ENGINEERING PROGRESS

at the

University of Florida

Vol. XII, No. 7

July, 1958

Technical Paper No. 144

by

A. E. Bretting

Presented at the Sixth International Conference on Coastal Engineering, University of Florida, December, 1957

Price: \$1.25

Published monthly by the

FLORIDA ENGINEERING AND INDUSTRIAL EXPERIMENT STATION

COLLEGE OF ENGINEERING . UNIVERSITY OF FLORIDA . GAINESVILLE

Entered as second-class matter at the Post Office at Gainesville, Florida

"Stable Channels" by A. E. Bretting was presented at the Sixth International Conferency on Coastal Engineering at the University of Florida in Gainesville in December, 1957. The paper was too comprehensive for printing in the Proceedings and was for this reason printed separately and will be distributed in the United States by the Florida Engineering and Industrial Experiment Station.

Other papers presented at the conference are printed in "Proceedings of the Sixth International Conference on Coastal Engineering," Council on Wave Research, University of California, Berkeley 4, California. This bulletin also includes the following papers by faculty members of the University of Florida:

"Florida Coastal Problems" by Per Bruun, F. Gerritsen, and W. H. Morgan

"Model Experiments in Questions of Navigation" by J. J. Leendertse

"The Effects of Drainage on the Stability of Sea Walls" by F. E. Richart, Jr. and J. H. Schmertmann

"Dune Formation and Stabilization by Vegetation and Planting" by John H. Davis

Reprints of these papers are available upon request from the Florida Engineering and Industrial Experiment Station.

Coastal engineering papers published earlier in the Engineering Progress Series include:

Leaflet No. 66 - "Beach Profiles and Development of Plans for May, 1955 Coastal Protection," by Per Bruun

Bulletin No. 76 - "Coastal Development and Coastal Protection," November, 1955 by Per Bruun

Special Report to the	- "Studies and Recommendations for the Control of
Florida State Legislature	Beach Erosion in Florida," by the Coastal
	Engineering Staff

Technical Progress Report – "Coastal Engineering Investigations at Jupiter No. 5, March, 1957 – Island," by the Coastal Engineering Staff

Leaflet No. 99 - "Florida's Coastal Engineering Wave Tank," July, 1958 by P. Bruun, J. J. Leendertse, and L. W. Cover

Other publications planned for the near future include a report on a coastal engineering study at Fort Pierce Beach; an analysis of tidal inlets, and a manual on the design of coastal engineering structures.

FOTOGRAFISK OPTRYK S. L. MØLLERS BOGTRYKKERI, KØBENHAVN

UDC 626.01 627.1

STABLE CHANNELS

A. E. BRETTING

Hydraulic Laboratory Technical University of Denmark

ACTA POLYTECHNICA SCANDINAVICA 245 (1958) Civil Engineering and Building Construction Series New Series Ci. 1.

I

INDEX

Sec.	Page
Index	I
List of symbols.	v
List of figures.	IX
Abstract.	х
1. Introduction.	1
2. Establishment of the differential equation for the shape of the profile.	3
2.1 Equation on the assumption $L = c \cdot \tau$.	3
2.2 Determination of the factor c in formula 2.1(3	s). 5
3. Solution of the differential equation 2.1(8).	6
3.1 Formulae for numerical integration. cl.	, 6
3.2 Calculation of the integral, especially $\int_{1-\Delta}^{\Delta} \frac{dS}{d\eta}$.	dy.12
3.3 Numerical integration. Computation of η , $\$$ values for $\varphi = 15^{\circ}$, 20° , 25° and 30° .	14
4. Determination of perimeter, area and discharge for "bank-part" and "middle-part". Principle of minimum work.	19
4.1 Introduction.	19
4.2 Derivation of formulae for mean velocity, are and discharge of an element of the cross sect	a ion. 20
 4.3 Formulae for the quantities S and for dimensi less values of perimeter, area and discharge F' and Q' respectively, valid for "bank-part" "middle-part" and for the total half-section. 	on- U, , 22
4.4 Determination of β_0 corresponding to minimum of cross section.	25
4.5 Formulae valid for the optimal profile for dimensionless values of perimeter, area, discharge, mean velocity, hydraulic radius, width of water surface, slope, shearing veloci and fullness of the profile, all expressed by th quantities S and β .	ity e 26
4.6 Evaluation of numerical values of the quantitie S.	28

INDEX

Sec	:. I	Page
5.	Formulae for Q', F', B', R' and I' as functions	
	of $p = \frac{y_{max}}{k}$ for $\varphi = 15^{\circ}$, 20°, 25° and 30°.	46
6.	Derivation of formulae of the type $z' = A_{\varphi} p^{B\varphi} A_{p}$, where $p = \frac{y_{max}}{k}$, and A_{φ} and B_{φ} are functions of	
	φ alone, whereas A is function of p alone.	48
6	5.1 Introduction.	48
6	5.2 $(A_p = 1)$. Simple power formula.	49
6	5.3 Derivation of formula for A _p .	49
6	5.4 Derivation of expressions for a_3 , b_3 and Δ_3 in the formula	
	(77) $\frac{1 - a_1 \log^2 \left(\frac{p}{b_1}\right)}{1 - a_2 \log^2 \left(\frac{p}{b_2}\right)} = 1 + \Delta_3 - a_3 \log^2 \left(\frac{p}{b_3}\right)$	51
	6.5 Derivation of formulae for A_{φ} and $\$$, abscissae, of the form	
	(81) $A_{\varphi} = a + b \cot \varphi + c \cot^2 \varphi + d \cot^3 \varphi$.	52
7.	Numerical determination of $A\varphi$, $B\varphi$ and A_p for Q', F', v'_m , R', $(\beta+\beta_0)$, I' and $v'_{\frac{1}{2}}$.	53
	7.1 Numerical calculation of A_{φ} , B_{φ} and $\log A_{p}$.	53
x	7.2 Numerical calculations of formulae for A p as function of p.	64
8.	General review of formulae for Q', F', v', R', B', I' and v' and of formulae for the abscissae sas functions of φ for fixed values of the ordinates η .	67
	8.1 The definitive formulae for the dimensionless quantities Q', F', v'_m , R', B', I' and v_{χ} .	6 7
	8.2 Formulae for the abscissae \S as functions of $m = \cot \varphi$.	75
9.	Determination of isovels in the equilibrium profile.	79
10.	Study of model tests carried out in Vienna 1916. Comparison with theory.	81
	10.1 Description of model tests and results.	81

II

ш

Sec.	INDEX	Page
10.2	Comparison of theory with model tests; comments.	82
10.3	Derivation of formulae suitable for analysis of model test data.	83
10.4	Numerical calculation of y_{max} , B, I and k for model tests.	
	10.4.1 Test No 1.	85
	10.4.2 Test No 2.	87
	10.4.3 Test No 3.	88
10.5	Adjustment of theoretical equilibrium profiles to those of model tests.	90
11 For for	mulae for the dimensions of equilibrium profiles given values of Q, τ_{max} , γ , k and ϕ .	91
11.1	Choice of the angle of internal friction ϕ	
	and the equivalent sand roughness k.	94
	11.1.1 φ.	94
	11.1.2. k.	94
	11.1.2.1 Determination of k by means of the Manning coefficient M	in
	the formula $v_m = M \cdot R^{2/3} \cdot I^1$ (metric units).	/2 94
	11.1.2.2 k found from observation of velocity distribution in a normal to the bottom	95
	11.1.2.3 k found by means of \mathcal{X} , "degree of fullness," or	
	$\frac{v_m}{v_{max}}$.	96
	11.1.2.4 Assuming the same value of k as empirically found for natural watercourses, viz: $\frac{k}{R} = \left(\frac{c_k}{R}\right)^{1.56}, \text{ where } c_k = 0.425$	
	meters or 1.395 feet.	96
11.2	Determination of dimensions for given values of Q, τ_{max} , γ and ϕ and for k assumed to	
	correspond to roughness of <u>natural water-</u> courses.	96

INDEX

Sec.	Page
11.3 Illustrative example of calculation of dimensions.	103
12. Formulae for the mean velocity v _m in equilibrium profiles.	104
12.1 v _m as a function of hydraulic radius R. Fixed value of k.	104
12.2 v_{m} as a function of hydraulic radius R,	
assuming k as for <u>natural watercourses.</u>	106
12.3 v_m as a function of y_{max} . Fixed value of k.	107
13. The ratio of mean velocity v _m to maximum velocity v _{max} .	108
13.1 $\frac{v_m}{v_{max}}$ as a function of $p = \frac{y_{max}}{k}$.	108
13.2 "Degree of fullness" X of the cross section of equilibrium profiles.	109
13.3 Relation between $\frac{v_m}{v_{max}}$ and \mathcal{H} .	111
14. Conclusions and suggestions for further studies.	113
References.	116

Figures 1 - 11.

IV

			Sec.
a	=	$1 + \frac{\cot \varphi}{2}$	3.1-3.2
a		constant in formula for A _n	6.3
a		Aq	6.5
a ₀		auxiliary notation in formula for A_p	6.3
$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$		constants	6.4
Aφ		coefficients being functions of φ (φ second subscript)	6 et seqq.
^A p		(p second subscript)	6 et seqq.
b	=	$a \cot^2 \varphi = (1 + \frac{\cot \varphi}{2}) \cdot \cot^2 \varphi$	3.1-3.2
b		constant in formula for A	6.3
b		A q	6.5
b		as first subscript in $A_{b\varphi}$, $B_{b\varphi}$ and A_{bp} to denote formulae pertaining to B'	7 et seqq.
$\begin{bmatrix} b \\ b \\ 2 \\ b \\ 2 \\ b \\ 2 \end{bmatrix}$		constants	6.4
в		width of the half profile at water surface	4.5 et seqq.
В'	=	$\frac{B}{y_{max}} = \beta + \beta_0$	4.5 et seqq.
Bφ		coefficients (powers) being functions of ϕ	6 of soas
c	=	(φ second subscript) 4.9, proportionality factor in L = c· τ constant in formula for A	2.1-3.1 6.3
c		Αφ	6.5
Co		auxiliary notation in formula for A	6.3
c _k	=	0.425 meters = 1.495 feet, constant for roughness of natural watercourses	11.1.2.4-11.2
d ds dF		constant in formula for $A\phi$ length of element of perimeter of bottom area of surface element	6.5 4.2 4.2
e		basis of natural logarithms	9-11.1.2.2
e p		deviations from power formulae	6.3
ep] f		as first subscript in $A_{f\phi}$, $B_{f\phi}$ and A_{fp} to denote formulae pertaining to F'	7 et seqq.
		(to be continued)	

			Sec.
f		resistance number	11 1 2
F		area of <u>half</u> profile	4.1 et seqq.
F'	=	$\frac{F}{y_{max}^2}$	4.3 et seqq.
g g(m)]		acceleration of gravity	1 et seqq.
$\begin{array}{c} g_1(m) \\ g_2(m) \\ g_3(m) \end{array}$		auxiliary functions for calculating $A\phi$	6.5
i		as first subscript in A _{in} , B _{in} and A _{in}	
-		to denote formulae pertaining to I'	7 et seqq.
1		slope	4.5 et seqq.
I'	=	$\frac{g + 1}{y_{\max} \cdot (\frac{\tau_{\max}}{9})}$	4.5 et seqq.
k		hydraulic equivalent sand roughness of	
V		total charring force	1 et seqq.
ln	=	log _e , natural logarithm	1 et seqq.
L	=	hydrodynamic lift force per unit area	2.1-2.2
m	=	$1 - \frac{\cot \varphi}{c}$	3.1-3.2
m		as subscript signifies mean value	4.2 et seqq.
m	=	$c + a \log^2 b$, abbreviation by calculation of A_p	6.3
m max M n n	=	cot φ , used in formulae for A φ and \hat{s} as subscript signifies maximum value Manning's coefficient Kutter's n number of ordinate η	6.5 et seqq. 1 et seqq. 11.1.2.1 11.1.2.1 3.3
n	=	2 a log b, abbreviation by calculation of A p	6.3
р	=	ymax k	5 et seqq.
р		relative distance from bottom	11.1.2.2
q			11.1.2.2
q		as first subscript in A_{qq} , B_{qq} and A_{qp} to denote formulae pertaining q^{q} to Q'	7 et seqq.
Q		discharge of half section	4.1 et seqq.
Q'	=	$\frac{Q}{1/T}$ max 2	4.3 et seqq.
		$2.5 \cdot \sqrt{\frac{9}{8} \cdot y_{\text{max}}}$	
		(to be continued)	

				Sec.
r		radius of curvature	4.2	
r		as first subscript in $A_{r\varphi}$, $B_{r\varphi}$ and A_{rp} to denote formulae pertaining to R'	7 et	seqq.
r	=	$\frac{v_{z, s}}{v_{m}}$	9	
R		hydraulic radius of section	4.5	et seqq
R'	=	R .	4.5	et seqq.
s		max see ds	4.2	
S S S S 1, 1 S 2, 1 S 3, 1 S 2, 2 S 3, 2 S 3 S 3, 2 S 3, 2 S S 3, 2 S 3, 2 S S S S S S S S S S S		notations defined in Sec. 4.3	4.3	et seqq.
U		wetted perimeter of <u>half</u> section	4.1	et seqq.
U'	=	U v	4.3	
v		angle of slope in the longitudinal axis		
		of the channel	1	
v		as first subscript in $A_{v\phi}$, $B_{v\phi}$ and A_{vp} to denote formulae pertaining to v_m	7	
v		velocity	4.2	et seqq.
vz		- at distance z from bottom	1-4.	z et seyy.
vm,5		$z_0 = g \cdot y_{max}$	4.2	et seqq.
v _*		shearing velocity	1-4.	2 et seqq.
vx,g		where $z_0 = 5 \cdot y_{\text{max}}$	4.2	et seqq.
v,	=	$\frac{\tau_{\rm m}}{2.5 \cdot \sqrt{\frac{\tau_{\rm max}}{\rho}}}$	4.5	et seqq.
v ∗ vz,≶	п	$\sqrt{\frac{\frac{\tau_{max}}{9}}{g R I}}$ velocity at distance z from bottom where the normal has length $\mathcal{S} \cdot y_{max}$	4.5 9	et seqq.

(to be continued)

				Se	c.
v v q		velocity at relative distance from bottom p	11.1	. 2 . 2	. 2
W x y		submerged weight of sand grains per unit area of the bottom abscissa reckoned from bank (Fig. 3) depth of water at abscissa x (Fig. 3)	2.1 2.1 1 et	et se	seqq.
z z z z		distance from bottom measured at right angles to the bottom length of normal to the bottom between this and the water surface (Fig. 4) stands in general for Q', F', v'm, B',	1 et 4.2	se et	seqq.
z'	=	$\frac{z}{y_{max}}$	9	1-1	0.2
×		as first subscript in $A_{x\varphi}$, $B_{x\varphi}$ and A_{xp} to denote formulae pertaining to v' x	7 et	se	eqq.
a	_	angle of inclination of bottom in relation to horizontal plane	1 et	se	eqq.
β β β	-	(relative width of "bank-part") relative width of "middle-part" as subscript referring to "bank-part" as subscript referring to "middle-part"	3.3 4.1 4.1 4.1	et et et	seqq. seqq. seqq. seqq.
0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	=	specific weight of water indicates finite difference (e.g. $\Delta \leq$) 1 - η auxiliary notation	1 et 3.3 3.2 6.4	se et	qq. seqq.
3	=	1.2225 ℃ - 1	13.3	č	
5	=	$\frac{z_0}{y_{max}}$, relative length of normal to			
η	÷	bottom between this and water surface $\frac{y}{y_{max}}$, relative depth	4.2 2.1	et et	seqq. seqq.
e	=	$\frac{\mathbf{F}}{\mathbf{B} \mathbf{y}_{\max}}$, "degree of fullness of cross			
		section	4.5	et	seqq.
M	=	$\frac{1}{y_{max}}$, relative abscissa	2.1	et	seqq.
ያ	Ξ	g , density of water (to be continued)	1 et	se	eqq.

Sec.

shearing stress at bottom1 et seqq.angle of internal friction1 et seqq.auxiliary function4.4In Sec. 2.2 the symbols of [1] are used.References are given in [].Formula numbers are given in ().

Numbers of formulae of special importance are framed.

Table numbers are given in / /.

Example: 7.1/4a/b/c/d/ indicates the four Tables 4a, 4b, 4c and 4d which appear in Sec. 7.1.

LIST OF FIGURES

Fig.	1.	Illustration	to S	ec.	.1.	
-	2.	-	-	-	2.	
-	3.		-	-	4.1.	
-	4.	A	-	-	4.2.	
-	5.		-	-	6.2.	18
-	6.		-	-	6.3.	
-	7.	Isovels for	φ =	30	^o and $p = 50$, cf. Sec.9.	
-	8.]					
-	9.	Comparison	of t	he	ory with model tests carried	out
-	10.]	in Vienna 1	916,	cf v	f. Sec. 10.5.	v
-	11.	Diagram giv	ving	v _m	$\frac{m}{m}$ as a function of \mathcal{H} or p	$=\frac{max}{k}$.
		Applicable and 13.3.	for (equ	illibrium profiles only, cf. Se	ecs. 12.

All figures appear on the last four pages of the paper.

All tables appear in the text.

τ

φ

Y

ABSTRACT

The form and size of a channel in cohesionless material, stable against erosion for a definite discharge, Q, are studied. The angle of internal friction φ and the limiting tractive

The angle of internal friction φ and the limiting fractive force τ_{\max} are taken as known. Distribution of shearing stresses τ is assumed to be such that they are proportional to the distance between bottom and water surface, measured at right angles to the bottom. In addition to the action of gravity and shearing stress τ the grains are acted upon by a hydrodynamic lift force, proving to be proportional to τ . The differential equation of the bottom form is established and integrated numerically; the form depends on φ .

Based on the logarithmic law of velocity distribution and the assumed distribution of shearing stresses, the velocities in all parts of the cross section can be found, and the total discharge is found by numerical integration. A profile consisting of the curved "bank-part" of the above

A profile consisting of the curved bank-part of the above mentioned cross section and a "middle-part" of indefinite width and of constant depth y_{max} would be stable for the same tractive force. On the assumption however that nature will produce that cross section which has a minimum of area, only one definite solution, viz. the equilibrium profile, is found. The dimensions depend not on φ alone but also on the relative roughness of the bottom $\frac{k}{y_{max}}$. Provided that the hydraulic roughness k is assumed

to be in conformity with that of natural watercourses, it is found that the area of the equilibrium profile varies slowly with φ and must be proportional to

$$\left(\frac{Q}{\sqrt{\tau_{max}}}\right)^{0.9}$$

The above assumptions are checked by calculation of a complete set of isovels.

Further three model tests, carried out in Vienna in 1916, are studied and compared with profiles calculated according to this theory. The values of φ are found to be varying from 14° to 20°. On the same basis a study is finally made of the relation between mean and maximum velocities, $\frac{v_m}{v_{max}}$, resulting in a simple diagram giving $\frac{v_m}{v_{max}}$ as a function of ϑ , the "degree of fullness" of the profile, and also as a function of $\frac{y_{max}}{k}$, the reciprocal relative roughness.

Methods for estimating k are given.

SEC. 1.

STABLE CHANNELS

A. E. Bretting Professor of Hydraulics, Technical University of Denmark, Copenhagen, Denmark.

1. INTRODUCTION

The term "stable channels" has generally been used as relating to the cross section of a channel which will be stable for a definite discharge both against erosion and against sedimentation. In this paper only the question of stability against erosion has been treated, and only as far as cohesionless bottom material is concerned.

The subject of this investigation is the cross section ultimately created when nature itself, at a definite discharge Q (m³/sec), excavates a channel bed in sand material with a definite limiting tractive force τ_{max} (kg/m²) just able to move the sand grains on a horizontal bottom and with an angle of internal friction of φ degrees.

The specific weight of the water is χ (kg/m³), and the equivalent sand-roughness of the bottom of the channel is k (m); this roughness is taken to be uniform over the whole width of the channel.

It is further assumed that the velocity v_z at every point P of the cross section can be found according to the usual logarithmic law of velocity distribution

$$\frac{v_z}{v_x} = 8.48 + 2.5 \cdot \ln(\frac{z}{k}),$$

where k is the roughness of the bottom (m),

z is the distance from the bottom (m) measured in the direction perpendicular to the bottom,

1

 $v_{\mathbf{x}} = \sqrt{\frac{\tau}{g}} (m/sec)$,

 τ = the shearing stress (kg/m²) at the bottom in a line through the point P perpendicular to the bottom,

$$g = \frac{\delta}{g}$$
 { δ , specific weight of the water (kg/m³)
g, acceleration of gravity = 9.81 m/sec².

To find the velocities, a definite law for the distribution of the shearing stresses along the bottom contour must be assumed.

In the middle part of the cross section, where the bottom line is horizontal, the shearing stress will have its maximum value τ_{max} equal to the limiting tractive force of the sand grains in question.

This limiting tractive force will strictly speaking depend on the longitudinal slope of the channel.

The relation between the limiting tractive forces τ_v for a plane bottom sloping in the direction of the flow at an angle v v and τ_h for a horizontal bottom, can be shown to be:

$$\frac{v}{\tau_{\rm h}} = \cos v(1 - \mathrm{tg} \, v \, \cot \varphi),$$

where φ is the angle of internal friction of the sand.

Since the longitudinal slope = sin v will generally be small we take the limiting tractive force to be independent of the slope.

The following law for the variation of τ is assumed:

(1)
$$\frac{\tau}{\tau_{\max}} = \frac{y}{y_{\max} \cdot \cos \alpha} ,$$

where y is the depth of water at the point in question, and α is the inclination of the bottom with a horizontal plane. (Fig.1). The shearing stress will consequently be proportional to the length of a normal to the bottom reckoned between the bottom and the water surface. The shearing stress on the slopes will be somewhat greater than that found by using the hypothesis that τ varies proportionally with the depth y, an assumption previously used. Transfer of shearing forces from the middle of the section against the banks is thus to a certain degree taken into account.

A justification of this assumption is later found by calculation of the corresponding complete set of isovels (Fig.7), which are in fair accordance with experience from actual measurements.

2. ESTABLISHMENT OF THE DIFFERENTIAL EQUATION FOR THE SHAPE OF THE PROFILE.

2.1. EQUATION ON THE ASSUMPTION $L = c \cdot \tau$.

The profile sought should just be in equilibrium at every point of the bottom, given the assumed distribution of shearing stresses.

On the bottom an element of one unit area will be stressed by the force τ in the direction of the flow. The longitudinal slope of the channel is considered insignificant. The surface element has the inclination α^{0} with a horizontal plane.

The submerged weight of sand grains per unit area stressed by τ is designated as W. (Fig. 2). This force is acting vertically downwards and is resolved into the forces W·cos α in the direction of the normal to the element, and W·sin α acting in the plane of the element in the direction of its transversal slope.

The grains of the element are further acted upon by the hydrodynamic lifting force L, which is upwards directed in the normal to the plane of the element. The resulting force in this direction will consequently be ($W \cdot \cos \alpha - L$), acting downwards.

The total stress on the element in question will be the resultant of the three above-mentioned forces :

- 1) τ in the plane of the element and in the direction of the flow,
- 2) (W·cos α L) in the direction of the normal to the element,
- 3) W sin α in the plane of the element perpendicular to the direction of flow.

The resultant of forces 1) and 3) is $\sqrt[3]{\tau^2} + W^2$. $\sin^2 \alpha$ acting in the plane of the element, whereas force 2) is perpendicular to the said resultant.

If the angle of friction of the sand is taken to be φ degrees, it is a condition of equilibrium for the sand grains of this element

(2)
$$\tan \varphi = \frac{\sqrt{\tau^2 + W^2} \cdot \sin^2 \alpha}{W \cdot \cos \alpha - L}$$

The magnitude of the hydrodynamic uplift L will be studied below.

We put provisionally

 $L = c \cdot \tau ,$

where c will prove to be a constant (Section 2.2).

From equation (2) we get :

(2a) $W^2 \cdot \cos^2 \alpha - 2 \cdot L \cdot W \cdot \cos \alpha + L^2 = (\tau^2 + W^2 \cdot \sin^2 \alpha) \cdot \cot^2 \varphi$

From equation 1.(1) we get : $\tau = \frac{\tau_{max}}{\cos \alpha} \cdot \frac{y}{y_{max}}$

For $y = y_{max}$ we have $\alpha = 0^{\circ}$, $\cos \alpha = 1$, $\sin \alpha = 0^{\circ}$ $\tau = \tau_{max}$, $L = c \cdot \tau_{max}$, which, inserted in (2a), gives: $W^2 - 2 c \tau_{max} \cdot W + c^2 \cdot \tau_{max}^2 = \cot^2 \varphi \cdot \tau_{max}^2$; taking the square root of both sides we obtain:

$$W = c \tau_{max} = cot \varphi \cdot \tau'_{max}$$
$$W = \tau_{max} (c + cot \varphi)$$

This value of W is inserted in (2a) together with L from (3), which gives :

(5)
$$\left(\frac{\tau}{\tau_{\max}}\right)^2 \cdot \left(\frac{c - \cot \varphi}{c}\right) - \left(\frac{\tau}{\tau_{\max}}\right) \cdot 2 \cos \alpha$$

 $+ \left(\frac{c + \cot \varphi}{c}\right) \cdot \left[\left(1 + \cot^2 \varphi\right) \cdot \cos^2 \alpha - \cot^2 \varphi\right] = 0$
 Substituting 1.(1):
 $\frac{\tau}{\tau_{\max}} = \frac{y}{y_{\max}} \cdot \frac{1}{\cos \alpha}$ we get from (5):
(5a) $\left(\frac{y}{y_{\max}}\right)^2 \cdot \frac{1}{\cos^2 \alpha} \cdot \left(\frac{c - \cot \varphi}{c}\right) - 2\left(\frac{y}{y_{\max}}\right)$
 $+ \left(\frac{c + \cot \varphi}{c}\right) \cdot \left[\left(1 + \cot^2 \varphi\right) \cdot \cos^2 \alpha - \cot^2 \varphi\right] = 0$

The following substitutions are used :

(6a)
$$\frac{y}{y_{\text{max}}} = \eta$$
; (6b) $\frac{x}{y_{\text{max}}} = \mathbf{S}$; (6c) $\tan \alpha = \frac{dy}{dx} = \frac{d\eta}{d\mathbf{S}}$;
(6d) $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha = 1 + \left(\frac{d\eta}{d\mathbf{S}}\right)^2$
(6a) - (6d) are inserted in (5a):
 $\eta^2 \cdot \left[1 + \left(\frac{d\eta}{d\mathbf{S}}\right)^2\right] \cdot \left(1 - \frac{\cot \varphi}{c}\right) - 2\eta$
 $+ \left(1 + \frac{\cot \varphi}{c}\right) \cdot \left[\frac{1 + \cot^2 \varphi}{1 + \left(\frac{d\eta}{d\mathbf{S}}\right)^2} - \cot^2 \varphi\right] = 0$

(4)

5

(7)
$$\pi^{2} \cdot \left[1 + \left(\frac{d \eta}{d \cdot \underline{s}}\right)^{2}\right]^{2} \cdot \left(1 - \frac{\cot \varphi}{c}\right)$$
$$- \left[1 + \left(\frac{d \eta}{d \cdot \underline{s}}\right)^{2}\right] \cdot \left[2 \eta + \cot^{2} \varphi \cdot \left(1 + \frac{\cot \varphi}{c}\right)\right]$$
$$+ \left(1 + \cot^{2} \varphi\right) \cdot \left(1 + \frac{\cot \varphi}{c}\right) = 0$$

This is the correct differential equation in η and f for the profile in question. It can be written in the form

$$(8) \quad \left(\frac{d\eta}{d\frac{q}{2}}\right)^2 = \frac{\left(1 + \frac{\cot\varphi}{c}\right) - 2\eta + \eta^2 \left(1 - \frac{\cot\varphi}{c}\right) \cdot \left[1 + \left(\frac{d\eta}{d\frac{q}{2}}\right)^2\right]}{\cot^2\varphi \cdot \left(1 + \frac{\cot\varphi}{c}\right) + 2\eta - 2\eta^2 \cdot \left(1 - \frac{\cot\varphi}{c}\right)}$$

2.2 DETERMINATION OF THE FACTOR c IN FORMULA 2.1 (3)

In the paper by H. A. Einstein [Ref. 1] information is found bearing upon this subject. The notations of Einstein's paper are used (in this section only). Formula (36), page 31 runs

$$p_{L} = c_{L} \cdot s_{f} \cdot \frac{u^{2}}{2}$$
, where

p_L = average lift pressure per unit of area,

 $c_{L} = 0.178$ (dimensionless), $s_{f} = density of the fluid = \frac{\gamma_{f}}{g}$,

 \mathcal{X}_{f} = specific weight of fluid,

= acceleration of gravity , g

u = the flow velocity at a distance $0.35 \cdot D_{35}$ from the theoretical bed,

 D_{35} = sieve size of the grains of which 35 percent are finer.

It is indicated that the pressure fluctuations due to turbulence in their duration follow the normal error law, the standard deviation being 0.364 of the average lift.

A deviation from the mean of 2.75 times "standard deviation". viz.

$$2.75 \cdot 0.364 \cdot p_{\rm L} = 1.0 \cdot p_{\rm L}$$

will only have a statistical probability of 6 per thousand to be exceeded and corresponds to a practical maximum value of the hydrodynamic lift force per area :

 $L = 2 p_L$, which is very seldom exceeded. For greater values of Reynolds' numbers, which are exclusively considered, is found

$$u = u_{\frac{1}{2}} \cdot 5.75 \cdot \log(30.2\frac{5}{\Delta})$$
, where

2

 $y = 0.35 (0.77 \cdot k_{s}),$ $\Delta = k_{s} , \text{ the equivalent sand roughness,}$ $u_{\texttt{x}} = \sqrt{\frac{\tau}{s_{f}}} , \text{ where}$ $\tau = \text{shearing stress along the bottom}$ $u = u_{\texttt{x}} \cdot 5.75 \log (30.2 \cdot 0.35 \cdot 0.77)$ $u = 5.24 \cdot u_{\texttt{x}}$ $\text{The mean value } p_{L} \text{ according to } [1] \text{ formula } (36)$ $p_{L} = 0.178 \cdot s_{f} \cdot \frac{1}{2} (5.24 u_{\texttt{x}})^{2}$ $p_{L} = 2.45 \cdot s_{f} \cdot u_{\texttt{x}}^{2} = 2.45 \cdot s_{f} \cdot \frac{\tau}{s_{f}} = 2.45 \tau$ We consequently find the maximum value of the hydrodynamic lift force, defined as above,

$$L = 2 p_{\tau} = 4.9 \tau$$

The constant c in equation (3) is found to be

(9)

$$c = 4.9$$

3. SOLUTION OF THE DIFFERENTIAL EQUATION 2.1(8)

In the numerical calculations of $\frac{d\eta}{d\epsilon}$ for varying values of η , the factor $\left[1 + \left(\frac{d\eta}{d\epsilon}\right)^4\right]$ in the last term of the numerator can be omitted from the first approximation, whereupon the said last term is corrected.

3.1. FORMULAE FOR NUMERICAL INTEGRATION

The following substitutions are used :

2.2.(9)
$$c = 4.9$$

(10) $a = 1 + \frac{\cot \varphi}{c}$
(11) $b = \cot^2 \varphi \cdot (1 + \frac{\cot \varphi}{c}) = a \cdot \cot^2 \varphi$
(12) $m = 1 - \frac{\cot \varphi}{c}$,
and the differential equation (8) takes the follow

an 1 the differential equation (8) takes the following form :

(13)
$$\left(\frac{d\eta}{dg}\right)^2 = \frac{a - 2\eta + m\eta^2 \cdot \left[1 + \left(\frac{d\eta}{dg}\right)\right]}{b + 2\eta - 2m \cdot \eta^2}$$

6

For a given value of φ the quantities a, b and m are fixed constants, and the numerical values of $\frac{d \eta}{d \xi}$ can be found corresponding to chosen values of η .

The integration of the differential equation (13) is made numerically for values of $\varphi = 15^{\circ}$, 20° , 25° and 30° .

The corresponding values of the constants a, b and m are found from formulae (9), (10), (11) and (12), and the following special forms of (13) are found : 0

$\varphi = 15$	$\left(\frac{d\eta}{d\eta}\right)^2$	$= \frac{1.761643 - 2\eta + 0.238357 \cdot \eta^2 \cdot \left[1 + \left(\frac{d\eta}{d\xi}\right)^4\right]}{2}$
$\alpha = 20^{\circ}$	`d€'	$24.536516 + 2\eta - 2 \cdot 0.238357 \cdot \eta^2$
(13b)	$\left(\frac{d\eta}{d\epsilon}\right)^2$	$= \frac{1.56071 - 2\eta + 0.43929 \cdot \eta^2 \cdot \left[1 + \left(\frac{d\eta}{dg}\right)\right]}{11 \ \text{Folloc} \ i \ 0 \ 0 \ 43929 \cdot \eta^2 \cdot \left[1 + \left(\frac{d\eta}{dg}\right)\right]}$
$\varphi = 25^{\circ}$	5	$11.78125 + 2 \eta - 2 \cdot 0.43929 \cdot \eta^{4}$
(13c)	$\left(\frac{d\eta}{dg}\right)^2$	$= \frac{1.43766 - 2\eta + 0.56234 \cdot \eta \cdot [1 + (\frac{1}{d \cdot g})]}{6.61168 + 2\eta - 2 \cdot 0.56234 \eta^2}$
$\varphi = 30^{\circ}$	d = 2	$1.35348 - 2\eta + 0.64652 \cdot \eta^2 \cdot \left[1 + \left(\frac{d\eta}{dE}\right)^4\right]$
(13d)		$= \frac{1}{4.06044 + 2\eta - 2 \cdot 0.64652 \cdot \eta^2}$

As values of η are taken :

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.98, 1.0. 0.75, 0.8, 0.85, 0.9, 0.95, 0.96, 1.0. For each value of φ and these values of η the values of $\left(\frac{d \eta}{d \xi}\right)^{2}$ are calculated from (13a) b) c) d), and the corresponding values of $\left(\frac{d\eta}{d\varphi}\right)$, $\left(\frac{d\hat{g}}{d\eta}\right)$, $\sqrt{1 + \left(\frac{d\eta}{d\hat{g}}\right)^2}$ and $\hat{g} = \eta\sqrt{1 + \left(\frac{d\eta}{d\hat{g}}\right)^2}$ are compiled in Tables 3.1./1a/b/c/d/ for $\varphi = 15^\circ$, 20°, 25° and 30° resp. Table 3.1/1a/

2	$\left(\frac{d\eta}{\alpha_s}\right)^2$	d n d n	dian	$V_{1+(\frac{\alpha n}{\alpha s})}$	2 5
0	0.071797	0.267949	3.73205	1.035276	0.000000
0.1	0.063240	0.251476	3.976529	1.031135	0.103114
0.2	0.055030	0.234585	4.262854	1.027147	0.205430
0.3	0.047149	0.217139	4.605354	1.023303	0.306991
0.4	0.039582	0.198952	5.026360	1.019599	0.407840
0.5	0.032312	0.179756	5.563085	1.016028	0.508014
0.6	0.025328	0.159148	6.283474	1.012585	0.607551
0.7	0.018616	0.136440	7.329257	1.009265	0.706485
0.75	0.015358	0.123927	8.069238	1.007650	0.755737
0.8	0.012164	0.110291	9.066962	1.006064	0.804851
0.85	0.009032	0.095039	10.521951	1.004506	0.853830
0.9	0.005962	0.077215	12.950913	1.002977	0.902679
0.95	0.002952	0.054329	18.406283	1.001475	0.951401
0.98	0.001174	0.034259	29.189274	1,000587	0.980575
1.0	0.000000	0.000000	8	1.000000	1.000000

 $\varphi = 20^{\circ}$.

Table 3.1/1b/

2	$\left(\frac{d\eta}{d\xi}\right)^2$	<u>dn</u> dn	dn dn	V1+(dn) 5
0	0.13247	0.36396	2.74748	1.06418	0.000000
0.1	0.114025	0.33768	2.96142	1.05547	0.105547
0.2	0.097023	0.31149	3.21042	1.04739	0.209478
0.3	0.081328	0.28518	3.50655	1.03987	0.311961
0.4	0.066822	0.25850	3.86848	1.03287	0.413148
0.5	0.053404	0.23109	4.32726	1.02635	0.513175
0.6	0.040988	0.20245	4.93937	1.02029	0.612174
0.7	0.029500	0.17176	5.82222	1.01464	0.710248
0.75	0.024083	0.15519	6.44384	1.01197	0.758978
0.8	0.018875	0.13739	7.27874	1.009393	0.807514
0.85	0.013869	0.11777	8.49136	1.006910	0.855874
0.9	0.009057	0.095168	10.50770	1.004518	0.904066
0.95	0.004436	0.066606	15.01359	1.002216	0.952105
0.98	0.001752	0.041862	23.888195	1.000876	0.980858
1.0	0.000000	0.000000	8	1.000000	1.000000

φ =	25 [°] .
-----	-------------------

Table 3.1/1c/

2	$\left(\frac{dn}{ds}\right)^2$	dr des	d m d n	$\sqrt{1+\left(\frac{\alpha n}{\alpha \frac{\alpha}{3}}\right)^2}$	5
0	0.21744	0.46631	2.14451	1,10338	0.000000
0.1	0.182852	0.42761	2.33857	1.08759	0.108759
0.2	0.152249	0.39019	2.56285	1.07343	0.214686
0.3	0.125035	0.35360	2.82803	1.06068	0.318204
0.4	0.100742	0.31740	3.15061	1.04916	0.419664
0.5	0.079002	0.28107	3.55780	1.03875	0.519375
0.6	0.059514	0.24395	4.09912	1.02933	0.617598
0.7	0.042047	0.20505	4.87677	1.02081	0.714567
0.75	0.034008	0.18441	5.42262	1.01686	0.762645
0.8	0.026404	0.16249	6.15411	1.01312	0.810496
0.85	0.019216	0.13862	7.21387	1,00956	0.858126
0.9	0.012429	0.11149	8.96978	1.00620	0.905580
0.95	0.006027	0.07763	12.88099	1.00301	0.952860
0.98	0.002367	0.04865	20.55420	1.00118	0.981156
1.0	0.000000	0.000000	00	1.00000	1.000000

 $\varphi = 30^{\circ}$.

Table 3.1/1d/

2	$\left(\frac{d\eta}{d\xi}\right)^2$	dr dr	a an	$\sqrt{1+(\frac{dn}{ds})}$	2 5
0	0.333333	0.577350	1.73205	1.154703	0.000000
0.1	0.273203	0.522687	1.91319	1.128362	0.112836
0.2	0.222426	0.471620	2.12035	1,105634	0.221127
0.3	0.179031	0.423121	2.36339	1.08583	0.325749
0.4	0.141608	0.376308	2.65740	1.06846	0.427384
0.5	0.109141	0.330365	3.02696	1.053158	0.526579
0.6	0.080864	0.284366	3.51659	1.039647	0.623788
0.7	0.056200	0.237065	4.21825	1.027715	0.719401
0.75	0.045082	0.212325	4.709756	1.022293	0.766720
0.8	0.034710	0.186306	5.36750	1.017207	0.813766
0.85	0.025046	0.158259	6.31874	1.012446	0.860579
0.9	0.016059	0.126724	7.89116	1.007998	0.907198
0.95	0.007718	0.087851	11.38297	1.003851	0.953659
0.98	0.003015	0.054905	18.21316	1.001506	0.981476
1.0	0.000000	0.000000	8	1.000000	1.000000

3.2. CALCULATION OF THE INTEGRAL, ESPECIALLY $\int \frac{d\,\underline{\$}}{d\,\eta} \cdot d\,\eta\,.$ 1-2 Calculation of the integral $f(\eta) \cdot d\eta$ is made by the

trapezoidal rule except for the last interval 0.98 $\leq n \geq 1$, where

In this region $(\frac{d\eta}{d\xi})^4$ in the formula 3.1. (13) can be completely neglected, and we get $\frac{d\xi}{d\xi}$ (14)

(14)
$$\frac{d \geq}{d \eta} = \sqrt{\frac{b+2\eta-2m\cdot\eta}{a-2\eta+m\cdot\eta^2}}$$

We substitute :

 $\eta = 1 - \Delta$, $\eta^2 = 1 - 2\Delta + \Delta^2$, where Δ is small in relation to 1. $d\eta = -d\Delta$ and find $\frac{d \mathbf{\hat{s}}}{d \eta} = \sqrt{\frac{b + 2(1-m) - 2\boldsymbol{\Delta}(1-2m) - 2m \cdot \boldsymbol{\Delta}^2}{(a - 2 + m) + 2\boldsymbol{\Delta}(1 - m) + m \cdot \boldsymbol{\Delta}^2}}$ According to 3.1.(10) and 3.1.(12) : a - 2 + m = 0, consequently $\frac{d}{d} \frac{s}{\eta} = \sqrt{\frac{b+2(1-m)}{2\Delta(1-m)}} \cdot \sqrt{\frac{1-2\Delta \frac{1-2m}{b+2(1-m)} - 2\Delta^2 \frac{m}{b+2(1-m)}}{1+\frac{1}{\pi} \cdot \Delta \cdot \frac{m}{m}}}$ (15)

In (15) the latter square root is expanded into a series, and considering that Δ is small compared with 1 we get, neglecting terms with Δ^3 and higher powers :

$$\frac{d \,\underline{s}}{d \,\eta} = \sqrt{\frac{b+2(1-m)}{2(1-m)}} \cdot \underline{A}^{-1/2} \cdot \left\{ 1 - \frac{1}{4} \cdot \underline{A} \cdot \left[\frac{m}{1-m} + 4 \cdot \frac{1-2m}{b+2(1-m)} \right] \right. \\ + \frac{1}{8} \cdot \underline{A}^{2} \cdot \left[0.75 \cdot \left(\frac{m}{1-m} \right)^{2} + 2 \cdot \frac{m}{1-m} \cdot \frac{1-2m}{b+2(1-m)} \right. \\ \left. - 4 \cdot \frac{m}{b+2(1-m)} \cdot \left(2 + \frac{(1-2m)^{2}}{m(b+2(m-1))} \right) \right] \right\}.$$

SEC. 3.2.

By integration we find :

$$\begin{aligned}
\underbrace{16} \quad \int_{1-\mathcal{A}}^{1} \frac{d \underbrace{\$}}{d \eta} \cdot d \eta &= \int_{0}^{\mathcal{A}} \frac{d \underbrace{\$}}{d \eta} \cdot d\mathcal{A} \\
&= 2 \cdot \sqrt{\mathcal{A}} \cdot \sqrt{\frac{b+2(1-m)}{2(1-m)}} \cdot \left\{ 1 - \frac{1}{12} \cdot \mathcal{A} \cdot \left[\frac{m}{1-m} + 4 \cdot \frac{1-2m}{b+2(1-m)} \right] \\
&+ \frac{1}{40} \cdot \mathcal{A}^{2} \cdot \left[0.75(\frac{m}{1-m})^{2} + 2 \cdot \frac{m}{1-m} \cdot \frac{1-2m}{b+2(1-m)} \\
&- 4 \cdot \frac{m}{b+2(1-m)} \cdot \left(2 + \frac{(1-2m)^{2}}{m(b+2(m-1))} \right) \right] \right\}.
\end{aligned}$$

The constants b and m are known for each value of φ from the above-mentioned calculations (compare the formula 3.1. (13) with 3.1. (13a), 3.1.(13b), 3.1.(13c) and 3.1.(13d). For $\varphi = 15^{\circ}$, b = 24.536516, m = 0.238357 we find: (16a) $\int_{1}^{1} \frac{d\underline{s}}{d\eta} \cdot d\eta = 8.272272 \cdot \sqrt{\Delta} \cdot \{1 - 0.032773 \Delta + 0.000281 \Delta^2\}$ For $\Delta = 0.02$ $(16aa) \int_{0}^{1} \frac{d \mathbf{S}}{d \eta} \cdot d \eta = 1.169876 \cdot \left\{ 1 - 0.00065546 + 0.000000112 \right\}$ For $\varphi = 20^{\circ}$, b = 11.78125 , m = 0.43929 we find (16b) $\int_{-\infty}^{1} \frac{d \,\mathfrak{F}}{d \,\eta} \cdot d \,\eta = 6.78400 \cdot \sqrt{\Delta} \cdot \left\{1 - 0.068427\Delta + 0.0050592\Delta^2\right\}.$ For $\Delta = 0.02$ $(16bb)\int_{0}^{1} \frac{d\xi}{d\eta} \cdot d\eta = 0.959400 \cdot \left\{1 - 0.00136854 + 0.00000202\right\}$ For $\varphi = 25^{\circ}$, b = 7.48700, m = 0.56234 we find (16c) $\int \frac{d \mathfrak{F}}{d \eta} \cdot d \eta = 5.84926 \cdot \sqrt{\Delta} \cdot \left\{ 1 - 0.101523 \Delta + 0.014835 \Delta^2 \right\}.$

For
$$\Delta = 0.02$$

 $(16cc) \int_{0.98}^{1} \frac{d}{d} \frac{s}{\eta} \cdot d\eta = 0.827208 \cdot \left\{ 1 - 0.00203046 + 0.00000593 \right\}$
For $Q = 30^{\circ}$, $b = 4.06044$, $m = 0.64652$ we find
 $(16d) \int_{1-\Delta}^{1} \frac{d}{d} \frac{s}{\eta} \cdot d\eta = 5.19364 \cdot \sqrt{\Delta} \cdot \left\{ 1 - 0.1319 \Delta + 0.0296 \Delta^2 \right\}$.
For $\Delta = 0.02$
 $(16dd) \int_{0.98}^{1} \frac{d}{d} \frac{s}{\eta} \cdot d\eta = 0.734490 \cdot \left\{ 1 - 0.02638 + 0.00001184 \right\}$
 $= 0.732561$.

3.3. NUMERICAL INTEGRATION. COMPUTATION OF η , \$ VALUES FOR $\phi = 15^{\circ}$, 20°, 25° and 30°.

The shape of the bank-part of the bottom, i.e. between $\eta = 0$ and $\eta = 1$, where $y = y_{max}$, can now be computed (Tables 3.3./2a/b/c/d/ for $\varphi = 15^{\circ}$, 20° , 25° and 30° respectively).

For each interval in η the mean value of the two neighbouring values of $\frac{d}{d} \frac{\epsilon}{n}$ is found, and

$$\boldsymbol{\varDelta} \boldsymbol{\xi}_{n,\,n+1} = \frac{1}{2} \cdot \left\{ \left(\frac{d \, \boldsymbol{\xi}}{d \, \eta} \right)_n + \left(\frac{d \, \boldsymbol{\xi}}{d \, \eta} \right)_{n+1} \right\} \boldsymbol{\varDelta} \eta = \left(\frac{d \, \boldsymbol{\xi}}{d \, \eta} \right)_m \boldsymbol{\varDelta} \eta$$

For the last interval in η from 0.98 to 1.0

$$\Delta \mathfrak{S}_{13,14} = \int_{0.98} \frac{d \mathfrak{S}}{d \eta} \cdot d\eta, \text{ which are found in}$$

formulae3.2. (16aa), (16bb), (16cc) and (16dd).

The values of \mathfrak{F}_n are found by successive addition of $\Delta \mathfrak{F}$.

14

 $\varphi = 15^{\circ}$.

Table 3.3/2a/

2	d s d r	$\left(\frac{d}{dn}\right)_{m}$	4	-
0.	3.73205			0
0.1	3.97653	3.85429	0.385429	0.385429
0.2	4.26285	4.11969	0.411969	0.797398
0.3	4.60535	4.43410	0.443410	1.240808
0.4	5.02636	4.81586	0.481586	1.722394
0.5	5.56309	5.29472	0.529472	2,251866
0.6	6.28347	5.92328	0.592328	2.844194
0.7	7.32926	0.80037	0.0000007	3.524831
0.75	8.06924	0 56910	0. 428405	3.909794
0.8	9.06696	0.70445	0.420403	4.338199
0.85	10.52195	9. 19445 11. 73643	0 586821	4.827922
0.9	12.95091	15 67860	0 783930	5.414743
0.95	18.40628	23 79777	0 713933	6.198673
0.98	29.18927	20.10111	1 169109	6.912606
1.0			<u>β</u>	= 8.081715

 $\varphi = 20^{\circ}$.

Table 3.3/2b/

2	d say d n	$\left(\frac{d}{d\eta}\right)_m$	4	JUN
0.	2.74748	0.05445	0 005445	0
0.1	2.96142	2.85445	0.285445	0.285445
0.2	3.21042	3.08592	0.308592	0.594037
0.3	3.50655	2 60750	0.335849	0.929886
0.4	3.86848	3.00792	0.308752	1.298638
0.5	4.32726	4.09101	0.409787	1.708425
0.6	4.93937	5 38080	0.403332	2.171757
0.7	5.82222	6 13303	0.306652	2.709837
0.75	6.44384	6 86129	0.343065	3.016489
0.8	7.27874	7,88505	0 394253	3.359554
0.85	8.49136	9 49953	0 474977	3.753807
0.9	10.50770	12,76065	0.638033	4.228784
0.95	15.01359	19,45090	0.583527	4:866817
0.98	23.88820		0.958089	5.450344
1.0			<u>β</u> =	6.408433

 φ = 25°.

Table 3.3/2c/

2	den	$\left(\frac{d}{d\eta}\right)_{rr}$, ⊿ ≸	W
0	2.14451	0.04154	0 004154	0
0.1	2.33857	2.24134	0.224154	0.224154
0.2	2.56285	2.45071	0.245071	0.469225
0.3	2.82803	2.09544	0.269544	0.738769
0.4	3,15061	3 35491	0.298932	1.037701
0.5	3.55780	3 82846	0.335421	1.373122
0.6	4.09912	4 48795	0. 448705	1.755968
0.7	4.87677	5 14970	6 257485	2.204763
0.75	5.42262	5.78837	0 289419	2.462248
0.8	6.15411	6.68399	0.334200	2.751667
0.85	7.21387	8,09183	0.404592	3.085867
0.9	8.96978	10.92539	0.546270	3.490459
0.95	12.88099	16.71760	0.501528	4.036729
0.98	20.55420		0.825533	4.538257
1.0			β =	5.363790

 $\varphi = 30^{\circ}$.

Table3.3/2d/

2	din	$\left(\begin{array}{c} \underline{\alpha} & \underline{s} \\ \underline{\alpha} & \underline{\gamma} \\ n \end{array}\right)_{n}$	4 5	UN
0	1.73205	1 00000	0.100000	0
0.1	1.91319	1.82262	0.182262	0.182262
0.2	2.12035	2.01077	0.201077	0.383939
0.3	2.36339	2.24107	0.224107	0.608126
0.4	2.65740	2.01040	0. 284918	0.859166
0.5	3.02696	3 97178	0. 397178	1.143384
0.6	3.51659	3 86742	0.386742	1.470562
0.7	4.21825	4 46401	0 223200	1.857304
0.75	4.70976	5 03863	0 251932	2.080504
0.8	5.36750	5.84312	0.292156	2.332436
0.85	6.31874	7,10495	0.355248	2.624592
0.9	7.89116	9,63707	0.481854	2.979840
0.95	11.38297	14.79807	0.443942	3.461694
0.98	18.21316		0,732561	3,905636
1.0			ß	4,638197

4. DETERMINATION OF PERIMETER, AREA AND DISCHARGE FOR "BANK-PART" AND "MIDDLE-PART." PRINCIPLE OF MINIMUM WORK.

4.1. INTRODUCTION.

The profile determined in the foregoing section should be stable against erosion for every value of η between zero and one as long as the limiting tractive force is not exceeded. The relative width of the curved sloping bottom at one side of the axis of the channel is called $\beta = \frac{\beta}{1.0}$.

The absolute width of this part of the cross section is $\beta \cdot y_{max}$, and the corresponding parts of the perimeter, area and discharge are called U_{β} , F_{β} and Q_{β} respectively. This part of the cross section is called the "bank-part". (Fig. 3). The shearing stress in this part varies between $\tau = 0$ for ($\mathbf{s} = 0$, $\eta = 0$) and $\tau = \tau_{max}$ for ($\mathbf{s} = \beta$, $\eta = 1$), and it is evident that another half cross section consisting of the said "bank-part" and a "middlepart" with constant depth y_{max} and an arbitrary width $\beta_0 \cdot y_{max}$ between the "bank-part" and the axis should be equally stable. The perimeter, area and discharge of such a "middle-part" are called U_{β_0} , F_{β_0} and Q_{β_0} respectively.

So far an infinity of possible solutions seem to exist for fixed values of the total discharge of the half-section $Q = Q_{\beta} + Q_{\beta 0}$ and for τ_{max} and ϕ .

If we imagine, however, that the profile is eroded gradually in a uniform mass of sand at a constant discharge Q, the intensity of the erosion will steadily diminish, and the profile must asymptotically approach the state of equilibrium commensurate with the sand grains in all parts of the bottom being in a state of incipient motion.

It thus seems natural to assume the principle of minimum of work and assume that nature will produce the profile that requires a minimum of erosion, i.e. a minimum of the cross section $F = F_{\beta} + F_{\beta 0}$. According to this principle only one definite equilibrium profile can exist for fixed values of Q, τ_{max} and φ .

We therefore proceed to find the cross sections F_{β} and $F_{\beta o}$ and the discharges Q_{β} and $Q_{\beta o}$, where upon the indeterminate quantity β_{o} is fixed in such a way that it causes $F = F_{\beta} + F_{\beta o}$ to be a minimum for a fixed value of $Q = Q_{\beta} + Q_{\beta o}$, or the total discharge in the half cross section, and for fixed values of τ_{max} and ϕ .

SEC. 4.2.

4.2. DERIVATION OF FORMULAE FOR MEAN VELOCITY, AREA AND DISCHARGE OF AN ELEMENT OF THE CROSS SECTION.

As previously mentioned, it is assumed that the logarithmic law of velocity distribution is valid, and that the velocity at a point P, situated at the distance z from the bottom, and measured perpendicularly to the bottom element ds, will depend exclusively on the shearing stress τ on this element and on the distance z.

(Fig. 4) (17) The length of the normal to the water surface is $z_0 = \frac{y}{\cos \alpha} = 5 \cdot y_{max}$

From equation 1.(1) we get by means of (17):

(1a)
$$\frac{\tau}{\tau_{\max}} = \frac{y}{y_{\max} \cdot \cos \alpha} = \frac{z_0}{y_{\max}} = 5$$

The values of \mathcal{G} are compiled in Tables 3.1/1a/b/c/d/ We consequently have :

(18)
$$v_{\mathbf{x},\mathbf{g}} = \sqrt{\frac{\tau}{9}} = \sqrt{\frac{\mathcal{G}\cdot \tau_{\max}}{9}}$$

(19)
$$\frac{v_z}{v_{x,\xi}} = 8.48 + 2.5 \ln \frac{z}{k}$$
,

where k is the equivalent sand roughness of the bottom supposed to be constant for the whole width of the channel.

If the element of the cross section shown in Fig.4 had a constant width equal to the base ds, the mean velocity in such an element could be found as the velocity at a point $0.3679 \cdot z_0$ from the bottom. The curvature of the bottom is slight, so that it is considered permissible to disregard this and find, at the same distance, the mean velocity in the actually wedge-shaped element $v_{m,s}$; but for the computation of the element area and its discharge the wedge-shape must be taken into account.

We consequently get :

$$\mathbf{v}_{m,\mathfrak{G}} = \sqrt{\mathfrak{G}} \cdot \sqrt{\frac{\tau_{\max}}{\mathfrak{G}}} \cdot \left\{ 8.48 + 2.5 \ln \left(0.3679 \cdot \mathfrak{G} \cdot \frac{y_{\max}}{k} \right) \right\}$$

$$(20) \qquad \mathbf{v}_{m,\mathfrak{G}} = 2.5 \sqrt{\frac{\tau_{\max}}{\mathfrak{G}}} \cdot \sqrt{\mathfrak{G}} \cdot \left\{ \ln \left(\frac{11 \ y_{\max}}{k} \right) + \ln \mathfrak{G} \right\}$$

The area of the surface-element (Fig. 4), with base ds,

SEC. 4.2.

measured between the bottom and the water-surface, and when r is the radius of curvature of the bottom, will be

(21)
$$dF = \frac{1}{2} \cdot z_0 \cdot ds \cdot (1 + \frac{r \cdot z_0}{r}) = z_0 \cdot ds \cdot (1 - \frac{z_0}{2r})$$

For the radius of curvature r we have

$$\frac{1}{r} = -\frac{\left(\frac{d^2 y}{dx^2}\right)}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}} \text{ or from } 2.1.(6a)b)c)d}$$

(22)
$$\frac{1}{\left(\frac{r}{y_{\text{max}}}\right)} = -\frac{\left(\frac{d}{d\xi^2}\right)}{\left[1 + \left(\frac{d}{d\xi}\right)^2\right]^{3/2}}$$

(23)
$$ds = \frac{dx}{\cos \alpha} = \frac{y_{\max} \cdot d\xi}{\cos \alpha} = y_{\max} \cdot (d\xi) \cdot \sqrt{1 + (\frac{d\eta}{d\xi})^2}$$

(17)
$$z_0 = \mathbf{S} \cdot \mathbf{y}_{max}$$

From (21), (22), (23) and (17) we finally get

$$dF = \mathcal{G} \cdot y_{\max}^{2} \cdot (d\mathfrak{G}) \sqrt{1 + \left(\frac{d\eta}{d\mathfrak{G}}\right)^{2}} \cdot \left\{1 + \frac{1}{2} \frac{\mathcal{G} \cdot \left(\frac{d^{2} \eta}{d\mathfrak{G}^{2}}\right)}{\left[1 + \left(\frac{d\eta}{d\mathfrak{G}}\right)^{2}\right]^{3/2}}\right]$$

$$(24) \qquad \frac{dF}{y_{\max}^{2}} = \mathcal{G} \cdot (d\mathfrak{G}) \cdot \sqrt{1 + \left(\frac{d\eta}{d\mathfrak{G}}\right)^{2}} + \frac{1}{2} \cdot \frac{\mathcal{G}^{2} \cdot d\left(\frac{d\eta}{d\mathfrak{G}}\right)}{1 + \left(\frac{d\eta}{d\mathfrak{G}}\right)^{2}}$$

By the following calculations with finite differences we introduce the mean values of \mathfrak{S} and $\left[1 + \left(\frac{d\eta}{d\mathfrak{S}}\right)^2\right]$ for the sides of the element in question and put $\Delta\mathfrak{S}$ for $d\mathfrak{S}$ and $\Delta\left(\frac{d\eta}{d\mathfrak{S}}\right)$ for $d\left(\frac{d\eta}{d\mathfrak{S}}\right)$. (24) then takes the form

3

$$\underbrace{\begin{array}{c} (24a) \\ y_{max}^{2} \end{array}}_{max} = \underbrace{\begin{array}{c} \mathcal{S}_{m} \cdot (\Delta \underbrace{s}) \cdot (\sqrt{1 + \left(\frac{d\eta}{d \underbrace{s}}\right)^{2}})_{m}}_{2 \cdot \left(1 + \left(\frac{d\eta}{d \underbrace{s}}\right)^{2}\right)_{m}} + \frac{\underbrace{\begin{array}{c} \mathcal{S}_{m}^{2} \cdot \Delta \left(\frac{d\eta}{d \underbrace{s}}\right)}_{2 \cdot \left(1 + \left(\frac{d\eta}{d \underbrace{s}}\right)^{2}\right)_{m}}_{2 \cdot \left(1 + \left(\frac{d\eta}{d \underbrace{s}}\right)^{2}\right)_{m}} \end{array}$$

where subscript m signifies mean values.

Accordingly the mean velocity in the element considered is taken from (20)

(20a)
$$v_{m, Sm} = 2.5 \sqrt{\frac{r_{max}}{g}} \cdot \sqrt{S_m} \cdot \left\{ \ln(\frac{11 \ y_{max}}{k}) + \ln S_m \right\}$$

The discharge ΔQ in the element ΔF is :

$$\begin{array}{l} \hline \begin{array}{c} \underbrace{(25)}{2.5\sqrt{\frac{\tau_{\max}}{9}} y_{\max}^{2}} = \left[\ln \frac{11 y_{\max}}{k} \right] \left(\Delta \begin{array}{c} \begin{array}{c} \end{array}\right) \sqrt{1 + \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \right)}_{m} \cdot \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\right)^{3/2} \\ \end{array} \\ + \frac{\Delta \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)}}{2\left(1 + \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \right)}_{m} \cdot \begin{array}{c} \begin{array}{c} \end{array}\right)^{5/2} \\ \end{array} \\ + \left\{ \left(\Delta \begin{array}{c} \end{array}\right) \cdot \left(\sqrt{1 + \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \right)}_{m} \cdot \begin{array}{c} \end{array}\right)^{3/2} \\ \end{array} \\ + \frac{\Delta \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \\ 2\left(1 + \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \right)_{m} \cdot \begin{array}{c} \end{array}\right)^{5/2} \\ \end{array} \\ + \frac{\Delta \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \\ 2\left(1 + \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \right)}{2\left(1 + \left(\frac{d \eta}{d \begin{array}{c} \end{array}\right)^{2}} \right)}_{m} \cdot \begin{array}{c} \end{array}\right)^{5/2} \\ \end{array} \\ \cdot \begin{array}{c} \end{array} \\ \cdot \begin{array}{c} \end{array} \\ \end{array}$$

4.3. FORMULAE FOR THE QUANTITIES S AND FOR DIMENSION-LESS VALUES OF PERIMETER, AREA AND DISCHARGE U', F' AND Q' RESPECTIVELY, VALID FOR THE "BANK-PART, "MIDDLE-PART" AND FOR THE TOTAL HALF-SECTION.

The following notations are introduced :

(26)
$$S_{0} = \sum_{\eta=0}^{\eta=1} (\Delta \mathfrak{S}) \cdot \left(\sqrt{1 + \left(\frac{d \eta}{d \mathfrak{S}} \right)^{2}} \right)_{\mathfrak{m}}$$

(27)
$$S_{1,1} = \sum_{\eta=0}^{\infty} (\Delta \mathfrak{S}) \cdot \left(\sqrt{1 + \left(\frac{d \eta}{d \mathfrak{S}} \right)^2} \right)_m \mathfrak{S}_m$$

(28)
$$S_{2,1} = \sum_{\eta=0}^{\eta=1} (\Delta \mathfrak{S}) \cdot (\sqrt{1 + (\frac{d \eta}{d \mathfrak{S}})^2})_m \cdot \mathfrak{S}_m^{3/2}$$

22
SEC. 4.3.

(29)
$$S_{3,1} = \sum_{\eta=0}^{\eta=1} (\Delta \xi) \cdot (\sqrt{1 + (\frac{d \eta}{d \xi})}^2)_m \cdot \xi_m^{3/2} \cdot \ln \xi_m$$

(30)
$$S_{1,2} = -\sum_{\eta=0}^{1} S_{m}^{2} \cdot \frac{\Delta \left(\frac{d\eta}{ds}\right)}{2\left(1 + \left(\frac{d\eta}{ds}\right)^{2}\right)_{m}}$$

(31)
$$S_{2,2} = -\sum_{\eta=0}^{\eta=1} S_{m}^{5/2} \cdot \frac{\Delta \left(\frac{d\eta}{d\xi}\right)}{2\left(1 + \left(\frac{d\eta}{d\xi}\right)^{2}\right)_{m}}$$

(32)
$$S_{3,2} = -\sum_{\eta=0}^{q-1} \beta_{m}^{5/2} \cdot \frac{\Delta \left(\frac{d}{d}\frac{\eta}{\xi}\right)}{2\left(1 + \left(\frac{d}{d}\frac{\eta}{\xi}\right)^{2}\right)} \cdot \ln \beta_{m}$$

(33)
$$S_1 = S_{1,1} - S_{1,2}$$

(34)
$$S_2 = S_{2,1} - S_{2,2}$$

(35)
$$S_3 = S_{3,1} - S_{3,2}$$

For the "bank-part" of the cross section we find the following dimensionless expressions for perimeter, area and discharge.

$$(36) \qquad \frac{U_{\beta}}{y_{max}} = S_{0}$$

$$(37) \qquad \frac{F_{\beta}}{y_{max}^{2}} = S_{1,1} - S_{1,2} = S_{1}$$

$$(38) \qquad \frac{Q_{\beta}}{2.5\sqrt{\frac{\tau_{max}}{\beta}} \cdot y_{max}^{2}} = (S_{2,1} - S_{2,2}) \ln(\frac{11 \ y_{max}}{k}) + S_{3,1} - S_{3,2}$$

$$= S_{2} \ln(\frac{11 \ y_{max}}{k}) + S_{3}.$$

For the "middle-part" of the section we have $\frac{d\eta}{d\epsilon} = 0$, $\Delta(\frac{d\eta}{d\epsilon}) = 0$, $\beta_m = 1$ and thereby $S_0 = \beta_0$ (26a) (30a) S_{1,2} = 0 $S_{1,1} = \beta_0$ (27a) (31a) $S_{2,2} = 0$ $S_{2,1} = \beta_0$ (28a) $S_{3,1} = 0$ $(32a) S_{3,2} = 0$ (29a) $\frac{U_{\beta,0}}{y_{max}} = \beta_0$ (36a) $\frac{\mathbf{F}_{\beta,0}}{\mathbf{y}_{\max}^{2}} = \beta_{0}$ (37a) $\frac{Q_{\beta,0}}{2.5\sqrt{\frac{\tau_{\max}}{Q} \cdot y_{\max}^2}} = \beta_0 \ln(\frac{11 y_{\max}}{k}).$ (38a) We put for the total half-section of the channel $U = U_{\beta} + U_{\beta,0}$ (39) $\mathbf{F} = \mathbf{F}_{\beta} + \mathbf{F}_{\beta,0}$ (40) $Q = Q_{\beta} + Q_{\beta,0}$, and find from (36), (37), (38), (36a) (41)(37a), (38a) $U' = \frac{U}{y} = S_0 + \beta_0$ (42) $\mathbf{F'} = \frac{\mathbf{F}}{\mathbf{y_{max}}^2} = \mathbf{S_1} + \mathbf{\beta_0}$ (43) $Q' = \frac{Q}{2.5\sqrt{\frac{\tau_{max}}{2} \cdot y_{max}^{2}}} = (S_{2} + \beta_{0}) \ln(\frac{11 y_{max}}{k}) + S_{3}.$ (44)

SEC. 4.4.

4.4. DETERMINATION OF β_0 CORRESPONDING TO MINIMUM OF CROSS SECTION.

For a fixed value of φ the quantities S_1 , S_2 and S_3 are constants, and if further Q, τ_{max} , 9 and k are constant, equation 4.3.(44) represents a relation between β_0 and y_{max} which must be satisfied:

(44a)
$$\Psi = \frac{Q}{2.5\sqrt{\frac{\tau_{\text{max}}}{g}} \cdot y_{\text{max}}^2} - (S_2 + \beta_0) \ln(\frac{11 \ y_{\text{max}}}{k}) - S_3 = 0$$

together with

(43a)
$$F = (S_1 + \beta_0) y_{max}^2$$
.

F is a function of β_0 and y_{max}, and to obtain a minimum value of F simultaneously with $\psi = 0$, Lagrange's method gives the following condition:

$$\frac{\left(\frac{\partial F}{\partial \beta_{0}}\right)}{\left(\frac{\partial \Psi}{\partial \beta_{0}}\right)} = \frac{\left(\frac{\partial F}{\partial y_{max}}\right)}{\left(\frac{\partial \Psi}{\partial y_{max}}\right)}, \text{ hence}$$

$$\frac{y_{max}^{2}}{\left(\frac{11 y_{max}}{k}\right)} = \frac{2(S_{1} + \beta_{0}) y_{max}}{-\left(\frac{Q}{2.5\sqrt{\frac{T_{max}}{\gamma}}}\right) \cdot \frac{2}{y_{max}^{3}} - \frac{S_{2} + \beta_{0}}{y_{max}}} \text{ or }$$

$$\frac{Q}{2.5\sqrt{\frac{T_{max}}{\gamma}} \cdot y_{max}^{2}} - (S_{1} + \beta_{0}) \ln\left(\frac{11 y_{max}}{k}\right) + \frac{1}{2}(S_{2} + \beta_{0}) = 0.$$

When deducting (44a) the result is :

(45)
$$\beta_0 = 2(S_1 - S_2) \ln(\frac{11 y_{max}}{k}) - (S_2 + 2 S_3)$$
,

which gives the value of β_0 corresponding to a minimum of F.

4.5. FORMULAE VALID FOR THE OPTIMAL PROFILE FOR DIMENSIONLESS VALUES OF PERIMETER, AREA, DIS-CHARGE, MEAN VELOCITY, HYDRAULIC RADIUS, WIDTH OF WATER SURFACE, SLOPE, SHEARING VELOCITY AND FULLNESS OF THE PROFILE, ALL EXPRESSED BY THE QUANTITIES S AND β.

It follows from the foregoing section 4.4. that

(46) $S_1 + \beta_0 = 2(S_1 - S_2) \ln(\frac{11 y_{max}}{k}) + (S_1 - S_2 - 2 S_3)$ and

(47)
$$S_2 + \beta_0 = 2(S_1 - S_2) \ln(\frac{11 y_{max}}{k}) - 2 S_3$$

4.4.(45), (46) and (47) are introduced in 4.4.(42), 4.4.(43) and 4.4.(44) resulting in :

(48) U' =
$$\frac{U}{y_{max}}$$
 = 2(S₁ - S₂) ln($\frac{11 y_{max}}{k}$)+ (S₀ - S₂ - 2 S₃)

(49)
$$F' = \frac{F}{y_{max}^2} = 2(S_1 - S_2) \ln(\frac{11 y_{max}}{k}) + (S_1 - S_2 - 2 S_3)$$

(50)
$$Q' = \frac{Q}{2.5\sqrt{\frac{\tau_{max}}{Q}} \cdot y_{max}^2} = 2(S_1 - S_2) \ln^2(\frac{11 y_{max}}{k}) - 2 S_3 \ln(\frac{11 x_{max}}{k}) + S_3.$$

Equations (48), (49) and (50) are valid for the profile with a minimum of cross sectional area.

For the mean velocity

We want to introduce the slope of the water surface I (uniform motion assumed) and the hydraulic radius R of the cross section and find that the total shearing force K for the half cross section F must be :

(52)
$$K = \chi F I = \int_{0}^{U} \tau ds;$$
 we further have
4.2(23a) $\Delta s = \Delta \oint (\sqrt{1 + (\frac{d\eta}{d\xi})^{2}})_{m} \cdot y_{max}$
4.2(1a) $\tau = \zeta_{m} \cdot \tau_{max}$
 $\int_{0}^{U} \tau ds = y_{max} \cdot \tau_{max} \left[\sum_{\eta=0}^{n-1} \Delta \oint (\sqrt{1 + (\frac{d\eta}{d\xi})^{2}})_{m} \cdot \oint_{m} + \beta_{0}\right]$
and from 4.3(27)
(53) $\int_{0}^{U} \tau \cdot ds = (S_{1,1} + \beta_{0}) \cdot y_{max} \cdot \tau_{max} \cdot As \quad \chi = q \cdot q \cdot (S_{1,1} + \beta_{0}) + y_{max} \cdot \tau_{max} \cdot As \quad \chi = q \cdot q \cdot (2S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1,1} - S_{2} - 2S_{3}) \cdot For the hydraulic radius R we find by 4.3.(42)
R' = $\frac{R}{y_{max}} = \frac{F}{U \cdot y_{max}} = \frac{F}{y_{max}^{2}} (S_{0} + \beta_{0}) = \frac{F'}{S_{0}^{2} + \beta_{0}}$
and by (49) and β_{0} from 4.4.(45)
(55) $R' = \frac{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})} \cdot For the shearing velocity v_{x} we have
(56) $v'_{x} = \sqrt{\frac{(\frac{\gamma}{q})}{gRI}} = \sqrt{\frac{S_{0} + \beta_{0}}{S_{1,1} + \beta_{0}}} = \sqrt{\frac{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})}} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{0} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(\frac{11 \ y_{max}}{k}) + (S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(S_{1} - S_{2} - 2S_{3})} \cdot \frac{1}{2(S_{1} - S_{2}) \ln(S_{1} - S_{2} - 2S_{3})} \cdot \frac{$$$

For the width B of the half profile at the water surface we find

(57) B' =
$$\frac{B}{y_{max}} = (\beta + \beta_0) = 2(S_1 - S_2) \ln(\frac{11 \ y_{max}}{k}) + (\beta - S_2 - 2 \ S_3).$$

We later apply the term \mathcal{H} , "degree of fullness" of the cross section, which is defined by

(58)
$$\Re = \frac{F}{B \cdot y_{max}} = \frac{F'}{B'} = \frac{S_1 + \beta_0}{\beta + \beta_0} = \frac{2(S_1 - S_2) \ln(\frac{11 \ y_{max}}{k}) + (S_1 - S_2 - 2S_3)}{2(S_1 - S_2) \ln(\frac{11 \ y_{max}}{k}) + (\beta - S_2 - 2S_3)}$$

found by using (49) and (57).

4.6. EVALUATION OF NUMERICAL VALUES OF THE QUANTITIES S.

It remains to compute the numerical values of S_0 , S_1 , S_2 and S_3 for $\varphi = 15^\circ$, 20° , 25° and 30° . The calculations are given in Tables 4.6./3a/b/c/d/. The fundamental values of $\sqrt{1 + (\frac{d\eta}{d\xi})^2}$, ξ , $\frac{d\eta}{d\xi}$ and $(1 + (\frac{d\eta}{d\xi})^2)$ are to be found in Tables 3.2./1a/b/c/d/, whereas $\Delta \xi$ is found in Tables 3.4./2a/b/c/d/. The calculations are made from the formulae 4.3. (26) through 4.3. (35).

The results are compiled in Table 4.6./3e/.

 $\varphi = 15^{\circ}$. Table 4.6/3a/

?	$\sqrt{1 + \left(\frac{d\eta}{dg}\right)}$	2 5	5,	4	$\left(\sqrt{1+\left(\frac{dn}{\alpha\xi}\right)^2}\right)_m$
0	1.035276	0	0.051557	0 205480	1 000000
0.1	1.031135	0.103114	0.051557	0.385429	1.033206
0.2	1.027147	0.205430	0.154272	0.411969	1.029141
0.3	1 023303	0 306001	0.256211	0.443410	1.025225
0.5	1.020500	0.300331	0.357416	0.481586	1.021451
0.4	1.019599	0.407840	0.457927	0.529472	1.017814
0.5	1.016028	0.508014	0.557783	0.592328	1.014307
0.6	1.012585	0.607551	0 657018	0 680637	1 010025
0.7	1.009265	0.706485	0.001010	0.000001	1.010325
0.75	1.007650	0.755737	0.731111	0.384963	1.008458
0.8	1,006064	0.804851	0.780294	0.428405	1.006857
0.95	1 004506	0 953930	0.829341	0.489723	1.005285
0.00	1.004500	0.000000	0.878255	0.586821	1.003742
0.9	1.002977	0.902679	0.927040	0.783930	1.002226
0.95	1.001475	0.951401	0.965988	0.713933	1.001031
0.98	1.000587	0.980575	0 000289	1 160100	1 000204
1.00	1.000000	1.000000	0.990200	1.109109	1.000294

$\varphi = 15^{\circ}$.		Table 4.6	Table $4.6/3a/$		(continued)	
2	$\Delta s' = \Delta s' (1 + \frac{d\eta}{ds})$	<u>)</u> m	$\sqrt{5_m}$	∆ s ³ , 5 ³ / ₂	- In 5m	
0	0.398228	0.020531	0.227062	0.004662	2.96507	
0.1	0.423974	0.065407	0.392775	0.025690	1.86904	
0.2	0.454595	0.116472	0.506173	0.058955	1.36176	
0.4	0.491917	0.175819	0.597843	0.105112	1.02886	
0.5	0.538904	0.246779	0.676703	0.166996	0.78104	
0.6	0.600802	0.335117	0.746849	0.250282	0.58379	
0.7	0.688073	0.452076	0.810566	0.366437	0.42004	
0.75	0.388219	0.283831	0.855050	0.242690	0.31319	
0.8	0.492311	0.408294	0.910682	0.371826	0.18713	
0.85	0.589017	0.517307	0.937153	0.484796	0.12982	
0.9	0.785675	0.728352	0.962829	0.701278	0.07576	
0.95	0.714669	0.690362	0.982847	0.678520	0.03461	
0.98	1.169453	1.158095	0.995132	1.152457	0.00976	
1.00	+8.167180 -	+5.535016		+4.907011		
	= S ₀	= S _{1 1}		= S _{2 1}		

To be continued

\$\$\$ =	$\varphi = 15^{\circ}$. Table 4.6/3a/		6/3a/	(continued)		
7	-45.5m ^{3/2} .ln	$S_m \frac{d\eta}{ds}$	$-\Delta(\frac{d\eta}{d\xi})$	$1 + \left(\frac{d\eta}{d\xi}\right)^2$	$2 \cdot \left[1 + \left(\frac{dn}{d\Xi}\right)^2\right]_m$	
0		0.267949		1.071797		
0.1	0.013823	0 951476	0.016473	1 062940	2.135037	
0.1	0 048016	0.251470	0.016891	1.003240	2.118270	
0.2	0.010010	0.234585	0.010001	1.055030		
	0.080283		0.017446		2.102179	
0.3	0 100140	0.217139	0 010107	1.047149	9 006721	
0 4	0.108140	0 198952	0.010107	1.039582	2.000751	
0.4	0.130431	0.100002	0.019196	2.000000	2.071894	
0.5		0.179756		1.032312		
	0.146112	0 150140	0.020608	1 095 290	2.057640	
0.6	0 153018	0.159148	0 022708	1.025526	2.043944	
0.7	0.133310	0.136440	0.022100	1.018616		
	0.076008		0.012513		2.033974	
0.75		0.123927	0 010000	1.015358	0.007500	
0.0	0.073757	0 110201	0.013636	1 012164	2.021522	
0.0	0.069580	0.110251	0.015252	1,012104	2.021196	
0.85		0.095039		1.009032		
	0.062936		0.017824	1 005000	2.014994	
0.9	0 052120	0.077215	0 022886	1.005962	2 008914	
0 95	0.055129	0.054329	0.022000	1,002952	2.000011	
0.00	0.023484		0.020070		2.004126	
0.98		0.034259		1.001174	0.001174	
1 00	0.011248		0.034259	1 000000	2.001174	
1.00	-1 050871	0.000000		1.000000		

= S_{3,1}

\$\$\$ = 1	15°.	Table 4.6	/3a/	(cc	ontinued)
η.	$\frac{d(\frac{dn}{ds})}{2\cdot [1+(\frac{dn}{ds})]}$	m Sm	$\frac{2}{m_2 \cdot \left[1 + \left(\frac{dn}{ds}\right)^2\right]}$	$\int_{m}^{\frac{5}{2}} \frac{\Delta(\frac{dn}{ds})}{2 \cdot [1 + (\frac{dn}{ds})]}$	$f_{m} = \frac{f_{2} \Delta(\frac{dn}{d\xi})}{f_{m} 2 \cdot [f + (\frac{dn}{d\xi})]_{m}} dn \xi$
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9	0.007716 0.007974 0.008299 0.008716 0.009265 0.010015 0.011110 0.006152 0.006725 0.007546 0.008846 0.011392	0.002658 0.023800 0.065644 0.127746 0.209697 0.311122 0.431673 0.534523 0.608859 0.687806 0.771332 0.859403	0.000 0 21 0.000190 0.000545 0.001113 0.001943 0.003116 0.004796 0.003288 0.004095 0.005190 0.006823 0.009790	0.000005 0.000075 0.000276 0.000665 0.001315 0.002327 0.003887 0.002811 0.003617 0.004726 0.006394 0.009426	0.000015 0.000140 0.000376 0.000684 0.001027 0.001358 0.001633 0.000880 0.000880 0.000897 0.000884 0.000830 0.000714
0.98	0.010014	0.933133	0.009344 0.016788 +0.067042	0.009184 0.016706 +0.061414	0.000318 0.000163 -0.009919
				-	

 $= S_{1,2} = S_{2,2} = S_{3,2}$

2	$\sqrt{1+\left(\frac{d\eta}{d\xi}\right)^2}$	5	Śm	A	$\left(\sqrt{1+\left(\frac{d'}{\alpha'\xi}\right)^2}\right)_m$
0	1.06418	0	0.059774	0 995445	1 05092
0.1	1.05547	0.105547	0.157513	0.200440	1.05965
0.2	1.04739	0.209478	0.260720	0.335849	1 04363
0.3	1.03987	0.311961	0.362555	0.368752	1.03637
0.4	1.03287	0.413148	0.463162	0.409787	1.02961
0.5	1.02635	0.513175	0.562675	0.463332	1.02332
0.6	1.02029	0.612174	0.661211	0.538080	1.01747
0.7	1.01464	0.710248	0.734613	0.306652	1.01331
0.7	1 009393	0.807514	0.783246	0.343065	1.01068
0.0	5 1.006910	0.855874	0.831694	0.394253	1.008152
0.9	1.004518	0.904066	0.879970	0.474977	1.005714
0.9	5 1.002216	0.952105	0.928086	0.638033	1.003367
0.9	1.000876	0.980858	0.966482	0.583527	1.000438
1.0	1.000000	1.000000	0.990429	0.958089	1.000430

$$\begin{array}{c} \hline \varphi = 20^{\circ}. \\ \hline \text{Table 4. 6/3b/} \\ \text{(continued)} \\ \hline \begin{array}{c} \Delta 5' = \\ \hline \gamma & \Delta 5' \cdot (\sqrt{1+(\frac{\sigma}{\Delta 5'})_m} \Delta s' \cdot 5_m & \sqrt{5_m} & \Delta s' \cdot 5_m^3 & -(n f_m) \\ \hline 0 \\ 0.302523 & 0.015965 & 0.229726 & 0.003668 & 2.94173 \\ 0.1 & 0.324463 & 0.051107 & 0.396879 & 0.020283 & 1.84824 \\ 0.2 & 0.350502 & 0.091383 & 0.510607 & 0.046661 & 1.34431 \\ 0.3 & 0.382164 & 0.138555 & 0.602125 & 0.083427 & 1.01458 \\ 0.4 & 0.421921 & 0.195418 & 0.680560 & 0.132994 & 0.76968 \\ 0.5 & 0.474137 & 0.266785 & 0.750117 & 0.200120 & 0.57505 \\ 0.6 & 0.547480 & 0.362000 & 0.813149 & 0.294360 & 0.41368 \\ 0.7 & 0.310734 & 0.228269 & 0.857096 & 0.195648 & 0.30841 \\ 0.75 & 0.346729 & 0.271574 & 0.885012 & 0.240346 & 0.24430 \\ 0.8 & 0.397467 & 0.330571 & 0.911973 & 0.301472 & 0.18429 \\ 0.85 & 0.477691 & 0.420354 & 0.938067 & 0.394320 & 0.12786 \\ 0.9 & 0.640181 & 0.594143 & 0.963372 & 0.572381 & 0.07463 \\ 0.95 & 0.584429 & 0.564840 & 0.983098 & 0.555293 & 0.03408 \\ 0.98 & 0.958509 & 0.949335 & 0.995203 & 0.944781 & 0.0961 \\ 1.00 \end{array}$$

 $-\Delta s^{\prime} \mathcal{S}_{m}^{2} \ln \mathcal{S}_{m} \frac{dn}{ds} -\Delta \left(\frac{dn}{ds}\right) 1 + \left(\frac{dn}{ds}\right)^{2} 2 \cdot \left[1 + \left(\frac{dn}{ds}\right)^{2}\right]_{m}$ 7 0 0.36396 1.13247 0.010790 0.02628 2.246495 1.114025 0.1 0.33768 2.211048 0.037488 0.02619 0.2 0.31149 1.097023 0.062727 0.02631 2.178351 0.3 0.28518 1.081328 0.02668 2.148150 0.084643 0.4 0.25850 1.066822 0.102363 0.02741 2.120226 1.053404 0.5 0.23109 0.115079 0.02864 2.094392 0.20245 1.040988 0.6 0.03069 2.070488 0.121771 0.17176 1.029500 0.7 0.01657 2.053583 0.060340 0.75 1.024083 0.15510 0.058717 0.01780 2.042958 1.018875 0.8 0.13739 0.01962 2.032744 0.055558 1.013869 0.85 0.11777 0.050418 0.022602 2.022926 0.9 0.095168 1.009057 0.042717 0.028562 2.013493 0.066606 1.004436 0.95 0.018924 0.024744 2.006188 0.98 0.041862 1.001752 0.041862 0.009079 2.001752 1.00 0.000000 1.000000

-0.830614

= S_{3,1}

To be continued

35

Tabl

 $\varphi = 20^{\circ}$.

Table 4.6/3b/

(continued)

φ	= 20 [°] .	Table	4.6/3b/		(continued)
2	$\frac{\Delta\left(\frac{dn}{d\xi}\right)}{2\left[1+\left(\frac{dn}{d\xi}\right)^{2}\right]}$	5 5m	$e^{\frac{2}{m}} \frac{\Delta\left(\frac{dn}{d\xi}\right)}{\frac{dn}{d\xi} \left[1 + \left(\frac{dn}{d\xi}\right)^{2}\right]}$	$\int_{n}^{\frac{5}{2}} \frac{\Delta(\frac{dn}{\alpha \xi})}{2m_{2} \int_{1}^{n} \frac{dn}{\alpha \xi}}$	$ + \frac{(d\eta)}{(d\xi)} \ln \frac{(d\eta)}{m2![1+(d\eta)^2]} \ln \frac{(d\eta)}{m} $
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.98	0.011698 0.011845 0.012078 0.012420 0.012928 0.013675 0.014823 0.008069 0.008713 0.009652 0.011173 0.014185 0.012334	0.002785 0.024810 0.067975 0.131446 0.214519 0.316603 0.437200 0.539656 0.613474 0.691715 0.774347 0.861344 0.934087	0.000033 0.000294 0.000821 0.001633 0.002773 0.004330 0.006481 0.004354 0.005345 0.006676 0.008651 0.012218 0.011521	0.000008 0.000117 0.000419 0.000983 0.001887 0.003248 0.005270 0.003732 0.004730 0.004730 0.006088 0.008115 0.011770 0.011326	0.000024 0.000216 0.000563 0.000997 0.001452 0.001868 0.002180 0.001151 0.001156 0.001122 0.001038 0.000878 0.000386
1.00	0.020913	0.900950	0.020515	0.020417	0.000196

+0.085645 + 0.078110 - 0.013227

= $S_{1,2}$ = $S_{2,2}$ = $S_{3,2}$

4

?	$\sqrt{1+\left(\frac{dn}{d\frac{d}{2}}\right)}$	2 5	Śm	45	$\left(\sqrt{1+\left(\frac{dn}{\alpha \xi}\right)^2}\right)_m$
0	1,10338	0	0.054380	0 224154	1 09549
0.1	1.08759	0.108759	0 161723	0 245071	1 08051
0.2	1.07343	0.214686	0 266445	0 269544	1.06706
0.3	1.06068	0.318204	0.368934	0.298932	1.05492
0.4	1.04916	0.419664	0.469520	0.335421	1.04396
0.5	1.03875	0.519375	0.568487	0.382846	1.03404
0.6	1.02933	0.617598	0.666083	0.448795	1.02507
0.7	1.02081	0.714567	0.738606	0.257485	1.01884
0.75	1.01686	0.762645	0.786571	0.289419	1.01499
0.8	1.01312	0.810496	0.834311	0.334200	1.01134
0.85	5 1.00956	0.858126	0.881853	0.404592	1.00788
0.9	1.00620	0.905580	0.929220	0.546270	1.00461
0.95	5 1.00301	0.952860	0.967008	0.501528	1.00210
0.98	3 1.00118	0.981156	0.990578	0.825533	1.00059
1.00	1.00000	1.000000			

φ :	= 25°.	Table 4	.6/3c/		(continued
7.	Δs'= Δ§(V1+(α)	$Z_m^2 \Delta S^2 S_m$	$\sqrt{5_m}$	∆s [:] 5 ³ / _m	-ln\$m
Q	0.245558	0.013353	0.233195	0.003113	2.91180
0.1	0.264802	0.042825	0.402148	0.017222	1.82187
0.2	0.287620	0.076635	0.516183	0.039558	1.32259
0.3	0.315349	0.116343	0.607399	0.070667	0.99714
0.4	0.350166	0.164410	0.685215	0.112656	0.75604
0.5	0.395878	0.225051	0.753981	0.169684	0.56477
0.6	0.460046	0.306429	0.816139	0.250089	0.40634
0.7	0.262336	0.193763	0.859422	0.166524	0.30299
0.75	0.293757	0.231061	0.886888	0.204925	0.24007
0.8	0.337990	0.281989	0.913406	0.257570	0.18115
0.85	0.407780	0.359602	0.939070	0.337691	0.12573
0.9	0.548788	0.509945	0.963961	0.491567	0.07341
0.95	0.502581	0.486000	0.983366	0.477916	0.03355
0.98	0 826020	0.818237	0.995278	0.814373	0.00947
1.00					
	+5.498671	+3.825643		+3.413555	
	= S ₀	= S _{1,1}		= S _{2,1}	

d)

Table 4.6/3c/

n	-4s:5, 2:1n	e dn de	$-\Delta(\frac{d\eta}{ds})$	$1 + (\frac{d\eta}{d\xi})^2$	² 2·[1+(<u>dn</u> d§
		0.46631	-	1.217447	
1	0.009064	0 49761	0.03870	1 199959	2.400299
	0.031376	0.42101	0.03742	1,102052	2.335101
. 2		0.39019		1.152249	
3	0.052319	0 35360	0.03659	1 125035	2.277284
	0.070465	0.00000	0.03620	1.120000	2.225777
.4	0 005179	0.31740	0 02622	1.100742	0 170744
. 5	0.085172	0.28107	0.03033	1,079002	2.1/9/44
	0.095832		0.03712		2.138516
.6	0 101621	0.24395	0 03800	1.059514	2 101561
.7	0.101021	0.20505	0.03030	1.042047	2.101301
	0.050455	0 10441	0.02064	1 004000	2.076055
. 75	0 049196	0.18441	0.02192	1.034008	2 060412
.8	0.010100	0.16249	0.02102	1.026404	2.000112
05	0.046659	0 12069	0.02387	1 010910	2.045620
.00	0.042458	0.13002	0.02713	1.019210	2,031645
.9		0.11149		1.012429	
95	0.036086	0 07763	0.03386	1 006027	2.018456
.00	0.016034	0.01100	0.02898	1.000021	2.008394
.98	0.007710	0.04865	0.04005	1.002367	
	0.007712		0.04865		2.002367

-0.694449

= S_{3,1}

 $\varphi = 25^{\circ}$. Table 4.6/3c/ (continued)

η –	$\frac{\Delta(\frac{dn}{d\xi})}{2\cdot [1+(\frac{dn}{d\xi})^2]_m}$	Sm .	$\sum_{m2}^{2} \Delta(\frac{dn}{d\xi})$	₹ <u>2</u> Δ (<u>d</u> <u>d</u> <u>d</u> <u>m</u> <u>2</u> .[<u>1</u> +(<u>d</u> <u>n</u> <u>d</u>	$ \int_{m}^{+} \frac{d}{m2 \cdot [1 + (\frac{d}{d})]} $	
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8	$2 \cdot \left[1 + \left(\frac{d}{d} \right)^2 \right]_m$ 0. 016123 0. 016025 0. 016067 0. 016264 0. 016667 0. 017358 0. 018510 0. 009942 0. 010639	>m 0.002957 0.026154 0.070993 0.136112 0.220449 0.323177 0.443667 0.545539 0.618694	$m2 \cdot [j + (\frac{dn}{ds})^2]$ 0.000048 0.000419 0.001141 0.002214 0.003674 0.005610 0.008212 0.005424 0.005424 0.006582	0.000014 0.000014 0.000169 0.000589 0.001345 0.002517 0.004230 0.006702 0.004662 0.005837	$p_m^{(1)} > m_2 \cdot [f + (\frac{d}{d})]$ 0.000041 0.000308 0.000779 0.001341 0.001903 0.002389 0.002723 0.001413 0.001401	
0.85 0.9 0.95 0.98 1.00	0.011669 0.013354 0.016775 0.014429 0.024296	0.696075 0.777665 0.863450 0.935104 0.981245	0.008122 0.010385 0.014484 0.013493 0.023840	0.007419 0.009752 0.013962 0.013269 0.023727	0.001344 0.001226 0.001025 0.000445 0.000225	

+0.103648 +0.094194 -0.016563

 $= S_{1,2} = S_{2,2} = S_{3,2}$

 φ = 30°.

η	$\sqrt{1+\left(\frac{dn}{d\xi}\right)}$	2 5	Sm	4	$\left(\sqrt{1+\left(\frac{d\eta}{dg}\right)^2}\right)_m$
0	1.15470	0	0.050410	0 100000	1 1/1=0
0.1	1.12836	0.112836	0.056418	0.182262	1.14153
0.2	1,10563	0.221127	0.166982	0.201677	1.11700
0.3	1 09593	0 325740	0.273438	0.224187	1.09573
0.0	1.00000	0.020140	0.376567	0.251040	1.07715
0.4	1.06846	0.427384	0.476982	0.284218	1.060809
0.5	1.053158	0.526579	0 575184	0 327178	1 046403
0.6	1.039647	0.623788	0.671505	0.200740	1.022601
0.7	1.027715	0.719401	0.071595	0.386742	1.033681
0.75	1.022293	0.766720	0.743061	0.223200	1.025004
0.8	1 017207	0 813766	0.790243	0.251932	1.019750
0.05	1 019446	0.960570	0.837173	0.292156	1.014827
0.05	1.012440	0.800579	0.883889	0.355248	1.010222
0.9	1.007998	0.907198	0.930429	0.481854	1.005925
0.95	1.003851	0.953659	0.967568	0 443942	1 002679
0.98	1.001506	0.981476	0.000790	0.7205012	1.000750
1.00	1.000000	1.000000	0.990138	0.732561	1.000753

 $\varphi = 30^{\circ}.$

Table 4.6/3d/

7	$\Delta s' = \Delta \xi \cdot (\sqrt{1 + (\frac{d}{d})})$	<u>'7)²)</u> ⊿s`€ _m	$\sqrt{S_m}$	$\Delta s^{3} \cdot 5_{m}^{3/2}$	−ln§ _m
0	0.208058	0.011738	0.237525	0.002788	2.87500
0.1	0.225273	0.037617	0.408634	0.015372	1.78987
0.2	0.245648	0.067169	0.522913	0.035124	1.29668
0.3	0.270408	0.101827	0.613651	0.062486	0.97666
0.5	0.301501	0.143811	0.690639	0.099321	0.74028
0.6	0.342360	0.196920	0.758409	0.149346	0.55307
0.7	0.399768	0.268482.	0.819509	0.220023	0.39810
0.75	0.228781	0.169998	0.862010	0.146540	0.29697
0.8	0.256908	0.203020	0.888956	0.180476	0.23541
0.85	0.296488	0.248212	0.914972	0.227107	0.17773
0.9	0.358879	0.317209	0.940154	0.298225	0.12343
0.95	0.484709	0.450987	0.964587	0.435016	0.07211
0.98	0.445131	0.430695	0.983650	0.423653	0.03297
1.00	0.733113	0.726323	v.995358	0.722951	0.00930
	+4.797025 -	+3.374008	-	+3.018428	
	= s ₀	= S _{1,1}		$= S_{2,1}$	

 $\varphi = 30^{\circ}$.

Table 4.6/3d/

7 -	$\Delta s' \xi_m^* ln \xi$	a dr dr dr	- <u></u> $\Delta(\frac{d\eta}{d\xi})$	1+(<u>dn</u>)	$2^{2} 2 \cdot \left[1 + \left(\frac{d\eta}{d\xi}\right)^{2}\right]_{m}$
0	0.008016	0.577350	0.054662	1.333333	0.00000
0.1	0.000010	0.522687	0.054003	1 273202	2,606535
	0.027514		0.051067		2.495628
0.2		0.471620		1.222426	
0 3	0.045545	0 493191	0.048499	1 170021	2.401457
0.0	0.061028	0.445121	0,046813	1.119031	2.320639
0.4		0.376308		1.141608	
0 5	0.073525	0 220265	0.045943	1 100141	2.250749
0.5	0.082599	0.330365	0 045999	1,109141	2 190005
0.6	0.002000	0.284366	0.010000	1.080864	2.190003
	0.087592	التقييم بالا	0.047301		2.137064
0.7	0 042510	0.237065	0 094740	1.056200	0 101000
0.75	0.043310	0,212325	0.024740	1 045082	2.101282
	0.042486		0.026019	1.010002	2.079792
0.8		0.186306		1.034710	
0 85	0.040364	0 158250	0.028047	1 025046	2.059756
0.00	0.036810	0.130233	0.031535	1.023040	2.041105
0.9		0.126724		1.016059	
0.05	0.031369	0.007051	0.038873	1 007710	2.023777
0.95	0.013968	0.08/851	0 032946	1.007718	2 010733
0.98	0.020000	0.054905	0.002010	1.003015	2.010100
1.00	0.006723	0.000000	0.054905	1.000000	2.003015

-0.601058

= S_{3,1}

 $\varphi = 30^{\circ}$.

n	$\frac{\Delta(\frac{d'n}{d'\xi})}{2\cdot \left[1 + \left(\frac{d'n}{d'\xi}\right)^2\right]}$	5m	$\xi_{\frac{2}{m2}}^{\frac{2}{2}} \frac{\Delta(\frac{d\eta}{d\xi})}{\frac{d\eta}{d\xi}}$	$\int_{m}^{\infty} \frac{\mathcal{L}_{n}^{2} \Delta(\frac{dn}{d\xi})}{\int_{m}^{\infty} \frac{\mathcal{L}_{n}^{2}}{2 \cdot [1 + (\frac{dn}{d\xi})]}}$	$\frac{1}{\left \int_{m}^{s} \frac{s_{2}}{m^{2}\left[1+\left(\frac{dn}{ds}\right)^{2}\right]} ds}\right _{m}$
0	0.020972	0.003183	0.000067	0.000016	0.000046
0.1	0.020463	0.027883	0.000571	0.000233	0.000417
0.3	0.020196	0.074768	0.001510	0.000790	0.001024 0.001714
0.4	0.020412 0.021004	0.227512	0.004644	0.003207 0.005270	0.002374
0.6	0.022135	0.451040	0.009984	0.008182	0.003257
0.7	0.011774 0.012510	0.552140 0.624484	0.006501 0.007812	0.005604 0.006945	0.001664 0.001635
0.8	0.013617	0.700859	0.009544	0.008732	0.001552
0.9	0.015450	0.781260 0.865698	0.012070 0.016628	0.011348 0.016039	0.001401 0.001157
0.98	0,016385	0.936188	0.015339	0.015088	0.000497
1.00)	0.301302	0.020300	0.020701	0.000249

+0.121385 +0.109990 - 0.019902

= $S_{1,2}$ = $S_{2,2}$ = $S_{3,2}$

	$S_{1,1} = +5.535016$
$\beta = +8.081715$	$-S_{1,2}^{-1} = -0.067042$
$S_0 = +8.167180$	$S_1 = +5.467974$
$S_{2,1} = +4.907011$	$S_{3,1} = -1.050871$
$-S_{2,2}^{=} -0.061414$	$-S_{3,2} = +0.009919$
$S_2 = +4.845597$	$S_3 = -1.040952$
$\varphi = 20^{\circ}$.	$S_{1} = +4.480299$
β = +6.408433	$-S_{1,2}^{1,1} = -0.085645$
$S_0 = +6.518930$	$S_1 = +4.394654$
$S_{2,1} = +3.985754$	$S_{31} = -0.830614$
$-S_{2,2}^{-} = -0.078110$	$-S_{3,2}^{-1} = +0.013227$
$S_2 = +3.907644$	$S_3 = -0.817387$
$\varphi = 25^{\circ}$.	$S_{1,1} = +3.825643$
$\beta = +5.363790$	$-S_{1,2}^{-1} = -0.103648$
$S_0 = +5.498671$	$S_1 = +3.721995$
$S_{2,1} = +3.413555$	$S_{3,1} = -0.694449$
$-S_{2,2}^{-} = -0.094194$	$-S_{3,2}^{-1} = +0.016563$
S ₂ = +3.319361	$S_3 = -0.677886$
$\varphi = 30^{\circ}.$	$S_{1,1} = +3.374008$
β = +4.638197	$-S_{1,2}^{1,1} = -0.121385$
$S_0 = +4.797025$	$S_1 = +3.252623$
$S_{2,1} = +3.018428$	$S_{3,1} = -0.601058$
$-S_{2,2}^{=} -0.109990$	$-S_{3,2}^{=} + 0.019902$
$S_2 = +2.908438$	$S_3 = -0.581156$

5. FORMULAE FOR Q', F', B', R' AND I' AS FUNCTIONS OF $p = \frac{y_{max}}{k}$ FOR $\varphi = 15^{\circ}$, 20° , 25° AND 30° .

The fundamental formulae derived in section 4.5 for F' and Q' make it possible by simple division to find the formula for v'_{m} .

m Equally the formula for R' can be found by division of the formulae for F' and U'.

We therefore give the formulae for Q' and F', R' and I' with the numerical values found for the quantities S and β for the different values of ϕ .

We further need the formulae for B' = $(\beta + \beta_0)$.

From these the formula for $v_{\underline{v}}$ can be found as

$$v'_{*} = \sqrt{\frac{F'}{I' \cdot R'}}$$

and the formula for 🏾 as

$$\partial c = \frac{F'}{B'}$$

The formulae are as follows :

$$p = \frac{y_{max}}{k}$$

$$\varphi = 15^{\circ}$$

(59a)

$$Q' = \frac{Q}{2.5\sqrt{\frac{T_{max}}{Q} \cdot y_{max}^2}} = 1.244754 \ln^2(11 \text{ p})$$

(60a)
$$F' = \frac{F}{y_{max}^2} = 1.244754 \ln(11 p) + 2.704281$$

(61a) B' =
$$\beta$$
 + β_0 = 1.244754 ln(11 p) + 5.318022

(62a)
$$R' = \frac{R}{y_{max}} = \frac{1.244754 \ln(11 p) + 2.704281}{1.244754 \ln(11 p) + 5.403487}$$

(63a) I' =
$$\frac{g F I}{y_{max}}$$
 = 1.244754 ln(11 p) + 2.771323
 $y_{max} \cdot (\frac{\tau_{max}}{9})$

SEC. 5.

$$\begin{aligned} \overline{\varphi = 20^{\circ}} \\ (59b) \qquad Q' &= \frac{Q}{2.5\sqrt{\frac{T_{max}}{Q}} \cdot y_{max}^2} = 0.974020 \ln^2(11 p) \\ &+ 1.634774 \ln(11 p) - 0.817387 \\ (60b) \qquad F' &= \frac{F}{y_{max}} = 0.974020 \ln(11 p) + 2.121784 \\ (61b) \qquad B' &= \beta + \beta_0 = 0.974020 \ln(11 p) + 2.121784 \\ (61b) \qquad B' &= \beta + \beta_0 = 0.974020 \ln(11 p) + 2.121784 \\ (62b) \qquad R' &= \frac{R}{y_{max}} = \frac{0.974020 \ln(11 p) + 2.121784}{0.974020 \ln(11 p) + 4.246060} \\ (63b) \qquad I' &= \frac{g F I}{y_{max}} = 0.974020 \ln(11 p) + 2.207429 \\ y_{max} \cdot (\frac{\tau_{max}}{Q}) \\ (59c) \qquad Q' &= \frac{Q}{2.5\sqrt{\frac{\tau_{max}}{Q}} \cdot y_{max}^2} \\ &+ 1.355772 \ln(11 p) - 0.677886 \\ (60c) \qquad F' &= \frac{F}{y_{max}} = 0.805268 \ln(11 p) + 1.758406 \\ (61c) \qquad B' &= \beta + \beta_0 = 0.805268 \ln(11 p) + 3.400201 \\ (62c) \qquad R' &= \frac{R}{y_{max}} = \frac{0.805268 \ln(11 p) + 1.758406}{0.805268 \ln(11 p) + 3.535082} \\ (63c) \qquad I' &= \frac{g F I}{y_{max}} = 0.805268 \ln(11 p) + 1.862054. \\ y_{max} \cdot (\frac{\tau_{max}}{Q}) \end{aligned}$$

SEC. 5.-6.1.

will be given later in the tables of section 7.1, viz. Tables 7.1./4a/b/c/d/ through 7.1./8a/b/c/d/.

6. DERIVATION OF FORMULAE OF THE TYPE z' = $A_{\varphi} \cdot p^{B\varphi} \cdot A_{p}$, WHERE $p = \frac{y_{max}}{k}$, AND A_{φ} AND B_{φ} ARE FUNCTIONS OF φ ALONE, WHEREAS A_{p} IS FUNCTION OF p ALONE.

6.1. INTRODUCTION.

In formulae 5(59a)b)c)d) through 5(63a)b)c)d) the dimensionless quantities Q', F', B', R' and I' are expressed as functions of $p = \frac{y_{max}}{k}$, the numerical coefficients varying with φ . When z' in general stands for any of these quantities we try to adjust formulae of the type (64) $z' = A\varphi \cdot p^{B\varphi} \cdot A_{p}$

to the numerical values of z', which are computed for fixed values of p by the above-mentioned formulae for each value of ϕ .

Putting in the first approximation $A_p = 1$, we find for each value of φ a simple power formula giving certain numerical values of $A\varphi$ and $B\varphi$.

We then compute

(65) $\log A_p = \log z' - (\log A_{\varphi} + B_{\varphi} \cdot \log p)$,

giving the errors of the power formula verying with p.

It will then appear that these values of log A are practically independent of ϕ .

Consequently we are now able to express $A \varphi$ and $B \varphi$ as functions of φ alone and A_n as function of p alone.

6.2. (A_p = 1). SIMPLE POWER FORMULA.

For the first approximation with $A_p = 1$ we tabulate for each value of φ the corresponding values of z' for the fixed values: p = 10, 20, 30, 50, 100, 200, 300, 500 and 1000 and take logarithms in (64)

(66)
$$\log z' = \log A_{\varphi} + B_{\varphi} \cdot \log p$$

This form will on double logarithmic paper represent a straight line (Fig. 5).

Its direction is taken parallel to the chord through the points z'_{50} and z'_{200} , and it is placed so that the errors e_p for p = 100 and p = 500 will have the same absolute value but opposite signs, which in the logarithmic representation corresponds to the same relative deviations for p = 100 and p = 500.

It will prove that the devation for p = 24 will be nearly the same as for p = 500, and that this maximum deviation will not be exceeded between these limits.

We find :

(67)

$$B_{\varphi} = \frac{\log z'_{200} - \log z'_{50}}{\log 4} = 1.660964 \text{ (log } z'_{200} - \log z'_{50}\text{)}$$

and (68)

 $\log A_{\varphi} = \frac{1}{2} (\log z'_{500} + \log z'_{100}) - 3.902411 (\log z'_{200} - \log z'_{50})$ The numerical calculations are given later in the tables

of section 7.1.

6.3. DERIVATION OF FORMULA FOR A_D.

From the tables of section 7.1 the numerical values of $\log A_n$ according to 6.1.(65) are known for each value of φ .

SEC. 6.3.

They prove to be almost constant for fixed values of p, wherefore the means of log A_p are taken and used. Consequently log A_p is considered to be independent of φ and only varying with p. The deviation for p = 100 is greatest for Q', where it is about 2.07%, and since no absolute accuracy is required the function A_p is sought in a form as simple as possible.

As $\ln 10 = 2.30259$ we put

(69)
$$A_p = 1 + 2.30259 (\log A_p) \cdot (c + a \log^2 (\frac{p}{b}) + \Delta e_p),$$

(p=100)

where c, a and b are constants. By putting $\Delta e_p = 0$ this expression gives approximately A_p .

Considering that A_p as a maximum deviates only about 2% from unity we get, taking natural logarithms on both sides of (69)

$$\ln A_{p} \stackrel{\sim}{=} 2.30259 \ (\log A_{p}) \qquad (c + a \log^{2} (\frac{p}{b}) + \Delta e_{p}) \quad or$$

$$\log A_{p} \qquad \log A_{p} \qquad \log A_{p} \qquad (c + a \log^{2} (\frac{p}{b}) + \Delta e_{p}) \qquad or$$

(70)
$$e_p = \frac{\log A_p}{(\log A_p)} = [c + a \log^2 (\frac{p}{b})] + \Delta e_p = e_p^0 + \Delta e_p$$
,

(70a)
$$e_p^0 = c + a \log^2 (\frac{p}{b})$$

The left side of (70) are the relative values of the log A 's measured by the value for p = 100; it will consequently be +1^P.0 for p = 100 and about -1.0 for p = 500. We determine the constants c, a and b by the requirement that e_p^0 must have the correct values (i.e. $e_p^0 = e_p$) for p = 20, 100 and 500. (Fig. 6). This gives the following formulae:

(71)
$$a = 1.023417 (e_{500} - e_{20}) - 2.046836 (1 - e_{20})$$

(72)
$$\log b = \frac{n}{2a}$$

(73)
$$c = m - a \log^2 b$$

where

(74a)
$$\int n = 3.30103 \text{ a} - 1.430677 (1 - e_{20})$$

(74b)
$$\left\{ n = 4.00000 \text{ a} - 0.715338 \left(e_{500} - e_{20} \right) \right\}$$

(75a) $\int m = e_{20} + 1.30103 n - 1.69268 a$

(75b) $m = e_{100} + 2.00000 n - 4.00000 a$

(75c) $m = e_{500} + 2.69897 n - 7.28444 a$

The formulae (74a) and (74b) must give the same value of n, and the three formulae (75) must give the same value of m, whereupon b and c are easily found by (72) and (73).

	Finally it follows from (69) with $\Delta e_n = 0$:
(76a)	$A_p = c_0 + a_0 \log^2 \left(\frac{p}{b}\right)$, where
(76b)	$c_0 = 1 + 2.30259 c (log A_p)_{(p=100)}$
(76c)	$a_0 = 2.30259 a (log A_p)$ (p=100)

When the values of e_p^0 by 6.3.(70a) are deducted from the correct values of e_p by 6.3.(70) we find Δe_p and consequently the relation between the errors from using the formulae (76a)b)c) and the errors produced for p = 100 by using the corresponding simple power formula.

6.4. DERIVATION OF EXPRESSIONS FOR a_3 , b_3 AND Δ_3 IN THE FORMULA

$$(77) \frac{1 - a_1 \log^2 (\frac{p}{b_1})}{1 - a_2 \log^2 (\frac{p}{b_2})} = 1 + \Delta_3 - a_3 \log^2 (\frac{p}{b_3}).$$

It will later be useful to have a formula like that above valid for values of b_1 and b_2 , which do not differ much.

The values of a_3 , b_3 and Δ_3 are to be expressed by the known quantities a_1 , b_1 , a_2 and b_2 . We find:

(78)
$$a_3 = a_1 - a_2$$

(79)
$$\log b_3 = \frac{a_1 \log b_1 - a_2 \log b_2}{a_1 - a_2}$$

(80)
$$\Delta_3 = \frac{a_1 \cdot a_2}{a_1 - a_2} \cdot \frac{(\log b_1 - \log b_2)^2}{1 - a_2 \cdot \log^2 (\frac{p}{b_2})}$$

In the practical application of (77), when b_1 and b_2 differ only slightly, Δ_3 will often be insignificant, and the variation with p of the denominator $\begin{bmatrix} 1 - a_2 & \log^2 (\frac{p}{b}) \end{bmatrix}$, which is near 1, can be neglected, so that

(80a)
$$\Delta_3 \stackrel{\sim}{=} \frac{a_1 \cdot a_2}{a_1 - a_2} (\log b_1 - \log b_2)^2.$$

6.5. DERIVATION OF FORMULAE FOR A φ AND ABSCISSAE § OF THE FORM

(81) $A \varphi = a + b \cot \varphi + c \cot^2 \varphi + d \cot^3 \varphi$.

The coefficients $A \phi$ for our different dimensionless quantities will be known for the four different values of ϕ .

The same is true of the abscissae § which are known for fixed values of η and the four values of ϕ .

All these quantities can conveniently be expressed in formulae of the form (81), i.e. series with four members in increasing powers of the argument $m = \cot \varphi$. Since the intervals in φ are equal, the intervals in m will be unequal. To calculate the coefficients a, b, c and d so that the correct values of the function are obtained for $\varphi = 15^{\circ}$, 20° , 25° and 30° , Newton's Method of Interpolation is used.

From the function

(81a) $g(m) = a + bm + cm^2 + dm^3$

the values are known for the arguments m_0 , m_1 , m_2 and m_3 (equal to cot 15°, cot 20°, cot 25° and cot 30°).

We define:

(82)
$$g_1(m) = \frac{g(m) - g(m_0)}{m - m_0}$$

(83)
$$g_2(m) = \frac{g_1(m) - g_1(m_1)}{m - m_1}$$

(84)
$$g_3(m) = \frac{g_2(m) - g_2(m_2)}{m - m_2}$$

and calculate the special values $g_1(m_1)$, $g_2(m_2)$ and $g_3(m_3)$; this is done in the usual way in a table.

For the coefficients we then find the following expressions: (85) $a = g(m_0) + m_0 \left[-g_1(m_1) + m_1 \left[+g_2(m_2) - m_2 \cdot g_3(m_3) \right] \right]$ (86) $b = g_1(m_1) - (m_0 + m_1) \cdot g_2(m_2) + (m_0 m_1 + m_0 m_2 + m_1 m_2) \cdot g_3(m_3)$ (87) $c = g_2(m_2) - (m_0 + m_1 + m_2) \cdot g_3(m_3)$ (88) $d = g_3(m_3)$.

7. NUMERICAL DETERMINATION OF $A\varphi$, $B\varphi$ AND A_p FOR Q', F', v_m ', R', $(\beta+\beta_0)$, I' AND v_{\star} '.

In the following sections the coefficients A_{φ} , B_{φ} and A_p for each of the dimensionless quantities Q', F', v_m ', R', $(\beta+\beta_0)$, I' and v_{\star} ' are denoted by the first subscripts q, f, v, r, b, i and \star respectively, for Q' e.g. by $A_{q\varphi}$, $B_{q\varphi}$ and A_{qp} . 7 1. NUMERICAL CALCULATION OF A_{φ} , B_{φ} AND $\log A_p$.

For the quantities Q', F', R', $(\beta+\beta_0)$ and I' these calculations are made for the four values of φ and for Q' in Tables 7.1/4a/b/c/d/ F' - 7.1/5a/b/c/d/ R' - 7.1/6a/b/c/d/ $(\beta+\beta_0)$ - 7.1/7a/b/c/d/ I' - 7.1/8a/b/c/d/.

For v_m ' and v_{π} ' the corresponding values of A_{ϕ} , B_{ϕ} and log A_p can easily be found by combination of the above results.

φ = Q' = A _q φ =	15? 1.244754 li 21.8184	n ² (11 p) + B _q φ =	Table 7 2.081904 0.26247	. 1/4a/ • ln (11 p) ^{log A} q q	- 1.040952 = 1.33882	
р	Qʻ	log Q'	log p	^B qφ ^{·log p}	$\log A_{q\phi}^{+}$ $B_{q\phi}^{-\log p}$	log A _{qp}
10	36.2472	1.55928	1.00000	0.26247	1.60129	-0.04201
20	46.3995	1.66652	1.30103	0.34148	1.68030	-0.01378
30	52.8926	1.72339	1.47712	0.38770	1.72652	-0.00313
50	61.6557	1.78995	1.69897	0.44593	1.78475	+0.00520
100	74.5852	1.87265	2.00000	0.52494	1.86376	+0.00889
200	88.7109	1.94797	2.30103	0.60395	1.94277	+0.00520
300	97.5282	1.98913	2.47712	0.65017	1.98899	+0.00014
500	109.2195	2.03830	2.69897	0.70840	2.04722	-0.00892
1000	126.1224	2.10080	3.00000	0.78741	2.12623	-0.02543
	A _{qp} = 1:	Q' = 21 24	.8184 · µ .6≦p₹	9 ^{0.26247} ±	2.07% for	
φ =	20°.		Table 7	7.1/4b/		

$$\varphi = 20^\circ$$
.

 $Q' = 0.974020 \ln^2(11 p) + 1.634774 \cdot \ln(11 p) - 0.817387$ $B_{q\varphi} = 0.262349 \quad \log A_{q\varphi} = 1.23283$ 7.094

$$A_{0} = 17$$

р	ୣୄ୰	log Q'	log p H	³ q ¢ ^{·log p}	^{log A} qφ ⁺ B _{qφ} ·log p	log A _{qp}
10	28.3873	1.45313	1.00000	0.26235	1.49518	-0.04205
20	36.3354	1.56033	1.30103	0.34132	1.57415	-0.01382
30	41.4186	1.61720	1.47712	0.38752	1.62035	-0.00315
50	48.2786	1.68376	1.69897	0.44572	1.67855	+0.00521
100	58.3999	1.76641	2.00000	0.52470	1.75753	+0.00888
200	69.4572	1.84171	2.30103	0.60367	1.83650	+0.00521
300	76.3590	1.88286	2.47712	0.64987	1.88270	+0.00016
500	85.5104	1.93202	2.69897	0.70807	1.94090	-0.00888
	For A q	p = 1: Q'	= 17.094 · 24.6 ≦ p	p ^{0.26234} ₹ 500.	¹⁹ <u>+</u> 2.07% f	or

 $\varphi = 25^{\circ}$.

Table 7.1/4c/

 $Q' = 0.805268 \ln^2(11 \text{ p}) + 1.355772 \ln(11 \text{ p}) - 0.677886$

				-		
A _q φ ⁼	14.143	$B_{q\phi} = 0$. 26230	log A qq	= 1.15055	
р	Q'	log Q'	log p	^B q φ ^{·log p}	$\log A_{q\varphi}^{+}$ $B_{q\varphi}^{-\log p}$	log A
10	23.4869	1.37082	1.00000	0.26230	1.41285	-0.04203
20	30.0609	1.47800	1.30103	0.34126	1.49181	-0.01381
30	34.2651	1.53485	1.47712	0.38745	1.53800	-0.00315
50	39.9387	1.60140	1.69897	0.44564	1.59619	+0.00521
100	48.3094	1.68403	2.00000	0.52460	1.67515	+0.00888
200	57.4539	1.75932	2.30103	0.60356	1.75411	+0.00521
300	63.1617	1.80045	2.47712	0.64975	1.80030	+0.00015
500	70.7297	1.84960	2.69897	0.70794	1.85849	-0.00889
	For A _q	p = 1: Q'	= 14.143 24.6 ⁴	$p^{0.2623}$	⁰ ± 2.07% fo	or

$$\varphi = 30^{\circ}.$$

Table 7.1/4d/

 $Q' = 0.688370 \ln^2(11 \text{ p}) + 1.162312 \ln(11 \text{ p}) - 0.581156$

 $A_{q\varphi} = 12.099$ $B_{q\varphi} = 0.262249$ log $A_{q\varphi} = 1.08276$

р	Q'	log Q'	log p	B _q ↔ ·log p	log A _q + B _q · log p	log A qp
10	20.0915	1.30301	1.00000	0.26225	1.34501	-0.04200
20	25.7135	1.41016	1.30103	0.34119	1.42395	-0.01379
30	29.3087	1.46700	1.47712	0.38737	1.47013	-0.00313
50	34.1605	1.53353	1.69897	0.44555	1.52831	+0.00522
100	41.3183	1.61614	2.00000	0.52450	1.60726	+0.00888
200	49.1376	1.69142	2.30103	0.60344	1.68620	+0.00522
300	54.0182	1.73254	2.47712	0.64962	1.73238	+0.00016
500	60.4893	1.78168	2.69897	0.70780	1.79056	-0.00888
	For A _q	p = 1: Q'	= 12.099 24.6 ≦	$p = p^{0.26224}$	⁹ ± 2.07%	for

Ψ =	15 [°] .	Т	able 7.1/5	ia/		
F':	= 1.244754	ln (11 p)	+ 2.70428	1		
Α _f φ	= 6.8585	^B fφ ⁼	0.109208	log A _f q	= 0,83623	
р	F'	log F'	log p	^B f φ ∙ ^{log p}	^{log A} fφ ⁺ ^B fφ ^{.log p}	log A _{fp}
10	8.55522	0.93223	1.00000	0.10921	0.94544	-0.01321
20	9.41802	0.97396	1.30103	0.14208	0.97831	-0.00435
30	9.92272	0.99663	1.47712	0.16131	0.99754	-0.00091
50	10.55858	1.02360	1.69897	0.18554	1.02177	+0.00183
100	11.42138	1.05772	2.00000	0.21842	1.05465	+0.00307
200	12.28418	1.08935	2.30103	0.25129	1.08752	+0.00183
300	12.78888	1.10683	2.47712	0.27052	1.10675	+0.00008
500	13.42474	1.12791	2.69897	0.29475	1.13098	-0.00307
1000	14.28754	1.15496	3.00000	0- 32762	1.16385	-0.00889
	For A =	1: F'= 6 for 23	.8585.p .7≦p _₹ 5	0.109208 <u>+</u> 00.	0.71%	
0-2	0					
y - 4	0°.	Tab	le 7.1/5b/			
\mathbf{F}'	<u>0°.</u> = 0.974020	Tab 1n(11 p)	le 7.1/5b/ + 2.12178	4		
F' A _f q	$\frac{0^{\circ}}{0.974020}$	Tab 0 ln(11 p) ^B f q	le 7.1/5b/ + 2.12178 = 0.10911	4 log A _f q	, = 0.73020	
F' A _f ¢	$\frac{0^{\circ}}{2} = 0.974020$ = 5.3728 F'	Tab 0 ln(11 p) ^B f φ log F' _,	le 7.1/5b/ + 2.12178 = 0.10911 	4 ^{log A} fφ ^B fφ ^{.log}	$p^{\log A_{f\varphi}^{+}}_{p^{\log A_{f\varphi}^{+}}}$	log A _{fp}
F' A _f q 10	$ \frac{0^{\circ}}{1} $ = 0.974020 = 5.3728 F' 6.70015	Tab $1 \ln(11 p)$ $B_{f} \varphi$ $\log F'$, 0.82608	le 7.1/5b/ + 2.12178 = 0.10911 log p = 1.00000	4 ^{log A} fφ ^B fφ ^{.log} 0.10911	$p^{\log A}_{f\varphi} + B_{f\varphi} \cdot \log p$	log A _{fp} -0.01323
F' A _f q 10 20	<u>0°.</u> = 0.974020 = 5.3728 F' 6.70015 7.37529	Tab $0 \ln(11 p)$ $B_{f} \phi$ $\log F',$ 0.82608 0.86778	le 7.1/5b/ + 2.12178 = 0.10911 log p = 1.00000 1.30103	4 ^{log A} fφ ^B fφ ^{·log} 0.10911 0.14195	f = 0.73020 $p^{\log A} f \varphi^{+}$ $B_{f} \varphi^{-\log p}$ 0.83931 0.87215	log A _{fp} -0.01323 -0.00437
F' A _f q p 10 20 30	0°. = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021	Tab 0 ln(11 p) B _f q log F', 0.82608 0.86778 0.89043	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712	$ \frac{\log A_{f\varphi}}{B_{f\varphi} \cdot \log} $ 0.10911 0.14195 0.16117	f = 0.73020 $p^{\log A_{f} \varphi^{+}}$ $B_{f} \varphi^{-\log p}$ 0.83931 0.87215 0.89137	log A _{fp} -0.01323 -0.00437 -0.00094
F' A _f q p 10 20 30 50	0°. = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021 8.26777	Tab $0 \ln(11 p)$ $B_{f} \phi$ $\log F'_{,}$ 0.82608 0.86778 0.89043 0.91739	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712 1.69897	4 ¹ og A _f φ ^B fφ ^{.log} 0.10911 0.14195 0.16117 0.18537	$p^{log A}_{f \varphi} + B_{f \varphi} \cdot \log p$ 0.83931 0.87215 0.89137 0.91557	-0.01323 -0.00437 -0.00094 +0.00182
F' A _f q P 10 20 30 50 100	0°. = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021 8.26777 8.94291	Tab 0 ln(11 p) B _f ϕ 10g F', 0.82608 0.86778 0.89043 0.91739 0.95148	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712 1.69897 2.00000	4 ^{log A} fφ ^B fφ ^{·log} 0.10911 0.14195 0.16117 0.18537 0.21822	f = 0.73020 $p^{\log A_{f} \varphi^{+}} = B_{f} \varphi^{-\log p}$ 0.83931 0.87215 0.89137 0.91557 0.94842	-0.01323 -0.00437 -0.0094 +0.00182 +0.00306
F' A _f q p 10 20 30 50 100 200	0°. = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021 8.26777 8.94291 9.61806	Tab 0 ln(11 p) B _f φ log F', 0.82608 0.86778 0.89043 0.91739 0.95148 0.98308	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103	4 log A _f φ ^B fφ ^{·log} 0.10911 0.14195 0.16117 0.18537 0.21822 0.25106	$f_{p} = 0.73020$ $p^{\log A_{f}} \varphi^{+}$ $B_{f} \varphi^{-\log p}$ 0.83931 0.87215 0.89137 0.91557 0.94842 0.98126	-0.01323 -0.00437 -0.00094 +0.00182 +0.00306 +0.00182
F' A _f q P 10 20 30 50 100 200 300	0°. = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021 8.26777 8.94291 9.61806 10.01298	Tab 0 ln(11 p) B _f φ log F', 0.82608 0.86778 0.89043 0.91739 0.95148 0.98308 1.00056	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712	4 log A _f q B _f q · ^{log} 0.10911 0.14195 0.16117 0.18537 0.21822 0.25106 0.27027	$p = 0.73020$ $p^{\log A_{f}} \varphi^{+}$ $B_{f} \varphi^{-\log p}$ 0.83931 0.87215 0.89137 0.91557 0.94842 0.98126 1.00047	log A _{fp} -0.01323 -0.00437 -0.00094 +0.00182 +0.00306 +0.00182 +0.00009
F' A _f q p 10 20 30 50 100 200 300 500	0°. = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021 8.26777 8.94291 9.61806 10.01298 10.51054	Tab 0 ln(11 p) B _f q 0.82608 0.82608 0.86778 0.89043 0.91739 0.95148 0.98308 1.00056 1.02162	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712 2.69897	4 log A _f φ B _f φ · ^{log} 0.10911 0.14195 0.16117 0.18537 0.21822 0.25106 0.27027 0.29448	$p^{log A_{f} \varphi^{+}} B_{f} \varphi^{-log H} B_{f} \varphi^{-log H} 0.83931 0.87215 0.89137 0.91557 0.94842 0.98126 1.00047 1.02468$	-0.01323 -0.00437 -0.00094 +0.00182 +0.00306 +0.00182 +0.00009 -0.00306
F' A _f q p 10 20 30 50 100 200 300 500	<u>0</u> . = 0.974020 = 5.3728 F' 6.70015 7.37529 7.77021 8.26777 8.94291 9.61806 10.01298 10.51054 For A =	Tab $1 \ln(11 p)$ $B_{f} \phi$ $\log F'$, 0.82608 0.86778 0.89043 0.91739 0.91739 0.95148 0.98308 1.00056 1.02162 1: F' = 5	le 7.1/5b/ + 2.12178 = 0.10911 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712 2.69897 .3728 . p	4 log A _f φ B _f φ · log 0.10911 0.14195 0.16117 0.18537 0.21822 0.25106 0.27027 0.29448 0.10911 ±	$f_{p} = 0.73020$ $p^{\log A_{f}} \varphi^{+}$ $B_{f} \varphi^{-\log p}$ 0.83931 0.87215 0.89137 0.91557 0.94842 0.98126 1.00047 1.02468 0.707%	log A _{fp} -0.01323 -0.00437 -0.00094 +0.00182 +0.00306 +0.00182 +0.00009 -0.00306

	25.	Tab	le 7.1/5c/			
F'=	0.805268	3 ln(11 p)	+ 1.75840)6		
Afq	= 4.4456	Β _f φ	= 0.10906	log A _f q	=0.64793	
р	F'	log F'	log p	$B_{f\phi}$.log	$\overset{\log A_{f\varphi}^{+}}{\overset{B_{f\varphi}^{-\log}}{\overset{\log}{\cdots}}}$	p log A _{fp}
10	5.54355	0.74378	3 1.00000	0.10906	0.75699	-0.01321
20	6.10172	0.78545	1.30103	0.14189	0.78982	-0.00437
30	6.42823	0.80809	1.47712	0.16109	0.80902	- 0.00093
50	6.83958	0.83503	1.69897	0.18529	0.83322	+0.00181
100	7.39775	0.86910	2.00000	0.21812	0.86605	+0.00305
200	7.95593	0.90069	2.30103	0.25095	0.89888	+0.00181
300	8.28243	0.91816	2.47712	0.27015	0.91808	+0.00008
500	8.69379	0.93921	2.69897	0.29435	0.94228	-0.00307
	For A	= 1: F	'= 4.4456 - 23.8≦ ₁	. p ^{0.10906} 5 ₹ 500.	± 0.70%	
0-3	.0]					
φ - J	0~.	Т	able 7.1/5	5d/		
$\frac{\varphi - 3}{F'}$	= 0.6883	T 70 ln (11	able 7.1/5 p) + 1.50	5d/ 6497		
F'	= 0.6883 = 3.8034	T 70 ln (11 ^B fφ ⁼	able 7.1/5 p) + 1.50 0.10899	5d/ 6497 ^{log Α} fφ	= 0.58017	
F' A _{fq} P	= 0.6883 = 3.8034 F'	T 70 ln (11 ^B fφ ⁼ log F'	able 7.1/5 p) + 1.50 0.10899 log p	d/ 6497 $\log A_{f\varphi}$ $B_{f\varphi} \cdot \log p$	= 0.58017 $\log^{10} f \varphi^{+}$ $B_{f} \varphi^{-\log p}$	log A _{fp}
F' A _{fq} P 10	= 0.6883 = 3.8034 F' 4.74217	T 70 ln (11 ^B fφ ⁼ log F' 0.67598	able 7.1/5 p) + 1.50 0.10899 log p 1.00000	$\frac{\log A_{f\varphi}}{\log A_{f\varphi}}$ $B_{f\varphi} \cdot \log p$ 0.10899	= 0.58017 $\log^{10} f \varphi^{+}$ $B_{f} \varphi^{-\log p}$ 0.68916	^{log A} fp -0.01318
F' A _{fq} P 10 20	$ \begin{array}{c} 0^{\circ} \\ = 0.6883 \\ 0^{\circ} = 3.8034 \\ F' \\ 4.74217 \\ 5.21931 \end{array} $	T 70 ln (11 B _f φ ⁼ log F' 0.67598 0.71761	<pre>Pable 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103</pre>	$\frac{\log A_{f\varphi}}{\log A_{f\varphi}}$ B _{f\varphi} .log p 0.10899 0.14180	= 0.58017 $\log A_{f} \phi^{+}$ $B_{f} \phi^{-\log p}$ 0.68916 0.72197	^{log A} fp -0.01318 -0.00436
F' A _{fq} P 10 20 30	= 0.6883 = 3.8034 F' 4.74217 5.21931 5.49842	T 70 ln (11 B _f φ = log F' 0.67598 0.71761 0.74023	able 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103 1.47712	$\frac{10g}{10g} \frac{A_{f}\varphi}{A_{f}\varphi}$ $B_{f}\varphi$.log p 0.10899 0.14180 0.16099	= 0.58017 $\log A_{f\varphi} + B_{f\varphi} \cdot \log p$ 0.68916 0.72197 0.74116	log A _{fp} -0.01318 -0.00436 -0.00093
F' A _{fq} P 10 20 30 50	= 0.6883 = 3.8034 F' 4.74217 5.21931 5.49842 5.85006	T 70 ln (11 B _f φ = log F' 0.67598 0.71761 0.74023 0.76716	<pre>Pable 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103 1.47712 1.69897</pre>	d/ $fog A_{f\varphi}$ $B_{f\varphi} \cdot \log p$ 0.10899 0.14180 0.16099 0.18517	= 0.58017 $\log A_{f\varphi} + B_{f\varphi} \cdot \log p$ 0.68916 0.72197 0.74116 0.76534	log A _{fp} -0.01318 -0.00436 -0.00093 +0.00182
F' A _{fq} P 10 20 30 50 100	= 0.6883 = 3.8034 F' 4.74217 5.21931 5.49842 5.85006 6.32720	T 70 ln (11 $B_{f\phi} =$ log F' 0.67598 0.71761 0.74023 0.76716 0.80121	able 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103 1.47712 1.69897 2.00000	d/ for factors for factor	$= 0.58017$ $\log A_{f\varphi} + B_{f\varphi} \cdot \log p$ 0.68916 0.72197 0.74116 0.76534 0.79815	log A _{fp} -0.01318 -0.00436 -0.00093 +0.00182 +0.00306
F' A _{fq} P 10 20 30 50 100 200	= 0.6883 = 3.8034 F' 4.74217 5.21931 5.49842 5.85006 6.32720 6.80434	T 70 ln (11 B _f φ = log F' 0.67598 0.71761 0.74023 0.76716 0.80121 0.83278	able 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103	5d/ 6497 log A _f φ B _f φ.log p 0.10899 0.14180 0.16099 0.18517 0.21798 0.25079	$= 0.58017$ $\log A_{f\varphi} + B_{f\varphi} \cdot \log p$ 0.68916 0.72197 0.74116 0.76534 0.79815 0.83096	log A _{fp} -0.01318 -0.00436 -0.00093 +0.00182 +0.00306 +0.00182
F' A _{fq} P 10 20 30 50 100 200 300	= 0.6883 = 3.8034 F' 4.74217 5.21931 5.49842 5.85006 6.32720 6.80434 7.08345	T 70 ln (11 B _f φ = log F' 0.67598 0.71761 0.74023 0.76716 0.80121 0.83278 0.85025	able 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712	5d/ 6497 log A _f φ B _f φ.log p 0.10899 0.14180 0.16099 0.18517 0.21798 0.25079 0.26999	$= 0.58017$ $\log A_{f\varphi} + B_{f\varphi} \cdot \log p$ 0.68916 0.72197 0.74116 0.76534 0.79815 0.83096 0.85016	log A _{fp} -0.01318 -0.00436 -0.00093 +0.00182 +0.00306 +0.00182 +0.00009
F ' A _{fq} P 10 20 30 50 100 200 300 500	<pre>= 0.6883 = 0.6883 F' 4.74217 5.21931 5.49842 5.85006 6.32720 6.80434 7.08345 7.43509</pre>	T 70 ln (11 B _f φ = log F' 0.67598 0.71761 0.74023 0.76716 0.80121 0.83278 0.85025 0.87129	able 7.1/5 p) + 1.50 0.10899 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712 2.69897	5d/ 6497 log A _f φ B _f φ.log p 0.10899 0.14180 0.16099 0.18517 0.21798 0.25079 0.26999 0.29417	$= 0.58017$ $\log A_{f\varphi} + B_{f\varphi} \cdot \log p$ 0.68916 0.72197 0.74116 0.76534 0.79815 0.83096 0.85016 0.87434	log A _{fp} -0.01318 -0.00436 -0.00093 +0.00182 +0.00306 +0.00182 +0.00009 -0.00305

φ=	15 ⁰		Tabl	le 7.1/6a/			
R	' =	1.244754 1.244754	ln(11 p) ln(11 p)	+ 2.70428 + 5.4034	81 87		
A	r ø =	0.73272	^B rφ ⁼	0.020945	log Arq	= 9.86494	
	р	R'	log R'	log p	^B rφ.log p	$\log A_{r\varphi} + B_{r\varphi,\log p}$	log A _{rp}
	10	0.760165	9.88091	1.00000	+0.02095	9.88589 -	0.00498
	20	0.777242	9.89056	, 1.30103	+0.02725	9. 89219 -	0.00163
4	30	0.786149	9.89550	1.47712	+0.03094	9.89588 -	0.00038
	50	0.796406	9.90113	1.69897	+0.03558	9.90052 +	0.00061
1	00	0.808846	9.90786	2.00000	+0.04189	9.90683 +	0.00103
2	00	0.819853	9.91374	2.30103	+0.04820	9.91314 +	0.00060
3	00	0.825724	9.91683	2.47712	+0.05188	9.91682 +	0.00001
5	00	0.832597	9.92043	2.69897	+0.05653	9.92147 -	0.00103
10	00	0.841099	9.92485	3.00000	+0.06284	9.92778 -	0.00293
Fc	or A	= 1 : F	r' = 0.732	272 . p ^{0.0}	20940 + 0.2	37 % for 24	8 = p < 500
		rp					- P
φ=2	20 ⁰ .	<u>.]</u>	T	able 7.1/6	<u>i</u> or <u>i</u>		- p
φ=: R'	20 ⁰ . = (0.974020 0.974020	T: . ln (11 p) ln (11 p)	able 7.1/6) + 2.1217) + 4.2460	3b/ 784 760		
$\varphi = 2$ R' A _r	20 ⁰ = (0.974020 0.974020 0.974020 0.73172	$\frac{\ln (11 p)}{\ln (11 p)}$ $B_{r\varphi} = 0.$	able 7.1/6) + 2.1217) + 4.2460 02103	$\frac{1}{86}$. 86434	
$\varphi = 2$ R' A _r	20 ⁰ = (φ ⁼ p	R'	T: $\ln (11 p)$ $\ln (11 p)$ $B_{r} q = 0.$ $\log R'$	able 7.1/6) + 2.1217) + 4.2460 02103 log p	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{100 \text{ A}_{r\phi}}{\text{B}_{r\phi}}$	log A _{rp}
φ=: R' A _r	20 [°] = (p 10	R' 0.759273	T: $\ln (11 p)$ $\ln (11 p)$ $B_{r\phi} = 0.$ $\log R'$ 9.88040	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000	$\frac{1}{100} \frac{1}{100} \frac{1}$	1.86434 $10g A_{r\phi}^{+}$ $B_{r\phi}^{-\log p}$ 9.88537 - 0.000	log A _{rp} 00497
$\varphi = 2$ R' A _r	20 [°] = (((p 10 20	R' 0.759273 0.776382	T: $\ln (11 p)$ $\ln (11 p)$ $B_{r} \varphi = 0.$ $\log R'$ 9.88040 9.89008	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1000 \text{ A}_{r\phi}}{1000 \text{ A}_{r\phi}} + \frac{1000 \text{ A}_{r\phi}}{1000 \text{ B}_{r\phi}} + \frac{1000 \text{ B}_{r\phi}}{1000 \text{ B}_$	log A _{rp} 00497 00162
$\varphi = 2$ R' A _r	20° = (ϕ° p 10 20 30.	R' 0.759273 0.785307	T: $\ln (11 p)$ $\ln (11 p)$ $B_r q = 0.$ $\log R'$ 9.88040 9.89008 9.89504	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103 1.47712	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1000 \text{ A}_{r\phi}}{1000 \text{ A}_{r\phi}} + \frac{1000 \text{ A}_{r\phi}}{1000 \text{ B}_{r\phi}} + \frac{1000 \text{ B}_{r\phi}}{1000 \text{ B}_$	log A _{rp} 00497 00162 00036
φ=: R' A _r	20° , = (ϕ° = (10 20 30. 50	R' 0.759273 0.785307 0.795586	T: $\ln (11 p)$ $\ln (11 p)$ $B_{r\phi} = 0.$ $\log R'$ 9.88040 9.89008 9.89504 9.90068	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103 1.47712 1.69897	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{\log A_{r\varphi}}{\log A_{r\varphi}} + \frac{\log p}{\log 2}$ $\frac{\log p}{2.88537} - 0.$ $\frac{9.89170}{9.89540} - 0.$ $9.90007 + 0.$	log A _{rp} 00497 00162 00036 00061
φ=: R' A _r	20° , = ($\varphi^{=}$ p 110 20 30. 50 00	R' 0.759273 0.785307 0.795586 0.808056	T: $\ln (11 p)$ $\ln (11 p)$ $B_{r\phi} = 0.$ $\log R'$ 9.88040 9.89008 9.89504 9.90068 9.90744	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103 1.47712 1.69897 2.00000	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1000 \text{ A}_{r\phi}}{1000 \text{ A}_{r\phi}} + \frac{1000 \text{ A}_{r\phi}}{1000 \text{ B}_{r\phi}} + \frac{1000 \text{ B}_{r\phi}}{1000 \text{ B}_$	log A _{rp} 00497 00162 00036 00061 00104
φ=: R' A _r 10 20	20° , = (φ° = ($\varphi^$	R' 0.759273 0.776382 0.785307 0.795586 0.808056 0.819092	T: $\ln (11 p)$ $\ln (11 p)$ $B_r q = 0.$ $\log R'$ 9.88040 9.89008 9.89504 9.90068 9.90744 9.91334	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\begin{array}{c} .86434 \\ \hline \\ .86434 \\ \hline \\ B_{r\phi} \cdot \log p \\ \hline \\ 9.88537 - 0. \\ 9.89170 - 0. \\ 9.89540 - 0. \\ 9.90007 + 0. \\ 9.90640 + 0. \\ 9.91273 + 0. \\ \end{array}$	log A _{rp} 00497 00162 00036 00061 00104 00061
φ=: R' A _r 10 20 30	20° , = ($\varphi^{=}$) $\varphi^{=}$ $\varphi^{=}$ 10 20 30, 50 00 00 00	Imp 0.974020 0.974020 0.73172 R' 0.759273 0.776382 0.785307 0.795586 0.808056 0.819092 0.824979	T: $\ln (11 p)$ $\ln (11 p)$ $B_r \phi = 0.$ $\log R'$ 9.88040 9.89008 9.89504 9.90068 9.90744 9.91334 9.91644	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1.86434}{10g A_{r\phi} + B_{r\phi} \cdot \log p}$ $9.88537 - 0.$ $9.89170 - 0.$ $9.89540 - 0.$ $9.90007 + 0.$ $9.90640 + 0.$ $9.91273 + 0.$ $9.91643 + 0.$	log A _{rp} 00497 00162 00036 00061 00104 00061 00001
φ=: R' A _r 10 20 30 50	20° , = ($\phi^{=}$ p 10 20 30. 50 00 00 00 00 00	Imp 0.974020 0.974020 0.73172 R' 0.759273 0.776382 0.785307 0.795586 0.808056 0.819092 0.824979 0.831871	T: $\ln (11 p)$ $\ln (11 p)$ $B_r q = 0.$ $\log R'$ 9.88040 9.89008 9.89504 9.90068 9.90744 9.91334 9.91644 9.92006	able 7.1/6) + 2.1217) + 4.2460 02103 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712 2.69897	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1.86434}{10g A_{r\phi} + B_{r\phi} \cdot \log p}$ $9.88537 - 0.9.89540 - 0.9.90007 + 0.9.90640 + 0.9.91273 + 0.9.91643 + 0.9.91643 + 0.9.92109 - 0.9.9109 - 0.9.9100 - 0.9.9109 - 0.9.910$	log A _{rp} 00497 00162 00036 00061 00104 00061 00001 00103
φ = 2	5 ⁰ .	Table	7.1/6c/				
---	---	---	---	--	--		
R'=	0.805268.	ln (11 p) ln (11 p)	+ 1.7584	06			
A _{rφ}	= 0.72968	^B rφ ⁼	0.02118	^{log A} rφ	= 9.86313		
р	R'	log R'	log p	^B rφ ^{.log p}	${}^{\log A}_{B_{r\phi}}$, ${}^{\phi^+}_{\log p}$, ${}^{\log A}_{rp}$		
10	0.757292	9.87927	1.00000	0.02118	9.88431 - 0.00504		
20	0.774488	9.88901	1.30103	0.02755	9.89068 - 0.00167		
30	0.783462	9.89402	1.47712	0.03128	9.89441 -0.00039		
50	0.793800	9.89971	1.69897	0.03598	9.89911 +0.00060		
100	0.806345	9.90652	2.00000	0.04235	9.90548 +0.00104		
200	0.817451	9.91246	2.30103	0.04873	9.91186 +0.00060		
300	0.823376	9.91560	2.47712	0.05246	9.91559 +0.00001		
500	0,830315	9.91925	2.69897	0.05716	9.92029 -0.00104		
For A	$A_{rp} = R' =$	0.72968.	p ^{0.02118}	³ ⁺ 0.240 %	for 24.9 ≦ p ₹ 500.		
-	The second s		a company and a second s		the state of the local day of the state of the local day is a state of the state of		
$\varphi = 3$	0°.	Table	7.1/6d/				
φ = 3 R' =	0.688370 0.688370	Table . ln (11 p . ln (11 p	7.1/6d/) + 1.506) + 3.050	497 899			
$\varphi = 3$ R' = A _r φ	$\begin{array}{l} 0.688370\\ 0.688370\\ 0.688370\\ = 0.72638 \end{array}$	Table . ln (11 p . ln (11 p . B _r φ	7.1/6d/) + 1.506) + 3.050 = 0.02146	497 899 0 log A	rq = 9.86117		
$\varphi = 3$ $R' = $ $A_{r\varphi}$ p	0 ⁰ . 0.688370 0.688370 = 0.72638 R'	Table . ln (11 p . ln (11 p B _r φ log R'	7.1/6d/) + 1.506) + 3.050 = 0.02146	497 899 0 log Α Β _{rφ} .log p	$r\varphi = 9.86117$ $\log A_{r\varphi} + B_{r\varphi} \log P \log A_{rp}$		
$\varphi = 3$ $R' = $ $A_{r\varphi}$ p 10	0.688370 0.688370 = 0.72638 R' 0.754333	Table . ln (11 p . ln (11 p B _r φ ⁻¹ log R' 9.87756	7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000	497 899 0 log A B _r .log p 0.02146	$r\varphi = 9.86117$ $\log A_{r\varphi} + B_{r\varphi} \log P \log A_{rp}$ 9.88263 - 0.00507		
$\varphi = 3$ $R' = $ $A_{r\varphi}$ p 10 20	0.688370 0.688370 = 0.72638 R' 0.754333 0.771664	Table . ln (11 p . ln (11 p B _r φ log R' 9.87756 9.88743	<pre>7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000 1.30103</pre>	497 899 0 log A ^B rφ ^{, log p} 0.02146 0.02792	$r\varphi = 9.86117$ $\log A_{r\varphi} +$ $B_{r\varphi} \cdot \log p \log A_{rp}$ 9.88263 - 0.00507 9.88909 - 0.00166		
$\varphi = 3$ $R' =$ $A_{r\varphi}$ p 10 20 30	0.688370 0.688370 = 0.72638 R' 0.754333 0.771664 0.780713	Table . ln (11 p . ln (11 p B _r φ log R' 9.87756 9.88743 9.89249	<pre>7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000 1.30103 1.47712</pre>	497 899 0 log A ^B rφ ^{. log p} 0.02146 0.02792 0.03170	$r\varphi = 9.86117$ $\log A_{r\varphi} + \log A_{rp}$ $B_{r\varphi} \cdot \log p \log A_{rp}$ 9.88263 - 0.00507 9.88909 - 0.00166 9.89287 - 0.00038		
$\varphi = 3$ $R' =$ $A_{r\varphi}$ P 10 20 30 50	0.688370 0.688370 = 0.72638 R' 0.754333 0.771664 0.780713 0.791141	Table . ln (11 p . ln (11 p B _r φ ⁻¹ log R' 9.87756 9.88743 9.89249 9.89825	<pre>7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000 1.30103 1.47712 1.69897</pre>	497 899 0 log A B _r .log p 0.02146 0.02792 0.03170 0.03646	$r\varphi = 9.86117$ $log A_{r\varphi} + B_{r\varphi}.log p log A_{rp}$ 9.88263 - 0.00507 9.88909 - 0.00166 9.89287 - 0.00038 9.89763 + 0.00062		
$\varphi = 3$ $R' =$ $A_{r\varphi}$ p 10 20 30 50 100	0.688370 0.688370 = 0.72638 R' 0.754333 0.771664 0.780713 0.791141 0.803801	Table . ln (11 p . ln (11 p B _r φ log R' 9.87756 9.88743 9.89249 9.89825 9.90515	<pre>7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000 1.30103 1.47712 1.69897 2.00000</pre>	497 899 0 log A B _r φ .log p 0.02146 0.02792 0.03170 0.03646 0.04292	$r\varphi = 9.86117$ $\log A_{r\varphi} + \log A_{rp}$ $9.88263 - 0.00507$ $9.88909 - 0.00166$ $9.89287 - 0.00038$ $9.89763 + 0.00062$ $9.90409 + 0.00106$		
	00°. 0.688370 0.688370 = 0.72638 R' 0.754333 0.771664 0.780713 0.791141 0.803801 0.815014	Table ln (11 p ln (11 p rop log R' 9.87756 9.88743 9.89249 9.89825 9.90515 9.91117	<pre>7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103</pre>	497 899 0 log A B _r .log p 0.02146 0.02792 0.03170 0.03646 0.04292 0.04938	$r\varphi = 9.86117$ $log A_{r\varphi} + B_{r\varphi}.log p log A_{rp}$ 9.88263 - 0.00507 9.88909 - 0.00166 9.89287 - 0.00038 9.89763 + 0.00062 9.90409 + 0.00106 9.91055 + 0.00062		
	0.688370 0.688370 0.688370 = 0.72638 R' 0.754333 0.771664 0.780713 0.791141 0.803801 0.815014 0.820998	Table . ln (11 p . ln (11 p B _r φ log R' 9.87756 9.88743 9.89249 9.89825 9.90515 9.91117 9.91434	<pre>7.1/6d/) + 1.506) + 3.050 = 0.02146 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712</pre>	497 899 0 log A B _{rφ} .log p 0.02146 0.02792 0.03170 0.03646 0.04292 0.04938 0.05316	$r\varphi = 9.86117$ $log A_{r\varphi} + B_{r\varphi}.log p log A_{rp}$ 9.88263 - 0.00507 9.88909 - 0.00166 9.89287 - 0.00038 9.89763 + 0.00062 9.90409 + 0.00106 9.91055 + 0.00062 9.91433 + 0.00001		
	0.688370 0.688370 0.688370 = 0.72638 R' 0.754333 0.771664 0.780713 0.791141 0.803801 0.815014 0.820998 0.828008	Table ln (11 p ln (11 p R ^r φ log R' 9.87756 9.88743 9.89249 9.89825 9.90515 9.91117 9.91434 9.91803	 7.1/6d/ + 1.506 + 3.050 0.02146 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712 2.69897 	497 899 0 log A B _r φ .log p 0.02146 0.02792 0.03170 0.03646 0.04292 0.04938 0.05316 0.05792	$r\varphi = 9.86117$ $log A_{r\varphi} + B_{r\varphi}.log p log A_{rp}$ 9.88263 - 0.00507 9.88909 - 0.00166 9.89287 - 0.00038 9.89763 + 0.00062 9.90409 + 0.00106 9.91055 + 0.00062 9.91433 + 0.00001 9.91909 - 0.00106		

\$\$\$ =15	. ⁰ .	Table	7.1/7a/			
β+	$\beta_0 = 1.244$	4754 ln (1	1 p) + 5.3	318022		
Α _b φ	= 9.2804	^B bφ ⁼	0.088795	log A	$b\phi = 0.96757$	
р	β +β 0	log(β+β ₀) log p	^B bφ .lo	^{log A} bφ ⁺ g p B _b φ ^{, log p}	log A _{bp}
10	11.16896	1.04801	1.00000	0.08880	1.65637 -0	.00836
20	12.03177	1.08033	1.30103	0.11552	1.08309 -0	.00276
30	12,53646	1.09818	1.47712	0.13116	1.09873 -0	.00055
50	13,17232	1.11967	1.69897	0.15086	1.11843 +0	.00124
100	14.03512	1.14722	2.00000	0.17759	1.14516 +0	00206
200	14.89792	1.17313	2.30103	0.20432	1.17189 +0.	00124
300	15.40262	1.18759	2.47712	0.21996	1.18753 +0.	00006
500	16.03848	1.20516	2.69897	0.23966	1.20723 - 0.	00207
1000	16.90128	1.22792	3.00000	0.26639	1.23396 -0.	00604
For A	А _{bp} =1: β	+ $\beta_0 = 9$.	2804 . p ⁰	.088795 _±	0.475 % for 23	.2≦p< ⁼ 500.
φ = 2	20 [°] .	Table	7.1/7b/			
β + β	0 = 0.974	020 ln (11	p) + 4.13	35563		
A _b φ	= 7.2375	^B bφ	= 0.08901	log A	bφ = 0.8 5959	
р	β + β ₀	log(β+β ₀)	log p	^B b φ ^{.log} Ι	^{log A} bφ ⁺ ^p B _b φ ^{.log p}	^{log A} bp
10	8.713925	0.94022	1.00000	0.08901	0.94860 -0.	00838
20	9.389066	0.97262	1.30103	0.11581	0.97540 -0.	00278
30	9.783993	0.99052	1.47712	0.13148	0.99107 -0.0	00055
50 1	0.281551	1.01206	1.69897	0.15123	1.01082 +0.0	00124
100 1	0.956693	1.03968	2.00000	0.17802	1.03761 +0.0	0207
200 1	1.631835	1.06565	2.30103	0.20482	1.06441 +0.0	00124
300 1	2.026761	1.08015	2.47712	0.22049	1.08008 +0.0	0007
500 1	2.524320	1.09775	2.69897	0.24024	1.09983 -0.0	0208
For A	bp = 1 : f	$\beta + \beta_0 = 7.$	2375.p ⁰	.08901 ± 0	.477% for 23.2 ≦	p ₹ 500

$\varphi = 25$.

Γ

Table 7.1/7c/

 $\beta + \beta_0 = 0.805268 \ln (11 p) + 3.400201$

 $A_{b\phi} = 5.9660$

 $B_{b\phi} = 0.08919$ $\log A_{b\phi} = 0.77568$

I	β+β ₀	log(β+β ₀) log p	^B bφ ^{log}	^{log A} bφ ^B bφ ^{log}	p ⁺ log A _{bp}
1	0 7.1853	847 0.85645	1.00000	0.08919	0.86487	- 0.00842
2	0 7.743	519 0.88894	1.30103	0.11604	0.89172	-0.00278
3	0 8.0700	0.90687	1.47712	0.13175	0.90743	- 0.00056
5	0 8.4813	378 0.92847	1.69897	0.15154	0.92722	+0.00125
10	0 9.0395	649 0.95615	2.00000	0.17839	0.95407	+0.00208
20	0 9.597	721 0.98217	2.30103	0.20524	0.98092	+0.00125
30	0 9.9242	225 0.99670	2.47712	0.22094	0.99662	+0.00008
50	0 10.3355	580 1.01433	2.69897	0.24073	1.01641	-0.00208
For	• A _{bp} = 1 :	$\beta + \beta_0 = 5.966$	50 . p ^{0.08}	³⁹¹⁹ ± 0.4	8% for 23.2	≦p ₹ 500.
φ =	30°.	Table 7.1	/7d/			
β+	$\beta_0 = 0.68$	8370 ln (11 p)	+ 2.8915	76		
Abq	5. 0864	$B_{b}\varphi = 0$.08936	$\log A_b \phi$	= 0.70641	L .
F	ρ β+β ₀	log(β+β ₀) lo	ogp B _b	lo P ^{·log p} B _l	^{g A} bφ ⁺ φ ^{log p}	log A _{bp}
1	0 6.12774	0.78730 1.	00000 0.	089360 0	. 79577	- 0.00847
2	0 6.60488	0.81986 1.	30103 0.	116260 0	.82267	-0.00281
3	0 6.88399	0.83784 1.	47712 0.	131995 0	.83841	- 0.00057
5	0 7.23562	0.85948 1.	69897 0.	151820 0	.85823	+0.00125
10	0 7.71277	0.88721 2.	00000 0.	178720 0	.88513	+0.00208
20	0 8.18992	0.91328 2.	30103 0.	205620 0	.91203	+0.00125
30	0 8.46902	0.92783 2.	47712 0.	221355 0	.92777	+0.00006
50	0 8,82067	0.94551 2.	69897 0.	241180 0	94759	- 0 00208

For $A_{bp} = 1: \beta + \beta_0 = 5.0864$. $p^{0.08936} \pm 0.48\%$ for $23.3 \le p \ge 500$.

φ =	15 [°] .	Та	ble 7.1/8	a/	
I' =	1.244754	ln (11 p) -	+ 2.77132	23	
A _i φ	= 6.9199	^B iφ =	0.10856	1 log A _i	$\varphi = 0.84010$
р	I'	log I'	log p	Β _i φ.log p	$\frac{\log A_{i\varphi}}{B_{i\varphi} \cdot \log p} \log A_{ip}$
10	8.62226	0.93562	1.00000	0.10856	0.94866 - 0.01304
20	9.48507	0.97704	1.30103	0.14124	0.98134 - 0.00430
30	9.98976	0.99957	1.47712	0.16036	1.00046 - 0.00089
50	10.62562	1.02635	1,69897	0.18444	1.02454 +0.00181
100	11.48842	1.06026	2.00000	0.21712	1.05722 +0.00304
200	12.35122	1.09171	2.30103	0.24980	1.08990 +0.00181
300	12.85592	1.10910	2.47712	0.26892	1.10902 +0.00008
500	13.49178	1.13007	2.69897	0.29300	1.13310 - 0.00303
1000	14.35458	1.15699	3.00000	0.32568	1.16578 - 0.00879
For	A _{ip} = 1 : I	' = 6.919	9.p ^{0.10}	8561 ± 0.7	02% for 23.69 $\stackrel{<}{=}$ p $\stackrel{=}{<}$ 500.
φ =	20 ⁰ .	Та	able 7.1/8	8b/	
I' =	0.974020	ln (11 p)	+ 2.2074	29	
A _i φ	= 5.4502	^B iφ ⁼	0.108096	log A _i q	= 0.73642
р	I,	log I'	log p	$^{\rm B}{}_{ m i} \boldsymbol{\varphi}^{\cdot \log}$	$p \frac{\log A_{i} \varphi}{B_{i} \varphi} + \log p \log A_{ip}$
10	6.78579	9 0.83160	1.00000	0.10810	0.84452 - 0.01292
20	7.46093	3 0.87280	1.30103	0.14064	0.87706 -0.00426
30	7.85586	6 0.89519	1.47712	0.15967	0.89609 -0.00090
50	8.35342	2 0.92186	1.69897	0.18365	0.92007 +0.00179
100	9.02856	6 0.95562	2.00000	0.21619	0.95261 + 0.00301
200	9.70370	0.98694	2.30103	0 .2 4873	0.98515 +0.00179
300	10.0986	3 1.00426	3 2.47712	0.26777	1.00419 +0.00007
500	10.5961	9 1.02515	2.69897	0.29175	1.02817 -0.00302
For	$A_{ip} = 1 : I$	' = 5.450	2. p ^{0.10}	8096 ± 0.69	95% for 23.72 ≦ p = 500.

φ = 2	25°.	Tab	le 7.1/8c	:/						
I' =	$I' = 0.805268 \ln (11 p) + 1.862054$									
A _i φ ⁼	$A_{i\varphi} = 4.5399 B_{i\varphi} = 0.107547 \log A_{i\varphi} = 0.65705$									
р	I'	log I'	log p	^B iφ ^{,log p}	$\log A_{i\varphi}^{\dagger} + \log A_{ip}^{\dagger}$					
10	5.64720	0.75183	1.00000	0.10755	0.76460 - 0.01277					
20	6.20537	0.79277	1.30103	0.13992	0.79697 -0.00420					
30	6.53188	0.81504	1.47712	0.15886	0.81591 - 0.00087					
50	6.94323	0.84156	1.69897	0.18272	0.83977 +0.00179					
100	7.50140	0.87512	2.00000	0.21509	0.87214 +0.00298					
200	8.05957	0.90631	2.30103	0.24747	0.90452 +0.00179	я				
300	8.38608	0.92355	2.47712	0.26641	0.92346 +0.00009					
500	8.79743	0.94435	2.69897	0.29027	0.94732 - 0.00297					
For $A_{ip} = 1$: I' = 4.5399 · p ^{0.107547} ± 0.688% for 23.70 $\leq p \leq 500$.										
$\varphi = 30^{\circ}$. Table 7.1/8d/										
φ = :	30°.	Т	able 7.1/	8d/						
φ = : I' =	30 [°] . 0.688370	T ln (11 p)	able 7.1/ + 1.6278	8d/ 82						
φ = : I' = ^A iφ	0.688370 = 3.9143	T ln (11 p) ^B iq	able 7,1/ + 1.6278 = 0.1069	8d/ 82 33 log A	iφ = 0.59266					
$\varphi = 3$ I' = A _i φ	0.688370 = 3.9143 I'	Τ ln (11 p) ^B iφ log I'	able 7.1/ + 1.6278 = 0.1069 log p	8d/ 82 33 log A ^B iφ ^{·log p}	$i\varphi = 0.59266$ $\log A_{i\varphi} + B_{i\varphi} \cdot \log p \log A_{ip}$					
$\varphi = 3$ I' = A _i φ P 10	0.688370 = 3.9143 I' 4.86355	Τ ln (11 p) ^B iφ log I' 0.68695	able 7.1/ + 1.6278 = 0.1069 log p 1.00000	8d/ 82 33 log A ^B iφ ^{·log p} 0.10693	$i\varphi = 0.59266$ $\log A_{i\varphi} + B_{i\varphi} \cdot \log p$ $\log A_{ip}$ 0.69959 - 0.01264					
$\varphi = 3$ $I' = A_{i\varphi}$ p 10 20	0.688370 = 3.9143 I' 4.86355 5.34070	T ln (11 p) B _i φ log I' 0.68695 0.72760	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103	8d/ 82 33 log A ^B _i φ ^{·log p} 0.10693 0.13912	$i\varphi = 0.59266$ $\log A_{i\varphi} + B_{i\varphi} \log A_{ip}$ 0.69959 - 0.01264 0.73178 - 0.00418					
φ = 3 I' = A _i φ p 10 20 30	0.688370 = 3.9143 I' 4.86355 5.34070 5.61980	T ln (11 p) B _i φ log I' 0.68695 0.72760 0.74972	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103 1.47712	8d/ 82 33 log A ^B _i φ ^{·log p} 0.10693 0.13912 0.15795	$i\varphi = 0.59266$ $\log A_{i\varphi} + \log A_{ip}$ $B_{i\varphi} \cdot \log p = \log A_{ip}$ 0.69959 - 0.01264 0.73178 - 0.00418 0.75061 - 0.00089					
$\varphi = 3$ $I' = A_{i}\varphi$ P 10 20 30 50	0.688370 = 3.9143 I' 4.86355 5.34070 5.61980 5.97144	T ln (11 p) $B_{i\phi}$ log I' 0.68695 0.72760 0.74972 0.77608	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103 1.47712 1.69897	8d/ 82 33 log A ^B _i φ ^{·log p} 0.10693 0.13912 0.15795 0.18168	$i\varphi = 0.59266$ $\log A_{i\varphi} + \log A_{ip}$ $B_{i\varphi} \cdot \log p = \log A_{ip}$ $0.69959 - 0.01264$ $0.73178 - 0.00418$ $0.75061 - 0.00089$ $0.77434 + 0.00174$					
$\varphi = 3$ $I' = A_{i\varphi}$ p 10 20 30 50 100	0.688370 = 3.9143 I' 4.86355 5.34070 5.61980 5.97144 6.44859	T ln (11 p) B _i φ log I' 0.68695 0.72760 0.74972 0.77608 0.80947	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103 1.47712 1.69897 2.00000	8d/ 82 33 log A ^B _i φ ^{·log p} 0.10693 0.13912 0.15795 0.18168 0.21387	$i\varphi = 0.59266$ $\log A_{i\varphi} + \log A_{ip}$ $\log A_{ip} = \log A_{ip}$ $0.69959 - 0.01264$ $0.73178 - 0.00418$ $0.75061 - 0.00089$ $0.77434 + 0.00174$ $0.80653 + 0.00294$					
$\varphi = 3$ $I' = A_{i\varphi}$ P 10 20 30 50 100 200	0.688370 = 3.9143 I' 4.86355 5.34070 5.61980 5.97144 6.44859 6.92573	T ln (11 p) B _i φ log I' 0.68695 0.72760 0.74972 0.77608 0.80947 0.84046	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103	8d/ 82 33 log A ^B _{iφ} ·log p 0.10693 0.13912 0.15795 0.18168 0.21387 0.24606	$i\varphi = 0.59266$ $\log A_{i\varphi} + \log A_{ip}$ $B_{i\varphi} \cdot \log p = \log A_{ip}$ 0.69959 - 0.01264 0.73178 - 0.00418 0.75061 - 0.00089 0.77434 + 0.00174 0.80653 + 0.00294 0.83872 + 0.00174					
$\varphi = 3$ $I' = A_{i\varphi}$ P 10 20 30 50 100 200 300	0.688370 = 3.9143 I' 4.86355 5.34070 5.61980 5.97144 6.44859 6.92573 7.20484	T ln (11 p) $B_{i\phi}$ log I' 0.68695 0.72760 0.74972 0.77608 0.80947 0.84046 0.85762	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712	8d/ 82 33 log A ^B _i φ ^{·log p} 0.10693 0.13912 0.15795 0.18168 0.21387 0.24606 0.26489	$i\varphi = 0.59266$ $log A_{i\varphi} + log A_{ip}$ $B_{i\varphi} \cdot log p = log A_{ip}$ $0.69959 - 0.01264$ $0.73178 - 0.00418$ $0.75061 - 0.00089$ $0.77434 + 0.00174$ $0.80653 + 0.00294$ $0.83872 + 0.00174$ $0.85755 + 0.00007$					
$\varphi = 3$ $I' = A_{i\varphi}$ p 10 20 30 50 100 200 300 500	0.688370 = 3.9143 I' 4.86355 5.34070 5.61980 5.97144 6.44859 6.92573 7.20484 7.55648	T ln (11 p) B _i φ log I' 0.68695 0.72760 0.74972 0.77608 0.80947 0.84046 0.85762 0.87832	able 7.1/ + 1.6278 = 0.1069 log p 1.00000 1.30103 1.47712 1.69897 2.00000 2.30103 2.47712 2.69897	8d/ 82 33 log A ^B _i φ ·log p 0.10693 0.13912 0.15795 0.18168 0.21387 0.24606 0.26489 0.28861	$i\varphi = 0.59266$ $\log A_{i\varphi} + \log A_{ip}$ $B_{i\varphi} \cdot \log p = \log A_{ip}$ 0.69959 - 0.01264 0.73178 - 0.00418 0.75061 - 0.00089 0.77434 + 0.00174 0.80653 + 0.00294 0.83872 + 0.00174 0.85755 + 0.00007 0.88127 - 0.00295					

SEC. 7.2.

7.2. NUMERICAL CALCULATIONS OF FORMULAE FOR A $_{\rm p}$ AS FUNCTION OF $\rm p.$

These calculations are compiled in Tables

7.2./9/10/11/12/ for

Aqp , A_{fp} , A_{bp} , A_{ip} , respectively.

The values of log A_p are found in the last columns of the tables of section 7.1. It is seen that the values of e.g. A_{qp} are practically equal for the different values of $\boldsymbol{\varphi}$, and the same applies to the other A_p 's. The values in the tables of section 7.2. are taken as the mean values and denoted by $(\log A_p)$

The corresponding values of e_p from formula 6.3.(70) are next found, and the values e_{20} , e_{100} and e_{500} are introduced in formulae 6.3.(71 through 75), which give the values of a, b and c indicated in the following tables. These values introduced in formulae 6.3.(76a)b)c) thus give the definite formulae for the A_p 's.

The errors of these formulae are found by calculation of the values of e_p^0 according to 6.3.(70a)

6.3.(70a)
$$e_p^o = c + a \log^2(\frac{p}{b}).$$

The differences $e_p - e_p^0 = \Delta e_p$ are proportional to the errors; the absolute values of the errors are found by multiplication by Δe_p of the errors for p = 100 stated in the tables of section 7.1.

Aqp	•	Table $7.2/9$	9/		
			.0 /		
p	(log Aap)	log Agp	ep by	100	
	• 5 4/4/	log Aq 100	6.3(70a)	- \$p	
10	- 0.04202	- 4.7320	-4.0575	-0.6745	
20	-0.01380	-1.5541	-1.5541	0.0000	
30	-0.00314	-0.3536	-0.4815	+0.1279	
50	+0.00521	+0.5867	+0.4585	+0.1272	
100	+0.00888	+1.0000	+1.0000	0.0000	
200	+0.00521	+0.5867	+0.6967	-0.1100	18.
300	+0.00015	+0.0169	+0.1225	-0.1056	
500	- 0.00889	-1.0011	-1.0011	0.0000	
1000	-0.02543	- 2.8637	- 3.2659	+0.4022	
B	y 6.3 (71 thr	rough 75):			
a	=-4.6619 , b	= 110.262 ,	c = 1.0084	, log b =	2.04243
B	y 6.3 (76a)b))c): for ~	- 17.5≦p₹	~ 622	
A	qp = 1.020619	9 - 0.095322	$2 \cdot \log^2 \left(\frac{110}{110}\right)$	$\frac{p}{0.262}$) $\pm 0.$	265 %
	and the second se			and the second se	and the second
A _{fp} .		Table 7.2	/10/		
A _{fp} .		Table 7.2, $e_p = 1$	/10/ es by		1
A _{fp} .	(log Afp)	Table 7.2, $e_p =$ $\frac{\log A_{fp}}{\log A_{f100}}$	/10/ e% by 6.3(70a)	⊿ e _p	1
A _{fp} .	(log A _{fp}) _n - 0.01321	Table 7.2, $e_p = \frac{\log A_{fp}}{\log A_{f100}}$ -4.3170	/10/ e% by 6.3(70a) - 3.8322	⊿ ер - 0. 4848	
A _{fp} .	(log A _{fp}), - 0.01321 - 0.00436	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ - 4.3170 - 1.4248	/10/ <i>e</i> % <i>by</i> <i>6.3(70a)</i> - 3.8322 - 1.4247	∠ 1 <i>e</i> _p - 0. 4848 - 0. 0001	
A _{fp} .	(log A _{fp}), - 0.01321 - 0.00436 - 0.00093	Table 7.2, $e_p =$ $log A_{fp}$ $log A_{f100}$ - 4.3170 -1.4248 - 0.3039	/10/ e, by 6.3(70a) - 3.8322 - 1.4247 - 0.3968	 ∠ ep - 0. 4848 - 0. 0001 + 0. 0929 	
A _{fp} .	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182	Table 7.2, $e_p =$ $log A_{fp}$ $log A_{f100}$ -4.3170 -1.4248 -0.3039 +0.5948	/10/ <i>e</i> % <i>by</i> <i>6.3(70a)</i> - 3.8322 - 1.4247 - 0.3968 + 0.4980	 <i>L</i> ep - 0. 4848 0. 0001 + 0. 0929 + 0. 0965 	
A _{fp} .	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00306	Table 7.2, $e_p =$ $log A_{fp}$ $log A_{f100}$ - 4.3170 -1.4248 - 0.3039 + 0.5948 +1.0000	/10/ e, by 6.3(70a) - 3.8322 - 1.4247 - 0.3968 + 0.4980 + 1.0002	 ∠ ep - 0. 4848 - 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 	
A _{fp} .	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00306 + 0.00182	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ - 4.3170 - 1.4248 - 0.3039 + 0.5948 + 1.0000 + 0.5948	/10/ e, by 6.3(70a) - 3.8322 - 1.4247 - 0.3968 + 0.4980 + 1.0002 + 0.6813	 <i>−</i> 0. 4848 <i>−</i> 0. 0001 <i>+</i> 0. 0929 <i>+</i> 0. 0965 <i>+</i> 0. 0002 <i>−</i> 0. 0865 	
A _{fp} . <i>p</i> 10 20 30 50 100 200 300	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.00182	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ - 4.3170 - 1.4248 - 0.3039 + 0.5948 + 1.0000 + 0.5948 + 0.02941	/10/ e_{β} by 6.3(70a) -3.8322 -1.4247 -0.3968 +0.4980 +1.0002 +0.6813 +0.1143	 <i>A</i> e_p - 0. 4848 - 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 - 0. 0865 - 0. 0849 	
A _{fp} . <i>P</i> 10 20 30 50 100 200 300 500	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.0009 - 0.00306	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ - 4.3170 - 1.4248 - 0.3039 + 0.5948 + 1.0000 + 0.5948 + 0.02941 - 1.0000	/10/ e, by 6.3(70a) - 3.8322 - 1.4247 - 0.3968 + 0.4980 + 1.0002 + 0.6813 + 0.1143 - 0.9997	 <i>−</i> 0. 4848 − 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 − 0. 0865 − 0. 0849 − 0. 0003 	
A _{fp} . <i>p</i> 10 20 30 50 100 200 300 500 1000	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.00182 - 0.00306 - 0.00389	Table 7.2, $e_p =$ $\frac{log A_{fp}}{log A_{f100}}$ - 4.3170 -1.4248 - 0.3039 + 0.5948 +1.0000 + 0.5948 + 0.02941 -1.0000 - 2.9053	/10/ e% by 6.3(70a) - 3.8322 - 1.4247 - 0.3968 + 0.4980 + 1.0002 + 0.6813 + 0.1143 - 0.9997 - 3.2243	 <i>L</i> ep - 0. 4848 - 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 - 0. 0865 - 0. 0849 - 0. 0003 + 0. 3190 	
A _{fp} . <i>p</i> 10 20 30 50 100 200 300 500 1000 By	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.0009 - 0.00306 - 0.00389 y 6.3 (71 thr	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ - 4.3170 -1.4248 - 0.3039 + 0.5948 +1.0000 + 0.5948 + 0.02941 -1.0000 - 2.9053 rough 75) :	/10/ e_{β} by 6.3(70a) -3.8322 -1.4247 -0.3968 +0.4980 +1.0002 +0.6813 +0.1143 -0.9997 -3.2243	 <i>−</i> 0. 4848 − 0. 4848 − 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 − 0. 0865 − 0. 0849 − 0. 0003 + 0. 3190 	
A _{fp} .	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.00009 - 0.00306 - 0.00389 y 6.3 (71 thr = -4.52842,	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ -4.3170 -1.4248 -0.3039 +0.5948 +1.0000 +0.5948 +0.02941 -1.0000 -2.9053 rough 75) : b = 108.035	/10/ e_{β} by 6.3(70a) -3.8322 -1.4247 -0.3968 +0.4980 +1.0002 +0.6813 +0.1143 -0.9997 -3.2243 5, c = 1.005	 <i>-</i> 0. 4848 - 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 - 0. 0865 - 0. 0849 - 0. 0003 + 0. 3190 	= 2.03356
A _{fp} .	$(log A_{fp})_{n}$ - 0.01321 - 0.00436 - 0.00093 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.00182 + 0.0009 - 0.00306 - 0.00306 - 0.00889 y 6.3 (71 thr = -4.52842, y 6.3 (76a)b)	Table 7.2, $e_p = \frac{log A_{fp}}{log A_{f100}}$ - 4.3170 -1.4248 - 0.3039 + 0.5948 +1.0000 + 0.5948 + 0.02941 -1.0000 - 2.9053 rough 75) : b = 108.035 oc) : for	/10/ e_{β} by 6.3(70a) -3.8322 -1.4247 -0.3968 +0.4980 +1.0002 +0.6813 +0.1143 -0.9997 -3.2243 5, c = 1.005 $17.4 \leq p \leq 6$	 ∠ ep - 0. 4848 - 0. 0001 + 0. 0929 + 0. 0965 + 0. 0002 - 0. 0865 - 0. 0865 - 0. 0849 - 0. 0003 + 0. 3190 	= 2.03356

A _{bp} .	Т	able 7.2/11	/	
p	(log Abp)m	$e_p = \frac{\log A_{bp}}{\log A_{b100}}$	ер by 6.3 (70a)	⊿ e _p
10	-0.00840	- 4.0508	- 3.6917	- 0.3663
20	-0.00278	-1.3430	-1.3431	+0.0001
30	-0.00056	-0.2705	-0.3432	+0.0727
50	+0.00125	+0.6039	+0.5238	+0.0801
100	+0.00207	+1.0000	+0.9998	+0.0002
200	+0.00125	+0.6039	+0.6694	- 0.0655
300	+0.00007	+0.0338	+0.1023	- 0.0685
500	-0.00208	-1.0048	-1.0050	+0.0002
1000	- 0.00604	- 2.9179	- 3.2079	+0.2900
E	By 6.3 (71 three	ough 75) :		
a	=-4.44962 , 1	b = 106.46 ,	c = +1.00	31, log b = +2.02718
E	By 6.3 (76a)b)	c): for 17	.2 ≤ p ₹ 60	5
A	bp = 1.00478	12 - 0.02120	87 · log² (₁	$\frac{p}{06.46}$) \pm 0.0382 %
the second se	the second s			
A _{ip} .	Т	able 7.2/12	/	
A _{ip} .	(log Aip) _m	Table 7.2/12 $\frac{e_{p}}{log} = \frac{log}{A_{ip}}$ $\frac{log}{log} A_{i100}$	 e° by 6.3(70a)	Δep
A _{ip} .	1 (log Aip) _m - 0.01284	Table 7.2/12 $\frac{e_p}{\log A_{ip}}$ $\frac{\log A_{i00}}{\log A_{i100}}$ -4.2943	/ e° by 6.3(70a) - 3.8208	Д ер - 0.4735
A _{ip} .	T (log Aip) - 0.01284 - 0.00424	Table 7.2/12 $e_{p} = \frac{log A_{ip}}{log A_{i100}}$ - 4.2943 - 1.4181	/ e [°] by 6.3(70a) - 3.8208 - 1.4182	Δep - 0.4735 + 0.0001
A _{ip} .	T (log Aip)m - 0.01284 - 0.00424 - 0.00089	Table 7.2/12 $e_p = \frac{log A_{ip}}{log A_{i100}}$ - 4.2943 -1.4181 - 0.2977	/ e [°] by 6.3(70a) - 3.8208 - 1.4182 - 0.3927	Δep - 0.4735 + 0.0001 + 0.0950
A _{ip} .	T (log Aip) - 0.01284 - 0.00424 - 0.00089 + 0.00179	Table 7. $2/12$ $e_p = \frac{log A_{ip}}{log A_{i100}}$ -4.2943 -1.4181 -0.2977 +0.5987	/ e [°] _p by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 +0.5001	Δep - 0.4735 + 0.0001 + 0.0950 + 0.0986
A _{ip} . <i>p</i> 10 20 30 50 100	$(log A_{ip})_{m}$ - 0.01284 - 0.00424 - 0.00089 + 0.00179 + 0.00299	Table 7. $2/12$ $e_p = \frac{log A_{ip}}{log A_{i100}}$ -4.2943 -1.4181 -0.2977 +0.5987 +1.0000	/ e° by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999	Δep - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001
A _{ip} . <i>p</i> 10 20 30 50 100 200	$(log A_{ip})_{m}$ - 0.01284 - 0.00424 - 0.00089 + 0.00179 + 0.00299 + 0.00178	Table 7. $2/12$ $e_p = \frac{log A_{ip}}{log A_{i100}}$ -4.2943 -1.4181 -0.2977 +0.5987 +1.0000 +0.5953	/ e° by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999 + 0.6801	Δe_p - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001 - 0.0848
A _{ip} . <i>p</i> 10 20 30 50 100 200 300	$(log A_{ip})_{m}$ - 0.01284 - 0.00424 - 0.00089 + 0.00179 + 0.00178 + 0.00178 + 0.0008	Table 7. $2/12$ $e_p = \frac{log A_{ip}}{log A_{i100}}$ - 4. 2943 - 1. 4181 - 0. 2977 + 0. 5987 + 1. 0000 + 0. 5953 + 0. 0268	/ e° by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999 + 0.6801 + 0.1132	Δep - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001 - 0.0848 - 0.0864
A _{ip} . <i>p</i> 10 20 30 50 100 200 300 500	$(log A_{ip})_{m}$ -0.01284 -0.00424 -0.00089 $+0.00179$ $+0.00299$ $+0.00178$ $+0.00008$ -0.00299	Table 7. $2/12$ $e_p = 100$ $log A_{ip}$ $log A_{i100}$ -4.2943 -1.4181 -0.2977 +0.5987 +1.0000 +0.5953 +0.0268 -1.0000	/ e [°] _p by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999 + 0.6801 + 0.1132 - 1.0002	Δe_p - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001 - 0.0848 - 0.0864 + 0.0002
A _{ip} . <i>p</i> 10 20 30 50 100 200 300 500 1000	$(log A_{ip})_{m}$ $- 0.01284$ $- 0.00424$ $- 0.00089$ $+ 0.00179$ $+ 0.00178$ $+ 0.00178$ $+ 0.00178$ $- 0.00299$ $- 0.00299$ $- 0.00879$	Table 7. $2/12$ $e_p = \frac{log A_{ip}}{log A_{i100}}$ -4.2943 -1.4181 -0.2977 +0.5987 +1.0000 +0.5953 +0.0268 -1.0000 -2.9398	/ e° by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999 + 0.6801 + 0.1132 - 1.0002 - 3.2229	Δe_p - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001 - 0.0848 - 0.0864 + 0.0002 + 0.2829
A _{ip} .	$(log A_{ip})_{m}$ -0.01284 -0.00424 -0.00089 $+0.00179$ $+0.00178$ $+0.00178$ $+0.00178$ $+0.00088$ -0.00299 -0.00879 By 6.3 (71 three)	Table 7. $2/12$ $e_p = 100$ $log A_{ip}$ $log A_{i00}$ -4.2943 -1.4181 -0.2977 +0.5987 +1.0000 +0.5953 +0.0268 -1.0000 -2.9398 ough 75) :	e [°] by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999 + 0.6801 + 0.1132 - 1.0002 - 3.2229	Δe_p - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001 - 0.0848 - 0.0864 + 0.0002 + 0.2829
A _{ip} . <i>p</i> 10 20 30 50 100 200 300 500 1000 E a	$(log A_{ip})_{m}$ $- 0.01284$ $- 0.00424$ $- 0.00089$ $+ 0.00179$ $+ 0.00179$ $+ 0.00178$ $+ 0.00178$ $+ 0.00008$ $- 0.00299$ $- 0.00879$ By 6.3 (71 throws) $- 4.5216$	Table 7. $2/12$ $e_p = 100$ Aip log Aip log Aip log Ainoo -4.2943 -1.4181 -0.2977 +0.5987 +1.0000 +0.5953 +0.0268 -1.0000 -2.9398 ough 75) : b = 107.914	<pre>/ e[°]_p by 6.3(70a) - 3.8208 - 1.4182 - 0.3927 + 0.5001 + 0.9999 + 0.6801 + 0.1132 - 1.0002 - 3.2229 , c = +1.0</pre>	Δe_{p} - 0.4735 + 0.0001 + 0.0950 + 0.0986 + 0.0001 - 0.0848 - 0.0864 + 0.0002 + 0.2829
A _{ip} . <i>p</i> 10 20 30 50 100 200 300 500 1000 E a E	$(log A_{ip})_{m}$ -0.01284 -0.00424 -0.00089 $+0.00179$ $+0.00178$ $+0.00178$ $+0.00178$ $+0.00088$ -0.00299 -0.00879 By 6.3 (71 through the second sec	Table 7. $2/12$ $e_{p} = \frac{log A_{ip}}{log A_{i00}}$ -4.2943 -1.4181 -0.2977 +0.5987 +1.0000 +0.5953 +0.0268 -1.0000 -2.9398 ough 75) : b = 107.914 c) : for 1	$e_{p}^{\circ} by$ 6.3(70a) -3.8208 -1.4182 -0.3927 +0.5001 +0.9999 +0.6801 +0.1132 -1.0002 -3.2229 , c = +1.00 7.3 $\leq p = 563$	Δe_p -0.4735 +0.0001 +0.0950 +0.0986 +0.0001 -0.0848 -0.0864 +0.0002 +0.2829 048 , log b = +2.03307 36

8. GENERAL REVIEW OF FORMULAE FOR Q', F', v_{m} ', R', B', I' AND v_{\star} ' AND OF FORMULAE FOR THE ABSCISSAE **S** AS FUNCTIONS OF ϕ FOR FIXED VALUES OF THE ORDINATES η .

8.1. THE DEFINITIVE FORMULAE FOR THE DIMENSIONLESS QUANTITIES Q', F', v_m', R', B', I' AND v'.

These are given in the following tables:

Q'	in	Table	8.1./13/,	Formulae	(89)	and (89a)b)c)d)e)
F'	-	-	8.1./14/,	-	(90)	- (90a)b)c)d)e)
^v m'	-	-	8.1/15/,	-	(91)	- (91a)b)c)d)e)
R'	-	-	8.1./16/,	-	(92)	- (92a)b)c)d)e)
$B' = \beta + \beta_0$	-	-	8.1./17/,	-	(93)	- (93a)b)c)d)e)
I'	-	-	8.1./18/,	-	(94)) - (94a)b)c)d)e)
v _* '	-		8.1./19/,	-	(95)	- (95a)b)c)d)e)

The coefficients $A_{q\phi}$ etc. are in general functions of ϕ ; they are given as functions of m = cot ϕ ; in some cases the variation with ϕ is so slight that a mean value near the correct value for ϕ = 20° is used.

The exponents $B\varphi$ in most cases vary so little with φ that a mean value can be used. The factors A_{qp} etc. are generally functions of $p = \frac{y_{max}}{k}$ as indicated. For R', B' and v_{\sharp} ' these factors can be put equal to unity, because the simple power formulae have already very small errors.

In the tables are given the directly calculated values for A_{σ} and B_{ϕ} for $\phi = 15^{\circ}$, 20° , 25° and 30° .

The tables also state the ranges of validity of the simple power formulae and of the complete formulae, including the factors A_p with the corresponding maximum errors as well.

Table 8.1/13/

(89)	$Q' = \frac{Q}{\sqrt{1-1}}$	φ	A q q	^B qφ
	$2.5 \frac{\max}{9} \cdot y_{\max}^2$	15 ⁰	21.8184	0.26247
	Bag	20 ⁰	17.094	0.26235
	= Aq q · p · · Aqp	25 ⁰	14.143	0.26230
	Q for \underline{half} of total section.	30 ⁰	12.099	0.26225
				U.
(89c)	$A_{q\varphi} \approx 3.1815 \cdot A_{f\varphi}$			
(89d)	$B_{q\varphi}$ mean \approx 0.26234			
(89e)	$A_{qp} = 1.020619 - 0.095322.1$	og² (_T	p 10.262)	
	For $A_{qp} = 1$ and $25 \leq p \leq 5$	00:		
(89a)	$Q' = A_{q\varphi} \cdot p^{B_{q\varphi}} \pm 2.07\%$			
	Complete formula and 17.5 ≦	pʀ	522 :	
(89b)	$Q' = A_{q\varphi} \cdot p^{B_{q\varphi}} \cdot A_{qp} \stackrel{\pm}{=} 0$. 265 %	То	

$(90) F' = \frac{F}{y_{max^2}}$	φ	A _f φ	Β _f φ
B	15 ⁰	6.8585	0.10921
$= \mathbf{A}_{\mathbf{f}\boldsymbol{\varphi}} \cdot \mathbf{p}^{-\mathbf{f}\boldsymbol{\varphi}} \cdot \mathbf{A}_{\mathbf{f}\mathbf{p}}$	20 ⁰	5.3728	0.10911
- T - P	25 ⁰	4.4456	0.10906
F for half of total section.	30 ⁰	3.8034	0.10899
(90c) $A_{f\phi} = 1.03153 + 1.636$	88•m	- 0.0218	$7 \cdot m^2 + 0.000437 \cdot m^3$
(90d) B_{fq} mean $=$ 0.1091			A.
(90e) $A_{fp} = 1.007083 - 0.03$	81907	$\log^2 \left(\frac{1}{1}\right)$	p 08.035 ⁾
For $A_{fp} = 1$ and $25 \leq 1$	p ₹	500:	
(90a) F' = $A_{f\phi} \cdot p^{B_{f\phi} + 0.7}$	1 %		2
Complete formula and 1	17.4≦	p₹ 616.	
(90b) $\mathbf{F}' = \mathbf{A}_{\mathbf{f}\boldsymbol{\varphi}} \cdot \mathbf{p}^{\mathbf{B}_{\mathbf{f}\boldsymbol{\varphi}}} \mathbf{A}_{\mathbf{f}\mathbf{p}} \stackrel{\pm}{=}$	0.068	3 %	

Table 8.1/14/

Table 8.1/15/	
---------------	--

(91) $v'_{m} = \frac{v_{m}}{\sqrt{\tau_{max}}}$	φ	Α vφ	B _v φ
2.5. <u>9</u>	15 ⁰	3.1815	0.15324
$= A \cdot p^{V \varphi} A$	20 ⁰	3.1816	0.15324
v q ^p vp	25 ⁰	3.1813	0.15324
	30 ⁰	3.1811	0.15326
(91c) $A_{v\phi}$ mean \approx 3.1815			
(91d) B _v mean = 0.15324			
(91e) $A_{vp} = 1.0135645 - 0.06$	34373•	log ² (<u>111</u>	<u>p</u> . 428)
For $A_{vp} = 1$ and 25	≤ p <	500:	
(91a) $v_m = A_{v\varphi}$. $p^{b}v\varphi = 1.3$	7 %		
Complete formula and 1	7.5≦ p	₹ 620	
(91b) $v'_m = A_{v\varphi} \cdot p^{B_{v\varphi}} \cdot A_{v}$	p ± 0	.195 %	

$(92) R' = \frac{R}{y_{max}}$	φ	A rq	Β _r φ
B	15 ⁰	0.73272	0.02095
= $A_{r\varphi}$. $p^{r\varphi}$. A_{rp}	20 ⁰	0.73172	0.02103
- T F	25 ⁰	0.72968	0.02118
	30 ⁰	0.72638	0.02146
(92d) $B_{r\varphi}$ mean \approx 0.0210 - 15° \approx (92e) $A_{rp} \approx$ 1 as simple power-for	φ ξ	20 ⁰ sufficient	
For $A_{rp} = 1$ and $25 = p < p$	500		
(92a, b) R' = $A_{r\varphi}$. $p^{B_{r\varphi}} + 0.24$	%		

Table 8.1/16/

(93) B' = $\frac{B}{y_{max}}$ = (β + β_0)	φ	Α _b φ	Β _b φ
D	15 ⁰	9.2804	0.08880
= A_{ha} . $p^{b\phi}$. A_{ha}	20 ⁰	7.2375	0.08901
b& pb	25 ⁰	5.9660	0.08919
B for <u>half</u> of total section.	30 ⁰	5.0864	0.08936
			· · · · · · · · · · · · · · · · · · ·
(93c) $A_{b\phi} = 1.29443 + 2.23919 \cdot m$	- 0.	03069•m ²	+ 0.00109.m ³
(93d) B_{bq} mean = 0.0890			
$(93e) A_{bp} = 1.0047812 - 0.021208$	7·log ²	$(\frac{p}{106.46})$	
For $A_{bp} = 1$ and $25 \leq p \leq$	500		
(93a) B' = $A_{b\phi}$. $p^{B_{b\phi}} \pm 0.48\%$			
Complete formula and 17.2	≤p₹	605	
(93b) B' = $A_{b\phi}$. $p^{B_{b\phi}}$. $A_{bp} = 0$).038 ⁽	%	4

Table 8.1/17/

$(94) I' = \frac{g \cdot F \cdot I}{\tau_{max}}$	φ	A _i φ	^В і ф
ymax()	15 ⁰	6.9199	0.108561
B _i ø	20 ⁰	5.4502	0.108096
= $A_{i\varphi}$, p · · · A_{ip}	25 ⁰	4.5399	0.107547
	30 ⁰	3.9143	0.106933
(94c) $A_{i\phi} = 1.27988 + 1.51750 \cdot m$	+ 0.	00519•m	² - 0.00184•m ³
(94d) $B_{i\phi}$ mean = 0.10833 for 15 ^o	≨q₹	20 ⁰	
(94e) $A_{ip} = 1.0069177 - 0.031130$	log ² (p 107.914)	
For $A_{ip} = 1$ and $25 \stackrel{\ell}{=} p \stackrel{\tau}{=} 50$	00		
(94a) I' = $A_{i\varphi}$. $p^{B_{i\varphi}} = 0.70\%$			*
Complete formula and 17.3 🗧	p ₹	636	
(94b) I' = $A_{i\varphi} \cdot p^{B_{i\varphi}} \cdot A_{ip} = 0.06$	68 %.	×	

Table 8.1/18/

Tabl	le	8.	1	/19/	

$(95) v' = \sqrt{\frac{\tau_{\max}}{(-\frac{\rho}{2})}}$			D
(00) * g.R.I	φ	^A ¥φ	в _ж ф
D.	15 ⁰	1.1630	- 0.01015
= A $p^{B} \Phi A$	20 ⁰	1.1604	- 0.00997
×φ · · · · · · · · · · · · · · · · · · ·	25 ⁰	1.1584	- 0.00983
	30 ⁰	1.1566	- 0.00970
(95c) $A_{\mathbf{x}\boldsymbol{\varphi}}$ mean $\stackrel{\sim}{=}$ 1.160 for	15 ⁰	φ Ž 25	o
(95d) $\operatorname{B}_{\ast \varphi}$ mean \approx 0.0100 for	15 ⁰	Φ₹ 25	0
(95e) $A_{\mathbf{x}\mathbf{p}} \stackrel{\sim}{=} 1$ as simple por	wer-fo	ormula su	fficient.
For $A_{\pm p} = 1$ and $25 \leq 1$	o ₹ 50	0	
(95a)b) $v'_{\mathbf{x}} = A_{\mathbf{x}\boldsymbol{\varphi}} \cdot p^{\mathbf{x}\boldsymbol{\varphi}} +$	0.11	%	8

8.2. FORMULAE FOR THE ABSCISSAE \leq AS FUNCTIONS OF $m = \cot \phi$.

These formulae are found by the method indicated in Sec. 6.5. and are based on the values of \S , which are found for fixed values of η and for the four different values of ϕ as listed in Tables 3.3./2a/b/c/d/.

(96) The numerical coefficients a, b, c and d in the formulae: (96) $\mathbf{S} = \mathbf{a} + \mathbf{b} \cdot \mathbf{m} + \mathbf{c} \cdot \mathbf{m}^2 + \mathbf{d} \cdot \mathbf{m}^3$,

(96a) where $m = \cot \varphi$. are given in Table 8.2./20/.

A separate formula for $\boldsymbol{\xi}$ is consequently available for each of the fixed values of $\boldsymbol{\eta}$.

For later use we have computed by means of these formulae the numerical values of g for $\varphi = 14^{\circ}$, 16° , 17° , 18° and 19° . These are, together with the previously found values for $\varphi = 15^{\circ}$, 20° , 25° and 30° (Tables 3.3.(2a)b)c)d)), compiled in the Table 8.2./21/.

Table 8.2/20/

7	hur	1.	m٠	m²•	m ³ •
0	\$ ₀ =	0	0	0	0
0.1	\$0.1 =	+0.00723	+0.10041	+0.00049	-0.000065
0.2	\$0.2 =	+0.02898	+0.20256	+0.00179	-0.00024
0.3	\$0.3 =	+0.06579	+0.30833	+0.00365	-0.00051
0.4	\$0.4 =	+0.11622	+0.42315	+0.00455	-0.00070
0.5	\$0.5 =	+0.18331	+0.54901	+0.00447	-0.00082
0.6	\$0.6 =	+0.27246	+0.68819	+0.00360	-0.00090
0.7	\$0.7 =	+0.38875	+0.84935	+0.00049	-0.00078
0.75	\$0.75 ⁼	+0.46333	+0.93745	-0.00083	-0.00078
0.8	\$0.8 =	+0.54583	+1.04230	-0.00555	- 0.00039
0.85	\$0.85 ⁼	+0.64936	+1.15793	-0.01000	-0.00007
0.9	\$0.9 =	+0.78211	+1.29522	-0.01590	+0.00039
0.95	\$ 0.95 ⁼	+0.97200	+1.47634	0.02432	+0.00107
0.98	\$ 0.98 ⁼	+1.15392	+1.63955	-0.03239	+0.00175
1.0	\$1.0 =	+1.46574	+1.90032	-0.04441	+0.00274

Table 8.2/21/

			Nu		
~	φ = 14 ⁰	$\varphi = 15^{\circ}$	$\varphi = 16^{\circ}$	$\varphi = 17^{\circ}$	$\varphi = 18^{\circ}$
0	0	0	0	0	0
0.1	0.41364	0.38543	0.36060	0.33863	0.31901
0.2	0.85471	0.79740	0.74698	0.70227	0.66235
0.3	1.32825	1.24081	1.16382	1.09549	1.03443
0.4	1.84141	1.72240	1.61757	1.52446	1.44123
0.5	2.40426	2.25187	2.11750	1.99816	1.89142
0.6	3.03248	2.84419	2.67807	2.53045	2.39835
0.7	3.75287	3.52483	3.32366	3.14480	2.98468
0.75	4.15957	3.90979	3.68943	3.49342	3.31790
0.8	4.61183	4.33820	4.09672	3.88201	3.68976
0.85	5.12818	4.82792	4.56295	4.32735	4.11634
0.9	5.74634	5.41474	5.12223	4.86212	4.62914
0.95	6.57108	6.19867	5.87020	5.57814	5.31653
0.98	7.32166	6.91261	6.55199	6.23136	5.94415
1.0	8.54989	8.08172	7.66902	7.30216	6.97354

To be continued

Table 8.2/21/

(continued)

2			SAN AN	
"	$\varphi = 19^{\circ}$	$\varphi = 20^{\circ}$	$\varphi = 25^{\circ}$	$\varphi = 30^{\circ}$
0	0	0	0	0
0.1	0.30138	0.28545	0.22415	0.18226
0.2	0.62648	0.59404	0.46923	0.38394
0.3	0.97955	0.92989	0.73877	0.60813
0.4	1.36637	1.29864	1.03770	0.85917
0.5	1.79535	1.70843	1.37312	1.14338
0.6	2.27942	2.17176	1.75597	1.47056
0.7	2.84046	2.70984	2.20476	1.85730
0.75	3.15977	3.01649	2.46225	2.08050
0.8	3.51653	3.35955	2.75167	2.33244
0.85	3.92618	3.75381	3.08587	2.62459
0.9	4.41914	4.22878	3.49046	2.97984
0.95	5.08068	4.86682	4.03673	3.46169
0.98	5.68520	5.45034	4.53826	3.90564
1.0	6.67722	6.40843	5.36379	4.63820

SEC. 9.

9. DETERMINATION OF ISOVELS IN THE EQUILIBRIUM PROFILE.

The principal assumptions made in the foregoing sections, which made it possible to determine a definite equilibrium profile for fixed values of g, τ_{max} , ϕ , k and Q, are expressed by the formulae 1.(1), 2.1(3), 2.2(9), 4.2.(19), 4.4.(45), giving the distribution of the shearing stresses, the relation between hydraulic lifting force and shearing stress, the logarithmic law of velocity distribution and the principle of minimum cross section.

On the same assumptions it is possible to calculate the accurate form of the isovels and thus, by comparing these with the results from actual measurements, to get a certain check on the correctness of the assumptions.

We therefore indicate the method of determination of isovels having velocities expressed as multiples of the mean velocity of the total cross section.

The velocity at a point P of the cross section is denoted by $v_{z,\xi}$. Here the subscripts indicate that P is situated at the distance z from the bottom in a normal to this with the length $g \cdot y_{max}$ between the bottom and the water surface. By 4, 2, (18)

and 4.2.(19) we find this velocity to be

(97)
$$v_{z,g} = 2.5 \sqrt{\frac{\pi max}{g}} \cdot \sqrt{g} \cdot \left[3.392 + \ln\left(\frac{z}{k}\right)\right]$$

Substituting

- $\frac{v_{z, s}}{v_{m}} = r \qquad \text{and}$
- (99) $\frac{z}{y_{max}} = z'$ we get, with $\frac{y_{max}}{k} = p$ as usual:

(100)
$$r = \frac{2.5}{v_m} \sqrt{\frac{\tau \max}{g}} \sqrt{g} \cdot \ln \left[29.725 \text{ p} \cdot z' \right]$$

Further we have from Table 8.1./15/

8.1. (91b)c)d)
$$\frac{v_{\rm m}}{2.5\sqrt{\frac{\tau_{\rm max}}{9}}} = 3.1815 \cdot p^{0.15324} \cdot A_{\rm vp}$$

and 8.1.(91e) $A_{vp} = 1.013565 - 0.063437 \log^2(\frac{p}{111,428})$ whence (101) $r = \frac{\sqrt{2} \cdot \ln[29.725 p \cdot z']}{3.1815 \cdot p^{0.15324} \cdot A_{vp}}$

This formula gives the velocity at the point P measured with the mean velocity v_m as unity as function of the dimensionless quantities ζ , total length of the normal, z', distance from the bottom, and $p = \frac{y_{max}}{k}$.

If we choose the normals \mathcal{G}_m used in the numerical integration, these will vary with $\boldsymbol{\varphi}$; but if the normals are chosen as fixed multiples of y_{\max} and introduced in a drawing of the equilibrium profile in question, the relative velocities will depend only on p, i.e. the relative roughness of the bottom.

(101a)
$$z' = \frac{e^{\begin{pmatrix} 3.1815 \cdot p^{0.15324} & A_{vp} \\ e^{\sqrt{5}} & 29.725 & p \end{pmatrix}}}{29.725 \cdot p}$$

For a fixed value of p a complete set of isovels, e.g. with relative velocities

r = 1.2, 1.1, 1.0, 0.9, can be drawn by choosing suitable values of \mathcal{G} .

As an example the isovels are worked out for an equilibrium profile with ϕ = 30^{0} and p = $\frac{y_{max}}{k}$ = 50. We get

29.725 • p = 1486.25 and from 8.1.(91e) $A_{vp} = 1.00588$

 $3.1815 \cdot p^{0.15324} \cdot A_{\mathbf{v}p} = 5.8281$

(101aa)
$$z' = \frac{\left(\frac{5.8281}{\sqrt{5}} \cdot r\right)}{1486.25}$$

For the values \mathcal{G} we have chosen the values \mathcal{G}_m , for which $\sqrt{\mathcal{G}_m}$ can be found in Table 4.6./3d/.

The results are shown in Fig. 7.

It will be seen that the form of the isovels compares fairly well with the results of actual measurements, and it can consequently be concluded that the assumption made concerning the distribution of shearing stresses must be at least approximately correct.

10. STUDY OF MODELTESTS CARRIED OUT IN VIENNA, 1916. COMPARISON WITH THEORY.

10.1. DESCRIPTION OF MODEL TESTS AND RESULTS.

These model tests are briefly mentioned in $\begin{bmatrix} 2 \end{bmatrix}$; the complete report is found in $\begin{bmatrix} 3 \end{bmatrix}$.

The sand used had a median grain diameter of about 1.4 mm and $\frac{d_{60\%}}{d_{10\%}} \approx 1.8$; it was a rather sharp quartz sand with 38% of voids, measured in loose filling, and with a specific weight of 1.64 kg/1.

Three different profiles were shaped by three different constant discharges, and when the profile had become stationary, its size and shape was carefully measured by a photogrammetric method. The limiting tractive force for the sand, τ_{max} , was found by separate tests on a nearly horizontal bottom and turned out to be 0.075 kg/m².

For each equilibrium profile the discharge and the slope of the water surface (at uniform movement) were further measured.

The observed results are given in the following Tables 10.1 / 22/and 10.1 / 23/.

Table 10.1 /22

Dimensions, Slope and Discharge.

Test No	Width of water surface 2 B (cm)	Slope I ‱	Area of cross section 2 F (cm ²)	Maximum depth ^y max (cm)	Discharge 2 Q (1/sec)
1	100	1.35	446.2	5.6	13.8
2	198	0.79	1444.0	9.0	53.5
3	280	0.65	2475.0	10.5	87.0

Table 10.1./23/

co-ordinates x and y. (2	see rig	Z. 3)
--------------------------	---------	-------

Test No	Depths y		A	bscis (c	sae x m)						
	(cm)	2.5	5	7.5	10	15	20	25	30	40	50
1	У	1.1	2.05	2.8	3.45	4.3	4.8	5.1	5.3	5.5	5.6
2	У	1.2	2.3	3.2	4.0	5.2	6.1	6.7	7.2	7.8	8.2
3	У	1.6	2.8	3.8	4.8	6.2	7.2	7.9	8.3	8.9	9.2
Test	Depths		I	Absci	ssae :	x					
Test No	Depths y		I	Absci (ssae : cm)	x					
Test No	Depths y (cm)	60	70	Absci (1 80	ssae cm) 90	x 100	110	120	130	140	
Test No 1	Depths y (cm) y	60	70	Absci (1 80	ssae cm) 90	x 100	110	120	130	140	
Test No 1 2	Depths y (cm) y y	60 8.6	70 8.8	Absci 80 8.9	ssae : cm) 90 9.0	x 100 9.0	110	120	130	140	

10.2. COMPARISON OF THEORY WITH MODEL TESTS; COMMENTS.

If we compare the results of these tests with the theory developed in the present paper, we should note that the area of the cross section necessary to carry a definite discharge without erosion varies only insignificantly with the angle of friction φ . This will be seen by the formulae given in Sec. 11.

The relative width of the cross section $\frac{B}{y_{max}}$ will, however, vary considerably with φ , the value of which cannot be predicted with any degree of certainty.

We have therefore chosen to use our theory to calculate such profiles of equilibrium as can carry the same discharge as in the test in an area of the same size and with the same τ_{max} . This is done for a number of values for φ and the dimensions and the shape of the calculated profiles are compared with those of the tests. We also calculate for each value of φ the values of $p = \frac{y_{max}}{k}$ and thereby find k and further the value of the slope I, which latter quantity can be compared with the measured values. I is probably the least accurate of the measured values because uniform motion only existed over a length of about 10 m, so that a very strict agreement between calculated and measured values of I can hardly be expected.

That value of φ is chosen which in the most essential features gives a good agreement in the shape of the profile, and

it is at the same time found that in this selection the values of I agree quite well.

It also becomes possible to compare the calculated value of the roughness k at the bottom with the diameter of the sand grains, and a ratio of these quantities can be found which seems to agree quite well with statements from elsewhere.*)

10.3. DERIVATION OF FORMULAE SUITABLE FOR ANALYSIS OF MODEL TEST DATA.

As known quantities are considered

φ , γ , τ_{max} , Q and F, and we want to find

 $p = \frac{y_{max}}{k}$, y_{max} , k, B and I, whereupon the complete cross section can be drawn and compared in detail with the observed one, and the computed value of I can be compared with the measured one.

We have

(102) $v_m = \frac{Q}{F}$ as a known quantity and start from the formulae in Table 8.1./15/

(91)(91c)d)
$$\frac{v_{m}}{2.5\sqrt{\frac{\tau_{max}}{9}}} = 3.1815 \cdot p^{0.15324} \cdot A_{vp}$$
, whence

$$(103) p = \frac{1}{k} = \left[\frac{1}{2.5\sqrt{\frac{\pi max}{g}} \cdot 3.1815}} \right] \cdot \frac{1}{A_{vp}} = 1.013565 - 0.063437 \log^2 \left(\frac{p}{111,428}\right)$$

From (103) p can be found; according to 8.1.(91e) A_{vp} is a function of p, so we start with $A_{vp} = 1$ and use successive approximation. p is seen to be independent of φ .

When p is found, the other unknown quantities can be found directly:

From Table 8.1./14 we find:

(90)(90d) $\frac{F}{y_{max}^2} = A_{f\phi} \cdot p^{0.1091} \cdot A_{fp}$, whence:

*)

For tests Nos. 1, 2 and 3 are found respectively 2.91, 1.84 and 3.00.

SEC. 10.3.-10.4.

(104)
$$y_{max} = \frac{\sqrt{(\frac{F}{A_{f}\varphi})}}{p^{0.05455} \cdot \sqrt{A_{fp}}}$$

where

(90c)
$$A_{f\phi} = 1.03153 + 1.63688 \cot \phi - 0.02187 \cot^2 \phi + 0.000431 \cot^3 \phi$$

(90e)
$$A_{fp} = 1.007083 - 0.031907 \log^2 \left(\frac{p}{108.035}\right)$$
.

 \textbf{y}_{max} is seen to vary with ϕ , because $\textbf{A}_{f\phi}$ is far from being a constant.

For the hydraulic roughness k we have

$$(105) k = \frac{y_{max}}{p} .$$

From Table 8.1./17/ we find

 $\begin{array}{cccc} \hline (93)(93d) & B = A_{b\phi} \cdot p^{0.0890} \cdot A_{bp} \cdot y_{max} & , \ \text{where} \\ \hline (93c) & A_{b\phi} &= 1.29443 + 2.23919 \ \cot \phi & - 0.03069 \ \cot^2 \phi \\ & & + 0.00109 \ \cot^3 \phi \end{array}$

(93e)
$$A_{bp} = 1.0047812 - 0.0212087 \cdot \log^2(\frac{p}{106.46}).$$

From Table 8.1./18/ we find

$$\begin{array}{ll} \hline (94),(94d) & I = \left(\frac{A_{i}\phi}{F}\right) \cdot \left(\frac{\tau_{max}}{\delta}\right) \cdot y_{max} \cdot p^{0.10833} \cdot A_{ip}, \text{ where} \\ \hline (94c) & A_{i}\phi &= 1.27988 + 1.51750 \ \cot \phi &+ 0.00519 \ \cot^{2}\phi \\ &- 0.00184 \ \cot^{3}\phi \end{array}$$

(94e) $A_{ip} = 1.0069177 - 0.031130 \log^2 \left(\frac{p}{107.914}\right)$.

 NUMERICAL CALCULATION OF y_{max}, B, I, and k FOR MODEL TESTS.

The formulae developed in Sec.10.3. are used. As units we use grams and centimeters.

For all three tests is reckoned

 $\tau_{\rm max} = 0.075 \ \rm kg/m^2 = 0.0075 \ \rm gr/cm^2.$

Specific weight $\chi = 1 \text{ gr/cm}^3$.

SEC. 10.4. - 10.4.1.

Acceleration of gravity $g = 981 \text{ cm/sec}^2$. $\sqrt{\frac{\tau \max}{9}} = 2.7125 \text{ cm/sec}$, and 10.3 (103) becomes (103a) $p = \frac{y_{\max}}{k} = \left[\frac{v_{\max}}{21.575}\right]^{6.5257} \cdot \frac{1}{A_{vp}^{6.5257}}$,

which formula is valid for all three tests and independent of the choice of $\boldsymbol{\phi}$.

For the calculations are used the other formulae from 10.3 besides (103a).

$$\frac{10.4.1 \text{ Test No 1.}}{\text{Measured: } \tau = 0.0075 \text{ gr/cm}^2,} \\ Q = \frac{13.8 \text{ 1/sec}}{2} = 6900 \text{ cm}^3/\text{sec},} \\ F = \frac{446.2 \text{ cm}^2}{2} = 223.1 \text{ cm}^2,} \\ I = 1.35 \text{ o/oo} = 0.00135,} \\ y_{max} = 5.6 \text{ cm}, \\ B = \frac{100 \text{ cm}}{2} = 50.0 \text{ cm}. \\ (102, 1) \quad v_m = \frac{6900}{223.1} = 30.928 \text{ cm/sec}.} \\ \frac{v_m}{21.575} = 1.4335 \text{ and from 10.4(103a)} \\ (103a, 1) \quad p = \frac{10.45}{A_{vp}}, \\ \text{where } A_{vp} \text{ is taken from 8.1(91e)} \\ p = 13.58 \text{ gives} \\ A_{vp} = 0.96059 \text{ ; } A_{vp}^{-6.5257} = 0.7696 \\ p = \frac{10.45}{0.7696} = 13.58, \text{ final value for all } \boldsymbol{\varphi}^{\prime} \text{ s.} \\ \end{cases}$$

7

For use in 10.3(104) we find $p^{0.05455} = 13.58^{0.05455} = 1.1533$ and $A_{fp} = 1.007083 - 0.031907 \cdot \log^2 \left(\frac{13.58}{108.035}\right)$ $A_{fp} = 0.981200$; $\sqrt{A_{fp}} = 0.99056$, and 10.3(104), with $F = 223.1 \text{ cm}^2$, becomes: $y_{max} = \frac{\sqrt{\frac{223.1}{A_{f\varphi}}}}{1.1533 \cdot 0.99056}$ (104,1) $y_{\text{max}} = \frac{13.075}{\sqrt{A_{fo}}}$. This expression for y max is valid for Test No.1 and all values of φ . For use in 8.1(93) we find $p^{0.0890} = 13.58^{0.0890} = 1.2620$ $A_{bp} = 1.0047812 - 0.0212087 \log^2 \left(\frac{13.58}{106.46}\right) = 0.987819$ and 8.1(93) becomes $B = 1.24663 A_{b\varphi} \cdot y_{max} \quad (valid for all \varphi's).$ (93, 1)For use in 8.1(94) we find $A_{ip} = 0.981693$. $\frac{\tau_{\text{max}}}{r} = \frac{0.0075}{1} = 0.0075$ cm $F = 223.1 \text{ cm}^2$ and 8.1(94) becomes: $I = \frac{A_{i\phi}}{223.1} \cdot 0.0075 \cdot 1.3270 \cdot 0.981693 \cdot y_{max}$ I = 4.37934 · 10⁻⁵ · $A_{i\varphi}$ · y_{max} (valid for all φ 's). (94, 1)For the calculation of Test No 1 for different values of ϕ we now have p = 13.58 and (104, 1), (93, 1) and (94, 1). The respective values of $A_{f \phi}$, $A_{b \phi}$ and $A_{i \phi}$ are found by 8.1(90c), 8.1(93c) and 8.1(94c). The results found for $\phi = 18^{\circ}$, 19° and 20° are compiled in Table 10.4.1/24/, where the calculated and observed values of ymax, B and I can be compared, and the calculated value of k is given.

Table 10.4.1/24/

land a second se					
	P =	18 ⁰	. 19 ⁰	20 ⁰	
$y_{\max} = \frac{13.075}{\sqrt{A_{f\varphi}}} \sqrt{A_{f\varphi}}$	(cm)	2.4238 5.39	2.3689 5.52	2.3179 5.64	
y _{max} observed	(cm)	5.6			
$B = 1.24663 \cdot A_{b\phi} \cdot y_{max}$ B observed	(cm) (cm)	7,9270 53,31	7.5624 52.06 50	7.2375 50.90	
$I = 4.37934 \cdot 10^{-5} \cdot A_{i} \phi \cdot y_{max}$ I observed	10 ⁻⁵	5.9458 140.5	5.6857 137.4 135	5.4502 134.6	
$\mathbf{k} = \frac{\mathbf{y}_{\max}}{\mathbf{p}}$	(cm)	0.397	0.407	0.415	

Test No.1. p = 13.58.

10.4.2 Test No.2.

Measured: $\tau = 0.0075 \text{ gr/cm}^2$, $Q = \frac{53.6 \text{ l/sec}}{2} = 26800 \text{ cm}^3/\text{sec}$, $F = \frac{1444.0 \text{ cm}^2}{2} = 722.0 \text{ cm}^2$, I = 0.79 o/oo = 0.00079, $y_{\text{max}} = 9.0 \text{ cm}$, $B = \frac{198 \text{ cm}}{2} = 99.0 \text{ cm}$

The calculations are made similarly to those applying to Test No. 1.

We find: (102, 2) $v_m = \frac{26800}{722.0} = 37.050 \text{ cm/sec}$ $\frac{v_m}{21.575} = 1.7173$ and from 10.4(103a) (103a, 2) $p = \frac{34.08}{A_{vp}}$, whence

SEC. 10.4.2.-10.4.3.

p = 34.698
(104,2)
$$y_{max} = \frac{22.148}{\sqrt{A_{f}\phi}}$$
 for all ϕ 's.
(93,2) B = 1.3709 $A_{b}\phi$ y_{max} for all ϕ 's
(94,2) I = 1.5244 \cdot 10⁻⁵. $A_{i\phi} \cdot y_{max}$ for all ϕ 's.
The results are given in Table 10.4.2/25/

Table 10.4.2/25/

Test No. 2. $p = 34.698$								
	φ =		18 ⁰	19 °				
$y_{max} = \frac{22.148}{\sqrt{A_{f\phi}}} \sqrt{A_{f\phi}}$	(cm)	2.4833 8.92	2.4238 9.14	2.3689 9.35				
y _{max} observed	(cm)		9.0					
$ \begin{array}{r} & A_{b\phi} \\ B = 1.3709 \cdot A_{b\phi} \cdot y_{max} \\ B & observed \end{array} $	(cm) (cm)	8.3283 101.83	7.9270 99.30 99	7.5654 96.97				
$I = 1.5244 \cdot 10^{-5} \cdot A_{i\phi} \cdot y_{max}$ I observed	10 ⁻⁵ 10 ⁻⁵	6.2345 84.8	5.9458 82.8 79	5.6857 81.0				
$\mathbf{k} = \frac{\mathbf{y}_{\max}}{\mathbf{p}}$	(cm)	0.257	0.263	0.270				

10.4.3 Test No.3.

Measured:
$$\tau = 0.0075 \text{ gr/cm}^2$$
,
 $Q = \frac{87.0 \text{ l/sec}}{2} = 43500 \text{ cm}^3/\text{sec}$,
 $F = \frac{2475 \text{ cm}^2}{2} = 1237.5 \text{ cm}^2$,
 $I = 0.65 \text{ o/oo} = 0.00065$,
 $y_{\text{max}} = 10.5 \text{ cm}$,

 $B = \frac{280 \text{ cm}}{2} = 140 \text{ cm}.$

The calculations are made similarly to those applying to Test No. 1.

We find:
(102, 3)
$$v_m = \frac{43500}{1237.5} = 35.152 \text{ cm/sec}$$

 $\frac{v_m}{21.575} = 1.6293$ and from 10.4(103a)
(103a, 3) $p = \frac{24.180}{A_{vp}}$ whence
 $p = 26.10$
(104, 3) $y_{max} = \frac{29.517}{\sqrt{A_{fq}}}$ for all φ 's
(93, 3) $B = 1.3332 \cdot A_{bq} \cdot y_{max}$ for all φ 's
(94, 3) $I = 0.85874 \cdot 10^{-5} \cdot A_{iq} \cdot y_{max}$ for all φ 's.
The results are given in Table 10.4.3/26/

Table 10.4.3/26/

Test No.3. $p = 26.10$								
	φ =	14 ⁰	15 ⁰	16 ⁰				
$y_{\max} = \frac{29.517}{\sqrt{A_{f\varphi}}} \sqrt{\frac{A_{f\varphi}}{A_{f\varphi}}}$	(cm)	2.6969 10.94	2.6189 11.27	2.5481 11.58				
y _{max} observed	(cm)	10.5						
$B = 1.3332 \cdot A_{b\varphi} \cdot y_{max}$	(cm)	9.8520 143.76	9.2804 139.45	8.7764 135.04				
B observed	(cm)	140						
	10^{-5} 10^{-5}	7.3310 68.9	6.9199 66.9 65	6.5571 65.2				
$k = \frac{y_{max}}{p}$	(cm)	0.420	0.431	0.444				

10.5. ADJUSTMENT OF THEORETICAL EQUILIBRIUM PROFILES TO THOSE OF MODEL TESTS.

From Tables 10.4.1/24/, 10.4.2/25/ and 10.4.3/26/ we already get a rough idea of the value of φ that will give the best adjustment of the theoretical equilibrium profiles to the observed ones.

To compare the profiles more closely the theoretical profiles are drawn according to the co-ordinates given in Table 8.2/21/.

The observed profiles, the co-ordinates of which are given in Table 10.1/23, are then reduced to the same scale as the theoretical ones, and superimposed correctly upon the theoretical profiles, i.e. with coinciding axes and water surfaces.

This has been done for three different values of φ for each tested profile.

That value of ϕ is chosen which in general gives the best conformity between calculated and observed profile for each test.

The following values of ϕ were chosen:

Test 1: $\varphi = 19^{\circ}$ - 2: $\varphi = 17^{\circ}$ - 3: $\varphi = 14^{\circ}$.

The results are shown in Figs. 8, 9 and 10.

It is seen from the Tables /24/, /25/ and /26/ that the agreement of I corresponding to this choice is quite good considering the uncertainty of these observations, as mentioned in SEC.10.2.

As seen in the figures the agreement is considerably better for Tests 1 and 2 than for Test 3.

If we study the data for Test 3 we find, however, that its mean velocity v_m is smaller than v_m for Test 2 although y_{max} is ~ 17% greater in the former case. This is in disagreement with the well-known fact that for equal tractive force a greater mean velocity is needed to move the sand grains when the depth is greater. It therefore seems as if some uncertainty must exist in some of the observed data.

It does appear from all three tests that the angle of internal friction φ , which must be introduced in the theory put forward to get a tolerably good agreement, is considerably smaller than would generally be expected.

If we remember, however, the fact that the sand grains in a state of incipient motion hardly exert any normal pressure on the underlying ones and that the angle φ is known to decrease with decreasing density of the sand, it is hardly surprising that φ is found to be small.

In Figs. 8, 9 and 10 the slope of the banks in the model tests is seen everywhere to be greater than for the theoretical profiles, which fact might seem to contradict the reasoning above.

It does seem possible, however, that the capillary tension in the sand above the water surface may be able to give the banks a certain cohesion causing them to be locally steeper than in the case of a true cohesionless material.

A similar effect in a full-size channel or natural watercourse would of course be relatively insignificant.

We, therefore, provisionally conclude that the angle of internal friction φ for a sand material like that used in the model tests should be estimated at 18 to 20[°], but it is clear that a further study of this question is highly desirable (see Sec.14).

11. FORMULAE FOR THE DIMENSIONS OF EQUILIBRIUM PROFILES FOR GIVEN VALUES OF Q, τ_{max} , g, k ANDq.

In the formula 8.1(89) for Q' in Table 8 1/13/ we insert 8.1(89c) $A_{q} \varphi = 3.1815 \cdot A_{f} \varphi$ and 8.1(89d) $B_{q} \varphi = 0.26234 = \text{constant}$ and get $\frac{Q}{2.5\sqrt{\frac{1}{2} \frac{\text{max}}{\text{g}}} \cdot \text{k}^2} = 3.1815 A_{f} \varphi \cdot \text{p}^{2.26234} \cdot A_{qp}$, 8.1(89e) $A_{qp} = 1.020619 - 0.095322 \log^2 (\frac{\text{p}}{110.262})$ and where $A_{f} \varphi$ is found from 8.1(90c), Table 8.1/14/. Solving with respect to p we get (106) p. 1.009114 \cdot [1 - 0.041283 \log^2 (\frac{\text{p}}{110.262})]

$$\frac{(106)}{\text{p} \cdot 1.009114} \cdot \left[1 - 0.041283 \log^2\left(\frac{110.262}{110.262}\right)\right] = \left[\frac{Q}{2.5\sqrt{\frac{\tau \max}{9} \cdot k^2 \cdot 3.1815 \cdot A_f \varphi}}\right]^{0.44202}$$

where
8.1(90c) $A_{f\varphi} = 1.03153 + 1.63688 \text{ m} - 0.02187 \text{ m}^2 + 0.000437 \text{ m}^3$

and

 $m = \cot \varphi$.

In the first approximation the factor next to p on the left side of (106), viz: $1.009114 \cdot \left[1 - 0.041283 \log^2 \left(\frac{p}{110.262}\right)\right]$ is neglected, whereby a nearly correct value of p is found; p is then found correctly by successive approximation. For $20 \leq p \leq 600$ the said factor will hardly deviate more than 1.25% from unity. When $p = \frac{y_{max}}{k}$ is found we get directly (107) $y_{max} = k \cdot p.$ For the half width of the water surface, B, we get from Table 8.1/17/, formula 8.1(93) with 8.1(93d) $B_{b\sigma} \cong 0.0890 = constant$ $B = k \cdot A_{b\varphi} \cdot p^{1.0890} \cdot A_{bp}$ (108)where 8.1(93c) $A_{bc} = 1.29443 + 2.23919 \text{ m} - 0.03069 \text{ m}^2 + 0.00109 \text{ m}^3$ and $m = \cot \varphi$, further $A_{\rm bp} = 1.0047812 - 0.0212087 \log^2 \left(\frac{p}{106.46}\right)$. 8.1(93e) As p is known from (106) B can be directly found from (108).From Table 8.1/14/, formula 8.1(90) we get with

 $B_{f} \varphi = 0.1091 = constant$ for the area of the half cross section

(109)
$$F = k^2 \cdot A_{f} \cdot p^{2.1091} \cdot A_{fp}$$
,
where

8.1(90e) $A_{fp} = 1.007083 \left[1 - 0.031682 \log^2 \left(\frac{p}{108.035} \right) \right].$

p is known from (106) and F can be directly found from (109).

We want, however, to find a more explicit form of the formula for F and therefore insert the expression (106) for p in (109).

We find :

From (109b) it is clearly seen that F is practically independent of $p = \frac{y_{max}}{k}$ for actual channels, where p will

probably be of the order of 100 and that it varies only slowly with ϕ .

For practical calculations it should consequently be advantageous to judge roughly the value of p from (106) and then use (109b) to find F.

From (106) it is seen that p varies approximately proportionally to $k^{-0.88404}$, and thereby it is seen from (107) that y_{max} is approximately proportional to $k^{0.11596}$, whereas (108) and (106) show that B is approximately proportional to

 $\frac{k}{(k^{0.88404})^{1.0890}} = \frac{k}{k^{0.96272}} \sim k^{0.03728}$

The dimensions proper of the equilibrium profile consequently are only slightly influenced by an uncertainty of k.

11.1. CHOICE OF THE ANGLE OF INTERNAL FRICTION ϕ AND THE EQUIVALENT SAND ROUGHNESS k.

11.1.1.φ.

As to the choice of ϕ we refer to the remarks made in Sec.10.5 .

The value of φ must probably be lower than those values used in calculations of soil mechanics, and the results of the Vienna tests make it probable that $\varphi = 18^{\circ}$ to 20° will be appropriate. Further studies of this question do, however, seem necessary, and we refer to the proposals made in the conclusion, Sec. 14.

11.1.2. k.

As to the value of k, the equivalent sand roughness, which must be introduced in the formulae above, several view points can be advanced.

11.1.2.1. Determination of k by means of the Manning coefficient M in the formula $v_m = M \cdot R^{2/3} \cdot I^{1/2}$ (metric units).

If an empirical knowledge of M for channels of a similar character is available, it is easily proved by comparing the Manning formula with the results of Nikuradse for the resistance number f, that

 $M = \frac{25.84}{\sqrt[6]{k}} \qquad (m^{1/3}/sec)$ or (110) k = $(\frac{M}{25.84})^{6}$ (k in meters).
If Kutter's n is known we have

 $M = \frac{1}{n}$.

The above-mentioned results of Nikuradse concerning the resistance number f agree perfectly with the results obtained by pure calculation on the basis of the logarithmic velocity distribution, as it is done in this paper.

> 11.1.2.2. k found from observation of velocity distribution in a normal to the bottom.

From the logarithmic velocity distribution in a definite normal to the bottom of total length z_0 it is easily found that the velocities v_p and v_q at points $p \cdot z_0$ and $q \cdot z_0$ from the bottom will have the mean value v_m equal to the mean velocity in the normal concerned, provided that

(112) $p \cdot q = \frac{1}{e^2} = 0.1352$ (e basis of natural logarithms). (113) $v_m = \frac{v_p + v_q}{2}$

The hydraulic roughness of the bottom in the neighborhood of the foot of the normal is found to be

(114)
$$\mathbf{k} = \frac{29.7 \cdot \mathbf{p} \cdot \mathbf{z}_0}{\left[\frac{\mathbf{p}}{\mathbf{q}}\right]^{\frac{\mathbf{v} \mathbf{p}}{\mathbf{v} \mathbf{p}} - \mathbf{v}_q}} \qquad (\mathbf{p} > \mathbf{q}).$$

The values p = 0.90 and q = 0.15 e.g. satisfy (112), and if the velocities are measured at distances $0.90 \cdot z_0$ and $0.15 \cdot z_0$ from the bottom we get from (113) and (114)

(114a)
$$\mathbf{k} = \frac{26.7 \cdot z_0}{\frac{v_p}{v_p - v_q}}$$
 for $p = 0.90$ and $q = 0.15$.

By taking normals distributed over the whole width of the channel we can get an idea of the variation of k transversally to the axis of the channel and obtain a mean value of k.

If empirical values of k in this way are known from channels of varying character, a sufficiently good estimate of k for planing purposes can probably be made.

11.1.2.3. k found by means of
$$\mathcal{R}$$
, degree of fullness,
or $\frac{v_m}{v_{max}}$.

Provided that the channel considered is shaped as an equilibrium profile a relation can be shown to exist between $p = \frac{y_{max}}{k}$ and \mathcal{H} as well as between p and $\frac{v_m}{v_{max}}$, the ratio of mean to maximum velocities for the total cross section.

If the cross section is measured in detail $\mathcal{H} = \frac{F}{B \cdot y_{max}}$ can easily be found, and the corresponding value of $p = \frac{y_{max}}{k}$ can be read in a diagram; we then find

 $k = \frac{y_{max}}{p}$ A possible knowledge of $\frac{v_m}{v_{max}}$ can similarly be used for

finding k.

This method is presented in detail in Sec. 12, (see Fig. 11).

11.1.2.4. Assuming the same value of k as empirically found for natural watercourses, viz: $\frac{k}{R} = \left(\frac{c_k}{R}\right)^{1.56}$, where $c_k = 0.425$ meters or 1.395 feet.

This method will be developed in detail in the following Sec.11.2, where formulae for p, y_{max} , B and F are presented that do not directly contain the roughness k.

11.2 DETERMINATION OF DIMENSIONS FOR GIVEN VALUES OF Q, τ_{max} , g AND ϕ AND FOR k ASSUMED TO CORRES-POND TO ROUGHNESS OF NATURAL WATERCOURSES.

As it will perhaps sometimes be doubtful which value must be assigned to k in the formulae of Sec. 11, we think it useful to develop formulae not containing any value of k, which can be chosen more or less arbitrarily.

From a study of many hundreds of observations of velocities in natural watercourses together with their hydraulic radii R and their slopes, we have found statistically that k must be independent of the slope I and is a function of R alone. We have found

(115) (115) where $k = \left(\frac{c_k}{R}\right)^{1.56}$, (115a) $c_k = 0.425$ meters or 1.395 feet.

For small values of R, (R < 1.0 m), e.g. for mountain torrents, the dispersion of the observations in relation to the law (115) is considerable, but for larger rivers in plain country the agreement between the observations and (115) is very good.

It must naturally be remembered that k itself varies during floods and that the same value of Q is known to correspond to different depths by rising and falling waters. No great exactitude can consequently be expected.

When we set up a velocity formula based on (115) and on the ordinary assumption that shearing stresses are uniformly distributed along the perimeter we find

(116)
$$v_m = 8.83 \cdot \left[0.750 + \log\left(\frac{R}{c_k}\right)\right] \cdot \sqrt{g \cdot R \cdot I}$$
.

This result is in good accordance with some of the better formulae for natural watercourses, e.g. those of Hermanek.

This question is further treated in Sec. 12. 2.

In the following we therefore use the assumption (115) and (115a).

(115) is written as follows:

(115b)
$$\frac{R}{k} = \left(\frac{c_k}{k}\right)^{\frac{1-56}{0.56}} = \left(\frac{c_k}{k}\right)^{2.785}$$

From Table 8.1/16 we find

8.1(92)
$$\frac{R}{y_{max}} = A_{r\phi} \cdot A_{rp} \cdot p^{0.0210}$$

by multiplication of 8.1(92) by $p = \frac{y_{max}}{k}$ we get:

(117)
$$\frac{R}{k} = A_{r\phi} \cdot A_{rp} \cdot p^{1.0210}$$
, where
8.1(92c) $A_{r\phi} \approx 0.732$ and
8.1(92e) $A_{rp} \approx 1.000$

 $\varphi = 20^{\circ}$; $A_{f\varphi} = 5.3728$; $A_{f\varphi} = 3.000$

SEC. 11.2.

and estimate $p \approx 110$; i.e. $\log^2 \cdot \frac{p}{110.262} \approx 0$.

We then get:

(120b)
$$p = 0.1333 \cdot \left[\frac{Q}{2.5 \cdot \sqrt{\frac{\tau \max}{9} \cdot c_k^2}} \right]^{0.6539} \qquad (\varphi = 20^{\circ})$$

valid for every consistent system of units. In the Metric System we have

$$\frac{1}{c_{k}^{1.3078}} = \frac{1}{0.425^{1.3078}} = \frac{1}{0.327} \text{ and}$$

$$\frac{(120c)}{(120c)} \quad p = 0.408 \cdot \left[\frac{Q}{2.5\sqrt[7]{\frac{\pi max}{g}}}\right]^{0.6539} \qquad (\varphi = 20^{\circ})$$
In the FPS-System we have
$$\frac{1}{c_{k}^{1.3078}} = \frac{1}{1.395^{1.3078}} = \frac{1}{1.545}$$

$$\frac{(120d)}{(120d)} \quad p = 0.0863 \cdot \left[\frac{Q}{2.5\sqrt[7]{\frac{\pi max}{g}}}\right]^{0.6539} \qquad (\varphi = 20^{\circ})$$
From (118) we get
$$(118a) \quad \frac{k}{c_{k}} = (A_{r\varphi} \cdot A_{rp})^{-0.358974} \cdot p^{-0.3665125}$$

The equation (120) for p is raised to the power -0.3665125 and multiplied by (118a), whereby we get

(121)
$$\frac{k}{c_{k}} = \frac{\left[1.009114 \cdot \left[1 - 0.041283 \cdot \log^{2}\left(\frac{p}{110.262}\right)\right]\right]^{0.542189}}{\left[\frac{\left(A_{r\phi} \cdot A_{rp}\right)^{0.531036}}{\left(3.1815 A_{f\phi}\right)^{0.239658}}\right] \cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau \max}{S} \cdot c_{k}^{2}}}\right]^{0.239658}}$$

In formula 11. (109a) we found :

$$k^{0.13547} \cdot A_{f} \varphi^{0.067735} \cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau}{p}}}\right]^{0.932265}$$
11. (109a) F =
$$\frac{2.97877 \cdot \left[1 - 0.055388 \cdot \log^{2}(\frac{p}{111.55})\right]}{2.97877 \cdot \left[1 - 0.055388 \cdot \log^{2}(\frac{p}{111.55})\right]}$$

When (121) above is raised to the power 0.13547 and multiplied by 11.(109a) and observing that $2 - 0.13547 = 1.86453 = 2 \cdot 0.932265$ we get

$$(122) \quad \frac{F}{c_{k}^{2}} = \frac{A_{f\varphi}^{0.100201} \left[\frac{Q}{2.5\sqrt{\frac{1}{1002} \cdot c_{k}^{2}}} \right] \cdot \left[1.009114 \left[1 - 0.041283 \log^{2} \left(\frac{p}{10.262} \right) \right] \right]}{2.97877 \cdot \left[A_{r\varphi} \cdot A_{r\rho} \right]^{0.071940} \cdot \left[1 - 0.055388 \log^{2} \left(\frac{p}{111.55} \right) \right]}.$$

We put :

$$\begin{bmatrix} 1 - 0.041283 \log^{2}(\frac{p}{110.262}) \end{bmatrix}^{0.073450} = 1 - 0.00303224 \log^{2}(\frac{p}{110.262}) \\ \text{and find by formulae } 6.4(77 \text{ through 80a}) \\ \frac{1 - 0.055388 \log^{2}(\frac{p}{111.55})}{1 - 0.00303224 \log^{2}(\frac{p}{110.262})} = 1 - 0.052356 \log^{2}(\frac{p}{111.623}), \\ \text{which result is inserted in the denominator of (122).} \\ \text{We further have} \\ A_{r\varphi} = 0.732 , A_{rp} = 1.000 \\ (A_{r\varphi} \cdot A_{rp})^{0.071940} = 0.97780 \\ \end{bmatrix}$$

and find the new form of (122)

$$(122a) \frac{F}{c_k^2} = \frac{A_{f\varphi}^{0.100201} \cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau_{max}}{g} \cdot c_k^2}}\right]^{0.899799}}{2.97877 \cdot 0.97780 \cdot \left[1 - 0.052356 \log^2\left(\frac{p}{111.623}\right)\right]}.$$

SEC. 11.2.

The variation of the factor
$$A_{f\phi}^{0.100201}$$
 with ϕ is only
slight, and we get with good accuracy:
(123) $A_{f\phi}^{0.100201} = 1.0956 \cdot (\cot \phi)^{0.0766}$
With (123) we finally get from (122a)
 $0.37615(\cot \phi)^{0.0766} \cdot \left[\frac{Q}{2.5\sqrt{\frac{f}{max}} \cdot c_k^2}\right]^{0.899799}$
(122b) $\frac{F}{c_k^2} = \frac{1}{1 - 0.052356 \cdot \log^2(\frac{P}{111.623})}$

It is clearly seen that the variation of F with ϕ is only slight.

For rougher calculations we put

$$\varphi = 20^{\circ} , \quad (\cot\varphi)^{0.0766} \approx 1.0812 \quad \text{and}$$

$$p \sim 112 \quad \text{i.e.} \log^2 \left(\frac{p}{111.623}\right) \approx 0$$
and get

$$\frac{F}{c_k^2} \approx 0.407 \cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau}{max}} \cdot c_k^2}\right]^{0.9} \qquad (\varphi = 20^{\circ})$$

$$(122c) \quad F \approx 0.407 \cdot c_k^{0.2} \cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau}{max}}}\right]^{0.9} \quad (\varphi = 20^{\circ})$$
This expression can be used for every consistent and

for every consistent system usea of units.

In the Metric System

$$c_k = 0.425 \text{ m}$$
, $c_k^{0.2} = 0.8427 \text{ (m}^{0.2}\text{)}$
(122d) $F \stackrel{\sim}{=} 0.343 \cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau \max}{g}}}\right]^{0.9}$ ($\varphi = 20^{\circ}$)
In the EPS-System

c_k = 1.395 feet , c_k^{0.2} = 1.069 (feet^{0.2})
(122e) F = 0.435
$$\cdot \left[\frac{Q}{2.5\sqrt{\frac{\tau \max}{g}}}\right]^{0.9}$$
 (\$\Phi\$ = 20°)

From (119) we get with

$$A_{r\phi} \approx 0.732$$
 , $A_{rp} \approx 1.000$

(124) $\frac{y_{max}}{c_k} = 1.11852 \text{ p}^{0.633488}$

When p is found by one of the formulae (120a)b)c)d) y_{max} is directly found by (124) .

From Sec.11. we have :

11.(108)
$$B = k \cdot A_{b\phi} \cdot p^{1.0890} \cdot A_{bp}$$
.

We find by division by (118)

(125)
$$\frac{B}{c_k} = 1.11852 \cdot A_{b\varphi} \cdot p^{0.72249} \cdot A_{bp}$$
.

The variation of B with φ is considerable so that the correct values of $A_{b\varphi}$ should be taken from Table 8.1./17/, formula 8.1(93c).

The variation of A_{bp} will probably only be small (cf. formula 8.1(93c)).

By the successive use of the formulae

(120a)b)c)d)	for $p = \frac{y_{max}}{k}$	and
(122a)b)c)d)e)	for F	and
(124)	for y _{max}	and
(125)	for B	

all the principal dimensions of the equilibrium profile can be found and the complete profile can be drawn using the tables of the co-ordinates η and \S , Table 8.2/21/.

It must not be forgotten that Q, F and B refer to the <u>half</u> total cross section.

11.3. ILLUSTRATIVE EXAMPLE OF CALCULATION OF DIMENSIONS The Metric System is used. Given : $Q = \frac{800}{2}$ m³/sec = 400 m³/sec for <u>half</u> cross section, $\tau_{\rm max} = 0.15 \, \rm kg/m^2,$ $\chi = 1026 \text{ kg/m}^3$, $\varphi = 20^{\circ}$ and k ~ as for natural watercourses. For use in the formulae we calculate : $\frac{\pi max}{\chi} \cdot g = \frac{0.15 \cdot 9.81}{1026} = 0.001435 \ (m/sec)^2,$ $\frac{max}{2} = 0.03785 \text{ m/sec},$ $= \frac{400}{2.5 \cdot 0.03785} = 4225 \text{ m}^2$ max $\frac{1}{2} = 10^{3.6} \cdot 0.4225^{0.9} = 3980 \cdot 0.4606 = 1833$ and further have $c_{lr} = 0.425 m$, 11.2(115a) $F = 0.343 \cdot 1833 = 628 m^2$ 11.2(122d) Total area : $2 F = 1256 m^2$ 0.6539 $= 10^{2.6156} \cdot 0.4225^{0.6539} = 412 \cdot 0.5700$ = 234.5 11.2(120c) $p = \frac{y_{max}}{k} = 0.408 \cdot 234.5 = 95.7$ $p^{0.6335} = 95.7^{0.6335} = 17.95$ $y_{\text{max}} = 0.425 \cdot 1.1185 \cdot 17.95 = 8.53 \text{ m}$ 11.2(124)

$$k = \frac{y_{max}}{p} = \frac{8.53}{95.7} = 0.0891 \text{ m.}$$

$$p^{0.7225} = 95.7^{0.7225} = 27.00.$$
From Table 8.1/17/ we get

 $A_{b\phi} = 7.2375$, and 8.1(93e) $A_{bp} = 1.004781 - 0.02121 \log^2(\frac{p}{106.46})$ $\frac{106.46}{95.7} = 1.1125$; $\log 1.1125 = 0.0462$; $\log^2 1.1125 = 0.002135$. $A_{bp} = 1.004781 - 0.000045 = 1.004736$

11.2(125) B = $0.425 \cdot 1.1185 \cdot 7.2375 \cdot 27.0 \cdot 1.0047 = 93.2 \text{ m}$ Width of water surface of total section : <u>2B = 186.4 m</u>.

12. FORMULAE FOR THE MEAN VELOCITY v_m IN EQUILIBRIUM PROFILES.

From Table 8.1/16 we have

8.1(92)c)d) R' =
$$\frac{R}{y_{max}} = 0.732 + p^{0.210}$$
,
 $\frac{R}{k} = 0.732 + p^{1.210}$
(126) or $p = (\frac{R}{0.732 k})^{\frac{1}{1.210}}$
From Table 8.1/19/ we have
8.1(95)c)d) $v_{\pi}' = \sqrt[3]{\frac{\sqrt{\pi}}{gRT}} = 1.160 + p^{0.0100}$
(127) or $\sqrt{\frac{\pi}{gRT}} = 1.160 p^{0.01} + \sqrt{gRT}$.
From Table 8.1/15/ we have
8.1(91b)c)d) $v_{m}' = \frac{v_{m}}{2.5\sqrt{\frac{\pi}{gRT}}} = 3.1815 + p^{0.15324} + A_{vp}$
where
8.1(91e) $A_{vp} = 1.0135645 - 0.0634373 \log^{2}(\frac{p}{111.428})$.

$$v_{m} = 2.5 + 3.1815 + 1.160 + p^{0.01} \cdot \sqrt{g R I} \cdot p^{0.15324} \cdot A_{vp}$$

or

$$(128) v_{m} = 2.5 + 3.1815 + 1.160 + p^{0.16324} \cdot \sqrt{g R I} \cdot A_{vp} .$$
For the calculation of A_{vp} we find by means of (126)

$$\log \left(\frac{P}{111.428}\right) = \log \left[\frac{11}{111.428} \cdot \left(\frac{R}{0.732 K}\right)^{1.210}\right] = \frac{1}{1.210} \cdot \log \left(\frac{R}{219.6 K}\right) ,$$
from which

$$\log^{2} \left(\frac{P}{111.428}\right) = \frac{1}{1.4641} \cdot \log^{2} \left(\frac{R}{219.6 K}\right)$$

and

$$0.0634373 + \log^{2} \left(\frac{P}{111.428}\right) = 0.043329 + \log^{2} \left(\frac{R}{219.6 K}\right) ,$$
which inserted in 8.1(91e) gives

$$(129) A_{vp} = 1.013565 - 0.043329 \log^{2} \left(\frac{R}{219.6 K}\right) .$$
We further have from (126):

$$0.16324 = \left(\frac{R}{0.732 K}\right)^{1.210} = \frac{1}{0.732^{0.134909}} \left(\frac{R}{k}\right)^{0.134909}$$
Inserting (130) in (128) we find

$$v_{m} = \frac{2.5 \cdot 3.1815 \cdot 1.160}{0.732^{0.134909}} \cdot \left(\frac{R}{k}\right)^{0.134909} \cdot \sqrt{g R I} \cdot A_{vp} ,$$
where A_{vp} is taken from (129) and

$$0.732^{0.134909} \approx 0.9588.$$
We finally get

$$(131a) v_{m} = 9.6228 \cdot \left(\frac{R}{k}\right)^{0.134909} \cdot \sqrt{g R I} \cdot \left[1.013565 - 0.043329 \log^{2} \left(\frac{R}{219.6 K}\right)\right]$$

SEC. 12.2. - 12.3.

107

Inserting (132b) in (132) we finally get $\sqrt{g R I} \cdot \left[1.013565 - 0.105445 \log^2(\frac{R}{31.7 c_k})\right]$ (133) $v_m = 9.6228(\frac{R}{c_1})^0$ (133a) v $= \left[\frac{9.6228 \cdot \sqrt{g}}{c_{1}^{0.21046}}\right] \cdot R^{0.71046} \cdot I^{1/2} \cdot \left[1.013565 - 0.105445 \log^{2}(\frac{R}{31.7 c_{k}})\right]$

which formulae are valid for an arbitrary consistent system of units.

In the Metric System we have

$$\sqrt{g} = \sqrt{9.81} = 3.1321 \text{ m}^{1/2}/\text{sec}$$
,
 $c_k = 0.425 \text{ m}$; $31.7 \cdot c_k = 13.48$,
 $c_k^{0.21046} = 0.425^{0.21046} = 0.8350$

and (133a) becomes

(133b) $v_m = 36.0953 \cdot R^{0.71046} \cdot I^{1/2} \cdot \left[1.01357 - 0.105445 \cdot \log^2(\frac{R}{13.48})\right]$

This formula has much resemblance to the empirical formulae of J. Hermanek.

Hermanek gives for R \approx mean depth of section and 1.5 m < R < 6.0 m the following formula (134) $v_m = 34 \cdot R^{0.75} \cdot I^{1/2}$.

The last factor in (133b) will be near unity for such values of R.

12.3 v_m AS A FUNCTION OF y_{max}. FIXED VALUE OF k.

If we want to express the mean velocity by ymax instead of by R we insert R from 8.1(92) in 12.1(128) and get

 $v_{\rm m} = 2.5 \cdot 3.1815 \cdot 1.160 \cdot 0.732^{0.5} \cdot p^{0.17374} \cdot \sqrt{g y_{\rm max} I} \cdot A_{\rm vp}$ (135) $v_{\rm m} = 7.89379 \cdot \left(\frac{y_{\rm max}}{k}\right)^{0.17374} \cdot \sqrt{g y_{\rm max} \cdot I} \cdot A_{\rm vp}$, where $A_{vD} = 1.013565 - 0.063437 \cdot \log^2 \left(\frac{y_{max}}{111.43 \text{ k}}\right)$ (135a) or

SEC. 12.3. - 13.1.

(135b)
$$v_{m} = \left[\frac{7.89379 \cdot \sqrt{g}}{k^{0.17374}}\right] y_{max}^{0.67374} \cdot I^{1/2} \cdot A_{vp}$$

(135)a)b) are valid for an arbitrary consistent system of units. In the Metric System we have

$$\sqrt{g} = \sqrt{9.81} = 3.1321 \text{ m}^{1/2}/\text{sec}$$
and
$$(135c) \quad v_{m} = \left[\frac{24.7241}{k^{0.17374}}\right] \cdot y_{max}^{0.67374} \cdot I^{1/2} \cdot A_{vp}$$

 $A_{\rm vp}$ will generally be very near unity and the similarity between (135c) and the Manning formula

$$v_{\rm m} = (\frac{25.84}{6\sqrt{k}}) \cdot {\rm R}^{2/3} \cdot {\rm I}^{1/2}$$

becomes striking; it must, however, be remembered that (135c) contains y_{max} and not R.

THE RATIO OF MEAN VELOCITY v_m TO MAXIMUM VELOCITY v_{max}.

13.1
$$\frac{v_{m}}{v_{max}}$$
 AS A FUNCTION OF $p = \frac{y_{max}}{k}$
From Table 8.1/15/ we have
8.1(91b)c)d) $\frac{v_{m}}{2.5\sqrt{\frac{\tau_{max}}{g}}} = 3.1815 \cdot p^{0.15324} \cdot A_{vp}$
where
8.1(91e) $A_{vp} = 1.013565 - 0.063437 \log^{2}(\frac{p}{111.428})$.

For the maximum velocity v_{max} which occurs at the surface where the depth is y_{max} we have directly

(136)
$$\frac{v_{\text{max}}}{2.5\sqrt{\frac{\tau_{\text{max}}}{0.950665}}} = 3.392 + \ln \frac{y_{\text{max}}}{k} = 3.392 \left[1 + 0.67883 \cdot \log p\right]$$

We divide 8.1(91b) by (136) and get
(137)
$$\frac{v_{\text{m}}}{v_{\text{max}}} = \frac{0.950665 \cdot p^{0.15324} \left[1 - 0.062588 \log^2 \left(\frac{p}{111.428}\right)\right]}{1 + 0.67883 \log p}$$

The ratio of mean to maximum velocities $\frac{v_m}{v_{max}}$ is

consequently a function of p alone and quite independent of ϕ . The denominator in (137)

1 + 0.67883 log p =
$$\frac{1}{3.392} \cdot \frac{v_{\text{max}}}{2.5\sqrt{\frac{r_{\text{max}}}{p}}}$$

can be developed in a form similar to that of the numerator in (137).

The calculation is made in the same way as that used for the functions A_p in Sec. 6.3.

We find as a first approximation

(138a) $1 + 0.67883 \log p = 1.31155 p^{0.12535} \pm 0.925 \%$ for 24.2 $\stackrel{<}{=} p \stackrel{<}{<} 500$.

The logarithmic deviations e_p from the simple power formula are then treated as indicated in Sec. 6.3 and we find (138b) 1 + 0.67883 log p

 $= 1.323712 \cdot p^{0.12535} \cdot \left[1 - 0.041934 \log^2 \left(\frac{p}{109.277}\right)\right]^+ 0.104\%$ for ~ 18 Inserting (138b) in (137) we get

(137a)
$$\frac{v_m}{v_{max}} = \frac{0.718181 \cdot p^{0.02789} \cdot [1 - 0.062588 \log^2(\frac{p}{111.428})]}{[1 - 0.041934 \log^2(\frac{p}{109.277})]}$$

The parentheses are divided by means of the formulae 6.4(77 through 80a) and we finally get the following form of (137a)

$$(137b) \frac{v_{\rm m}}{v_{\rm max}} = 0.718187 \cdot p^{0.02789} \left[1 - 0.020654 \log^2 \left(\frac{p}{117.230}\right)\right]$$

13.2 DEGREE OF FULLNES & OF THE CROSS SECTION OF EQUILIBRIUM PROFILES,

We define **H** as follows

4.5(58)
$$\partial e = \frac{F}{B \cdot y_{max}} = \frac{\left(\frac{F}{y_{max}^2}\right)}{\left(\frac{B}{y_{max}}\right)} = \frac{F'}{B'} = \frac{F'}{\beta + \beta_0}$$

	From Tables $8.1/14$ and $8.1/17$ we get
(90b)d)	$\mathbf{F'} = \mathbf{A}_{\mathbf{f}\boldsymbol{\varphi}} \cdot \mathbf{p}^{0.1091} \cdot \mathbf{A}_{\mathbf{f}\mathbf{p}}$
(93b)d)	$B' = A_{b\varphi} \cdot p^{0.0890} \cdot A_{bp}$
	and by division
(139)	$\mathcal{H} = \frac{\mathbf{F'}}{\mathbf{B'}} = \frac{\mathbf{A_{f}} \boldsymbol{\varphi}}{\mathbf{A_{b}} \boldsymbol{\varphi}} \cdot \mathbf{p}^{0.0201} \cdot \frac{\mathbf{A_{fp}}}{\mathbf{A_{bp}}}$
	A _f φ

For the ratio $\frac{^{A}f\phi}{A_{b}\phi}$ we get from Tables 8.1/14/17/ the following values

φ	150	200	250	300
$\frac{A_{f\phi}}{A_{b\phi}}$	0.739031	0.742356	0.745156	0.747759

The variation with φ is so small that we take as an average (139a) $\frac{A_f \varphi}{A_b \varphi} = 0.7424 = \text{constant}$, nearly corresponding to $\varphi = 20^{\circ}$.

For A_{fp} and A_{bp} we get from Tables 8.1/14/17/

(90e)
$$A_{fp} = 1.007083 \cdot \left[1 - 0.0316826 \log^2 \left(\frac{p}{108.035}\right)\right]$$

(93e) $A_{bp} = 1.004781 \cdot \left[1 - 0.0211078 \log^2 \left(\frac{p}{106.46}\right)\right]$

The ratio of the two parentheses is found by means of the formulae 6.4(77 through 80a). We finally get

(139b) $\frac{A_{fp}}{A_{bp}} = 1.002290 \cdot \left[1 - 0.0105748 \log^2 \left(\frac{p}{111.245}\right)\right]$ and by inserting (139a) and (139b) (139) takes the following form (139c) $\mathcal{X} = 0.7441 \cdot p^{0.0201} \cdot \left[1 - 0.010575 \log^2 \left(\frac{p}{111.245}\right)\right]$.

13.3 RELATION BETWEEN $\frac{v_m}{v_{max}}$ AND **2C**.

We found

13.1(137b) $\frac{v_m}{v_{max}} = 0.718187 \cdot p^{0.02789} \cdot \left[1 - 0.020654 \log^2(\frac{p}{117.230})\right]$ 13.2(139c) $\mathcal{H} = 0.7441 \cdot p^{0.0201} \cdot \left[1 - 0.010575\log^2(\frac{p}{111.245})\right]$. These equations represent $\frac{v_m}{v_{max}}$ and \mathcal{H} as functions of $p = \frac{y_{max}}{k}$; the relationship between $\frac{v_m}{v_{max}}$ and \mathcal{H} is given by Fig. 11 with the parameter p on the curve and the figure can therefore also be used for the determination of p and thereby of k when one of the other two variables is known.

In order to eliminate p between 13.1(137b) and 13.2(139c) by raising the latter to power 1.38756 and dividing we find v

(140)
$$\frac{\left(\frac{m}{v_{max}}\right)}{\varkappa^{1.38756}} = 1.082324 \cdot \frac{1 - 0.020654 \log^2 \left(\frac{p}{117.230}\right)}{1 - 0.010575 \log^2 \left(\frac{p}{111.245}\right)}$$

In (140) the fraction on the right side is treated according to the formulae of Sec. 6.4 and we get

(140a) $\frac{\binom{v_m}{v_{max}}}{\mathcal{H}^{1.38756}} = 1.082352 \cdot \left[1 - 0.005981 \log^2 \left(\frac{p}{133.321}\right)\right].$

To eliminate p in (140a) we use

13.2(139c) $\partial e = 0.7441 \cdot p^{0.0201} \cdot \left[1 - 0.010575 \log^2 \left(\frac{p}{111.245}\right)\right].$

Taking logarithms in 13.2(139c) and noting that the parenthesis does not deviate much from unity we find

(141) $\left[\log\left(\frac{p}{111.245}\right)\right] \left[1 - 0.22851 \log\left(\frac{p}{111.245}\right)\right]$ = 49.751 log (1.2225%).

We substitute

(142) € = 1.2225 ∂€ - 1

and noting that ε will always be small compared to unity, (141) becomes

$$\left[\log\left(\frac{p}{111.245}\right)\left[1 - 0.22851\log\left(\frac{p}{111.245}\right)\right] = 21.606 \cdot \mathcal{E}.$$

Solving this quadratic equation we find

 $\log \left(\frac{p}{111.245}\right) = 2.1881 \cdot \left[1 - \sqrt{1 - 19.479\varepsilon}\right] \text{ or }$ $(141a) \quad \log \left(\frac{p}{133.321}\right) = 2.1096 \cdot \left[1 - 1.0372 \sqrt{1 - 19.479\varepsilon}\right].$ (141a) is inserted in (140a) and we finally find $(140b) \quad \frac{v_{m}}{v_{max}} = 1.02255 \cdot 2^{e} \cdot \frac{1.38756}{1.38756} \cdot \left[1 + 0.5904\varepsilon + 0.05845 \sqrt{1 - 19.479\varepsilon}\right]$

where \mathcal{E} is taken from (142).

(140b) gives directly the relation between $\frac{v_m}{v_{max}}$. We find for instance

ઝિ	vm vmax		
0.77	0.7478		
0.80	0.7929		
0.84	0.8479		

It must be remembered that (140b) is exclusively valid for equilibrium profiles. For other channels, e.g. with fixed bottoms, no definite relation between \mathcal{H} and $p = \frac{y_{max}}{k}$ can exist and $\frac{v_m}{v_{max}}$ can vary within considerably wider limits.

For an equilibrium profile it will consequently be possible to determine the mean velocity by measuring the maximum velocity and sounding the complete cross section of the channel, i.e. determining \mathcal{H} .

This should be an advantage in tidal channels, where the discharge cannot be considered steady for a time sufficient to carry out velocity measurements at a sufficient number of points of the cross section.

& depends not alone on the area of the section and its maximum depth which will probably both be well defined, but also on the width of the water surface.

This width will e.g. for natural streams often be influenced by vegetation on the banks and thus be narrower than for the equilibrium profile, even if the cross section as a whole is near the equilibrium profile. The area can then be considered correct and the width of that equilibrium profile which as an average gives the best adjustment to the profile in question can be used by the determination of \mathcal{H} . This is what has been done in Sec. 10 by the study of the Vienna model tests.

SEC. 14. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDIES.

The topics studied in this paper would be of interest for the problem of stable channels in general, but they do not cover the whole problem.

The shape of the profile which is stable against erosion is found, but only provided that no transport of bed load occurs; neither has the question of silting up of the channel been taken into account.

It is hoped however that the present study will be useful if the problem in all its aspects is to be solved.

The whole study is carried through theoretically on certain assumptions which are clearly stated, and further work in this field should try better to confirm or to correct these assumptions by direct control or indirectly by comparing the results with actual observations.

The most important assumptions made are:

- 1) Distribution of τ according to formula 1.(1) or 4.2(1a).
- 2) Hydrodynamic lift L proportional to τ , 2.1(3) and 2.2(9) based on the work of Einstein [1].
- 3) Logarithmic velocity distribution as indicated in Sec.1; mean velocity in an infinitesimal wedge-shaped element of area assumed equal to mean velocity in normal to bottom at the base of elements, Sec.4.2.
- 4) Uniform distribution of roughness k, Sec. 4.2.
- 5) Constant value of angle of internal friction ϕ along perimeter.
- 6) Principle of minimum area of cross section, Sec. 4.4.
- 7) For some of the formulae for the dimensions of the channel and for the mean velocity an empirical relation between hydraulic roughness k and hydraulic radius R, as found for natural watercourses, has been introduced. Thus formulae not containing k have been established.

The isovels studied in Sec. 9 and the example presented in Fig.7 seem to some degree to confirm assumption 1) concerning the distribution of τ .

That this choice is better than the usual assumption taking τ proportional to the depth, seems evident, but the question could be studied further by other methods, and the result possibly be improved; it seems probable however that such further studies will be considerably facilitated when an approximately correct solution is at hand. Assumption 2) concerning hydrodynamic lift should also receive closer study and the size of the proportionality factor c = 4.9 might probably be improved. It seems clear however that this assumption is better than the complete disregard of the hydrodynamic lift, and the large size of c may perhaps explain why the angle ϕ is found to be so small as is the case (see below).

The logarithmic velocity distribution accepted is probably so well established that it does not need further comments, but the hydraulic roughness in real profiles must obviously be expected to vary along the bottom; the k introduced must therefore be taken as an average value.

As to the principle of minimum of area it will hardly be possible to give any strict proof of this assumption, but it almost seems selfevident and corresponds completely to many similar cases in hydraulics. A comparison of results with observations from nature seems desirable.

The values of φ have been determined for three model tests carried out in Vienna, 1916, giving $\varphi = 19^{\circ}$, 17° and 14° as the most probable values for these tests. The values are even lower than the expected value of about 20° , and it seems highly desirable that further observations should be made. Time has not allowed independent model tests to be carried out, but this ought to be done. Further it seems probable that more insight into the size of φ might be obtained by three-axial tests with sand where the hydrodynamic lift is replaced by an upward stream of water in the cylinder. By such tests the effective grain to grain normal stress could be reduced even to zero. This can possibly also be effected by other means, e.g. using a liquid with a specific weight greater than that of water.

A correct value of φ can thus be found for effective stresses smaller than those corresponding to the weight of the grains proper.

The fundamental results of the study are given in the tables in Sec.8.1 All quantities here are dimensionless and we have succeeded in expressing Q', F', v_{m} ', R', B', I' and v_{x} ' by the product of two functions, one depending on φ alone and another depending on $p = \frac{y_{max}}{k}$ alone.

The limits of validity and the corresponding maximum deviation of these formulae are given. For many practical purposes the simple power formulae without the correcting factors A_p should probably suffice; but for the application of the formulae for model tests, e.g. where $p = {}^{y}max/k$ is small, the complete formulae including A_p should be used. For all derivations in this paper the number of digits in the constants of the formulae might seem exaggerated for practical purposes; considering however the great number of numerical operations that have been needed in deriving the formulae, it has been judged appropriate to retain a surplus number of digits in all derivations, and the values of the constants can then finally be rounded off.

The form of the formulae is such that all practical calculations can easily be carried out by means of a log log slide rule.

The result found in Sec.11, viz. that the area F of the half cross section of the equilibrium profile varies only slightly with the angle of friction φ and with the relative roughness, but mainly depends solely on the discharge Q, the limiting tractive force τ_{max} and the hydraulic roughness k, might facilitate the comparison of results with observations in nature.

Where the flow in the channel is caused by tides, the use of the results in Sec. 13 might facilitate the observation of Q.

Until more definite knowledge about the roughness k is acquired, the results in Sec. 11.2, where k is taken to be equal to the empirically determined roughness of natural watercourses, might be of use. The results thus obtained should, as far as possible, be compared with observations in nature.

The formulae for the mean velocity found in Sec.13 also make it possible to find k from available observations.

Acknowledgements:

The great numerical work in this paper, drawings etc. could not have been carried out and controlled without the untiring assistance of my assistants

Mr. B.A. Christensen, C.E.,

Mr. V. Mandrup Andersen, C.E.,

Mr. B. J. Seistrup, C.E.

I am especially indebted to Mr. B. A. Christensen for his careful control of all mathematical deductions and of the manuscript, which has been so ably typed by Mrs. A. Kihlström, secretary.

The language of this paper has been revised by Mr. B. Kjærulff Nielsen, M.A.

REFERENCES

[1] Einstein, Hans Albert (1950). "The Bed-Load Function for Sediment Transportation in Open Channel Flows." United States Department of Agriculture, Soil Conservation Service, Washington, D.C.

Technical Bulletin No.1026, September 1950.

- Freeman, John R. (1929). "Hydraulic Laboratory Practice." The American Society of Mechanical Engineers. New York, [2] 1929. Sec. XIII. Fr. Schaffernak. "The Experiment Institute for Hydraulic Engineering in Vienna, pp. 422-424.
- [3] (1916) Mitteilungen der Versuchsanstalt für Wasserbau im k.k. Ministerium für öffentliche Arbeiten über ausgeführte Versuche." 2. Series. Vienna 1916. Separate edition of "Allgemeine Bauzeitung," Part IV, 1916.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Fig. 5

Fig. 6

$$\rho = \frac{y_{max}}{k}$$

$$\mathcal{H} = \frac{F}{B \cdot y_{max}}$$

ACTA POLYTECHNICA SCANDINAVICA

... a Scandinavian contribution to international engineering sciences

Published by the Scandinavian Council for Applied Research and co-sponsored by

The Danish Academy of Technical Sciences

- The Finnish Academy of Technical Sciences and The State Institute for Technical Research
- The Norwegian Academy of Technical Sciences and The Royal Norwegian Council for Scientific and Industrial Research
- The Royal Swedish Academy of Engineering Sciences, The Swedish Natural Science Research Council, and The State Council for Technical Research

Acta Polytechnica Scandinavica is divided into the following sub-series: Chemistry including Metallurg y series, Ch Civil Engineering and Building Construction series, Ci Electrical Engineering series, El Mathematics and Computing Machinery series, Ma Mechanical Engineering series, Me Physics including Nucleonics series, Ph

For subscription to the complete series or to one or more of the sub-series and for purchase of single copies, please write to

ACTA POLYTECHNICA SCANDINAVICA PUBLISHING OFFICE Box 5073 Stockholm 5 Phone 6147 53

> This issue is published by THE DANISH ACADEMY OF TECHNICAL SCIENCES Copenhagen, Denmark

Publications of the Florida Engineering and Industrial Experiment Station

The Engineering and Industrial Experiment Station, College of Engineering, issues five series of publications under the general title, ENGINEERING PROGRESS at the University of Florida.

(1) Bulletin Series -- original publications of research or conference proceedings, usually on problems of specific interest to the industries of the State of Florida.

(2) Technical Paper Series -- reprints of technical articles by staff members appearing in national publications.

(3) Leaflet Series -- non-technical articles of a general nature written by staff members.

(4) Technical Progress Reports -- reports of research which is still in progress.

(5) Florida Engineering Series -- books on technical engineering problems.

For complete list of publications write to: The Editor, Florida Engineering and Industrial Experiment Station, University of Florida, Gainesville, Florida.