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ABSTRACT

The form and size of a channel in cohesionless materdal.
stable against erosion for a definite discharge. Q. are studied.

The angle of internal friction cp and the limiting tractive
force 't are taken as known. Distribution of shearing stressesmax
't is assumed to be such that they are proportional to the distanee
between bottom and water surface, measured at right angles to
the bottom. In addition to the action of gravity and shearing
stress r the grains are acted upon by a hydrodynamic lift force.
proving to be proportional to 't. The differential equation of the
bottom form is established and integrated numerically; the form
depends on cp .

Based on the logarithmic law of velocity distribution and
the assumed distribution of shearing str-essea, the velocities in
all parts of the cross section can be found, and the total dis­
charge is found by numerical integration.

A profile consisting of thé curved "bank-part"of the above
mentioned cross section and a "middle-part" of indefinite width and
of constant depth y would be stable for the same tractive
force. On the assum~non however that nature will produce that
. cross section which has a minimum of area, only one definite
solutton, viz. the equilibrium profile, is found. The dimensions
depend not on cp alone but also on the relative roughness of the
bottom _k_ . Provided that the hydraulic roughness k is assumed

Ymax
to be in conformity with that of natural watercourses, it is found
that the area of the equilibrium profile varies slowly with <f and
must be proportional to

(~0.9 .
V"'maxJ

The above assumptions are checked by calculation of a
complete set of isovels.

Further three model tests, carried out in Vienna in 1916.
are studied and compared with profiles calculated according to
this theory. The values of Cf are found to be varying from 140 to
200• On the same basis a study is finally made of the relation

vm
between mean and maximum velocities, , resulting in a

v vmax
simple diagram giving ~ as a function of af ,vmax
fullness ol of the profile, and also as a function of

•the degree of
Ymax
k ' the

reciprocal relative roughness.
Methods for estimating k are given.



SEC. 1. 1

STABLE CHANNELS

A. E. Bretting
Professor of Hydraulics,

Technical University of Denmark,
Copenhagen, Denmark.

1. INTRODUCTION

The term "stable channels" has generally been used as
relating to the cross section of a channel which wiU be stabie
for a definite discharge both against erosion and against sediment­
ation. In this paper only the question of stability against erosion
has been treated, and only as far as cohesionless bottommaterial
is concerned.

The subject of this investigation is the çross section ultimately
created whennature itself, at a definite discharge Q (m3f sec),
excavates a channel bed in sand material with a definite limiting
tractive force '1' (kgfm2) just able to move the sand grains on
a horizontal botffiiH'and with an angie of internal friction of cp
degrees.

The specific weight of the water is '1 (kgfm3), and the
equivalent sand-roughness of the bottom of the channel is k (m);
this roughness is taken to be uniform over the wholewidth of the
channel.

It is furthèr assumed that the velocity v at every point P of
the cross section can be foundaccording to th~ usual Iogarithmic
Iaw of velocity distribution

Vz zv = 8.48 + 2.5 • In ('K)'
*where k is the roughness of the bottom (m),

z is the distance from the bottom (m) measured in the
direction perpendicular to the bottom,
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v* =W(m/sec) ,
.. = the shearing stress (kg/m2) at the bottom in a line

through the point P perpendicular to the bottom,
9 = ~ {.~' specific weight of the water (kg/m3 )

g g, acceleration of gravity = 9.81 mi sec2 •

To find the velocities, a definite Iaw for the distribution of the
shearing stresses along the bottom contour must be assumed.

In the middle part of the cross section, where the bottom line
is horizontal, the shearing stress will have its maximum value
, equal to the limiting tractive force of the sand grains in
qm~ion. .

This limiting tractive force will strictly speaking depend.on the
longitudinal alope of the channel,

The relation between the limiting tractive forces T for a plane
bottom sloping in the direction of the flow at an angle v vand t'h for
a horizontal bottom, can be shownto be:..

~ = cos v(l - tg v cot<f),
'h

where <f is the angle of internal friction of the sand.
Since the Iongitudinal slope = sin v will generally be small we

take the limiting tractive force to be independent of the slope.
The followingIaw for the variation of r is assumed:

y . cos Ctmax .) c ' ,'[max
where y is the depth of water at the point in question, and Ct is the
inclination of the bottom with a horizontal plane. (Fi g. 1). The
shearing stress will consequently be proportional to the Iength of a
normal to the bottom reckoned between the bottom and the water
surface. The shear-ing stress on the slopes will be somewhat greater
than that foundby using the hypothesis that T varies proportionally
with the depth y , an assumption previously used, Transfer of
shearing forces from the middle of the section against the banks is
thus to a certain degree taken into account.

A justification of this assumption is late r foundbycalculation
of the corresponding complete set of isovels (Fig.7 ), which are in fair
accordance with experience from actual measurements.
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2. ESTABLISHMENT OF THE DIFFERENTIAL EQUATION
FOR THE SHAPE OF THE PROFILE.

2.1. EQUATION ON THE ASSUMPTION ~ = c > ~.

The profile sought should just be in equilibrium at every point
of the bottom, given the assumed distribution of shearing stresses.

On the bottorn an element of one unit area wi11be stressed
by the force T in the direction of the flow. The longitudinal slope of
the channel is considered insignificant. The surface element has the
inclination 00 with a horizontal plane.

The submerged weight of sand grains per unit area stressed
by T is designated as W. (Fi g. 2). This force is acting vertically
downwards and is resolved into the forces W·cos 0 in the direction of
. the normal to the element, andW'sin 0 acting in the plane of the
element in the direction of its transversal slope.

The grains of the element are further acted uponby the hydro­
dynamie lifting force L, which is upwards directed in the normal to
the plane of the element. The resulting force in this direction wi11
consequently be (W·cos 0 - L), acting downwards.

The total stress on the element in question wi11be the resultant
o{the three above-mentioned forces :
1) T in the plane of the element and in the direetion of the flow,
2) (W'cos 0- L) in the direction of the normal to the element,
3) W'sin a in the plane of the element perpendicular to the direction

of flow.
The resultant of forces 1) and 3) isV"(2+ W2 • sin2a aeting

in the plane of the element, whereas force 2) is perpendicular to the
said resultant.

If the angle of friction of the sand is taken to be cp degrees,
it is a condition of equilibrium for the sand grains of this element
that v',2 + W2 . sin2 Ct
(2) tanq:>- W. cos a - L

The magnitude of the hydrodynamic uplift L wiUbe studied
below.

(3)

Weput provisiona1ly
L = c . T

where c wiUprove to be a constant (Section 2.2).
From equatioIi(2) we ge t :

(2a) W2• cos2 a - 2'L' W'cos a + L2 = (,2 + W2• sin2 a) . cof<p
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From equation 1. (1) we get :
T

T=~._L_cos a Ymax

For Y = Y we have a = 00max cos a = 1 , sin a = 0

't = 'tmax Tmax' whieh, inserted in (2a), gives :

w2 - 2 e 'tmax . W + e2 • -?- = eor <f>
max

square root of both sides we obtain :
W - e T - cot eo • Tmax T max

't~ax; taking the

(4) W = Tmax ( e + eot<f)

This value of W is inserted in (2a) together with L from (3),
whieh gives :

(5) (_T_)2. (e - eot cp ) _ (_T_ ) . 2 cos a
"'"max e Tmax

+( e +eeot Cf\[(l + eot2<p ). eos2 a - eor<f] 0
Substituting 1.(1) :

"'" = _L_. 1 we get from (5) :
Tmax Ymax cos a

(5a) 12 .(e - cat l' ) _ 2(_L_)
cos a e Ymax

+ (e +eeotp J: [(1 + eot2<p)·eos2 a - eot2<p] 0

The following substitutions are used :

(6a) _Y_ (6b) x
~ (6e) tan a= " ;

_- = ;Ymax Ymax
1

(~"j )
2

= 1 + tan2 a = 1 +
eos2 a

dy d" .
Ox ~ I

(6d)

(6a) - (6d) are inserted in (5a) :

"a . [1 + (g; t] .(1 - eo~p ) - 2"

+ (1 + eot cp ) • f! + eor cp
e ~ + (~t

d~

- cot'~ ] o
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tf· ~ + (g; {J2 • (1 - Co~cp )

- [1 + cg. )j. [2 T} + cot2cp .(1 + c~t cp ~.

+ (1 + cot2<p ).( 1 + Co~<p) = 0

This is the correct düferential equation in T} and. for the
profile in question. It can be written in the form

((8)1 (~ l )0 ~ (1 + CO~ 4') - 2~+ .j' (1 - co~q». [1 + (*/J
cot2tO'(1 + cot cp ) + 2 1'1 - 2 ,f. ( 1 _ cotq:>)

1 c C

(7)

2.2 DETERMINATION OF THE FACTOR c IN FORMULA 2.1 (3)
In the paper by H. A. Einstein [Ref. 11 info rmation is found

bearing upon this subject. The notations of Einstein' s paper are
used ( in this section only ) .. Formula (36), page 31 runs

where

PL = ave rage lift pressure per unit of area,
cL = 0.178 (dimenSionless\-,

sf density of the fluid = -l-
K'f = specific weight of fl.uid,
g = acceleration of gravity ,

u = the flow velocity at a distance O. 35' D35 from the theoretical
bed, .

D35 = sieve size of the grains of which 35 percent are finer.
It is indicated that the pressure fluctuations due to turbulence

in their duration follow the normal error law, the standard deviation
being 0.364 of the average lift.

A deviation from the mean of 2.75 times M "standard deviation ,
viz.

2.75 . 0.364 . PL = I~O . PL

will only have a statistical probability of 6 per thousand to be
exceeded and corresponds to: a practical maximum value of the
hydrodynamic lift force per. ärea :

L = 2 P , which is very seldom exceeded.· For greater
values of ReynMds' numbers, which are exclusively considered, is
found

u = uit . 5.75· log ( 30.'2 i) where

2
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y = 0.35 ( 0.77 • k ),
~ = ks ' the equi~alent sand roughness,

u*, =Wr where

r = shearing stress along the bottom
u = u*, 5.75 log (30.2 • 0.35 . 0.77)

u = 5.24 . u*,

The mean value PL

PL 0.178· sf .

according to [1]
1 2"2" (5.24 u*,)

formula (36)

2.45 . sf . U 2 = 2.45 . sf . 2. = 2.45 't'*' sf

We consequently find the maximum value of the hydrodynamic
lift force, defined as above,

L = 2 PL = 4.9 't'

The constant c in equation (3) is found to be

~ c = 4.9

3. SOLUTION OF THE DIFFERENTlAL EQUATION 2.1(8)

In the numerical4calculations of g ~ for varying values of 1'),

the factor r + (~ ~ )] in the last term of the numerator can be

omitted from the first approximation, whereupon the said last term
is corrected. .
3.1. FORMULAE FOR NUMERICAL INTEGRATION

The following substitutions are used :

2.2.(9) c = 4.9
(10) a = 1 + cotcpc
(1~)

(12)

b cot2 <p • (1 + cot cp )c
m= 1 - ~ c

an I the differential equation (8) takes the followin\ form :

~ d 2· a - 2 'l + m tf· L1 + (g l )J
~ (~):: ~-t b+2'l-2m·tf
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For a given value of <p the quantities a, b and mare fixed
constants, and the numerical values of ~ ~ can be found
corresponding to chosen values of Tl. S

The integration of the differential equation (13) is made
. 0 0 0 0num.e rtcal.ly for values of cp = 15 , 20 , 25 and 30 .
The corresponding values of the constants a, b and mare

found from formulae (9), (10), (11) and (12), and the following
special forms of (13) are found :

lP = 1501 4]
d 2 1. 761643 - 2 Tl+ 0.238357 . rf· [1 + (~)

(13a) ( d!) = .::...:L-
'3 24.536516 + 2 Tl- 2 .. O. 238357 . rf

kJ? = 204 4,
(13b) (~ l )2 = 1.56071 - 2 Tl+ 0.43929 . rf· [1 + < }j-) J

'!S 11. 78125 + 2 Tl- 2 . 0.43929 . rf
4

1.43766 - 2Tl+ 0.56234· rf·[l + <-a-)]
6.61168 + 2 Tl- 2 . 0.56234 rf

I<P = 2501

(13c) <~ ~ { =

I~ = 3001
<~) 2

(13d) =
3

4
1.35348 - 2 Tl+ 0.64652 . rf· [1 + <{i1 ]

4.06044 + 2 Tl - 2 . 0.64652 . rf
As values of 'I) are taken :

0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 0.98, 1.0. d 2
For each value of cp and these values of 'I) the values of < ä-T) are
calculated from (13a b cd, and the corres ondin value s of
<!__"!t_ d • d 'I) 2- ~ d '11 •
(~) , (ëIT\)' 1 + (~) and ~ = b 1+( rr) ar~ comprl ed
in Tables 3.1. /la/b/c/d/ for f = 15 , 20 , 25 and 30 resp.
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Iq> = 15°·1 Table 3.1/la/

'l {~.!L)2 ct'? ~ y,-t- (d "!l-)2 ~ct, ct~ d~ cti

0 0.071797 0.267949 3.73205 1.035276 0.000000

0.1 0.063240 0.251476 3.976529 1.031135 0.103114

0.2 0.055030 0.234585 4.262854 1.027147 0.205430

0.3 0..047149 0.217139 4.605354 1.023303 0.306991

0.4 0.039582 0.198952 5.026360 1.019599 0.407840

0.5 0.032312 0.179756 5.563085 1.016028 0.508014

0.6 0.025328 0.159148 6.283474 1.012585 0.607551

0.7 0.018616 0.136440 7.329257 1.009265 0.706485

0.75 0.015358 0.123927 8.069238 1.007650 0.755737

0.8 0.012164 0.110291 9.066962 1.006064 0.804851

0.85 0.009032 0.095039 10.521951 1.004506 0.853830

0.9 0.005962 0.077215 12.950913 1.002977 0.902679

0.95 0.002952 0.054329 18.406283 1.001475 0.951401

0.98 0.001174 0.034259 29.189274 1.000587 0.980575

1.0 0.000000 0.000000 oe> 1.000000 1.000000
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Icp = 20°·1 Table 3.1/1b/

'2 (~)2 da.. dJ 0+ (d'llaJ dJ dil OfJ
0 0.13247 0.36396 2.74748 1.06418 0.000000
0.1 0.114025 0.33768 2.96142 1.05547 0.105547
0.2 0.097023 0.31149 3.21042 1.04739 0.209478
0.3 0.081328 0.28518 3.50655 1.03987 0.311961
0.4 0.066822 0.25850 3.86848 1.03287 0.413148
0.5 0.053404 0.23109 4.32726 1.02635 0.513175
0.6 0.040988 0.20245 4.93937 1.02029 0.612174
0.7 0.029500 0.17176 5.82222 1.01464 0.710248
0.75 0.024083 0.15519 6.44384 1.01197 0.758978
0.8 0.018875 0.13739 7.27874 1.009393 0.807514
0.85 0.013869 0.11777 8.49136 1.006910 0.855874
0.9 0.009057 0.095168 10.50770 1.004518 0.904066
0.95 0.004436 0.066606 15.01359 1.002216 0.952105
0.98 0.001752 0~041862 23.888195 1.000876 0.980858
1.0 0.000000 0.000000 00 1.000000 1.000000
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Itp = 25°·1 Table 3.1JleJ

Q . ~)2 d'2 d~ Y1+(o' 'l)2 >"(dl c.t~ d'2 dj

0 0.21744 0.46631 2.14451 1.10338 0.000000

0.1 0.182852 0.42761 2.33857 1.08759 0.108759

0.2 0.152249 0.39019 2.56285 1.07343 0.214686

0.3 0.125035 0.35360 2.82803 1.06068 0.318204

0.4 0.100742 0.31740 3.15061 1.04916 0.419664

0.5 0.079002 0.28107 3.55780 1.03875 0.519375

0.6 0.059514 0.24395 4.09912 1.02933 0.617598

0.7 0.042047 0.20505 4.87677 1.02081 0.714567

0.75 0.034008 0.18441 5.42262 1.01686 0.762645

0.8 0.026404 0.16249 6.15411 1.01312 0.810496

0.85 0.019216 0.13862 7.21387 1.00956 0.858126

0.9 0.012429 0.11149 8.96978 1.00620 0.905580

0.95 0.006027 0.07763 12.88099 1.00301 0.952860

0.98 0.002367 0.04865 20.55420 1.00118 0.981156

1.0 0.000000 0.000000 oe:> 1.00000 1.000000
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Table 3.1/1d/

~
(~)2 dil ~ Vf+(~)2 SdJ dJ ct 'I(

0 0.333333 0.577350 1.73205 1.154703 .0.000000

0.1 0.273203 0.,522687 1.91319 1.128362 0.112836

0.2 0.222426 0.471620 2.12035 1.105634 .0.221127

0.3 0.179031 0.423121 2.36339 1.08583 0.325749

0.4 0.141608 0.376308 2.65740 1.06846 0.427384

0.5 0.109141' 0.330365 3.02696 1.053158 0.526579

0.6 0.080864 0.284366 3.51659 1.039647 0.623788

0.7 0.056200 0.237065 4.21825 1.027715 0.719401

0.75 0.045082 0.212325 4.709756 1.022293 0.766720

0.8 0.034710 0.186306 5.36750 1.017207 0.813766

0.85 0.025046 0.158259 6.31874 1.012446 0.860579

0.9 0.016059 0.126724 7.89116 1.007998 0.907198

0.95 0.007718 0.087851 11.38297 1.003851 0.953659

0.98 0.003015 0.054905 18.21316 1.001506 0.981476

1.0 0.000000 0.000000 00 1.000000 1.000000
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3.2. CALCULATION OF THE INTEGRAL, ESPECIALLYI~~.d n •

1-41

Calculation of the

trapezoidal rule except for the last interval O. 98 ~. " ~ 1 , where
this rule is not usabie because f( " ) tends to infinity for " = 1.

4
In this region (g~) in the formula 3.1.(13) can be completely

neglected, and we get.~:s:__ _

(14) dj _l/b + 2" - 2 m .. tt
aT] -V a - 2 ,,+ m . tt

We substitute :
,,=1-~ rf =1- 2~+A:12

d " = - d ~ and find

where ~ is small in relation
to 1,

d ~ =V b + 2 (l-m) - 2~(1-2m) - 2 m .~ 2 ..<f""Tl
(a - 2 + m) + 2..d( 1 - m ) + m.A 2

According to 3.1. (10) and 3.1. (12) :
a - 2 + m = 0 consequently ,~~~---------------

d I -Vb+ 2 (l-m) .V1 - 2A ~+-2(L~) - 2~2 6+2(i-m)cm- - 2~(I-m) ---~l--l.-A~'__-m---_'_---'-
.( 1 + ~ . ~ . ..--=:~ i-m

(15)

In (15) the laUer square root is expanded into a series, and
considering that A is small compared with 1 we get, neglecting
terms with ~ ;3 and higher powers :

d~" =1/b+2(1-m) 'A-1/2.{1_1.A.[m +4' 1-2mJ~ y 2(I-m) 4 l-m l>+2(I-m)
1 [ m 2 m 1-2m+ g ·A2. 0.75' (l-m) + 2 . l-m . 6+2(I-m)

4· m (2 + (1-2mt )~1
,- . 6+2(I-m) . m(b+2{m-I»~J.
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k~~ Jm~e;atio: ~~ ~ ~ . d..:1

1-4 0

lil 2 '~'Vb+2p-m) . {I - r!-._a . [~ + 42( -m) u ,L-m

1 A 2 [ m 2 m 1-2m
+ 4lr'41 . O.75(I_m) + 2 . l-m . D+2(I-m)

_ 4. m . (2+ ~1-2mt \]~
b+2(I-m) m b+2(m-Ijl U .

The constants band mare known for each value of <f> from the
above-mentioned calculations (compare theformula 3.1.(13) with 3.1.
(13a), 3.1. (13b), 3.1.(13c) and 3.1.(13d).
For Icp = 15°1, b = 2~. 536516 m = 0.238357 we find :

(16a))1 ~ ~ • d n = 8. 272272'-y.1. ti - O. 032773"'" + O. 000281"",'.
1-~

1-2m J. b+2(I-m)

For ~ = 0.02

(16aa)I~~.d" = 1.169876'{ I - 0.00065546 + 0.0000001l& ]
0.98

For lep = 20°1 J bIl. 78125

= 1.169109.
m = 0.43929 we find

(16b).) ~!d n = 6. 78400'~~ - 0.068427..:1 + O.0050592..:1'}'
1-,4

For .c::l = 0. 02

(16bb)r 'Irt-. d F O.959400 '(1 - 0.00136854 + 0.00000202}
0.98

For lP = 25°1,

(16c) f ~ .
I-A

= 0.958089.
b = 7.48700 m = 0.56234 w.e find

d Tl= 5. 84926·~t1 - 0.101523A + O.014835~ 2}.
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For A = 0.02

(16cc)S *. d ~ = 0.827208 '[1 - 0.00203046 + 0.00000593}
0.98

For lp = 30°1, b

(16d) SI *
I-A

For~ = 0.02

(16dd)î *
0.98

0.825533.

= 4.06044 m = 0.64652 we find

d 1) = 5.19364'~'{1 - 0.1319 L1 + 0.0296L12}.

. d l') = 0.734490' t 1 - 0.02638 + 0.00001184}

= 0.732561.

3.3. NUMERICAL INTEGRATION. COMPUTATION OF Tl,~
VALUES FOR <p = 15°, 200, 250 and 300.

The shape of the bank-part of the bottom, i.e. between
1) = 0 and '1 = 1, where y = y , can now be comguted ( Tables
3.3./2a/b/c/d/ for<p = 150,max 20°, 25° and 30 respectively).

For each interval in 1) the mean value of the two
neighbouring values of d ~ is found, and.(f"TJ

A~ = ~.{(.~) + (~) } ~Tt =n, n+ 1 ~ u 1) n u 1) n+ 1

For the last interval in Tl from 0.98 to 1.0

.á ~ = (I ~ ~ . d ~, which are found in
13,14 JO•98

formulae3.2. (16aa), (16bb), (16cc) and (16dd).

The values of 3 nare found by successive addition of..::::l~ •



IP=150.1 Table 3.3/2aJ .

'Z d~ (~:)m ~J ~
d/2

O. 3.73205 0
3.85429 0.385429

0.1 3.97653 0.385429
4.11969 0.411969

0.2 .4.26285 0.797398
4.43410 0.443410

0.3 4.60535 1.240808
4.81586 0.481586

0.4 5.02636 1.722394
5.29472 0.529472

0.5 5.56309 2.251866
5.92328 0.592328

0.6 6.28347 2.844194
6.80637 0.680637

0.7 7.32926 3.524831
7.69925 0.384963

0.75 8.06924 3.909794
8.56810 0.428405

0.8 9.06696 4.338199
9.79445 0.489723

0.85 10.52195 4.827922
11.73643 0.586821

0.9 12.95091 5.414743
15.67860 0.783930

0.95 18.40628 6.198673
23.79777 0.713933

0.98 29.18927 6.912606
1.169109

1.0 ê = 8.081715

15
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I<p = 20°.1 Table 3.3/2b/

"2 ~ (~)m A~ ~ct 12

O. 2.74748 0
2.85445 0.285445

0.1 2.96142 0.285445
3.08592 0.308592

0.2 3.21042 0.594037
3.35849 0.335849

0.3 3.50655 0.929886
3.68752 0.368752

0.4 3.86848 1.298638
4.09787 0.409787

0.5 4.32726 1.708425
4.63332 0.463332

0.6 4.93937 2.171757
5.38080 0.538080

0.7 5.82222 2.709837
6.13303 0.306652

0.75 6.44384 3.016489
6.86129 0.343065

0.8 7.27874 3.359554
7.88505 0.394253

0.85 8.49136 3.753807
9.49953 0.474977

0.9 10.50770 4.228784
12.76065 0.638033

0.95 15.01359 4:866817
19.45090 0.583527

0.98 23.88820 5.450344
0.958089

1.0 ê = 6.408433



I~= 25°·1 Tab1e 3.3/2c/

1Z cij (g)m A~ ~dl?
0 2.14451 0

2.24154 0.224154
0.1 2.33857 0.224154

2.45071 0.245071
0.2 2.56285 0.469225

2.69544 0.269544
0.3 2.82803 0.738769

2.98932 0.298932
0.4 3.15061 1.037701

3.35421 0.335421
0.5 3.55780 1.373122

3.82846 0.382846
0.6 4.09912 1.755968

4.48795 0.448795
0.7 4.87677 2.204763

5.14970 6.257485
0.75 5.42262 2.462248

5.78837 0.289419
0.8 6.15411 2.751667

6.68399 0.334200
0.85 7.21387 3.085867

8.09183 0.404592
0.9 8.96978 3.490459

10.92539 0.546270
0.95 12.88099 4.036729

16.71760 0.501528
0.98 20.55420 4_538257

0.825533
1.0 ê 5.363790

17
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lep = 30°. I Table3.3/2d/

re a'~ (~~)m ~ ~ ~dn

0 1.73205 0
1.82262 0..182262

0.1 1.91319 0.182262
2.01677 0.201677

0.2 2.12035 0.383939
2.24187 0.224187

0.3 2.36339 0.608126
2.51040 0.251040

0.4 2.65740 0.859166
2.84218 0.284218

0.5 3.02696 1.143384
3.27178 0.327178

0.6 3.51659 1.470562
3.86742 0.386742

0.7 4.21825 1.857304
4.46401 0.223200

0.75 4.70976 2.080504
5.03863 0.251932

0.8 5.36750 2.332436
5.84312 0.292156

0.85 6.31874 2.624592
7.10495 0.355248

0.9 7.89116 2.979840
9.63707 0.481854

0.95 11.38297 3.461694
14.79807 0.443942

0.98 18.21316 3.905636
0.732561

1.0 ê = 4.638197
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4. DETERMINATION OF PERIMETER, AREA
AND DISCHARGE FOR 11BANK-PARTlI AND
11MIDDLE-PART:' PRINCIPLE OF MINIMUM
WORK.

4. 1. INTRODUCTION.
The profile determined in the foregoing section should

be stabie against erosion for every value of Tlbetween zero and one
as long as the limiting tractive force is not exceeded. The relative
width of the curved slop-ing bottom at one side of the axis of the
channel is called t3 = ~ 1.O.

The absolute width of this part of the cross section is
t3. y ,and the corresponding parts of the perimeter, areà and
dischWPle are called Uw F t3 and Qt3 respectively. This part of the
cross section is called the K bank=par-t . (Fig. 3). The shearing
stress in this part varies between .. = 0 for (! = 0, Tl= 0) and
.- .. .- for ( ! = t3, ïl = 1), and it is evident that another half
cross~~êtion consisting of the said •bank-part" and a "middle-
part" with constant depth y and an arbitrary width t30'y. max max

11 II
between the bank-part and the axis should be equally stabl e,
The perimeter, area and discharge of such a "middle-part 11 are
called Ut30' F t30 and Qt30 respectively.

So far an infinity of possible solutions seem to exist for
fixed values of the total discharge of the half-section Q = Qt3+ Qt30

and for "max and <p.

If we imagine, however, that the profile is eroded
gradually in a uniform mass of sand at a constant discharge Q,' the
intensity of the erosion will steadily dirnmi sh, and the profile must
asymptotically approach the state of equilibrium commensurate
with the sand grains in all parts of the bottom being in a state of
incipient motton.

It thus seems natural to assume the principle of minimum
of work and assume that nature will produce the profile that
requires a minimum of erosion, i.e. a minimum of the cross
section F = F8 + FB • According to this principle only one definite
equilibrium profile éSt exist for fixed values of Q, .. and <t> .max

We therefore proceed to find the cross sections Ft3 and

F130and the discharges Qt3 and Q13o' wherCupon the indetermi nate
quantity 130is fixed in such a way that it' causes F = F13+ F t30
to be a minimum for a fixed value of Q = Qt3 + Qt301or the total
discharge in the half cross section, and for fixed values of rmaxand <p .
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4.2. DERIVATION OF FORMULAE FOR MEAN VELOCITY, AREA
AND DISCHARGE OF AN ELEMENT OF THE CROSS SECTION.

As previously mentioned, it is a.ssumed that the loga­
rithmic law of velocity distribution is valid, and that the velocity
at a point P, situated at the distance z from the bottom, and
measured perpendicularly to the bottom element ds, will depend
exclusively on the shearing stress T on this element and on the
distance z.

From equation 1. (1) we get by means of (17)

Zo_'-= y - - (:., y • cos a - y-- - :::>
max max max
The values of 5 are compiled in Tables 3. l/la/b/ c/d/
We consequently have:

V"'5 =vf=Y ~''i~max
v
Z Zv-- = 8. 48 + 2. 5 In K
x.~

where k is the equivalent sand roughness of the bottom supposed to
be constant for the whole width of the channel.

(Fig. 4)
(17)

(la)

(18)

(19)

The length of the normal to the water surface is

z = yo cos a

If the element of the cross section shown in Fig.4 had
a constant width equal to the base ds, the mean velocity in such
an element could be found as the velocity at a point 0.3679 • Zo
from the bottom. The curvature of the bottom is slight, so that it
is considered permissible to disregard this and find, at the same
distance, the mean velocity in the actually wedge-shaped element
v ~; but for the computation of the element area and its dis­
cRkrge the wedge-shape must be taken into account.

We consequently get :

«r: -r.:::x { (P Ymax.1= YS ·v ~-9-'8.48 + 2.5 In (0.3679·::J· ~)J

vm.~= 2.5~ .l"'f'{ln (l1:max) + ln~J

vm.~

The area of the surface-element (Fig. 4), with base ds,
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measured between the bottom and the water-surface, and when r
is the radius of curvature of the bottom, will be

1 r-zo Zo
dF = "2"'zO • ds-] 1 + -r-) = Zo • ds'( 1 - rr)(21)

For the radius of curvature r we have

1-r
~ -f (~>1372

( d2 Tl)d,-2 .

or from 2.1. (6a)b)c)d)

(22) 1
=

~ + (~~ {J372
Ymax . d~

= Ymax .cos Cl

(_r_)
Ymax

(23) ds cos Cl
dx

(1 7) z0 ~. Ymax

From (21), (22), (23) and (17) we finally get

dF (é>.y 2.
::> max

(24) dF ~2 d( ~Î )
d 2

1+ (q->2
Ymax

By the following calculations with finite differences we
introduce the mean values of 5 and [1 + (}ttJ for the sides
of the element in question and put ~ ~ for d ~ and4 (~!> for

d (dTl) (24) then takes the form~.

3
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AF
2

Ymax

where subscript m signifies mean values.
Accordingly the mean velocity in the element considered

is taken from (20)

1(20all vm.'m " 2'W'W;:'{lnt ~m",,)+ In ~m}
The discharge ~ Q in the elementA F is :

5/2 ]~m . ln >m .

4. 3. FORMULAE FOR THE QUANTITIES S AND FOR DIMENSION­
LESS VALUES OF PERIMETER, AREA AND DISCHARGE U' , •
F' AND Q' RESPECTIVELY, VALID FOR THE "BANK-PART,
"MIDDLE-PART· AND FOR THE TOTAL HALF-SECTION.

The following notations are introduced :

(26) s -o -

(27)
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trI (~1·(29) S3,1 = L: (.4~ ) .(Vi + > 3/2. in ~
,,=0 ~ m m m
TI=1

~(~-2: )2 .(30) SI,2 •=
2 (1 + (gi )2)mm

~O

1'\=1
5/2 ,d(dTJ)

= - L:(31) S2,2 ~. rr
1'\=0 m 2 (1 + (~2)
Tf'1

, m
/ d Tl

(32) S3,2 =-L: 5 2 .::l (a ~)
In ~~ . .

m 2 ( 1 + (~ ~ )lm
m

Tf'0

(33) SI SI, 1 - SI,2

(34) S2 = S2,1 - S2,2

(35) S3 S3,1 S3, 2

For the "bank-part" of the cross section we find the
followingdimensionless expressions for perimeter, area and
discharge.

U~
(36) = SoYmax

+ S3,1 - S3,2

lly
= S2 In( k=» S3.
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(26a)

(27a)

(28a)

(29a)

1(36a»)

1(37a)1

(39)

SEC. 4.3.

For the n "middle-part of the section we have

d Tl - 0ëI""J -
and thereby

So == 130

Sl,l == 130

S2,l == 130

S3,l == 0
U
~ == 13
Ymax 0
F13,0 _ A

2 - f-'O
Ymax

~ ({t-> == 0 5'm == 1

(30a)

(31a)

(32a)l

Sl,2 = 0

S2,2 == 0

S3,2 0

QI3,O 11 Y .
= 130 ln( max)k •2 5,1Tmax '. 2

. t' 9 Ymax

We put for the total

U == U13 + Uf3, 0

half - section of the channel

(40) F FI3 + F13,O
(41) Q = QI3 + QI3,0 I and find from (36), (37), (38), (36a)

(37a), (38a)

U' U = S + 130
Ymax 0

F' F - S + 130
2 - 1

Ymax

Q lly
( maxQ'

2.5V'max
(S2 + 130)In k 1+ .S3 •

2
Ymax

(]
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4.4. DETERMINATION OF t30 CORRESPONDING TO MINIMUM
OF CROSS SECTION.

For a fixed_ value of <p the quantities SI' S2 and S3
are constants, and if further Q, "max' 9 and k are constant,
equation 4.3. (44) represents arelation between t30 and Ymax
which must be satisfied :

(44a) =
Q 11y

max)- (S2 + t30> ln( k - S3 = 0
2 5,!"max 2• V 9 Ymax

together with

F = (SI + t30) Ymax2•(43a)

F is a function of t30 and Y ,and to obtain a minimum
value of F simultaneously witliy = O,max Lagrange ' s method
gives the following condition :

-C.5~~· Ym::

Q 11 Ymax 1
- (SI + t30) ln( k )+ 2" (S2 + t30) = o.

2 5"'rç;;;;;; . 2. 'V~ Ymax
When deducting (44a) the re sult is :

11y .
1(45}1 t30 = 2(SI - S2) ln( k max) - (S2 + 2 S3) ,

which gives the value of t30 corresponding to a minimum of F.

2Ymax

(~)aymax
hence

+ t30> Ymax
or
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(46)

FORMULAE VALID FOR THE OPTIMAL PROFILE' FOR
DIMENSIONLESS VALUES OF PERIMETER, AREA, DIS-
,CHARGE, MEAN VELOCITY, HYDRAULIC RADIUS, WIDTH
OF WATER SURFACE, SLOPE, SHEARING VELOCITY AND
FULLNESS OF THE PROFILE, ALL EXPRESSED BY THE
QUANTlTIES S AND 13.

It follows from the foregoing section 4.4. that
lly
( max)S1 + t30 = 2(S1 - S2) In k + (S1- S2 - 2 S3) and

lly
S2 + 't30 = 2(S1 - S2) ln( kmax) - 2 S3·

4.5.

(47)

4.4. (45), (46) and (47) are introduced in 4.4. (42),
4.4. (43) and 4.4. (44) resulting in :

lly
maX)2(S1- S2) ln( k + (So - S2 - 2 S3)

Ymax
U' - ~

2Ymax
F' = ,_F_

2Ymax
lly'( ·max)

- 2 S3 ln~ k J + S3·

Equations (48), (49) and (50) are valid for the profile
a minimum of cross sectional area.with

For the mean velocity

vm = ~ we get, dividing (50) by (49) :

V 'm

We want to introduce the slope of the water surface I
(uniform motion aasumed) and the hydraulic radius R of the cross
section and find that the total shearing force K for the half cross
section F must be :
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K = KF I = î 'f ds; we further have
. 0

4.2(23a).4s =á ~ '(V'-l-+-(~-i-))m - Ymax

(52)

4.2(1;l) -r = ~m " 't'max

~'dS ; Ymax - 'maX[~ Aj -(VI + (.q-)'t tH~
and from 4.3(27)

(53) (1 T • ds ; (51,1 + 130) • Ymax' "max •
Jo .
As ~ = S>'g (52) givea with 130 from 4.4. (45)

r _.g F I = 51 1 + 130 _ 2(5 _ 5 ) ln(ll Ymax)
. ('fmax) , 1 2 k

. Ymax 9
+ (51. 1 - 52 - 2 53) •

For the hydraulic radius :a we find by 4.3. (42)
R' - R _ F _ F F'

- Ymax - U'Ymax - Y 2 (5 + 13)' = So + ~o
max 0 0

and by (49) and 130 from 4.4. (45)
lly

2(51 _ 52) ln( kmax)+ (51 _ 52 - 2 53)
R' = --------'.-.--------'-----

(
Ymax,2(51 _ 52) ln k 7+ (50 - 52 - 2 53)

2(51 _ 52) ln(----,---11'"
=

2(51 - 52) ln(-..-----i
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For the width B of the half profile at the water surface
we find

, B - 11 Y
B = -- = (~+ ~o) = 2(SI - S2) ln( k max)+ (~-S2-2 S3).

Ymax
11 11

We later apply the term 'af , degree of fullness of the
section, which is defined bycross

lly max
2(SI -S2) ln( k )+ (SI -S2 -2S~

Y
2{S S) 1 ( max, +(""-S -2S )C2n k 11-'23

found by using (49) and (57).

4.6. EVALUATION OF NUMERICAL VALUES OF THE
QUANTITIES S.

lt remains to compute the numerical values of
SO' SI' S2 and S3 for~ = 15°, 20°, 25° and 30°.
The calculations are given in Tables 4.6. /3a/b/ c/d/. The

fundamental values oflh + (gi)2', ~, g~ and (1 + (~; )2)

are to be found in Tables 3.2. /la/b/c/d/, whereas a ~ is found
in Tables 3.4. /2a/b/c/d/. The calculations are made from the
formulae 4.3. (26) through 4.3. (35).

The results are compiled in Table 4.6. /3e/.
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Itp = 15°.' Table 4.6/3al

V, + (ct rz-) 21( s ~m ~3 (\/'+ (d~_)~a'! a'~ m

0 1.035276 0
0.051557 0.385429 1.033206

0.1 1.031135 0.103114
0.154272 0.411969 1.029141

0.2 1.027147 0.205430
0.256211 0.443410 1.025225

0.3 1.023303 0.306991
0.357416 0.481586 1.021451

0.4 1.019599 0.407840
0.457927 0.529472 1.017814

0.5 1.016028 0.508014
0.557783 0.592328 1.014307

0.6 1.012585 0.607551
0.657018 0.680637 1.010925

0.7 1.009265 0.706485
0.731111 0.384963 1.008458

0.75 1.007650 0.755737
0.780294 0.428405 1.006857

0.8 1.006064 0.804851
0.829341 0.489723 1.005285

0.85 1.004506 0.853830
0.878255 0.586821 1.003742

0.9 1.002977 0.902679
0.927040 0.783930 1.002226

0.95 1.001475 0.951401
0.965988 0.713933 1.001031

0.98 1.000587 0.980575
0.990288 1.169109 1.000294

1.00 1.000000 1.000000
"--_

To be continued
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I<p = 15°.1 Table 4.6/3a/ (continued)

As' = J
A5'· >m ~

,5.~ -ln5m"Z A~~
~5· rri

d~ m

0
0.398228 0.020531 0.227062 0.004662 2.96507

0.1
0.423974 0.065407 0.392775 0.025690 1.86904

0.2
0.454595 0.116472 0.506173 0.058955 1.36176

0.3
0.491917 0.175819 0.597843 0.105112 1.02886

0.4
0.538904 0.246779 0.676703 0.166996 0.78104

0.5
0.600802 0.335117 0.746849 0.250282 0.58379

0.6
0.688073 0.452076 0.810566 0.366437 0.42004

0.7
0.388219 0.283831 0.855050 0.242690 0.31319

0.75
0.431343 0.336574 0.883343 0.297310 0.24808

0.8
0.492311 0.408294 0.910682 0.371826 _ 0.18713

0.85
0.589017 0.517307 0.937153 0.484796 0.12982

0.9
0.7856'75 0.728352 0.962829 0.701278 0.07576

0.95
0.714669 0.690362 0.982847 0.678520 0.03461

0..98
1.169453 1.158095 0.995132 1.152457 0.00976

1.00 _-
+8.167180 +5.535016 +4.907011

= So = SI,1 = S2 1,

To be continued



Table 4.6/3a/ (continued)

r; -.ds·5~·'n5m <!!1 ~A(~) 1+(@)2 2.[!+(d!l)1
a'~ d~ ci3 m

0 0.267949 1.071797
0.013823 0.016473 2.135037

0.1 0.251476 1.063240
0.048016 0.016891 2.118270

0.2 0.234585 1.055030
0.080283 0.017446 2.102179

0.3 0.217139 1.047149
0.108146 0.018187 2.086731

0.4 0.198952 1.039582
0.130431 0.019196 2.071894

0.5 0.179756 1.032312
0.146112 0.020608 2.057640

0.6 0.159148 1.025328
0.153918 0.022708 2.043944

0.7 0.136440 1.018616
0.076008 0.012513 2.033974

0.75 0.123927 1.015358
0.073757 0.013636 2.027522

0.8 0.110291 1.012164
0.069580 0.015252 2.021196

0.85 .0.095039 1.009032
0.062936 0.017824 2.014994

0.9 0.077215 1.005962
0.053129 0.022886 2.008914

0.95 0.054329 1.002952
0.023484 0.020070 2.004126

0.98 0.034259 1.001174
0.011248 0.034259 2.001174

1.00 0.000000 1.000000
-1.U5UH7l

= S3 1,

To be continued
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lf__:: 15°.] Table 4.6/3a/ (continued)

111(d!?_) ~) d + zs
11 d~ 2 s:Z A (3 ~~(~) ~4(d,) '/n_.t

-2.[i+(Çi_rZ)J" .>m m2f+('§JJl >m2{i+(d7?(l 5m21i+(d1'/)J_
d~ m 3 m df m Q'~ m

0
0.007716 0.002658 0.000021 0.000005 0.000015

0.1
0.007974 0.023800 0.000190 0.000075 0.000140

0.2
0.008299 0.065644 0.000545 0.000276 0.000376

0.3
0.008716 0.127746 0.001113 0.000665 0.000684

0.4
0.009265 0.209697 0.001943 0.001315 0.001027

'0.5
0.010015 0.311122 0.003116 0.002327 0.001358

0.6
0.011110 0.431673 0.004796 0.003887 0.001633

0.7
0.006152 0.534523 0.003288 0.002811 0.000880

0.75
0.006725 0.608859 0.004095 0.003617 0.000897

0.8
0.007546 0.687806 0.005190 0.004726 0.000884

0.85
0.008846 0.771332. 0.006823 0.006394 0.000830

0.9
0.011392 0.859403 0.009790 0.009426 0.000714

0.95
0.010014 0.933133 0.009344 0.009184 0.000318

0.96
0.017119 0.980670 0.016788 0.016706 0.000163

1.00
+0. 067042 +0.061414 -0.UU!H:ll9

= SI 2 = S2.2 = S3,2•



Table 4. 6J3bJ

rz yI,+r:;)2 ~ 5rn A~ (V1+(~;)i)m

0 1.06418 0
0.052774 0.285445 1.05983

0.1 1.05547 0.105547
0.157513 0.308592 1.05143

0.2 1.04739 0.209478
0.260720 0.335849 1.04363

0.3 1.03987 0.311961
0.362555 0.368752 1.03637

0.4 1.03287 0.413148
0.463162 0.409787 1.02961

0.5 1.02635 0.513175
0.562675 0.463332 1.02332

0.6 1.02029 0.612174
0.661211 0.538080 1.01747

0.7 1.01464 0.710248
0.734613 0.306652 1.01331

0.75 1.01197 0.758978
0.783246 0.343065 1.01068

0.8 1.009393 0.807514
, 0.831694 0.394253 1.008152

0.85 1.006910 0.855874
0.879970 0.474977 1.005714

0.9 1.004518 0.904066
0.928086 0.638033 1.003367

0.95 1.002216 0.952105
0.966482 0.583527 1.001546

0.98 1.000876 0.980858
0.990429 0.958089 1.000438

1.00 1.000000 1.000000
---'

To be continued
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Table 4. 6/3b/ (continued)

AS';::

'Z A§.~ AS'·.s-m ~
. ~~ -!n5m~s· m

0
0.302523 0.015965 0.229726 0.003fi68 2.94173

0.1
0.324463 0.051101' 0.396879 0.020283 1.84824

0.2
0.350502 0.091383 0.510607 0.046661 1.34431

0.3
0.382164 0.138555 0.602125 0.083427 1.01458

0.4
0.421921 0.195418 0.680560 0.132994 0.76968

0.5
0.474137 0.266785 0.750117 0.200120 0.57505

0.6
0.547480 0.362000 0.813149 0.294360 0.41368

0.7
0.310734 0.228269 0.857096 0.195648 0.30841

0.75
0.346729 0.271574 0.885012 0.240346 0.24430

0.8
0.397467 0.330571 0.911973 0.301472 0.18429

0.85
0.477691 0.420354 0.938067 0.394320 0.12786

0.9
0.640181 0.594143 0.963372 0.572381 0.07463

0.95
0.584429 0.564840 0.983098 0.555293 0.03408

0.98
0.958509 0.949335 0.995203 0.944781 0.00961

1.00
--

+ 6.518930 +4.480299 +3.985754

- S = SI 1 = S2,1- 0 ,

To be continued



Table 4. 6J3bJ (continued)

% dQ. -,A(!t!I) 11;;/ 2-[1+rffjfJ,.,? -As'·S':·lnt dJ ct~

00 0.,36396 1.13247
0.010790 0.02628 2.246495

0.1 0.33768 1.114025
0.037488 0.02619 2.211048

0.2 0.31149 1.097023
0.062727 0.02631 2.178351

0.3 0.28518 1.081328
0.084643 0.02668 2..148150

0.4 0.25850 1.066822
0.102363 0.02741 2.120226

0.5 0.23109 1.053404
0.115079 0.02864 2.094392

0.6 0.20245 1.040988
0.121771 0.03069 2.070488

0.7 0.170176 1.029500
0.060340 0.01657 2.053583

0.75 0.15510 1.024083
0.058717 0.01780 2.042958

0.8 0.13739 1.018875
0.055558 0.01962 2.032744

0.85 0.11777 1.013869
0.050418 0.022602 2.022926

0.9 0.095168 1.009057
0.042717 0.028562 2.013493

0.95 0.066606 1.004436
0.018924 0.024744 2.006188

0.98 0.041862 1.001752
0.009079 0.041862 2.001752

1.00 0.000000 1.000000

-0.830614

= S3,1

To be continued
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lep = 20°.1 Table 4.6/3b/ (continued)

A (:;)
+ .

5; 2 ~(~) ~ ,d($ï) ~?~(8J .Inj_'Z -2{1+(d'1)J.. S:n2''1+(á111t2fi+(d1!l m2fï+(d'l)1. "n;df m d~ m ctJ m df m

0
0.011698 0.002785 0.000033 0.000008 0.000024

0.1
0.011845 0.024810 0.000294 0.000117 0.000216

0.2
0.012078 0.067975 0.000821 0.000419 0.000563

0.3
0.012420 0.131446 0.001633 0.000983 0.000997

0.4
0.012928 0.214519 0.002773 0.001887 0.001452

0.5
0.013675 0.316603 0.004330 0.003248 0.001868

0.6
0.014823 0.437200 0.006481 0.005270 0.002180

0.7
0.008069 0.539656 0.004354 0.003732 0.001151

0.75
0.008713 0.613474 0.005345 0.004730 0.001156

0.8
0.009652 0.691715 0.006676 0.006088 0.001122

0.85
0.011173 0.774347 0.008651 0.008115 0.001038

0.9
0.014185 0.861344 0.012218 0.011770 0.000878

0.95
0.012334 0.934087 0.011521 0.011326 0.000386

0.98
0.020913 0.980950 0.020515 0.020417 0.000196

1.00

+0.085645 +0.078110 -0.013227

= Sl,2 = S2,2 = S3,2



Table 4. 6/3c/

"l V1+(~t)2 ~ ~m ~~ tVi+(~))m
0 1.10338 0

0.054380 0.224154 l.09549
0.1 1.08759 0.108759

0.161723 0.245071 ·1.08051
0.2 1.07343 0.214686

0.266445 0.269544 1.06706
0.3 1.06068 0.318204

0.368934 0.298932 1.05492
0.4 1.04916 0.419664

0.469520 0.335.421 1.04396
0.5 l.03875 0.519375

0.568487 0.382846 1.03404
0.6 1.02933 0.617598

0.666083 0.448795 1.02507
0.7 1.02081 0.714567

0.738606 0.257485 1.01884
0.75 1.01686 0.762645

0.786571 0.289419 1.01499
0.8 1.01312 0.810496

0.834311 0.334200 1.01134
0.85 1.00956 0.858126

0.881853 0.404592 1.00788
0.9 1.00620 0.905580

0.929220 0.546270 1.00461
0.95 1.00301 0.952860

0.967008 0.501528 1.00210
0.98 1.00118 0.981156

0.990578 0.825533 1.00059
1.00 1.00000 1.000000

To be continued
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1<1' = 250.1 Table 4.6J3cJ (continued)

AS·· 3

1l A~'~~ .dS~s:, ~ ~S~'S: -In)",

o
0.245558 0.013353 0.233195 0.003113 2.91180

0.1
0.264802 0.042825 0.402148 0.017222 1.82187

0.2
0.287620 0.076635 0.516183 0.039558 1.32259

0.3
0.315349 0.116343 0.607399 0.070667 0.99714

0.4
0.350166 0.164410 0.685215 0.112656 0.75604

0.5
0.395878 0.225051 0.753981 0.169684 0.56477

0.6
0.460046 0.306429 0.816139 0.250089 0.40634

0.7
0.262336 0.193763 0.859422 0.166524 0.30299

0.75
0.293757 0.231061 0.886888 0.204925 0.24007

0.8
0.337990 0.281989 0.913406 0.257570 0.18115

0.85
0.407780 0.359602 0.939070 0.337691 0.12573

0.9
0.548788 0.509945 0.963961 0.491567 0.07341

0.95
0.502581 0.486000 0.983366 0.477916 0.03355

0.98
0.826020 0.818237 0.995278 0.814373 0.00947

1.00

+ 5.498671 + 3.825643 +3.413555

= 50 = 51•1 = 52•1

To be continued



Table 4:6/3c/ (continued)

~ Q!] -.d(~) 1+(~)2 2{i+(:;JlTl -As~t.int, d3
0 0.46631 1.217447

0.009064 0.03870 2.400299
0.1 0.42761 1.182852

0.031376 0.03742 2.335101 .
0.2 0.39019 1.152249

0.052319 0.03659 2.277284
0.3 0.35360 1.125035

0.070465 0.03620 2.225777
0.4 0.31740 1.100742

0.085172 0.03633 2.179744
0.5 0.28107 1.079002

0.095832 0.03712 2.138516
0.6 0.24395 1.059514

0.101621 0.03890 2.101561
0.7 0.20505 1.042047

0.050455 0.02064 2.076055
0~75 0.18441 1.034008

0.049196 0.02192 2.060412
0.8 0.16249 1.026404

0.046659 0.02387 2.045620
0.85 0.13862 1.019216

0.042458 0.02713 2.031645
0.9 0.11149 1.012429

0.036086 0.03386 2.018456
0.95 0.07763 1.006027

0.016034 0.02898 2.008394
0.98 0.04865 1.002367

0.007712 0.04865 2.002367
1.00 0.00000 1.000000

-0.694449

= 53 1•

To be continued
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Table 4. 6/3c/ (continued)

A(~l) >; 2~(8J ~d(fJ) 72~(~)
7Z - 2·[I+(d'l'l)J"., t.Z{l+(d>1)J..t1U+(1f!Lt2-li+f'j)J._Yn5.Gif m dj m ct ct 'Ir)

0
0.016123 0.002957 0.000048 0.000014 0.000041

0.1
0.016025 0.026154 0.000419 0.000169 0.000308

0.2
0.016067 0.070993 0.001141 0.000589 0.000779

0.3
0.016264 0.136112 0.002214 0.001345 0.001341

0.4
0.016667 0.220449 0.003674 0.002517 0.001903

0.5
0.017358 0.323177 0.005610 0.004230 0.002389

0.6
0.018510 0.443667 0.008212 0.006702 0.002723

0.7
0.009942 0.545539 0.005424 0.004662 0.001413

0.75
0.010639 0.618694 0.006582 0.005837 0.001401

0.8
0.011669 0.696075 0.008122 0.007419 0.001344

0.85
0.013354 0.777665 0.010385 0.009752 0.001226

0.9
0.016775 0.863450 0.014484 0.013962 0.001025

0.95
0.014429 0.935104 0.013493 0.013269 0.000445

0.98
0.024296 0.981245 0.023840 0.023727 0.000225

1.00

+0.103648 +0.094194 -0.016563

= 81,2 = 82,2 = 83.2



Table 4. 6J3dJ

rz V1+(nJZ ~m .a~ W1+(d~)la3 m

o 1.15470 0
0.056418 0.182262 1.14153

0.1 1.12836 0.112836
0.166982 0.201677 1.11700

0.2 1.10563 0.221127
0.273438 0.224187 1.09573

0.3 1.08583 0.325749
0.376567 0.251Q40 1.07715

0.4 1.06846 0.427384
0.476982 0.284218 1.060809

0.5 1.053158 0.526579
0.575184 0.327178 1.046403

0.6 1.039647 0.623788
0.671595 0.386742 1.033681

0.7 1.027715 0.719401
0.743061 0.223200 '1.025004

0.75 1.022293 0.766720
0.790243 0.251932 1.019750

0.8 1.017207 0.813766
0.837173 0.292156 1.014827

0.85 1.012446 0.860579
0.883889 0.355248 1.010222

0.9 1.007998 0.907198
0.930429 0.481854 1.005925

0.95 1.003851 0.953659
0.967568 0.443942 1.002679

0.98 1.001506 0.981476
0.990738 0.732561 1.000753

1.00 1.000000 1.000000

To be continued
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Table 4. 6/3dJ (continued)

A5'=
3.

'7 A3-(0+{~)~.ds'·Sm ~ ~5··5~ -ln~m

0
0.208058 0.011738 0.237525 0.002788 2.87500

0.1
0.225273 0.037617 0.408634 0.015372 1.78987

0.2
0.245648 0.067169 0.522913 0.035124 1.29668

0.3
0.270408 0.101827 0.613651 0.062486 0.97666

0.4
0.301501 0.143811 0.690639 0.099321 0.74028

0.5
0.342360 0.196920 0.758409 0.149346 0.55307

0.6
0.399768 0.268482. 0.819509 0.220023 0.39810

0.7
0.228781 0.169998 0.862010 0.146540 0.29697

0.75
0.256908 0.203020 0.888956 0.180476 0.23541

0.8
0.296488 0.248212 0.914972 0.227107 0.17773

0.85
0.358879 0.317209 0.940154 0.298225 0.12343

0.9
0.484709 0.450987 0.964587 0.435016 0.07211

0.95
0.445131 0.430695 0.983650 0.423653 0.03297

0.98
0.733113 0.726323 0.995358 0.722951 0.00930

1.00

+4.797025 +3.374008 +3.018428

= So = SI 1 = S2.1•

To be continued



Taole 4. 6/3d/ (continued)

% ~ ~(~) 1+(d'Z)2 2{ï+($jJZT? -~5}·t·lnt, dJ ct,
0 0.577350 1.333333

0.008016 0.054663 2.606535
0.1 0.522687 1.273202

0.027514 0.051067 2.495628
0.2 0.471620 1.222426

0.045545 0.048499 2.401457
0.3 0~423121 1.179031

0.061028 0.046813 2.320639
0.4 0.376308 1.141608

0.073525 0.045943 2.250749
0.5 0.330365 1.109141

0.082599 0.045999 2.190005
0.6 0.284366 1.080864

0.087592 0.047301 2.137064
0.7 0.237065 1.056200

0.043518 0.024740 2.101282
0.75 0.212325 1.045082

0.042486 0.026019 2.079792
0.8 0.186306 1.034710

0.040364 0.028047 2.059756
0.85 0.158259 1.025046

0.036810 0.031535 2.041105
0.9 -0.126724 1.016059

0.031369 0.038873 2.023777
0.95 0.087851 1.007718

0.013968 0.032946 2.010733
0.98 0.054905 1.003015

0.006723 0.054905 2.003015
1.00 0.000000 1.000000

-0.601058

= S3 1•

To he continued
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Table 4. 6/3d/ (continued)

.d(%j-J - - + dl
2 • .d{diJ f$.d(!iJ ;Ii .dCal) 7J.:'Z -2{!+(<I,itl 5m t2{J+(~t/_ t2·U+(ctllIJ.. t,2{1+(@JJ_·/na m Ctt' m at 1r'I CtJ ",

e
0.020972 0.003183 0.000067 0.000016 0.000046

0.1
0.020463 0.027883 0.000571 0.000233 0.000417

0.2
0.020196 0.074768 0.001510 0.000790 0.001024

0.3
0.020172 0.141803 0.002860 0.001755 0.001714

0.4
0.020412 0.227512 0.004644 0.003207 0.002374

0.5
0.021004 0.330837 0.006949 0.005270 0.002915

0.6
0.022135 0.451040 0.009984 0.008182 0.003257

0.7
0.011774 0.552140 0.006501 0.005604 0.001664

0.75
0.012510 0.624484 0.007812 0.006945 0.001635

0.8
0.013617 0.700859 0.009544 0.008732 0.001552

0.85
0.015450 0.781260 0.012070 0.011348 0.001401

0.9
0.019208 0.865698 0.016628 0.016039 0.001157

0.95
0,016385 0.936188 0.015339 0.015088 0.000497

0.98
0.027411 0.981562 0.026906 0.026781 0.000249

1.00

+0.121385 +0.109990 - 0.019902

= SI,2 = S2,2 = S3,2
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1,= 15°.1 Table 4.6/3e/

SI, 1= +5.535016

t3 = +8.081715 -S = -0.0670421, 2

So = +8.167180 SI = + 5. 467974

S2,1= +4.907011 S3, 1= -1. 050871
-S = -0.061414 -S3;2= +0.0099192,2

S2 :: +4 •.845597 S3 = -1.040952

If = 20°.1 SI 1= +4. 4802!:1D,
t3 =+6.408433 -S - -0.0856451,2-

So = + 6.518930 SI +4.394654

S2, 1= + 3.985754 S3,1= -0.830614
-S = -0.078110 -S = +0.0132272.2 3,2

S2 = +3.907644 S3 -0.817387

I<r = 25°.1 SI, 1= + 3.825643

t3 = + 5.363790 -Sl,2= -0.103648

So = +5.498671 SI = +3.721995

S2, 1= +3.413555 S3 = -0.694449, 1
-S2.2= -0.094194 -S = +0.0165633,2

S2 = +3.319361 S3 -0.677886

I <P = 30°.1 SI 1= +3.374008,
e = +4.638197 -8 - -0.1213851,2-

So = +4.797025 SI +3.252623

S2. 1= +3.018428 S3 = -0.601058, 1
-S = -0.109990 -Sa, 2= +0.019902.2, 2

S2 = + 2.908438 S3 -0.581156
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5. FORMULAE FOR Q', F', B', R' AND I' AS
Y

FUNCTIONS OF P = kax FOR<p = 15°, 20°, 25°
AND 30°.

The fundament al formulae derived in section 4.5 for F'
and Q' make it possible by simple division to find the formula
for v' .m Equally the formula for R' can be found by division of
the formulae for F' and U' .

We therefore give the formulae for Q' and F', R' and
I' with the numerical values found for the quantities S and t3 for
the different values of <P •

.We further need the formulae for B' = (t3 + t3o).
From these the formula for v*" can be found as....

v~ =Vr' :~,
and the formula for ~ as

The formulae are as follows :
Ymax

p = k

(59a) Q' = Q 1.244754 ln2 (11 p)
2 5'rç;;;;:;' . 2. 'Y~ Ymax
+ 2.081904 ln(ll p) - 1. 040952

_F_ = 1. 244754 ln(ll p) + 2.704281
2Ymax

(61a) B' = t3 + t30 = 1. 244754 ln(ll p) + 5.318022

(60a) F'

(62a) R' R
Ymax

_ 1. 244754 lntll p~ + 2.704281
- 1.244754 In 11 p + 5. 403487

(63a) gFI. = 1.244754ln(1l p)+ 2.771323

Ymax • ( ~ax)



(59b)

(60b)

(61b)

(62b)

(63b)

(59c)

(60c)

(61c)

(62c)
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Q' = -2-.5-~~TQ~~....ax-'-. -Y-m-a-x-2= 0.974020 ln2 (11 p)

+ 1.634774 ln(l1 p) - 0.817387

FF' = = 0.9"74020 ln(ll p) + 2.121784
2Ymax

B' = 13+ 130= 0.974020 ln(l1 p) + 4.135563

R' = R = O. 974020 ln~ll p~+ 2.121784
Ymax O. 974020 ln 11 p + 4. 246060

I' = g F I = 0.974020 ln(l1 p) + 2.207429 .
T

( max)
Ymax' -~-

Q' - Q = 0.805268 ln2 (11 p)
- 2 5"\ fTmax '. Y 2··v ç max
+ 1.355772 ln(l1 p) - 0.677886

F' F 0.805268 ln(ll p) + 1.758406= -- =
2Ymax

B' =13+13= 0.805168 1n(1l p) + 3.4002010

R' R 0.805268 lntll PJ + 1.758406= =Ymax O. 805268 ln 11 P + 3. 535082

(63c) l' = g FIT = 0.805268 ln(ll p) + 1.862054.

Ymax .( m;)
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(59d) Q' = ._~-Q.-.---
2 .;a I"max '. 2''V. ~ Ymax

+ 1.162312 ln(ll p)

0.688370 ln2 (11 p)

- 0.581156

(60d) F' F
0.688370 ln(ll p) + 1. 506497= =

Ymax2

(61d) B' =t'+t' = 0.688370 ln(ll·p) + 2.8915760

(62d) R' R 0.688370 lnf11 p~+ 1. 506497- -- =Ymax O. 688370 In 11 p + 3. 050899"

(63d) l' = gFI = 0.688370 ln(ll p) + 1. 627882.
"Ymax'( ;ax )

Numerical values of Q', F', (t' + t'0)' R' and I' for
fixed values of Ymax

p=~

wiU be ~iven later in the tables of section 7.1,
7.1. /4a/h/cJd/ through 7.1. /8aJbJc/d/.

viz. Tables

6. DERIVATION OF FORMULAE OF THE
TYPE z ' = Acp • pBcp . Ap' WHERE

Ymax
p =~, AND Act> AND B<p ARE
FUNCTIONS OF <P ALONE, WHEREAS
Ap IS FUNCTION OF P ALONE.

6. 1. INTRODUCTION.

In formulae 5(59a)b)c)d) through 5(63a)b)c)d) the dimen­
sionless quantities Q', F', B', R' and l' are expressed as

Ymax
functions of p = k ,the numerical coefficients varying with <p.

When z' in general stands for any of these quantities
we try to adjust formulae of the type
1(64)1 z ' = Acp . pBcp. Ap

to the numerical values of z', which are computed for fixed
values of p by the above-mentioned formulae for each value of <f



SEC. 6.1-6.2-6.3. 49

Putting in the first approximation Ap = 1, we find for
each value of cp a simple power formula giving certain numerical
values of Acp and Bep

We then compute

(65) log Ap = log z ' - (log Aep + Bcp . log p) ,
giving the errors of the power formula varying with p.

lt will then appear that these values of log A are
practically independent of <f . p

Consequently we are now able to expressAep and Ber
as functions of ~ alone and Ap as function of p alone.

6. 2. (Ap = 1). SIMPLE POWE.R FORMULA.
For the first approximation with A = 1 we tabulate forp

each value of <f the corresponding values of z ' for the fixed values:
p = 10, 20, 30, SO, 100, 200, 300, SOOand 1000 and take logarithms
in (64)

(66) log z ' = log A" + Bf· log p.
This form will on double logarithmic paper represent a

straight line (Fig. S).

lts direction is taken parallel to the chord through the
points zSO and z200' and it is placed so that the errors ep for
p = 100 and p = SOOwill have the same absolute value but
opposite signs, which in the logarithmic representation corres­
ponds to the same relative deviations for p = 100 and p = SOO.

lt will prove that the devation for p ~ 24 will be nearly
the same as for p = 500, and that this maximum deviation will
not be exceeded between these limits.

We find :

log z200 - log zSO "
B<p= log 4 = 1.660964 (log z200 - log zSO)

and
H68>1 log A<f' = 4 (log zSOO+ log zioo>·- 3. 902411(logz200-logzs~

The numerical calculations are given later in the tables
of section 7. 1.

6.3. DERIVATION OF FORMULA FOR Ap.

From the tables of section 7. 1 the numerical values of
log Ap according to 6.1. (6S) are known for each value of cp .
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They prove to be almost constant for fixed values of p.
wherefore the means of log Ap are taken and used. Consequently
log Ap is considered to be independent of ~ and only varying with
p. The deviation fOr p = 100 is greatest for Q', where it
is about 2.07'0, and since no absolute accuracy is required the
function Ap is sought in a form as simple as possible.

As In 10 = 2.30259 we put

A = 1 + 2.30259 (log A ) . (c + a loi (~) +.:ie ),
p p (p=100) P

where c, a and bare constants. By putting ~ e = 0 thisp
expression gives approximately Ap.

Considering that Ap as a maximum deviates only about
2% from unity we ge t, taking natural logarithms on both sides
of (69)
InA p 2.30259 (log A ) . (c + a loi (t) +A e )

p (p=100) P
or

log A J
ep =(log A ) p = [c + a loi (~ + ~ ep = e~ +A ep

p (p=100)

I(70a~ e~ = c + a loi (t>
The left side of (70) are the relative values of the

log A "s measured by the value for p = 100; it will consequently
be +11!0 for p = 100 and about -1.0 for p = 500. We determine
the constants c, a and b by the requirement that e~ must have the
correct values (i. e. e~ = ep) for p = 20, 100 and 500. (Fig. 6).

This gives the following formulae:
a = 1.023417 (e500 - e20) - 2.046836 (1 - e20)

(70)

(71)

(72)

(73)

(74a)
(74b)

n
log b = ra
c = m - a loi b
where

f n =
ln =

3.30103 a - 1. 430677 (1 - e20)
4.00000 a - 0.715338 (e500 - e20)

and



(75a)
(75b)
(75c)
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t
m = e20 + 1.30103 n - 1.69268 a
m = e100 + 2.00000 n - 4.00000 a
m = e500 + 2.69897 n - 7.28444 a

The formulae (74a) and (74b) must give the same value
of n, and the three formulae (75) must give the same value of m,
whereupon band care easily found by (72) and (73).

Finally it follows from (69) with A ep = 0 :

1(76a)1 Ap = Co + aO lot (t), where

(76b) Co = 1 + 2.30259 c (log A )
P (p=100)

(76c) . aO = 2.30259 a (log A )
P (p=100)

oWhen the values of ep by 6.3. (70a) are deducted from the
correct values of ep by 6.3. (70) we find ~ ep and consequently the
relation between the errors from uaing the formulae (76a)b)c) and
the errors produced for p = 100 by using the corresponding simple
power formula.

6.4. DERIVATION OF EXPRESSIONS FOR a3, b3 AND~3 IN THE
FORMULA

1 - al lot (tl
1(77)1 = 1 +Á 3 - a3 lot (~).

1 - a2 lot (.t:) 3
2

It will later be useful to have a formula like that above
valid for values of b1 and b2, which do not differ much.

The values of a3, b3 and ~ 3 are to be expressed by
the known quantities al' b1, a2 and b2. We find:

(78) .

(79)

(80)

a3 = al - a2

al log b1 - a2 log b2
log b3

.A3

al - a2

(log b1 - log b2)2

1 - a2 . lot (t:>
2
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In the prachcal application of {77}. when bI and b2
differ only slightly• ..::1 3 wi11often be in significant, and the
variation with p of the denominator [1 - a2 lot (t)] , which is
near I, can be neglected, so that

_ al' a2 .
~ 3 = -- (log bI - log b2)2 •al-a2(80a)

6. 5. DERIVATIONOF FORMULAEFOR A<f ANDABSCISSAEJ OF THE FORM
1(81)1 Acp = a + b cotep + c cofep + d cofcp .

The coefficients Acp for our different dimensionless
quantities wil! be known for the four different values ofc:p.

The same is true of the abscissae ~ which are known
for fixed values of Tland the four values of cp •

All these quantities can conveniently be expressed in
formulae of the form (8l}. i.e, series Awithfour members in
increasing powers of the argument m = cot cp • Since the inter­
vals in <f' are equal.,' the intervals in m will be unequal. To
calculate the coefficients a. b, c and d so that the correct values
of the function are obtained for cp = 15°, 20°, 25° and 30°
Newton' s Method of Interpolation is used.

From the function
gem) = a + bm + cm2 + dm3(8la)

the values are known for the arguments mO' mI' m2 and m3
(equal to cot 15°, cot 20°, cot 250 and cot 300).

We define:
gem) - g(mO)

(82) gl (m) = m - mO

(83) g2(m)
gl (m) - gl (mI)

= m - mI

(84) g3(m) =
g2(m) - g2(m2)

m - m2

and calculate the special values gl (mI)' g2(m2) and g3(m3); this
is done in the usual way in a table,
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For the coefficients we then find the following expressions:

(85) a:: g(mO) + möt gl (ml) + mi[ + g2(m2) - m2 • g3(m3~}

(86) b:: gl (ml) - (mO+ ml)·g2(m2) + (mO ml + mO m2+ ml m2)· g3(m3)

(87) c:: g2(m2) - (mO + ml + m2)"g3(m3)

(88) d:: g3(m3).

7. NUMERICAL DETERMINATION OF Acp, Bcp AND
Ap FOR Q', F', vm', R', (13+130),I' AND -; .

In. the following sections the coefficients A'f" Bcp and
A for each of the dimensionless quantities Q', F', v " R',p m
(13+130),I' and -; are denoted by the first subscripts q, î , v, r-,

b, i and * respectively, for Q' e. g. by A cp' B and A .. . q ~ @

7 1. NUMERICAL CALCULATION OF Acpt B~ AND log Ap.

For the quantities Q', F', R', (13+130)and I' these
calculations are made for the four values of <f and for
Q' in Tables 7. 1j4ajbj e]dj
F' 7.lj5a/bjcjdj
R' 7.lj6ajbjcjdj
(13+130) 7.lj7a/bjcjdj
I' 7.l/8ajbjcjdj.

For vm' and v~ the corresponding values of A~, B~
and log A can easily be found by combination of the above results.p

5
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11> = 15?1 Table 7.1/4a/
Q' = 1. 244754 In2(11 p) + 2.081904 . In (11 p) - 1.040952

Aq<p= 21.8184 Bq~ = 0.26247 log Aqcp = 1.33882

Q' log Q' log P log A + log AP B 'logP qcp
qcP B ·logP qp

q~

10 36.2472 1.55928 1.00000 0.26247 1.60129 -0.04201

20 46.'3995 1.66652 1.30103 0.34148 1.68030 -0.01378

30 52.8926 1.72339 1.47712 0.38770 1.72652 -0.00313

50 61.6557 1.78995 1.69897 0.44593 1.78475 +0.00520

100 74.5852 1.87265 2.00000 0.52494 1.86376 +0.00889

200 88.7109 1.94797 2.30103 0.60395 1.94277 +0.00520

300 97.5282 1.98913 2.47712 0.65017 1.98899 +0.00014

500 109.2195 2.03830 2.69897 0.70840 2.04722 -0.00892

1000 126.1224 2.10080 3.00000 0.78741 2.12623 -0.02543

A = l : Q' = 21.8184 . 0.26247 + 2.070/0forqp . p -
24.6 ~ P ~ 500.

Table 7.1/4b/

Q' = 0.974020 In2(11 p) + 1.634774

A 17.094 B =0.262349
q~ q~

In (11 p) - 0.817387

log Aq~ = 1.23283

Q' log Q' log P log A + log Ap B ·logP q~
qcP B ·logP qp

q<p

10 28.3873 1.45313 1.00000 0.26235 1.49518 -0.04205

20 36.3354 1.56033 1.30103 0.34132 1.57415 -0.01382

30 41.4186 1.61720 1.47712 0.38752 1. 62035 -0.00315

50 48.2786 1.68376 1.69897 0.44572 1.67855 +0.00521

100 58.3999 1.76641 2.00000 0.52470 1.75753 +0.00888

200 69.4572 1.84171 2.30103 0.60367 1.83650 +0.00521

300 76.3590 1.88286 2.47712 0.64987 1.88270 +0.00016

500 85.5104 1.93202 2.69897 0.70807 1.94090 -0.00888

For A = 1: Q' = 17.094 . pO.262349 ! 2.07% for
qp

24.6 ~ P ~ 500.
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Table 7.1/4c/

Q' ::: 0.805268 ln2(1lp) + 1.355772In(11~ - 0.677886

Bqq>:::0.26230 log Aqcp:::1.15055

log A +
p Q' log Q' log P B ·logP qcp . log Aqcp Bqcp.logP qp
10 23.4869 1.37082 1.00000 0.26230 1.41285 -0.04203

20 30.0609 1.47800 1.30103 0.34126 1.49181 -0.01381

30 34.2651 1.53485 1.47712 0.38745 1.53800 -0.00315

50 39.9387 1.60140 1.69897 0.44564 1.59619 +0.00521

100 48.3094 1.68403 2.00000 0.52460 1.67515 +0.00888

200 57.4539 1.75932 2.30103 0.60356 1.75411 +0.00521

300 63.1617 1.80045 2.47712 0.64975 1.80030 +0.00015
500' 70.7297 1.84960 2.69897 0.70794 1.85849 -0.00889

For A :::l' Q' ::14.143 . pO.26230 :!: 2.07% forqp •
24.6 ~ P < 500.

Table 7.1/4d/

Q' 0.688370 ln2(11p)+ 1.162312 ln(llp) - 0.581156

Aq<f::12.099 Bq<p :::0.262249 log Aqcp :::1.08276

log A cp +
p Q' log Q' log P Bqcp ·logP q log AqpB 'log Pqcp

10 20.0915 1.30301 1.00000 0.26225 1.34501 -0.04200

20 25.7135 1.41016 1.30103 0.34119 1.42395 -0.01379

JO 29.3087 1.46700 1.47712 0.38737 1.47013 -0.00313

50 34.1605 1.53353 1.69897 0.44555 1.52831 +0.00522

100 41.3183 1.61614 2.00000 0.52450 1.60726 +0.00888

200 49.1376 1.69142 2.30103 0.60344 1.68620 +0.00522
300 54.0182 1.73254 2.47712 0.64962 1.73238 +0.00016
500 60.4893 1.78168 2.69897 0.70780 1.79056 -0.00888

For A = 1· Q' :::12.099 . 0.262249 + 2.07% forqp . p -
24.6~p~ 500.
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Table 7.1/ 5a/

F' = 1.244754 In (11 p) + 2.704281

AfCP = 6.8585 BfCP = 0.109208 log AfCP = O.83623

P F' log F' log P Bfcp.logplogAfCP+ log Afp
BfCP.logP

10 8.55522 0.93223 1.00000 0.10921 0.94544 -0.01321
20 9.41802 0.97396 1.30103 0.14208 0.97831 -0.00435
30 9.92272 0.99663 1.47712 0.16131 0.99754 -0.00091

50 10.55858 1.02360 1.69897 0.18554 1.02177 +0.00183

100 11.42138 1.05772 2.00000 0.21842 1.05465 +0.00307

200 12.28418 1.08935 2.30103 0.25129 1.08752 +0.00183

300 12.78888 1.10683 2.47712 0.27052 1.10675 +0.00008

500 13.42474 1.12791 2.69897 0.29475 1.13098 -0.00307
1000 14.28754 1.15496 3.00000 0-32762 1.16385 -0.00889

For A = l' F' = 6.8585 • pO.109208 !" 0.710/0fp .
for 23.7 ~ P ~ 500.

Table 7.1/5b/

F' = 0.974020 ln(l1p) + 2.121784
A - 5 3728 B - 0 10911 log A -0 73020fep - . fep - . fep- .

F' log F' log P log A +
log AfPP Bf<p.logP fcp,

Bf<p.logP

10 6.70015 0.82608 1.00000 .0.10911 0.83931 -0.01323

20 7.37529 0.86778 1.30103 0.14195 0.87215 -0.00437

30 7.77021 0.89043 1.47712 0.16117 0.89137 -0.00094

50 8.26777 0.91739 1.69897 0.18537 0.91557 +0.00182

100 8.94291 0.95148 2.00000 0.21822 0.94842 +0.00306

200 9.61806 0.98308 2.30103 0.25106 0.98126 +0.00182

300 10. 01298 1.00056 2.47712 0.27027 1.00047 + 0.00009

500 10. 51054 1.02162 2.69897 0.29448 1.02468 -0.00306

For A = l' F'=5.3728.p 0.10911 !" 0.707,/0
fp

for 23.8 ~p < 500
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Table 7.1 /5c/

F' = 0.805268 ln(ll p) + 1.758406

Af<p = 4.4456 Bf<p = 0.10906 log Af<p =0.64793'

P F' log F' log P log A +
log AfpBf'f>.log P [tp

Bf<p.logP

10 5.54355 0.74378 1.00000 0.10906 0.75699 -0.01321
20 6.10172 0.78545 1.30103 0.14189 0.78982 -0.00437
30 6.42823 0.80809 1.47712 0.16109 0.80902 -O.00093
50 6.83958 0.83503 1.69897 0.18529 0.83322 +0.00181

100 7.39775 0.86910 2.00000 0.21812 0.86605 +0.00305
200 7.95593 0.90069 2.30103 0.25095 0.89888 +0.00181
300 8.28243 0.91816 2.47712 ' 0.27015 0.91808 +0.00008

500 8.69379 0.93921 2.69897 0.29435 0.94228 -0.00307

For A = 1· F' = 4.4456 . P0.10906 ± 0.70'0fp .
for 23.B~ p < 500.

Table 7.1/5d/

F' = 0.688370 In (11 p) + 1.506497
A[<p= 3.8034 B[ep = 0.10899 log AfCP = 0.58017

F' log F' log P lo~ +
log A[pp Bf1> .log p fep

. Bf<P.logp

10 4.74217 0.67598 1.00000 0.10899 0.68916 -0.01318

20 5.21931 0.71761 1.30103 0.14180 0.72197 -0.00436

30 5.49842 0.74023 1.47712 0.16099 0.74116 -0.00093

50 5.85006 0.76716 1.69897 0.18517 0.76534 +0.00182

100 6.32720 0.80121 2.00000 0.21798 0.79815 +0.00306

200 6.80434 0.83278 2.30103 0.25079 0.83096 +0.00182

300 7.08345 0.85025 2.4771~ 0.26999 0.85016 +0.00009

500 7.43509 0.87129 2.69897 0.29417 0.87434 -0.00305

For A = 1: F'=3.8034.p 0.10899 + 0.707%
fp < -

for 23.8 = p < 500.
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Table 7.1 /6a/

R' _ 1.244754 !n(11 p) + 2.704281
- 1. 244754 ln(ll p) + 5. 403487

A - 0 73272 B - 0 020945 log A - 9 86494- . rq>- . r<p- .rep
îogA +

p R' log R' log p r<p log ABrf .logp B
rep.logp rp

10 0.760165 9.88091 1.00000 +0.02095 9.88589 -O.00498
20 0.777242 9.89056, 1.30103 +0.02725 9.89219 -0.00163
30 0.786149 9.89550 1.47712 +0.03094 9.89588 -0.00038
50 0.796406 9.90113. 1.69897 +0.03558 9.90052 +0.00061

100 0.808846 9.90786 2.00000 +0.04189 9.90683 +0.00103
200 0.819853 9.91374 2.30103 +0.04820 9.91314 +0.00060
300 0.825724 9.91683 2.47712 +0.05188 9.91682 +0.00001
500 0.832597 9.92043 2.69897 +0.05653 9.92147 -0.00103

1000 0.841099 9.92485 3.00000 +0.06284 9.92778 -0.00293

For Aro = 1 : R' = 0.73272 . pO.020945± 0.237 < -'0 for 24.8=p< 500.

Table 7.1/6b/

R' - 0.974020 . In fll p~+ 2.121784- o. 974020. ln 11 p + 4. 246060
log Ar<p= 9.86434

P R' log R' log P B .logplag Arq>+ log A
rf Brep.logp rp

10 0.759273 9.88040 1.00000 0.02103 9.88537 -0.00497
20 0.776382 9.89008 1.30103 0.02736 9.89170 -0.00162

30. 0.785307 9.89504 1.47712 0.03106 9.89540 -0.00036

50 0.795586 9.90068 1. 69897 0.03573 9.90007 +0.00061

100 0.808056 9.90744 2.00000 0.04206 9.90640 +0.00104

200 0.819092 9.91334 2.30103 0.04839 9.91273 + 0.00061

300 0.824979 9.91644 2.47712 0.05209 9.91643 +0.00001

500 0.831871 9.92006 2.69897 0.05675 9.92109 -O.00103

For A = 1 • R' = 0.73172 . pO.02103 !" 0.240 % for24.6~p < 500.rp •
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Table 7.1/6e/

R': 0.805268. ln ~11 p~ + 1.758406o. 805268 . In 11 p + 3. 535082
A : 0 72968 B : 0 02118 log A : 9 86313
r<p . rep . rep .

p R' log R' log P B I log A + log Arep"og p B rltgp rprep.

10 0.757292 9.87927 1.00000 0.02118 9.88431 -0.00504

20 0.774488 9.88901 1.30103 0.02755 9.89068 - 0.00167

30 0.783462 9.89402 1.47712 0.03128 9.89441 -0.00039

50 0.793800 9.89971 1.69897 0.03598 9.89911 +0.00060

100 0.806345 9.90652 2.00000 0.04235 9.90548 +0.00104

200 0.817451 9.91246 2.30103 0.04873 9.91186 +0.00060

300 0.823376 9.91560 2.47712 0.05246 9.91559 +0.00001

500 0.830315 9.91925 2.69897 0.05716 9.92029 -0.00104

For A : R'.:0.72968 . po.02118 '! 0.240 % for24"g~p ~ 500.
rp

Table 7.1/6d/

R' - 0.688370 . In ~11p~ + 1.506497- o. 688370 • In 11 p + 3. 050899
A - 0 72638 B : 0 021460 log A : 9 86117
r<p- . r<p . rq> .

log A <p+
P R' log R' log P Blog p r logA

rcp" Brcp.logp rp

10 0.754333 9.87756 1.00000 0.02146 9.88263 -0.00507

20 0.771664 9.88743 1.30103 0.02792 9.88909 -0.00166

30 0.780713 9.89249 1.47712 0.03170 9.89287 -0.00038

50 0.791141 9.89825 1.69897 0.03646 9.89763 + O.00062

100 0.803801 9.90515 2.00000 0.04292 9.90409 +0.00106

200 0.815014 9.91117 2.30103 0.04938 9.91055 +0.00062

300 0.820998 9.91434 2.47712 0.05316 9.91433 + 0.00001

500 0.828008 9.91803 2.69897 0.05792 9.91909 -O.00106

For A : 1 . R' = 0.72638 • pO.021460 '! 0.244 % for24.7~p < 500.
rp .
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Table 7.1 /7a/

13+ 130= 1.244754 In (11 p) + 5.318022

Ab<p = 9.2804 Bbep = 0.088795 log AbCP = 0.96757

p 13+ faO log(t3+ 130) log p Bb<p
log Abcp +

log Abp.log p
Bh<p' log p

10 11.16896 1.04801 1.00000 0.08880 1.65637 - 0.00836
20 12.03177 1.08033 1.30103 0.11552 1.08309 - 0.00276
30 12.53646 1.09818 1.47712 0.13116 1. 09873 -0.00055
50 13.17232 1.11967 1. 69897 0.15086 1.11843 +0.00124

100 14.03512 1.14722 2.00000 0.17759 1.14516 +0.00206
200 14.89792 1.17313 2.30103 0.20432 1. 17189 +0.00124
300 15.40262 1.18759 2.47712 0.21996 1.18753 + 0.00006
500 16.03848 1.20516 2.69897 0.23966 1.20723 - 0.00207

1000 16.90128 1. 22792 3.00000 0.26639 1. 23396 -0.00604

For Abp= 1 : 13+ 130= 9.2804 • pO.088795"!"0.475 % for 23. 2~p~ 500.

Table 7.1/7b/

13+ 130 = 0.974020 In (11 p) + '4.135563

Abq:> = 7.2375 Bb<p = 0.08901 log Abep 0.85959

p 13+ 130 log(t3+130) log p
log Abq:> +

log AbpBbcp·log p Bb<P' log p

10 8.713925 0.94022 1.00000 0.08901 0.94860 - O. 00838
20 9.389066 0.97262 1.30103 0.11581 0.97540 - O.00278
30 9.783993 0.99052 1.47712 0.13148 0.99107 - 0.00055
50 10.281551 1.01206 1.69897 0.15123 1.01082 + 0.00124

100 10.956693 1.03968 2.00000 0.17802 1.03761 +0.00207
200 11. 631835 1.06565 2.30103 0.20482 1.06441 +0.00124
300 12.026761 1. 08015 2.47712 0.22049 1.08008 +0.00007
500 12.524320 1. 09775 2.69897 0.24024 1. 09983 - O.00208

° 08901 232< =For Abp = 1 : 13+t30=7.2375.p· "!"0.477%for .=p<500
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Table 7.1J7cJ

13+ 130= 0.805268 In (11 p) + 3.400201

Ab<p = 5.9660 Bbc:p= 0.08919 log Ab<p = 0.77568

13+130 log(t3+130) log p Bb<p"logP
log Ab<p+

P log A
Bb<p·logP bp

10 7.185347 0.85645 1.00000 0.08919 0.86487 - 0.0084
20 7.743519 0.88894 1.30103 0.11604 0.89172 -0.00278
30 8.070023 0.90687 1.47712 0.13175 0.90743 -0.00056
50 8.481378 0.92847 1.69897 0.15154 0.92722 + 0.00125

100 9.039549 0.95615 2.00000 0.17839 0.95407 +0.00208
200 9.597721 0,98217 2.30103 O. 20524 0.98092 +0.001.25
300 9.924225 0.9·9670 2.47712 0-.22094 0.99662 +0.00008
500 10.335580 1.01433 2.69897 0.24073 1.01641 - 0.00208

For A = 1 • 0.08919 o/t 232< =
bp • 13+130= 5.9660 . p ! 0.48 0 for . =p <. 500.

Table 7.1J7dJ
13+ 130= 0.688370 In (11 p) + 2.891576

Ab<P = 5.0864 Bb<p = 0.08936 logAb<p 0.70641

p 13+130 log(t3+130) log p Bb<p·logP
log Ab<p+

log AbpBb<p,logP

10 6.12774 0.78730 1.00000 0.089360 0.79577 -0.00847
20 6.60488 0.81986 1.30103 0.11,6260 0.82267 -0.00281
30 6.88399 0.83784 1.47712 0.131995 0.83841 -O.00057
50 7.23562 0.85948 1.69897 0.151820 0.85823 + 0.00125

100 7.71277 0.88721 2.00000 0.178720 0.88513 + 0.00208
200 8.18992 0.91328 2.30103 0.205620 0.91203 +0.00125
300 8.46902 0.92783 2.47712 0,221355 0.92777 +0.00006
500 8.82067 0.94551 2.69897 0.241180 0.94759 -O.00208

For Abp 1:13+130= 5.0864 , P0.08936 + O,480/0for23.3~p<'500.
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Table 7.1/8a/

I.' = 1.244754 ln (11 p) + 2.771323

Ai<f' = 6.9199 Bi<f' = 0.108561 0.84010

I' log I' log P
log Ai<p +

log A.P Biq:>'log P Bi<p.log P lp

10 8.62226 0.93562 1.00000 0.10856 0.94866 - 0.01304

20 9.48507 0.97704 1.30103 0.14124 0.98134 - 0.00430

30 9.98976 0.99957 1.47712 0.16036 1.00046 - O.00089

50 10.62562 1.02635 1.69897 0.18444 1.02454 +0.00181

100 11. 48842 1.06026 2.00000 0.21712 1. 05722 + 0.00304

200 12.35122 1.09171 2.30103 0.24980 1.08990 +0.00181

300 12.85592 1.10910 2.47712 0.26892 1.10902 +0.00008

500 13.49178 1.13007 2.69897 0.29300 1.13310 - 0.00303

000 14.35458 1.15699 3.00000 0.32568 1. 16578 - 0.00879

For A. = 1 . I' =6.9199. 0.108561 < =
lp • P ± 0.702% for 23.69= P < 500.

I<p = 20°·1 Table 7.1/8b/

I' = 0.974020 In (11 p) + 2.207429
A. = 5.4502 Bi<p = 0.108096 log AiP = 0.73642lep
'-.

I' log I' log P
log Ai<P +

log A.p B.cp' log P B.l
1 iq:> og P lp

10 6.78579 0.83160 1. 00000 0.10810 0.84452 -0.01292

20 7.46093 0.87280 1.30103 0.14064 0.87706 - O.00426

30 7.85586 0.89519 1.47712 0.15967 0.89609 - O.00090

50 8.35342 0.92186 1.69897 0.18365 0.92007 +0.00179

100 9.02856 0.95562 2.00000 0.21619 0.95261 +0.00301

200 9.70370 0.98694 2.30103 0.24873 0.98515 +0.00179

300 10.09863 1.00426 2.47712 0.26777 1.00419 +0.00007

500 10.59619 1. 02515 2.69897 0.29175 1.02817 - O.00302

For Aip = 1 : I' =5.4502. pO.108096 ± 0.695% for 23. 72 ~ p';_ 500



Table 7.1/8c/

I' = 0.805268ln (11 p) + 1.862054
A. =4.5399B. = 0.107547

I q:> Iq:> 0.65705
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p I' log I.' log p
log Ai<p +

log AipB'cp.logPB 1I iep' og P

10 5.64720 0.75183 1.00000 0.10755 0.76460 - 0.01277
20 6.20537 0.79277 1.30103 0.13992 0.79697 - 0.00420
30 6.53188 0.81504 1.47712 0.15886 0.81591 - 0.00087
50 6.94323 0.84156 1.69897 0.18272 0.83977 +0.00179

100 7.50140 0.87512 2.00000 0.21509 0.87214 + 0.00298
200 8.05957 0.90631 2.30103 0.24747 0.90452 +0.00179
300 8.38608 0.92355 2.47712 0.26641 0.92346 +0.00009
500 8.79743 0.94435 2.69897 0.29027 0.94732 - 0.00297

For A. = 1 : I' = 4.5399 . pO. 107547 "±" 0.6880;0 for 23. 70 ~ P <: 500
lp

Table 7.1 [ea]

I' = 0.688370 In (11 p) + 1.627882
3.9143 B. = 0.106933HP

I' log IJ log Pp

log Ai<P = 0.59266

log Ai<P +
BI'IT).logP B 1 log A.

T .• og P lplep

10 4.86355 0.68695 1.00000 0.10693 0.69959 - O.01264
20 5.34070 0.72760 1.30103
305.619800.749721.47712
50 5.97144 0.77608 1.69897

100 6.44859 0.80947 2.00000
200 6.92573 0.84046 2.30103
300 7.20484 0.85762 2.47712
500 7.55648 0.87832 2.69897

0.13912 0.73178 -0.00418
0.15795 0.75061 - 0.00089
0.18168 0.77434 +0.00174
0.21387 0.80653 +0.00294
0.24606
0.26489
0.28861

0.83872 +0.00174
0.85755 + 0.00007
0.88127 -0.00295

for A. '" 1 : I' = 3.9.143 . pO. 106933 ! 0.679% for 23. 76 ~ p< 500.lp
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7. 2. NUMERICAL CALCULATIONS
FUNCTION OF p.

OF FORMULAE FOR Ap AS

These calculations are compiled in Tables

7.2./9/10/11/12/ for

Aqp Afp Abp Aip' respectively.
The values of log A are found in the last columns of thep ,

tables of section 7.1. It is seen that the values of e.g. A areqp
practically equal for the different values of cp, and the same
applies to the other A 's. The values in the tables of section 7.2.

P ,
are taken as the mean values and denoted by (log A )

Pm·
The corresponding values of ep from formula 6.3. (70) are

next found , and the values e20, e100 and e500 are introduced in
formulae 6.3. (71 through 75), which give the values of a, b and c
indicated in the following tables. These values introduced in
formulae 6.3. (76a)b)c) thus give the definite formulae for the A 's.p

The errors of these formulae are found by calculation of
othe values of ep according to 6.3. (70a)

e~ = c + a loi(~).16. 3. (70a)1
The differences e - eO = ~ e are proportional to thep p p

errors; the absolute values of the errors are found by multi­
plication by ~ e of the errors for p = 100 stated in the tables of

p
section 7. 1.
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Table 7.2/9/

e.p = ep by
p (log AqP)m toq_Av,e

6.3(70a) ~ep
/OgAqfOO

10 -0.04202 - 4.7320 - 4. 0575 - O. 6745
20 -0.01380 1-1. 55411 -1.5541 0.0000
30 -0.00314 -0.3536 -0.4815 +0.1279
50 +0.00521 + 0.5867 +0.4585 +0.1272

100 1+0.008881 1+1.00001 +1.0000 0.0000
200 +0.00521 +0.5867 +0.6967 -0.1100
300 + 0.00015 +0.0169 +0.1225 - O. 1056
500 - 0.00889 1-1.00111 -1.0011 0.0000

1000 -0.02543 - 2. 8637 - 3.2659 +0.4022
By 6.3 (71 through 75) :
a =-4.6619 , b = 110.262 , c = 1.0084 , log b = 2.04243
By 6.3 (76a)b)c) : < =for - 17.5 = p< - 622

Aqp = 1.020619 - 0.095322 • log2 (no: iS:::!) ~ 0.265 "/0

Table 7.2/10/

ep = ep by
p (togAfpt, tOf/Afp· 6. '3(70a) ~ep

. to9AffOO
10 -0.01321 -4.3170 - 3.8322 - O. 4848
20 -0.00436 1-1.42481 - 1.4247 - 0.0001

30 - 0.00093 - O. 3039 - 0.3968 +0.0929

50 +0.00182 + 0.5948 +0.4980 + 0.0965

100 1+0.003061 1+1.00001 + 1.0002 +0.0002

200 +0.00182 +0.5948 +0.6813 -0.0865

300 +0.00009 +().02941 +0. i143 - O. 0849

500 - 0.00306 1-1.00001 -0.9997 - O. 0003

1000 - O. 00889 - 2.9053 - 3.2243 +0.3190

By 6.3 (71 through 75) :
a = -4.52842 , b = 108.035 , c = 1.0053 , log b = 2.03356

for <: =
By 6.3 (76a)b)c) : 17.4 = P < 616

Afp = 1.007083 - 0.031907 • lo!( (rol035) !" 0.068 %
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Table 7.2/11 /

ep= eO by
(tOgAbpJm tog.Abp 'P ~epp

6.3(70a)loqAblOO
10 -0.00840 - 4. 0508 -3.6917 - O. 3663
20 - 0.00278 1- 1. 34301 -1. 3431 +0.0001
30 - 0.00056 - O.2705 - O.3432 + 0.0727
50 +0.00125 + 0.6039 +0.5238 +0.0801

100 1+0.002071 1+1.00001 +0.9998 +0.0002
200 +0.00125 + 0.6039 +0.6694 - O.0655

300 + 0.00007 + 0.0338 + 0.1023 - O.0685
500 - 0.00208 1- 1. 00481 - 1. 0050 + 0.0002

1000 - 0.00604 -2.9179 - 3.2079 + 0.2900
By 6.3 (71 through 75) :
a=-4.44962, b = 106.46 I C = + 1. 0031 I log b = +2.02718
By 6.3 (76a)b)c) : for 17. 2 ~ P < 605

Abp = 1. 0047812 - 0.0212087 • lot (loK.4s) !' 0.0382 "/0

Table 7~2/12/

ep= eO b!;l
(logAipJn (og. A4e 1>

P 6.3(70a) Jj ep
log Ai100

10 - 0.01284 - 4. 2943 - 3.8208 - 0.4735
20 - 0.00424 1-1.41811 -1.4182 +0.0001
30 - 0.00089 - O.2977 - O. 3927 + 0.0950
50 +0.00179 + 0.5987 +0.5001 + 0.0986

100 1+0.002991 1+1. 00001 + 0.9999 + 0.0001
200 +0.00178 + 0.5953 +0.6801 - 0.0848
300 +0.00008 + 0.0268 +0.1132 - O.0864
500 - O.00299 1- 1. 00001 - 1. 0002 +0.0002

1000 - O.00879 - 2.9398 - 3.2229 + 0.2829
By 6.3 (71 through 75) :
a = -4.5216 • b=107.914, c=+1.0048, Iog b =+2.03307
By 6.3 (76a)b)c) : <. -for 17.3 = P < 636

Aip = 1.0069177 - 0.031130 • lot (107:914)!' 0.06790/0



SEC. 8.1. 67

8. GENERAL REVIEW OF FORMULAE FOR Q',
F' v ' R' B' I' AND v ' AND OF·'m' " *
FORMULAE FOR THE ABSCISSAE i AS
FUNCTIONS OF cp FOR FIXED VALUES OF
THE ORDINATES"1. .

8.1. THE DEFINITIVE FORMULAE FOR THE DIMENSlONLESS
QUANTITIES Q', F', vm', R', B', I' AND v~. .

These are given in the following tables:

in Table 8.1. /13/, Formulae (89) and(89a)b)c)d)e)
8.1./14/, (90) - (90a)b)c)d)e)
8.1/15/, (91) - (91a)b)c)d)e)
8.1./16/, (92) - (92a)b)c)d)e)
8.1. /17/, (93) - (93a)b)c)d)e)
8.1. /18/, (94) - (94a)b)c)d)e)
8.1. /19/, (95) - (95a)b)c)d)e)

Q'

F'
v 'm
R'

B' =13+130
I'
v '
* The coefficients Aqcp etc. are in general functions of <p
they are given as functions of m = coUp; in some cases the
variation with cp is so slight that a mean value near the correct
value for ~ = 200 is used.

The exponents Bep in most cases vary so little with cp
that a mean value can be used. The factors A etc. arey qp
gene rally functions of p = -T-x as indicated. For R', B' and
v ' these factors can bè put equal to unity, because the simple
*power formulae have already very smaU errors.

In the tables are given the directly calculatèd values for
o 0 0 0A<p and Bq> for cp = 15 , 20 , 25 and 30 .

The tables also state the ranges of validity of the simple
power formulae and of the complete formulae, including the
factors A with the corresponding maximum errors as weU.p
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Table 8.1/13/

(89) Q' = Q cp Aq<p Bq<p
2 ~'max y2max 15° 21. 8184 0.26247• 5> •

B 200 17.094 0.26235
= A . p qcp. A

250 14.143 0.26230qcp qp

Q for half of total section. 300 12.099 0.26225

(89c) Aqcp~ 3.1815 . Af<P

(89d) Bq~ mean ~ 0.26234

(8ge) A = 1.020619 - O. 095322.log2 (nO~2i)2}qp

ForA = 1 and 25 ~ P <. 500 :qp
B

(89a) Q' = A . p q<p ± 2. 07 0/0
qcp

Complete formula and 17. 5 ~ P ~ 622 :
B

(89b) Q' = A . p qcp. A ± O. 265 0/0qcp qp
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Table 8.1/14/

(90) F' F <:p Aftp Bf<P=
Ymax2

_ Bfcp
150 6.8585 0.10921
200 5.3728 0.10911- AfCP' p . Afp
250 4.4456 0.10906

F for half of total seetion 300 3.8034 0.10899--

(90e) Afcp= 1.03153 + 1.63688.m - 0.02187.m2 + 0.000437·m3

(90d) Bfcpmean ; 0.1091

(90e) Af = 1.007083 - 0.031907 10" (lOt (35)p . .
For Afp = 1 and 25 ~ P < 500 :

(90a) F' _ Bfep+
0.71"/0- Afep··P -

Complete formula and 17. 4 ~ P< 616.

B
(90b) F' A fep, + .= fep' P . Afp - O. 068 0/0

6
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Table 8.1/15/

(91 ) v' v. A Bvcpm °!j.5Vr;ax cp vcp
15° 3.1815 0.15324

B 20° 3.1816 0.15324= A • P vcp . Avpvf 25° 3.1813 0.15324
30° 3.1811 0.15326

(91c) A - 3.1815mean =vcp

(91d) Bvcp - 0.15324mean =

(91e) A = 1.0135645- 0.0634373·10!f (IIt42S)vp

For A = 1 and < <. 500 :vp 25 = P

B
(91a) v = A P v~ ± 1. 37 0/0m vcp .

Complete formula and 17. 5~ P < 620
B

(91b)
,

A vcp A 0.1950/0vm = vep . p • +vp -
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Table 8.1/16/

(92) R' R
Ar(f) Br<p= -- <pYmax

B 15° 0.73272 0.02095
rep A 20° 0.73172 0.02103= Arep· p . rp

25° 0.72968 0.02118
30° 0.72638 0.02146

(92c) Arep - 0.732 0<- 20°mean = for 15 = <P <

(92d) Brcp - 0.0210 15°~CP< 20°mean = -

(92e) A ~ 1 as simple power-formula sufficientrp

For A = 1 and 25 ~ P ~ 500rp
B

(92a, h) R' = A P
r~

":!:" O.24 0/0rep .
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Table 8.1/17/

(93) B' B = (t3 + t30) <p Abel> Bbq)- --Ymax

Bb<p
150 9.2'804 0.08880

= Abcp' Abp 200 7.2375 0.08901P •
250 5.9660 0.08919

B for half of total section. 300 5.0864 0.08936-

(93c) Abcp= 1.29443 + 2.23919·m - 0.03069·m2 + 0.00109·m3

(93d) Bb<f mean = 0.0890

(93e) Abp = 1.0047812 - 0.0212087'10' (Io-l4S)
ForAb = 1 and < = 50025 = P <, p

(93a) B' _ Bbq> +
0.48 '0- Abq>' P -

Complete formula and 17. 2 < 605= P <

(93b) B' = Ab<P •
Bb<p

Abp ± 0.0380/0p .
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Table 8.1/18/

(94) I' = g . F • I
<P AiIP Bi~Tmax·

YmaX(-9-) 15° 6~9199 0.108561
B.<p 200 5.4502 0.108096"1 A.= Aief •P . 250 4.5399 0.107547lp

300 3.9143 0.106933

(94c) Aiq> = 1.27988 + 1.51750·m + 0.00519·m2 - O.00184·m3

(94d) Bief mean = 0.10833 0< - 200for 15 .. cp <

(94e) Aip = 1.0069177 - 0.031130·10g2 (101.914)

For A. = 1 and 25 ~ P < 50Ölp

(94a) I' = Aicp'
Bi<p +

0.70 0/0P -

Complete formula and 17. 3 < = 636P <
B.<p

(94b) I' = Ai<f P 1 . Aip + 0.068 %.
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Table 8.1/19/

(95) v;' =Vg ~ i <p A*cp B*cp
15° 1.1630 -0.01015
20° 1.1604 -0.00997
25° 1.1584 - 0.00983
30° 1.1566 - 0.00970

(95c) A*cp
- 1.160 for 15° <. cp = 25°mean = = <.

- 0.0100 for 15° <. cp = 25°(95d) B mean = = <*<p

(95e)
~

- 1 as simple power-formula sufficient.=

For A 1 and 25 < = 500= = P <*p

(95a)b) ,
A*<p

B~ + 0.11%v = p -
*
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8. 2. FORMULAE FOR THE ABSCISSAE ~ AS FUNCTIONS OF
m = cotep .

These formulae are found by the method indicated in
Sec. 6. 5. and are based on the values of ~ , which are found
for fixed values of Tl and for the four dilferent values of <p
as listed in Tables 3.3. / 2a/b/ c/ d/ •

The numerical coefficients a, b, c and d in the forrnulae:
(96)
(96a) where m = cot c:p .

are given in Table 8.2. /20/.
A separate forrnula for ~ is consequently available for

each of the fixed values of Tl.
For later use we have computed by means of these

formulae the numerical values of ! for cp = 14°. 16°, 17°,
180 and 19°'. These are. together with the previously found values

000 0 .for cp = 15 , 20 • 25 and 30 (Tables 3.3. (2a)b)c)d», compiled
in the Table 8.2. /21/ .
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Table 8.2/20/

rz J l' m- m2• m3•

0 ~O = 0 0 0 0
0.1 ~0.1 = +0.00723 +0.10041 + 0.00049 -0.000065
0.2 ~O. 2 +0.02898 +0.20256 +0.00179 - 0.00024
0.3 .10.3 +0.06579 +0.30833 +0.00365 - 0.00051
0.4 30.4 +0.11622 +0.42315 +0.00455 - 0.00070
0.5 ~O. 5 +0.18331 +0.54901 +0.00447 - 0.00082
0.6 '0.6 +0.27246 +0.68819 +0.00360 - 0.00090
0.7 '0.7 = +0.38875 + 0.84935 +0.00049 -0.00078
0.75 ~e.75= +0.46333 +0.93745 - O.00083 -0.00078
0.8 ~ 8 = +0.54583 + 1. 04230 - O.00555 - 0.00039O.
0.85 ~0.85= +0.64936 +1.15793 - O.01000 - O.00007
0.9 ~O. 9 = +0.78211 + 1. 29522 -0.01590 +0.00039
0.95 30.95= +0.97200 +1.47634 - O.02432 +0.00107
0.98 ~0.98= +1.15392 +1.63955 - 0.03239 +0.00175
1.0 ~1. 0 = +1.46574 + 1. 90032 - O.04441 +0.00274
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Table 8.2/21/

3
'l

14° 15° 16° 17° 18°<p= cp= <p= cp= <p=

0 0 0 0 0 0

0.1 0.41364 0.38543 0.36060 0.33863 0.31901

0.2 0.85471 0.79740 0.74698 0.70227 0.66235

0.3 1.32825 1.24081 1.16~82 1.09549 1.03443

0.4 1.84141 1.72240 1.61757 1.52446 1.44123
0.5 2.40426 2.25187 2.11750 1.99816 1.89142

0.6 3.03248 2.84419 2.67807 2.53045 2.39835
0.7 3.75287 3.52483 3.32366 3.14480 2.98468

0.75 4.15957 3.90979 3.68943 3.49342 3.31790

0.8 4.61183 4.33820 4.09672 3.88201 3.68976

0.85 5.12818 4.82792 4.56295 4.32735 4.11634

0.9 5.74634 5.41474 5.12223 4.86212 4.62914

0.95 6.57108 6.19867 5.87020 5.57814 5.31653
0.98 7.32166 6.1H261 6.55199 6.23136 5.94415
1.0 8.54989 8.08172 7.6.6902 7.30216 6.97354

To be continued
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Table 8.2/21/

~
Tt

19° 20° 25° 30°cp= <p= cp= q:>=

0 0 0 0 0

0.1 0.30138 0.28545 0.22415 0.18226

0.2 0.62648 0.59404 0.46923 0.38394

0.3 0.97955 0.92989 0.73877 0.60813

0.4 1.36637 1.29864 1.03770 0.85917

0.5 1.79535 1.70843 1.37312 1.14338

0.6 2.27942 2.17176 1.75597 1.47056

0.7 2.84046 2.70984 2.20476 1.85730
0.75 3.15977 3.01649 2.46225 2.08050

0.8 3.51653 3.35955 2.75167 2.33244

0.85 3.92618 3.75381 3.08587 2.62459

0.9 4.41914 4.22878 3.49046 2.97984

0.95 5.08068 4.86682 4.03673 3.46169

0.98 5.68520 5.45034 4.53826 3.90564

1.0 6.67722 6.40843 5.36379 4.63820

(continued)
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9. DETERMINATION OF ISOVELS IN
THE EQUILIBRIUM PROFILE.

The principal assumptions made in the foregoing sections,
which made it possible to determine a definite equilibrium profile
for fixed values of 9 ' ormax' cp. k and Q, are expressed by the
formulae 1. (1), 2.1(3), 2.2(9), 4.2. (19), 4.4. (45), giving the
distribution of the shearing stresses, the relation between hydraulic
lifting force and shearing stress, the logarithmic law of velocity
distribution and the principle of minimum cross section.

On the same assumptions it is possible to calculate the
accurate form of the isovels and thus, by comparing these with the
results from actual measurements, to get a certain check on the
correctness of the assumptions .

We therefore indicate the method of determination of
isovels having velocities expressed as multiples of the mean
velocity of the total cross section.

The velocity at a point P of the cross section is denoted
by vz,~ . Here the subscripts indicate that P is situated at· the
distance z from the bottom in a normal to this with the length

(P . y between the bottom and the water surface. By 4,2, (18)
? max

and 4.2. (19) we find this velocity to be

(97) vz,!; ~ 2'~"9ax 'Vf' [3.392 + ln(~)]

Substituting

(98)
r and

(99) z
Ymax

z'

(100)

Ymaxwe get , with ~ = p as usual:

r ~ ~ Y" max .1q;. in [29. 725 P . z']
Vm 9 'V.5

Further we have from Table 8.1. /15/

8.1. (91b)c)d) = 3.1815 • pO.15324 • A
vp
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and

8.1. (91e) Avp 1. 013565 - 0.063437 10g2 ( 1l1~ 428) whence

r - ....yf. In [ 29. 725 p. z']
- 3.1815·pO.15324·A

vp
This formula gives the velocity at the point P measured

with the mean velocity vm as unity as function of the dimension-
less quantities ~ , total length of the normal, z', distance from

Ymax
the bottom, and p = ~ .

(101 )

lf we choose the .normals >m used in the numerical
integration, these will vary with <p ; but if the normals are chosen
as fixed multiples of ymax and introduced in a drawing of the
equilibrium profile in question, the relative velocities will depend
only on p, i. e. the relati ve roughness of the bottom.

From (lOl) we get:

(
3.1815 . pO.15324

V! . r)
1(10Ia) I z'

29.725 p

For a fixed value of p a complete set of isovels, e. g.
with relative velocities
r = 1.2 , 1. 1 , 1.0 , 0.9 , .
can be drawn by choosing suitable values of ~

As an exampl e the isovels are worked out for an equi-

librium profile with <p 300 and p = ~ 50.
We get

29.125 • P = 1486.25 and f rom 8. 1. (91e)
A s: 1.00588vp

3.1815 . po. 15324 . A = 5.8281
vp

(101 aal z'
( 5.8281 r)
e~ •

1486. 25

which

For the values ~ We have chosen the values
""\~ can be found in Table 4. 6. / 3d/ .v~m

~m' for
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The results are shown in Fig. 7.

It will be seen that the form of the isovels compares
fairly well with the results of actual meaaurements, and it can
conaequently be concluded that the assumption made concerning
the distribution of shearing stresses must be at least approx­
imately correct.

10. STUDY OF MODELTESTS CARRIED OUT
IN VIENNA,1916. COMPARISON WITH THEORY.

10.1. DESCRIPTION OF MODEL TESTS AND RESULTS.

[2JThese model tests are briefly mentioned in
complete report is found in [3] .

The sand used had a median grain diameter of about

1.4 mm and ~ .';; 1.8 ; it was a rather sharp quartz sand
u10%

with 38% of voids, measured in loose filling, and with a specific
weight of 1.64 kg/l.

; the

Three different profiles were shaped by three different
constant discharges, and when the profile had become stationary,
its size and shape was carefully measured by a photogrammetric
method. The limiting tractive force for the sand,·t ,wasmax
found by separate tests on a nearly horizontal bottom and turned
out to be 0.075 kg/m2• .

,For each equilibrium profile the discharge and the slope
of the water surface (at uniform movement) were further measured.

The observed results are given in the following
Tables 10.1 /22/and 10.1 /23/.

Table 10.1 /22
Dimensions, Slope and Discharge.

Width of Slope Area of Maximum Discharge
Test water surface I cross section depth 2Q
No 2 B 0/00 2 F Ymax.(cm) (cm2) (cm) (I/sec)

1 100 1.35 446.2 5.6 13.8
2 198 0.79 1444.0 9.0 53.5
3 280 0.65 2475.0 10.5 87.0
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Table 10.1./23/

Co-ordinates x and y. (See Fig. 3)

Test Depths Abscissae x
No y (cm)

(cm) 2.5 5 7.5 1Ö I5 20 25 30 40 50
1 Y 1.1 2.05 2.8 3.45 4.3 4.8 5.1 5.3 5.5 5.6
2 Y 1.2 2.3 3.2 4.0 5.2 6.1 6.7 7.2 7.8 8.2
3 Y 1.6 2.8 3.8 4.8 6.2 7.2 7.9 8.3 8.9 9.2

~est Depths Abscissae x
No y (cm)

(cm) 0o- m ao '91J 100 IlO 120 130 no
1 y
2 Y 8.6 8.8 8.9 9.0 9.0
3 Y 9.4 9.6 9.8 10.0 10.1 10.2 10.3 10.4 10.5

10.2. COMPARISON OF THEORY WITH MODEL TESTS;
COMMENTS.

If we compare the results of these tests with the theory
developed in the present paper, we should note that the area
of the cross section necessary to carry a definite discharge
without erosion varies only insignificantly with the angle of
friction cp. This will be seen by the formulae given in Sec. 11.

The relative width of the cross section ~ will , how­
Ymax

ever, vary considerably with <F, the value of which cannot be
predicted with any degree of certainty.

We have therefore chosen to use our theory to calculate
such profiles of equilibrium as can carry the same discharge
as in the test in an area of the sam e size and with the same
.. . This is done for a number of values for cD and themax T
dimensions and the shape of the calculated profiles are compared
with those of the ~sts. We also calculate for each value of q:>
the values of p = ~ and thereby find k and further the value
of the slope I, which latter quantity can be compared with the
measured values. I is probably the least accurate of the measured
values because uniform motion only existed over a length of about
10 m, so that a very strict agreement between calculated and
measured values of I can hardly be expexted.

That value of <p is chosen which in the most essential
features gives a good agreement in the shape of the profile, and
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it is at the same time found that in this selection the values of
I agree quite weU.

It also becomes possible to compare the calculated value
of the roughness k at the bottorn with the diameter of the sand
grains, and a ratio of these quantities can be found which seems
to agree quite weU with statements from elsewhere •• >
10.3. DERIVATION OF FORMULAE SUITABLE FOR ANALYSIS

OF MODEr,. TEST DATA.
As known quantities are considered

cp , s> ' "t" max' Q and F, and we want to find

Ymax
p = --r-, Y , k, Band I, whereupon the complete cross

K max
section can be drawn and compared in detail with the observed
one, and the computed value of I can be compared with the
measured one.

We have
(102) vm = ~ as a known quantity and start from the formulae

in. Table 8.1. /15/

(91)(91c)d), vm 3.1815 . po. 15324

~
Ymax [Vm ~6.5257 1

P = -y- = 5\ r . 6. 5257
2.5V r;ax. 3.1815 Avp

= 1.013565 - 0.063437 logZ (111,428)

• whence

, where

Avp
From (103) p can be found; according to 8.1. (91e) Avp

is a function of p, so we start with A = 1 and use successivevp
approximation. p is seen to be independent of cp .

When p is found, the other unknown quantities can be found
directly:

From Table 8.1. / 14/ we find:

(90),(90d) . F 2 Afep' pO.1091
Ymax

(91e)

whence:

*)
For tests Nos. 1, 2 and 3 are found respectively 2.91, 1.84
and 3.00.
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~Ymax = ..,..O~. 0..,S...,4....S..,.S,.!-.""\--=~A==-
P • " --fp

(90c) Af<p = 1..03153 + 1.63688 cot<p - 0,02187 cot2cp
+ 0.000431 cot3q>

(90e) Afp = 1. 007083 - 0.031907 lot ( I08.PÖ3S).

Ymax is seen to vary with <p, because Afep is far from
being a constant.

where

For the hydraulic roughness k we have

1(105)1 k = yr;:ax

From Table 8.1./17/ we find

1(93),(93d)1 B ~ Abq> . pO.0890. AbP

(93c) Ab<f = 1.29443 + 2.23919 cotq>

(93e) Abp = 1. 0047812 - 0.0212087 .

. ymax , where

- 0.03069 cot2q:>
+ 0.00109 cot3f
lot ( lof 46).

From Table 8.1. /18/ we find

1(94),(94d)! I = (~) • ( • ;ax). Ymax' po.l0833 Aip' where

(94c) Aif = 1.27988 + 1. 5t7 50 cotf + 0.00519 cot2<p
- 0.00184 cot3cp

(94e) Aip = 1. 0069177 - 0.031130 lot (lot 914)'

10.4. NUMERICAL CALCULATION OF Y , B, I. and k FOR
MODEL TESTS. max

The formulae developed in Sec.l0. 3. are used. As units
we use grams and centimeters.

For all three tests is reckoned
• = 0.075kg/m2 = 0.0075 gr/cm2•max

Specific weight t = 1 gr / cm3 •



SEC. 10.4. - 10.4.1. 85

Acceleration of gravity g 981 cm/ sec",

~, 2.7125 cm/sec

l<103a)1 p' ~ , [21.~75r 5257

and 10.3 (103) becomes

1
6.5257Avp

which formula is valid for all three tests and independent of
the choice of cp .

For the calculations are used the other formulae from
10.3 besides (103a).

10.4.1 Test No 1.

Measured; "t" 0.0075 gr/cm2,

Q = 13.; 1/sec = 6900 cm3 / sec,

F - 446. 2 cm2 = 223. 1 cm",- 2
I = 1.35 0/ 00 = O. 00135,
Y = 5.6 cm,max

(102,1)

B - 100 cm - 50 0- 2 -. cm.

vm = ~92~~1 = 30.928 cm/sec.

vm
21.575 = 1.4335 and from 10. 4(103a)

(103a,1) p = A 6.5257
vp

Avp is taken from 8.1(91e)
p = 13.58 gives
A = 0.96059vp

10.45
P = 0.7696 = 13.58, fina1 value for all

10 45

where

A 6.5257 = 0.7696
vp

CP' s.

7
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Afp

Afp

10.3(104),

For use in 10.3(104) we find
pO.05455 = 13.58°.05455 = 1.1533 and

....2 13.58
= 1.007083 - 0.031907 . lo~ (108.035

= 0.981200 ; ~ = 0.99056,

(104,1)

with F = 223.1 cm2,
223.1

__Af;
Ymax - .1533· 0.99056

13.075
Ymax = VXfep .
This expres sion for Y

of cp • max

becomes:and

is valid for Test No.1 and all
values

For use in 8.1(93) we find
pO.0890 = 13.58°.0890 = 1.2620

Abp = 1.0047812 - 0.0212087 log,2

and 8.1(93) becomes
(93,1) B = 1. 24663 Ab . Ycp max

and
13.58

(106.46 ) = 0.987819

(valid -for Clll 1> '5).

For use in 8.1(94) we find A. = 0.981693.lp

"( max=r: = 0.0075 = 0.0075 cm1
F = 223.1 cm2

and 8.1(94) becomes:

I = ~ • 0.0075 1.3270 . 0.981693 . Ymax

(94,1) I 4.37934· 10-5 Aicp . Ymax (valid for all cp 's).

For the calculation of Test No 1 for dilferent values of <p
we now have p = 13.58 and (104,1) , (93,1) and (94,1).

The respective values of Afcp' Abcp and Ai<p are found
by 8.l(90c) , 8.1(93c) and 8.1(94c).

The results found for q> = 180, 190 and 200 are compiled
in Table 10.4.1/24/, where the calculated and observed values of
ymax' B and I can be compared, and the calculated value of k is

given.
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Table 10.4.1/24/
Test No. 1. p = 13.58.

<P = 180 190 200

13.075~
2.4238 2.3689 2.317·9

Ymax = (cm) 5.39 5.52 5.641[A;;p
Ymax observed (cm) 5.6

Ab<P 7.9270 7.5624 7.2375
B = 1. 24663 . Abcp' Ymax (cm) 53.31 .52.06 50.90
B observed (cm) 50

Aie;> 5.9458 5.6857 5.4502

I = 4.37934 . -5 1O~5 140.5 137.4 134.610 . Aiep' Ymax

I observed 10-5 135

k
Ymax

(cm) 0.397 0.407 0.415---
P

10.4.2 Test No. 2.

Measured: r = 0.0075 gr/ cm~

Q = 53. ~ 1/ sec = 26800 cm3 / sec,

F = 1444.0 cm2 = 722.0 cm";

1= 0.790/00 = 0.00079,

Ymax = 9. 0 cm,

B = 198 cm = 99. Ö
2 cm

The calculations are made similàrly to those applying to
Test No. 1.

We find:
( 102,2) vm

26800
= 722. 0 = 37. 050 .cm/ sec

(103a,2)

vm
21.575 = 1.7173

34.08

and from 10.4(103a)

p = A 6. 5257 '
vp

whence
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p = 34.698

(94,2)

22.148(104,2) Y - for all <p's.
max -~

(93,2) B = 1.3709 A . Ybef max
-5

1= 1.5244· 10' Ai<p'Ymax forallcp'S.

The results are given in Table 10.4.2/25/

for all <:p , s

Table 10.4.2/25/
Test No. 2. p = 34.698

<p= 170 180 190

22.148~
2.4833 2.4238 2.3689

Ymax = (cm) 8.92 9.14 9.35

~
Ymax observed (cm) 9.0

Abcf' 8.3283 7.9270 7.5654
B = 1. 3709 . Ab<p. Ymax (cm) 101.83 99.30 96.97

B observed (cm) 99

Ai<p 6.2345 5.9458 5.6857

I = 1.5244 • 10-5 . Aiq> • Ymax 10-5 84.8 82.13 81.0

I observed 10-5 79

k
Ymax

(cm) 0.257 0.263 0.270= --p

10.4.3 Test No. 3.

Measured: "( 0.0075 gr/ cm2 ,

Q 87.~ 1/sec = 43500 cm:5/ aec,

F - 2475 cm2 1 3 5 2- 2 2 7. cm,

I = 0.65 0/00 0.00065,

Ymax = 10.5 cm,
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B = 280 cm = 140
2 cm.

The calculations are made similarly to those applying to
Test No. 1.

We find:
(102,3)

(103a,3)

(104,3)

(93,3)

(94,3)

Test No 3

43500
VOl 1237.5 = 35.152 cm/sec

Vm
21. 575 = 1. 6293

24.180
and from 10.4(1 03a)

whence

The

p = A 6.5257
vp

p = 26.10
29.517

Ymax = ~ for all <p 's

B = 1.3332 . Abq:>• Ymax for all cp J S

I = 0.85874 . 10-5• Ai<f YOlax for all cp "s.

results are given in Table 10.4.3/26/

Table 10.4.3/26/
p = 26 10. . .

cp- 140 150 160

29.517~
2.6969 2.6189 2.5481

YOlax = (cm) 10.94 11.27 11. 58

~
Ymax observed (cm) 10.5

Abcp 9.8520 9.2804 8.7764
B = 1.3332 . ~cp . YOlax (cm) 143.76 139.45 135.04
B observed 'COl) 140

Ai<f' 7.3310 6.9199 6.5571

~ = 0.85874 . -5 10-5 68.9 66.9 65.210 . Aiep Ymax
I observed 10-5 65

k
Ymax

(cm) 0.420 0.431 0.444= p-
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10.5. ADJUSTMENT OF THEORETICAL EQUILIBRIUM PROFILES
TO THOSE OF MODEL TESTS.
From Tables 10.4.1/24/, 10.4.2/25/ and 10.4.3./26/ we

already get a rough idea of the value of cp that win give the
best adjustment of the theoretical equilibrium profiles to the
observed ones.

To compare the profiles more closely the theoretical
profiles are drawn according to the co=o rdinatea given in
Table 8.2/21/.

The observed profiles, the co-o rdinates of which
are given in Table 10. 1/23/, are then reduced to the same scale
as the theoretical ones, and superimposed correctly upon the
theoretical profiles, i.e. with coinciding axes and water surfaces.

This has been done for three different values of cp for
each tested profile.

That value of cp is chosen which in general gives the
best conformity between calculated and observed profile for
each test.

The following values of Cf> were chosen:
Test 1: cp 190

2: <p = 170
3: <p = 140.

The results are shown in Figs. 8, 9 and 10.
It is seen from the Tables /24/, /25/ and /26/ that the

agreement of I corresponding to this choice is quite good
considering the uncertainty of these observations, as mentioned
in SEC. 10. 2.

As seen in the figures the agreement is considerably
better for 'lèsts 1 and 2 than for Test 3.

If we study the data for Test 3 we find, however, that its
mean velocity v is smaller than v for Test 2 although ym m max
is - 17'0 greater in the former case. This is in disagreement
with the well-known fact that for equal tractive force a greater
mean velocity is needed to move the sand grains when the depth
is greater. It therefore seems as if some uncertainty must exist
in some of the observed data.

It does appear from all three tests that the angle of
internal friction cp , which must be introduced in the theory put
forward to get a tolerably good agreement, is considerably
smaller than would generally be expected.

If we remember, however, the fact that the sand grains
in a state of incipient motion hardly exert any normal pressure
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on the underlying ones and that the angle cp is known to de­
crease with decreasing density of the sand, it is hardly sur­
prising that cp is found to be smal!.

In Figs. 8. 9 and 10 the slope of the banks in the model
tests is seen everywhere to be greater than for the theoretical
profil es , which fact might seem to contradiet the reasoning above.

It does seem pos aibl e, however, that the capillary tension
in the sand above the water surface may be able to give the
banks a certain cohesion causing them to be locally steeper than
in the case of a true cohesionless mate rial.

A similar effect in a full-Size channel or natural water-
course would of course be r elattvely insignificant. .

We, therefore, provisionally conclude that the angle of
internal friction ~ for a sand material like that used in the
model tests should be estimated at 18 to 200, but it is clear that
a further study of this question is highly desirabie (see Sec .14 ).

11. FORMULAE FOR THE DIMENSIONSOF
EQUILIBRIUM PROFILES FOR alVEN
VALUES OF Q, or' max' S>, k ANr.>cp .

In the formula 8.1(89) for Q' in Table 8 1/13/ we insert

8.1(89c) Aqcp= 3.1815 . Afcp
and .

8. 1(89d) B O. 26234 = constantqcp
and get

= 3. 1815 Aff. p2.26234
2. ~"C max' k2

where s> p
8.1(8ge) Aqp 1.020619- - O. 095322 lo~ (110.262)

and where Afcp is found from 8.1(90c), Table
Solving with respect to p we get

Q

8.1/14/.

1(106)lp· 1.009114. ~ - O. 041283 lo~ ( llO.P262>]-f Q ]0.44202

- ~. 5y < ~ax : k2 . 3.1815. Ar,!, .
8.1(90c) Aff = 1.03153 + 1.63688 m - 0.02187 m2 + 0.000437 m3

where
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and

m = cot <:p •
In the first approximation the factor next to p on the left

side of (106), viz.: 1.009114'[1 - 0.04128310g2 (116.262)] is
neglect ed, whereby a nearly correct value of p is found; p is then
found correctly by successive approximation.

For 20 ~ P <. 600 the said factor will hardly deviate more
than 1. 25"/0from unity.

Ymax
When p ~ is found we get directly

1(107)1 Ymax k . p.

For the half width of the water su rface , B, we get from
Table 8.1/17/, formula 8.1(93) with 8.1(93d)

Bb<p';! 0.0890 = constant

1(108) I B = k . A . 1. 0890 . Abep p bp
where

8.1(93c) Ab<p= 1. 29443 + 2. 23919 m - 0.03069 m2+ 0.00109 m3

and

m = cot <p ,
further

8.1(93e) Abp = 1. 0047812 - 0.0212087 10g2 ( nr!.4tr) .

As p is known from (106) B can be directly found from
(108) .

From Table 8.1/14/, formula 8.1(90) we get with
Bfep ~ 0.1091 = constant for the area of the half cross section

(109) F = k2 . A . P2. 1091 . Af1> fp ,
where

8.l(90e) Afp = 1.007083 [1 - 0.031682 log2 ( lOEf. 035 »).
p is known from (106) and F can be directly found from

(109).
We want, however, to find a more explicit form of the

formula for F and therefore insert the expression (106) for p
in (109).

We find :
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{I. 009114' ~ - 0.041283 log"

~ 1.019223'[1 - 0.087070 .

2.1091

( lIg. 262 )~

10g2 ( lil262»).
By using the formulae 6.4(77 through 80a) we further find:

1. 019223· [1 - 0.087070 lot ( 116. 262 ~

1.007083· ~ - 0.03168210g2 (IOt035 ~

-;; 1.012051· [1 - 0.05538810g2 (111.55 ~ ,
and (109) takes the form : 0.932265

kO.13547 . Af 0.067735. [~.. 1
<p 2 5 max

(109a) F = . ~

2.97877· [1 - 0.055::188 • log2 ( 111~\5 )]
where

8.1(90c) Aff = 1.03153 + 1. 63688 m - 0.02187 m2 + 0.000473 m3

and .
m = cotep.
In (109a) the factor A 0.067735 takes the following values

fep
for the four values of cp :

cp
A 0.067735
fep

150 1.1393
200 1.1206
250 1. 1063
300 1. 0947,

and it is possible to put with good approximation

Afcp0.067735 = 1.0560· [1 + 0.02178 cotepJ,
where'"'upon (109a) takes the following final farm :

o 13547 [ ~ ]0.9322651(109b)1 F = 0.354509 k . ·1 + 0.02; 78 cotpJ. Q ..
1 - 0.055388 lot ( 111. 55 ) 2. ~ ;ax •

From (109b) it is clearly seen that F is practically
Ymaxindependent of p = k for actual channels, where p will
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probabl y be of the order of 100 and that it varies only slowly .
with cp.

For practical calculations it should consequently be
advantageous to judge roughly the value of p from (106) and then
use (109b) to find F.

From (106) it is seen that p varies approximately pro­
portionally to k -0.88404, and thereby it is seen from (107) that
y is approximately proportional to kO.11596, whe reas (108) andmax
(106) show that B is approximately proportional to

k k kO.03728
(kO. 88404{0190 = kOe 96272 -

The dimensions proper of the equilibrium profile
consequently are only slightly influenced by an uncertainty of k.

11. 1. CHOICE OF THE ANGLE OF INTERNAL FRICTION <t> AND
THE EQillV ALENT SAND ROUGHNESS k.

11.1.1.ep.
As to the choice of q> we refer to the remarks· made in

Sec.10.5 .
The value of cp must probably be lower than thos€ values

used in calculations of soil mechanics, and the results of the Vienna
tests make it probable -that <p = 180 to 200 will be appropriate.
Further studies of this question do, however, seem necessary, and
we refer to the proposals made in the conc Iusion, Sec. 14.

11.1.2. k.
As to the value of k , the equivalent sand roughness, which

must be introduced in the formulae above, several view"points can
be advanced.

11:..!:..~:..!:. _!?~!~!"~i.!l.!l!~~I!._~f_ ~_ .?.Y_ ~~~~ _ c:?~_t!I~_M7!.I!.g /
coefficient M in the formula v = M. R2 3. 11 2----------------------------m---------------
l~~!.:r:iE_~.!l.!!.sJ..:

If an empirical knowledge of M for channels of a
character is available, it is easily proved by comparing
formula with the results of Nikuradse for the resistance
that

similar
the Manning
number f,

M = 25.84

V 6
( M )20.]4

1/3(m / sec)

or
(110) k (k in meters).
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(111)

If Kutte r ' s n is known we have
1M - ÏÏ •

The above-mentioned results of Nikuradse concerning the
resistance number f agree perfectly with the results obtained by
pure calculation on the basis of the logarithmic velocity di_stribut­
ion, as it is done in this paper.

_I_1.: _1.:'?.:'?.:_!t_ !~1:!~~_fF?~ _~~~~:r:~~t~~~_~~~~~1.9~~!Y-_c!l~.!!'~~1.!.tl~~_
in a normal to the bottom.

From the logarithmic velocity distribution in a definite
normal to the bottom of totallength Zo it is easily found that the
velocities vp and vq at points p- Zo and q' Zo from the bottom wiU
have the mean value vm equal to the mean velocity in the normal
conce rned, provided that
(112) P . q = _!_ = O.1352 (e basis of natural logarithms).

e2
v + vP q(113) 2

The hydraulic roughness of the bottom in the neighborhood
of the foot of the normal is found to be

29.7 . P . Zo
k =(114) ( p> q ).

The values p = 0.90 and q = 0.15 e. g. satisfy (112),
if the velocities are measured at distances. 0.90' Zo and O.15
from the bottom we get from (113) and (114)

k = 26.7 _ zO(1l4a) for p = O.90and q 0.15.

[6]Vp-Vq
By taking normals distributed over the whole width of the

channel we can get an idea of the variation of k transversally to
the axis of the channel and obtain a mean value of k.

lf empirical values of k in this way are known from
channels of varying character, a sufficiently good estimate of k
for planing purposes can probably be made.
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Provided that the channel considered is shaped as an equi­
librium profile arelation can be shown to exist between

Ymax v
p = ~ and at as well as between p and fE:---, the ratio of

max
mean to maximum velocities for the total cross section.

If the cross section is measured in detail ae =B.,.;--F _
y~fRtax

value of p = ~can easily be found, and the corresponding
can be read in a diagram; we then find

Ymax
k =--p vm

A possible knowledge of --­vmax can similarly be used for

finding k.
This method is presented in detail in Sec. 12, (see Fig. 11).

!!:!:.~:.~:._~_s~~~~g_t_!l~_~~~~ _Y~l!.e:._o~_ ~_ ~~_~~e~r:.is:~.!l.x._
f~~~~_ ~~~ _~~~~~~_~~t:~:~~~~:_s~ _~!~~_~_:__(~l~~~~_~~_e~:_

_~k _=__ O_._4_~~_I!l_(:~~~~_~~_!:.~~~_fe:.e:.t.:
This method wiU be developed in detail in the following

Sec. 11. 2, where formulae for p, ymax' Band F are presented
that do not directly contain the roughness k.

11.2 DETERMINATION OF DIMENSIONS FOR GIVEN VALUES OF
Q, .. max' s> AND cp AND FOR k ASSUMED TO CORRES-
POND TO ROUGHNESS OF NATURAL WATERCOURSES.
As it wiU perhaps sometimes be doubtful which value must

be assigned to k in the formulae of Sec. 11, we think it useful to
develop formulae not containing any value of k, which can be
chosen more or less arbitrarily.

From a study of many hundreds of observations of
velocities in natural watercourses together with their hydraulic
radii Rand their slopes, we have found statistically that k must
be independent of the slope 1 and is a function of R alone.
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We have found

k _ (Ck)1. 56
1(115)1 R - Ir '

where
1(115a)1 ck = 0.425 meters or 1.395 feet.

For small values of R, (R < 1.0 m), e. g. for mountain
torrents, the dispersion of the observations in relatio'n to the law
(115) is considerable, but for larger rivers in plain country the
agreement between the observations and (115) is very good.

It must naturally be remembered that kitself varies during
floods and that the same value of Q is known to correspond to
different depths by rising and falling waters. No great exactitude
can consequently be expected.

When we set up a velocity formula based on (115) and on
the ordinary assumption that shearing stresses are uniformly
distributed along the perimeter we find

(116) v = 8. 8J· [0.750 + log (_J!_)1:\Ç.R:"I.m ckJlr .. -

This result is in good accordance with some of the better
for-mrlae for natural watercourses, e. g. those of Hermanek.

This question is further treated in Sec. 12. 2.

In the following we therefore use the assumption (115) and
(115a).

(115) is written as follows:
1 56

~ = (~)~ = (~r785(1l5b)

From Table 8.1/16/ we find

8.1(92) R = A . A . pO.0210
Ymax rep rp

Ymaxby multiplication of 8.1(92) by p = ~ we get:

1(117)1 R
Arep Arp

1.0210 whereK = p I

8.1(92c) Arep 0.732 and

8.1(92e) Arp 1.000
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From (115b) and (117) we get

c
k = ( A . A )0.358974.
K rif rp

0.3665125
P

By di vision of p Ymax
~ by (118) we get

I(119) I y~:x = (Arep. Arp)-0.358974 . pO.6334875

Using (118) and (119) k and Ymax are now expressed by p.

In Sec. 11 we found :

11. (106) p. 1. 009114 . [ 1 -. 0.041283 lot ( Ub.262 )]

= 1 [Q ]0.44202
kO.88404 . ,fT

. 2.5 . V ~ax. 3.1815 . Afep

(118) is raised to the power 0.88404 and multiplied by
11. (106) and, when solving with respect to p, results in :

1.479316
(120) p. 1.0091141.479316 . [1 - 0.041283 10t(110:'262~

[

0.717948 ] 0.653887Q. (A . A )

1(120a)1 p. [1 - 0.06107 lot (116. 26.2)J

= 0.39987 [ .-y'':ax ~ 0; 653887

2.5· -t:?-. Ck2
• AfcpJ

In (120a) p is expressed by known quantities. The paren­
thesis on the right side is· dimensionless. Note that the variation
of Afcp with cp is considerable.

For rough calculations we
ocp = 20 ; Afcp = 5.3728

take for instance
A 0.653887 = 3.000
fep
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and estimate p = 110; i.e. log2 . 110:262 ';! 0.

We then get:

[ 2]
°·6539

P = ° 1333. --Q~--,...._-
. 2 5 1/ 't max . Ck. V (} .

valid for every consistent system of units.
In the Metric System we have

1 1 1
0.4251.3078 = 0.327

and
1.3078ck

1(120c)1 p = 0. 408 .l~Q't ]0.6539
2 5. max. (j

In the FPS-System we· have
111

I(:::"d::78 p= =

1~3:::~:[078 ~, 1.545] 0.6539
2 5. max. ~

From (118) we get

(U8a) ~ = (A A )-0.358974 p-0.3665125
ck rep rp

The equation (120) for p is raised to the power -0.3665125
and multiplied by (118a), whereby we get

[ ]0.542189
k ~.009114· ~ - 0.041283 . lot (110:262 >]

= ~------~W-~~~--------~~~~~---(A • A )n. 531036'"
rep rp

(121)

(3.1815A ).
f<p r·239658c 2

k
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In formula 11. (109a) we found :

0.13547 0.067735 [Q JO.932265k . Afcp .
2 5 "\.1'max. 'V ç>11. (109a) F = _

2.97877- [1 - 0.055388 . log2(111.P55)] .

When (121) above is raised to the power 0.13547 and
multiplied by 11. (109a) and observing that
2 - 0.13547 = 1.86453 = 2· 0.932265 we get

We put:

0.073450
[1 - 0.041283 log2(116. 262>J = 1 - 0.00303224 loi(11b. 262)

and find by formulae 6.4(77 through 80a)

1 - 0.055388 log2 (111 55)
1 _ 0 00303224l i (. p ) = 1 - 0.052356 loi (11r. 623 ),

. 0 110.262

which result is inserted in the denominator of (122).
We further have
A ~ 0.732 A ~ 1.000r<p rp
(A • A )0.071940 = 0.97780

rep rp
and find the new form of (122)

0.100201 [Q jO.899799
Afcp •. ~'r imax 2

F _. 2.5 -S'-' ck
1(122a)1 -

ck2 - 2.97877.0.97780-[1 - 0.052356 loi (111~623 )J.
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slight,

(123)

The . t' f th f t A 0.100201vana Ion 0 e ac or fcp
and we get with good accuracy :

Af~0.100201 = 1.0956 • (cot~)0.0766

With

IÇ22b)1 F
c 2
k

(123) we finally get from (122a)

0. 37615{cotq»0. 0766 . [ Q

= 2.5l{~.
1 - 0.052356 . 10g2 (lIf.623)

101

with cp is only

r 899799

C 2
k

slight.
It is clearly seen that the variation of F with cp is only

For rougher calculations we put

c:p = 200 I (cotep)0.0766; 1.0812 and

..:l P ::p - 112 i.e. Iog (111.623) - °
and get

F - [Q 10. 90.407·

ck2 2. ~ 98X • ck2

1(122C) I F - 0.407. cko.2 [Q ]0.9
2. ~~ ~ax .

This expres sion can be used for every consistent system
of units.

In the Metric System
ck = 0.425 m ckO.2

. ° 9
1(122d)1 F; 0.343.[ Q ].
.' 2 5'-r max. JV - s>

In the FPS-System

ck = 1.395 feet ckO. 2

F;0435.~ Q jO.9
. 2 5' I~max.. V s>

1.069 (feetO.2)

I (122e)1

8
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From (119) we get with

ArCf -; 0.732 Arp = 1.000

Ymax = 1.11852 pO.633488
ck

When p is found by one of the formulae (120a)b)c)d) y
is directly found by (124) • max

From Sec. 11. we have :

11. (108) B = k . Ab<p . pI. 0890 . Abp

We find by division by (118)

~ = 1.11852 . A pO.72249
ck bf

The variation of B with cp is considerable so that the
correct values of Abf should be taken from Table 8.1. /17 / ~
formula 8.1(93c).

The variation of Ab will probably only be small
(cf. formula 8.1(93c». p

By the successive use of the formulae
Ymax

(120a)b)c)d) for p = -y-- and

(122a)b)c)d)e)
(124)

(125)

for F
for ymax

and
and

for B
all the principal dimensions of the equilibrium profile can be found
and the complete profile can be drawn using the tables of the
co-ordinates -rz. and ~ , Table 8.2/21/.

It must not be forgotten that Q. F and B refer to the
half total cross section.
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11.3. ILLUSTRATIVE EXAMPLE OF CALCULATION OF DIMENSIONS
The Metric System is used.
Given:

800 3 3Q = -z m J sec = 400 m J sec for half cross section,
ot = 0.15 kgJ.:n2•max

~ = 1026 kgJm3,

cp = 20Q
and

k - as for natural watercourses .'
For use in the formulae we calculate :

't'max ot max 0.15 . 9.81 1 J 2- t . g = 1026 = 0.00 435 (m sec) ,

~< ~axQ = O. 03_785:::ec,

= 4225 m2"ir' - 2. 5 . 0 03785
2.5·V r;ax

~wr·9 ~103.6. 0.4225°·9~ 3980·0 4606 ~

and furthe r have

1833

11.2(115a)

11. 2(122d)

ck = 0.425 m,

F = 0.343 . 1833 = 628 m2

Total area : .2==Fb~1~2~5~6~mb2

I- Q't ] 0.6539 = 102.6156~.ÄJ;ax
y

p = ~ = 0.408 . 234.5 = 95.7

0.4225°·6539 = 412 . 0.5700

= 134.5

11.2(120c)

11.2(124)

pO.6335 = 95.70.6335 = 17.95

Ymax = 0.425 . 1.1185 . 17.95 = 8.53 m
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k = Y~ax = ~5~~= 0.0891 m.

pO.7225 = 95.70.7225 = 27.00.

From Table 8.1/17/ we get

Abc:p= 7.2375. and 8.1(93e) Abp = 1.004781 - 0.02121 lof! (!0If. 46)

106.46 J95.7 = 1.1125 ; log 1.1125 = 0.0462 Iog 1.1125 = 0.002135.
Abp = 1.004781 - 0.000045 = 1.004736

11. 2(125) B = 0.425 . 1.1185 . 7.2375 . 27. ° . 1.0047 = 93.2 m
Width of water surface of total section: 2B = 186.4 m,

12. FORMULÁE FOR THE MEAN VELOCITY vm IN
EQUILIBRIUM PROFILES .

12,1 v AS A FUNCTION OF HYDRAUL IC RADIUS R, FIXEDm
VALUE OF k.

From Table 8.1/16/ we have

8.1(92)c)d) R' = ____!!_ = 0.732 . pO.210
Ymax

(126)

~ = 0.732 . p1.210
1

( R )~
P = Ö. 732 k

or

From Table 8.1/19/ we have

8. 1(95)c)d) v~ ~ ~ 1.160 . pO.OIOO

(127) oei:'x ~ 1.160 pO.OI .-..jiRI.
From Table 8.1/15/ we have

8.1(91b)c)d) v' vm 3.1815' 0.15324
m ~~ p

where ". v V~
8.1(91e) Avp 1.0135645 - 0.06343731off (111.428)'

Avp
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VOl = 2.5 . 3.1815 . 1.160 . pO.01 .~.pO.15324 Avp
or

(128) VOl = 2.5 . 3.1815 . 1.160 . pO.16324 .~. Avp

For the calculation of A we find by rueans of (126)

log (ut 42S) " log [ul42B . (O~,2k)d-ro-]
={og [( 0.~32. 300 k)cin} dm· log (21~.6 k)'

fr-om which
....2 P _ 1

101;; ( 111.428) - 1.4641 lo~ (21~.6k)

and

0.0634373· lo~ (l1l42S) = 0.043329' lo~ (21~.6k) J

which inserted in 8.1(91e) gives

'RAvp = 1.013565 - 0. 043329 lo~ ( 219.6 k) .(129)

(130)

We further have from (126):
0.16324

0.16324 ( R ) 1.210 1 R 0.134909P - ---n--"' ...................,,.....()- O.732k -0.7320.134909 K

Vm

lnserting (130) in (12'8) we find•
2.5 . 3.1815 . 1.160 (R)0.134909 FR I • A

""T:""' vp0.7320.134909 'K

where A is taken f rom (129) andvp

0.732°·134909 ~ 0.9588.

We finally get

(131a) Vm
R 0.134909 -:,\[";RT [

9.6228· (k) .V g RI' 1.013565 - 0.043329 lot (219~6 k)]
or
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j(131b)1 vm

= [9.6228 .,;g] RO.634909
LkO.134909 • .

1/2 [ -2 R J1 . 1. 013565 - 0. 043329 Iog (219. 6k~

(131a)b) is valid for every consistent system of units.
In the Metric System we have

"'{i = "\j9:8i = 3. 1321 mI /2/ sec ,

which gives
30.14

vm = kO.13491 RO.6349 . 11/2. [1. 0136 - 0.0433 . lot (~(13lc)

Herein the last parenthesis (i. e. A ) is practically
always near unity. vp

12.2 v AS A FUNCTION OF HYDRAULIC RADIUS R. ASSUMINGm
k AS FOR NATURAL WATERCOURSES.

From 11. 2(1l5)a), valid for natural watercourses, we have
R R 1. 56
(c) = (-)
K ck

where
11. 2(1l5a) ck = 0.425 meters or 1.395 feet.

This is inserted in 12·.1(131a) and we get

R 0,21046 F
vm = 9. 6228· (-) . g RI' Ack vp(132)

(132b) .
which gives
Avp = 1.013565 - 0.105445 lof! ( R ).31. 7 ck
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Inserting (132b) in (132) we finally get
0.21046

(133) vm = 9.6228(~k) :yiRI. [1.013565-0.10544510g2(31.~ cJ]
or

1(133a)1 vm

= [9~:B2; I·OYJ
which formulae are valiB for an arbitrary consistent system of units.

In the Metric System we haveyg=p =3.1321 ml/2/sec •
ck = 0.425 m 31.7 . ck = 13.48,

cko.21046 = 0.425°·21046 = 0.8350

and (133a) becomes .

(133b) vm = 36.0953 . RO.71046 . 11/2. [1. 01357-0.105445 -l0g2(~~.

This formula has much resemblance to the empirical
formulae of J. Hermanek.

Hermanek gives for R ;- mean depth of section and
1. 5 m <R < 6, ° m the following formula
(134) v = 34 . RO.75 , 11/2 .

m
The last factor in (133b) will be near unity for such

values of R.

12.3 vm AS A FUNCTION OF Ymax' FIXED VALUE OF k.

If we want. to express the mean velocity by y insteadmax
of by R we insert R from 8.1(92) in 12.1(128) and get

v = 2.5· 3.1815·1.160, 0.732°·5. pO.17374 .""lAt; I.
m y' ° 17374 V"" maxmax ' ,..----(135) v = 7.89379 . (-k-) .yg y . I . A

m max ~P.
where

...2 YmaxAvp = 1.013565 - 0.063437' Iog (111.43k)

Avp

(135a)

or
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, (135b)' - [7.89379 .jil 0.67374 11/2. A
. - vm - L kO. 1737 J Ymax . vp

(135)a)b) are valid for an arbitrary consistent system of
units.

In the Metrie System we have
-yg = ~ = 3.1321 m1/2/see
and

(135e) - r.24.7241 J . 0.67374 . 11/2. A
vm - lko.17374J Ymax vp

A will gene rally be very near unity and the similarityvp
between (135e) and the M.anning formula

v =rV)' R2/3 . 11/2
m k

beeomes striking; it must, however, be remembered that (135e)
contains y and not R.max

13. THE RATIO OF MEAN VELOCITY
VELOCITY v .max

TO MAXIMUM

13.1
vm

AS A. FUNCTION OF pvmax

From Table 8.1/15/ we have
v

8.1(91b)e)d) ~ 3.1815 . pO.15324 Avp
2 5:\ I max. 'V s>

where

Ymax
-r-

8.1(91e)
Avp = 1.013565 - 0.063437 lot (111:428)'

For the maximum velocity vmax whieh oeeurs at the surface
where the depth is y we have direetlymax

vmax Ymax [ 1---;==-- = 3.392 + In ~ = 3.392 1 + 0.67883 . log PJ
2. 5-Y' max
We divi§e 8.1(91b) by (136) and get

vm 0.950665· pO.15324.[1 - 0.062588 lot (111.P428 )]
(137) vmax 1 + O.67883 log p

(136)
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Vm
The ratio of ,mean to maximum velocities isvmax

consequently a function of p alone and quite independent of <p •
The denominator in (137)

11 + 0.67883 log P = 3.392 .
vmax

can be developed in a form similar
(137).

2.5 v- r;ax
to that of the numerator in

The calculat i on is made in the same way as that used
for the functions Ap in Sec. 6. 3.

We find as a first approximation

(138a) 1 + 0.67883 log P = 1.31155 pO.12535 ~ 0.925 %
for 24. 2 ~ P < 500.
The logarithmic deviations ep from the simple power

formula are then treated as indicated in Sec. 6.3 and we find
(138b) 1 + 0.67883 log P

= 1.323712 . pO.12535. ~ - 0.041934 lofl (10K. 277 ij± 0.1040/0
for ~ 18 < P < ~ 950.

Inserting (138b) in (137) we get

0.02789 [ ...2 p .1vm 0.718181· P " 1- 0.062588 Iog (111.42S)J
(137a)

vmax ~ - 0.041934 lofl '(10K. '277)]
The parentheses are divided by means of the formulae

6.4(77 through 80a) and we finally get the following form of (137a)
v

1(137b)I ~ = 0.718187 . pO.02789. ~ - 0.020654 lofl (nr. 230~
max

13. 2 DEGREE OF FULLNES ~ OF THE CROSS SECTION OF
EQUILIBRIUM PROFILES.,
We define ae as follows

F
2 )

Ymax4.5(58) se F F' F'
8· (_!J_) -g; = 13+130Ymax

Ymax
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(139)

From Tables 8.1/14/ and 8.1/17/ we get
F' = A . 0.1091 AfCf P fp
B' = A • pO.0890 . A

~~~ bp
and by division

'de = F' = ~. pO.0201
B' b<p

Af~
For the ratio we get from Tables 8.1/14/17/ the

Äb<p

(90b)d)

(93b)d)

following values

cp 15'" 20'" 25'" ;jO'"

IAf~
0.739031 0.742356 0.745156 0.747759

Äb<p

The variation with cp is so small that we take as an
average A
(139a) ~ = 0.7424 = constant I nearly corresponding to

b<p
<f> = 20°.

For Afp and Abp we get fr om Tables 8.1/14/17/

(90e) Afp = 1.007083· [1 - O.0316826 Io~ (lOS.P035 )]

(93e) Abp = 1.004781.[1 - 0.021107810~ (101.46)J

The ratio of the two parentheses is found by means of the
formulae 6.4(77 through 80a). We finally get

(139b) ~ = 1. 002290-[1 - 0.0105748 log" (11 f. 245 )]

and by inserting (139a) and (139b) (139) takes the fallowing form

1(139c)1 at = 0.7441· pO'.0201. [1-0.01057510~ (11{245)] .
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13.3 RELATION BETWEEN vmax AND se,
We found

13.1(137b) = '0.718187 . pO.02789 .e- 0.020654 lop; (117 .~30~

= O.7441 . pO.0201. fï - O.°1057510...2(t );1L ~ 11. 245 'J.13.2 (139c) . ae
v

These equations represent ~ and ~ asvmax
y-r ;the relationship between

functions of
Vm

-- and _ is given byvmax
Fig. 11 with the parameter p on the curve and the figure can there­
fore also be used for the determination of pand thereby of k when
one of the other two variables is known.

p =

In order to eliminate p between 13.1(137b) and 13.2(139c)
by raising the latter. to power 1.38756 and dividing we find

v
(v m )

max(140) 3(1. 38756
1 - 0.020654 10P; (n7~230 )

1.082324 .
1 - 0.010575loP; (111~245 )

In (140) the fraction on the right side is treated according
to the formulae of Sec. 6.4 and we get

v
(~)

(140a) ae 1~38756 = 1.082352' [1 - 0.005981 lop; ( 133~321 )J .
To eliminate p in (140a) we use

13. 2(139c) se = 0.7441 . pO.0201. [1 - 0.01057510...2 ( p ).1~ 111. 245 J .
Taking logarithms in 13. 2(139c) and noting that the

parenthesis does not deviate much from unity we find

(141) ~og ( l1f. 245 [ 1 - 0.22851 log (11f. 245 )J
49.751 log (1. 2225-at).

We substitute
(142) t = 1.2225"ae - 1

and noting that E. will always be small compared to unity, (141)
becomes

~og( 111:2451[ 1 - 0.22851 log ( 111. 245 )] = 21. 606 . E,.
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Solving this quadratic equation we find

log (111:245) = 2.1881 . [1 --VI - 19.479E] or

(141a) log (13:f.321) = 2.1096' [1 - 1.0372 VI - 19.479C].

(141a} is inserted in (140a) and we finally find

1(140b)1 vVm = 1. 02255 .ee 1. 38756. [1 + O.5904f+0. 05845VI-19. 479fj
max

where ~ is taken f'rom (142). vm
(140b) gives directly the relation between ~ and

We find for Instanee vmax
af

vm
--vmax

0.77 0.7478
. 0.80 0.7929
0.84 0.8479

It must be remembered that (140b) is exclusively valid for
equilibrium profiles. For other channels, e. g. with fixed bottoms,

Ymax vm
no definite relation between 3e and p ~ k can exist and v

max
can vary within considerably wider limits.

For an equilibrium profile it wiU consequently be possible
to determine the mean velocity by measuring the maximum
velocity and sounding the complete cross section of the channel,
i.e. determining at.

This should be an advantage in tidal channels, where the
dis charge cannot be considered steady for a time sufficient to
carry out velocity measurements at a sufficient number of points
of the cr oss section.

-at depends not alone on the area of the section and its
maximum depth which wiU probably both be weU defined, but also
on the width of the water surface.

This width wiU e. g. for natural streams often be influenced
by vegetation on the banks and thus be narrower than for the
equilibrium profile, even if the cross section as a whole is near
the equilibrium profile. The area can then be considered correct
and the width of that equilibrium profile which as an average
gives the best adjustment to the profile in question can be used by
the determination of ae. This is what has been done in Sec. 10 by
the study of the Vienna model tests.
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SEC. 14. CONCLUSIONSAND SUGGESTIONS
FOR FURTHER STUDIES.

The topics studied in this paper would be of interest for
the problem of stabie channels in general, but they do not cover
the whole problem.

The shape of the profile whlch is stabie against erosion
is found, but only provided that no transport of bed load occurs;
neither has the question of silting up of the channel been taken
into account. .

It is hoped however that the present study wil! be useful
if the problem in all its aspects is to be solved.

The whole study is carried through theoretically on certain
assumptions whieh are clearly stated, and further work in this
field should try better to confîrm or to correct these assumptions
by direct control or indirectly by compar-n g the results with
actual observations ..

The most important assumptions made are:
1) Distribution of "t according to formula 1. (1) or 4.2(la).
2) Hydrodynamic lüt L proporttonal to -s , 2.1(3) and 2.2(9) based

on the work of Einstein [IJ.
3) Logarithmic velocity distribution as indicated in Sec. 1; mean

velocity in an infinitesimal wedge-shaped element of area
assumed equal to mean veloeity in normal to bottom at the base
of elements, Sec. 4.2.

4) Unüorm distribution of roughness k, Sec. 4.2.
5) Constant value of angle of internal friction cp along perimeter.
6) Principle of minimum area of cross section, Sec. 4.4.
7) For some of the formulae for the dimensions of the channel

and fo~ the mean velocity an empirical relation between
hydraulie roughness k and hydraulic radius R, as found for
natural watercourses, has been introduced. Thus formulae not
eontaining k have been established.

The isovels studied in Sec. 9 and the example presented
in Fig.7 seem to some degree to confirm assumption 1) concerning
the distribution of "t.

That this choice is better than the usual assumption
taking 't proportional to the depth, seems evident, but the question
could be studied further by other methods, and the re sult possibly
be improved; it seems probable however that sueh further studies
wiU be eonsiderably faeilitated when an approximately correct
solution is at hand.
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Assumption 2) concerning hydrodynamiç lilt should also
receive closer study and the size of the proportionality factor
c :: 4.9 might probably be improved. It seems clear however that
this assumption is better than the complete disregard of the hydro­
dynamic lift, and the large size of c may perhaps explain why the
angle <p is found to be so small as is the case (see below) .

The logarithmic velocity distribution accepted is probably
so weU established that it does not need further comrnerits, but the
hydraulic roughness in real profiles must obviously be expected to
vary along the bottom; the k int roduced must therefore be taken as
an ave rage value,

As to the principle of minimum of area it will hardly· be
possible to give any strict proof of this assumption, but it almost
seems selfevident and corresponds completely to many similar
cases in hydraulics. A comparison of results with observations
from nature seems desirable.

The values of cp have been determined for three model
tests carried out in Vienna,1916. giving cp = 190, 170 and 140 as
the most probable values for these tests. The values are even
lower than the expected value of about 200, and it seems highly
desirabie that further observations should be made. Time has not
aUowed independent model tests to be carried out, but this ought
to be done. Further it seems probable that more insight into the
size of <p might be obtained by three-axial tests with sand where
the hydrodynamic lilt is replaced by an upward stream of water in
the cylinder. By such tests the effective grain to grain normal
stress could be reduced even to zero. This can possibly also be
effected by other means , e. g. using a liquid with a specific weight
greater than that of water.

A correct value of <l' can thus be found for effective
stresses smaller than those corresponding to the weight of the
grains proper.

The fundamental results of the study are given in the
tables in Sec. 8. 1 All quantities here ar-e dimensionless and we
have succeeded in expressing Q', F', vm', R', B', l' and vx'
by the product of two functions, one depending on <f alone and

Ymaxanother depending on p = -r- alone.

The limits of validity and the corresponding maximum
deviation of these formulae are given. For many practical purposes
the simple power formulae without the correcting factors Ap
should probably suffice; but for the application of the formulae for
model tests, e. g. where p = Ymax/k is small, the complete
formulae including Ap should be used.
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For all derivations in this paper the number of digits in
the constants of the formulae might seem exaggerated for practical
purposes; considering however the great number- of numerical
operations that have been needed in deriving the formulae, it has
been judged appropriate to retain a surplus number of digi ts in all
derivations, and the values of the constants can then finally be
rounded off.

The form of the formulae is such that all practical
calculations can easily be carried out by means of a log log slide
rule.

The result found in Sec. 11, viz. that the area F of the
half cross section of the equilibrium profile varies only slightly
with the angle of friction cp and with the relative roughness, but
mainly depends solely on the dis charge Q. the limiting tractive
force 1: and the hydraulic roughness k, might facilitate the
comparlH81 of results with observations in nature.

Where the flow in the channel is caused by tides, the use
of the results in Sec. 13 might facilitate the observation of Q.

Until more definite knowledge about the roughness k is
acqutr-ed, the results in Sec. 11. 2. where k is taken to be equal
to the empirically determined roughness of natural watercourses.
might be of use. The results thus obtained should, as far as
possible, be compared with observations in nature.

The formulae for the mean velocity found in Sec. 13 also
make it possible to find k from available observations.
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