (ABM), and System Dynamics (SD). DES was found to offer no advantages for this case that could
not also be achieved with ABM or SD, and therefore, DES was excluded. Although DES can focus on
the micro level, ABM can do this as well (Maidstone, 2012). DES is faster than ABM (Railsback et al.,
2017), but nowadays, DES characteristics can be modelled in MESA 3 (Ter Hoeven et al., 2025), and
SD is even faster than DES (Caro et al., 2016).

Furthermore, a set of requirements was defined to assess whether the model would fit the needs of
Deltares. This resulted in 12 ”must-haves”, and Table 9.1 provides an overview of these factors, and
whether these can be fulfilled by SD and ABM.

This table shows that SD fails to meet two requirements: easily changing the composition of people
and modeling human behavior/interactions. This aligns with the SD model created by Yuan et al.
(2011), who concluded that SD is unable to capture microscopic individual behavior due to the lack

Table 9.1: Overview of the “must have” requirements and whether they can be met by SD and ABM
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of heterogeneity. Also, agents in SD cannot communicate with each other, preventing the emergence
of macro-level behavior. Modeling different types of inhabitants is only partially possible: the model
includes small, medium, and large farmers, but true individual variation with unique characteristics
cannot be represented. In an SD model developed by Chapman and Darby (2016) about farmers,
there were also only three fixed land sizes, and no further differentiation in farmer composition. This
limitation was also observed by Von Loeper et al. (2016), who noted in interviews that certain individuals
exhibited a different behavior from the population, but this could not be modeled in SD.

ABM also fails to meet two requirements: short runtime and dynamic output. Due to the stochastic
nature of ABM, it takes longer to run (Chopra et al., 2023), and this also makes it impossible to build
interactive dashboards with sliders for instant feedback, which is possible in SD.

Both models can potentially be connected to other models. For instance, ABM or SD outputs could
be used as inputs for other models. However, attention must be paid to the abstraction level. SD oper-
ates at a macro level, making it harder to connect to other models (Ding et al., 2018). The ABM is built
in Python, and due to fixed time ticks, it connects more easily to other models. According to Macharis
(2000), SD models in Vensim can also be linked to other models, but this requires additional software
to connect Vensim to, for instance, MCDA. This software might not be available for all model types. An
alternative is to export the output from Vensim and import it into another model (Macharis, 2000).

Sub-question 2: How can these promising approaches be conceptualized, combined with their data
requirements?
The conceptual models can be found in Figures ??. Several factors cannot be modeled in SD but are
included in the ABM:

1. Crop switching costs: When farmers switch crops, costs are incurred to prepare the land. In
the SD model, these costs would apply to all farmers in a stock, rather than only those switching.

2. Growth period: When switching to coconut, it takes around five years for the trees to mature.
Meanwhile, farmers can grow maize or rice, but with lower yields, which affects their savings. A
delay can be added to the SD model, but the savings impact cannot be properly captured without
affecting everyone.

3. Debt: Due to the level of aggregation, it is not possible to assign individual debts. It would be
unfair to apply debt equally to all.

4. Youth migration: Youth migration alters the composition of the household, which cannot be
modeled at the individual level in SD.

5. Map placement: In the ABM, agents are placed on a spatial map with their salinity level. In SD,
all farmers share the same salinity level.

However, these are important factors that significantly influence system behavior (Chapman et al.,
2022; Ly & Nguyen, 2020; Quach & Vo, 2023; Thi Quyen, 2022; Tran et al., 2018), and it is therefore
interesting to see how this causes differences between SD and ABM results.

Moreover, several factors were aggregated or simplified in the SD model. For example, there is
no MOTA framework in the SD model to determine crop switching. Instead, predefined percentages
are used. The household composition is identical for everyone, and all households have the same
education level, and either all use machines or none do. While household members have occupations,
they cannot switch between them, unlike in the ABM. This aligns with the findings of Schieritz and
Mulling (2003), who developed the same model in both ABM and SD for trees. They concluded that
the SD model felt like modeling the forest, while the ABM felt like modeling the trees. This is similar to
how households and members are modeled in the ABM, whereas SD only includes household types.
They also noted that the SD model lacked features such as neighborhood effects and spatial elements
and instead relied on fixed proportions of the stock performing actions, rather than behavior driven by
individual characteristics (Schieritz & Mulling, 2003).

The ABM was developed using VHLSS, Population and Housing Census data, and literature. It re-
lied on percentages and standard deviations to generate input distributions for the different agents. For
the SD model, certain input variables were unclear, such as ”chance rice farmer switches to coconut”.
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This variable was not needed in ABM, as it was calculated using the MOTA framework and various fac-
tors such as salinity, education level, and savings. Therefore, ABM trends were used as input for the
SD model. This is a technique commonly used, such as in the hybrid simulation framework by Nguyen
and Megiddo (2021). The data difference is consistent with the findings of Schieritz and Mulling (2003)
and Van Dyke Parunak et al. (1998), who compared ABM and SD by building two models. In the SD
model, population sizes and fixed probabilities were used, whereas ABM incorporated the identities of
the agents themselves.

Sub-question 3: How do the ABM and SD model differ in representing disaggregated impacts across
farmer subgroups under environmental changes

In ABM, heterogeneity allows for all different compositions and characteristics to be modeled. It
showed that households with high-skilled wage workers were more likely to remain in the system after
25 years. Farmers who took over land from migrating neighbors also did well, having multiple income
sources and sufficient savings. In contrast, SD focuses on averages, making it impossible to identify
which household characteristics lead to the most migrations.

A key benefit of ABM’s heterogeneity is that when an agent migrates, their attributes are removed
from the system. If poor farmers migrate and wealthy ones remain, the average savings will increase
over time. This dynamic cannot be captured in SD: everyone within a crop type and land size category
has the same income, and overall savings remain low even after migration. As a result, SD trends
are lower, whereas ABM provides more realistic results. The same applies to salinity. In ABM, each
household has a different salinity level, so some farmers are affected more than others. Those in
high-salinity areas can switch crops or migrate, reducing overall yield loss. In SD, everyone is affected
equally, since the salinity level is the same for all, resulting in a higher intensity of impact. This can be
seen in Figure H.1. This also leads to the biggest difference between the models: after each shock,
nearly half of the small farmers in the SD model switch between rice and maize, whereas in ABM,
agents reach a steady state after a few years, become wealthy and stop switching. Those who could
not handle the shocks have already migrated, but in SD, their characteristics are still included, leading
to unrealistic switching patterns.

This is a well-known phenomenon in the literature, for instance in Borschchev and Filippov (2004).
According to Van Dyke Parunak et al. (1998), this difference arises because SD assumes homogene-
ity, whereas real systems are heterogeneous. To align ABM and SD results, lookup tables can be
implemented (Wilson, 1998), which corresponds to Table 8.1.

Both models capture the impacts of changes well: they show similar patterns in terms of migration.
Likewise, sensitivity to migration produces comparable trends. However, only the ABM can model
youth migration, which is impossible in SD model.

Main research question: What are the advantages and disadvantages of different socioeconomic
response modeling techniques in assessing the disaggregated or distributional impacts for different
subgroups in light of environmental change now and in future scenarios, tested on the Vietnamese
Mekong Delta?

Based on the model results and the modeling process, advantages and disadvantages have been
identified for both an SD model and an ABM.

The biggest disadvantage of SD is the aggregated nature of the model. As shown in sub-question 2,
this leads to the exclusion of many important features. Moreover, it results in distorted model outputs:
for example, if poor people leave the model, the average savings should increase. However, in SD,
everyone is equally wealthy, so savings do not increase when people leave. Furthermore, it would
make sense that if a rice farming household (e.g., with many self-agricultural workers) switches to
coconut farming, it would still have the same number of self-agricultural workers. But suddenly, in the
SD model, household members are lost because the rice farm is now classified as a coconut farm and
thus acquires characteristics of the coconut farm.



72
9.C

onclusion
and

discussion

Table 9.2: Advantages and disadvantages of SD and ABM
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When looking at the modeling process itself, SD is much easier for Deltares to develop. They
already have experience with SD, and the Python code and emergent behavior of ABM can be seen
as a black box. Stocks in SD can be created with the click of a button, whereas in ABM this might take
hundreds of lines of code. Additionally, in SD the structure is immediately visible through the stocks
and flows, and it is instantly clear which variables influence what. The dashboard with sliders also
makes it much easier to communicate the model to outsiders. These points are consistent with the
findings of Nugroho and Uehara (2023), which show that SD is more transparent and accessible for
communication.

9.1.1. Recommendations
Based on the advantages and disadvantages of both methods, the model results, and all discussions
over the past five months, two recommendations have been formulated:

1. Develop an ABM. When examining the differences in results, it becomes clear that the SD model
(due to its high level of aggregation and use of averages) provides less valid results. For example,
if poor farmers leave, the average savings should increase more significantly. If a farmer switches
crops, they should retain the same household composition. It is unrealistic that nearly half of the
small farmers switch crops after each salinity shock—after some time, farmers would have found
their optimal crop. These kinds of small inconsistencies lead to different behavior. Moreover,
there are many factors that cannot be included in the SD model, while literature shows that these
are important, as found in Table 8.1. Currently, trends from the ABM are used as input, but if
the ABM had not existed, there would not have been input data for the SD model. For example,
there are no district-level data available on howmany people switch crops or the exact percentage
switching to specific crops after a shock.
If developing a full ABM is considered too big a step or if its output is deemed too unclear, it is
recommended to develop a NetLogo model. This is an ABM platform that includes sliders and
graphs, allowing for clear visualization of what is happening. It also allows the modeled behavior
to be more realistic. The downside is the programming language—it is written in Scala (CCL,
2023), which would need to be learned.

2. Regardless of the method chosen, it is recommended to collect more data. There are many differ-
ent types of groups in the VMD, and an effort was made to distinguish between them. However,
no data are available for all these different group types, which creates a risk of overfitting to the
limited data that do exist. Fieldwork with the local population is recommended. First, determine
which decision rules are needed—for example, who makes decisions within a household, how
conservative people are, and what would be the final trigger for them to migrate. Additionally, it is
very important to obtain a realistic overview of the costs and revenues of farming different crops.
Based on this, specific questions can be formulated. If this is done in a specific region through
interviews and monitored annually over a five-year period, it will result in specific data that can
be used as model input. This would make the models much more reliable and realistic, reducing
the number of runs needed to address the wide range of uncertainties.

9.2. Discussion
When looking at other studies that have developed SD and ABM models and their model choices,
similar patterns emerge. In healthcare, for example, SD is mainly used for hospital waste and LTC
services, while ABM is used to model individual behavior, such as insurance decisions (Cassidy et
al., 2019). The same trend can be seen in the VMD: one study attempted to create an SD model for
farmers but encountered similar issues as noted in Table 9.2 (Chapman & Darby, 2016). SD is also
used mainly for rice production (Nguyen Thanh et al., 2020; Tuu et al., 2020), while ABMs are used
to model individual behavior related to migration (Nguyen et al., 2021, 2019b), farmer behavior in land
use (Truong et al., 2016), and crop choice (Le et al., 2024).

Across all these models, when individual behavior is involved, ABM is generally preferred. The ex-
ception is Von Loeper et al. (2016), who found that heterogeneity is poorly represented in SD compared
to reality, leading to more unrealistic model behavior.

It is important to keep in mind that in this study, the ABM was developed first, followed by the SD
model, using ABM input. The SD model was thus developed with an ABM mindset, taking a bottom-up



74 9. Conclusion and discussion

perspective. If this were not the case and an entirely separate SD model were developed by someone
else, a different model with different functions might emerge, perhaps even a better one. If an SDmodel
is built from scratch, the aggregation level makes it essential to be aware of the oversimplification of
complex interactions (Nugroho & Uehara, 2023).

9.2.1. Strengths and weaknesses
To my knowledge, there are very few studies that have developed both an SD and an ABM and directly
compared the results. By using the same input variables and avoiding tweaking or using lookup tables,
a pure comparison of the models was made possible. This also provides Deltares with insight into what
happens when one method or the other is used.

Another strength is that the model can run for all districts in the VMD. There are large differences
between districts, as shown in the land use maps in Figure 2.3. A Jupyter notebook analyzes all data
per district; the data is collected in an Excel file that can be used as input for the ABM.

The biggest weakness was the availability of data. Although a lot of data was available, it was
often raw and sometimes incomplete. As a result, a wide range of sources from the period 2009 to
2020 were used, introducing a great deal of variability. Furthermore, a salinity shock occurred in 2016,
during which many residents migrated, making the combination of 2009 and 2020 data as input within
a single model not representative.

The second weakness is that several factors were not included, although they could influence the
system. Examples include sluices, dikes, and pesticides. These were not included due to a lack of data
and because adding assumptions would further risk overfitting the model. Furthermore, no adaptation
strategies or policies were implemented. It would be interesting to explore how, for example, equipment
might better protect farmers. However, this current study can be seen as a first step toward modeling
the distributional impacts on different types of inhabitants in the VMD. It is important that these models
are improved and that subsequent research investigates the impact of these strategies and policies,
which could then be implemented.

The third weakness is that, aside from the modularity of the VMD, no consideration was given to
other river deltas. As a result, the models may need adjustments if applied to another riverdelta, such
as Bangladesh.

9.2.2. Practical and theoretical implications
Many studies compare the pros and cons of ABMs and SD models (Howick et al., 2024; Maidstone,
2012), but only a few have developed the same model using both methods and then compared the
results. These have been done for forests and trees (Schieritz & Mulling, 2003) and population models
(Wilson, 1998). These papers are over 20 years old, and no newer papers were found that used the
same variables for both modeling methods. This paper contributes by using identical variables and
comparing the model outputs.

Comparison papers often discuss general differences such as runtime and heterogeneity (Brito et
al., 2011; Maidstone, 2012), but they rarely clarify how the actual application of the models reveals
specific advantages and disadvantages for a certain case. By comparing results and closely looking at
the system behavior, it becomes possible to identify pros and cons based on system components.

This is the first SD model on farmer behavior in the VMD. Although ABMs have been developed for
the VMD, each focused on a specific aspect, such as migration or rice farmers (Le et al., 2024; Truong
et al., 2023). This study attempted to include yield, crop switches, and migration, as well as landless
households. It also draws a conclusion about which farmers will remain in the region after 25 years,
something that has never been done before.

For Deltares, this study provides insight into how they can proceed in developing socioeconomic
models for the inhabitants of the VMD and potentially for other river deltas in the future. Very few
ABMs had been developed within the department before this. It is hoped that this paper will guide to
development of such models. By building both methods, comparing them, and presenting an overview
of their advantages and disadvantages, this paper aims to serve as an example for Deltares in deciding
which model is best suited for the VMD, as well as for other river deltas and scenarios.

9.2.3. Further research
This study can be seen as the starting point for Deltares in developing socioeconomic behavioral models
for river deltas. Based on this analysis, Deltares can assess which method they could use. First of all,
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more data must be collected. It might be a good idea to start with a conceptual model, what is wanted,
and then decide which data will be collected. For example, data on the number of man-days required,
the effect of machines, the farming costs, and income/kg can be useful. When this data is collected
over a few years, the conceptual model can be formalized, and a computational model can run.

In addition, more research should be conducted into the impact of water supply, pesticide use,
sluices, and the acquisition of protective equipment. These are also factors influencing the yield and
salinity levels. Based on this, a more comprehensive model can be developed in the future that incor-
porates all system elements.
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A
Interviews

Table A.1: Overview of people that were interviewed
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B
Overview variables data analysis
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Table B.1: Variable overview for data analysis for VHLSS2020



86 B. Overview variables data analysis

Table B.2: Variable overview for data analysis Pop Housing Census
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Table B.3: Different data sources used to calculate farming costs and revenues



C
Conceptual models ABM

Chapter 4 showed the conceptual models for the land households and landless households. In Figure
C.2 and Figure C.1, the conceptual models for the individual household members are shown. All these
members only have yearly activities.

Figure C.3 shows the overall process what happens within the model. At each step, it checks
whether a salinity shock has occurred. Then, the waiting time of the land agents is decreased, and
it is determined whether it is time for the yearly activities of all agents. After that, based on the crop
calendar in Table 4.3, the model checks if certain crops need to be harvested, and the land agents will
pay the wage workers. Next, land agents update their savings, and the model checks whether they
may need to switch crops. When all other household members are paid, by for example doing manual
work, the landless households will check their income.
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Figure C.1: Conceptualization of the working household members in the ABM
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Figure C.2: Conceptualization of the non laborers in the ABM
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Figure C.3: Conceptualization model class in the ABM



D
Variable overview ABM
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Table D.1: Attribute table individual agents ABM



94 D. Variable overview ABM

Table D.2: Attribute table households ABM
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Table D.3: Attribute table households ABM part 2



96 D. Variable overview ABM

Table D.4: Attribute table model class ABM
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Table D.5: Attribute table model class ABM part 2



E
Model output Agent-Based Model

The land households are placed on a map. The chosen district was Gò Công Đông, Figure E.2 shows
the land agents on the map in this district at the start of the model, and after 25 years. The same is
done for An Bien and Thoai Son, these results can be seen in Figure E.3 and Figure E.4.

What happens when it is not possible to switch crops for land households is shown in Figure E.6.
What happens when it is possible to switch crops for land households, but their savings are equal to
their expenditure, is shown in figure E.7
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Figure E.1: Three chosen districts in the VMD. Top right is Gò Công Đông, coastal left is An Biên and in the middle is Thoai Son

Figure E.2: Land agents placed on the map in Gò Công Đông
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Figure E.3: Land agents placed on the map in An Biên

Figure E.4: Land agents placed on the map in Thoai Son
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Figure E.5: Debt ratio of land households over time in ABM



102 E. Model output Agent-Based Model

Figure E.6: ABM run without the possibility for land agents to switch crop categories
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Figure E.7: ABM run while expenditure was equal to income for land households



F
Extreme value validation ABM

For 10 variables in the ABM, the values have been decreased and increased, to see if the model would
respond correctly. In this appendix, for each variable, de increase/decrease is given, together with the
expected behavior, a box-plot of what happened after 25 years and an explanation.

F.1. Salinity level
Question: What would happen if there is 0 salinity for all farmers, or if their salinity is twice as high all
the time?

Expected behavior: The higher the salinity level, more farmers will stop farming or change to aqua-
culture/perennial crops, since these are salt tolerance crops. When there is no salinity, it is expected
that more farmers would stay in rice, but that there is not much of an impact for annual crops, since
they already have high costs and are switching because of that.

Results: The number of farmers per crop is shown in Figure F.1. When there is no salinity at all,
more farmers are staying in annual crops, and slightly more farmers in rice. Less farmers are switching
to perennial crops, and no farmers are switching to aquaculture. When the salinity levels are twice as
high, the number of rice and annual crop farmers is significantly lower. This is since the crops will fail
almost completely during the high salinity levels. The farmers have no time to save money, since they
crops are failing constantly instead of only during a salinity shock, so they are migrating.

The number of household migrations is also shown in Figure F.2: When the salinity level is twice as
high, approximately 20 percent more households are migrating. When there is no salinity at all, there
are only 10 percent less household migrations, compared to the normal salinity levels.

All in all, the results are in line with the expected behavior.

F.2. Salinity shocks
Question: What would happen if there are no salinity shocks at all, or when there are twice as many
shocks than initially modeled?

Expected behavior: When there are more shocks, it is expected that there will be more migrations,
since more crops are damaged. Furthermore, it is expected that more farmers will switch to perennial
crops or aquaculture. However, the expected effect is minimal, since there are currently not much
reactions in the model during the base case. When there are no shocks at all, there are probably less
people migrating, but still a lot due to the high farming costs.

Results: As expected, twice as many shocks does not have a big difference in the number of
migrations. However, when there are no shocks at all, the number of migrated households decreases
slightly (between 0-10 percent). This effect is shown in Figure F.4.

Annual crops are even less salt tolerant than rice. Therefore, when there are no salinity shocks at
all, more farmers are doing annual crops. This is shown in figure F.3. The number of rice farmers is
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Figure F.1: Number of agents per crop type, when the salinity levels are zero, normal, or twice as high

Figure F.2: Number of migrated households during different levels of salinity
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Figure F.3: Number of agents per crop type, when changing the frequency of salinity shocks

doing some interesting things: when there are no shocks, less people are doing rice. This is because
they have all transferred to annual crops during the first few steps. In the normal shock scenario, a lot
of farmers switch in the beginning, due to the input values, and then reach their steady state. Now,
they also do this switch, but they are not impacted by salinity anymore, so they stay in annual crops
instead of switching back during the first shock in 2016.

The number of perennial crops and aqua-cultural farmers is higher during the twice as much shocks
scenario, since these are salt tolerant.

All in all, the model results are in line with the expectations. It was only not expected that the number
of rice farmers would decrease when there are no shocks, but this effect can still be declared.

F.3. Production costs
Question: What would happen when the production costs for farmers where set to zero, or when they
are twice as high than during the normal scenario?

Expected behavior: Higher production costs will lead to more migrating households. Furthermore,
the number of farmers per crop can go both ways: higher production costs lead to lower revenues, and
therefore more switches. However, it is also possible that there is no money for these switches, and
they will stay in their current profession. The same is when there are lower production costs: do they
finally have the money to change, or is their current income enough and will they stay in their current
crops?

Results: When looking at the number of farmers per crop type, there are more people in rice,
perennial crops and sometimes also in annual crops. This can be declared by the fact that less people
are migrating, as shown in Figure F.6. When the production costs are twice as high, the number of
migrating households is significantly higher. This effect is also seen in Figure F.5: there are almost no
rice farmers, perennial crops farmers left, and also the number of annual crop farmers is decreased.

All in all was it partly line with the options given in the expectations: higher costs indeed lead to more
migrating households, but this effect is so strong that the number of rice, perennial crop and annual
farmers are all low. This did not lead to more switches, they just migrated. The low production costs
did lead to more switches, but also overall more people in all professions.
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Figure F.4: Number of migrated households during different frequencies of salinity shocks

Figure F.5: The number of farmers per crop type, when there are high production costs, normal, or zero costs
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Figure F.6: Normalized number of migrated households when there are no production costs, or twice as high

F.4. Wage worker salary
Question: What would happen when the salary of the wage workers is halved, or is twice as high
compared to the current salary of wage workers?

Expected behavior: Lower salary will lead to more farmers with an ”income too low”. When the
salary is twice as high, most of the farmers should have a sufficient amount of income. Furthermore,
when there is lower salary, people are working more to earn a sufficient amount of income, and there-
fore the number of wage workers will be higher. This can maybe also be declared by the fact that the
farmers have less costs, and are therefore less migrating/switching crops, and more wage workers can
work. The same effect would happen when the salary is twice as high: farmers are migrating more,
and less people can work. But also less people have to work, since they already have enough income.

Results: The results are in line with the expectations. When the salary is halved, the number of
wage workers is more than 2.5 times as high as in the normal scenario. This may be declared due to
the interaction effect between the farmers having more money to pay, and more people working due to
the low salary. When the salary of wage workers is high, the number of wage workers has decreased
drastically. These effects are visualized in Figure F.7.

When salary is low, more households have a ”too low income”. When the salary is higher, this is
the other way around, which was expected. Figure F.8 shows these impacts.

F.5. Required number of wage workers
Question: What would happen when the required number of wage workers for farmers would be
halved or twice as much, compared to the normal number of man-days/ha?

Expected behavior: When there is a high number of wage workers required, more people are
working in wage working. Furthermore, less people would do annual crops, since the number of wage
workers in that sector is already high compared to the other sectors. When there is a low number of
wage workers, more people would work in annual crops. Maybe the same effect would happen as
what happened during the frequency of salinity shocks scenario: people first switch from rice to annual
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Figure F.7: Normalized number of wage workers when salary is halved, normal, or twice as high

Figure F.8: Normalized number of households with a too low income, when salary is halved, normal or twice as high
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Figure F.9: Number of farmers in each crop type, when the required number of wage workers changes

crops due to the incorrect start data, and than stay there.

Results: The results are perfectly in line with the expectations. When there are less wage workers
needed, the number of wage workers is really low. When there are much wage workers are needed,
the number of wage workers is really high. This effect is shown in Figure F.10.

When looking at the crops, the same happened as in Figure F.3: the number of annual crops in-
creased during the low wage worker scenario, while the number of rice farmers decreased. This was
also expected to happen. Interesting to see is that the number of annual crop farms is zero, and some
of them switched to perennial crop farms. The number of rice farms is also lower when more wage
workers are required, but not as low as the annual crops, since rice needs less wage workers overall
(Pedroso et al., 2017). Figure F.9 visualizes the effects.

F.6. Access to information meeting
Question: What would happen when all land household households have access to the information
meeting?

Expected behavior: It is expected that when more people have access, more switches will be
made to perennial crops and aquaculture. Furthermore, the livelihood would be higher, since their crop
matches with their salinity levels. When no one has access, there livelihood would be lower, but people
still switch based on their neighbors.

Results: Figure F.11 shows the number of households doing crops under the different scenarios.
There is not much of a difference between attending the information meeting for the number of annual
crop farmers and rice farmers. However, when more people attend, more farmers have annual crops
and aquaculture. At first, it seems strange that the number of aqua-cultural farmers is high when nobody
attends the meeting. But during the meeting, it is told to only do aquaculture if you are smart enough,
otherwise you will fail due to antibiotic use. These people during the nobody attends scenario just
started since they saw there neighbors doing it. However, it is strange that this is effect is so large, and
nobody is doing agriculture in the normal attendance scenario.

As seen in Figure F.12, there is not much of a in livelihood difference between the nobody attends
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Figure F.10: Number of wage workers, when the required number differs

and normal attendance scenario. This can be declared by the fact that now only 10 percent attends the
meeting. During the high attendance scenario, the livelihood increased slightly, which was expected.

Overall, the model behaves as expected, except the aquaculture farmers when there is no atten-
dance to the information meeting. But this can be declared.

F.7. Contacts in the city
Question: What would happen when all individual household members have contacts in the city, or
no contacts at all in the city?

Expected behavior: It is expected the number of migrated household members increases signif-
icantly when the number of contacts in the city increases. The opposite effect is expected when the
contact in city probability decreases.

Results: The expected behavior is visualized in Figure F.13. When everybody has contacts, the
migrations increase with approximately 15-35 percent, while the number of migrated individuals de-
creases with almost 50 percent when there are no contacts. This is in line with the expectation.

F.8. Debt
Question: What would happen when it is not possible to have debt as all, or to have twice as much
debt as the current debt?

Expected behavior: It is expected that when it is not possible to have debt, less people would
switch crops. Furthermore, it would be logical if more people migrated, since they do not have money.
The impact on savings can go both ways: when there is more debt, people make more investments
and need to pay more, but might also have more income. The other way around, peoples income is
not increasing as much as the annual loan payments, and savings are decreasing. This might depend
on the crop switches too.

When more debt is possible, there might nog be a large change. When looking at the debt ratio in
Figure E.5, almost all agents have a maximum debt ratio of 0.5. It is not as if their debt ratio is already
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Figure F.11: Number of households doing certain crops, in different information meeting attendance scenarios

Figure F.12: Livelihood of land households during different information meeting attendance rates
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Figure F.13: Number of migrated individuals when the probability for contacts in the city changes

1, and they want more debt

Results: There is no difference in savings, maybe a combination of the two expected behaviors
is happening. The livelihood during the no debt scenario is a bit higher, but there is no difference in
the current debt or high debt scenario. However, during the no debt scenario, more households are
migrating. This is logical: households do not have the ”last chance” of getting a loan when there savings
are below zero, they just need to migrate. The migrations are shown in Figure F.14.

Furthermore, something strange happens with the farmers per crop type, but this can be declared.
This distribution is shown in Figure F.15. At the start of the model, during normal scenarios, a lot of
rice farmers are switching to annual crops. But then, their savings are emptied, and they cannot switch
back to rice after the first shock in 2016: they stay in annual crops. That declares why the number of
rice farmers is lower, and the number of annual crop farmers is higher when no debt is possible.

The other strange thing is the same peak as what happened in Figure F.11: The number of aqua-
culture farmers is high when no debt is possible. It is cheaper to switch from rice to shrimp than from
rice to coconut. Maybe some rice farmers do not have the money to switch to perennial crops, and
therefore switch to aquaculture.

F.9. Probability for migration
Question: What would happen the probability a household or household member is migrating is in-
creased or decreased?

Expected behavior: It is expected that the number of migrations will increase, when the probability
increases, and the other way around.

Results: The results are in line with the expectations, and visualized in Figure F.16 and Figure F.17.
The effects are higher for the individual household members, than the complete migrating households.

F.10. Facilities in neighborhood
Question: What would happen when the facilities in the neighborhood stayed the same, instead of
decreasing when service workers are leaving? Or what would happen if there were no facilities at all?
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Figure F.14: Number of migrations during different maximum debt levels

Figure F.15: Number of farmers per crop type, when differentiating between different levels of possible debt
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Figure F.16: Number of migrated households, when migration probabilities change

Figure F.17: Number of migrated household members, when migration probabilities change
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Figure F.18: Number of migrated households, when the number of facilities nearby changes

Expected behavior: The number of facilities in neighborhood influences the change households
are migrating. Therefore, it is expected that more facilities in the neighborhood lead to less migrations,
and the other way around.

Results: The number of migrating households is shown in Figure F.18. It is striking to see that
there is no difference between the normal and high facilities scenario. This can be declared by the fact
that almost none of the service workers are migrating in the base case,so the number of facilities stays
high. When facilities are decreasing, the migrations are increased by 10-20 percent, which might be
lower than expected. This is since migration is also dependent on a lot of other factors, for example
income and savings. However, in the future this should be considered more, since when there are no
facilities at all, most of the people are not staying, even when they have savings.
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System Dynamics Model - Deltares

Version
In addition to ABM, a basic System Dynamics (SD) model was also developed. This can later be
expanded by Deltares with the desired factors. First, the model will be explained using causal loop
diagrams. Then, the model output and validation will be shown.

G.1. Conceptualization
G.1.1. Groups of households
First, it was decided which groups of people would be modeled. A distinction is made between two
types of farmers: shrimp and rice. In addition, a distinction is made between commercial farms and
small family farms. In the Vensim model, this is indicated by color: purple represents commercial farms
and light blue represents small family farms.

If the savings of the rice farmers are too low, there is a chance they will switch to shrimp farming,
become landless agricultural wage workers, or become non-farm workers. These non-farm workers
can either be low- or high-skilled, depending on how many people in the model have received training.
There is also a chance that the shrimp farmers fail due to diseases. In that case, the affected house-
holds may return to rice farming, or become agricultural wage workers or non-farm workers. Figure G.1
shows an overview of the possible switches. Based on unpublished research by Deltars, the switch
percentages are chosen (personal communication, May 2025).

G.1.2. Rice farmers
Two sub-models have been created for a small family rice farmer and a commercial rice farmer. They
both have the same structure, which is visualized in the causal loop diagram in Figure G.2.

The higher the salinity level, the higher the rice yield loss ratio. However, this ratio can be reduced
if farmers have received training or if their equipment level has increased. The rice yield loss ratio
is based on Van Aalst et al. (2023). For small farmers, this ratio is 𝑦 = 0.11 + 0.57𝑥, and for medium
farmers 𝑦 = 0.05+0.47𝑥, where x is the salinity level, and y the rice yield loss ratio. The slope coefficient
of the formula decreases in this model when farmers have training or equipment. This means that there
is less impact on salinity, as they are better prepared and their yields will be higher.

A higher rice yield loss ratio leads to a lower rice yield per household. The other factor influencing
the rice yield is the land size of the households. The rice yield determines the revenue, along with the
world market price of rice. This revenue is added to the savings per household.

Rice farmers also have farming costs, which are based on standard rice farming costs per ha.
These include, for instance, wage worker costs and seed costs. Furthermore, when a salinity shock
has occurred, the farming costs will increase next year, since the land needs to recover from the salt
increase. The percentage increase in costs is in line to the rice yield loss ratio. These costs are
deducted from the household’s savings.

If household savings become too low, the farmer will stop farming. Other farms then take over their
land, increasing their land size. This results in higher costs, but also in more yield, and therefore more
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Figure G.1: Conceptual overview of the different types of groups modeled in the SD model

Figure G.2: Causal loop diagram of the rice farmers in the VMD
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Figure G.3: Causal loop diagram for the shrimp farmers in the VMD

revenue. As a result, two feedback loops are created. Rice farming costs are lower than revenue, so
farmers benefit from taking over land from others.

In addition, there is a reinforcing feedback loop between savings – equipment level – rice yield loss
ratio – rice farming costs – and savings. The more savings a farmer has, the more they can invest in
new equipment. This raises the level of equipment and lowers the rice yield loss ratio, as the farmer is
better protected against salinity shocks. As a result, post-shock farming costs also decrease, allowing
savings to remain higher. This is a reinforcing loop. However, the feedback can also follow a slightly
different path (indicated in light blue in the diagram): the more savings a farmer has, the more they
can invest in equipment to reduce the impact of salinity shocks. This lowers the rice yield loss ratio,
increases the rice yield, and therefore results in more revenue.

G.1.3. Shrimp farmers
In this version of the model, shrimp farmers are not affected by salinity but by diseases. The success
probability determines howmany shrimp farms are affected by disease. This probability depends on the
education level and water quality. The more farms affected by disease, the lower the average shrimp
yield per hectare and, as a result, the lower the income of the farmers. This also depends on the land
size of the farmers.

Farmers can protect themselves by investing in equipment, which creates two feedback loops.
When savings increase, the level of the equipment also increases. This improves water quality, result-
ing in fewer shrimp farms becoming diseased. In addition, farms affected by disease are less affected
when equipment levels are high, since the ‘yield with disease’ factor increases as equipment levels
increase. Unfortunately, it is not included whether farmers choose to use antibiotics or not. The as-
sumption is that all farmers whose farms are affected by disease use antibiotics and, after five years,
must stop shrimp farming. Figure G.3 shows the causal loop diagram for shrimp farmers.
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Figure G.4: Number of rice farmers (left) and shrimp farmers (right) over time in the SD model

In the formal model, a distinction is made between extensive and intensive shrimp farming among
commercial shrimp farmers. Approximately three-quarters of the people in the VMD use extensive
shrimp farming, but intensive farming is also practiced Joffre et al. (2015a). In the Vensim model,
extensive shrimp farmers are shown in light blue, while intensive shrimp farms are shown in dark blue.

The total savings per type of shrimp farm (intensive and extensive) are calculated by taking into
account the savings of diseased and disease-free shrimp farms, as well as the ratio between the number
of diseased and disease-free farms. In the Vensim model, this is indicated in the pink section.

It is important to note that in this model, the disease farms and shrimp farms without disease are
aggregated: When wealthier farmers invest in equipment, the disease-affected farms (which are often
less wealthy) also benefit from this. This is because not every farm experiences disease every year. It
is possible that a farm is affected one year and in the following years it may remain healthy. However,
it was decided to let these shrimp farms fail after a 5-year delay. This is because, on average, there
is a relatively constant number of shrimp farms affected by disease each year. And since this is an
aggregated model, it is not possible to model individual outcomes such as ’you have disease this year,
but not next year, and then again next year’.

G.2. Model output
The same data was used for the SD model as for the ABM model. However, these data were tweaked
to better reflect reality and to ensure, for example, that savings do not immediately drop to zero. For
intensive shrimp farming data from Joffre et al. (2015a) was used. However, the costs for intensive
shrimp farming were set at 150 million VND instead of 200 million. In addition, fixed wage worker costs
were used for rice farmers, while these costs were variable in the ABM model. Lastly, assumptions
were made regarding the impact of training and equipment. From all interviews, it became clear that
no one knew how effective these actually are. Furthermore, no one knew the exact cost of investing in
equipment. Therefore, reasonable estimates were chosen.

Figure G.4 shows the number of farmers of rice and shrimp over time. It can be seen that when
the rice farmers are decreasing at the start of the model (during the first shock in 2016), the number
of shrimp farmers is increasing. The same happens in 2021. However, the first shrimp farmers who
switched in 2016, fail due to antibiotics in 2021. That is the decrease seen in 2021. The little decrease
in 2020 can be declared by the fact that those are the shrimp farmers who ”started” in 2015 as shrimp
farmer, when the model started.

In general, the number of rice farmers is decreasing really fast after each shock. This is due to
the high migration rates, which are taken from the unpublished data analysis by Deltares (personal
communication, May 2025).

In the current model version, small family rice farmers are too poor to invest in equipment. As
a result, their rice yield remains the same, it only decreases during a salinity shock. Commercial
rice farmers are wealthier because they own more land and therefore have the budget to invest in
equipment. This happens in 2033 and 2047. As a result, the rice yield loss ratio decreases and is
slightly less affected by salinity.
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Figure G.5: Savings of the small rice farmers (left) and commercial rice farmers (right)

Figure G.6: Profits of small rice farmers (left) and commercial rice farmers (right)

Looking at the profits of rice farmers, the same pattern can be seen. For small family rice farmers,
nothing changes and there is only a drop during a salinity shock. In the next step, there is still a slight
decrease, as farmers need to spend money to repair the land after the shock. Commercial rice farmers
show the same effect, but in the last 10 years, the decline in profits becomes slightly less severe. This
is because the rice yield loss ratio has decreased due to investments in equipment.

The same effects are seen among shrimp farmers. Small family shrimp farmers can only invest
slightly in equipment and the number of disease-free and disease-free farms remains almost constant.
However, commercial farms invest in equipment and the success probability slightly increases. In ad-
dition, the shrimp yield per hectare of disease-affected farms increases over time due to equipment
investments. The biggest impact is seen among the intensive shrimp farms, as their costs are signifi-
cantly higher than those of extensive shrimp farms.

Figure G.5 shows the savings of the small family and commercial farmers over time. It can be
seen that the commercial rice farms invested in equipment in 2033 and 2047. Furthermore, during the
salinity shocks the savings are decreasing. This is in line with the profits, shown in figure G.6. The
profit of small rice farmers is lower than the profits of the commercial rice farmers, but the impct of the
salinity shock on their savings is also less intense. Furthermore, it can be seen in Figure G.6 that after
the shock, there is a ”recovery year”, where the profits are still low due to repairing costs.

The savings of small shrimp farmers with and without disease are shown in Figure G.7. The small
shrimp farms are able to buy equipment. However, the profit of the diseases shrimp farms is decreasing
fast. It should be noted that this is an aggregated model, and shrimp farms can be have a disease one
year, and have no disease the next year. Therefore, their savings will not be constantly low.

The savings of the commercial shrimp farmers without disease is shown in Figure G.9. The intensive
shrimp farms are richer than the extensive shrimp, but they also have higher risk for diseases. They
are both able to pay for the equipment. This is in line with the profit of the disease shrimp farms in
Figure G.8: the profit is increasing slightly over time, due to the increase in equipment.
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Figure G.7: Savings of small shrimp farmers without disease (left) and with disease (right)

Figure G.8: Profits of commercial farms with disease (left) and without disease (right)

Figure G.9: Savings of commercial intensive and extensive shrimp farmers
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G.3. Validation
Together with P. Jansson and M. van Aalst, the model was reviewed for validation and evaluated to
see where it can be improved in the future. The model outcomes for the number of households align
with expectations based on the unpublished data by Deltares (personal communication, May 2025).
However, upon closer inspection, it appears that the switching probabilities are quite high and likely
overestimated. When people own land, they tend to attach to it, and most rice farmers have worked in
this sector for decades. The likelihood that they will all switch is simply not that high, there will always
be some who stay behind.

In addition, the savings of all rice and shrimp farmers increase over time in the model, whereas in
reality, there is not that much financial leeway, especially for small family farms. In real life, there are
other types of expenditure: people need food, have to pay for car repairs, or buy new clothes. None of
this is included in the model.

The reason for this is the same as in the ABM: the input data is not accurate. As a result, some
tweaking was done to produce a somewhat reasonable outcome, but even this still does not fully reflect
reality.

G.3.1. Extreme value validation
Extreme value validation has been conducted on the variables of table G.1. There are a few interesting
things happening, these are explained below:

* When increasing the production costs rice, the number of small family rice farms is not changing.
But when decreasing the production costs, it would be expected that more farmers kept farming. This
is not the case, since the farmers started investing in equipment, and then their savings decreased,
and then they became poor. This is happening since SD is not a behavioral model, and there is no
think process ”maybe a shock is happening, so I need to be prepared and not spend al my savings on
equipment”. The farmers just think ”oh i have have, let’s spend”. This effect is also seen in the rice
yield loss ratio, which is lower than during the normal or high scenario.

**Migration in this group is based purely on the success probability regarding disease, rather than
savings. These effects may therefore need to be estimated as larger than they currently are.

*** Something interesting happens here. When more or fewer small farmers stop farming, the
number of commercial rice farmers decreases as well. In the first few years, the number of commercial
rice farmers is even higher when the chance of small rice farmers quitting is high. This is because
the commercial farmers have taken over the land from the small ones. However, during the shock in
2034, this number drops drastically and becomes lower than in the normal and low chance scenarios.
This is because from 2034 onward, almost no small rice farmers stop farming anymore in the high-
risk scenario (so no new commercial farmers enter), while new commercial farmers still appear in the
normal and low-risk scenarios. There is no inflow in the high chance case, while there is in the others,
which causes the stock to decline and the total number of commercial farmers to fall below that in the
normal scenario.

**** Skill level indeed increases, but this is later combined with training level, which minimizes the
difference in rice yield loss ratio.
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Table G.1: Sensitivity analysis conducted with SD variables
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Figure H.1: Yield over time per farm in SD (left) and ABM (right

Figure H.2: Farming profit over time in SD (left) and ABM (right
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Figure H.3: Wage worker costs per farm over time in SD (left) and ABM (right)

Figure H.4: Savings of landless households over time in SD (left) and ABM (right
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