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E X E C U T I V E S U M M A R Y

Research Background
Every year, many people suffer due to natural disasters. The frequency and impact of these
natural disasters have increased, which underpins the importance of efficient and effective disaster
response more than ever. One of the central aspects of effective disaster response is recognised
to be humanitarian logistics.

Humanitarian response to disasters is challenging, because of the time pressure involved and
the lack of reliable information. Therefore, decisions in disaster situations must be made while
coping with collective stress and deep uncertainty. Important logistics decisions made under deep
uncertainty, such as deciding on the locations of central logistics hubs, can reduce the uncertainty
in the surrounding areas because they can enable better access to reliable information. This
creates an interaction between decisions and uncertainty: decisions made under deep uncertainty
cause a change of uncertainty for future decisions.

To address the interaction between decisions and uncertainty, this research aims to (1) find a
way to make robust humanitarian facility location decisions over multiple periods to cope with
time pressure and deep uncertainty, while considering multiple objectives, and (2) understand
how different types of decisions affect the uncertainty space over time. To achieve these research
objectives, this research introduces an approach for the simulation and analysis between decisions
and uncertainty. This leads to the main research question of this study: What are the analytical
contributions of an approach that helps to simulate and analyse the interaction between decisions
and uncertainty for post-disaster facility location decisions?

To answer the main research question, firstly, the design of the approach for the simulation and
analysis of the interaction between decisions and uncertainty is introduced, and secondly, this
approach is applied to the post-disaster facility location problem as a proof of principle of the
designed approach. Finally, the approach is evaluated based on the results from the application
of the approach to the post-disaster facility location problem.

Approach for the simulation and analysis of the interaction between decisions and
uncertainty

Simulation Algorithm

Problem Formulation

Decision-Making Method

Decision-Uncertainty 
Interaction Analysis

Simulate Effect of 
Decisions over Time

Decision
Branches
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1
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Figure 0.1: Conceptual Overview: Approach for Simulation and Analysis of the Interaction between
Decisions and Uncertainty

The approach for simulation and analysis of the interaction between decisions and uncertainty
consists of four parts, see Figure 0.1. The first part of the approach aims to create the prob-
lem formulation; the problem formulation involves (1) specifying how decisions can be made
under uncertainty, (2) specifying how decisions influence the uncertainty space, and (3) gath-
ering the required data for the simulation. The second part simulates which robust decisions
can be made; an algorithm, based on the Many-Objective Robust Decision-Making (MORDM)
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framework, simulates robust decisions over multiple periods, while dealing with deep uncertainty
and considering multiple objectives. The third part is simulated by the ’inter-period model’; this
simulates the effects of the robust decisions on uncertainty over time and is specified in the prob-
lem formulation part. The combination of the second and the third part form the simulation
algorithm for simulation of the interaction between decisions and uncertainty. The fourth part
is the decision-uncertainty interaction analysis, which gives insight into the interaction between
decisions and uncertainty with three different analyses: (1) analysis of objective trade-offs, (2)
analysis of important scenarios, and (3) analysis of the effect of decisions on the reduction of
uncertainty.

Proof of principle of the Approach: Post-Disaster Facility Location Decisions in the
Aftermath of the 2015 Earthquake in Nepal
The designed approach is applied to the post-disaster facility location problem. A facility loca-
tion model that fits the problem conceptualisation and can be integrated with the approach is
developed. This model includes objectives that represent the efficiency, effectiveness and equity
of humanitarian logistics. Then, a decision-making algorithm based on the MORDM framework
is created, which uses enumerative optimisation and two different robustness metrics. These
metrics are a signal-to-noise and a regret-based metric, which are selected for the re-evaluation
of solutions under uncertainty to ensure robustness. For the simulation of the effect of decisions
on uncertainty over time, an inter-period model is developed, where the reduction of uncertainty
is dependent on the decisions. Finally, a stylised representation of the 2015 Nepal Earthquake
is created for the post-disaster facility location problem to enable simulation.

Findings
The analysis shows that there are two types of facility location decisions; those that have low
costs but limited effectiveness, or those that have high costs but are highly effective. Furthermore,
it shows that there is not necessarily a trade-off between how well solutions score on effectiveness
and equity. The scenario discovery analysis gives insight into the effect of uncertainty on facility
location decisions. It shows that the most harmful scenarios are related to scarcity of transport
vehicles, post-disaster fuel crises, a limited supply of relief goods and disaster victims that are
highly dependent on aid. Specifically, the scenario discovery indicates the importance of reducing
the uncertainty about remote valleys for more equitable humanitarian logistics.

The analysis of the effect of decisions on the reduction of uncertainty shows that prioritisation of
effectiveness and equity have a positive relationship with the reduction of uncertainty, while the
prioritisation of minimising costs has a negative relation with the reduction of uncertainty. Con-
temporary arguments for focussing on effectiveness and equity are based on ethical arguments,
however, this novel insight introduces an additional argument to focus on these objectives. Fur-
thermore, the analysis has indicated that the reduction of uncertainty leads to more optimal
facility location decisions, which emphasises the importance of reducing the uncertainty.

Various recommendations for humanitarian logisticians are made based on the findings. Regard-
ing the objective prioritisations, it is recommended that decision makers consider costs only as
a constraint for making decisions because it is considered inhumane to not provide aid when
the means are available. Decision makers should instead focus on making decisions that max-
imise effectiveness and equity while not compromising one of these two objectives. To shield
against the most harmful scenarios, multiple suggestions are made to improve disaster prepared-
ness. For improving disaster preparedness, the focus should be on ensuring reliable fuel reserves,
providing public hazard education, and ensuring the availability of sufficient transport vehicles.
Uncertainty about remote valleys is often reduced more slowly while this uncertainty can have
a large impact on the equity of humanitarian logistics. Therefore, to better deal with the uncer-
tainty inherent to post-disaster decision-making, it is important that information management
focusses specifically on reducing the uncertainty of these remote valleys.
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The evaluation of the designed approach indicates that the step-wise decision-making method
based on the MORDM framework is very suitable for making decisions under deep uncertainty
as it enables assimilation of new information over time. Furthermore, it shows that the decision-
uncertainty interaction analysis offers new insight into the interaction between decisions and
uncertainty. These insights have a mainly strategic and qualitative character.

Future research should focus on how this study on humanitarian logistics facility location de-
cisions can be extended by adding complexity to the facility location model and including more
empirical data for the simulation. Another interesting research direction is to look at how the
approach can be improved or extended. This can be done by experimenting with the strength of
the uncertainty reduction, experimenting with the number of periods simulated, using different
optimisation algorithms, and looking at the variability of scenarios over time. Lastly, different
problem domains can be explored for the application of the approach. An interesting, but sim-
ilar, domain would be to look at slow-onset disasters where the disaster environment changes
over time. More different, yet interesting application domains are related to commercial facility
location decisions or investment decisions related to technology development.
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”The future depends on what we do in the present.”

- Mahatma Gandhi



Part I

Research Formulation
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1 I N T R O D U C T I O N

Every year, many people suffer because of natural disasters, with an increase in frequency and
impact due to factors such as climate change and urbanisation (Thomas & López, 2015). Some
of these disasters bring grave consequences for society and individuals. The earthquake in Nepal
2015, with a magnitude of 7.8, instantly created a humanitarian crisis, affecting 8 million people
and causing more than 9000 deaths (Centre for Research on the Epidemiology of Disasters, 2015).
In 2017, a record of $27.3 billion was allocated to humanitarian response, although 41% of the
UN-coordinated appeal fell short (Development Initiatives, 2018). These numbers indicate the
importance of effective disaster response.

1.1 humanitarian logistics and deep uncertainty

One of the central aspects of effective disaster response is recognised to be humanitarian logistics,
which is a part of the field of logistics that focusses on problems related to disaster situations
(Blecken, Hellingrath, Dangelmaier, & Schulz, 2009; Pettit, Beresford, Whiting, & Banomyong,
2011). Humanitarian logistics is characterised by a strong need for urgent action, decision
makers being responsible for many lives, while decision makers of many different humanitarian
organisations are involved. With more adequate humanitarian logistics, more lives can be saved,
economic damage from disasters can be reduced, and societal impacts can be limited (Van
Wassenhove, 2006).

When dealing with humanitarian crises, reliable information is often lacking and information
management faces different challenges (Baharmand, Comes, & Lauras, 2017; Altay & Labonte,
2014). Decisions in disaster situations must be made urgently, while coping with collective stress
and deep uncertainty (Barton, 1969; Rosenthal, t Hart, & Charles, 1989). Walker, Marchau, and
Kwakkel (2013, p. 230) define deep uncertainty as the type of uncertainty where decision makers
‘do not know’ and ‘cannot agree upon’ which are the key factors, the information concerning
those key factors, and the desirability of alternative outcomes and criteria. Logistics decisions
made under deep uncertainty, such as deciding on the locations of central logistics hubs, can
enable better access to information in the surrounding areas. This creates an interaction between
decisions and uncertainty: Decisions made under uncertainty affect the uncertainty for future
logistics decisions or decisions for disaster relief in general.

A possible way of dealing with deep uncertainty in humanitarian logistics is the Robust Decision-
Making (RDM) approach, which is closely related to the Exploratory Modelling and Analysis
(EMA) approach (Walker, Marchau, & Kwakkel, 2013, p. 239). The EMA approach stems from
the idea that computational experiments can assist in reasoning about systems where there is
significant uncertainty (Bankes, 1993). RDM focusses on finding strategies that perform well
across a wide range of plausible scenarios, which can be preferred when systems are subject
to deep uncertainty (Lempert, Groves, Popper, & Bankes, 2006; Rosenhead, Elton, & Gupta,
1972). These model-based decision-making approaches have primarily focussed on the long-
term decision-making context. Examples such as scenario discovery (an EMA method used for
scenario-based planning) or robust optimization (an RDM method), focus often on long-term
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4 introduction

policy problems with horizons of possibly multiple decennia (Halim, Kwakkel, & Tavasszy, 2016;
Trindade, Reed, Herman, Zeff, & Characklis, 2017; Lempert, Popper, & Bankes, 2003). The use
of these model-based approaches on urgent decision-making has remained largely unexplored,
while they could prove helpful to assist in making humanitarian logistics decisions when limited
or inadequate information is available.

Table 1.1: Preliminary Research Objective

The main focus of this thesis is to design an approach that can help to create a better un-
derstanding of the interaction between decisions and uncertainty for post-disaster facility
location decisions. This focus is two-fold: It focusses on how decisions for humanitarian
logistics can be taken while coping with the inherent deep uncertainties, and it focusses
on how decisions influence the uncertainty in post-disaster environments.

The remainder of this introduction looks at the literature on humanitarian logistics decision-
making and uncertainty, the decision-making environment, and existing model-based approaches
for humanitarian logistics. This chapter concludes with a knowledge gap, identified based on the
literature review.

1.2 background post-disaster downstream hu-
manitarian logistics

The literature on humanitarian logistics uses different typologies for different types of aid or
disasters (Cozzolino, 2012). Disasters can be man-made or caused by nature, such as a nu-
clear accident or an earthquake, respectively. They can have a slow- or sudden-onset, such as a
drought or a cyclone. Regardless of the type of the disaster, three main phases in disaster relief
are preparation, immediate response, and reconstruction (Kovács & Spens, 2007). The relevance
of uncertainty in sudden-onset natural disasters is evidently present for the immediate disaster
response, which is where this thesis focusses on.

Natural disasters such as the 2015 Nepal earthquake create huge demands among the affected
population. For the Nepal Earthquake, UN OCHA (2015) issued a flash appeal for a total of
415 million USD, to be able to bring life-saving assistance to the 8 million affected in Nepal for
over the first three months after the disaster. A flash appeal is an analysis of the context and
an initial plan to address acute humanitarian needs, issued within 5-7 days of the occurrence
of major sudden-onset disasters. The relief material needed for major disasters consists of both
food and non-food items (e.g., food and water, healthcare and shelter).

The supply chains for supplying relief goods to disaster victims have to deal with both upstream
and downstream logistics. Upstream logistics refers to the logistics operations required for mo-
bilisation, production, collection and transport of relief goods from all over the world to the
international logistics hubs located in the affected area. Downstream logistics refers to the lo-
gistics operations required to distribute the relief goods from the entry points to the disaster
victims. The entry points are the places where relief goods enter a country, such as airports,
train stations, or seaports.

Challenges in upstream logistics are related to sourcing, prepositioning and transport. To deliver
aid to the affected area as quickly as possible, relief items should be located as close as possible to
disaster-prone areas (Balcik & Beamon, 2008). Challenges in downstream logistics are related to
congestion at entry points, deciding on focus areas and transport obstacles. Capacity limitations
of international logistics hubs (such as airports) or disrupted road infrastructures in disaster-
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affected regions can, for example, hinder the quick imports and transport of relief supplies
(UNDP, 2017; Tuzun Aksu & Ozdamar, 2014).

Congestion on entry points, such as airports, emerges because they can often handle only a
limited amount of cargo and have limited storage capacities (Moline, 2013). The inability to
handle these relief supplies and transport them to the affected regions sometimes results in
long delivery times of the most critical needs, or certain areas being completely deprived of
humanitarian aid (Pattison, Burke, & Jones, 2015; HRRP, 2016). Hence, to relieve the burden
on these entry points, it is important to transport the relief goods from the entry points to
central distribution locations as quickly as possible.

1.3 challenges in the decision-making environ-
ment

The decision-making environment must be considered if a model-based approach aims at fully ad-
dressing deep uncertainty for post-disaster humanitarian logistics decisions. The chaotic settings
and urgent needs result in a vastly different decision-making environment compared to long-term
decision-making environments (Holguín-Veras, Jaller, Van Wassenhove, Pérez, & Wachtendorf,
2012). In this section, the most important challenges of this decision-making environment are
discussed.

1.3.1 Post-Disaster Actor Environment

In the aftermath of a disaster, different organisations and actors need to work together to respond
to the needs of the people in the affected area. The players involved in the decision-making
process consist of numerous different organisations such as Non-Governmental Organisations
(NGOs), military organisations, international organisations, the private sector, donors, the public
sector, media, and individuals (Verity, n.d.; UN OCHA, 2013).

The plurality of decision makers results in diverging interests, objectives, and perspectives. Each
of the humanitarian organisations has different mandates, goals, criteria, and ideas on how
to achieve their goals. The goals of these players may often be conflicting (Stumpenhorst,
Stumpenhorst, & Razum, 2011). For example, some humanitarian logistics organisations that
provide relief supplies to the affected population might value common supply chain criteria,
such as costs, delivery times, et cetera, while other humanitarian organisations might focus
on coverage, equal distribution, and sustainability. When creating comprehensive solutions for
disaster relief, it is essential to consider the variety of preferences of different organisations.

1.3.2 Coordination via the Cluster Approach

It is well understood that poor coordination in general has a negative effect on collective decision-
making, especially in the chaotic decision-making environment inherent to disasters. Humanit-
arian coordination brings aid workers together and ensures aiming for shared objectives, so that
humanitarian assistance is provided to the people who need it most (de Mul, 2002). As Boin,
Kelle, and Clay Whybark (2010, p. 2) put it: "Coordination is the holy grail of disaster response".
However, Tomasini and Van Wassenhove (2009a, p. 551) find that different actors often oper-
ate uncoordinatedly, not uncommonly with ambiguous objectives. When organisations focus on
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their own goals, without coordination, there is no holistic effort, making it harder to satisfy the
needs of the affected people.

United Nations Office for the Coordination of Humanitarian Affairs (UN OCHA) is one of
the organisations focusing on improving coordination and tries to align actors on long-term
shared objectives rather than short-term opportunistic behaviour (Stumpenhorst et al., 2011).
The Humanitarian cluster system aims to separate the responsibilities of organisations and to
improve coordination within clusters. Organisations are grouped together into clusters, where
each cluster is responsible for one the main sectors of disaster response, such as water, health,
and logistics, and where each cluster has a cluster lead (Jensen, 2012; Jahre & Jensen, 2010).
This thesis focusses on the transport of relief goods, where the Logistics Cluster has the role of
cluster lead and hence is responsible for effective and efficient humanitarian logistics. A model-
based approach to support the Logistics Cluster in collective decision-making should consider
the ambiguity of organisations’ objectives and support in reaching consensus.

1.3.3 Post-disaster information

The humanitarian coordination system relies on information sharing (Altay & Labonte, 2014).
However, data reliability is problematic in the early phase of disaster response (Van de Walle
& Comes, 2015). The importance of knowing the humanitarian needs makes uncertainty det-
rimental for coordination of disaster response. When gaps of the response are identified, the
cluster will coordinate those gaps to be filled, while trying to avoid redundancies. Coordinated
information management can be especially challenging because of the time pressure involved.

As mentioned in the introduction, decisions on the locations of central logistics hubs can affect the
information that is available. One important information flow impediment is the inaccessibility of
information, which can partly be resolved by gaining physical access to the area (Day, Junglas, &
Silva, 2009). Placing a central logistics hub in an area is likely to lead to a reduction of uncertainty
around its location. A central logistics hub requires field staff, communication infrastructure,
material resources, et cetera and enables disaster relief activities. These activities, such as relief
distribution, medical aid, et cetera, lead to more insight into the needs and the communication
infrastructure helps to communicate this new information with the outside world.

1.3.4 Constraints of the Post-Disaster Humanitarian Logistics Decision-Making Environment

There are multiple constraints that have to be considered when making decisions for post-disaster
humanitarian logistics operations (Holguín-Veras et al., 2012). An overview of the most import-
ant constraints is given in Table 1.2. These constraints create a vastly different decision-making
environment for humanitarian logistics compared to commercial logistics.

Table 1.2: Post-Disaster Decision-Making Constraints
Constraint Description
Budget constraint Humanitarian organisations and their donors have limited

budgets for addressing disaster-related problems. In order to
choose their strategies, tactics and deploy their operations,
these organisations have to select possible alternatives while
staying within their budget.
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Time constraint Time is scarce in disaster relief, especially in the immediate
disaster response phase. Decisions have to be made while cop-
ing with time pressure and collective stress, knowing that the
delay of decisions can cost lives. For example: "If the delivery
or [sic] water, food, blankets or shelter material are delayed
this may result in additional deaths" (Cosgrave, 1996, p. 28).

Material and human re-
source constraint

The human and material resources needed for a disaster dif-
fer for each disaster type. After a disaster, the necessary
type of material or expertise is often not available at location
when needed. When it is available, the necessary quantities
of people or material are often lacking where they are needed
most (Young & Peterson, 2014).

Information and com-
munication constraints

Information and communication constraints have been dis-
cussed in section 1.3.3. Even when information is available,
the inability of communication for example due to the destruc-
tion of communication infrastructure can restrict access to this
information (Ran, 2011).

Access or transport con-
straint

Distortion of road infrastructure leads to an access or transport
constraint. For example, roads could be inaccessible because
of major debris from hurricanes or bridges that provides main
access to an area could be destroyed because of earthquakes
(Pramudita, Taniguchi, & Qureshi, 2014).

Political constraint Politicized environments can also put political constraints on
humanitarian operations, especially when local governments
are part of the conflict or when national governments have
hidden agendas (Tomasini & Van Wassenhove, 2009b).

1.3.5 Incremental Decision-Making

To deal with these constraints in the complex and unpredictable nature of disasters, disaster
responders should be flexible in their decisions (Mendonca, Beroggi, & Wallace, 2001). As post-
disaster information is often dynamic with more and more reliable data being processed over
time, decision makers should be able to change their strategy over time to adjust for information
changes (Liu & Wang, 2018).

A sequential approach to decisions on logistics hub locations could lead to better outcomes by
assimilating new information into each succeeding decision. Khalili, Babagolzadeh, Yazdani,
Saberi, and Chang (2016) have focussed on such a multi-period approach where up-to-date
information can be taken into account. They specifically propose the consideration of data
uncertainty to be a possible venue for future research, which is the central focus of this thesis.

1.4 humanitarian logistics models for disaster
response

There are different humanitarian logistics models in the response phase. The three main types
are (last mile) vehicle routing (e.g. Ahmadi, Seifi, & Tootooni, 2015), location and allocation
of distribution centres (e.g. Jabbarzadeh, Fahimnia, & Seuring, 2014), and mass evacuation
(e.g. Bish, 2011). As mentioned earlier, this study focusses on the interaction between location
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decisions and uncertainty. Therefore, this literature review looks at facility location models with
a special focus on the role of uncertainty.

1.4.1 Post-Disaster Facility Location Models

Table 1.3: Synthesis of Post-Disaster Facility Location Models

Article Objectives Model properties
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Jabbarzadeh, Fahimnia, and Seuring
(2014) X

Discrete
scenarios X

Tricoire, Graf, and Gutjahr (2012) X X Stochastic

Rath, Gendreau, and Gutjahr (2016) X X
Discrete
scenarios

Tzeng, Cheng, and Huang (2007) X X X X
Nolz, Doerner, Gutjahr, and Hartl
(2010) X X

Vitoriano, Ortuño, Tirado, and
Montero (2011) X X X

Priority,
Security &
Reliability

Bozorgi-Amiri and Khorsi (2016) X X X Stochastic X
Maharjan and Hanaoka (2018) X X X
Gutjahr and Dzubur (2016) X X
Tavana, Abtahi, Di Caprio, Hashemi,
and Yousefi-Zenouz (2017) X X X

Hong, Jeong, and Xie (2015) X X
Discrete
scenarios

Bozorgi-Amiri, Jabalameli, and
Mirzapour Al-e-Hashem (2013) X X Stochastic

This Study X X X X
Deep
Uncertainty X

In their literature review on (disaster unrelated) facility location models, Melo, Nickel, and
Saldanha-da-Gama (2009) conclude that the lack of inclusion of (stochastic) uncertainty is a
problem for facility location models. Seven years later, Habib, Lee, and Memon (2016) mention
in their literature review on humanitarian logistics models that this has not been addressed
in contemporary post-disaster facility location models. The assumption is often made to have
complete information of the major relevant uncertainties.

Optimisation is frequently used to approach logistics problems, but to include the conflicting
actor preferences inherent to the post-disaster environment, optimisation should be based on
multiple criteria. Gutjahr and Nolz (2016) review the literature on multi-criteria optimisation in
humanitarian aid and recommend future research to focus on the reliability criterion and more
specifically on robust multi-objective optimisation models.
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To see more specifically how deep uncertainty is taken into account in current humanitarian
logistics models, a small literature review looks at how contemporary research on humanitarian
post-disaster facility location models include aspects such as: multiple objectives, uncertainty,
and multi-periodicity. The articles included in the literature review are selected from review
papers and from an online search, see Appendix A for more details on the paper selection.

Many different objectives have been considered in the different facility location models. For
example, Tzeng, Cheng, and Huang (2007) consider fairness in distribution, costs, and travel
time. Most studies that focus on including many different objectives, do not include multi-
periodicity and uncertainty (e.g. Vitoriano, Ortuño, Tirado, & Montero, 2011).

When uncertainty is considered, it does not focus on deep uncertainty. For example, Bozorgi-
Amiri and Khorsi (2016) look at facility location in multiple periods and multiple objectives,
but they only consider stochastic uncertainty. Similarly, the other articles that do consider
uncertainty, merely consider stochastic uncertainty. Where stochastic uncertainty considers
probabilities, deep uncertainty relates to the idea that we know nothing about these probabilities
(Walker, Lempert, & Kwakkel, 2013). Omrani and Ghiasi (2017) consider data uncertainty.
They present a (disaster unrelated) robust optimization approach for facility location where
data uncertainty is considered, but they only take a single objective into account.

1.4.2 Synthesis of Humanitarian Logistics Models

The conclusion from the literature review is that contemporary research to facility location
decisions has not considered the combination of deep uncertainty, multiple objectives, and multi-
periodicity. Table 1.3 gives a synthesis of the reviewed literature. It also gives a preview of
what this study focusses on. This study considers different objectives, multiple periods and deep
uncertainty. More specifically, it looks at the interplay between decisions and uncertainty over
time.

1.5 knowledge gap

The most important gap in the literature is that the presence of deep uncertainty is not well
considered in humanitarian logistics modelling. The research that focusses on model-based
decision-making for humanitarian logistics does consider different important aspects such as a
variety of objectives, stochastic uncertainty, and multiple periods. However, the combination of
all these different aspects has not yet been researched. Especially because the interplay between
post-disaster facility location decisions and uncertainty is expected to play an important role in
humanitarian logistics, this study aims to address this knowledge gap by designing an approach
for the simulation and analysis of this interplay.

The design of this approach should acknowledge the duality of the interplay between decisions
and uncertainty. Therefore, this study aims to (1) find a way to make robust humanitarian
facility location decisions over multiple periods, to deal with time pressure and deep uncertainty,
while considering multiple objectives, and (2) understand how different types of decisions affect
the uncertainty space over time. This way, the approach should shed new light on the interaction
between humanitarian facility location decisions and uncertainty.
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Table 1.4: Scientific and Societal Relevance

Scientific contributions

X Provide an approach for the simulation and analysis of the interaction between
decisions and uncertainty.

X Provide a method for making robust facility location decisions over multiple peri-
ods to cope with time pressure and deep uncertainty, while considering multiple
objectives.

X Provide insight into the effect of decisions on the reduction of uncertainty for post-
disaster facility location decisions.

X Provide insight into the effect of uncertainty on post-disaster facility location de-
cisions.



2 R E S E A R C H G OA L A N D M E T H O D

This chapter introduces the goal of this research and the methodology to attain the research
goal. A preliminary research objective has been formulated in the introduction in Chapter 1
after which the knowledge gap is identified. This chapter indicates how this research fills this
gap. First, the research goal is mentioned and based on these goals different research questions
are formulated. The research methodology then describes how these questions are answered
throughout this research.

2.1 research goal and research questions

The main research goal is to design an approach for the simulation and analysis of the interaction
between decisions and uncertainty and use this approach to better understand this interplay
for humanitarian logistics facility location decisions. A better understanding of the interplay
between decisions and uncertainty can help decision makers to better cope with the uncertainty
inherent to making post-disaster facility location decisions. The main research question that
follows from the knowledge gap and this main research goal is:

What are the analytical contributions of an approach that enables simulation and analysis of
the interaction between decisions and uncertainty for post-disaster facility location decisions?

Four guiding sub-questions are formulated to indicate the different components of which this re-
search consists. A short elucidation of each question is given first, followed by the sub-question.

To find the analytical contributions of an approach, it is essential to have access to an approach
for the simulation and analysis of the interplay between decisions and uncertainty. As this
approach does not yet exist, the first part of this research focusses on designing the approach.

Sub RQ 1 How can the interaction between decisions and uncertainty be simulated and analysed?

To test and evaluate the designed approach, the approach is applied to the post-disaster facility
location problem as a proof of principle. An important component of the designed approach
is model-based simulation and analysis. The creation of a formal problem formulation helps to
create a better understanding of the important factors of post-disaster facility location. It is
important that the formal problem formulation captures the complexities of the post-disaster
environment as described in the introduction and that it is compatible with the other components
of the approach.

Sub RQ 2 How can the post-disaster facility location problem be captured in a formal problem formu-
lation that fits the designed approach?

11
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The purpose of the approach is to get a deeper understanding of the interaction between decisions
and uncertainty. Important in this research is to analyse the results from the simulation of
the interaction between decisions and uncertainty. This research focusses specifically on the
analytical contributions because the gained insights are purely based on simulation and analysis
and are not based on empirical data.

Sub RQ 3 What are the analytical insights of the approach in the decision-uncertainty interaction for
post-disaster humanitarian logistics facility location?

The last part of this research focusses on evaluating how well the decision-making method per-
forms while simulating and optimising decisions under uncertainty compared to a method that
has perfect foresight.

Sub RQ 4 How does the decision-making method perform compared to a method with perfect foresight?

2.2 research methodology

On the highest abstraction level, the methodology of this research is based on a design cycle.
The design cycle is a process where the approach is designed and evaluated iteratively so that
the final design satisfies the objectives and requirements of the design (Simon, 1996; Hevner,
2007). The design cycle in this research focusses on the design and evaluation of an approach for
simulation and analysis of the interaction between decisions and uncertainty. While the process
of designing and evaluating this approach is iterative in nature, the design and the evaluation
of the approach are presented linearly to prevent distractions from the storyline.

Proof of Principle of the Approach
Case Study: Facility Location Decisions for Humanitarian Logistics, Nepal Earthquake 2015

Design of the Approach

Facility Location Model 
Development

Evaluation of the Approach

Conclusions on Approach

Integration of Approach 
with Facility Location 

Model

Stylisation based on 
Nepal 2015 Earthquake

Analysis of Results

Discussion on Case Study and
Evaluation Results

Reflection on Approach
and Case Study

Conceptualisation of 
Problem Domain

: Chapter# 3

4 5

12

11

10

9

876

Figure 2.1: Research Outline

The complete outline for this research is shown in Figure 2.1. The outline consists of different
parts. First, the decision-making approach for analysing the decision-uncertainty interaction
is designed in Chapter 3. Second, a case study on facility location decisions for humanitarian
logistics serves as a proof of principle of the approach in Chapters 4 to 8. The multiple steps
of the proof of principle reflect the steps as described in the design of the approach. Third, the
evaluation of the approach is presented in Chapter 9. Fourth, the results from the analysis and
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the evaluation are discussed in Chapter 10. Fifth, a reflection on the research, the approach, the
assumptions and the findings are presented in Chapter 11. Finally, conclusions are drawn from
the research and the research questions are specifically addressed in Chapter 12.

2.2.1 Proof of Principle of the Approach

As mentioned, the proof of principle follows five steps to showcase the designed approach.
Without going too much into detail on the design of the approach, a short elucidation on the steps
that constitute the proof of principle is given. The proof of principle is based on a case study
on facility location decisions for humanitarian logistics after the 2015 earthquake in Nepal.

1. The first step is to give a conceptual description of the disaster characteristics and the
important objectives for decision-making, in order to demarcate the problem domain.

2. The second step is to develop a facility location model that corresponds to the system
conceptualisation. This facility location model is required to be compatible with the model-
based approach.

3. The third step focusses on the integration of the facility location model with the designed
approach.

4. To showcase the approach, the case study is based on stylised data to resemble the 2015
Nepal earthquake situation.

5. The simulation results are then analysed. The first analysis focusses on the objective
trade-offs. The second analysis looks at which uncertainties are most relevant for decision-
making. The third analysis aims to provide a better understanding of the effect of decisions
on uncertainty by doing correlation and regression analysis of objective prioritisations and
the reduction of uncertainty over time.

2.2.2 Evaluation of the Approach

To see how well the designed decision-making method of the approach performs for making
decisions under uncertainty, Chapter 9 focusses on the evaluation of this decision-making method.
The designed approach simulates different decisions while having to deal with uncertainty. The
designed approach performs well when the simulated decisions solutions perform approximately
as well as the solutions found by an optimisation method with perfect foresight. How well the
approach approximates these optimal solutions is measured by comparing the Pareto fronts of
the two solution sets and other metrics, which is explained in more detail in the corresponding
analysis.
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Design of the Approach
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3
A P P R OAC H FO R U N D E R S TA N D I N G T H E
I N T E R P L AY B E T W E E N D E C I S I O N S A N D
U N C E R TA I N T Y

In this study, the focus is on the interaction between decisions and uncertainty for humanitarian
logistics. An approach for analysing this interplay might also be relevant for other problem
domains. Therefore, this approach is designed independently of humanitarian facility location
decisions.

This chapter describes the design of this general approach for analysing the interaction between
decisions and uncertainty. First, the problem characteristics for which the approach is designed
and the design requirements are listed. Second, a conceptual overview of the designed approach
is presented. Then, the four parts of the approach are separately elucidated. Finally, the flow
of the approach is explained.

3.1 problem characteristics and design require-
ments

To have a clear view for what type of problems the approach is designed, the specific problem
characteristics are defined. These problem characteristics are translated into design requirements.
This first section of this chapter lists these problem characteristics and requirements for a suitable
approach.

Problem characteristics
These problem characteristics are abstracted from the post-disaster facility location problem.
This way the designed approach is applicable to a category of problems with similar problem
characteristics. The approach for the interaction between decisions and uncertainty is relevant
for problems where:

• Sequential decisions have to be made.

• Decisions are subject to deep uncertainties.

• There are conflicting ideas on objective prioritisations.

• Models can be used to evaluate possible decisions.

• Decisions are subject to path-dependent relations. In other words, decisions affect the
future decision space.

• Decisions are expected to affect the uncertainty space over time.

Approach requirements
The articulation of design requirements is important for the design of a complete and effective
approach (Hevner, March, Park, & Ram, 2004). The approach is designed based on requirements

17
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that are in line with the research goal and consider the problem characteristics. The approach
should be able to:

• Help making robust decisions that account for deep uncertainty and lacking information.
• Evaluate decisions on multiple objectives while considering the conflicting objective prior-
itisations.

• Simulate the different robust decisions for multiple time-periods.
• Simulate the effect of decisions on the solution space in future periods to simulate path
dependencies.

• Simulate the effect of decisions on the uncertainty space and available information at future
periods.

• Keep track of all information for all decision sequences and all time-periods. Information
that should be tracked for all sequences and periods includes the decisions made, the
objective scores, and the uncertainty space. This information should be kept track of so
that it can be used for analysis afterwards.

• Give insight into the objective trade-offs, the most important uncertainties, and the effect
of decisions on uncertainty.

3.2 conceptual overview of the designed ap-
proach

This section presents a conceptual overview of the designed approach. It will introduce the
approach by briefly explaining each of the top-level parts of the approach. In the following
sections, each of the parts will be elaborated separately in more detail.

The approach for simulation and analysis of the interplay between decisions and uncertainty
consists of four parts. The first part of the approach is to create a problem formulation, the
second part simulates which decisions can be made, the third part simulates the effects of these
decisions on uncertainty over time, the final part is a decision-uncertainty interaction analysis
which gives insight into the results of the simulation. The second and third part together simulate
the interplay between decisions and uncertainty. See figure 3.1 for a conceptual overview of this
approach.

Simulation Algorithm

Problem Formulation

Decision-Making Method

Decision-Uncertainty 
Interaction Analysis

Simulate Effect of 
Decisions over Time

Decision
Branches

New DM-
period

1

2

3

4

Figure 3.1: Conceptual Overview: Approach for Simulation and Analysis of the Interplay between De-
cisions and Uncertainty

The first part of the approach is the creation of a problem formulation. Rittel and Webber
(1973) state that there is no definitive problem formulation of complex problems due to diverging
perceptions of the problem. However, a well-defined problem formulation helps to structure a
complex problem and makes it accessible to model-based approaches (Rosenhead, 1996). The
plurality of problem perspectives is embraced by including multiple objective formulations.

The second part is a decision-making method, adapted from an existing a posteriori many-
objective optimisation method that considers robustness. A posteriori many-objective optim-
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isation methods give a set of possible solutions, that are non-dominated by the other solutions
for different objective prioritisations (Pareto efficient) (Purshouse, Deb, Mansor, Mostaghim, &
Wang, 2014). A solution is non-dominated when no other solution yields higher satisfaction on
all objectives (Yu, 1974). To find the effects of the different objective prioritisations, the different
solutions are simulated in the next decision-making period. This creates a tree-like structure, as
is elucidated in section 3.2.1.

The third part simulates the effects of the decisions over time. It includes a calculation of how the
decisions affect the decision space, uncertainty space or other external factors for future decision
moments. This is calculated for each solution individually, for all solutions that are proposed by
the decision-making method. This part simulates the time in between decision-making periods.

The fourth part is the decision-uncertainty interaction analysis. The decision-uncertainty inter-
action analysis helps to understand the interaction between decisions and uncertainty by doing
three analyses. An objective trade-off analysis helps to understand the different objective pri-
oritisations and their reciprocal relations. To understand the effect of lacking information and
important uncertain factors, the analysis looks at what the most important scenarios are. The
last analysis looks at the effect of the different objective prioritisations on uncertainty, to better
understand how the uncertainty space is dependent on the different type of decisions.

Each of the four parts is individually explained in the following sections. But first, the tree-like
structure that is created by the approach is explained. This helps to create a better concep-
tual understanding of the designed approach and the type of results that are produced by the
simulation.

3.2.1 Tree of decision pathways

At each decision-making moment, different optional decisions are proposed by the decision-
making method. To analyse the effect of choosing either of those proposed decisions, a separate
branch is simulated in parallel for each decision. Branches connect to their originating and suc-
ceeding branches at the previous and next period, respectively. All simulated paths are referred
to as "decision pathways".

The simulation of decision pathways is built on the idea that decision pathways are suitable
when decision-making should be adaptive to cope with the highly uncertain environment and
inter-temporal complexities (Wise et al., 2014). The inter-temporal complexity considered in
this study is the interaction between decisions and uncertainty over time.

Decision pathways are possible sequences of decisions which the decision makers can choose over
time. These possible decision pathways can be imagined as together constituting a decision tree,
where each decision pathway is a branch in that tree. A conceptual illustration of a decision tree
with decision pathways is shown in Figure 3.2. The blue and bold decision sequence represents
a possible decision pathway.

The total number of combinations in a tree of decision pathways depends on the number of
periods and the number of decisions at each period. It is straightforward that the size of the
tree increases exponentially when the number of periods, or the number of decision for each
period increases. Considering that for each node in the tree the decision-making method should
be completed, this decision-making method should not be too computationally demanding, the
number of periods should not be too large, and the number of solutions proposed per period
should be limited. These considerations are taken into account for the selection of the decision-
making method.
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Figure 3.2: Decision Pathways

3.3 part 1: problem formulation

The first part of the approach focusses on creating an explicit problem formulation. Initially, a
conceptualisation of the problem environment is created, which determines the aggregation level
of the problem and what lies in- or outside the problem demarcation. The problem formulation
is based on this conceptualisation of the system.

The XLRM framework is often used to help to create a structured problem formulation (Lempert
et al., 2006; J. D. Herman, Zeff, Reed, & Characklis, 2014; Watson & Kasprzyk, 2017). Imposing
the XLRM framework asks for an explicit separation of exogenous uncertainties ("X"), policy
levers ("L"), relationships ("R") and performance metrics ("M") and helps to guide the process as
an "intellectual bookkeeping mechanism" (Lempert et al., 2003). Combinations of levers can be
used to create different possible alternatives. Combinations of exogenous uncertainties can be
used to evaluate alternatives under different possible scenarios. The combination of performance
metrics indicates how well an alternative performs given a scenario. The combination of rela-
tions determines how inputs (policy levers and exogenous uncertainties) translate into outputs
(performance metrics). Based on the explicit problem formulation with the XLRM framework,
a model can be implemented for further use in the decision-making method.

One element not present in the XLRM framework but a requirement for the design of the
approach is the consideration of the robustness of a solution. To consider the robustness of
alternatives, robustness metrics are defined. For the selection of adequate robustness metrics, it
is necessary to consider the specific characteristics of the robust optimisation problem (Kwakkel,
Eker, & Pruyt, 2016). Different robustness metrics indicate different aspects of what is called
robustness. Therefore, it is preferred to use problem-specific metrics and to use multiple different
robustness metrics. Mcphail et al. (2018) propose a framework that can be used for selecting
proper robustness metrics based on problem characteristics.

How the effects of decisions on the uncertainty space are simulated, is formalised in the ’inter-
period model’. The definition of this model is the third step in the problem formulation. The
inter-period model defines how the decisions of the previous period bring about a change of the
uncertainty space and the solution space.

The last important step of the problem formulation is to gather the necessary data for the
simulation of the problem. It is important to have data for the possible solutions (decision
space), certain variables and uncertain variables. Two types of uncertain variables are identified
here: those uncertain variables that are expected to interact with the decisions, and those
uncertain variables that are not expected to be dependent on decisions over time. For the
uncertain variables that are not expected to be dependent on decisions, the uncertainty space
is defined by estimating a lower boundary, an upper boundary, and a best-estimate. For the
uncertain variables that are expected to be dependent on decisions, it is important to estimate
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their initial lower and upper boundaries, and a set of values that are regarded as the "ground
truth". The ground truth is used to simulate the reduction of uncertainty over time towards
these true values. These ground truth values are required for the decision-uncertainty interaction
analysis, as explained later in this chapter.

3.4 part 2: decision-making method

The second part is essentially a decision-making method with which robust solutions are selected
to be simulated over time. Such a method should at least consider multiple objectives, robustness,
and a plurality of objective prioritisations. Multi-objective optimisation methods with more than
three objectives are called many-objective optimisation methods (Chand & Wagner, 2015). For
multi- (and many) objective optimisation problems, objectives can be prioritised before, during,
and after the multi-criteria optimisation, which corresponds to the a priori, interactive, and a
posteriori approach (Marler & Arora, 2004; Purshouse et al., 2014).

Purshouse et al. (2014) define the different multi-criteria optimisation methods. ’A priori’ pri-
oritisation of objectives is more efficient in terms of computational costs, but requires explicit
consensus on objectives between decision makers. ’Interactive prioritisation’ requires the decision
maker to be intensively involved during the optimisation process, which is not desirable in the
case of analysing decisions. An ’a posteriori’ decision-making approach can conduct multi-criteria
optimisation without specific prioritisation of preferences up front, hence agreement between act-
ors is no prerequisite (Purshouse et al., 2014). Since this is a requirement for the approach, an a
posteriori many-objective optimisation algorithm considering robustness is desired for the design
of this approach.

3.4.1 Selection of Decision-Making Method

There are different a posteriori many-objective optimisation methods that consider robustness.
The Many-Objective Robust Decision-Making (MORDM) framework proposed by Kasprzyk,
Nataraj, Reed, and Lempert (2013) includes a posteriori many-objective robust optimisation and
is relatively computationally efficient compared to many-objective robust optimisation (MORO)
methods. Where MORDM optimises for a reference scenario and then re-evaluates the optimal
solutions under uncertainty for robustness testing, MORO integrates the robustness testing
within the optimisation process. For each optimisation run, the uncertainty space is sampled, so
that each solution is evaluated under uncertainty to calculate its robustness (Beyer & Sendhoff,
2007). Therefore, the optimisation process for MORO is more computationally expensive. Even
though MORO expectedly results in more robust objectives, it requires more computation time
than MORDM. As the designed approach benefits from a computationally efficient way of
optimisation, the MORDM method is used.

3.4.2 MORDM Algorithm

Originally, the MORDM framework is not purely an algorithmic, but rather a collaborative
decision-making framework (Kasprzyk et al., 2013). To use MORDM for multiple periods, each
MORDM cycle is defined as an algorithm. This way, the MORDM algorithm can be used
to simulate different decision pathways over multiple periods. In this section, the MORDM
algorithm used for the designed approach is described.
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The MORDM framework originally employs an interactive process with decision makers, where
they select preferred solutions by using interactive visualisations. The interactivity of this format
is not compatible with an algorithmic version of the MORDM framework, because the outcomes
of such interaction are determined by non-deterministic factors such as diverging worldviews,
preferences, and social interactions between decision makers. While this cannot be modelled
or formalised, all possible outcomes are simulated by branching for each solution, as explained
in Section 3.2.1. The algorithmic version of the MORDM framework used for the approach is
conceptualised in Figure 3.3.

MORDM Algorithm

Problem Formulation:
XLRM

Robustness Metrics
Parametrisation

Generating Alternatives:
Many Objective Optimisation

(For reference scenario)

Robustness Analysis:
Scenario Generation

Re-evaluation for Scenarios
Robustness calculation

Set of Pareto 
Optimal Robust 

Solutions

Possible 
Solution Space

Set of Pareto 
Optimal 

Solutions

Uncertainty
Space

Figure 3.3: Many-Objective Robust Decision-Making Algorithm Design

The first step for the MORDM algorithm is to generate alternatives with the use of a Many-
Objective Optimisation (MOO) method for a reference scenario. The reference scenario is the
input parameter set, that is considered to be the current ’best estimate’. The specific optimisation
algorithm to be used is dependent on the model and the possible solution space. Generally, multi-
objective evolutionary algorithms (MOEAs) are used for many-objective optimisation, such as
NSGA-II or BORG (Hadka & Reed, 2013; Deb, 2014). The many-objective optimisation with
MOEAs results in a set of Pareto optimal solutions.

The next step is the robustness analysis. First, hundreds to thousands of scenarios are generated.
This is done by sampling the uncertainty space with sampling techniques such as Monte Carlo
sampling, Latin Hypercube sampling, et cetera. The set of Pareto Optimal solutions that resulted
from the alternative generation step, are re-evaluated for each of the scenarios. The robustness
metrics, as defined in the problem formulation, are calculated for each of the alternatives based
on their performance for all scenarios. A non-dominated sort is then used to select those solutions
that are Pareto efficient in terms of their robustness performance. This way, there is no a priori
prioritisation on the different objectives and trade-off information of relevant (optimal) solutions
is preserved.

Instead of communicating the outcomes with decision makers and interactively choosing altern-
atives based on decision makers’ preferences as proposed by Kasprzyk et al. (2013), robust
solutions should be selected for simulation over the next periods. Ideally, all Pareto optimal
robust solutions are used for branching. However, when there are too many solutions in the
remaining set, a subset of solutions should be selected for including in the succeeding periods.
There are different options to select a set of robust solutions before forking for each robust solu-
tion. Straightforward solutions would be to increase the epsilon value for the non-dominated
sorting algorithm, adding constraints on the objective scores for making a pre-selection of solu-
tions, or choosing representative solutions from a clustered solution space (e.g. as proposed by
Zio and Bazzo (2012)).
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3.5 part 3: decisions affecting uncertainty

The third part simulates the effect of decisions over time. After solutions are selected for branch-
ing, each solution is simulated as a decision in a different branch. Before the next decision-making
period starts, different elements can change as a result of the chosen decisions. This is captured
in the third element of the approach, as shown in figure 3.1, which simulates the inter-period
changes.

The focus of the approach is on how the decisions influence the uncertainty space. However,
decisions can also have a restraining effect on the available decision space for the next period.
These effects are called path dependencies (Koch, Eisend, & Petermann, 2009; Nikolić, 2009).
For example, certain decisions can be constrained because they require (e.g. financial) resources,
which might have been already exploited during previous decision periods. Moreover, some
decisions can only be taken once; when selecting decisions from a discrete and finite set of
solutions, a solution cannot be chosen after having been selected during a previous period. In
that case, decisions made in previous periods should be excluded in succeeding periods. These
path dependent changes are responsible for the differences between different branches. This part
focusses on simulating these path dependences as caused by the inter-period changes on both
the uncertainty and solution space.

How the effects of decisions on the uncertainty space are simulated, is formalised in the ’inter-
period model’. The definition of this model is part of the problem formulation. For each separate
branch, this model is applied to that branch before the new decision-making method starts for the
new period. This model is not comparable to the model as created for the MORDM algorithm,
or such as the concept ’model’ is usually interpreted. This inter-period model does not have
an objective function, it merely sets up the relevant factors for the new period, based on the
decisions as input.

3.6 part 4: decision-uncertainty interaction
analysis

The fourth part of the designed approach is the decision-uncertainty interaction analysis. When
the last decision period is simulated, the data generated by the simulation of the different decision
pathways is analysed. To analyse the interplay between decisions and uncertainty, three main
analyses are conducted.

Firstly, the analysis looks at the trade-offs between the different objectives. The performance
of each of the decision pathways at the last period is used to analyse the trade-offs between
objectives. To be able to compare the decision pathways, all decision pathway decisions are
re-evaluated for the best-estimate reference scenario for all uncertain factors and the ground
truth (as defined in the problem formulation) for all uncertainties that are expected to interact
with the decisions. The trade-offs on the objectives for each decision pathway are analysed
with a correlation analysis. To give insight into the multivariate relation between the decision
pathways, a parallel coordinate plot is visualised. From the parallel coordinate plot, specific
decision pathways with desired outcomes are selected and inspected to get insight into those
decision pathways.

Secondly, the analysis looks at what uncertain factors have the most impact on the quality of
the decisions. This can be done with a scenario discovery analysis. Scenario discovery is a
model-based approach that helps to identify scenarios based on statistical or machine learning
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algorithms, instead of the more traditional way of identifying scenarios based on experts’ per-
ceptions (Bryant & Lempert, 2010; Kwakkel, Auping, & Pruyt, 2013). These scenarios can help
to create a better understanding of how uncertainty can influence the quality of decisions.

Lastly, the analysis focusses on how different objective prioritisations relate to the reduction of
uncertainty. It looks at whether different objective prioritisations have an effect on how much
uncertainty is reduced, to better understand the effect of facility location decisions on uncertainty.
This is done with a correlation and regression analysis. The performance of each of the decision
pathways at the last period is checked for correlation and regression with the reduced uncertainty
for each specific decision pathway.

3.7 flow through the approach

The previous sections have explained the designed approach. This section explains the flow
through the approach to have a better idea of how the different parts are connected. Figure 3.4
presents the flowchart of the approach. Considerations on the choices for the flow through the
approach are discussed in Appendix B.
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Figure 3.4: Flowchart of the Approach for Simulation and Analysis of the Interplay between Decisions
and Uncertainty

Each of the four parts of the approach is also present in the flowchart, as is shown by Figure 3.4.
However, the third part, the simulation of the effects of decisions over time, has a different name;
it is called the ’inter-period process’. The problem formulation and the decision-uncertainty
interaction analysis are phases that have to be performed by an analyst. The decision-making
method and the inter-period process, however, are together an algorithmic process, which is set
up by the analyst. The algorithm of these two parts is referred to as the simulation algorithm.
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3.7.1 Elucidation of the Flow through the Approach.

To further clarify the approach, the flow through the approach is elucidated. The initial step is to
create a problem formulation. The problem formulation is completed when it is implemented in
a formal programming language. When the problem formulation is implemented, the simulation
algorithm can be initiated. This starts at the initial period (period 0) and continues until the
algorithm has finished simulating the last decision-making period.

The first step in the algorithm is to define the solution space and the uncertainty space for each
branch (there is only a single branch at the initial period). The MORDM algorithm is simulated,
which results in a set of Pareto optimal robust decisions. Each decision in the set is added as
a new branch in the tree of decision pathways. When all branches in the current period are
simulated, the algorithm continues to the inter-period process. For each of the branches in the
new period of the tree of decision pathways, the uncertainty space and the decision space are
changed based on the latest decision. A new period is initiated and this whole process is walked
through again for each branch in the succeeding period.

After finishing the final period, the simulation algorithm ends and continues to the decision-
uncertainty interaction analysis. The decision-uncertainty interaction analysis is conducted by
an analyst who then interprets the results to better understand the interplay between decisions
and uncertainty for the problem formulation.

The designed approach has been elaborately elucidated by first explaining each of the parts
separately, followed by an explanation of the flow through the approach. The next chapters
will focus on illustrating the designed approach with an application on the post-disaster facility
location problem as a proof of principle of the approach.
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4 T H E P O S T - D I S A S T E R FAC I L I T Y L O C AT I O N
P R O B L E M

This and the following chapters focus on applying the approach for simulation and analysis of
the interplay between decisions and uncertainty on the post-disaster facility location problem.
This application serves as a proof of principle to illustrate the designed approach and create new
insight into the interaction between post-disaster facility location decisions and uncertainty.

In Section 3.1, the problem characteristics for which the approach is designed are presented.
Post-disaster facility location satisfies these given requirements. Multiple sequential decisions
are made for the post-disaster facility location problem, while decisions are subject to deep uncer-
tainty, and different actors have conflicting objectives. Decisions are path-dependent since they
affect both the future possible decision space and the uncertainty space. It is possible to create
a model that helps to evaluate possible decisions (see the literature review on facility location
models in section 1.4. Moreover, it is unknown how decisions interact with the uncertainty space,
but expectedly the uncertainty space can be influenced by facility location decisions. Because
the post-disaster facility location problem satisfies all requirements of the approach, it is an
appropriate case to use as a proof of principle for the approach.

4.1 system description: a two-tier humanitarian
logistics system

The considered problem is to decide on the locations of central logistics hubs immediately after
a disaster has struck. Central logistics hubs are facilities which can function temporarily as
logistics hubs, from where logistics is coordinated, and relief goods are distributed. These central
logistics hubs are set up quickly in the aftermath of disasters to help supply relief goods to disaster
victims.

The considered problem basically represents a two-tier facility location problem for humanitarian
logistics. There are three important node types considered for the distribution of relief supplies
over an affected area: points of relief supply, points of relief demand, and facility locations of
central logistics hubs. A conceptual representation of the two-tier logistics system as considered
for this case study is given in Figure 4.1.

Points of relief supply are nodes in an infrastructural network where relief supplies primarily enter
the affected area to be further distributed to the disaster victims. Examples of supply points can
include (international) airports, seaports, or train stations. Points of relief demand represent the
aggregated demand of the affected population living in the city or area related to that demand
point. The demand point is a central location in that city or area, from where people can pick
up necessary relief items, or from where last mile distribution systems are deployed. These last
mile distribution systems are not considered in this two-tier system. The central logistics hubs
help to coordinate and distribute relief goods from points of relief supply to the affected areas.
Relief supplies are transported from the points of relief supply to the central logistics hubs, from
which they are transported to the points of relief demand.
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Figure 4.1: Two-Tier Humanitarian Logistics System

Demand Points
Central Logistics 
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Except for these three types of nodes, there are no other subcategories within the scope of this
study. Last mile delivery (distribution from central points in affected cities and areas to the
people’s homes) is out of the scope for this research. Also, upstream logistics via which the
points of relief supply are supplied with relief goods are out of the scope. The different types of
nodes within the two-tier logistics system and possible instances are given in Table 4.1.

Table 4.1: Two-Tier Logistics Elements
Type Instances
Supply Points Airports and Seaports

Central Logistics Hubs Unused industrial areas,
empty schools, hospitals, et cetera

Demand Points Central points in cities and areas
with affected population

The relief supplies are transported from points of supply, via the central logistics hubs to areas
of demand mostly by vehicles such as trucks or vans, and sometimes via air to areas that are
hard to reach. For simplification, only a single type of road transport is considered. Roads are
often inaccessible or disrupted in the aftermath of natural disasters, making some areas harder
to reach and transport more expensive. In reality, when areas have limited access roads, they can
in some case be completely disconnected from other regions (Pribadi, Puri, Hanafi, & Hadinata,
2018). For simplification, the accessibility of a city is assumed to be proportionate to the impact
of the disaster of that region.

The demand for relief supplies in an area depends on multiple factors, among which the popu-
lation and the impact of the disaster in that area. A city with more inhabitants has a higher
demand for relief supplies than a city with a smaller population. A city more heavily impacted
by a disaster has a higher demand for relief supplies than a similar city which is less affected
by that disaster, and vice versa. For simplification, other area-specific factors that influence the
relief demand are left out of scope, such as the build quality of the region’s infrastructures or a
region’s level of preparedness for disastrous events.

As mentioned, both the accessibility of areas and the relief demand for each area are determined
by how heavily they are affected by the disaster. The effect on these two factors is dependent on
the type of disaster. This thesis focusses on sudden-onset natural disasters such as earthquakes,
tsunamis or tropical storms. These sudden-onset natural disasters have in common that they
often affect both the humanitarian needs of the affected population and the state of the road
infrastructure. This is often in contrast with slow-onset natural disasters or man-made disasters
such as droughts and refugee crises, respectively.
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4.2 objectives for post-disaster facility loc-
ation

Section 1.3 briefly introduces the involved actors and coordination mechanisms. As described,
the coordination of different sectors is organised by the cluster approach. Different clusters have
different responsibilities, where the logistics cluster is responsible for the logistics sector and thus
for the decisions on the locations of the central logistics hubs. The Logistics cluster exists from
multiple groups and organisations and is part of a collective disaster response as coordinated by
UN OCHA.

For humanitarian logistics, different criteria than in commercial logistics are generally considered
(Çelik et al., 2012). The criteria for decision-making should reflect the criteria of the collective
response. Of course, one important goal is to bring relief goods to as many victims in need as
quickly as possible. However, as funding provided by donors is never unlimited, the costs of
logistics operations should be kept low. Furthermore, the United Nations has pledged that "no
one will be left behind" (United Nations, 2015), which should also be taken into account when
making these facility location decisions.

To address the plurality of goals for humanitarian response, a set of objectives is needed that
reflects the collective interest of the coordinated response. Generally, in the field of supply
chain and logistics, performance is indicated by measuring efficiency and effectiveness, where
effectiveness focusses on external performance, and efficiency focusses on internal performance
(Borgström, 2005). In other words, effectiveness relates to the extent a purpose is achieved,
and efficiency relates to the extent the use of resources is minimised to achieve it. Differently
from commercial logistics, humanitarian logistics focusses on limiting human suffering instead
of purely commercial objectives. Therefore, in humanitarian logistics, it is essential to consider
human suffering while indicating performance. To minimise human suffering, it is not only
important to consider the effectiveness of relieving disaster needs, but also to do so in a fair and
impartial manner. Therefore, besides focussing on effectiveness and efficiency, a measurement of
equity is included within the set of objectives to ensure fair and impartial distribution of relief
supplies.

The literature review on post-disaster facility location models in section 1.4 shows that a variety
of objectives is included in the different models. To include a comprehensive set of objectives,
four objectives are selected that cover the effectiveness, efficiency, and equity of humanitarian
logistics.

Effectiveness
An important goal is to help as many victims as well as possible, or to maximise the effectiveness
of relief distribution. One way of maximising effectiveness is to ensure that as few victims as
possible are deprived of relief material (Maharjan & Hanaoka, 2018). The objective in logistic
terms is then to minimise the uncovered demand. Another way to define effectiveness is to look
at the number of affected areas instead of the number of affected people. In each area affected
by a disaster are victims that require some basic help to recover from that disaster. Regardless
of the number of people within each area, all areas should be supplied with relief items (Tricoire,
Graf, & Gutjahr, 2012; Hong, Jeong, & Xie, 2015). Based on this thought, the second objective
for maximising effectiveness is to minimise uncovered demand points.

Efficiency
Another important goal is to have efficient humanitarian logistics. Considering that funds for
disaster response are mostly restricted, efficient use of resources for humanitarian logistics is
preferred. When the required financial resources for the transport of relief goods is limited, the
remaining money can be used for either other logistics operations or can be allocated to other
disaster response clusters. When a limited amount of money is allocated to the logistics cluster,
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it is important to know what possible facility locations have higher costs than others. Knowing
the costs related to facility location decisions can prevent that decisions are made that appear to
be financially infeasible in retrospect. The most straightforward way to measure the efficiency of
relief distribution is to calculate the total costs of transport. The costs of humanitarian facility
location is included in almost every paper reviewed in the literature review, see the synthesis on
the facility location models in section 1.4.2.

Equity
The United Nations’ "no one is left behind"-policy emphasises the importance of equitable dis-
aster response. An equity objective is included to focus on fair distribution of relief goods. An
equitable distribution of relief supplies is one where the effects of a decision are fairly spread
over different groups. Marsh and Schilling (1994) identify four dimensions for dividing groups:
spatial, demographic, physical, and temporal. For this study, the focus is on a fair distribution
over groups that are spatially divided. Regardless of where disaster victims live, they should all
have access to relief goods to fulfil their needs. Victims have better access to disaster needs when
they live geographically closer to the places where they can get the needed relief goods (Gutjahr
& Dzubur, 2016). To ensure that every victim has equitable access to their needed goods, the
maximum time that victims are located away from these goods should be minimised.

This chapter has given a description of the system that is considered as the post-disaster facility
location problem. This system description helps to create a structured problem formulation.
The next chapter will build on this problem description by defining the facility location model
for humanitarian logistics.



5 FAC I L I T Y L O C AT I O N M O D E L FO R
H U M A N I TA R I A N L O G I S T I C S

This chapter defines the facility location model that is used to analyse the interaction between
post-disaster facility location decisions and uncertainty. The facility location model is based on
the conceptualisation of the humanitarian facility location problem as described in the previous
chapter.

The model should be compatible with the designed approach, and more specifically with the
simulation algorithm. The requirements for compatibility between the model and the approach
are described in the first section of this chapter. The aim of the model is to comprehend the
complexity of disaster characteristics. However, some simplifications and assumptions are made
to represent the system by a model. These assumptions are presented and motivated in the
second section of this chapter. The last section formulates the model with a description of the
mathematical notation of the model.

5.1 model requirements

In this section, the requirements for the model are listed and discussed. Elaborating on the
requirements is necessary to design a model that fits within the methodological frameworks used
in this thesis and correctly comprehends the system it represents.

1. The model should adhere to an XLRM structure. The XLRM structure is required for the
model to integrate with the MORDM algorithm.

2. The model should be compatible with the MORDM algorithm. Using the XLRM frame-
work is one way to facilitate integration, however, this requirement should also be taken
into account while making other modelling decisions. The integration of the model and
the MORDM algorithm is further discussed in Chapter 6.

3. The MORDM algorithm uses an a posteriori optimisation method. Therefore, the model
should not prioritise objectives for the calculation of performance metrics.

4. The model should have very short computation times. The MORDM algorithm evaluates
optimised alternatives for hundreds of scenarios for the robustness analysis. Also, the sim-
ulation algorithm requires to run the MORDM algorithm for each branch for each period.
Considering that both the optimisation and the robustness analysis have to be run for each
branch, the model has to be evaluated a tremendous number of times. Completing the
multi-period simulation algorithm becomes intractable if a model is used with significantly
long computation times. A trade-off for the complexity of the model has to be found, where
the increase in runtime is minimised and the realistic value of the model is maximised. In
other words, The complexity of the model should be as low as realistically possible.

5. The model should only include decision variables for the locations of central logistics hubs
and no decision variables related to routing, allocation, inventory optimisation or other
factors. The scope of this thesis is to look at the interaction between facility location
decisions and uncertainty. Therefore, decisions related to other aspects are not considered
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in this study. Besides, a model with fewer decision variables limits the time necessary for
optimisation and is therefore preferred over a model that has multiple decision variables.

6. The model should be able to evaluate different central logistics hubs facility locations on
performance metrics that reflect the diversity of objectives as described in section 4.2.

7. The model should at least represent the complexity of the problem as described in the
system conceptualisation of post-disaster humanitarian logistics.

5.2 assumptions of the model

A model is a simplification of a system. A set of assumptions is made for the definition of
the facility location model, while considering their implications on both the complexity of the
model and its resemblance to reality. These assumptions are listed in this section and the most
important assumptions are motivated in the next.

1. The model considers the facility location problem as an uncapacitated problem. In other
words, there are no restrictions on upstream supply to the supply points, on the supply
from supply points to hubs, or from hubs to demand points. There are no restrictions on
capacity of the logistics hubs either. When a receiving node is allocated to a supplying
node, all demand is covered of the receiving node.

2. Each node in the model has a specific disruption that varies for each node based on how
heavily that node is affected by the disaster.

3. The disruptions for each node determines both the reachability and the demand of that
node.

4. The disruption for each node does not change over time. This means that the transporta-
tion times between nodes and the demand of each demand point remains stable over the
multiple decision-making periods.

5. The transport times between different nodes are based on the combination of the normal
fastest routing duration and the disruption of the destination node.

6. Demand is determined by the demand point’s population and its disruption factor. Other
factors that could have an impact on the demand for relief supplies have not been included
in the model.

7. Supply points supply relief goods only to central logistics hubs. Only the central logistics
hubs supply these relief goods to demand points. In other words, all transport of relief
goods goes from supply points, via logistics hubs, to demand points.

8. Allocation: All demand points are allocated to the closest central logistics hub. An as-
sumption made by most facility location models (Gutjahr & Dzubur, 2016).

9. Which logistics hub or supply point is closest, is determined based on the normal travel
duration and not the disrupted travel duration, because the disrupted travel duration is
uncertain.

10. When a demand point is further located than a specified maximum distance from the
closest logistics hub, it is not allocated. Hence, its demand is not satisfied.

11. Demand points can only be allocated to a single central logistics hub. Central logistics
hubs can only be allocated to a single supply point. However, multiple demand points can
be allocated to a single central logistics hub and multiple hubs can be allocated to a single
supply point.

12. Supply points are not allocated to other nodes since they are supplied by upstream logistics,
which is out of scope.
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13. A single vehicle type for road transport is considered for transport between supply points
and logistics hubs and between logistics hubs and demand points. No other transport
modes than road transport are considered.

14. The disruption of the travel duration is determined by the disruption factor of the relief
receiving node. The central logistics hubs receive from the supply points and the demand
points receive from the logistics hubs. The maximum disruption of the travel duration is
double the normal duration.

15. Transport of relief goods from logistics hubs to demand points goes only directly between
hub and demand point (back and forth), without including multiple demand points in one
route. Optimised routing where multiple demand points are included in single routes is
not considered.

16. The only costs that are considered for calculating the costs of facility location decisions
are the transport costs. Costs associated with opening or operating a facility are not
considered. The only decision variable in the model is the location of facilities, so no
decision variables are included on the number of locations that are opened. Because the
location of facilities has no effect on the opening and operations costs, these costs are not
included.

17. Inventories and storage capacities of central logistics hubs are not considered.

18. A single homogeneous commodity is considered, representative for consumable food and
non-food relief supplies.

5.2.1 Motivation of most important assumptions

Capacity of relief supply
Assumption 1 indicates that there are neither restrictions on the capacity of the central logistics
hubs nor on the incoming (upstream) relief goods supplied by the supply points (i.e. Airports,
Seaports, et cetera). This is assumed so that no decision variables have to be included on the
allocation of supply. For example, for a capacitated model, it is required to determine how a
limited supply of relief goods is distributed over two demand points that both lie within the
maximum distance for which demand points are covered. A possible solution to this allocation
problem is to model user equilibria as introduced by Gutjahr and Dzubur (2016). However, such
a solution increases the complexity of the model significantly because extra decision variables are
required. As mentioned in the requirements (section 5.1), it is desired to have the location of the
central logistics hubs as the only decision variable. These assumptions characterise the model
as an uncapacitated facility location model. However, some capacity constraints are considered:
the maximum distance for which demand points can be covered is included as an uncertain
variable. When there is only limited available supply of relief goods, the maximum distance for
which demand points can be covered is smaller.

Allocation
Assumption 8 is related to the way demand points are allocated to central logistics hubs and
how central logistics hubs are allocated to supply points. Multiple other options are considered
for allocation of demand points to central logistics hubs:

1. Demand points are assigned to closest operational central logistics hubs (as assumed here).

2. Allocation of demand points to logistics hubs is optimised with the allocation of demand
point to hub being a binary decision variable (0 or 1), such as in Maharjan and Hanaoka
(2018).

3. Via a lower-level user-equilibrium, which takes both the distance as the expected supply
into account, as proposed by Gutjahr and Dzubur (2016).
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Option 2 and 3 both imply adding extra decision variables for optimising the allocation of
demand points to hubs, which increases both complexity and runtime. Choosing the closest hub
offers a simple solution for allocation without having to add extra decision variables. Therefore,
the first option is chosen.

Assumption 9 mentions that the normal distance (before a disaster) is used to determine to
which central logistics hub or supply point a demand point is allocated, instead of the actual
distance after the disruption. This is based on the idea that the travel time after a disaster is
uncertain at the moment of deciding on the allocation of demand points.

Transport
Assumption 15 relates to the simplification assumptions for vehicle routing. Optimised vehicle
routing could lead to better performance of relief distribution, however, it would significantly
increase the complexity of the model because additional decision variables would be required.
The main argument is that the included decision variables should only be related to the locations
of the central logistics hubs. Besides, in some disaster situations, optimised vehicle routing might
not be possible for large-scale transport of relief goods. Transport vehicles might not have enough
capacity to bring relief supplies to one demand point and then to the next in one route without
returning to the distribution centre to fill the vehicle with new supplies.

5.3 model formulation

The facility location model for post-disaster logistics is formulated in this section. As prescribed
by the designed approach, the formulation of the model adheres to the XLRM-structure. The
order of the elements of the XLRM-structure is sometimes changed for a clearer presentation
of each of these elements (Lempert et al., 2003). The first section gives the nomenclature of
all indices and variables as used in the model. The notation includes the exogenous variables
(X), the decision variables or ’levers’ (L), the performance metrics (M), and the notation of
endogenous variables as included in the relations between variables (R). The second section
describes the performance metrics and finishes by giving the relations within the model.

Note that this facility location model is specifically meant to evaluate decisions for a single
decision-making period. The multi-period decision-making is simulated by the multi-period
simulation algorithm, which is further discussed in the next chapters.

5.3.1 Notation, parameters and decision variables

Notation of sets and indices:

I Set of demand points, indexed by i ε I, with I = {1, . . . , imax}
J Set of potential central logistics hubs, indexed by j ε J , with J = {1, . . . , jmax}
K Set of supply points, indexed by k ε K, with K = {1, . . . , kmax}
N Set of nodes (I ∪ J ∪K), indexed by n ε N , with N = {1, . . . ,nmax}

Notation of exogenous variables:

NpA Needs per affected. Units of relief supply needed for each disaster victim.
pi Population at demand point i.
UTC Unit transport costs. The cost of transport per unit of relief supplies per hour.
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TDn1,n2 Travel duration between two nodes before disruption by the disaster (in hours).
DFn Disruption factor for node n. A multiplication factor that determines the disruption

of node n, with continuous range [1, 2].
MCD Maximum covered distance: the maximum distance for which demand points are

covered by central logistics hubs (in hours).

Notation of decision variables

Xj Binary decision variable. Indicating whether a central logistics hub is operational (1)
or not operational (0). Vector X, indexed by j

Endogenous variables:

di Demand at demand point i
pdj Projected demand at logistics hub j
an1,n2 Binary variable indicating direct allocation of nodes. 1 when node n1 is allocated to

n2, 0 when node n1 is not allocated to n2.
ai,j,k Binary variable indicating indirect allocation of nodes. 1 when demand point i is

allocated to supply point k via central logistics hub j, 0 if i is not allocated to k via j.
ATD Actual Travel Duration between n1 and n1.
sn1,n2 Quantity of supply from node n1 to node n2
TotTC Total Transport costs
TotD Total demand of relief goods
TotCD Total Covered Demand of relief goods
TotUD Total Uncovered Demand of relief goods
UDP Number of Uncovered Demand Points
TTi The travel time between a demand point and the closest operational logistics hub
MaxTT Maximum Travel Time
Xnfj Binary variable indicating whether central logistics hub j is operational but not func-

tional

5.3.2 Performance metrics and relations

The objectives as discussed in section 4.2 are inspired by the objectives used by the reviewed
articles from the literature review on post-disaster facility location models. Together, they form
a comprehensive set of objectives for making post-disaster facility location decisions. Besides
objectives, the model consists of a number of relations that calculate endogenous variables based
on combinations of the exogenous and the decision variables. This section first presents the
performance metrics by which the objectives are defined, and then the remaining relations that
create the model.

Performance Metrics
The four objectives as described in section 4.2 are defined here as performance metrics. Two
of the metrics focus on the effectiveness of humanitarian logistics, one on efficiency, and one on
equity. No prioritisation of objectives is made on the performance metrics, as required for the a
posteriori optimisation method.

The first objective function for effectiveness aims to minimise the total uncovered demand. The
total uncovered demand is the total demand of all demand points minus the demand that is
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covered. The definition of this metric is similar to the implementation of Maharjan and Hanaoka
(2018).

TotUD = TotD− TotCD (5.1)

The second objective function for effectiveness aims to minimise the number of demand points
that are uncovered. The number of uncovered demand points is the total number of demand
points (cardinality of the set of demand points) minus the sum of all demand points that are
allocated to central logistics hubs. The number of uncovered demand points cannot be negative
since each demand point is only allocated to a single logistics hub. The definition of this metric
is inspired by Nolz, Doerner, Gutjahr, and Hartl (2010).

UDP = |I| −
∑
j

∑
i

ai,j (5.2)

The objective function for efficiency aims to minimise the costs of the transport of relief goods.
The opening and operations costs of central logistics hubs are not considered as the number of
locations opened during each period is no decision variable. Efficiency is often defined as being
proportional to another metric. Here, however, efficiency is represented by only the cost function
associated with the transport of relief goods. The total transport costs are calculated by the
summation of the costs of all transport between supply points and logistics hubs, and between
logistics hubs and demand points. This is similar to the calculation of costs by Rath, Gendreau,
and Gutjahr (2016).

TotTC =
∑
k

∑
j

ATDj,k · sk,j ·UTC +
∑
j

∑
i

ATDi,j · sj,i ·UTC (5.3)

The objective function for equity aims to minimise the maximum travel time. This equity metric
measures the maximum time that needs to be travelled to bring relief goods to the furthest
located disaster victims (Marsh & Schilling, 1994). This maximum travel time is equal to the
longest travel time for any demand point to the closest logistics hub. The definition of this
metric is inspired by Tzeng et al. (2007) and Marsh and Schilling (1994).

MaxTT = max
∀i∈I

(TTi, . . . ) (5.4)

Relations
The affected population is determined by the full population as represented by a demand point,
multiplied with the disruption factor minus 1. The minus 1 is added because the disruption
factor is a number between 1 and 2. The disruption factor minus 1 represents a ratio of the
population that is affected.

Api = pi · (DFi − 1), ∀i (5.5)

The demand of a demand point is given by the affected population, multiplied by the units of
relief supply needed for each disaster victim.

di = Api ·NpA, ∀i (5.6)

Each demand point is allocated to the closest central logistics hub that is either made operational
in the current or in an earlier period, if this hub lies within the maximum distance for which
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demand points are covered. If the closest operational hub is located further away than this
maximum distance, the demand point is not allocated to any hub.

ai,j =


0, if TDi,j > MCD

1, otherwise if j = arg minφ{TDi,φ | φ ∈ J ,Xφ = 1}
0, otherwise

, ∀i ∀j (5.7)

A demand point cannot be allocated to multiple logistics hubs. When two or more operational
logistics hubs have the exact same travel duration to the demand point, the demand point is
allocated to one of the two hubs without any preference for each of the hubs. This is captured
in a constraint for the number of operational hubs to which a demand point is allocated. Each
demand point can be allocated to zero or one operational logistics hub(s).∑

j

ai,j = [0 .. 1], ∀i (5.8)

Each operational hub is allocated to the closest supply point.

aj,k =

{
1, if k = arg minφ{TDj,φ | φ ∈ K}
0, otherwise

, ∀j ∀k (5.9)

An operational logistics hub cannot be allocated to multiple supply points. When two or more
supply points have the exact same travel duration to the logistics hub, the hub is allocated to one
of the two supply points without any preference for each of the supply points. This is captured
in a constraint for the number of supply points to which a central logistics hub is allocated. Each
hub can be allocated to zero or one supply point.∑

k

aj,k = [0 .. 1], ∀j (5.10)

Each demand point that is allocated to a logistics hub is indirectly allocated (via that hub) to
a supply point.

ai,j,k =

{
1, if aj,k = 1, ai,j = 1
0, otherwise

, ∀i ∀j ∀k (5.11)

A logistics hub supplies relief goods to a demand point if that demand point is allocated to that
hub. The supply from the logistics hub to the demand point is equal to the demand of that
demand point.

sj,i = di · ai,j , ∀i ∀j (5.12)

The projected demand at each central logistics hub is the accumulated demand of all demand
points that are allocated to that hub.

pdj =
∑
i

sj,i, ∀j (5.13)

A supply point supplies relief goods to a logistics hub if that demand point is allocated to that
hub. The supply from the supply point to the hub is equal to the projected demand of that hub.

sk,j = pdj · aj,k, ∀j ∀k (5.14)
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The actual travel duration after a disaster can be longer than normal due to infrastructural dis-
ruptions. The actual travel duration between demand points and logistics hubs is the disruption
factor of the demand point multiplied with the normal duration.

ATDj,i = ATDi,j = TDj,i ·DFi, ∀i ∀j (5.15)

The actual travel duration between logistics hubs and supply points is the disruption factor of
the logistics hub multiplied with the normal duration.

ATDk,j = ATDj,k = TDk,j ·DFj , ∀j ∀k (5.16)

The total demand is the sum of the demand of all demand points.

TotD =
∑
i

di (5.17)

The total covered demand is the sum of the demand of all demand points that are allocated to
an operational central logistics hub. Another way to determine the total covered demand is to
take the sum of the projected demand of all operational hubs.

TotCD =
∑
j

∑
i

ai,j ∗ di

=
∑
k

∑
j

aj,k ∗ pdj
(5.18)

The minimum travel time for each demand point to receive relief goods, is based on the actual
travel duration between that demand point and the closest operational logistics hub. This travel
time is calculated regardless of whether that demand point is allocated to that specific logistics
hub.

TTi = min({ATDi,j |j ∈ J ,
∑
k

aj,k = 1}), ∀i (5.19)

It can happen that the decision variable indicates that central logistics hub j is operational,
but no demand point is allocated to this hub. When this is the case, the projected demand of
hub j is equal to zero and this hub is not functional. The binary variable ’operational but not
functional’ is 1 when the hub is operational, but does not have any projected demand, and is
thus not functional.

XnFj =


0, if Xj = 0
1, otherwise if pdj = 0
0, otherwise

, ∀j (5.20)

This facility location model as defined here is used for integration in the single- and multi-period
simulation algorithm. The next chapter focusses on how these can be integrated. It describes
the a posteriori optimisation method, the robustness analysis, and the simulation of decisions
over multiple periods.
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I N T E G R AT I O N O F M O D E L W I T H S I M U L AT I O N
O F S T E P W I S E FAC I L I T Y L O C AT I O N
D E C I S I O N S

This chapter describes the remaining components of the problem formulation part from the de-
signed approach for the simulation and analysis of the interplay between post-disaster facility
location decisions and uncertainty. The integration of the model with the simulation of step-
wise facility location decisions enables the implementation of the simulation algorithm. The
decision-making method for within each single period is described first and the simulation of
multiple periods is defined next. The single- and multi-period decision-making algorithm is then
implemented based on how the decision-making method is defined in this chapter.

6.1 single period decision-making method

The MORDM algorithm is used as a decision-making method at each period. Two important
components of the MORDM algorithm are the many-objective optimisation and the robustness
analysis. This section describes the optimisation method that is used and which constraints are
included for the optimisation. Then it describes how the resulting solutions are re-evaluated
under uncertainty and motivates the robustness metrics used for this re-evaluation.

6.1.1 Many-Objective Optimisation

There are different methods for a posteriori many-objective optimisation. Evolutionary al-
gorithms are often used for optimisation of complex models, because they are often suitable
for problems with challenging properties, such as non-linearity, discreteness and problem formu-
lations with many (four or more) objectives (Reed, Hadka, Herman, Kasprzyk, & Kollat, 2013).
The model, as described in section 5, is a non-linear and ’non-smooth’ programming model for
which Multi-Objective Evolutionary Algorithms (MOEAs) are ideally suited (Kwakkel, Haas-
noot, & Walker, 2015). However, one of the limitations of MOEAs is the speed of finding
’optima’. Another general optimisation approach is enumerative optimisation. With enumerat-
ive optimisation, all possible solutions over a finite predefined search space are evaluated (Coello,
Lamont, & Van Veldhuizen, 2007). This becomes infeasible when search space becomes large.
For a model with relatively few options in the full solution set, it is faster to use an enumerative
optimisation approach.

For this post-disaster facility location problem, there are relatively few possible solutions in
the full solution set. In the facility location model, there is a decision variable for each central
logistics hub, which indicates whether that hub is operational or non-operational. Each period, a
single logistics hub is made operational. Hence, the decision variables of the model are a discrete
space of x binary decisions, resulting in a vector of x possible options, where x is the number of
optional central logistics hubs. An enumerative optimisation approach would require x model

41
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evaluations. As this is much faster than applying a MOEAs for optimisation, the enumerative
optimisation approach is used.

The input parameters for the optimisation of central logistics hub locations are based on best-
estimate values for all uncertain variables. The set of results, given by the enumerative optim-
isation, contains for each possible location a score on each objective. All locations that are
non-dominated by the other locations are selected to form a Pareto-optimal solution set or the
Pareto front. All solutions in the Pareto front set have scores that are not exceeded with respect
to all objectives by any other solution (Reed et al., 2013, p. 439). All solutions that lie within
the Pareto-optimal solution set are analysed for their robustness.

optimisation constraints. Optimisation constraints can be added for pruning the set
of feasible solutions in the Pareto front. A single optimisation constraint is used to limit the
solutions proposed by the optimisation method. Solutions, where one of the central logistics
hubs does not provide relief goods to any demand point, are excluded from the solution set.
These solutions are excluded because there is no point in having non-functional central logistics
hubs. As defined in section 5.3, variable Xnfj indicates for each central logistics hub if it is
operational but not functional (with value 1). If any of the logistics hubs is operational but not
functional, the solution is excluded from the solution set. Mathematically, a solution is excluded
if: {1} ⊆ {XnFj |j ∈ J}.

6.1.2 Evaluation on robustness

In this section, the robustness analysis is described. The robustness analysis consists of a re-
evaluation of solutions under deep uncertainty and the calculation of robustness scores on differ-
ent robustness metrics.

Re-evaluation under deep uncertainty

The model, as described in Chapter 5, has a set of exogenous variables. Some of these variables
have known values (e.g. population), while others have uncertain values (e.g. needs per affected).
All variables subject to uncertainty are used to create multiple scenarios. The specific variables
and the used data are described in more detail in the next chapter (7).

For each of the uncertain variables, a range of possible values is defined. Then, Latin hypercube
sampling is used to generate a predefined number of scenarios. Latin hypercube sampling com-
bines some desirable features from random sampling and stratified sampling, which produces
more stable analysis outcomes than random sampling (Helton & Davis, 2003, p. 32). Each of
the solutions in the Pareto-optimal front is then re-evaluated for each of the generated scenarios.
Each solution’s robustness is then calculated with the use of robustness metrics.

Robustness Metrics

To compare the different alternatives on their robustness, some robustness metrics are defined.
Kwakkel, Eker, and Pruyt (2016, p. 223) make a distinction between three families of robust-
ness metrics: statistical, regret, and satisficing metrics. Statistical robustness metrics look at
the distribution of the performance of each solution for possible scenarios. A solution is more
robust when the distribution of its performance is more inclined towards the desired outcome.
Regret-based metrics look at the difference in performance of a solution compared to the best
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performing solution for the same scenario (Savage, 1972). A solution is more robust when it is
has low regret for all possible scenarios. Satisficing robustness metrics are robustness metrics
that indicate the range of scenarios that have acceptable performance relative to a minimum
threshold performance (Mcphail et al., 2018, p. 170; Simon, 1956). A solution is more robust
when it satisfies the minimum threshold performance for a higher number of scenarios.

Uncertainty has also been considered in some of the reviewed articles in section 1.4. Bozorgi-
Amiri, Jabalameli, and Mirzapour Al-e-Hashem (2013) and Jabbarzadeh et al. (2014) consider
robustness based on linear stochastic programming, which is unfit for the minimisation of vari-
ance (Beyer & Sendhoff, 2007). Both these articles penalise solutions that fail to meet desired
performance or that are unsolvable for different scenarios. An analyst is responsible for the
threshold definition of satisfactory performance. This is in essence similar to satisficing robust-
ness metrics as described above. Rath et al. (2016) consider a discrete set of stochastic scenarios
by comparing the average performance on a single objective (minimising costs). This means
they are essentially using statistical robustness metrics to choose solutions. Bozorgi-Amiri and
Khorsi (2016) consider uncertainty in four discrete scenarios without consideration of robustness,
which they propose for future research.

As mentioned in the description of the framework in Section 3.3, it is advised to use multiple
robustness metrics (Kwakkel, Eker, & Pruyt, 2016). Nevertheless, "the choice of robustness
metrics is not straightforward" (J. D. Herman, Reed, Zeff, & Characklis, 2015, p. 4). Ideally,
to embrace decision makers’ preferences comprehensively, a robustness metric from each of the
three categories is selected. However, satisficing robustness metrics require an indication of the
minimum satisficing performance of an alternative. To not influence the outcomes of the analysis
by including subjective values of satisficing performance, no satisficing metric is included in the
calculation of robustness values. One robustness metric from each of the other two categories
will be selected for the evaluation of robustness.

From the statistical robustness metrics, a metric is chosen that indicates whether a robust
solution has a good average performance with limited dispersion around it, which is a kind
of signal-to-noise ratio, as introduced by Kwakkel, Eker, and Pruyt (2016, p. 224). Since for
all objectives used in the facility location model minimisation is assumed, this signal-to-noise
metric is only mathematically defined for minimisation problems. The signal to noise metric for
alternative a is the mean of the performance of a multiplied by the standard deviation of the
performance of a. This robustness metric is calculated for each alternative:

SNRa = (µa + 1) · (σa + 1), ∀a (6.1)

The +1 is added to prevent cases where the µa or σa is close to zero (Kwakkel, Eker, & Pruyt,
2016).

The second family of metrics are regret-based metrics. From the regret-based robustness metrics,
a metric is chosen that indicates the difference between the performance of an alternative and the
best-performing alternative, given a specific scenario (Giuliani & Castelletti, 2016, p. 412). The
regret criterion used to measure the regret for the different alternatives, is based on the minimax
regret criterion (Savage, 1972). For minimisation on all objectives, the maximum regret metric
is defined as follows: given that a is the set of all alternatives and s is the set of all scenarios,
the regret for alternative ai for scenario sx is:

rx(ai) = max
a

(f(a, sx))− f(ai, sx), ∀x, ∀i (6.2)

The maximum regret for alternative ai is the maximum difference of ai with the best performing
alternative for each possible scenario sx.

r(ai) = max
x∈s

(rx(ai)), ∀i (6.3)

The scores on the robustness metrics are calculated based on the outcomes of the re-evaluation
of the Pareto-optimal solutions under deep uncertainty. For the humanitarian logistics facility
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location problem, the model contains four different objectives. Both the maximum regret and
the signal-to-noise criterion are calculated for all four objectives. This results in eight different
robustness indicators that can be used to determine the robustness of the possible solutions.

Non-dominated sorting of robust solutions
The MORDM algorithm finishes by returning a set of robust solutions. This set is obtained by
doing a non-dominated sort. To not lose trade-off information between objectives, non-dominated
sorting on all eight indicators (2 robustness metrics times four performance metrics) is used to
select solutions. The optional logistics hubs locations form a discrete nominal decision space,
which makes clustering to reduce the number of solutions in the set infeasible. All solutions in
the remaining set of Pareto efficient robust solutions are returned by the MORDM algorithm.

6.2 simulation of multi-period decision-making

Decisions at each decision-making period are made by the single period decision-making method,
which is the MORDM algorithm. Over multiple decision-making periods, the uncertainties
change based on the taken decisions. This section describes first how the uncertainty changes
and then how the process of making multiple decisions over multiple periods is defined in the
simulation algorithm.

6.2.1 Changing uncertainty over time

This section presents the ’inter-period model’ which determines how the dynamic uncertainties
change over time, based on time and distance. The variables that are subject to dynamic
uncertainty are the disruption factors of the demand points and the facility locations. These
factors are dependent on the decisions on which central logistics hubs should be made operational.
Each of the dynamic uncertain variables has four values: the true value, the best estimate, an
upper limit, and a lower limit. The upper and lower limit together define the uncertainty range
for that variable.

To formalise the uncertainty reduction model, the different variables are notated as: Indices

N Set of nodes (nodes can be demand points or central logistics hubs), indexed by n ε N ,
with n = {0, . . . ,nmax}

P Set of periods, indexed by p ε P , with p = {0, . . . , pmax}

Variables

URFn,p Uncertainty Reduction Factor for node n at period p
dn Distance to closest operational logistics hub for each node n
BEn,p Best Estimate value for the disruption factor of node n at period p
TVn True Value for the disruption factor of node n at period p
ULn,p Upper Limit for the disruption factor of node n at period p
LLn,p Lower Limit for the disruption factor of node n at period p

The uncertainty reduction factor is a function of distance and time. The uncertainty dynamics
is caused by two drivers: the locations of central logistics hubs and time. When a logistics hub
is closer to a demand point, more uncertainty is reduced for that demand point. But, even
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when no hubs are located close to demand points, new information about these places becomes
available over time. The uncertainty is reduced more when a node is located closer to other
operational logistics hubs. The uncertainty is reduced more when there is more time in between
two decision-making periods. The uncertainty reduction factor has a continuous range between
0 and 1. An uncertainty reduction factor of 0 means that the uncertainty is not reduced, while
an uncertainty reduction factor of 1 means that the uncertainty is reduced completely.

URFn,p = f(d, t), ∀n∀p, 0 < URF < 1 (6.4)

The assumption is made that the uncertainty cannot increase over time (i.e. no negative reduc-
tion).

f(d, t) ≥ 0 (6.5)

Each period is assumed to have an equal length, so the time variable becomes a constant instead.
The function for the uncertainty reduction factor then only depends on the distance of a demand
point to the operational facility locations.

URFn,p = f(d), ∀n∀p, 0 < URF < 1 (6.6)

When the the distance increases, the uncertainty reduction factor decreases:

f ′(d) ≤ 0 (6.7)

The parametrisation of function f , which indicates how strongly information is reduced, is
discussed in the next chapter. The uncertainty reduction factor can then be used to determine
the new best estimate value, the upper limit, and the lower limit of the uncertainty space. The
new best estimate value is calculated by reducing the difference between the old best estimate
value and the true value with the uncertainty reduction factor. This implies that the best
estimate value always moves towards the true value.

BEn,p+1 = TVn + (TVn −BEn,p) ∗ (1−URFn,p), ∀n∀p (6.8)

Also the new upper and lower limit are calculated based on the uncertainty reduction factor.
The new upper and lower limit is the new best estimate value plus or minus the old distance
(respectively) reduced by the uncertainty reduction factor. Both the upper and the lower limit
remain centred around the best estimate value.

LLn,p+1 = BEn,p+1 − 0.5 ∗ (ULn,p −LLn,p) ∗ (1−URFn,p), ∀n ∀p (6.9)

ULn,p+1 = BEn,p+1 + 0.5 ∗ (ULn,p −LLn,p) ∗ (1−URFn, p), ∀n∀p (6.10)

While the best estimate value, the upper limit, and the lower limit are dynamic over time, the
real value remains constant.

6.2.2 Multi-period simulation algorithm for facility location decisions

This chapter has described how decisions are proposed for each period and how these decisions
influence the uncertainty space over time. This section describes how the algorithm that simu-
lates multiple periods of decision-making and decisions affecting uncertainty works for central



46 integration of model with simulation of stepwise facility location decisions

logistics hubs location decisions. By doing so, it gives insight into the assumptions that have
been made for the simulation of multi-period decision-making.

At the initial decision-making period, the supply point(s) are the only operational node(s) in the
disaster area. No central logistics hub is operational yet. Each period, the single-period decision-
making method proposes different robust optimal solutions, which are all simulated in different
branches. For each branch in each period, only a single central logistics hub is made operational.
Decisions made in previous periods cannot be reversed in the following decision-making periods.
The allocation of demand points to central logistics hubs can change over time when a new
logistics hub becomes available that is closer to that demand point. When the algorithm has
finished the last decision-making period, the algorithm is terminated. The next step in the
approach is then the decision-uncertainty interaction analysis where the results generated by the
algorithm are analysed.

In between each decision-making period, the uncertainty changes based on the central logistics
hub location decisions. The uncertainty for the disruption factors of central logistics hubs and
demand points is reduced each period, based on how close their locations are to the operational
logistics hubs. The disruption factors themselves do not change, only the uncertainty about
their true values. It is assumed that in case of an uncertainty reduction, the best estimate value
of each disruption factor moves towards the real values. The upper and lower limits of the
uncertainty are always centred around this best estimate value. When the uncertainty reduces,
the bandwidth between the upper and the lower limit is reduced with the uncertainty reduction
factor. Because each branch of the tree has a different sequence of decisions, the reference
scenario (collection of all best-estimates for all disruption factors) is specific for each branch.

6.2.3 Implementation & Verification

For details on the implementation of the single-period and the multi-period decision-making
algorithm, such as the enumerative optimisation, the non-dominated sorting algorithm, scenario
generation, re-evaluation under uncertainty, the robustness metrics and the robustness calcula-
tion, or the implementation of the uncertainty reduction algorithm, the reader is referred to
the GitHub page related to this research: Github.com/TRomijn/Thesis. On this GitHub page,
the Python implementation of the models and algorithms can be found. In Appendix C the
different software packages used are mentioned. Appendix D discusses the verification and the
validation.

The next chapter focusses on the parametrisation of this case study on central hub location
decisions for humanitarian logistics. The Nepal Earthquake in 2015 is used to set up the case
study with data so that the algorithm can be used for the simulation of central logistics hub
location decisions. The generated results are used for the last phase of the approach: the
decision-uncertainty interaction analysis.

Github.com/TRomijn/Thesis
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P O S T - D I S A S T E R FAC I L I T Y L O C AT I O N
D E C I S I O N S FO R T H E 2 0 1 5 N E PA L
E A R T H Q U A K E

The post-disaster facility location problem is introduced in the previous chapters as a case study
to showcase the designed approach. In this chapter, the case study will be specified for the 2015
Nepal Earthquake.

As illustrated in the introduction in Chapter 1, the impacts of the 2015 Nepal earthquake were
disastrous. The disaster situation is fit for the case study on post-disaster facility location
decisions, because of different characteristics. The earthquake is a sudden-onset disaster, which
disrupted much of the road infrastructure in Nepal in April 2015 (World Food Programme,
2015a). A large part of the country had been affected by the earthquake, both in urban and
(remote) rural areas (Pattison et al., 2015). Quickly after the disaster, logistics operations needed
to be set up to distribute aid to the affected areas, while dealing with the uncertainty inherent
to sudden-onset disasters.

The case study on post-disaster facility location decisions for the 2015 Nepal earthquake serves as
a proof of principle of the designed approach. This implies that it is not the goal to replicate the
Nepal 2015 earthquake and its impacts. The use of Nepal for this case study relies on stylisation
of the available data. This study describes three categories of data used for the study: certain
data, static uncertain data, and dynamic uncertain data. The certain data includes locations
of cities, populations, and the number of periods that are simulated. The static uncertain data
includes uncertain factors that remain uncertain over time, such as the transport costs. The
dynamic uncertain data describes the factors of which uncertainty is reduced over time based
on facility location decisions.

7.1 certain data

The first category of data required for the facility location model is the static certain variables.
These are variables that have definite parameter values that are known and are (assumed to be)
not subject to any uncertainty. This includes the number of periods simulated, the population of
the demand points, and the locations of the demand points, central logistics hubs, and the supply
points. After the choices on these variables have been motivated, a graphical representation of
all included nodes in Nepal is given in Figure 7.1. An overview of the used data and reference
to the data sources is given in Appendix E.

Number of Periods
The number of periods determines the number of central logistics hubs that are made operational
and the amount of uncertainty that is reduced. As the computation time of the approach grows
exponentially (see Section 3.2.1), the number of periods to simulate should not be too large. A
number of four periods is chosen, which simulates four facility location decisions, one location
for each period. The number of four periods is expected to be enough to analyse the effects
of decisions on uncertainty, but not too large to have unmanageable computation times. Each
period spans one week and each period has the same length. The length of periods is also related
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to the degree of uncertainty reduction, as more information becomes available for each period
when a period covers a longer time-period. No variable period duration is considered, something
that is proposed for future research.

Demand Points
To represent the places where disaster victims live, both larger cities and remote valleys are
included in the set of demand points. In Nepal, there are some larger cities, such as Pokhara or
Nepal’s capital Kathmandu. However, besides the larger cities, a part of the Nepalese population
lives in less populated and remote valleys of the Himalayas. Therefore, it is important to also
consider these less populated and more remote areas for disaster relief. Moreover, by including
remote valleys, the analysis could give insight into the importance of uncertainty on these less
populated places. Both larger cities and remote valleys are included in the set of demand
points.

In total, a number of 35 demand points are included for in the model. Of these 35 demand
points, 30 are larger cities and 5 are remote valleys. From a database containing information
on all cities in Nepal with a population of at least 1000 people, the 30 cities with the largest
population are selected as larger cities and the 5 smallest cities in the dataset are selected to
represent the remote valleys. The assumption is made that official population estimates are
correct and not subject to uncertainty.

Supply points
To represent the places where upstream relief supply provided by other countries enters the
affected country, international transport hubs are used as supply points. International transport
hubs can be international airports, ports connected to international waterways or international
railway stations.

In Nepal, the availability of these international transport hubs is fairly limited. Tribhuvan
International Airport in Kathmandu is Nepal’s only international airport for now. After the
2015 earthquake, there are plans in development by the Nepalese authorities to strengthen the
disaster preparedness of the Nepalgunj airport, so that in the future it can better be used for
relief supply and possibly as an incoming node for upstream supply (UNDP, 2017). Nepal is a
landlocked country and has no waterway transport which can be used to import relief supplies.
Nepal does have an old railway connection with India and a planned new railway connection with
China, however, the current railway infrastructure is not sufficient to transport relief supplies
from outside the country (Pokharel & Acharya, 2015). Therefore, the only transport hub to
represent supply points in Nepal is the Tribhuvan International Airport in Kathmandu. During
the disaster response in 2015, there were some other entry points over land from India, however,
these were controlled by Indian authorities (Logistics Cluster, 2015). Since these entry points
were not centrally coordinated by the logistics cluster, they are not considered for this study.

Optional Central Logistics Hubs
For the selection of optional central logistics hubs, it is important to look at some of the re-
quirements of these hubs. Some general requirements for these hubs are that they should be
well-connected to the country’s road-infrastructure, have enough space to accommodate large
amounts of relief supplies and in- and outgoing trucks, and satisfy basic goods storage require-
ments such as rain protection. For the case, it is also important that the facilities are similarly
distributed as the country’s population. Hospitals are chosen because they are often relatively
well-connected to the country’s infrastructure and because they are presumably similarly distrib-
uted over the country as the population. Other types of facilities, such as schools, could have
been chosen equally well. A pragmatic way of selecting a number of optional central logistics
hubs in Nepal is used. From all hospitals in Nepal, 20 different hospitals are randomly selected
to represent optional facilities to function as central logistics hubs.
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Figure 7.1: Nepal Data Instantiation
Green Circles: Demand points

Red Dots: Optional Central Logistics Hubs
Blue Circles: Supply Points

Road infrastructure
Route durations between the different nodes represent the road infrastructure. As mentioned
in section 5.2, only road transport is considered in the facility location model. Therefore, it is
possible to use the route durations provided by route planners. Route durations are obtained
by finding the fastest routes between the coordinates of the supply points, demand points and
optional facility locations. OpenStreetMap data can be used and is used for the collection of
routing data (Luxen & Vetter, 2011).

7.2 static uncertain data

The second category of required data for the facility location model is the static uncertain para-
meters. These are variables that have indefinite parameter values and are subject to uncertainty.
For these values, it is required to find lower and upper limits that define valid ranges for these
variables. These ranges represent the uncertainty of the variables, which can be any value within
these ranges. Each variable also has a best estimate value, which is included in the reference
scenario used for the optimisation.

An estimation and calculation of parameter values and uncertainty ranges of the transport costs,
the maximum covered distance, and how much relief supplies are needed per victim, are presented
in Appendix E.

Transport Costs
The type of transport is not a decision variable in this study, so the costs of truck transport
are used for estimation of the transport cost, as this is the most usual way of transport. The
transport costs in Nepal after the earthquake are largely uncertain due to the unknown fuel
prices, vehicle scarcity, and road conditions. Severe fuel scarcity after the Nepal earthquake
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has caused a major increase in fuel prices. Also, the road conditions are reflected by the total
transport costs via the disruption factor that affects the actual route duration.

Maximum covered Distance
Reflects the capacity of available transport vehicles such as trucks and capacity of supply from
upstream logistics. For example, when there are too few trucks or too little relief goods available,
the demand points that can be covered by a facility location is also limited. In that case, the
demand points that are located closest to the facility locations are supplied with relief material
by the central logistics hubs.

Needed Relief Supplies
Wisetjindawat, Ito, Fujita, and Eizo (2014) distinguish four different phases after the disaster: 1)
Emergency relief, 2) Relief efforts for victims living at shelters, 3) Relief efforts for victims moved
to temporary houses, and 4) Relief efforts for victims resuming normal lives. Wisetjindawat et al.
(2014) find that for each phase different type of relief goods are needed and the needs of victims
increase over time after the disaster. In the first phase of disaster relief, the most basic survival
needs need to be distributed such as water, food, medicines et cetera. During the second, third
and fourth phase, these basic survival needs are still needed, but the variety of goods increases
over time as victims move from shelters to temporary houses and then back to normal life. This
underpins the importance of choosing the right facility locations, as the facilities are still used
during the later phases of disaster relief. In this study, the focus is on this first phase, emergency
response, where the priority lies with setting up central logistics hubs as quickly as possible and
while information is largely uncertain.

Duran, Ergun, Keskinocak, and Swann (2013) make the distinction between consumable and non-
consumable goods. Consumable goods need to be continuously supplied to the affected areas,
such as food and medical supplies. Non-consumable goods need only be supplied once and can
then be used during the entire disaster operations, such as tents and cellular phones. Consumable
products include both food and non-food products. These products are mostly required in
the whole affected area after natural disasters, depending on how severely regions are affected.
Also because the relief items change over time, this study considers a single homogeneous relief
good that represents consumable food and non-food items that are continuously supplied to the
disaster area.

7.3 dynamic uncertainty: disruption factors

The third category of required data for the facility location model is the dynamic uncertain para-
meters. These are variables that have indefinite parameter values and are subject to uncertainty,
which changes dynamically over time. For these parameters, there are initial lower and upper
limits that define the possible ranges of the uncertainties, but these limits can change over time
based on the decisions that are made.

7.3.1 Initial Uncertainty

For all supply points, optional facility locations and demand point, there is a factor that indicates
how strongly that place is affected by the disaster. These "disruption factors", relate to the
humanitarian needs of and the route duration towards those areas. Right after the disaster,
these factors are completely unknown. However, over time, more information helps to make
better estimations of these disruption factors. All disruption factors for each node should have
an initial lower and upper limit and a best estimate value.



7.4 uncertainty reduction 51

The disruption factors of demand points and optional facility locations are related to how hard
that specific certain area is hit. The assumption is made that initially, there is no information
on the impact distribution of a disaster. Therefore, the disruption factors initially have maximal
lower and upper limits of the possible uncertainty range. The best estimate values of each of
the disruption values are the midpoint of the lower and upper limits of the uncertainty range.

7.3.2 Ground Truth

The true values of the disruption factors need to be determined to reduce the uncertainty to-
wards the ground truth and is needed for the decision-uncertainty interaction analysis. Detailed
and extensive information is available on how hard different areas in Nepal are struck by the
earthquake. For simplification, however, the ground truth is determined with a radial function
based on the epicentre of the 2015 earthquake.

The ground truth of the disruption values is calculated with a radial function based on the great
circle distance between the coordinates of the node representing the area and the earthquake’s
epicentre. The values of the disruption factors for each area are between 1 and 2. 1 means
not affected at all. 2 means everyone is affected and route durations increase by a factor 2.
The closest node receives the maximum disruption value of 1.9 and the furthest node gets the
minimum disruption value of 1.1. The disruption factors do therefore not resemble the same
values as the 2015 earthquake, but as a proof of principle, the difference is not directly relevant.
The formulas used to determine the ground truth disruption values and the resulting values are
presented in Appendix E.

7.4 uncertainty reduction

A central postulate in this thesis is that uncertainty reduces over time and proportionately to
the remoteness of places. As elucidated in section 6.2.1, there is a dual explanation for the
uncertainty reduction. New information about disaster-struck areas spreads to the neighbouring
areas. Logisticians gain more new information about places that are easily reachable for disaster
relief activities and less about more remote places. However, also regardless of the proximity of
a place, new information about disaster-struck areas becomes available over time. The function
used for determining the uncertainty reduction considers both these mechanisms.

A graphical representation of the function used for determining the uncertainty reduction is
plotted in Figure 7.2. The horizontal axis shows the distance of an area to operational central
logistics hubs. The vertical axis shows the reducing effect of location decisions on uncertainty per
period. Each period, the disruption factor of each area is reduced by the uncertainty reduction
factor based on the travel time from the operational central logistics hubs.

The maximum uncertainty reduction is 80%. This implies that if a demand point is located at
the same location as the central logistics hub, relief workers can estimate very well how strongly
that demand point has been affected; 80% of the uncertainty is then reduced between decision-
making periods. However, most demand points have a larger distance to the closest facility
location. The uncertainty reducing effect caused by time is 10%. Regardless of the distance
to the closest facility location, the uncertainty reduces with a minimum of 10%, as shown in
Figure 7.2. The function is arbitrarily chosen as there is no empirical research available on the
strength of this uncertainty reducing effect.
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Figure 7.2: Uncertainty Reduction Factor as a function of travel time

The inter-period model defines how the uncertainty ranges change based on the uncertainty
reduction factor. This inter-period model has been defined in section 6.2.1. Basically, the
distance between the ground truth and the best estimate reduces with the uncertainty reduction
factor. The interval of the lower and upper limit also reduces with this factor, while the limits
remain centred around the best estimate.

This chapter concludes the problem formulation and the set-up of the multi-period simulation
algorithm. The simulation algorithm is used to simulate the decision-making method and the
inter-period process for each period. The next chapter includes the decision-uncertainty interac-
tion analysis, which is the last part of the designed approach for the simulation and analysis of
the interaction between decisions and uncertainty. The decision-uncertainty interaction analysis
uses the results from the simulation of the simulation algorithm.
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R E S U LT S : D E C I S I O N - U N C E R TA I N T Y
I N T E R AC T I O N A N A LY S I S FO R
P O S T - D I S A S T E R FAC I L I T Y L O C AT I O N
D E C I S I O N S

The last part of the designed approach is the decision-uncertainty interaction analysis. Before
the chapter starts with the analysis of this interaction, the outcomes of the simulation algorithm
are described. Then, the analysis looks at (1) the trade-offs between objective prioritisations,
(2) the scenario discovery to find the most important uncertainties, and (3) the relation between
objective prioritisations and uncertainty reduction.

8.1 description of the results

The duration of the simulation of all decision-making periods was 2 hours, 45 minutes and 14
seconds. This simulation is performed on a laptop with Intel Core i5 CPU, 2.3 GHz and 8 GB
of RAM.

The complete simulation of the interplay between decisions and uncertainty has resulted in a
vast amount of possible branches of decision sequences that decision makers could take. Period
0 is the initial decision-making moment, where the decision maker had 6 choices. For each of
these choices, a separate branch is forked and simulated as if that choice has been implemented
in period 1. In period 1 the decision-making process has to be simulated for each of the 6
different branches. This process has continued until four subsequent decisions have been made
(simulated) for each possible branch. Where period 1 has 6 branches, period 2 has 38, period 3
has 231 and period 4 has 1152 branches. For each period but the last (period four), the decision-
making process has been simulated by running the algorithmic version of MORDM. In total, the
MORDM algorithm has been run 276 times. Considering that each MORDM cycle evaluates on
average almost 6 solutions per cycle (64 = 1296 > 1152) and 500 scenarios for each solution, the
model has been run approximately 800.000 times. This illustrates the computational intensity
of the simulation of the interplay between decisions and uncertainty.

8.2 trade-offs of objective prioritisations

This analysis looks at the trade-offs between the objective prioritisations for humanitarian lo-
gistics facility location decisions. Each of the branches in the tree of decision pathways consists
of four decisions on the locations of humanitarian logistics hubs. The first part of this trade-
off analysis looks at the correlation between the four objective scores for each of the decision
pathways. The second part looks at the multivariate relations between the objective scores and
zooms in on some of the interesting solutions.
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8.2.1 Correlation between Objective scores

The correlation analysis looks at the bivariate relations between each of the objective scores of
each of the solutions in the tree of decision pathways. To compare each of the solutions, all
decision pathways are re-evaluated for the ground truth values of the disruption values and the
reference scenario for the remaining uncertain variables. The resulting set contains the objective
scores for each of the objectives for each of the decision pathways.

The first hypothesis for this analysis is that the total transport costs have a negative relationship
with the other three objectives: total uncovered demand, the number of uncovered demand
points, and the maximum travel time. These three objectives are indicators of effective and
equitable disaster logistics. The increase in effectiveness and equity is expectedly associated
with an increase in costs. The second hypothesis for this analysis is that the objectives of
minimising uncovered demand and the number of uncovered demand points have a positive
relation. The rationale for this second hypothesis is that covering an additional demand point
likely results in additional covered demand. The third hypothesis is that the maximum travel
time has a positive relationship with the number of uncovered demand points and the total
uncovered demand. When more demand points are covered, the travel times of these demand
points decreases, which leads to a decrease in maximum travel time when the furthest location
is covered.

The scores on the different objectives are visually presented in Figure 8.1. The graphs on the
upper-right side are scatter graphs for the different objective combinations. The graphs on the
lower-left side are bivariate Kernel Density Estimation (KDE) graphs for the different objective
combinations. These bivariate KDE graphs are symmetrical on the left diagonal with the scatter
graphs in the upper-right side (note that the axes are mirrored). The graphs on the left diagonal
are univariate KDE graphs for the different objective scores, as presented on the x-axis. These
graphs give an idea of the relations amongst the different objective scores of the different facility
location combinations.

The scatter and distribution plots provide visual insight into the relations between the different
objectives. To test the relations statistically, a correlation matrix is presented in Table 8.1.
The values as presented in the table are Pearson correlation coefficients. Where the correlation
coefficients are presented, the P-value is smaller than 0.05 and thus significant.

The scatter and KDE plots in Figure 8.1 show that the objective scores for the number of
uncovered demand points and the maximum travel time are more or less normally distributed.
The objective scores for the total transport costs and the total uncovered demand, however, have
both two peaks. In the scatter plot for these two objectives, two ’islands’ of observations can be
distinguished. The graphs suggest two types of solutions: high costs with low total uncovered
demand, and low costs with high total uncovered demand.

Table 8.1: Correlation Table

N = 1152 Total Costs # Uncovered
Demand Points

Total Uncovered
Demand

Max. Travel
Time

Total Costs X -0.804957 -0.800322 -0.202847
# Uncovered
Demand Points -0.804957 X 0.882739 0.149474

Total Uncovered
Demand -0.800322 0.882739 X Not

Significant
Max. Travel
Time -0.202847 0.149474 Not

Significant X
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Figure 8.1: Scatter and KDE plots for all objectives

Evans (1996) classifies the correlation coefficients into correlation strengths. The correlation
results in Table 8.1 show that three variable relations are very strongly correlated: (1) the
number of uncovered demand points has a negative relationship with total costs, (2) the number
of uncovered demand points has a positive relationship with total uncovered demand, and (3) the
total costs has a negative relationship with total uncovered demand. One variable relationship
is weakly correlated: the maximum travel time has a negative relationship with total costs.
One variable relationship is very weakly correlated: the maximum travel time has a positive
relationship with the number of uncovered demand points. No significant correlation is found
between the maximum travel time and total uncovered demand.

The first hypothesis can be confirmed: total transport costs have indeed a negative relationship
with the other three objectives: total uncovered demand, the number of uncovered demand
points, and the maximum travel time. However, the correlation between total costs and the
maximum travel time is only weak. A possible explanation could be that the scores on maximum
travel time change only in discrete steps, for which the score is only reduced when the furthest
located demand point is covered. In some cases, when the furthest located demand point is
covered this could result in more costs, but in many cases, the costs are very dependent on other
factors, without influencing the maximum travel time. Different scores on total costs can be
associated with the same value for the maximum travel time.

The objectives of minimising uncovered demand and the number of uncovered demand points
have a positive relation. This was also hypothesised at the beginning of this analysis, so this
second hypothesis can also be confirmed. The very strong positive correlation indicates that
these two objectives can be regarded as two different formulations of effectiveness. Therefore,
these two objectives both represent the effectiveness criterion.
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The third hypothesis can only partly be confirmed. The maximum travel time does have a
(very weak) positive relationship with the number of uncovered demand points, however, the
maximum travel time does not have a significant relationship with the total uncovered demand.
A possible explanation for this could be that the demand points with the longest travel times do
not have more demand compared to other demand points. When the furthest located demand
points are covered, this could be at the expense of other demand points. Therefore, a decrease
in maximum travel time does not relate to a decrease in uncovered demand.

8.2.2 Combining objective prioritisations

The previous section gives insight into the trade-offs between objectives with bivariate analysis.
In this section, the multivariate relations between the objectives is analysed by showing the
objective scores of the different solutions in parallel coordinate plots and by selecting specific
solutions to show the corresponding facility location decisions as made in that decision path-
way.

Where the classic scatter diagram is a fundamental tool in displaying patterns in datasets with
two or three dimensions, the parallel coordinate plot enables visualisation of multivariate data
with many dimensions (Wegman, 1990). A parallel coordinate plot displays data on different
parallel axes. Each axis represents one dimension for one of the objectives in the dataset. For
each data point in a dataset, the values for the different variables are projected on the different
parallel axes. Then, for each data point, the values on the different axes are connected by a line.
Each line in the parallel coordinate plot thus represents a single data point in the dataset.

(a) Decision pathways selected with high costs, low number of uncovered demand points, low total
uncoverd demand, low maximum travel time

(b) Decision pathways selected with low cost

Figure 8.2: Parallel Coordinate Plot with solutions selected
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Figure 8.2 shows two parallel coordinate plots, where each line represents the scores of one
decision pathway on each of the objectives. In the first, Figure 8.2a, the different solutions that
score well on minimising the number of uncovered demand points, the total uncovered demand,
and the maximum travel time are selected. In the second, Figure 8.2b, the different decision
pathways that score well on minimising the total costs are selected.

Each decision pathway corresponds to a combination of four different facility locations. From
each of both selections as shown in Figure 8.2a and 8.2b, two decision pathways are selected for
visualisation. From the selection in Figure 8.2a, the decision pathway with the least number of
uncovered demand points, and the decision pathway with the lowest maximum travel time are
selected. From the selection in Figure 8.2b, the decision pathway with the lowest total costs,
and the decision pathway with the lowest number of uncovered demand points are selected. The
four selected solutions and their corresponding facility locations are shown in Figure 8.3.

(a) Lowest # Uncovered Demand Points & Total
Uncovered Demand

(b) Lowest Maximum Travel Time

(c) Low Total Costs, with relatively low #
Uncovered Demand Points

(d) Lowest Total Costs

Figure 8.3: Nepal Maps with Facility Locations, Demand Points and Supply Points
Green Triangles: Demand points
Red Diamonds: Non-Operational Central Logistics Hubs
Blue Diamonds: Operational Central Logistics Hubs
Purple Triangle: Supply Point

The maps as depicted in Figure 8.3 show the different facility locations for each decision pathway.
Each decision pathway picked out from the selection in the parallel coordinate plots is shown
in a separate map. Each map contains different elements. The green triangles represent the
demand points (i.e. the cities and remote valleys) in Nepal. The purple triangle represents the
supply point in Nepal, Kathmandu Airport. The blue squares are operational facility locations
and the red squares are non-operational facility locations. The red lines that connect some of
the green triangles with the blue squares indicate the allocation of demand points to facility
locations. When a demand point lies within the maximum covered distance of the closest facility
location, it is allocated to that facility location. These maps give insight into the locations of
the facilities that are decided to be operational for the different decision pathways.
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The decision pathways with lower total costs have more facilities with concentrated locations
around Kathmandu (Figure 8.3c & 8.3d), while the decision pathways with a low number of
uncovered demand points, low total uncovered demand, and short maximum travel time have
facilities with locations that are much more spread out over the country (Figure 8.3a & 8.3b.
A possible explanation could be that when central logistics hubs are more concentrated around
the supply point, less demand can be covered and fewer relief goods are transported. This
corresponds to the observation that the decision pathways associated with low total costs have
many areas in Nepal that are uncovered.

8.2.3 Frequently Chosen Facility Locations and Decision Sequences

Each of the maps in Figure 8.3 shows the four central logistics hubs that score best on the four
selected objective prioritisations. However, there are multiple decision sequences that can to
each of these maps. Therefore, for each of the four selected objective prioritisations that are
highlighted in Figure 8.3 the decision-making sequences are analysed. Also, the frequency of
how often each central logistics hub is selected for these four different prioritisations is looked at.
Appendix F describes the used methodology and presents the results. Here, the most important
outcomes are presented.

The results show that there is an overlap between the facility location decisions that are made
for different objective prioritisations. One of the possible facility locations is chosen for each
of the four selected objective prioritisations (CLH3). Another facility is chosen for three of the
four objective prioritisations (CLH7). Three facilities are chosen for two objective prioritisations
(CLH11, CLH12 & CLH19). This indicates that some of the possible facility locations can be a
good choice regardless of the objective prioritisation.

The analysis of the decision sequences shows in which sequence the facility locations are most
often chosen for each of the objective prioritisations. It shows that the facility location which is
chosen for each of the four objective prioritisations (CLH3), is also chosen most often at the first
decision-making period for three of the four objective prioritisations. For the other objective
prioritisation this location is chosen at the second decision-making period. This suggests that it
is a good idea to choose CLH3 regardless of the objective prioritisation. The analysis looks closer
at the location of CLH3 and it appears that this facility location is located closest to the supply
point (Tribhuvan International airport) of all facility locations and is located in Kathmandu, the
largest demand point.

8.3 important scenarios for facility location
decisions

Often, scenarios are associated with different possible futures. For this analysis, scenarios refer to
the different possible truths in an environment where the truth is uncertain because of incomplete
information. In other words, instead of referring to different possibilities of ’how it will be’, it
refers to different possibilities of ’how it is’.

Scenario discovery is a model-based approach that helps identify scenarios based on statistical
or machine learning algorithms, instead of the more traditional way of identifying scenarios
based on experts’ perceptions (Bryant & Lempert, 2010; Kwakkel et al., 2013). These statistical
or machine learning algorithms are used to identify combinations of uncertain variables that
result in cases of interest (Halim et al., 2016). The cases of interest for this analysis are the
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worst performing scenarios. Identification of the uncertain variables that cause these worst
performing scenarios can help decision makers direct their efforts on gathering the most valuable
information. The algorithm that is used for this analysis is the Patient Rule Induction Method
(PRIM) (Friedman & Fisher, 1999), which helps to find the subregions for the input space that
results in the worst-case outcomes. The version of PRIM as used for this scenario discovery
analysis is an improved version of the original method as proposed by Friedman and Fisher
(1999), which can handle heterogeneous uncertainties and multinomial classified outcomes, as
proposed by Kwakkel and Jaxa-Rozen (2016).

8.3.1 Methodology for scenario discovery.

The scenario discovery analysis is conducted on each of the objectives, which gives more nuanced
analytical insight than when the different objectives are aggregated (Shortridge & Guikema,
2016). Each decision pathway shares the same uncertainty ranges for the static uncertainties,
but the ranges for the disruption factors are specific to each decision pathway because they
are dependent on the sequence of facility location decisions. Scenario discovery is an analytical
process and too time-consuming to do for multiple branches. Therefore, the analysis is conducted
for a single branch of the tree of decision pathways. The first branch of the last period is used
for the scenario discovery.

To select the cases of interest for each objective, the 80th percentile of the objective score
is selected. Because minimisation on each of the objectives is preferred, the 80th percentile
contains all solutions that are among the 20% worst cases. The PRIM algorithm is instantiated
with the binary classification of the cases of interest as the dependent variable, and both the
different uncertainties as explanatory variables. The uncertainties include the disruption factors
of both the facility locations and the demand points and includes the static uncertain variables.
The minimum coverage threshold is set to 0.8.

To find the first box, the trade-off for the peeling trajectory is plotted. Multiple possible points
for the first box are inspected and compared, after which one point is selected where both the
coverage and the density are relatively high and all restricted dimensions have quasi-p-values
that are larger than 0.05. Sometimes, PRIM selects policies (facility locations) as restricted
dimensions, which are excluded from the scenario discovery because these are no uncertainties.
The same procedure is used to check for additional boxes. The properties of the boxes, such
as the different restricted dimensions, the coverage and the density, are presented and inter-
preted as scenarios in this analysis. The peeling trajectories for each of the boxes are shown in
Appendix G.

8.3.2 Scenarios Discovery for Total Transport Costs

The PRIM algorithm is run to find the scenarios that lead to the highest total transport costs.
The first box that is selected from the peeling trajectory, has a coverage of 0.978, a density of
0.507, and has 3 restricted dimensions. A high coverage and a medium density mean that this
box bound by these three dimensions contains a large proportion of the cases of interest, but
that there are also cases inside the box that are not one of these 20% worst cases. This box
has been selected, as further peeling would result in non-significant quasi-p-values for additional
uncertain factors. The PRIM algorithm cannot find any additional boxes, as the second box
does not meet the threshold criteria. The first box is shown in figure 8.4.

The scenario that results in the cases with the 20% highest total transport costs is dependent
on three dimensions: the costs of transport for a single unit of relief goods, the demand for each
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Figure 8.4: Box limits for the first box for Total Transport Costs

affected person, and the maximum distance for which demand points can be covered. The total
transport costs are the highest for the scenario where these three variables are relatively high at
the same time.

These three dimensions are directly related to the quantity of relief goods that have to be
distributed or the costs for the transport of each unit of relief goods. When facility locations can
cover demand points within a larger perimeter, more transport is required to distribute relief
supplies to those demand points. When the demand per affected increases, the supplied relief
material increases (assumed there is sufficient supply). The transport costs for a single unit of
relief goods are the marginal costs. For all these three factors counts that when they increase,
an increase in the total transport costs is a direct result, which offers a logical explanation why
these variables are found to be impactful.

8.3.3 Scenarios Discovery for Number of Uncovered Demand Points

The PRIM algorithm is run to find the scenarios that lead to the highest number of uncovered
demand points. The first box that is selected from the peeling trajectory, has a coverage of
1, a density of 0.624, and has a single restricted dimension. A coverage of 1 and a medium
density means that this box bound by this single dimension contains all of the cases of interest,
but that there are also cases inside the box that are not one of these 20% worst cases. This
box has been selected, as further peeling would result in restricting a dimension that is not
related to uncertainty, but to specific facility locations. The PRIM algorithm cannot find any
additional boxes, as the second box does not meet the threshold criteria. The first box is shown
in figure 8.5.

Figure 8.5: Box limits for the first box for Number of Uncovered Demand Points

The scenario that results in the cases with the 20% highest number of uncovered demand points
is dependent on a single dimension: the maximum distance for which demand points can be
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covered. The number of uncovered demand points is the highest for the scenario where the
maximum distance for which demand points can be covered is very small.

If only demand points that are close to facility locations can be covered with relief supplies, more
demand points remain uncovered. When this distance is very low, it results in the most negatively
impacting scenario on the number of uncovered demand point, offering a logical explanation why
the maximum covered distance is found to be impactful.

8.3.4 Scenarios Discovery for Total Uncovered Demand

The PRIM algorithm is run to find the scenarios that lead to the highest total uncovered demand.
The first box that is selected from the peeling trajectory, has a coverage of 0.936, a density of
0.637, and has 2 restricted dimensions. A high coverage and a medium density mean that this
box bound by these two dimensions contains a large proportion of the cases of interest, but that
there are also cases inside the box that are not one of these 20% worst cases. This box has been
selected, as further peeling would result in an increasing number of restricted dimensions with
non-significant quasi-p-values. The PRIM algorithm cannot find any additional boxes, as the
second box does not meet the threshold criteria. The first box is shown in figure 8.6.

Figure 8.6: Box limits for the first box for Total Uncovered Demand

The scenario that results in the cases with the 20% highest total uncovered demand is dependent
on two dimensions: the demand for each affected person and the maximum distance for which
demand points can be covered. The total uncovered demand is the highest for the scenario where
the distance for which demand can be covered is small and where the demand for each affected
person is not small.

If only demand points that are close to facility locations can be covered with relief supplies, more
demand points remain uncovered. When fewer demand points are covered, more people remain
in the need for relief supplies. If at the same time the demand per affected is higher, the total
demand increases, resulting in more uncovered demand. The combination of these individual
relations results in the most negatively impacting scenario on total uncovered demand.

8.3.5 Scenarios Discovery for Maximum Travel Time

The PRIM algorithm is run to find the scenarios that lead to the longest maximum travel time.
The first box that is selected from the peeling trajectory, has a coverage of 1, a density of 1, and
has 2 restricted dimensions. A coverage and density that are both equal to one, means that this
box bound by these two dimensions contains all cases of interest without cases inside the box
that are not one of these 20% worst cases. This box has been selected, as it is the last point
in the peeling trajectory. The PRIM algorithm cannot find any additional boxes, as the second
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box does not meet the threshold criteria, which is because the first box already found a perfect
box for all cases of interest. This first box is shown in figure 8.7.

Figure 8.7: Box limits for the first box for Maximum Travel Time

A very different type of scenario is the result of the scenario discovery analysis for the maximum
travel time. The scenario that results in the cases with the 20% highest maximum travel time
is dependent on three specific policies and on the disruption factor of a single demand point.
Here, the specific policies (facility locations) are included because it helps to understand why
the disruption factor of a specific demand point comes out as the most harmful factor. The
numbers of these policies refer to the numbers of the facility locations as given in Appendix E.
The maximum travel time is the highest where the disruption factor of a specific demand point
is high and when one of these three specific policies is chosen.

A logical explanation for this disruption factor to be so impactful could be that the related
demand point is the demand point with the maximum travel time. The demand point related to
this disruption factor is indeed one of the most remotely located places and is also one of the five
added remote valleys, see Appendix E. An explanation for these three policies to be so impactful
could be that this specific demand point has the largest maximum travel time, regardless of
whether one of these facility locations are active. Other facility locations would be closer to this
demand point and thus reduce the maximum travel time. The locations of the facility locations
related to the policies are indeed located on the other side of Nepal, see Appendix E.

8.4 effect of facility location decisions on un-
certainty

This analysis focusses on how different objective prioritisations relate to the reduction of uncer-
tainty. Each period, decisions are made with specific objective prioritisations. The hypothesis
is that the branches where has been focussed on coverage-related objectives are associated with
smaller uncertainty ranges. This is expected because combinations of facility locations that score
well on coverage are expected to be closer to more demand points, which would lead to a faster
reduction of uncertainty. To check this hypothesis, a regression analysis is conducted, which can
give insight into the relationship between objective prioritisations and remaining uncertainty
space. The added value of using a regression analysis compared to a correlation analysis is that
it can give additional insight into the linearity of the relationship.

The dependent variable for the regression analysis is the uncertainty range. The four explanat-
ory variables are the scores on each of the objectives during the last period. To measure the
uncertainty range at each different branch (the dependent variable), a metric to measure uncer-
tainty is used that represents the size of the total uncertainty space at that specific branch. The
total uncertainty space of interest for each branch is the combination of uncertainty ranges for
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all disruption factors of the demand points and facility locations. The metric used to indicate
the size of this uncertainty space is the mean of all disruption factor uncertainty ranges for a
specific branch and is referred to as the "mean uncertainty bandwidth".

The mean uncertainty bandwidth for each of the disruption factors is 1 at the initial period,
which means that for each demand point it is unknown whether 100% or 0% of the population
has been affected by the disaster. This uncertainty bandwidth is reduced over time, as defined in
the inter-period model (see section 6.2.1). An uncertainty bandwidth of 0.30 at the last period,
means that the distance between the lower and the upper limit of the uncertainty range includes
30% of the uncertainty relative to the initial period. In this example, 70% of the uncertainty
has been reduced.

First, a simple linear regression model is estimated for each objective, to see whether the re-
lationship of each objective with the uncertainty range is significant and linear or non-linear.
Then, a multiple regression model is estimated, to see whether the relations are also significant
when combined, or whether variability in the uncertainty reduction is explained by the other
variables.

(a) (b)

(c) (d)

Figure 8.8: Simple Regression Plots for all Four Objectives

8.4.1 Simple Linear Regression

The results of the simple linear regression for each of the objectives are shown in Figure 8.8.
Based on visual observation of the regression plots, it looks like all objectives prioritisations are
correlated with the remaining uncertainty in the last period. The numerical results of the simple
regression analysis are given in Table 8.2.
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Table 8.2: Simple Regression Analysis Results

N = 1152 Total Costs Nr. of Uncovered
Demand Points

Total Uncovered
Demand Max. Travel Time

Slope -4.66E-8 0.00486 8.08E-06 6.54E-7
Intercept 0.157 0.0400 0.0859 0.0843
R-squared 0.648 0.578 0.472 0.139
p_value 1.11e-262 1.24E-217 1.41.E-161 3.47E-39
std_err 1.01E-9 1.22E-4 2.52E-7 4.80E-8

Table 8.2 shows that all regression lines are significant; all p-values are lower than 0.05. To check
whether the results of the simple regression analysis are linear, a residual plot has been created
for each explanatory variable. From observation of the residual plots for each objective, it seems
that none of the variables is non-linearly related to the dependent variable. The residual plots
are presented in Appendix H.

The slope of three out of four objectives is positive, namely for maximum travel time, total
uncovered demand, and number of uncovered demand points. Total costs, however, are neg-
atively correlated with the average remaining uncertainty. The R-squared (the square of the
Pearson correlation coefficient) is the highest for the relationship between uncertainty and the
total costs. This indicates that the transport costs have the strongest correlation with the av-
erage uncertainty reduction for a specific decision pathway. The slope for each objective in the
simple regression analysis is not directly relevant, because the regression line is estimated on data
generated with the simulation algorithm and not on empirical data, and therefore dependent on
the accuracy of input parameters.

The positive correlation of average remaining uncertainty at a decision pathway with the max-
imum travel time, the total uncovered demand and the number of uncovered demand points
and the negative correlation with total transport costs is more or less in accordance with the
hypothesis as stated at the beginning of this analysis: decision pathways that have focussed
on objectives related to coverage are associated with smaller uncertainty ranges. However, the
maximum travel time and the total costs were not expected to correlate with the remaining
uncertainty space. A multiple regression analysis points out whether these correlations can be
explained by variability of the other explanatory variables.

8.4.2 Multiple Regression

The regression model used for the multiple regression is an Ordinary Least Squares (OLS) re-
gression. The model includes a constant and all explanatory variables as linear regressors. The
linear function used to fit the linear regression model is:

Uncertainty =β0 + β1 · TotalCosts+ β2 ·Nr.ofUncoveredDemandPoints+
β3 · TotalUncoveredDemand+ β4 ·Max.TravelT ime

(8.1)

The results from the multiple regression model are presented in Table 8.3. From the results
of the multiple regression analysis, it appears that all explanatory variables have a significant
relationship with the average remaining uncertainty. This shows that each of the objective
prioritisations has an independent effect on the variability of the uncertainty reduction.
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Table 8.3: Multiple Regression Analysis Results
R-squared = 0.781
N = 1152

Coefficient std err P-value
Constant 0.0742 0.0038 0.000
Total Costs -2.58E-08 1.34E-09 0.000
Nr. of Uncovered Demand Points 0.0014 0.0002 0.000
Total Uncovered Demand 2.30E-06 3.74E-07 0.000
Max. Travel Time 5.69E-07 2.59E-08 0.000

8.4.3 Effect of Uncertainty Reduction on Optimisation Results

The reduction of uncertainty in the disaster environment is important for both humanitarian
logisticians and other relief workers. To check whether the reduction of uncertainty indeed leads
to improved facility location decisions, Appendix I looks at the relation between the reduction of
uncertainty and the optimality of the decision-making method outcomes. It does so by correlating
the size of the uncertainty space with the optimality of the final-period decision-making method
outcomes of each decision pathway. Appendix I elaborates on the used methodology and the
numeric results. Here, the most important outcomes are presented.

Figure 8.9: Hypervolume in a 2-Dimensional space
(for minimisation on both dimensions),
Modified from (Fonseca et al., 2006)

The optimality of the final-period decision-
making method is measured with the S-metric
or the hypervolume. This hypervolume metric
indicates the volume that is covered by the ob-
jective scores for all solutions in the Pareto set,
with respect to the reference point (Brands,
2015, p. 71). Figure 8.9 illustrates the hy-
pervolume in a 2-dimensional space (repres-
enting 2 objectives) for four solutions. Pareto
fronts with a larger hypervolume are more op-
timal than Pareto fronts with smaller hyper-
volumes.

Initially, no correlation is found between the
reduction of uncertainty and the optimality
decision-making method outcomes. However,
a higher cardinality of a Pareto set leads to
an easier attainment of higher hypervolumes
(Brands, 2015). To correct for this, the hy-
pervolume of each Pareto set is divided by its
cardinality. Then, when the hypervolumes are
corrected for the cardinality, a significant re-
lation is found between the reduction of uncertainty and the relative hypervolume size. The
regression analysis shows that there is a moderately strong correlation between the uncertainty
reduction and the optimality of the optimisation outcomes. Specifically, it shows that when the
uncertainty reduces, the relative hypervolume size increases. In other words, the optimisation
of the branches with a smaller uncertainty space produces more optimal results than the op-
timisation of branches with a larger uncertainty space. This emphasises the importance of the
reduction of uncertainty for making post-disaster facility location decisions.
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9
M E A S U R I N G P E R FO R M A N C E O F T H E
M U LT I - P E R I O D D E C I S I O N - M A K I N G M E T H O D
U N D E R U N C E R TA I N T Y

The central approach in this thesis has been designed for simulation and analysis of the inter-
action between decisions and uncertainty. This approach existed partly of a decision-making
method that enabled to make robust decisions for multiple objectives while dealing with incom-
plete information and uncertainty. This Many-Objective Robust Decision-Making method has
been used in a step-wise manner to enable the assimilation of new information and reduced
uncertainty. To evaluate this step-wise decision-making method, this chapter analyses how well
this method performs compared to an approach with perfect foresight. The analysis focusses
on comparing different characteristics of the Pareto front and the distribution of the objective
scores of the solutions.

9.1 optimisation under uncertainty versus op-
timisation with perfect foresight

The simulation algorithm has simulated the decision-making method and the reduction of uncer-
tainty over time. The solutions that are given by this algorithm are compared to solutions that
have been optimised with ’perfect foresight’. The optimisation with perfect foresight uses the
ground truth values for the dynamic uncertain variables and the reference scenario for the static
uncertain variables. Enumerative many-objective optimisation is used to evaluate all possible
solutions. This optimisation with perfect foresight gives a set of solutions that covers the full
Pareto front for the ground truth.

For a fair comparison of the results for the optimisation under uncertainty and the optimisation
with perfect foresight, the solutions obtained with the simulation algorithm are re-evaluated
for the ground truth values of the disruption factors and the reference scenario for the static
uncertain variables. Each of the solution sets is evaluated for the same input values and can be
compared on characteristics of their respective Pareto fronts and the distribution of the objective
scores of the solutions.

9.2 pareto front comparison

This section focusses on how well the solutions of the optimisation under uncertainty approximate
the Pareto front of the optimisation with perfect foresight. The solution set for the optimisation
under uncertainty includes many more solutions than the Pareto front of the optimisation for
perfect foresight. Therefore, new metrics are introduced to be able to analyse the difference
between the two solution sets.
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The first metric that is used is the hypervolume metric, which is introduced in section 8.4.3.
Pareto fronts with a larger hypervolume are more optimal than Pareto fronts with smaller
hypervolumes. Each Pareto front includes a set of solutions, with for each solution the scores on
the four objectives.

Before computing the hypervolume of each Pareto front, unity-based normalisation is used to
normalise the scores on each objective between 0 and 1 over all sets of objective scores (i.e. over
all Pareto fronts). Then the hypervolumes are computed by using a reference point that equals 1
for all objectives, as the reference point represents the upper boundaries for the objective scores
(Brands, 2015).

The solution set from the optimisation under uncertainty also obtains solutions that are not
in the Pareto front for the ground truth. Therefore, it is insightful to also check how the
worst possible solutions as given by the optimisation under uncertainty perform compared to
the optimal solutions. To do so, the hypervolume of the worst-case solutions are computed in
addition to the hypervolume of the Pareto set. The worst-case solutions are referred to as the
"inverse Pareto set" or the "inverse Pareto front". In Figure 9.1 the inverse Pareto front is marked
by the red points and the normal Pareto front is marked by the green points. The inverse Pareto
front is obtained by doing non-dominated sorting where the optimisation direction is switched
(maximisation instead of minimisation). The hypervolume of the inverse Pareto set is marked
by the dark blue shaded surface and the hypervolume of the (normal) Pareto set is marked by
the combination of the light blue and the dark blue shaded surface. The hypervolume of the
inverse Pareto set gives insight into how well the designed approach performs minimally.

Figure 9.1: Illustration of a Pareto front and an inverse Pareto front

To compare the Pareto fronts on hypervolumes, the scores on each objective should be normalised.
Unity-based normalisation is used to normalise the scores on each objective between 0 and
1, for the minimum and maximum values of the combined sets. The reference point for the
hypervolume computation is set on the maximum scores for each objective. Since all objective
scores have been normalised, the reference point is a vector of ones, where the length equals the
number of objectives (i.e. [1,1,1,1]).

The hypervolumes for both Pareto frontiers are presented in Table 9.1. The difference between
the hypervolumes of the Pareto fronts is 9.85e-06, which is practically zero. The difference
between the hypervolumes of the Pareto front for optimisation with perfect foresight and the
hypervolume of the inverse Pareto front for optimisation under uncertainty is 0.265. For insight
into how the Pareto front is composed, it is possible to look at the ratio of solutions that create
the Pareto front. The Pareto front with solutions optimised with perfect foresight contains 55
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Table 9.1: Hypervolume Comparison

Pareto Set Hypervolume N Solutions Difference with
perfect foresight

Pareto front for
optimisation with perfect foresight 0.521 55 -

Pareto front for
optimisation under uncertainty 0.521 54 9.85e-06

Inverse Pareto front for
optimisation under uncertainty 0.256 44 0.265

solutions. The Pareto front with solutions created by the Multi-Period Optimisation for Dynamic
Uncertainty contains 68 unique solutions.

Coverage & Density
The hypervolumes give insight into how well the best or the worst solutions from the optimisation
under uncertainty compare to the optimal solutions as optimised for perfect foresight. This
does, however, give no insight into how frequent the different decision pathways end up at these
solutions. Therefore, two additional metrics are introduced: coverage and density.

Each solution as proposed by the optimisation under uncertainty represents one branch in the
tree of decision pathways. To understand how frequent the different decision pathways end up
at the best, the worst, or intermediate solution, the density of these subsets of solutions in the
full set of solutions is calculated. The density of a subset indicates which fraction from the full
set consists of that subset (|x| denotes the cardinality of x):

Density =
|subset|
|full set|

(9.1)

Furthermore, because the options in the decision space are discrete, solutions that are proposed
by the optimisation under uncertainty can also appear in the "true Pareto front" as optimised
with perfect foresight. To indicate the number of solutions that appear within the true Pareto
front, the coverage is calculated:

Coverage =
|subset|

|truePareto front|
(9.2)

Table 9.2: Coverage and Density of subsets for optimisation under uncertainty
Subset Density of subset Coverage of True PF
Pareto Front 53.3% 98.2%
Inverse Pareto Front 20.2% 27.3%
Intermediate Solutions 38.4% 0%

The coverage and the density are calculated for three subsets of the solutions as found by the
optimisation under uncertainty: the Pareto front, the inverse Pareto front and all remaining
’intermediate’ solutions. The results are presented in Table 9.2. The percentages of the density
of the three sets of solutions are together larger than 100%. This is because there is an overlap
of 11.9% between the solutions of the Pareto front and the inverse Pareto front: Pareto front∩
inversePareto front = 11.9%. Figure 9.1 illustrates how this is possible: The point in the
right-bottom of the graph is in both the Pareto front and in the inverse Pareto front.
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9.3 comparison of the distributions for the ob-
jective scores

To further look at the differences between the solutions proposed by the multi-period approach
under uncertainty and by the optimisation process with perfect foresight, the distribution of
the solutions over the different variables are analysed. To show the distribution, Kernel Density
Estimation (KDE) is used to plot the distribution of all solutions for each objective. A Gaussian
function with relatively small kernel size is used, to not over smooth the density distribution.
To give extra insight into the distribution of the objective scores, a ’rug plot’ is added to each
KDE-plot, which shows small marks for the exact x-values.

Minimisation of each objective is preferred, so the solutions with values on the left side of the
X-axis are preferred over solutions with values on the right side of the Y-axis. Optimisation with
perfectly accurate input parameters axiomatically provides a better estimation of the optimal
solutions than optimisation with uncertainty. Therefore, the hypothesis is that the distribution of
the solutions optimised with perfect foresight is more left-centred than the solutions as optimised
with the multi-period decision-making method under uncertainty.

(a) (b)

(c) (d)

Figure 9.2: Kernel Density Plots for all Four Objectives

The distribution curves for each objective are given in Figures 9.2. In each sub figure, the
blue curve represents the distribution of the solutions given by the optimisation process with
perfect foresight. The orange curve represents the distribution of the solutions given by the
multi-period simulation algorithm. The marks at the bottom of the figures indicate the scores
on each objective for all points in the solution set. The height of these marks is irrelevant, but
is different for the blue and orange marks, in order to be able to distinguish their positions.
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It should be noted that the number of points in the solution set is much larger for the solutions
as optimised with dynamic uncertainty than the solution set as optimised with perfect foresight.
The set for perfect foresight contains 55 observations. The set for dynamic uncertainty contains
1152 observations.

What stands out from the distribution curves in Figure 9.2, is that all distribution curves are
similar. Differences in distribution curves are based on small details. The distribution curves
for the maximum travel time and the number of uncovered demand points in Figures 9.2a and
9.2b share a common characteristic: their first peaks (closest to the origin) are somewhat larger
for the solutions for perfect foresight than for dynamic uncertainty, even though the difference is
small. The same counts for their last two peaks. For both of these objectives, the differences in
height between the peaks for perfect foresight seem smaller than the differences in height of the
peaks for dynamic uncertainty. This could indicate a slightly more even distribution of solutions
for perfect foresight compared to dynamic uncertainty.

The distribution curves for total costs in Figure 9.2c are again similar to each other. There
is a small difference between the two peaks of the second bell curve, where the peak of the
solutions for dynamic uncertainty is slightly larger for higher costs and the peak of the solutions
for perfect foresight is slightly larger for lower costs. The third bell curve (the smallest of the
three) is shifted more to the right for the solutions for perfect foresight compared to the solutions
for dynamic uncertainty.

The distribution curves for total uncovered demand in Figure 9.2d are almost identical. A small
difference is observed from the first peak, where the solutions for dynamic uncertainty is slightly
larger. The difference, however, is minimal.

A general conclusion drawn from the analysis is that the distributions of the different solution
sets are similar. The hypothesis that the distributions for the solution set optimised with perfect
foresight would be more located on the left side of the X-axis is not confirmed based on these
results.
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In this chapter, the results as presented in Chapter 8 and 9 are discussed in the context of decision-
making in humanitarian logistics. Furthermore, it discusses the designed approach for simulation
and analysis of the interaction between decisions and uncertainty, based on an evaluation of the
decision-making method and an evaluation of the decision-uncertainty interaction analysis.

10.1 discussion on objective trade-offs

The most distinct result from the objective trade-off analysis in section 8.2 is the negative relation
between total costs and the other objectives. The analysis shows that there are basically two
types of facility location decisions: (1) those that are low cost but have limited effectiveness, and
(2) those that have high costs but are highly effective. Furthermore, minimisation of costs is
(less strongly, but still significantly) related to a decrease in equity. This indicates that focussing
on minimising costs limits the effectiveness and the equitability of post-disaster humanitarian
logistics. That does not imply that decision makers should not focus on minimisation of costs.
As humanitarian logistics are largely dependent on sponsors, minimisation of costs remains to
play an important role. However, as the ’rule of rescue’ states: one has the ethical obligation to
provide aid when the means are available (Pinkerton, Johnson-Masotti, Derse, & Layde, 2002;
McKie & Richardson, 2003). Therefore, the prioritisation of costs should be subordinate to
prioritising effectiveness and equity of humanitarian relief aid. This is in accordance with the
findings of Cookson, McCabe, and Tsuchiya (2008), who conclude that to be considered a humane
society, a departure should be made from cost efficiency. In humanitarian logistics modelling,
the consideration of costs would be more appropriately included as a constraint, rather than be
included in the objective function. This way, for a given budget, the effectiveness and equity can
be optimised as much as possible.

The relation between the effectiveness and equity criterion is less strong. The analysis shows that
it is possible to find solutions that score well on both the effectiveness and the equity objectives,
but also solutions that score well on effectiveness but poorly on equity, and vice versa. This
indicates that it is possible to find solutions that perform well on both equity and effectiveness.
Gralla, Goentzel, and Fine (2014) show that decision makers value effectiveness more than the
equity objective. As the analysis shows that it is unnecessary to compromise equity at the cost of
effectiveness, the challenging task on which decision makers should focus is to find those specific
solutions that do not compromise either effectiveness or equity.

As effectiveness and equity are generally prioritised over costs (Gralla et al., 2014), this sends a
clear message to donors of humanitarian aid: for effective and equitable disaster relief, sufficient
funding is required. Low-cost solutions that perform relatively well on effectiveness and equity
are scarce or non-existent depending on what is perceived as acceptable. The responsibility for
coordinators of humanitarian logistics is to find the most effective and equitable solutions for
within the constraints of a given budget. The bottleneck of effective and equitable logistics is
the funding supplied by the donors of humanitarian aid.
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10.1.1 Decision Sequences

The analysis of the frequency of facility location decisions and decision sequences gives additional
insight into which specific facilities locations could be chosen by decision makers. One facility
location is chosen for all objective prioritisations, and most often also at the first decision-making
period. This shows that even if decision makers value different objective prioritisations, some
facility locations can be found that support each of the different objectives. An obvious strategy
is to start by choosing this location. This specific location is located closest to both the supply
point (Kathmandu Airport) and Nepal’s biggest city; its capital Kathmandu. If the assumption
is made that a country’s largest populated city is mostly located close to an international airport,
the strategy would be to initially place a central logistics hub close to both the airport and the
largest populated city. While it seems plausible to use this as a decision-making heuristic, no
conclusive answer can be given on whether this is generalisable for other disaster situations.

10.2 discussion on impactful scenarios

In the results chapter, the different scenarios have been presented as combinations of uncertain
factors. In Table 10.1, a synthesis of the most harmful scenarios for each objective is given.
The table shows that some uncertainties are involved in multiple harmful scenarios for different
objectives. This section discusses how each of these uncertain factors might be influenced, to
understand how this analysis can be used to shield against harmful scenarios or restrict their
impact.

Table 10.1: Synthesis most harmful scenarios
Objectives Harmful Scenarios

Unit Transport
Cost

Demand per
Affected Person

Maximum
Distance Covered

Disruption Factor
Specific Demand

Point
Total Transport
Costs High High High

# Uncovered
Demand Points Small

Total Uncovered
Demand High Small

Max. Travel
Time

High Disruption of Remote Valley
with Small Population

High unit transport costs have a harmful effect on the efficiency of humanitarian logistics in
terms of transport costs. Hence, the unit transport costs should be kept low. The unit transport
costs are dependent on different factors, which consist for the largest part of the capacity of
trucks and fuel costs, as elucidated in Appendix E. Fuel shortages are more likely to emerge
during disasters due to the increased need of fuel for emergency power generation and transport
of relief goods, possible bottlenecks of international provisions, and destruction of fuel storages
(Kai, Ukai, Ohta, & Pretto, 1994; McEntire, 2014). It is important to prevent a fuel crisis in
order to maintain reasonable fuel prices. In the preparation phase, countries could therefore focus
on creating sufficient fuel reserves and reliable storages. In the response phase, it is important
to ensure a resilient and affordable fuel supply into the country.

The high demand per affected person has an impact on both the total transport costs (efficiency)
and the total uncovered demand (effectiveness). Hence, the demand per affected person should be
kept low. The demand per affected person is dependent on different factors such as the type and
impact of a disaster, how well an area is prepared for such a disaster, et cetera. While the type
and impact of a disaster are external factors, the disaster preparation receives already focus in
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humanitarian aid literature. Public hazard education helps to increase disaster preparedness and
reduces the needs for affected people (Muttarak & Pothisiri, 2013). To reduce the vulnerability
of people to natural hazards, disaster preparedness activities can focus on making people more
independent, such as public hazard education.

The maximum distance that is covered by facility locations has a conflicting relationship between
effectiveness and efficiency. Contrasting scenarios for the maximum covered demand are harmful
to keeping costs low and effectiveness high. On basis of the rule of rescue, as explained in
section 10.1, decision makers should try to keep cover a large distance to increase the effectiveness.
The maximum distance that can be covered is dependent on factors such as available transport
resources and available relief supply. This has received early attention in humanitarian logistics.
Prepositioning of relief goods and disaster preparedness of countries are known to help with
ensuring the availability of relief supply and transport vehicles (Balcik & Beamon, 2008).

The most harmful scenario for the maximum travel time, as found in the scenario discovery
analysis, is the specific disruption factor of a specific demand point. This specific demand point
is the area with the longest travel time to have access to relief goods. Interestingly, this demand
point is a remote valley with a small population. This stresses the importance of valuing equity
in the objective trade-offs. When not enough emphasis is put on the equity objective, especially
the remote valleys are disadvantaged in terms of the time they should wait for relief goods.
This is in accordance with the findings of Chandes and Paché (2010), who observed that while
some remote areas have no or only partial support, central areas are sometimes oversupplied.
This result from the scenario discovery analysis also stresses that information about those remote
valleys is especially important for knowing which areas have to wait for relief support the longest
and how long this wait actually is. Without this information, decision makers could assume
everyone receives relief aid within ’acceptable’ time, while this is not necessarily the case. The
equity objective is very sensitive to uncertainty on the remote valleys with smaller populations.

10.3 discussion on the effect of decisions on
uncertainty reduction

The simulation of decision pathways has offered new insights into the interaction between facility
location decisions and uncertainty. The analysis in section 8.4 has focussed on the effects of
different objective prioritisations of decisions on the reduction of uncertainty.

Prioritisation of each objective is correlated with the reduction of uncertainty over time. Priorit-
ising the effectiveness or the equity objectives appears to have a significant positive relationship
with the reduction of uncertainty. Prioritisation of minimisation of costs appears to have a
negative relationship with the reduction of uncertainty.

An explanation for the positive relation of uncertainty reduction with prioritisation of effect-
iveness and equity could be that focussing on these objectives leads to more dispersed central
logistics hub locations. When these facility locations are more dispersed, it is easier to help
people in need over the whole country and in addition reduce the uncertainty for those and the
surrounding areas.

An explanation for the negative relation of uncertainty reduction with the prioritisation of min-
imising total transport costs (efficiency) could be that facility locations that are concentrated
around the supply point are associated with very limited transport costs. When decision makers
focus too much on minimisation of transport costs, this would negatively affect the demand
points that receive relief supplies because further located areas cannot be covered. Of these
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further located uncovered demand points, no uncertainty can be reduced due to their distance
to the operational facility locations.

Contemporary arguments for focussing on effectiveness and equity in humanitarian logistics are
predominantly based on an ethical argument, such as argued by Holguín-Veras, Pérez, Jaller,
Van Wassenhove, and Aros-Vera (2013). This is embodied in the vision of the United Nations
who pledged that ’no one is left behind’ (United Nations, 2015). This study supports this view
and argumentation, as discussed in section 10.1. However, next to the ethical argument of
focussing on bringing relief aid to as many people, at as many places, as fast as possible, this
research offers another argument why it is especially important to focus on these objectives. To
help people in need as well as possible, it is necessary to know which people at which locations
are hit hardest and what conditions are faced when trying to reach them. By having facility
locations with more coverage, shorter waiting times, and more places addressed, not only the
help is more effectively and equitably distributed, also the uncertainty is more reduced. This
helps to make better decisions subsequently. Not only can reduced uncertainty help making
better decisions on facility locations; this same information can in those disaster situations be
used to make better decisions in other aspects of disaster response.

To conclude, next to the ethical argument of focussing on effectiveness and equity, this insight
offers an additional argument to prioritise effectiveness and equity for humanitarian logistics facil-
ity location decisions. Focussing on equity and effectiveness leads to more uncertainty reduction
which enables better decisions for disaster response.

10.3.1 Less uncertainty, better disaster response

The presence of uncertainty is known to make humanitarian response more complex and prone
to risk (Van Wassenhove, 2006). Therefore, a reduction of uncertainty in post-disaster environ-
ments can support all humanitarian aid workers in their activities ( and not only logisticians).
The quantitative analysis shows that the amount of uncertainty plays an important role in the
decision-making on facility locations. More specifically, it shows that reducing uncertainty can
lead to more optimal facility location decisions. This emphasises the importance of reducing
uncertainty while making facility location decisions.

10.4 discussion on the designed approach

10.4.1 Evaluation of the decision-making method under uncertainty

Chapter 9 has analysed how well the decision-making method based on the Many-Objective
Robust Decision-Making (MORDM) framework performs. The analysis compared how well this
multi-period decision-making method performs compared to an optimisation method with perfect
foresight. This section discusses the results that stem from this analysis.

The optimal solutions proposed by the decision-making method under uncertainty are divided
into three subsets after being re-evaluated for the ground truth: the Pareto front, the inverse
Pareto front, and the remaining intermediate solutions. Interestingly, the difference of the hy-
pervolume of the Pareto front with the hypervolume as obtained by the optimisation method
for perfect foresight is negligible. This remarkable result indicates that the step-wise MORDM
method performs very well while dealing with uncertainty. However, the step-wise MORDM
method also proposed solutions that are not optimal when re-evaluated for the ground truth.
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The hypervolume of the inverse Pareto front is a little less than half the hypervolume as ob-
tained by the optimisation method for perfect foresight. The substantial bandwidth between the
best possible solutions and the worst possible solutions as proposed by the step-wise MORDM
method indicates that there are still suboptimal solutions in the solution set.

The density and the coverage of the different subsets (Pareto front, inverse Pareto front, and
remaining intermediate solutions) over the complete set of solutions give a better understanding
of the proportions of solutions and how they are divided over these subsets. The results show that
more than half of the solutions as proposed by the step-wise MORDM method under uncertainty
is Pareto efficient. This indicates that it is more likely that decision makers who use the step-
wise MORDM method end up at Pareto efficient solutions than at suboptimal solutions. To
understand how much worse-off these dominated solutions are compared to the Pareto efficient
solutions, the analysis has looked at the distribution of the scores on the objectives.

The distribution of the scores on objectives is very similar. There are only some minor differences
between the distribution of the scores on objectives for the solution set as optimised under
uncertainty and the solution set for optimisation with perfect foresight. This is noteworthy
because the considerable size of the bandwidth between the hypervolumes of the Pareto front
and the inverse Pareto front would indicate that sub-optimal solutions have much lower objective
scores. A possible explanation would be that the sub-optimal solutions do not score much
worse than the optimal solutions for each individual objective, but rather on the combination of
objectives.

Two explanations for the suboptimal solutions are worth mentioning. The first is that decisions
made in the earliest decision-making periods are made for a much larger uncertainty space than
in later periods. This could very well result in some sub-optimal decisions at early stages. Due
to path dependencies, the final solutions that originate from these initial ’missteps’, are then
also suboptimal as a result. The other explanation is that some decision pathways do not reduce
the uncertainty as much as the other decision pathways. This could result in making suboptimal
decisions in later decision-making stages. Hence, it would be especially important to focus on
the reduction of uncertainty in the earlier stages of the disaster response.

In general, the conclusion is that the step-wise decision-making method based on the MORDM
framework is a very suitable method to deal with the uncertainty inherent to humanitarian
logistics facility location. The assimilation of uncertainty reduction over time is expected to
play a considerable role and should be considered while making humanitarian logistics facility
location decisions.

10.4.2 Evaluation of the decision-uncertainty interaction analysis

The decision-uncertainty interaction analysis part of the approach for simulation and analysis
for the interaction of decisions and uncertainty has focussed on three key subjects: the trade-offs
between objectives, the effect of uncertainties on decision-making, and the effect of decisions on
the reduction of uncertainty.

The analysis of the trade-offs between the objectives provides a deeper understanding of not
only the effects of prioritising different objectives, but also the relations between the different
objectives. This is in line with earlier research on many-objective optimisation, see Deb (2010)
or more specifically Matrosov et al. (2015).

The insight from the scenario discovery analysis has been used to identify important factors
that can have a large impact on the success of humanitarian logistics facility location decisions.
The finding that scenario discovery can help with identifying vulnerabilities and enabling policy
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refinement is in line with the current literature, see Kwakkel, Walker, and Haasnoot (2016). The
practical insights provided by this analysis can be used to improve the disaster preparedness
of countries. This way it uses these insights to shield against vulnerabilities before the disaster
strikes.

The last part of the decision-uncertainty interaction analysis focussed on the effect of different
objective prioritisations on the reduction of uncertainty. The ability to simulate and analyse
the effect of objective prioritisations on the reduction of uncertainty is the biggest innovation of
this research as no other approach is found to be existent to do so. In the case of humanitarian
logistics facility location decisions, it resulted in a novel perspective on why decision makers
should prioritise specific objectives. More specifically, next to the ethical argument of priorit-
ising the equity and effectiveness objectives, it shows that focussing on equity and especially
effectiveness also helps to reduce uncertainty in disaster areas. This is especially very relevant
in situations, such as during disasters, where the interaction between decisions and uncertainty
plays an important role.



11 R E F L E C T I O N

"Essentially, all models are wrong, but
some are usefull"

Box and Draper (1987)

This research introduces a novel approach for the simulation and analysis of the interplay between
decisions and uncertainty. For the design of the approach, and for its application on humanitarian
facility location decisions for the 2015 Nepal earthquake, many choices and assumptions are made.
This chapter reflects on the most important assumptions, the limitations, and the generalisability
of this research.

11.1 reflection on designed approach

11.1.1 Reflection on Assumptions

The most central and important assumptions that have been made while designing the approach
are related to the modelling of the dynamic uncertainty space. The fundamental proposition of
this research is that it is possible to capture uncertainty dynamics in a model. The uncertainty
dynamics are modelled based on two important simplifications of reality. The first simplification
is the assumption that the uncertainty space can only become smaller over time. The second
simplification is the assumption that the uncertainty and the estimations always converge toward
the ground truth. In practice, it could be possible that uncertainty increases over time and
estimations become less accurate, for example, due to an overload of unstructured and biased
information coming from social media. Hence, for good and robust decisions, it is of central
importance to make accurate estimations of the uncertainty space. It underpins the necessity
of focussing on information management in post-disaster situations to create better situational
awareness. Whether it is correct to assume that uncertainty reduces over time and that decision
makers are able to estimate the uncertainty with relative accuracy is something that should be
pointed out by empirical research.

11.1.2 Limitations

The most important limitation of the approach is the relatively high computational intensity. The
algorithm that simulates the different branches of decision pathways requires a very large number
of model evaluations. At each period, for each step, an optimisation algorithm and re-evaluation
of the resulting solutions under uncertainty are required. For this research, the model and the
optimisation process used are relatively light, allowing for very rapid simulation for each decision-
making period. Especially with more computationally demanding modelling approaches, such
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as agent-based modelling or large discrete event simulations, the simulation time can become
extraordinarily long. With the current computation power, the designed approach for simulation
and analysis of the interaction between decisions and uncertainty should only be used for models
that are computationally not too demanding. A solution for using heavier models with this
approach can be to use a computer cluster for parallel computation.

As indicated in the design of the approach, the number of new solutions found for each branch
has a big impact on the number of branches that should be simulated each period. To keep
the number of new branches for each period low, methods such as clustering or pruning the
solutions are proposed. However, in the case study, it was not necessary to use these methods
to reduce the number of new branches for each period. Future research should point out how
suitable these methods are and what the effects are on the ability of the decision-making method
to approximate the true Pareto front as optimised with perfect foresight.

An obstacle for using the approach is the implementation complexity of the simulation algorithm.
The difficulty and time consumption of the implementation of the algorithm can be a barrier to
the use of the approach. The implementation of the algorithm in this research is not ready to
use for application to other problems or models. An open source library of the required tools
could help to enable easy access to implementation and use of the approach.

The evaluation of the decision-making method based on the computation of different metrics
cannot be compared to other optimisation methods. The numeric values for the different met-
rics do give insight into how well the stepwise multi-period MORDM method approximates
optimal solutions. However, no benchmarks are available that indicate whether the multi-period
MORDM method outperforms other decision-making methods. For the method to be compared
with other methods, a comparative study based on a benchmark case can be conducted.

11.2 reflection on case study

To showcase the designed approach, it has been applied to post-disaster facility location problem
for the 2015 earthquake in Nepal as a proof of principle. The application of the approach on this
problem relies on different simplifications of the post-disaster environment and stylisations of the
disaster data available for the 2015 earthquake in Nepal. This section reflects on the limitations
of the case study as a proof of principle for the approach.

11.2.1 Facility Location Model

The humanitarian logistics facility location model as defined for the case study is an important
part of the case study but has not been the primary focus of this research. Other variants
of humanitarian logistics facility location model could as well be used for integration with the
framework. Therefore, this thesis does not put forward the model itself as necessarily being an
improvement on other models on complexity and comprehending reality. It is part of the proof
of principle to show how different important elements can be used in a model-based decision-
making method (such as uncertainty, multiple objectives without prioritisation, multi-periodicity
and robustness).

Compared to other models, such as mentioned in section 1.4.2, the simplification level of the
facility location model is relatively high. For example, the objectives as defined for the used model
represent efficiency, effectiveness, and equity. However, different, or more complex, objective
formulations can be used to grasp different aspects of these concepts (e.g. minimising deprivation
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costs as effectiveness metric (Holguín-Veras et al., 2016)). It is clear that there is room for
improvement of this facility location model so to better capture the complexity of the post-
disaster environment. The current model has, however, proved to be useful for getting insight into
the strategic objective prioritisations. Possible improvements are further discussed in section 12.4
on future research.

11.2.2 Simplification of Uncertainties

The most central uncertainties in this research are the dynamic uncertain factors, of which the
uncertainty reduces over time. Only a single uncertain factor has been included in the simulation
and analysis, namely the disruption of affected nodes. Two important assumptions are made for
these dynamic uncertain factors which could limit the validity of the research outcomes. The first
assumption is that the disruption factors represent both the needs and the reachability of the
related nodes. The rationale behind this assumption is that when a node is more heavily affected
by an earthquake, there are higher needs and road infrastructure is more heavily disrupted. In
reality, however, this might not always be the case. The second assumption is that the process
of uncertainty reduction might be overly simplified. For example, differences in dissemination
speeds are not included, while the population density might affect information dissemination
(Zhang, Huang, Su, Zhao, & Zhang, 2014). These two limitations can be addressed in future
research.

11.2.3 Stylisations of 2015 Nepal earthquake situation

The case study is based on the 2015 earthquake in Nepal. The stylisation of the earthquake in
Nepal enabled parametrisation of the simulation. However, due to the stylisation, the simulation
does not realistically reflect the situation in Nepal after the 2015 earthquake. A relatively small
number of cities, remote valleys, and hospitals has been used to represent the different demand
points, and potential central logistic hub locations. Also, the scale of the disaster is different;
the 2015 earthquake impacted about half of the country (mostly Kathmandu region), while for
this study the whole country is simulated to be affected.

Especially the number of potential locations can have an effect on the ability of the approach to
estimate the Pareto front of optimal solutions. With a larger number of potential central logistics
hub locations, the optimisation under uncertainty would expectedly approximate optimisation
with perfect foresight worse, leading to a larger difference in hypervolumes. However, a larger
number of potential central logistics hub locations would also have resulted in a longer simulation
time.

The discrepancy in the scale of the disaster diminishes the ability to validate the optimal loca-
tions of facility locations. Because a larger area of the country is simulated to be affected, the
different cities and remote valleys have different needs than was the case in reality. Therefore,
the optimal locations of central logistics hubs in this study do not match actual decisions on
facility locations.
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11.2.4 Parametric assumptions

There are two other important parametric assumptions that could be of influence on the results
of the analyses. These two assumptions are related to how strongly the uncertainty reduces over
time and how long this process continues.

The strength of the uncertainty reduction has been motivated in section 7.4. A stronger reduc-
tion of uncertainty could result in a stronger connection between the objective prioritisations
and the reduction of uncertainty because the effects of location decisions on the reduction of
uncertainty are more profoundly present. A large reduction of uncertainty could also result in
a better approximation of the real Pareto front because the optimisation algorithm under un-
certainty optimises with values that are more similar to the ground truth. While the strength
of uncertainty reduction is important for the outcomes, this study has not experimented with
different rates of uncertainty reduction. A very interesting aspect to look at is how strong the
reduction of uncertainty should be for this approach to be useful.

How long the reduction of uncertainty continues in the simulation depends on the number of
periods that is simulated. When more periods are simulated, more uncertainty is reduced even-
tually. When fewer periods are simulated, much less uncertainty is reduced eventually. If too
few periods are simulated, it could be that there is not yet a significant effect of the objective
prioritisations of objectives on the uncertainty of uncertainty. However, when too many periods
are simulated, it could be that the effect is less visible, because for each prioritisation of object-
ives the uncertainty has completely been reduced. Ultimately, the number of periods for which
uncertainty is reduced should reflect how long the uncertainty reduces in reality. While it might
be hard to measure this empirically, future research can look at how the interaction between
decisions and uncertainty depends on the number of decision-making periods simulated.

11.2.5 Reflection on generalisability

The generalisability of this case study for humanitarian logistics facility location partly depends
on how well some important variables are parametrised. Since this parametrisation is not based
on empirical data, it could very well be that the parameters do not reflect reality. For this reason,
the numerical simulation and analysis results have not been used for quantitative insight, but
rather for qualitative insight.

Some characteristics of this case study do not reflect important properties of other disaster types
that are relevant for humanitarian logistics facility location problems. This research looked only
at a post-disaster situation with a single impact. Often, disasters have more than a single impact
moment; earthquakes can have aftershocks and landslides can occur after hurricanes have made
landfall. Such ’multi-impact disasters’ are related to different properties that have not been
considered. For multi-impact disaster situations, the ground truth could change over time; cities
that had been moderately hit by a hurricane, can be hit by landslides later on and thus increasing
their need for help. Due to these events, the ground truth changes, but also the uncertainty can
increase. These dynamics as caused by multi-impact disasters have not been considered in this
research. Therefore, the results of this case study can not directly be generalised for disasters
with these different properties. However, the approach might be equally suitable or interesting
for different disaster types, on which future research can focus.

The purpose of the case study on humanitarian logistics facility location was to serve as a proof
of principle for the designed approach for simulation and analysis of the interaction between
decisions and uncertainty. Due to the stylisation and other limitations as discussed in this
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chapter, the results of the case study are less generalisable for humanitarian logistics facility
location.

11.2.6 Reflection on analyses

Scenario Discovery Analysis
The analysis for the scenario discovery is based on a single branch of the tree of decision pathways.
The results of the scenario discovery analysis can differ between different decision pathways due
to the different uncertainty spaces and the different decisions taken at the previous period(s)
for each decision pathway. As scenario discovery is an analytical and not a purely algorithmic
process, doing scenario discovery for multiple branches is highly labour-intensive. A possible
way to deal with this is to find a way to do the scenario discovery on the ensemble of branches in
a single analysis while accounting for the different path dependent properties of each branch.

Furthermore, the scenario discovery results can differ for the different time periods. This research
has not looked at whether the most harmful scenarios differ between earlier decisions or later
decisions in the decision sequence. An analysis that can compare the scenario discovery results
over different time periods can give answers to questions such as: "What scenarios are most
important in the immediate response?" or "Which scenarios become more important over time".

For this case study on humanitarian logistics facility location decisions, especially the most
harmful scenario on the maximum travel time are expected to be different over time and for
different decision pathways. The scenarios for the maximum travel time point at uncertainties
for specific demand points and facility locations. These are the dynamic uncertainties, which are
specific for each decision pathway. The scenario discovery analyses for the other objectives point
at the static uncertainties as being involved in the most harmful scenarios. These results are likely
to be less dependent on which branch is selected for analysis because the static uncertainties are
the same for each decision pathway. Future research could give more insight into the dynamics
of scenarios over time and for different possible decision pathways.

Effect uncertainty on decision optimality
Although the analysis presented in section 8.4.3 indicates that the reduction of uncertainty leads
to better facility location decisions, it has not given meaningful into how much it improves
decisions. Further research is required to see the effect of the reduction of uncertainty. This
can be done by comparing the a simulation with the reduction of uncertainty and without the
reduction of uncertainty. The two Pareto fronts of the simulation results can then be compared
by using the metrics introduced in section 9.2.





12 C O N C L U S I O N S & R E C O M M E N DAT I O N S

This research started by emphasising the importance of humanitarian logistics and looking at
the challenges it faces. Then, the literature review on the post-disaster decision-making en-
vironment and on the humanitarian logistics model-based disaster response approaches sheds
light on the knowledge gap this research aims to address: this research aimed to (1) find a
way to make robust humanitarian facility location decisions over multiple periods, while dealing
with deep uncertainty, and considering multiple objectives, and (2) understand how different
types of decisions affect the uncertainty space over time. Together this should help to obtain
a better understanding of the interaction between humanitarian facility location decisions and
uncertainty.

An approach for the simulation and analysis of the interaction between decisions and uncer-
tainty has been designed. This approach is illustrated with a proof of principle by applying
the approach on a case study on humanitarian logistics facility location decisions for the 2015
Nepal earthquake. The results of the simulation and analysis of the interaction between decisions
and uncertainty have been discussed and reflected on. To conclude this research, this chapter
addresses the research questions formulated at the beginning of this research. Furthermore,
this chapter gives recommendations for humanitarian logistics practitioners, concludes on the
scientific contributions, and makes suggestions for future research.

12.1 revisiting the research questions

This section will give an answer to the research questions. First, the sub questions are addressed
and ultimately the main question is answered.

Sub RQ 1 How can the interaction between decisions and uncertainty be simulated and analysed?

The designed approach for the simulation and analysis of the interaction between decisions
and uncertainty consists of 4 parts: the problem formulation, the decision-making method, the
simulation of the effects of decisions over time, and the decision-uncertainty interaction analysis.
The second and third part together form a model-based simulation algorithm, which simulates
the interaction of (robust) decisions and uncertainty over time. A conceptual overview of the
approach is shown in Figure 12.1.

Simulation Algorithm

Problem Formulation

Decision-Making Method

Decision-Uncertainty 
Interaction Analysis

Simulate Effect of 
Decisions over Time
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Branches

New DM-
period
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Figure 12.1: Conceptual Overview: Approach for Simulation and Analysis of the Interplay between
Decisions and Uncertainty
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The problem formulation part consists of four steps. First, an explicit structured problem formu-
lation is created based on the XLRM framework, based on which a model can be implemented for
further use in the decision-making method. Second, robustness metrics should be selected based
on the problem characteristics. Third, the inter-period model is defined. This inter-period model
defines how decisions affect the uncertainty space in the next decision-making period. Fourth,
the data for the simulation algorithm should be gathered, consisting of the solution space, cer-
tain data, and the uncertainty space. This uncertainty space can include static uncertainty
and dynamic uncertainty. Static uncertainties remain constant over time, while the dynamic
uncertainties change based on the decisions that have been made. For the dynamic uncertainties
also the ground truth should be defined to enable the simulation of the reduction of uncertainty
towards these true values.

The decision-making method is the first of the two parts of the simulation algorithm. This
decision-making method is an algorithm based on the MORDM framework, which includes an
a posteriori many-objective optimisation method and a robustness analysis method which re-
evaluates all solutions under deep uncertainty. Based on each solution’s robustness scores, the
Pareto efficient robust solutions are proposed as optimal decisions.

The effects of decisions on the uncertainty space are simulated based on the ’inter-period model’.
This inter-period model is the second part of the simulation algorithm for simulating the inter-
action between decisions and uncertainty. By simulating each proposed solution for the next
period, a tree of possible decision pathways emerges. Each branch of the tree consists of a
sequence of decisions and has a specific uncertainty space based on the decision sequence.

The last part of the designed approach is the decision-uncertainty interaction analysis. This part
compares the branches of the tree of possible decision pathways to get insight into what decisions
are related to a stronger reduction of uncertainty. The decision-uncertainty interaction analysis
consists of multiple analyses to understand the objective trade-offs, the influence of uncertainty
on facility location decisions, and the effect of decisions on the reduction of uncertainty.

Sub RQ 2 How can the post-disaster facility location problem be captured in a formal problem formu-
lation that fits the designed approach?

The formal problem formulation that fits the designed approach is based on a conceptualisation
of the post-disaster humanitarian logistics facility location problem. The formal problem for-
mulation is composed of a facility location model, two robustness metrics, and an inter-period
model which enables the simulation of the effects of decisions on the reduction of uncertainty.

The facility location model is a two-tier facility location model. It includes three different types
of nodes for supply points, central logistics hubs and demand points. The supply points are the
entry points of relief goods into the country. Demand points represent the aggregated demand
of the affected population living in a city or area. The central logistics hubs help to coordinate
and distribute relief goods from points of relief supply to the demand points. There is a number
of optional facility locations for placing these central logistics hubs. The decision variables are
related to which facility locations are chosen to operate as central logistics hubs.

The facility location model includes four objectives related to the efficiency, effectiveness and
equity of humanitarian logistics. These four objective functions focus on minimising the total
transport costs of relief supply (efficiency), the uncovered demand (effectiveness), the number
of uncovered demand points (effectiveness), and the maximum travel time to reach the furthest
located disaster victims (equity).

The dynamic uncertain factors that interact with facility location decisions are related to how
heavily demand points are affected by the disaster. This is captured in a disruption factor for
each node in the system. The disruption factor of demand points is determined by the needs of
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its population and how well it can be reached from other nodes, while the disruption factor of
central logistics hubs is determined only by how well it can be reached.

Two different robustness metrics are selected to be used to evaluate how well different solutions
perform under a variety of scenarios. A variant of a signal-to-noise ratio is chosen to indicate
whether a robust solution has a good average performance with limited dispersion around it. A
maximum regret-based metric is chosen to indicate the maximum regret of choosing a solution
compared to the best performing solution for a variety of scenarios. Both robustness metrics are
to be minimised.

The dynamic uncertainty reduces based on the decisions on central logistics hubs locations and
on time. This dynamic uncertainty is defined as a lower and upper bound and a best estimate
centred in between these bounds. Each dynamic uncertainty variable has a true value towards
which the lower and upper bounds converge towards based on the decisions made over time. The
static uncertainties have a lower and upper bound and a best estimate value that represents the
reference scenario which is used for optimisation.

Sub RQ 3 What are the analytical insights of the approach in the decision-uncertainty interaction for
post-disaster humanitarian logistics facility location?

The analysis of trade-offs between different objectives gives insight into the relations between
the objectives. It shows that there are basically two types of facility location decisions; those
that have low costs but limited effectiveness, or those that have high costs but are highly ef-
fective. Highly effective and highly equitable humanitarian logistics have more dispersed facility
locations, while low-cost humanitarian logistics have more concentrated facility locations. The
minimisation of costs can be considered as an inhumane choice since it is at the expense of the ef-
fectiveness. Furthermore, the analysis shows that it is possible to find solutions that score well on
both effectiveness and equity and therefore it is unnecessary to compromise either effectiveness
or equity.

The scenario discovery analysis gives insight into the effect of uncertainty on facility location
decisions. The most harmful scenario for keeping the costs low is when transport vehicles or
fuel are unavailable or scarce. The most harmful scenario for having effective humanitarian
logistics is when the needs per disaster victim are very high or when central logistics hubs can
only supply relief goods to closely located demand points due to a limited supply of relief foods.
The most important uncertainty for equitable humanitarian logistics appears to be related to the
specific disruption factors of the furthest located remote valleys. This indicates the importance of
reducing the uncertainty of the disruption of the most remote valleys for equitable humanitarian
logistics.

The prioritisation of different objectives is related to how fast the uncertainty is reduced over
time. Prioritisation of minimising costs has a negative relation with the reduction of uncertainty,
while prioritisation of effectiveness and equity has a positive relationship with the reduction of
uncertainty. Highly effective and equitable humanitarian logistics have more dispersed facility
locations, which leads to a larger reach and more uncertainty reduction but is also associated
with higher costs. Contemporary arguments for focussing on effectiveness and equity in human-
itarian logistics are predominantly based on ethical arguments. However, these insights show
another reason to focus on these objectives: focussing on effectiveness and equity for human-
itarian logistics facility location helps to reduce of uncertainty in post-disaster environments.
Furthermore, the analysis has indicated that the reduction of uncertainty leads to more optimal
facility location decisions, which emphasises the importance of reducing the uncertainty.

Sub RQ 4 How does the decision-making method perform compared to a method with perfect foresight?
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The step-wise decision-making method is compared to an optimisation method with perfect
foresight to get better insight into how well the step-wise MORDM algorithm performs for
making decisions under uncertainty.

The step-wise MORDM method appears very suitable to deal with incomplete information.
The comparison of hypervolumes of the decision-making method under uncertainty and the
optimisation with perfect foresight shows that the difference between the optimal solutions as
proposed by either of these optimisation methods is negligible. This indicates that the step-wise
approach finds the same optimal solutions under uncertainty as an optimisation approach with
perfect foresight. However, there is a substantial bandwidth in the performance of the best and
the worst solutions as proposed by the decision-making method under uncertainty.

Each solution proposed by the decision-making algorithm represents a possible decision pathway.
The analysis shows that it is more likely that decision makers that use the step-wise MORDM
method end up at Pareto efficient solutions than at sub-optimal solutions. Based on the com-
parison of the distributions of the objective scores, the sub-optimal solutions appear to no be
much worse-off than optimal solutions because the distributions are very similar. This indicates
that the step-wise decision-making method based on the MORDM framework is very suitable
to make decisions under deep uncertainty, as it enables assimilation of new information over
time.

Answer to Main Research Question
Together, the answers to the sub research questions give individually already a relatively complete
answer to the main research question. The main research question that is addressed in this
research is:

What are the analytical contributions of an approach that enables simulation and analysis of the
interaction between decisions and uncertainty for post-disaster facility location decisions?

The decision-uncertainty interaction analysis gives insight into the interaction between decisions
and uncertainty by looking at three different aspects: (1) the trade-offs between objectives,
(2) the effect of uncertainty on facility location decisions and (3) the effect of decisions on
uncertainty.

The analysis of the trade-offs between the different objectives has given a deeper understanding
of the relation between the different objectives. The scenario discovery analysis helps to un-
derstand the effect of uncertainty on facility location decisions by identifying the most harmful
scenarios. These insights can help to improve disaster preparedness by shielding against iden-
tified vulnerabilities. Furthermore, the simulation of the various decision sequences allows for
analysis of the effect of different decision sequences on the reduction of uncertainty, and show
that this reduction has an impact. Hence, the analysis of the effect of objective prioritisations
on uncertainty offers novel insight into the interaction between decisions and uncertainty.

The insights from the approach are mainly strategic of character. Also, because of the lack
of empirical data on important variables such as the strength of the uncertainty reduction,
the results from the quantitative analysis mainly offers qualitative insights. The qualitative
insights are used to give recommendations on humanitarian logistics facility location decisions,
as synthesised in section 12.2. These recommendations are most relevant to decision makers and
logisticians such as coordinating humanitarian organisations (e.g. UN OCHA and the Logistics
Cluster).



12.2 recommendations for humanitarian logisticians 91

12.2 recommendations for humanitarian logist-
icians

Based on the analysis of the simulation results and the discussion on these results, new insights
have been developed for humanitarian logistics facility location decision-making. These new
insights are synthesised here in this chapter to present the results of this research accessibly to
humanitarian logistics practitioners. Three different categories of recommendations are given.
The first category focusses on the recommendations for objective prioritisation in humanitarian
logistics facility location decision-making. The second category focusses on how the disaster
preparedness can be improved based on the conclusions of this research. The third category
focusses on how decision makers can better deal with uncertainty.

12.2.1 Effectiveness, Equity and Efficiency

The discussion on the prioritisation of different objectives has received quite some attention in
this research. This has resulted in four important recommendations.

1. To improve the efficiency of humanitarian logistics, the costs should only be considered as a
constraint for decision-making. There are two important reasons for this recommendation:
(1) The minimisation of costs leads to solutions that have sub-optimal effectiveness and
equity, and (2) it is considered inhumane to not provide aid when the means are available.

2. The focus on coverage as a primary objective in post-disaster relief distribution has come
from an ethical standpoint, that ’no one should be left behind’. This study, however, has
pointed out another argument for focussing on coverage. Prioritising effectiveness and
equity objectives helps to reduce the uncertainty in post-disaster environments.

3. This study has indicated that it is possible to make facility location decisions that perform
well on both effectiveness and equity. The challenging task for logisticians is to find those
solutions that do not compromise either effectiveness or equity.

4. Furthermore, logistics coordinators and also humanitarian aid coordinators such as UN
OCHA should communicate a clear message to donors of humanitarian aid: effective and
equitable logistics is dependent on financial support. Limitations on budgets directly im-
pede the effectiveness and equitability of humanitarian logistics.

12.2.2 Improving Disaster Preparedness

Some of the most harmful scenarios for efficient, effective, and equitable disaster response can be
prevented by focussing on disaster preparedness. To shield against exorbitant fuel prices during
the disaster response, fuel crises must be prevented. In the preparation phase, it is important
to focus on creating sufficient fuel reserves and reliable fuel storages. In the response phase, it
is important to focus on having resilient and affordable fuel supply into the country.

Disaster preparedness activities that focus on making people more independent can help to
reduce the vulnerability of people to natural hazards. The needs for affected people can, for
example, be reduced by investing in public hazard education.
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To be able to cover the needs of the disaster victims, availability of relief supply and transport
equipment that is suitable for disaster response should be ensured. Prepositioning of relief goods
has focussed on facilitating quick supply of relief goods. Disaster-prone countries should focus
on improving their ability to distribute relief goods when a disaster strikes by having sufficient
transport vehicles available.

12.2.3 Decision-making and uncertainty

The results of this study indicate that remote valleys could be disadvantaged compared to
more populated areas if not enough focus is put on the equity objective or on the reduction of
uncertainty. The equity objective for humanitarian logistics is very sensitive to uncertainty about
the disruption of remote valleys with smaller populations. Without reliable information about
remote valleys, decision makers could assume everyone receives relief aid within ’acceptable’ time,
while this is not necessarily the case. Therefore, information management should especially focus
on reducing the uncertainty for these remote valleys.

When a step-wise decision-making method such as proposed in this research is used, it is im-
portant to have the most up-to-date and reliable information just before a new facility location
decision is made. Acknowledging that reliable and accurate information is often lacking, inform-
ation managers should focus on not only communicating on the best estimates but also on the
lower and upper bounds to acknowledge and specify the uncertainty space.

12.3 scientific contributions

This thesis has created deeper insight into the interaction between decisions and uncertainty for
humanitarian logistics facility location decisions. The scientific contributions that follow from
this research are:

• Provide a method for making robust facility location decisions over multiple
periods, while dealing with time pressure and deep uncertainty, and considering
multiple objectives.
The literature review on model-based approaches for humanitarian logistics facility location
decision-making shows that many of these approaches consider either one or a combination
of important aspects such as uncertainty, multiple periods, or multiple objectives. The
stepwise decision-making method based on the MORDM framework of Kasprzyk et al.
(2013) enables decision makers to make robust decisions with a posteriori prioritisation on
many objectives and allows for assimilation of new information over time. The proof of
principle of humanitarian logistics facility location decision-making is an illustration of the
provided method.

• Provide an approach for the simulation and analysis of the interaction between
decisions and uncertainty.
The combination of the decision-making method and the algorithm for simulating the
gradual reduction of uncertainty over time allows for the design of an approach that can
simulate and analyse the interaction between decisions and uncertainty. By simulating
all possible decisions resulting from the decision-making method and their effects on un-
certainty, analysis can give insight into the effects of different types of decisions. The
designed approach is illustrated based on a proof of principle of humanitarian logistics
facility location decision-making.
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• Provide insight into the role of deep uncertainties in making post-disaster fa-
cility location decisions. The trade-off and the scenario discovery analysis give a better
understanding of the relations between different perspectives on objective prioritisations,
and how the uncertainties can negatively affect the attainment of these objectives.

• Provide insight into the effect of different objective prioritisations on the re-
duction of uncertainty for post-disaster facility location decisions.
The designed approach enables the analysis of the effect of post-disaster facility location
decisions on the reduction of uncertainty. This analysis shows that more effective and
equitable humanitarian facility location decisions are related to a faster reduction of un-
certainty.

• Indicate quantitatively that the reduction of uncertainty leads to more optimal
facility location decisions.
The designed approach enables the analysis of the influence of the size of the uncertainty
space on the optimality of proposed solutions by a decision-making method. It shows that,
when facility location decisions are made based on a decision-making method such as the
MORDM-based method, a reduction of uncertainty leads to more optimal humanitarian
facility location decisions.

12.4 future research directions

Throughout this research report, possible research directions have been proposed for future
research. In this section, the most important directions for future research are proposed. These
directions are split into three different categories. The first category of future research directions
is related to how this case study on humanitarian logistics facility location decisions can be
extended:

• The facility location model developed for the case on humanitarian logistics facility loca-
tion is a relatively simple model. Some existing facility location models for post-disaster
facility location problems also consider last-mile distribution, choice of vehicles, allocation
decisions, or additional constraints. Interesting future research directions are related to
how more detailed models for humanitarian logistics can be integrated with the approach
for simulation and analysis of the interaction between decisions and analysis and whether
this results in additional insights.

• This research has applied different stylisations to be able to illustrate a proof of principle
of the approach. A more detailed case study which includes more data on demand points,
supply points and optional facility locations might give additional insights.

• The current stepwise decision-making method as proposed in this research facilitates mak-
ing decisions under deep uncertainty and assimilate new information when it becomes
available over time. While the current research is mainly theoretical, a decision support
system based on the decision-making method can help decision makers make better de-
cisions in practice. Future research could then especially focus on the practical issues
related to the use of such a model-based approach for post-disaster situations.

The second category of future research directions is related to how the designed approach can
be improved, or how the analysis can be extended.

• In this research, only a single strength of the reduction of uncertainty has been used for the
simulation. To understand whether the results of this research are also valid for different
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rates of uncertainty reduction, it is possible to do experiments on this rate of uncertainty
reduction. This gives insight into what threshold is needed for the interplay between
decisions and uncertainty to start playing a significant role and a stepwise decision-making
method to become fruitful.

• Similarly, future research can also focus on experimenting with the number of decision-
making methods.

• The proof of principle in this research uses enumerative optimisation. With a low number of
binary decision variables, this is a computationally efficient choice, but multiple continuous
decision variables are included, this becomes infeasible. Future research could focus on how
well the approach performs while using Multi-Objective Evolutionary Algorithms (MOEAs)
in combination with solution selection techniques as clustering.

• The scenario discovery analysis is only conducted for a single decision sequence. Possibly,
the results of the scenario discovery analysis differ for the different decision sequences or
for different periods. The design of an algorithmic version of scenario discovery could look
at whether most important scenarios change over time and whether the most important
scenarios are dependent on the decision sequence.

• As a last suggestion, future research could look at how this designed approach relates to
research on adaptive policy pathways. Possibly, the designed approach can prove helpful
in the design of these adaptive policy pathways.

The third category of future research directions is related to other applications of the designed
approach:

• A similar problem within humanitarian logistics, but with different characteristics that
could be interesting for future research, is making (either medical or logistics) facility
location decisions for slow-onset disasters such as a virus epidemic (e.g. Ebola outbreak).
The biggest difference with the stylised case study on a sudden-onset disaster as studied
in this research is that a slow-onset disaster has a constantly changing environment. This
means that not only the uncertainty space changes over time but also the ground truth of
some important variables can change over time. The application of the designed approach
to such a problem could lead to very interesting future research.

• Where the applicability of the designed approach is clear for the case of humanitarian
logistics facility location decisions, it is hypothesised that there are also different problem
domains where the decisions that are made affect the uncertainty space. Future research
should explore the applicability of the approach for these other problem domains. One
similar problem domain, but with different characteristics, are commercial facility location
decisions. A very different example to which the approach can be applied is making
decisions on investments in innovation.

– Facility location decisions can have an effect on the uncertainty space. Whether these
facility location decisions are local, regional or national, deciding on placing a facility
could lead to more and more accurate information about that region. A company
that wants to enter the market in a new country can face many uncertain factors
such as a different business environment, culture, demand for the company’s product,
regulations, et cetera. The choice for a facility location in a specific country can then
lead to the reduction of uncertainty of one or more of these factors in these countries.

– Investment decisions related to technology development can also lead to a reduction
of uncertainty. When investments are made in a certain technology, more information
becomes known about the possibilities and the costs related to that technology. The
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approach can for such a problem domain be used to simulate and analyse the effect
of investment decisions on the reduction of uncertainty.
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A L I T E R AT U R E S E A R C H H U M A N I TA R I A N
FAC I L I T Y L O C AT I O N M O D E L S

This appendix gives insight into how the different papers included in the literature review are
selected. The literature review looks at facility location models for the disaster response phase
of humanitarian logistics. Next to facility location models, als covering tour problem models
are included, because covering tour problems are essentially facility location problems where all
demand points should be covered (Gendreau, Laporte, & Semet, 1997).

Two ways of searching for relevant literature to include in the review are used. Some articles are
selected from an existing literature review on humanitarian logistics models and some articles
are found by a literature search using the Scopus Database.

The literature review by Habib et al. (2016) briefly discusses properties such as uncertainty,
multiple objectives and multiple periods. However, the literature review does not provide enough
insight into these properties to draw conclusions on how they are considered. Therefore, some
articles mentioned to deal with uncertainty, multiple objectives and multiple periods are selected
for further review.

To get insight into the latest developments of humanitarian logistics modelling, an additional
search for new literature is performed with Scopus. Different keywords and keyword combina-
tions are used to search for literature. Table A.1 shows three different sets of keywords that
have been used. Combinations of keywords from each of these three sets are used to search for
articles.

Table A.1: Keywords for Literature Search

Set 1 Set 2 Set 3

"humanitarian logistics", "facility location", "uncertainty", "stochastic",
"disaster response", "disaster relief", “model”, "robustness", "robust",
"post-disaster", "post disaster" “optimisation” "multi-period", "multi period",

"multi-objective", "multiobjective",
"objective"
"multi-criteria", "criteria"

The search results contain many different relevant and irrelevant papers. From each of the
articles, the titles and abstracts are scanned to get an idea of their relevance. Articles are then
selected based on the following criteria:

• Article reports on a facility location model

• The facility location model focusses on humanitarian logistics for the disaster response
phase.

• The facility location model considers multiple objectives, uncertainty, or multiple periods.
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B I M P L E M E N TAT I O N O F T H E A P P R OAC H

b.1 flow through the approach: breadth first
or depth first

For simulation of the decision pathways tree, there are two possibilities: breadth-first or depth-
first. See figure B.1 for a comparison between breadth-first and depth-first. Breadth-first follows
the first in first out principle. It creates a queue of solutions, which is not very memory-intensive.
Depth-first follows the last in last out principle. It creates a large stack of processes and uses
backtracking to find the task at hand. This is relatively memory-intensive, especially when doing
it is implemented recursively in Python.

Figure B.1: Breadth-First vs Depth-First algorithm

From the flow chart diagram in figure 3.4, one can observe that the framework as formalised
here, uses the breadth-first order of simulation. The reason is rather technical than conceptual;
breadth first is less reliant on computer memory for the programming language used for imple-
mentation of the framework for the case (i.e. Python) and will therefore be faster and more
efficient. It is desired to keep the computational load of the iterative cycle as small as possible.
The framework can already be very demanding computationally, so it is better to choose the
option that has the least impact on computational power or memory.
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C S O F T WA R E I M P L E M E N TAT I O N

The facility location model, the MORDM algorithm, the inter-period model and the multi-period
simulation algorithm have been implemented in Python. The complete implementation can be
found at Github.com/TRomijn/Thesis. Most of the code is either documented or self-explaining.
An overview of the software packages that have been used for the implementation is given in
Table C.1. Information on the package versions is essential for replicability of this research.
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Table C.1: Software Packages used for the implementation in Python
Package Version Description of use Scientific Refer-

ence
Python 3.6.4 General programming language used

for implementation
ema_workbench 1.1.3 Package used for the re-evaluation of

optimal solutions under uncertainty
(robustness analysis)

Kwakkel (2017)

folium 0.5.0 Visualisation of the data instantiation
for Nepal

geopandas 0.3.0
geopy 1.13.0 Calculation of great circle distance
json 2.0.9
Pareto.py 1.1.1-3 Nondominated sorting for multi-

objective problems
Woodruff and Her-
man (2013)

numpy 1.14.2 Scientific programming package for
multi-dimensional array operations

osmnx 0.8.1 Sample data for hospitals (or other
places of interest) in any given coun-
try

Boeing (2017)

python-osrm 0.11.1 A Python wrapper around the OSRM
API (Open Source Routing Machine),
which uses OpenStreetMap data for de-
termining shortest routes. Used for de-
termining normal travel times between
different nodes in the facility location
model

pandas 0.23.0 Package for handling data structures
pygmo 2.6 Calculation of hypervolumes
re 2.2.1 Packaged used for implementing a nat-

ural sorting algorithm
requests 2.18.4 Used for downloading country and city

specific data such as population and
coordinates

matplotlib 2.2.2 Package used for creating visualisa-
tions

seaborn 0.8.1 Package used for creating visualisa-
tions

statsmodels 0.8.0 Package for estimation of different stat-
istical models, used for linear regres-
sion

SciPy 1.0.0 Scientific computing package used for
Linear regression



D V E R I F I C AT I O N A N D VA L I DAT I O N

An ill implementation of the simulation algorithm could lead to invalid results of the analysis.
Therefore, it is important to verify the implementation of the proof of principle to showcase the
approach. This appendix elucidates the implementation and verification process to give insight
into the steps taken to ensure a correct implementation of the proof of principle. Furthermore, it
gives insight into the validity of the simulation. Where the verification considers how well a com-
puterised model represents a conceptualisation, the validation considers how well a computerised
model represents reality. (Schlesinger et al., 1979)

There are two different methods with which the implementation is verified: functional and
structural testing. Structural (or white box) testing looks at whether components are correctly
implemented, while functional (or black box) testing looks at whether components show the
expected function (Hevner et al., 2004; Juristo & Vegas, 2003). The following two sections
describe the structural and functional testing and the third section discusses the validity of the
simulation algorithm.

d.1 structural testing

Throughout the implementation process of the different parts of the approach, each of the written
functions have been tested by using structural testing. This has been an important part of the
implementation process.

These white box testing procedures ensure that the programmer knows exactly what each line
of code does and that it does what it is supposed to do. This includes an extensive code
walk-through each time when a function is written, and checking whether potential errors are
prevented. The full Python code can be found on Github.com/TRomijn/Thesis

d.2 functional testing

After the implementation of each of the components, these components are verified with func-
tional testing. This section reports on the extensive functional testing steps taken to test the
implementation of the simulation. This ensures that the simulation is correctly implemented
and the results are reliable.

The functional testing steps are categorised for the humanitarian facility location model, the
inter-period model for simulating the effect of decisions on uncertainty, the algorithmic MORDM
decision-making method, and the simulation of the different branches of in the tree of decision
pathways. This gives insight into the verification of each of these steps.
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Table D.1: Verification steps for the implementation the simulation algorithm
Verification Step Verification status
Verification Facility Location Model:
Each of these tests is performed by doing a test run of the model. The
results as given by the model are each time compared with a manual
computation for each of the relevant node types. Besides, by graphic-
ally representing the model outcomes each time (i.e. showing a map),
problems can more easily be detected.
Correct calculation of Demand for each demand point Confirmed
Correct calculation of disrupted travel durations Confirmed
Correct allocation of demand points to closest facility locations Confirmed
Correct allocation of facility locations to closest supply points Confirmed
Correct calculation of total transport costs Confirmed
Correct calculation of uncovered demand Confirmed
Correct calculation of number of uncovered demand points Confirmed
Correct calculation of the maximum travel time Confirmed
Verification Data Instantiation:
These tests are performed for each of the three node types (demand
point, facility location, and supply point). The cross-checking of data
between different data sources ensures correct use of data.
Cross-check whether the retrieved data on coordinates and population
corresponds to information from other online sources

Confirmed

Cross-check routing durations retrieved with OSRM API with Google
Maps routing.

Confirmed

Check whether the function for computing the (hypothetical) ground
truth values functions correctly

Confirmed

Verification MORDM Algorithm:
The MORDM methodology consists of multiple steps. Initially, the
MORDM is implemented such as the normal methodology prescribes.
During the next step, each of separte parts of the MORDM algorithm
have been linked together, so that no manual tasks have to be done to
do the MORDM analysis. Afterwards, the (computational) results of
the original MORDM methodology are compared to the results of the
MORDM algorithm.
Check whether the nondominated sorting algorithm functions correctly. Confirmed
Check whether the enumerative many-objective optimisation algorithm
links the right facility locations to their corresponding outcomes.

Confirmed

Validate whether it is possible that the optimised solutions are indeed
non-dominated based on visualisation of the solutions on a map.

Confirmed

Check whether the facility location model is correctly integrated with
the EMA Workbench.

Confirmed

Check whether the robustness metrics are calculated correctly. Confirmed
For the algorithmic version of the MORDM framework, check whether
the algorithm produces the same results as the MORDM framework
where all steps are individually verified.

Confirmed

Verification of the Multi-Period simulation algorithm:
The multi-period simulation model is initially run with a smaller number
of scenarios for each MORDM cycle and less periods. This way the
simulation algorithm is faster completed and enabled easier verification
of the algorithm. Each of the intermediate optimisation and robustness
testing results are saved so that it is possible to backtrack the processes.
Also, this way the proposed solutions are saved in multiple ways and
formats, so that the intermediate results and the final results can be
cross-checked for verification.
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Check whether each decision pathway is correctly labelled. Confirmed
Check whether each succeeding solution is added to the correct decision
pathway.

Confirmed

Check whether the solutions in the tree of decision pathways corres-
pond to the nondominated solutions from the single period MORDM
algorithm.

Confirmed

Each decision pathway has a label, an EMA model instance, variable
uncertain data and chosen facility locations. check whether each of these
properties are correctly linked to their belonging decision pathway.

Confirmed

Verification Inter-Period Model:
The inter-period model simualtes the change of uncertainty and is in-
cluded in the multi period simulation algorithm. The multi-period simu-
lation algorithm is tested first, so that the effect of the inter-period model
is isolated for the testing. This way, problems related to the inter-period
model can more easily be identified.
Check whether the uncertainty of all nodes in the system reduces over
time.

Confirmed

For a specific node in the system, check whether the uncertainty limits
reduces with the correct percentage based on both distance and time.
Also check whether the best-estimate moves towards the ground truth
values with the correct percentage.

Confirmed

d.3 validity

The validity of the simulation depends on the conformity of the computerised model to reality.
The approach introduced in this research is applied to the post-disaster facility location problem
for the 2015 Nepal Earthquake as a proof of principle. Therefore, both the validity of the
simulation to the situation in Nepal after the earthquake and of the humanitarian facility location
problem are relevant.

Because of the applied stylisations, the stylised case study does not realistically reflect the post-
disaster situation of Nepal. Therefore, the validity of the simulation to Nepal Earthquake is
questionable at the least. These stylisations enable the simulation of the proof of concept but
also limit the validity to the disaster situation in Nepal.

The simulation algorithm of this research has not been validated with expert validation. There-
fore, a very important next step is to validate the results and the simulation with experts. These
experts can indicate the validity and suggest improvements on the model and approach.

The simulation algorithm shows outcomes that seem to reflect reality. For example, the locations
of the central logistics hubs are located on logical places. The results show no selected locations
which are nonsensical. Also, each of the results as presented in Chapter 8 is reasonably arguable
and deemed valid based on face validation of the researcher. However, because this is not an
objective validity test, more elaborate validation methods are required to be conclusive regarding
the validity of the simulation algorithm and the produced results.





E DATA G AT H E R I N G A N D P R E PA R AT I O N

e.1 python data preparation

The data preparation is done with Python. The used packages are mentioned in Appendix C. The
data preparation process is documented in the jupyter notebooks which can be found on Github.
com/TRomijn/Thesis. The data processing process can be done for countries automatically,
with up to a total of 100 nodes in a country.

e.2 static certain data

The data for the different demand points is given in Table E.1. The 30 largest cities of Nepal
are included as demand points. Furthermore, the last five demand points are the remote valleys
that have been added. No population information was available on these areas, and therefore
they have been assigned a population of 1000 inhabitants. The data on the population and
coordinates of these cities and remote valleys is retrieved from Geonames.org.

Table E.1: Demand Point Data
ID Name Population Latitude Longitude
DP0 Kathmandu 1442271 27.70169 85.3206
DP1 Pokhara 200000 28.26689 83.96851
DP2 Pātan 183310 27.67657 85.31417
DP3 Biratnagar 182324 26.45505 87.27007
DP4 Birgañj 133238 27.01709 84.8808
DP5 Dharān 108600 26.81436 87.27972
DP6 Bharatpur 107157 27.6768 84.43589
DP7 Janakpur 93767 26.7288 85.92628
DP8 Dhangadhi 92294 28.70137 80.58975
DP9 Butwāl 91733 27.70055 83.44836
DP10 Mahendranagar 88381 28.96399 80.17715
DP11 Hetauda 84775 27.42839 85.03219
DP12 Madhyapur Thimi 83036 27.68056 85.3875
DP13 Triyuga 71405 26.7919 86.699
DP14 Inaruwa 70093 26.60675 87.1478
DP15 Nepalgunj 64400 28.05 81.61667
DP16 Siddharthanagar 63367 27.5 83.45
DP17 Gulariyā 53107 28.2058 81.34532
DP18 Titahari 47984 26.66371 87.27403
DP19 Panauti 46595 27.58466 85.52122
DP20 Tikāpur 44758 28.52823 81.11798
DP21 Kirtipur 44632 27.67872 85.2775
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DP22 Tuls̄ıpur 39058 28.13099 82.29726
DP23 Rājbirāj 33061 26.53968 86.74796
DP24 Lahān 31495 26.72022 86.48258
DP25 Birendranagar 31381 28.60194 81.63389
DP26 Panauti 27602 27.58453 85.51484
DP27 Gaur 27325 26.76448 85.27841
DP28 Siraha 24657 26.65422 86.20795
DP29 Tānsen 23693 27.86731 83.5467
DP30 Bardiyā 1000 28.30058 81.3536
DP31 Rāmechhāp 1000 27.3256 86.08768
DP32 Salyān 1000 28.37858 82.1703
DP33 Bhaktapur 1000 27.67298 85.43005
DP34 Achhām 1000 29.05 81.3

A list of all hospitals in Nepal is retrieved from OpenStreetMap data (OpenStreetMap contribut-
ors, 2018). A sample of hospitals represent the optional central logistics hubs. With the OSMnx
package (Boeing, 2017) all hospitals in Nepal are retrieved from which a sample is taken to select
20 hospitals as optional locations for central logistics hubs.

Table E.2: Optional Central Logistics Hubs
Name Latitude Longitude
CLH0 26.6849931 87.9908844
CLH1 27.6296267 85.5237477
CLH2 28.806299 81.8383173
CLH3 27.7177784 85.3305038
CLH4 26.9091887 87.9266972
CLH5 29.5688362 80.8017476
CLH6 28.169185 83.037786
CLH7 28.8116311 80.5532168
CLH8 28.0475418 83.7496382
CLH9 26.6525245 87.4493976
CLH10 26.6712262 87.7031023
CLH11 27.6814028 84.4315012
CLH12 26.5380402 86.7428030
CLH13 27.4419931 85.0792469
CLH14 27.6699428 85.309812
CLH15 27.9946583 84.6281275
CLH16 27.6744263 85.4037681
CLH17 27.7110160 85.3147438
CLH18 28.1854700 83.17835
CLH19 28.7536724 81.6880453

Table E.3 shows that only a single supply point is included for the simulation. The choice for
the supply points is motivated in section 7.1.

Table E.3: Supply Points
ID Name Latitude Longitude
SP0 Tribhuvan International Airport 27.6966 85.3591
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route durations The model requires input data on the normal route durations between
nodes in the model. Route durations between coordinates are retrieved with the Open Source
Routing Machine (OSRM). OSRM uses OpenStreetMap data to calculate route durations. OSRM
can provide a routing matrix for up to 100 nodes. This is one of the reasons to only include
limited nodes for representing optional central logistics hubs.

e.3 static uncertainty

In this section, the parametrisation of the static uncertainty variables is motivated. For this
study, the focus is not on the exact final outcome values, but rather on the proportions between
outcome variables. Therefore, the exact values of this parametrisation are not as important as
the proportions for the uncertainty ranges.

relief supplies per victim To make an estimation of the relief supplies per victim, it
is helpful to first get an idea of the impact on humanitarian needs due to the 2015 earthquake.
The UN Humanitarian Aid organisation estimates that 8 million people have been affected by
the earthquake (ECHO, 2015). According to analyses from the World Food Programme (2015c),
1.4 million people needed food assistance in Nepal. For the parametric values, it is estimated
that for the initial response there is a need for 10 kg of food and non-food items for every affected
person. The lower and upper limit of needs per person will be set on 5 and 15 kg per person, to
reflect the uncertainty regarding this parametric value.

maximum covered distance The maximum covered distance determines the amount
of cities that can be covered with relief goods from the central logistics hubs. If there is very
limited supply of relief goods or trucks, it is estimated that the minimum covered distance is one
hour from the central logistics hub. If there is sufficient relief goods and trucks available, it is
estimated that all demand points within 5 hours (undisrupted travel duration) can be supplied
with relief goods. This implies that a driver would take at least 10 hours to drive to those
demand points and back, but probably more as the roads can be heavily disrupted. The best
estimate value is chosen to be in between the minimum and maximum estimate of the maximum
covered distance.

transport costs Since 2016, the minimum wage in Nepal is 3.74 USD a day (Zeldin,
2016). Assumed that a working day takes about eight hours of work, the minimum costs of
hiring a Nepalese driver would be 0.50 USD an hour. A truck uses about 10 to 15 liters per hour.
Fuel normally costs 1 USD per liter, but due to the fuel scarcity after the earthquake, these
costs had increased immensely (World Food Programme, 2015b). The minimum and maximum
price of fuel is estimated on 12 to 3 USD per litre fuel. A truck uses about 10 to 15 litres of fuel
per hour, resulting in fuel costs of about 20 - 45 USD per hour. Including a salary of the truck
driver this would be 21- 46 USD per truck per hour. The capacity of a truck is about 3000 KG.
The minimum and maximum transport costs per 1000 KG per hour are estimated on 7 to 15
USD, with a best estimate of 10 USD.

Table E.4: Overview of Estimations of Uncertain Variables
Variable Lower Limit Best Estimate Upper Limit
Maximum Covered Distance (Hours) 1 3 5
Transport Costs (USD/1000KG/Hour) 7 10 15
Needs per Person (KG) 5 10 15
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e.4 dynamic uncertainty: disruption factors

e.4.1 Uncertainty ranges of the Disruption Factors

Directly after the earthquake it is assumed that there is no information on how hard each area
is hit. The disruption factor for each node in the country can be 1 (the minimum) or 2 (the
maximum). The best estimate for every node in the country is estimated to be in between at
1.5.

Table E.5: Initial Parametrisation Dynamic Uncertainty Factors
Variables Lower Limit Best Estimate Upper Limit
Disruption Factors Central Logistics Hubs 1 1.5 2
Disruption Factors Supply Points 1 1.5 2

e.4.2 Ground Truth of the Disruption factors

For each node n from the set of all nodes N (demand points, central logistics hubs, and supply
points) considered in the facility location model, the distance to the epicentre is calculated based
on the spherical geometry.

distance_to_epicentren = f(epicentre, coordinatesn) ∀n (E.1)

The ranges of the disruption factors and the distances to the epicentre are calculated to be able
to assign the maximum disruption factor to the closest node and the minimum disruption factor
to the furthest node. The closest node receives the maximum disruption value of 1.9 and the
furthest node gets the minimum disruption value of 1.1

disruption_range = max_disruption−min_disruption
= 1.9− 1.1

(E.2)

distance_range = max_distance−min_distance
= max

∀n∈N
f(epicentre, coordinatesn)− min

∀n∈N
f(epicentre, coordinatesn)

(E.3)

The disruption factor for each n is calculated based on a radial function where each node is
assigned a value proportionally to their distance from the epicentre.

disruptionn = ((
distancen −min_distance

disruption_range ) ∗ disruption_range) +min_disruption ∀n

(E.4)
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Table E.6: Disruption Factors of Demand Points
Demand Point Disruption Factors
Kathmandu 1.520
Pokhara 1.291
Pātan 1.520
Biratnagar 1.900
Birgañj 1.495
Dharān 1.878
Bharatpur 1.379
Janakpur 1.674
Dhangadhi 1.398
Butwāl 1.225
Mahendranagar 1.478
Hetauda 1.487
Madhyapur Thimi 1.532
Triyuga 1.788
Inaruwa 1.870
Nepalgunj 1.213
Siddharthanagar 1.246
Gulariyā 1.260
Titahari 1.886
Panauti 1.557
Tikāpur 1.301
Kirtipur 1.514
Tuls̄ıpur 1.100
Rājbirāj 1.814
Lahān 1.759
Birendranagar 1.232
Panauti 1.556
Gaur 1.576
Siraha 1.723
Tānsen 1.228
Bardiyā 1.258
Rāmechhāp 1.660
Salyān 1.136
Bhaktapur 1.539
Achhām 1.325

Table E.7: Disruption Factors of Optional Central Logistics Hubs
Central Logistics Hub Disruption Factor
CLH0 1.900
CLH1 1.489
CLH2 1.187
CLH3 1.457
CLH4 1.879
CLH5 1.391
CLH6 1.100
CLH7 1.354
CLH8 1.209
CLH9 1.822
CLH10 1.858
CLH11 1.324
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CLH12 1.728
CLH13 1.431
CLH14 1.456
CLH15 1.344
CLH16 1.470
CLH17 1.455
CLH18 1.122
CLH19 1.197



F M O S T F R E Q U E N T FAC I L I T Y L O C AT I O N
D E C I S I O N S A N D S E Q U E N C E S

This appendix gives extra insight into the different objective prioritisations as discussed in sec-
tion 8.2. The four different objective prioritisations which are highlighted in Figure 8.3 are used
to zoom in on the facility location decisions and the decision sequences. This appendix presents
the analysis and the results.

f.1 frequency of facility location decisions

For each of the four different selected objective prioritisations, four facility locations have been
made operational. This analysis looks at which facilities are chosen for multiple of these four
objective prioritisations.

Table F.1 shows for each of the four objective prioritisations as selected in section 8.2 which
facilities have been made operational. The operational facilities are visualised in Figure 8.3. In
the bottom row of the table, the frequency of how often each of the central logistics hubs is
chosen for the four selected objective prioritisations.

Table F.1: Frequency of Facility Location Decisions
CLH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Objective Prioritisation
Lowest Max. Travel Time X X X X
Lowest # Uncovered Demand Points &
Total Uncovered Demand

X X X X

Low Costs, relatively low # Uncovered
Demand Points

X X X X

Lowest Costs X X X X
Frequency: 0 1 0 4 0 0 0 3 0 0 0 2 2 0 1 0 1 0 0 2

f.2 decision sequences

After four decision-making periods, each decision pathway has contains four operational central
logistics hubs. This means that for each combination of four logistics hubs, there could be
different decision pathways that end up at the same result, but with a different sequence of
decisions.

Multiple decision pathways can lead to the same outcome when facility locations are chosen in
different sequences.

123



124 most frequent facility location decisions and sequences

This analysis looks at which facility locations are chosen at the different decision-making peri-
ods.

Before the results are presented, the methodology of how the sequences are determined is de-
scribed. Different decision pathways end up at the different selected objective prioritisations.
For each of the four resulting sets, this analysis looks at which order the facilities are chosen
most frequently. This is algorithmically determined by following the following steps:

1. Which location is most often chosen at the first decision-making period.

2. Which of the remaining locations is most often chosen at the first and second decision-
making period?

3. Which of the remaining locations is most often chosen at the first, second, and third
decision-making period?

4. Which location is remaining?

When at any decision-making period two locations are chosen equally often, both are selected
for that period, and the next period is skipped.

Table F.2: Most Frequent Decision Sequences
Objective Prioritisation First Second Third Fourth # Paths
Lowest Max. Travel Time 3 19 12 7 8
Lowest # Uncovered Demand Points &
Total Uncovered Demand

3,11 - 7,12 - 12

Low Costs, relatively low # Uncovered
Demand Points

11 3 19 7 14

Lowest Costs 3,14 - 16 1 2

Table F.2 shows the results of the analysis. From the table, it appears that for three of the four
objective prioritisations, central logistics hub 3 is chosen first. For the remaining case, it is chosen
second. This suggests that this location is a good choice for any of the objective prioritisations.
Figure F.1 shows the location of this central logistics hub, which is located close to Kathmandu
and Tribhuvan International Airport. The results are further described in 8.2.3.
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Figure F.1: CLH3
Green Circles: Demand points

Red Dots: Optional Central Logistics Hubs
Blue Circles: Supply Points





G S C E N A R I O D I S C OV E R Y P E E L I N G
T R A J E C T O R I E S

In this appendix, the peeling trajectory is given for each of the boxes as is found for the scenario
discovery analyses for each of the objectives. For each peeling trajectory, the selected point as
is used for the box is indicated.

Figure G.1: Peeling Trajectory for the first box for Total Transport Costs

Figure G.2: Peeling Trajectory for the first box for Number of Uncovered Demand Points
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Figure G.3: Peeling Trajectory for the first box for Total Uncovered Demand

Figure G.4: Peeling Trajectory for the first box for Maximum Travel Time



H R E S I D U A L P L O T S FO R S I M P L E L I N E A R
R E G R E S S I O N A N A LY S I S

In this appendix the residual plots of the simple linear regression analysis are presented. None of
the residual plots seem to imply a non-linear relation between the explanatory and the dependent
variable.

Figure H.1: Residual Plot for number of Uncovered Demand Points

Figure H.2: Residual Plot for Total Uncovered Demand
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Figure H.3: Residual Plot for Total Transport Costs

Figure H.4: Residual Plot for Maximum Travel Time



I R E D U C T I O N O F U N C E R TA I N T Y O N
O P T I M A L I T Y O F D E C I S I O N S

This appendix looks at the relationship between the reduction of uncertainty and the optimality
of the outcomes of the decision-making method to check whether the reduction of uncertainty
indeed leads to improved facility location decisions. It does so by correlating the size of the
uncertainty space with the optimality of the decision-making method’s outcomes of each decision
pathway. This appendix elaborates on the used methodology and presents the numeric results.
Section 8.4.3 presents the most important outcomes.

i.1 methodology

It is possible to look at the effect of uncertainty on the optimality of decisions, by doing a
bivariate analysis. To do so, the analysis looks at the last of the four decision-making periods.
At this last decision-making period, the decision-making method is run for each decision pathway.
The uncertainty space functions as input for this method and results in a set of Pareto optimal
robust solutions. In this analysis, the relationship between this size of the uncertainty space will
be related to the hypervolume of the resulting Pareto front.

The uncertainty space is quantified by taking the mean of all dynamic uncertain factors. Each
of the disruption factors for the demand points and the (optional) facility locations, started with
an uncertainty bandwidth of 1. Over time, the uncertainty of each of these disruption factors
has reduced because of their closeness to operational central logistics hubs (facility locations).
The trajectory of facility locations decisions is different for each decision pathway. Therefore, the
disruption factors of each decision pathway have an individual interval. An uncertainty interval
of 0.3 means that on average, 70% of the uncertainty is reduced for each disruption factor of
that decision pathway. These remaining uncertainty intervals at the last decision-making period
are averaged and are represented by the variable "uncertainty bandwidth".

The hypervolume, as introduced in section 8.4.3, is specific for each Pareto front. For each de-
cision pathway, the decision-making period proposes a set of optimised robust solutions. There-
fore, the hypervolume is computed for each decision pathway, where the objective scores are
normalised with unity-based normalisation, and the reference point is a vector of four ones.
(The reference point represents the upper boundaries for the objective scores (Brands, 2015), i.e.
[1, 1, 1, 1].)

Initially, no correlation is found between the reduction of uncertainty and the optimality of the
decision-making method for each decision pathway. Because a higher cardinality of a Pareto set
leads to an easier attainment of higher hypervolumes (Brands, 2015), the hypervolume of each
Pareto set is divided by its cardinality. The resulting indicator of optimality for each decision
pathway is the "relative hypervolume".
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The regression model used for the regression analysis is an Ordinary Least Squares (OLS) regres-
sion. The model includes a constant and the uncertainty bandwidth as the single explanatory
variable. The linear function used to fit the linear regression model is:

RelativeHypervolume = β0 + β1 ·MeanUncertaintyBandwidth (I.1)

i.2 results

Figure I.1 shows a scatter graph of the hypervolumes and the mean uncertainty bandwidths of
all decision pathways at the last decision-making period. The scatter graph suggests that there
is no correlation between the hypervolumes and the uncertainty bandwidths.

Figure I.1: Hypervolumes and mean uncertainty bandwidths for each decision pathway at the last
decision-making period: Not corrected for the cardinality of Pareto front

In Figure I.2 a scatter graph is shown where the hypervolumes are corrected for the cardinality
of the Pareto front. A negative relationship between the relative hypervolume and the mean
uncertainty bandwidth is suggested by the graph.

To analyse the relationship between the relative hypervolumes and the mean uncertainty band-
widths statistically, a linear regression is analysis is conducted. The results of the linear regression
analysis are shown in Table I.1.

Table I.1: Linear regression results for explaining the relative hypervolumes
R-squared = 0.201
N = 231

Coefficient std err P-value
Constant 1.0362 0.082 0.000
Mean Uncertainty Bandwidth -2.5466 0.335 0.000

Table I.1 shows that there is a significant relationship between the mean uncertainty bandwidths
and the relative hypervolumes. The Pearson correlation coefficient can be found by taking the
square root of the R-squared, which is

√
R-squared =

√
0.201 = 0.449. A Pearson correlation

coefficient of 0.449 is classified as a moderately strong correlation (Evans, 1996). When there is
less uncertainty, larger relative hypervolumes are attained by the decision-making method.
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Figure I.2: Relative hypervolumes and mean uncertainty bandwidths for each decision pathway at the
last decision-making period: corrected for the cardinality of Pareto front
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