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ABSTRACT

The form and size of a channel in cohesionless material,
stable against erosion for a definite discharge, Q, are studied.

The angle of internal friction @ and the limiting tractive
force T max 2T€ taken as known. Distribution of shearing stresses

v is assumed to be such that they are proportional to the distance
between bottom and water surface, measured at right angles to
the bottom. In addition to the action of gravity and shearing
stress t the grains are acted upon by a hydrodynamic lift force,
proving to be proportional to t. The differential equation of the
bottom form is established and integrated numerically; the form
depends on @ .

Based on the logarithmic law of velocity distribution and
the assumed distribution of shearing stresses, the velocities in
all parts of the cross section can be found, and the total dis-
charge is found by numerical integration. .

A profile consisting of the curved bank-part of the above
mentioned cross section and a'middle-part' of indefinite width and
of constant depth y would be stable for the same tractive
force. On the assufﬁ%ﬁon however that nature will produce that
. cross section which has a minimum of area, only one definite
solution, viz. the equilibrium profile, is found. The dimensions
depend not on @ alone but also on the relative roughness of the

bottom . Provided that the hydraulic roughness k is assumed

max
to be in conformity with that of natural watercourses, it is found
that the area of the equilibrium profile varies slowly with ¢ and
must be proportional to
0.9
max
The above assumptions are checked by calculation of a
complete set of isovels.
Further three model tests, carried out in Vienna in 1916,
are studied and compared with profiles calculated according to
this theory. The values of? are found to be varying from 14° to

o)
0" On the same basis a study is finally made of the relation
v

between mean and maximum velocities, , resulting in a
v max

as a function of €, the ‘degree of

simple diagram giving
" A : Ymax
fullness of the profile, and also as a function of gy the

reciprocal relative roughness.
Methods for estimating k are given.



SEC. 1. 1

STABLE CHANNELS

A. E. Bretting
Professor of Hydraulics,
Technical University of Denmark,
Copenhagen, Denmark.

1. INTRODUCTION

The term "stable channels" has generally been used as
relating to the cross section of a channel which will be stable
for a definite discharge both against erosion and against sediment-
ation. In this paper only the question of stability against erosion
has been treated, and only as far as cohesionless bottom material
is concerned.

The subject of this investigation is the cross section ultimately
created when nature itself, at a definite discharge Q (m® /sec),
excavates a channel bed in sand material with a definite limiting
tractive force ¥ (kg/m?) just able to move the sand grains on
a horizontal bott3ff and with an angle of internal friction of @
degrees.

The specific weight of the water is y (kg/m®), and the
equivalent sand-roughness of the bottom of the channel is k (m);
this roughness is taken to be uniform over the whole width of the
channel.

It is further assumed that the velocity v_ at every point P of
the cross section can be found according to the usual logarithmic
law of velocity distribution

v
zZ . ) z
ﬁ = 8.48 + 2.5 * 1ln ()
where k is the roughness of the bottom (m),

z is the distance from the bottom (m) measured in the
direction perpendicular to the bottom,



2 SEC. 1.

=V%—(m/sec) 2

= the shearing stress (kg/mz) at the bottom in a line
through the point P perpendicular to the bottom,

9 %’ {8, specific weight of the water (kg/m®)

g, acceleration of gravity = 9.81 m/sec?.

To find the velocities, a definite law for the distribution of the
shearing stresses along the bottom contour must be assumed.

In the middle part of the cross section, where the bottom line
is horizontal, the shearing stress will have its maximum value
T equal to the limiting tractive force of the sand grains in
q ion. )

This limiting tractive force will strictly speaking depend on the
longitudinal slope of the channel.

The relation between the limiting tractive forces T, for a plane
bottom sloping in the direction of the flow at an angle v " and Th for
a horizontal bottom, can be shown to be:

¥
v
ﬁ = cos v(1 - tg v cot@),
where @ is the angle of internal friction of the sand.

Since the longitudinal slope = sin v will generally be small we
take the limiting tractive force to be independent of the slope.

The following law for the variation of 1 is assumed:

L 4
T F cos @ ’

max y max’

where y is the depth of water at the point in question, and @ is the
inclination of the bottom with a horizontal plane. (Fig.1l). The
shearing stress will consequently be proportional to the length of a
normal to the bottom reckoned between the bottom and the water
surface. The shearing stress on the slopes will be somewhat greater
than that found by using the hypothesis that T varies proportionaliy
with the depth y , an assumption previously used. Transfer of
shearing forces from the middle of the section against the banks is
thus to a certain degree taken into account.

A justification of this assumption is later found by calculation
of the corresponding complete set of isovels (Fig.7 ), which are in fair
accordance with experience from actual measurements.
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2. ESTABLISHMENT OF THE DIFFERENTIAL EQUATION
FOR THE SHAPE OF THE PROFILE.

2.1. EQUATION ON THE ASSUMPTIONL = c - 7.

The profile sought should just be in equilibrium at every point
of the bottom, given the assumed distribution of shearing stresses.

On the bottom an element of one unit area will be stressed
by the force t in the direction of the flow. The longitudinal slope of
the channel is considered insignificant. The surface element has the
inclination @© with a horizontal plane.

The submerged weight of sand grains per unit area stressed
by t is designated as W. (Fig.2). This force is acting vertically
downwards and is resolved into the forces W-cos @ in the direction of
the normal to the element, and W-sin @ acting in the plane of the
element in the direction of its transversal slope.

The grains of the element are further acted upon by the hydro-
dynamic lifting force L, which is upwards directed in the normal to
the plane of the element. The resulting force in this direction will
consequently be (W-cos a@ - L), acting downwards.

The total stress on the element in question will be the resultant
of the three above-mentioned forces :

1) < in the plane of the element and in the direction of the flow,
2) (W-cos a— L) in the direction of the normal to the element,
3) W-sin a in the plane of the element perpendicular to the direction

of flow.

The resultant of forces 1) and 3) isv-r2 + W? | sin®a acting
in the plane of the element, whereas force 2) is perpendicular to the
said resultant.

If the angle of friction of the sand is taken to be ¢ degrees,
it is a condition of equilibrium for the sand grains of this element

@ ng gt o o

The magnitude of the hydrodynamic uplift L will be studied
below.

We put provisionally
(3) L=cse« v ,

where c will prove to be a constant (Section 2. 2).
From equation (2) we get :
(2a) W?2-cos® a - 2:-L*W-cosa + L? = (i + W? sin® a) - cot2<P
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From equation 1. (1) we get :

- "max 4
cosa y o
Fory = Yrnax e have o = 0° , cosa =1, sina = 0
TE Tax * L=c-. Tmax ° Which, inserted in (2a), gives :
W2 -2c¢cr " 2 _ . "
max * W + ¢ szax = cof @ szax ; taking the

square root of both sides we obtain :

W - crmax-cotgp-t‘
max

(4) W = Lo (c + cotq)

This value of W is inserted in (2a) together with L from (3),
which gives : :

(5) (’n:ax)z B ‘CCOt?) . (‘;ax) - 2 cos a

+(C+c—c<)t£)[(1 + cotz(P )-0082 & = cotzQ] =0
Substituting 1. (1) :
& =3 .

max ymax

(50) GI-) - g (2P - 2cY )

— cos” Q —
+ (ct:—cmﬁ)-[(l + cot’@ )-cos® a - cot2q>] =0

The following substitutions are used :

we get from (5) :

i - cos

S A X _ = . =9y _dn
(6a) o T (6b) o € ; (6c) tana i = Ay
1 - 2 = dn_ 2
B == e taf @ = 1+ (F)
(6a) - (6d) are inserted in (5a) :
2
?[1 + (‘a’—;—) bo -2 . gy
+ (1 + coctty).[l +c:t:q> , ~cot?@ | =0
-+ o)
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2|2
(7) vf-[n(g"?)] (1 - 2P

- [1 + (g;_)z]-[z N+ coff@ (1 + SLL )J
+ (1 + co?@ )1 + _°°2‘P) = 0

This is the correct differential equation in n and &€ for the
profile in question. It can be written in the form .

4
H

cot’p (1 + 2L )4 2024 (122

2.2 DETERMINATION OF THE FACTOR c IN FORMULA 2.1 (3)

In the paper by H. A. Einstein [Ref. 1] information is found
bearing upon this subject. The notations of Einstein’ s paper are
used ( in this section only ). Formula (36), page 31 runs

2

u
P, =Cp 8" 3 where
p;, = average lift pressure per unit of area,
Cp, = 0.178 (dimensionless&,,
f
Sp = density of the fluid = =
Xf = specific weight of fluid,
g = acceleration of gravity ,
u = the flow velocity at a distance 0. 35-D35 from the theoretical
bed, ‘
035 = sieve size of the grains of which 35 percent are finer.

It is indicated that the pressure fluctuations due to turbulence
in their duration follow the normal error law, the standard deviation
being 0.364 of the average lift.

A deviation from the mean of 2. 75 times ' standard deviation ",
viz.

2.75 . 0.364 - = 1.0 -

P, P,
will only have a statistical probability of 6 per thousand to be
exceeded and corresponds to a practical maximum value of the
hydrodynamic lift force per darea :

L= 2p 5 which is very seldom exceeded. For greater
values of Reym;‘lds’ numbers, which are exclusively considered, is
found

u=u, - 575- log(30.-2%) ,  Wwhere
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y = 0,35(0.77 - ) »
A= kS , the equléalent sand roughness,
/T
u, *Vs- , where
f
1t = shearing stress along the bottom
= ® 5.75 log (30.2 - 0.35 - 0.77)
u = 5.24 - u,

The mean value P, according to [_1] formula (36)

1
pp, = 0.178 « s - 7 (5.24 u*)z

Pr, = d cu? = ‘
L 2.45 u, 2.45

Sf 'S—=2.457

f

We consequently find the maximum value of the hydrodynamic
lift force, defined as above,

L=2pL=4.91:

By

The constant ¢ in equation (3) is found to be
(9) c = 4.9

3. SOLUTION OF THE DIFFERENTIAL EQUATION 2.1(8)
g—g— for varying values of n,
in the last ternr of the numerator can be

In the numerlca.l calculations of
the factor [1 + ( )

omitted from the f1rst approximation,whereupon the said last term
is corrected.

3.1. FORMULAE FOR NUMERICAL INTEGRATION
The following substitutions are used :

2.2.(9) c = 4.9
_ cot®
(10) a=1+5°
(11) b= cot?@-(1+ %% - a - cot’
(12) m e )= S
c 2’

an | the differential equation (8) takes the followini form :
2 a-2n1+ mn?-[1+(

(d_S— u 3

b+2n-2m- *f
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For a given value of ¢ the quantities a, b and m are fixed

constants, and the numerical values of g“— can be found
corresponding to chosen values of nq. S

The integration of the differential equation (13) is made
5°, 20°, 25° and 30°.

The corresponding values of the constants a, b and m are
found from formulae (9), (10), (11) and (12), and the following
special forms of (13) are found :

numerically for values of @ =

V 4
- d
dq 2 1.761643 -2 0+ 0.238357 - ,f.[“_( n )]

(13a) (a—g—) = 7

24.536516 + 2n - 2 - 0,238357 -

1.56071 - 2 n + 0.43929 - TF'[I + (gﬂ_)“]

d 2
(13b) (3¢ -
s 11.78125 + 2 n - 2 - 0.43929 «
g 1.43766 - 27+ 0.56234 - £-[1 + (de )j
(130) (g 1 )2 i} . n .
g 6.61168 + 21 - 2 * 0.56234 7
:
4. 2 1.35348 - 21+ 0.64652 - - [1 + (g%) ]
(13d) (Fg¢) = :
g 4.06044 + 21— 2 - 0.64652 - o

As values of n are taken :
0., 0.1, 9.2, 0.3, 0.4, 0.5, 0.8, .0.7,
0.75, 0.8, 0.85, 0.9, 0.95, 0.98, 1.0.
For each value of @ and these values of n the values of ( aﬂ-—) are

calculated from (13a) b) c) dl, and the corresponding values of
(d—n-) a—L _VT+ ( S ) and g & n»Hg are compiled

in Tables 3.1. /1a/b/c/d/ for ¢ = 15°, 20°, 25° “and 30° resp.




@ = 15°. Table 3.1/1a/
2 o

e (GRS LG Vvt s

0 0.071797 0.267949  3.73205 1.035276 0.000000
0.1 0.063240 0.251476 3.976529 1.031135 0.103114
0.2 0.055030 0.234585 4.262854 1.027147 0.205430
0.3 0.047149 0.217139 4.605354 1.023303 0.306991
0.4 0.039582 0.198952 5.026360 1.019599 0.407840
0.5 0.032312 0.179756 5.563085 1.016028 0.508014
0.6 0.025328 0.159148 6.283474 1.012585 0.607551
0.7 0.018616 0.136440  7.329257 1.009265 0.706485
0.75 0.015358 0.123927 8.069238 1.007650 0.755737
0.8 0.012164 0.110291 9.066962 1.006064 0.804851
0.85 0.009032 0.095039 10.521951 1.004506 0.853830
0.9 0.005962 0.077215 12.950913 1.002977 0.902679
0.95 0.002952 0.054329 18.406283 1.001475 0.951401
0.98 0.001174 0.034259 29.189274 1.000587 0.980575
1.0  0.000000 0 oo 1.000000 1.000000

.000000




m

Table 3.1/1b/

2 o5 2

¢ G af o Vg S

0 0.13247 0.36396 2.74748 1.06418 0.000000
0.1 0.114025 0.33768 2.96142 1.05547 0.105547
0.2 0.097023 0.31149 3.21042 1.04739 0.209478
0.3 0.081328 0.28518 3.50655 1.03987 0.311961
0.4 0.066822 0.25850 3.86848 1.03287 0.413148
0.5 0.053404 0.23109 4.32726 1.02635 0.513175
0.6 0.040988 0.20245 4.93937 1.02029 0.612174
0.7 0.029500 0.17176 5.82222 1.01464 0.710248
0.75 0.024083 0.15519 6.44384 1.01197 0.758978
0.8 0.018875 0.13739 7.27874 1.009393 0.807514
0.85 0.013869 0.11777 8.49136 1.006910 0.855874
0.9 0.009057 0.095168 10.50770 1.004518 0.904066
0.95 0.004436 0.066606 15.01359 1.002216 0.952105
0.98 0.001752 0.041862 23.888195 1.000876 0.980858
1.0 0.000000  0.000000 o 1.000000 1.000000
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Table 3.1/1¢c/

an.2

R (;;3) g_;_? :,—,25 14" 5

0 0.21744 0.46631 2.14451 1.10338 0.000000
0.1 0.182852 0.42761 2.33857 1.08759 0.108759
0.2 0.152249 0.39019 2.56285 1.07343 0.214686
0.3 0.125035 0.35360 2.82803 1.06068 0.318204
0.4 0.100742 0.31740 3.15061 1.04916 0.419664
0.5 0.079002 0.28107 3.55780 1.03875 0.519375
0.6 0.059514 0.24395 4.09912 1.02933 0.617598
0.7 0.042047 0.20505 4.876717 1.02081 0.714567
0.75 0.034008 0.18441 5.42262 1.01686 0.762645
0.8 0.026404 0.16249 §.15411 1.01312 0.810496
0.85 0.019216 0.13862 7.21387 1.00956 0.858126
0.9 0.012429 0.11149 8.96978 1.00620 0.905580
0.95 0.006027 0.07763 12.88099 1.00301 0.952860
0.98 0.002367 0.04865 20. 55420 1.00118 0.981156
1.0 0.000000 0.000000 o< 1.00000 1.000000




Table 3.1/1d/

7 (22)° %2 a5 V’*‘aé’)
5 d s d’?

0 0.333333 0,.577350 1,73205 1.154703 0.000000
0.1 0.273203 0.522687 1,91319 1.128362 0,112836
0.2 0.222426 0.471620 2.12035 1.105634 0,221127
0.3 0.179031 0.423121 2.36339 1.08583 0.325749
0.4 0.141608 0.376308 2.65740 1.06846 0.427384
0.5 0.109141 0.330365 3.02696 1,053158 0.526579
0.6 0.080864 0.284366 3.51659 1.039647 0.623788
0.7 0.056200 0.237065 4,21825 1.027715 0.719401
0.75 0.045082 0.212325 4.709756 1.022293 0.766720
0.8 0.034710 0.186306 5.36750 1.017207 0.813766
0.85 0.025046 0.158259 6.31874 1.012446 0.860579
0.9 0.016059 0.126724 7.89116 1.007998 0.907198
0.95 0.007718 0.087851 11,38297 1.003851 0.953659
0.98 0.003015 0.054905 18.21316 1.001506 0.981476
1.0 0.000000 0.000000 oo 1.000000 1.000000
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3.2. CALCULATION OF THE INTEGRAL, ESPECIALLY

d$
aT o dT].

1-4 n
Calculation of the integral ; =ﬁ( n) * dn is made by the

0
trapezoidal rule except for the last interval 0.98 = 5 3 1 , where
this rule is not usable because f( n ) tends to infinity for n = 1.
4

In this region ( g-"-) in the formula 3.1.(13) can be completely
neglected, and we get s

(14) g% =

b+ 273-2m - o
a-2n+m- f

We substitute :
=1-A s f =1 - 24 +A% , whered is small in relation
- dA and find tol,

n =
€ =\/b + 2 (1-m) -24(1-2m) - 2 m -A?
1 (@a-2+m)+ 24(1 -m) + m-A?Z2
According to 3.1.(10) and 3.1.(12) :
a -2+ m=0 , consequently

d§ \/b+2(1 1'2415_2(1[ ) 2b2§1 )
+ -m) | +2(1-m 24" 5y -m
(15) I - m_r(__rl

4. (o

I . m
1+ 5 A T
In (15) the latter square root is expanded into a series, and

considering that A is small compared with 1 we get, neglecting
terms with 4 ® and higher powers :

d b+2(1- -1/2 1 m 1-2m
I%WT(I‘E?L'A A '{1‘1'4’[1-—m+4'5r2‘(1—;-m]
m
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By integration we find :

dg-dn-—‘ g—g——.dd

n
1- 0

a
FRVEVE=T= P R g e

2 m 2 m 1-2m
A% 0B 2w eraom)

4 el (2 )

The constants b and m are known for each value of ¢ from the
above-mentioned calculations (compare the formula 3.1.(13) with 3.1.
(13a), 3.1. (13b), 3.1.(13c) and 3.1.(13d).

For|p = 159, b = 24.536516 , m = 0.238357 we find :

(16a) S‘ g% .dn = 8.272272-1/4-{1 - 0.0327734 + 0.00028145,
) .
02

+

aH

-A
For 4 = 0.
1
(16aa)S g% dq = 1.169876-{1 - 0.00065546 + 0.000000112}
0.98
= 1.169109.
For [@ = 209, b = 11.78125 , m = 0.43929 we find

1
(16b) S gqé - dn = 6.78400°)4 {1 - 0.0684274 + 0.005059242}.
1-4

For 4= 0.02

(16bb)sl ‘-id%— . dys= 0.959400-[1 - 0.00136854 + 0.00000202}
0.98

= 0.958089.
For|@ = 250 , b = 7.48700 5 m

(16¢) f %En— - dn = 5.84926-VA—'{1 - 0.1015234 + 0.014835A2}_
1-4

0.56234 we find
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0.827208- { 1 - 0.00203046 + 0. 00000593}

Can )
ot
o

1)

(¢]
N

L’-.s_
o
=

(o

=

I

0.98
= 0.825533.
For [¢ = 30°| b = 4.06044 m = 0.64652 we find

N Fl

(16d) 5 g-‘ng- - dn= 5.19364-\/4_-{1 -0.13194 + 0.0296A2}_
1-4

Ford = 0.02

(16dd)£} g_flg_ - d n = 0.734490" { 1-0.02638 + 0.00001184}
.98

= 0.732561.

3.3. NUMERICAL INTEGRATION. COMPUTATION OF 1
VALUES FOR @ = 15°, 200, 259 and 300,

The shape of the bank-part of the bottom, i.e. between
n=0andn =1, wherey = Ymax’ Can NOW be computed ( Tables
3.3./2a/b7c/d/ for @ = 150, 20°, 25° and 30° respectively).

For each interval in n the mean value of the two
neighbouring values of d § is found, and
n

1, d d d §
Agl,nn = 2'{(335‘)11 ¥ (a%nﬂ} Aan = Q@) An

m
For the last interval in q from 0.98 to 1.0

3
4as _S g—g - dn, which are found in
13,14 " oo 1

formulae3.2. (16aa), (16bb), (16cc) and (16dd).

The values of g n are found by successive addition of 4 g



@=15°. Table 3.3/2a/
as (9’_5 a
0. 3.73205 0
3.85429 0.385429
0.1  3.97653 0.385429
4.11969 0.411969
0.2  4.26285 0.797398
4.43410 0.443410
0.3  4.60535 1.240808
4.81586 0.481586
0.4  5.02636 1.722394
5.29472 0.529472
0.5  5.56309 2.251866
5.92328 0.592328
0.6  6.28347 2.844194
6.80637 0.680637
0.7  17.32926 3.524831
7.69925 0.384963
0.75  8.06924 3.909794
8.56810 0.428405 |
0.8  9.06696 4.338199
9.79445 0.489723
0.85 10.52195 4.827922
11.73643 0.586821
0.9 12.95091 . 5.414743
15.67860 0.783930
0.95 18.40628 6.198673
. 23.79777 0.713933
0.98 29.18927 6.912606
1.169109
1.0 B = 8.081715

15
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7= o]

Table 3.3/2b/

7 a8  25) ¢ g
an ar’/m

0. 2.74748 0
2.85445 0. 285445

0.1 2.96142 0.285445
3.08592 0.308592

0.2 3.21042 0.594037
3.35849 0.335849

0.3 3.50655 0.929886
3.68752 0.368752

0.4 3.86848 1.298638
4.09787 0.409787 ‘

0.5 4,.32726 1.708425
4,.63332 0.463332

0.6 4.93937 2.171757
5.38080 0.538080

0.7 5.82222 2.709837
6.13303 0.306652

0.75 6.44384 3.016489
6.86129 0.343065

0.8 7.27874 3.359554
7.88505 0.394253

0.85 8.49136 3.753807
9.49953 0.474977

0.9 10.50770 4.228784
12.76065 0.638033

0.95 15.01359 4.866817
19.45090 0.583527

0.98 23.88820 5.450344

- 0.958089
1.0 B= 6.408433




= 25°, Table 3.3/2c/
7 as Qili) a8 g
anr A p/m
2.14451 0

2.24154 0.224154

0.1 2.33857 0.224154
2.45071 0.245071

.2 2.56285 0.469225
2.69544 0.269544

.3 2.82803 0.738769
2.98932 0.298932

.4 3.15061 1.037701
3.35421 0.335421

.5  3.55780 1.373122
3.82846 0.382846

.6 4.09912 1.755968
4.48795 0.448795

.7 4.87677 2.204763
5.14970 6.257485

.75  5.42262 2.462248
5.78837 0.289419

.8  6.15411 2.751667
6.68399 0.334200

.85 7.21387 3.085867
8.09183 0.404592

.9 8.96978 3.490459
10.92539 0.546270

.95 12.88099 4.036729
16.71760 0.501528

.98  20.55420 4.538257
0.825533

.0 B = 5.363790
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@ = 30°. Table3. 3/2d/

7 (%5 (O.L_-S a $ s

: n o rim

0 1.173205 0
1.82262 0.182262

0.1  1.91319 0.182262
2.01677 0.201677

0.2  2.12035 0.383939
2.24187 0.224187

0.3  2.36339 0.608126
2.51040 0. 251040

0.4  2.65740 0.859166
2.84218 0,284218

0.5  3.02696 1.143384
3.27178 0.327178

0.6  3.51659 1.470562
3.86742 0.386742

0.7  4.21825 1.857304
4.46401 0.223200

0.75 4.70976 2.080504
5.03863 0.251932

0.8  5.36750 2.332436
5.84312 0.292156

0.85 6.31874 2.624592
7.10495 0.355248

0.9  17.89116 2.979840
9.63707 0.481854

0.95 11.38297 3.461694
14.79807 0.443942

0.98 18.21316 3.905636

732561
1.0 B = 4,638197
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4. DETERMINATION OF PERIMETER, AREA
AND DISCHARGE FOR "BANK-PART"AND
" MIDDLE-PART. PRINCIPLE OF MINIMUM
WORK.

4.1. INTRODUCTION.

The profile determined in the foregoing section should
be stable against erosion for every value of n between zero and one
as long as the limiting tractive force is not exceeded. The relative
width of the curved sloping bottom at one side of the axis of the
channel is called B = 1.0

The absolute width of this part of the cross section is
B . , and the corresponding parts of the perimeter, area and
dlschrélra‘xe are called UB F[3 and Q‘3 respectlvely This part of the

cross section is called the "bank- part . (Fig.3). The shearing
stress in this part varies between 1 = 0 for ( § = = 0) and
T = for (§ =B, n = 1), and it is evident that another half
crossuéectlon consisting of the said "bank-part" and a "middle-

part" with constant depth . (P and an arbitrary width Po T minx

between the " bank- part and the axis should be equally stable
The perlmeter, area and discharge of such a "middle-part" are
called UB BO and QB respectively.

So far an infinity of possible solutions seem to exist for
fixed values of the total discharge of the half-section Q = Q‘3 + QBo
and for - and @-

If we imagine, however, that the profile is eroded
gradually in a uniform mass of sand at a constant discharge Q,- the
intensity of the erosion will steadily diminish, and the profile must
asymptotically approach the state of equilibrium commensurate
with the sand grains in all parts of the bottom being in a state of
incipient motion.

It thus seems natural to assume the principle of minimum
of work and assume that nature will produce the profile that
requires a minimum of erosion, i.e. a minimum of the cross
section F = F, + F According to this principle only one definite
equilibrium px%flle gan exist for fixed values of Q, L— and @ .

We therefore proceed to find the cross sections FB and
Fﬂo and the discharges QB and QBo' where_upon the indeterminate
quantity BO is fixed in such a way that it causes F = FB + FBo
to be a minimum for a fixed value of Q = QB + QBo' or the total

discharge in the half cross section, and for fixed values of =1

andcp . max
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4.2, DERIVATION OF FORMULAE FOR MEAN VELOCITY, AREA
AND DISCHARGE OF AN ELEMENT OF THE CROSS SECTION,

As previously mentioned, it is assumed that the loga-
rithmic law of velocity distribution is valid, and that the velocity
at a point P, situated at the distance z from the bottom, and :
measured perpendicularly to the bottom element ds, will depend
exclusively on the shearing stress 7 on this element and on the
distance z.

The length of the normal to the water surface is
(Fig. 4)

(1% %) "8 @ - 5 ° Ymax
From equation 1,(1) we get by means of (17) :
z
SO . S
(ta) B - cosa B

"max Ymax Y max
The values of g are compiled in Tables 3.1/la/b/c/d/ -
We consequently have :

\4
(19) —— =848 + 2.5In ,

*.&

where k is the equivalent sand roughness of the bottom supposed to
be constant for the whole width of the channel.

If the element of the cross section shown in Fig.4 had
a constant width equal to the base ds, the mean velocity in such
an element could be found as the velocity at a point 0.3679 - Zg

from the bottom. The curvature of the bottom is slight, so that it
is considered permissible to disregard this and find, at the same
distance, the mean velocity in the actually wedge-shaped element
v ; but for the computation of the element area and its dis-
cfﬁ’rge the wedge-shape must be taken into account.

We consequently get :
T b
_ : max .., Tmax
% “FE ¥ ¢ {8.48 + 2.5 In (0.3679- & T)}

(20) Ve ® 2.5} }éﬁ -]/%_-{m (11 Ymax) + In gj

The area of the surface-element (Fig.4), with base ds,
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measured between the bottom and the water-surface, and when r
is the radius of curvature of the bottom, will be

r-z z

o 0

Zq )=zo-ds-(1-2?)

For the radius of curvature r we have

(21) dF = gz - ds-(1+

% k= or from 2.1.(6a)b)c)d)

(——;‘ )
(22) i s af

(ymax) [“(T%_)ajslz

y -d§ -‘/ 2
(23) S = cogxoz - n:::; a ® Ymax (d§ Yyl + (g—%—)

a7 29 = & Ymax
From (21), (22), (23) and (17) we finally get

- (ﬁ) J
[+ ]

2
(ge)
(24) F_-g. @gY1+ (!a"?)z # 1 §___§_
Ymax 1+ (a_"L)

By the following calculations with ﬁmte dlfferences we
introduce the mean values of g and [1 + ( )J for the sides
of the element in question and put A€ for d g and 4 (as—) for

dF

g.ymax (d§ 1+(a_ﬂ§_) {1+2

( 5 1) (24) then takes the form
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2 d
gt )+ Sm A
m

s
()

ymax

where subscript m signifies mean values.

Accordingly the mean velocity in the element considered
is taken from (20)

Vm, €m = 2 Wm@{ln( ma"“ng}

The discharge A Q in the elementA F is :

aQ _ max] dn 2 3/2
(25) — [ {mg)ﬂh + A

2
2.5 ? Yrnax

A o L) s

2(1+ G,

dn 5/2
+ __!_A(a—) . gm - ln gm}

B

4.3. FORMULAE FOR THE QUANTITIES S AND FOR DIMENSION-
LESS VALUES OF PERIMETER, AREA AND DISCHARGE u,,
F' AND Q RESPECTIVELY VALID FOR THE " BANK-PART,
"MIDDLE-PART" AND FOR THE TOTAL HALF-SECTION.

The following notations are introduced :

(26) S, i:l(Ag) -(\/1 + (g_'l___)a)m
imé) (Vr+ 6 i 2)!; 5

n=0

@7 s,

32

m

n=1
@) sy, - Qa1+ <§§—>2)°§
n=0 i



(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

37)

(38)

SEC. 4.3.

83,1 = Z(“;) (V‘ * (g‘%—)m' g
=0
q=l

S1.2='Z: s - atay

- m dnq 2
=0 2(1+(a?))m

[ V]
-
N
"
|
[\a{}%
[y
VYo,
iy X
[\
P
o
N

wm
ll|
[
V¥
w
b
e
BW

1= 51,1 " 5,2
Sg =851 -85 2
S3 =831 -83 4

23

-

For the "ba.nk-—part" of the cross section we find the
following dimensionless expressions for perimeter, area and
discharge.

Up g
. - 0
F
B _ _ _
> = 51,1 7 5,2° 5
ymax
o = (S, 4~ 8 )111(1—1;—1 Loy
e 2,1 52,2
max 2
25 7o~ * Ymax
+ 831-53 5
11

ymax
= 82 ln(—k—— + SS .
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(26a)
(27a)
(28a)
(29a)

(37a)

(38a)

(39)

(40)
(41)

(42)

(43)

(44)

SEC. 4.3.

For the "middle—part" of the section we have

dn d

=0 ’ A =0 >
Ty (Tg) €m
and thereby

So = Po
Sl,l = By (30a) 81’2 =0
Sz’1 = By (31a) 82,2 =0
S3,1 =0 (32ay 83,2 =0
Ys,0
—= = By
Y max
T80 _ 4
£ =
Ymax

Q 11y

B,0 _ max

T ¥ = Po ln( k )
2.5 max .y 2
. S) max
We put for the total half-section of the channel
U = UB + UB,O
F = F‘3 + FB,O
Q = QB + QB 0’ and find from (36), (37), (38), (36a)

(37a), (38a)

R
U = —— = 8§ + B
max
., _ _F
F’ = - =8 + B
ymax
1
Qr = Q = (S, + B )1n(-1;¥23§1+-s
- " 2" Po 3°
2.5 max 2

9 ymax

1



SEC. 4.4. 25

4.4. DETERMINATION OF Po CORRESPONDING TO MINIMUM
OF CROSS SECTION.

For a fixed value of @ the quantities S, S, and Sq
are constants, and if further Q, L— 9 and k are constant,

equation 4. 3.(44) represents a relation between Po and y
which must be satisfied :
11

_ Q Ymax
(44a) Yy = 7 = (Sy + Bg) In( )-83=0
2.5Y -2 . 2
: Q Ymax
together with

= 2
(43a) F = (S + By Ypay -

max

and to obtain a minimum
Lagrange’ s method

F is a function of B, and y
value of F simultaneously withy =0,
gives the following condition :

max’

oF 9F
(55—) ( )
2B oy
0 = — 5 hence
Z] 2
(_g’_ ) v
9k ( aymax)
y max2 _ 2(Sl * B0) Ymax
11 Ymax i Q 2 SZ + ﬁ0 =
- ln(T_) - = - . -
2 5‘/-ma.x 3 Ymax
: ? Ymax
11y
Q - max, , 1 k
T - (S; + Bg) In(———)+ 5 (S, + Bj) = 0.
2.5 ° * Fa
When deducting (44a) the result is :
14 Ymax
(45) BO = 2(S1 - Sz) ln(—R——)- (82 + 2 83) 5

which gives the value of Po corresponding to a minimum of F.



26 SEC. 4.5.

4.5. FORMULAE VALID FOR THE OPTIMAL PROFILE FOR
DIMENSIONLESS VALUES OF PERIMETER, AREA, DIS-
CHARGE, MEAN VELOCITY, HYDRAULIC RADIUS, WIDTH

OF WATER SURFACE, SLOPE, SHEARING VELOCITY AND

FULLNESS OF THE PROFILE, ALL EXPRESSED BY THE
QUANTITIES S AND B.

It follows from the foregoing section 4.4. that

11y
max
(46) Sy + By = 2(S; - S) In(— =)+ (S, - S, -~ 2 S5) and
5 11 ymax
(47) S, + By = 2(S; - Sy) In(—p——)- 2 S4
4.4.(45), (46) and (47) are introduced in 4. 4. (42),
4.4,.(43) and 4.4.(44) resulting in :
[a b a B o o~ B I T (s . 5, ~ 28
148) U = 5 = 2(8;= Sy) In[———)* (Sy - S, - 2 5y)
max
: 11y
s F max
(49) F - = = 2(5, - S,) In(—22%X) (s, - S, - 2 Sg)
ymax
" Q 2 1 Yrmax
(59)| Q = — = 2(S; -S,) In (__k__
2 %/_max .
max

11y
*max
- 235, 1n(—k—-)+ S,.

Equations (48), (49) and (50) are valid for the profile
with a minimum of cross sectional area.

For the mean velocity

v_ = % we get, dividing (50) by (49) :

) i/;max . (s1)

1% y
2(S; - S )1n2(—E__) 28 1n(—1€2131)+ Sg

ym
2(S; - S,) ln(—k—)+ (Sy- S, - 2 8y)

We want to introduce the slope of the water surface I

(uniform motion assumed) and the hydraulic radius R of the cross
section and find that the total shearing force K for the half cross

section F must be :
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(52) K= YFI = jj T ds; we further have
0
d 2)
4.2(23a) as =42 (V1 2
(@) as 45 -(V1+ @) - via

4.2(1a) T §m T

.
= : dn | .
S:-rds S Ymax © “mak ,,.Z As (\/1 + (H%))m s’nwo

and from 4.3(27)

(53) Sj T - ds
0

As x = g¢g (52) gives with By from 4.4.(45)

"ne

(Sl,l + Bg) - Ymax ° "max -

F1I
(54 P ol i a8 A o
) - (max 1,1 %A 2(; - S,) 1n( — e
Ymax Q
+ (5, 1 =89 -28y)
For the hydraulic radius R we find by 4. 3. (42)
R’ - _R F - F . i
Ymax T "Ymax Ym 2 (S0 + By) SO + By

and by (49) and B, from 4.4.(45)
1y,
] o 28, - 8y m(j‘_)+ (S; - S ~2 Sy)

2(s, - S,) m(jﬂ% (S - Sy - 2 Sg)

For the shearing velocity v, we have

max
—) Sy + By
V" _g?T{T— = 5,17 Bo

11y
max
2(S, - S,) In(— 225 (s, - S, - 2 Sg)
11y
2(S; - S,) In(— )+ (S) | - S, - 28y) -
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For the width B of the half profile at the water surface

we find
11

: 3
2 = (B + Bg) = 2(S; - Sy) In(—22X)+ (B-5,-25y).

ymax

]
We later apply the term 2€, " degree of fullness. of the
cross section, which is defined by

11y
. F Cp Sy * By 2(5-8,) In(— (S; -S,-2S,)
= S ALY

67| B -

Iy
2(S;=S,) In(—p—) +(B-S,-2S;)
found by using (49) and (57).

4.6. EVALUATION OF NUMERICAL VALUES OF THE
QUANTITIES S.

It remains to compute the numerical values of
Sg: Sy» S, and S, for @ = 15°, 20°, 25° and 30°.

The calculations are given in Tables 4.6./3a/b/c/d/. The

fundamental values of J/1 + (g"?)2 , €, g—'gL and ( 1+ (%1{)2)

are to be found in Tables 3.2./la/b/c/d/, whereas & é’ is found
in Tables 3.4./2a/b/c/d/. The calculations are made from the
formulae 4.3.(26) through 4. 3. (35).

The results are compiled in Table 4.6./3e/.
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@ - 15°. Table 4.6/3a/
2 ar.?

” \/;+(.g;_;z-) & 5, 45 (\//+(5,-§-) )
0 1.035276 0

0.051557 0.385429 1.033206
0.1 1.031135 0.103114

0.154272 0.411969 1.029141
0.2 1.027147 0.205430

0.256211 0.443410 1.025225
0.3 1.023303 0.306991

0.357416 0.481586 1.021451
0.4 1.019599 0.407840

0.457927 0.529472 1.017814
0.5 1.016028 0.508014

0.557783 0.592328 1.014307
0.6 1.012585 0.607551

0.657018 0.680637 1.010925
0.7 1.009265 0.706485

0.731111 0.384963 1.008458
0.75 1.007650 0.755737

0.780294 0.428405 1.006857
0.8 1.006064 0.804851

0.829341 0.489723 1.005285
0.85 1.004506 0.853830

0.878255 0.586821 1.003742
0.9 1.002977 0.902679

0.927040 0.783930 1.002226
0.95 1.001475 0.951401

0.965988 0.713933 1.001031
0.98 1.000587 0.980575

0.990288 1.169109 1.000294
1.00 1.000000 1.000000

To be continued



Table 4.6/3a/ (continued)

4as’ = ' %

7 4 7_'_(5_;2)2)," as-5, Vs_m AS'Sm —in Srn
0

0.398228 0.020531 0.227062 0.004662 2.96507
- 0.423974 0.065407 0.392775 0.025690 1.86904
02 0.454595 0.116472 0.506173 0.058955 1.36176
07 0.491917 0.175819 0.597843 0.105112 1.02886
0.4 0.538904 0.246779 0.676703 0.166996 0.78104
%% 4. 600802 0.335117 0.746849 0.250282 0.58379
0-° 0.688073 0.452076 0.810566 0.366437 0.42004
0 0.388219 0.283831 0.855050 0.242690 0.31319
il 0.431343 0.336574 0.883343 0.297310 0.24808
0.8 0.492311 0.408294 0.910682 0.371826 0.18713
089 0.589017 0.517307 0.937153 0.484796 0.12982
0-9 0.785675 0.728352 0.962829 0.701278 0.07576
099 0.714669 0.690362 0.982847 0.678520 0.03461
SR 1.169453 1.158095 0.995132 1.152457 0.00976
0 ¥8. 167180 +5. 535016 ¥4.907011

= By = 8.1 = By 1

To be continued
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o.
®=15 Table 4.6/3a/ fostitinmed)
—qs.€%.ln an ol an? o.[1+ 4127

z? ‘AS.SLv -sk Cigi "c:;) /hf(aég) 2?17 (EZEJ,n
0 0.267949 1.071797

0.013823 0.016473 2.135037
0.1 0.251476 1,063240

0.048016 0.016891 2.118270
0.2 0.234585 1.055030

0.080283 0.017446 2.102179
0.3 0.217139 1.047149

0.108146 0.018187 2.086731
0.4 0.198952 1.039582

0.130431 0.019196 2.071894
0.5 0,179756 1,032312

0.146112 0.020608 2.057640
0.6 0.159148 1.025328

0.153918 0.022708 2.043944
0.7 0.136440 1.018616

0.076008 0.012513 2.033974
0.75 0.123927 1.015358

0.073757 0.013636 2.027522
0.8 0.110291 1.012164

0.069580 0.015252 2.021196
0,85 0.095039 1.009032

0.062936 0.017824 2.014994
0.9 0.077215 1,005962

0.053129 0.022886 2.008914
0.95 0.054329 1.002952

0.023484 0.020070 2.004126
0.98 0.034259 1.001174

0.011248 0.034259 2.001174
1,00 0.000000 1.000000

~-1.050871
=53,

To be continued
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= 15°, Table 4.6/3a/ (continued)
—7?') 52 A(S—z) % A( 44(% ) S

7 e, o g S 2, S
0

0.007716 0.002658 0.000021 0.000005 0.000015
o 0.007974 0.023800 0.000190 0.000075 0.000140
0 0.008299 0.065644 0.000545 0.000276 0.000376
0 0.008716 0.127746 0.001113 0.000665 0.000684
04 0.009265 0.209697 0.001943 0.001315 0.001027
0 0.010015 0.311122 0.003116 0.002327 0.001358
0° 0.011110 0.431673 0.004796 0.003887 0.001633
0 0.006152 0.534523 0.003288 0.002811 0.000880
s 0.006725 0.608859 0.004095 0.003617 0.000897
0e 0.007546 0.687806 0.005190 0.004726 0.000884
085 0.008846 0.771332 0.006823 0.006394 0.000830
0-° 0.011392 0.859403 0.009790 0.009426 0.000714
0.9 0.010014 0.933133 0.009344 0.009184 0.000318
098 0.017119 0.980670 0.016788 0.016706 0.000163
- +0.067042 +0,061414 - 0.009919

=81,2 53,2 =83



Table 4.6/3b/

33

7 \//+/gg)2 5

S» 4§ (\/7+(§'—§)2)m

0.75

0.85

0.95

0.98

1.00

1.

1;

06418

05547

.04739
.03987
.03287
.02635
.02029
.01464
.0119%
.009393
.006910
.004518
.002216
.000876

.000000

0.105547
0.209478
0.311961
0.413148
0.513175
0.612174
0.710248
0.758978
0.807514

0.855874
0.904066
0.952105
0.980858

1.000000

.052774 0.285445 1.05983
.157513 0.308592 1.05143
.260720 0.335849 1.04363
.362555 0.368752 1.03637
.463162 0.409787 1.02961
.562675 0.463332 1.02332
.661211 0.538080 1.01747
.734613 0.306652 1.01331
.783246 0.343065 1.01068
.831694 (1.394253 1.008152
.879970 0.474977 1.005714
.928086 0.638033 1.003367
.966482 0.583527 1.001546

.990429 0.958089 1.000438

To be continued
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jqo 20°. Table 4.6/3b/ (continued)
as’= ’

% Ag.(ypgg/z 4as-5, \/%: 45 - 5:5 —(n§,
0

0.302523 0.015965 0.229726 0.003668 2.94173
o 0.324463 0.051107 0.396879 0.020283 1,84824
il 0.350502 0.091383 0.510607 0.046661 1.34431
. 0.382164 0.138555 0.602125 0.083427 1,01458
0.4 0.421921 0.195418 0.680560 0.132994 0.76968
et 0.474137 0.266785 0.750117 0.200120 0.57505
0.8 0.547480 0.362000 0.813149 0.294360 0.41368
07 0.310734 0.228269 0.857096 0.195648 0.30841
Fe 0.346729 0.271574 0.885012 0.240346 0.24430
08 0.397467 0.330571 0.911973 0.301472 0.18429
— 0.477691 0.420354 0.938067 0.394320 0.12786
09 0.640181 0.594143 0,963372 0.572381 0.07463
i 0.584429 0,.564840 0.983098 0.555293 0.03408
e 0.958509 0.949335 0.995203 0.944781 0.00961
1.00

6.518930 +4.480299 +3.985754

= S =8y 1 = 591

To be continued




Table 4.6/3b/

(continued)

% an an +(U'22 1'2_7
? s S (L .

n —as§ing as MAGg) 7 d;) 2:(1*(38)rm
0 0.36396 1.13247

0.010790 0.02628 2.246495
0.1 0.33768 1.114025

0.037488 0.02619 2.211048
0.2 0.31149 1.097023

0.062727 0. 02631 2.178351
0.3 0.28518 1.081328

0.084643 0.02668 2.148150
0.4 0.25850 1.066822

0.102363 0.02741 2.120226
0.5 0.23109 1.053404

0.115079 0.02864 2.094392
0.6 0.20245 1.040988

0.121771 0. 03069 2.070488
0.7 0.17176 1.029500

0. 060340 0.01657 2.053583
0.75 0.15510 1.024083

0.058717 0.01780 2.042958
0.8 0.13739 1.018875

0.055558 0.01962 2.032744
0.85 0.11777 1.013869

0.050418 0. 022602 2.022026
0.9 0.095168 1.009057

0.042717 0.028562 2.013493
0.95 0.066606 1.004436

0.018924 0.024744 2.006188
0.98 0.041862 1.001752

0.009079 0.041862 2.001752
1.00 0.000000 1.000000

-0.830614

= 531

To be continued
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= 20°, Table 4.6/3b/ (continued)
_4(%") §2 §z“,(gl’z) 5‘{24(3), ;{54(%2),/,73
an, S S e, S
0
0.011698 0.002785 0.000033 0.000008 0.000024
o 0.011845 0.024810 0.000294 0.000117 0.000216
02 0.012078 0.067975 0.000821 0.000419 0.000563
03 0.012420 0.131446 0.001633 0.000983 0.000997
0 0.012928 0.214519 0.002773 0.001887 0.001452
0 0.013675 0.316603 0.004330 0.003248 0.001868
. 0.014823 0.437200 0.006481 0.005270 0.002180
et 0.008069 0.539656 0.004354 0.003732 0.001151
070 0.008713 0.613474 0.005345 0.004730 0.001156
0-° 0.009652 0.691715 0.006676 0.006088 0.001122
089 0.011173 0.774347 0.008651 0.008115 0.001038
00 0.014185 0.861344 0.012218 0.011770 0.000878
099 0.012334 0.934087 0.011521 0.011326 0.000386
f'iz 0.020913 0.980950 0.020515 0.020417 0.000196

+0.085645 +0.078110 -0.013227

51,2 T Sy

S3. 2
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Table 4.6/3c/

37

7 V(22 s

s, a5 (Y«

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95
0.98
1.00

1.10338
1,08759
1.07343
1,06068
1.04916
1,03875
1.02933
1.02081
1.01686
1.01312
1.00956
1.00620
1.00301
1.00118

1.00000

0

0.108759
0.214686
0.318204
0.419664
0.519375
0.617598
0.714567
0.762645
0.810496
0.858126
0.905580
0.952860
0.981156
1.000000

0.054380
0.161723
0.266445
0.368934
0.469520
0.568487
0.666083
0.738606
0.786571
0.834311
0.881853
0.929220
0.967008

0.990578

0.224154
0.245071
0.269544
0.298932
0.335421
0.382846
0.448795
0.257485
0.289419
0.334200
0.404592
0.546270
0.501528
0.825533

1.09549

1.08051

1.06706
1.05492
1.04396
1.03404
1.02507
1.01884
1.01499
1.01134
1.00788
1,00461
1.00210

1.00059

To be continued
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Table 4.6/3c/ (continued)
as'’= %

Vi A;{ié,.{:jl;}z as'g. V?; as" §,,, "lﬂgm
0

0.245558 0.013353 0.233195 0.003113 2,91180
0-1 0.264802 0.042825 0.402148 0.017222 1.82187
il 0.287620 0.076635 0.516183 0.039558 1.32259
03 0.315349 0.116343 0.607399 0.070667 0.99714
0-4 0.350166 0.164410 0.685215 0.112656 0.75604
0-5 0.395878 0.225051 0,753981 0.169684 0.56477
ol 0.460046 0.306429 0.816139 0.250089 0.40634
0.7 0.262336 0.193763 0.859422 0.166524 0.30299
075 0.293757 0.231061 0,.886888 0.204925 0.24007
et 0.337990 0.281989 0.913406 0.257570 0.18115
085 0.407780 0.359602 0.939070 0.337691 0.12573
0-9 0.548788 0.509945 0.963961 0.491567 0.07341
095 0.502581 0.486000 0.983366 0.477916 0.03355
0-98 0.826020 0.818237 0.995278 0.814373 0.00947
1.00

+5.498671 +3.825643 +3.413555
= 5o = By1 = 8.1

To be continued
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Table 4.6/3c/

39

(continued)

2
. dn _ d an)® o/1(2L2)]

n -asgiing T -a(ZP) (GR) 2[HEE),
0 0.46631 1,217447

0.009064 0.03870 2.400299
0.1 0.42761 1.182852

0.031376 0.03742 2.335101
0.2 0.39019 1.152249

0.052319 0.03659 2.277284
0.3 0.35360 1.125035

0.070465 0.03620 2.225771
0.4 0.31740 1.100742

0.085172 0.03633 2,179744
0.5 0.28107 1.079002

0.095832 0.03712 2.138516
0.6 0.24395 1.059514

0.101621 0.03890 2.101561
0.7 0.20505 1.042047

0.050455 0.02064 2.076055
0.75 0.18441 1.034008

0.049196 0.02192 2.060412
0.8 0.16249 1.026404

0.046659 0.02387 2.045620
0.85 0.13862 1.019216

0.042458 0.02713 2.031645
0.9 0.11149 1.012429

0.036086 0.03386 2.018456
0.95 0.07763 1.006027

0.016034 0.02898 2.008394
0.98 0.04865 1.002367

0.007712 0.04865 2.002367
1.00 0.00000 1.000000

-0.694449

S

To be continued
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Table 4.6/3c/

(continued)

= 51’2

=559

=839

a(%y) 2 A(53) A(aé‘)

L 2[77?;;? S 2[/ d'?)] 277%}1 W]”f
0

0.016123 0.002957 0.000048 0.000014 0.000041
l 0.016025 0.026154 0.000419 0.000169 0.000308
0-2 0.016067 0.070993 0.001141 0.000589 0.000779
0-? 0.016264 0.136112 0.002214 0.001345 0.001341
0.4 0.016667 0.220449 0.003674 0.002517 0.001903
e 0.017358 0.323177 0.005610 0.004230 0.002389
06 0.018510 0.443667 0.008212 0.006702 0.002723
07 0.009942 0.545539 0.005424 0.004662 0.001413
075 0.010639 0.618694 0.006582 0.005837 0.001401
. 0.011669 0.696075 0.008122 0.007419 0.001344
085 0.013354 0.777665 0.010385 0.009752 0.001226
09 0.016775 0.863450 0.014484 0.013962 0.001025
095 0.014429 0.935104 0.013493 0.013269 0.000445
098 0.024296 0.981245 0.023840 0.023727 0.000225
1.00

+0.103648 +0.094194 -0.016563
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QP Table 4.6/3d/

n V% s 5, as (VD)

0 1.15470 0

0.056418 0.182262 1.14153
0.1 1.12836 0.112836

0.166982 0.201677 1.11700
0.2 1,10563 0.221127

0.273438 0.224187 1.09573
0.3 1.08583 0.325749

0.376567 0.251040 1.07715
0.4 1.06846 0.427384
: 0.476982 0.284218 1.060809
0.5 1,053158 0.526579

0.575184 0.327178 1.046403
0.6 1.039647 0.623788

0.671595 0.386742 1.033681
0.7 1,027715 0.719401

0.743061 0.223200 1.025004
0.75 1.022293 0.766720

0.790243 0.251932 1.019750
0.8 1.017207 0.813766

0.837173 0.292156 1.014827
0.85 1.012446 0.860579

0.883889 0.355248 1.010222
0.9 1,007998 0.907198

0.930429 0.481854 1.005925
0.95 1.003851 0.953659

0.967568 0.443942 1.002679
0.98 1,001506 0.981476

0.990738 0.732561 1.000753
1,00 1.000000 1.000000

To be continued
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= 30, Table 4.6/3d/ (continued)
4as’=

7 as(i@) 4ss, VS, asst -ins,
0

0.208058 0.011738 0.237525 0.002788 2.87500
o1 0.225273 0.037617 0.408634 0.015372 1.78987
o2 0.245648 0.067169 0.522913 0.035124 1.29668
0 0.270408 0.101827 0.613651 0.062486 0.97666
o 0.301501 0.143811 0.690639 0.099321 0.74028
0° 0.342360 0.196920 0.758409 0.149346 0.55307
00 0.399768 0.268482. 0.819509 0.220023 0.39810
01 0.228781 0.169998 0.862010 0.146540 0.29697
07 0.256908 0.203020 0.888956 0.180476 0.23541
08 0.296488 0.248212 0.914972 0.227107 0.17773
-89 0.358879 0.317209 0.940154 0.298225 0.12343
09 0.484709 0.450987 0.964587 0.435016 0,07211
099 0.445131 0.430695 0.983650 0.423653 0.03297
098 0.733113 0.726323 0.995358 0.722951 0.00930
1.00

+4.797025 +3.374008 +3.018428
= S =B = 85,1

To be continued




@ = 30°)

Table 4.6/3d/

(continued)

43

7 -nzasﬁgi?ﬁnja, f;%%

-a(Z3) 1+(Z)° 2],

0 0.577350 1.333333

0.008016 0.054663 2.606535
0.1 0.522687 1.273202

0.027514 0.051067 2.495628
0.2 0.471620 1.222426

0. 045545 0.048499 2.401457
0.3 0.423121 1.179031

0.061028 0.046813 2. 320639
0.4 0.376308 1.141608

0.073525 0.045943 2.250749
0.5 0.330365 1.109141

0. 082599 ' 0.045999 2.190005
0.6 0.284366 1.080864

0.087592 0.047301 2.137064
0.7 0.237065 1.056200

0.043518 0.024740 2.101282
0.75 0.212325 1.045082

0.042486 0.026019 2.079792
0.8 0.186306 1.034710

0.040364 0.028047 2.059756
0.85 0.158259 1.025046

0.036810 0.031535 2.041105
0.9 0.126724 1.016059

0.031369 0.038873 2.023777
0.95 0.087851 1.007718

0.013968 0.032946 2.010733
0.98 0.054905 1.003015

0.006723 0.054905 2.003015
1.00 0.000000 1.000000

-0.601058

=83

To be continued
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Table 4.6/3d/ (continued)
’2) 2 4( a ‘2 A ( #)
.217+(a°z 7 f? 32: bu(2§27'4q2[74( 17<5Q2Z%7:jg)j7/
0

0.020972 0.003183 0.000067 0.000016 0.000046
‘all 0.020463 0.027883 0.000571 0.000233 0.000417
0-2 0.020196 0.074768 0.001510 0.000790 0.001024
0.3 0.020172 0.141803 0.002860 0.001755 0.001714
0.4 0.020412 0.227512 0.004644 0.003207 0.002374
03 0.021004 0.330837 0.006949 0.005270 0.002915
0 0.022135 0.451040 0.009984 0.008182 0.003257
01 0.011774 0.552140 0.006501 0.005604 0.001664
ki 0.012510 0.624484 0.007812 0.006945 0.001635
0-¢ 0.013617 0.700859 0.009544 0.008732 0.001552
s 0.015450 0.781260 0.012070 0.011348 0.001401
ha 0.019208 0.865698 0.016628 0.016039 0.001157
0-95 0.016385 0.936188 0.015339 0.015088 0.000497
098 0.027411 0.981562 0.026906 0.026781 0.000249

1.00
+0.121385 +0.109990 - 0.019902

=S5, 75, = 53,9




15°. Table 4.6/3e/

S, ;= +5.535016
B =+8.081715 -S; 5= -0.067042
S, = +8.167180 S, = +5.467974
S, 1= +4.907011 S3 = -1.050871
-S, 5= ~-0.061414 -S3 5= +0.009919
S, = +4.845597 S; = -1.040952
= - .
@ = 20°, S) 1= +4.480299
B = +6.408433 -S; ,= -0.085645
S, = +6.518930 S, = +4.394654
S, 1= +3.985754 S3 4= -0.830614
-S, 5= -0.078110 -S5 5= +0.013227
S, =+3.907644 Sy = -0.817387

o -
@ = 25°, Sy 1= +3.825643
B = +5.363790 -S; 5= -0.103648
Sp = +5.498671 S, = +3.721995
S, 1= +3.413555 S3 1= -0.694449
-Sy 5= -0.094194 -S3 o= +0.016563
S, = +3.319361 Sg = -0.677886
P = 30°, S, 1= +3.374008
B = +4.638197 -S; 5= -0.121385
S, = +4.797025 S, = +3.252623
S, 1= +3.018428 S3 ;= -0.601058
-S, 5= -0.109990 -S3 5= +0.019902
S, = +2.908438 S3 = -0.581156
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5. FORMULAE FOR Q', F’, B’, R* AND I’ AS

y
FUNCTIONS OF p = —22X FOR@ = 15°, 20°, 25°

AND 30°.

The fundamental formulae derived in section 4.5 for F’
and Q’ make it possible by simple division to find the formula
for v’ .

Equally the formula for R’ can be found by division of
the formulae for F’ and U’.

We therefore give the formulae for Q and F’, R’ and
I’ with the numerical values found for the quantities S and B for
the different values of @ .

We further need the formulae for B’ = (B + B,).
From these the formula for v, can be found as

s _-|/ F’
V*- I,_RT- 3

and the formula for € as

w-E.
The formulae are as follows :
ymax
P =%
®= 15°
(59a) Q - Q_ = 1.244754 1n?(11 p)
max 2
20 —9 * Yenax
+ 2.081904 In(11 p) - 1.040952
(60a) R ) _ = 1.244754 In(11 p) + 2.704281
ymax
(61a) B’ = B+ By = 1.244754 In(11 p) + 5.318022
(622) R - R 1.244754In(11 p) + 2.704281
- 1.249754 In’II p; + 5.4034387
S 3
(63a) r - = 1.244754 In(11 p) + 2. 771323

. ¢ 'max
Ymax * ( 9



(59b)

(60D)

(61b)

(62b)

(63b)

(59¢)

(60c)

(61c)

(62c)

(63c)

SEC. 5.

m

Q - - = 0.974020 1n?(11 p)
max 2
2.5 " Ymax

+ 1.634774 In(11 p) - 0.817387

Fos ¥ - = 0.974020 In(11 p) + 2.121784
ymax
B’ = B+ B, = 0.974020 In(11 p) + 4.135563

R* -» R _ 0.974020 ln’ll p; + 2.121784
ymax . p) + 4.

T FIT = 0.974020 In(11 p) + 2.207429 .
max)
Ymax { )
25°
Q = Q = 0.805268 1n®(11 p)

- ;
max 2
2'5V Q " Ymax

+ 1.355772 In(11 p) - 0.677886

B s e, — = 0.805268 In(11 p) + 1.758406
ymax
B’ = B+ By= 0.805268 In(11 p) + 3.400201

g - _B__ 0.805268 1n§11 p}+ 1.758406
Yenax 5 n p) + 3.

r - —&F1___ . 0.805268 In(11 p) + 1.862054.

R
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= 30°
(59d) Q = - Q; = 0.688370 In®(11 p)
2 max = 2
) Q Ymax
+ 1.162312 In(11 p) - 0.581156
(60d) FF o= Y 5 = 0.688370 In(11 p) + 1.506497
ymax
(61d) B’ = g+ B, = 0.688370 In(11p) + 2.891576
(62d) R - _R__ 0.688370 lnéllv E;*" 1.506497
ymax = n| p) + 3.
63d) r = —BFL . 0 688370 In(11 p) + 1.627882.
. maX)
Yenax (G

Numerical values of Q*, F’, (B + Bp)» R” and I’ for
fixed values of . T—
P=—x
will be given later in the tables of section 7.1, viz. Tables
7.1./4af b/c/d/ through 7.1./8a/b/c/d/.

6. DERIVATION OF FORMULAE OF THE
Be
YPE z’ = * - A, WHERE
TYPE 2z Agp P p

y
P=—f -, AND Ap AND Bp ARE

FUNCTIONS OF @ ALONE, WHEREAS
Ap IS FUNCTION OF p ALONE.

6.1. INTRODUCTION.

In formulae 5(59a)b)c)d) through 5(63a)b)c)d) the dimen-
sionless quantities Q’, F’, B’, R’ and I’ are expressed as

Y
functions of p = _nﬁg_ » the numerical coefficients varying withcp.

When z’ in general stands for any of these quantities
we try to adjust formulae of the type

(64) 2 = Ag - p°F - A,

to the numerical values of z’, which are computed for fixed
values of p by the above- mentloned formulae for each value of CP
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Putting in the first approximation Ap = 1, we find for

each value of ¢ a simple power formula giving certain numerical
values of A? and Bg

We then compute
(65) log Ap = logz’ - (logAgy + Be - logp),
giving the errors of the power formula verying with p.

It will then appear that these values of log A_ are
practically independent of @ . P

Consequently we are now able to expressA¢ and Be
as functions of ¢ alone and Ap as function of p alone.
6.2. (Ap = 1). SIMPLE POWER FORMULA.

For the first approximation with A_ =1 we tabulate for

each value of ¢ the corresponding values of z’ for the fixed values:
p = 10, 20, 30, 50, 100, 200, 300, 500 and 1000 and take logarithms
in (64)
(66) log z’ = log Aq, + B? * log p.

This form will on double logarithmic paper represent a
straight line (Fig.5).

Its direction is taken parallel to the chord through the
points z’50 and z’zoo, and it is placed so that the errors ep for

p =100 and p = 500 will have the same absolute value but
opposite signs, which in the logarithmic representation corres-
ponds to the same relative deviations for p = 100 and p = 500.

It will prove that the devation for p = 24 will be nearly
the same as for p = 500, and that this maximum deviation will
not be exceeded between these limits.

We find :
log z. - log z;
200 50 s s
(67) Bg = Tog 4 =1.660964 (log Zo00 ~ 108 Zgq)
and 1
(68) log Ag = 5 (log Z%OO + log z’loo) -~ 3. 902411(logz’200-logz’56

The numerical calculations are given later in the tables
of section 7.1.

6.3. DERIVATION OF FORMULA FOR Ap'

From the tables of section 7.1 the numerical values of
log Ap according to 6.1.(65) are known for each value of? .
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They prove to be almost constant for fixed values of p,
wherefore the means of log Ap are taken and used. Consequently

log Ap is considered to be independent of ¢ and only varying with

P- The deviation for p = 100 is greatest for Q’, where it
is about 2.07%, and since no absolute accuracy is required the
function A P is sought in a form as simple as possible.

As 1In 10 = 2,30259 we put
A_ =1+ 2.30259 (log A_)
P P (p=100)

where ¢, a and b are constants. By putting 4 ep = 0 this

- (c + a log (%) +de)).

expression gives approximately Ap'

Considering that A p as a maximum deviates only about
2% from unity we get, taking natural logarithms on both sides
of (69)
InA_ = 2.30259 (log A ) c(c+talog2 B)+Ae or

P P (p=100) o p
log A
o) _ _ o
= [c+ a log? (E)] + Aep- ep+A e,

(1) % " og &)

(p=100)
eg=c+alog" (%)

The left side of (70) are the relative values of the
log A_’s measured by the value for p = 100; it will consequently
be +120 for p = 100 and about -1.0 for p = 500. We determine

the constants ¢, a and b by the requirement that eg must have the

correct values (i.e. eg = ep) for p = 20, 100 and 500. (Fig.6).
This gives the following formulae:

(71) a = 1.023417 (e, - €yq) — 2. 046836 (1 - ey)
n
(72) logb = 5
(73) c=m-alog b
where
(74a) {n = 3.30103 a - 1.430677 (1 - e,)
(74b) n = 4.00000 a - 0.715338 (e;q0 - €yq)

and
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(75a) m = e,y + 1.30103 n - 1.69268 a
(75b) m = e oo + 2.00000 n - 4.00000 a
(75¢) m = e 0 + 2.69897n - 7.28444 a

The formulae (74a) and (74b) must give the same value
of n, and the three formulae (75) must give the same value of m,
whereupon b and c are easily found by (72) and (73).

Finally it follows from (69) with A ep =0:

(76a) A, =yt ag log? (g) ,  where
(76b) cg = 1 + 2.30259 c (log A )
P (p=100)
(76c) a; = 2.30259 a (log A )
P (p=100)

When the values of e; by 6.3.(70a) are deducted from the
correct values of ep by 6.3.(70) we find Q ep and consequently the

relation between the errors from using the formulae (76a)b)c) and
the errors produced for p = 100 by using the corresponding simple
power formula. '

6.4. DERIVATION OF EXPRESSIONS FOR a b3 AND A3 IN THE

3,
FORMULA
1-a, log (B)
) L-1+4, - a, log (?,.—3).

1- a, logz(%z—)
It will later be useful to have a formula like that above
valid for values of b1 and b2, which do not differ much.
The values of ag, b3 and A3 are to be expressed by

the known quantities a, bl’ a, and b2' We find:

2
(78) ag = a; - a,
a, logb, - a, logh
1 1 2 2
(79) log b, = -
3 a, a,
a,.a (log b, - log b,)?
(80) A, - 1 72 1 2

817%2 1-a,- log (.‘;—2)
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In the practical application of (77), when b1 and b2
differ only slightly, 4 3 Will often be insignificant, and the
variation with p of the denominator [1 - a, log? (g)], which is
near 1, can be neglected, so that

a.-a

~ 1" %2 ~
(80a) a, = 5, (logb; - logb,)?.

6.5. DERIVATION OF FORMULAE FOR Aq) AND ABSCISSAE
s OF THE FORM

(81) Ap =a+ bcot@ + c cot’® + d cot’P .

The coefficients Agp for our different dimensionless
quantities will be known for the four different values of @ .

The same is true of the abscissae S which are known
for fixed values of n and the four values of P .

All these quantities can conveniently be expressed in
formulae of the form (81), i.e. series with four members in
increasing powers of the argument m = cotq . Since the inter-
vals in @ are equal,” the intervals in m will be unequal. To
calculate the coefficients a, b, ¢ and d so that the correct values
of the function are obtained for @ = 15°, 20°, 25° and 30° ,
Newton’ s Method of Interpolation is used.

From the function
(81a) g(m) = a + bm + cm?® + dm®
the values are known for the arguments m,, m;, m, and mg
(equal to cot 15%, cot 20°, cot 25° and cot 309).

We define:
g(m) - g(mg)
(82) gy(m) = @ mg
gy(m) - g;(m,)
(83) gylm) = ——— nil :
gy(m) - go(m,)
(84) gyfm) = = ,,212 2

and calculate the special values gy(m,), g5(m,) and gs(m,) this

is done in the usual way in a table.
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For the coefficients we then find the following expressions:
(85) &= gmg) +mgl- g (my) +mil + gy(my) - m, - gy(my)}
(86) b

gl(ml) = (m0+ ml)'gZ(mZ) + (mg m,+ m, m2+ m, mz)- g3(m3)
(87) ¢

gz(mz) - (mg+m, + m,)-gs(ms)

(88) d = gy(my).

7. NUMERICAL DETERMINATION OF A, B¢ AND
Ap FOR Q', F’, v_’, R, (B+By), I' AND Voo
In the following sections the coefficients Ag, B? and
Ap for each of the dimensionless quantities Q' , F’, vm’, R’,
(B+B8y), I” and v_’ are denoted by the first subscripts q, f, v, r,

b, i and tively, f ’ e.g. by A, B d A .
i and * respectively, for Q' e.g. by P qq,an ®

7 1. NUMERICAL CALCULATION OF Aq,, Be AND log Ap.
For the quantities Q’, F’, R’, (B+B;) and I' these

calculations are made for the four values of <? and for

Q’ in Tables 7.1/4a/b/c/d/

F - - 7.1/5a/b/c/d/
R* - - 7.1/6a/b/c/d/
(B+8;) -  7.1/7a/b/c/d/
r - 7.1/8a/b/c/d/.
For Vs and v, the corresponding values of Ag, Be

and log Ap can easily be found by combination of the above results.
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Table 7.1/4a/

Q - 1.244754 In?(11 p) + 2.081904 - In (11 p) - 1.040952
A =21.8184 B _=0.26247 logA _=1.
- - 0g A, 1.33882
el el +
P Q logQ logp B_ ‘logp 8 Aqe*  loga
v B__-logp qp
9
10  36.2472 1.55926 1.00000 0.26247 1.60129  -0.04201
20  46.3995 1.66652 1.30103 0.34148 1.68030  -0.01378
30 52,8926 1.72339 1.47712 0.38770 1.72652  -0.00313
50 61.6557 1.78995 1.69897 0.44593  1.78475  +0.00520
100 74.5852 1.87265 2.00000 0.52494 1.86376  +0.00889
200 88.7109 1.94797 2.30103 0.60395 1.94277  +0.00520
300 97.5282 1.98913 2.47712 0.65017 1.98899  +0.00014
500 109.2195 2.03830 2.69897 0.70840  2.04722  -0.00892
1000 126.1224 2.10080 3.00000 0.78741 2.12623  -0.02543
Agp=1i @ =21.8184 p?- 26247 4 5 07% for
24.6 £ p < 500.
e = 20°.] Table 7.1/4b/

Q’ = 0.974020 1n®*(11 p) + 1.634774 -

In (11 p) - 0.817387

Agp= 17.094 Byp - 0-262349  log A = 1.23283

P Q log@ logp B__logp °88ge*  1oga
q? B__-logp qp

q®
10 28.3873 1.45313 1.00000 0.26235 1.49518 -0.04205
20 36.3354 1.56033 1.30103 0.34132 1.57415 -0.01382
30 41.4186 1.61720 1.47712 0.38752 1.62035  -0.00315
50 48.2786 1.68376 1.69897 0.44572 1.67855  +0.00521
100 58.3999 1.76641 2.00000 0.52470 1.75753  +0.00888
200  69.4572 1.84171 2.30103 0.60367 1.83650  +0.00521
300 76.3590 1.88286 2.47712 0.64987 1.88270  +0.00016
500  85.5104 1.93202 2.69897 0.70807  1.94090  -0.00888
For A =1: Q =17.094 - p"" 262349 4 5. 07% for
24.6 % p X 500.




@ = 25°) Table 7.1/4c/

Q = 0.805268 In*(11 p) + 1.355772In(11p) - 0.677886
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= 14,143 B__=0.26230 log A__= 1.15055
Aqe 9@ °¢ “q¢
log Aq¢+
P Q’ log Q@ logp B_,-logp . . log A
q¥® Bop'logp ¢ ap
10 23.4869 1.37082 1.00000 0.26230 1.41285 -0.04203
20 30.0609 1.47800 1.30103 0.34126 1.49181 -0.01381
30 34.2651 1.53485 1.47712 0.38745 1.53800 -0.00315
50 39.9387 1.60140 1.69897 0.44564 1.59619 +0.00521
100 48.3094 1.68403 2.00000 0.52460 1.67515 +0.00888
200 57.4539 1.75932 2.30103 0.60356 1.75411 +0.00521
300 63.1617 1.80045 2.47712 0.64975 1.80030 +0.00015
500 70.7297 1.84960 2.69897 0.70794 1.85849 -0.00889
For A =1: @ =14.143 - p’ 2020 4 5,07 for
24.6 £ p < 500.
(@ = 30°.] Table 7.1/4d/
Q = 0.688370 In®(11 p) + 1.162312 In(11 p) - 0.581156
= 18. B__ =0. 4 A__ =1.08276
Agp= 12.009 - 262249 log A 8
log Aq?+
d p 1 B__ -1 A
P Q log Q ogp Bgp logp Byp-log P log -
10 20.0915 1.30301 1.00000 0.26225 1.34501  -0.04200
20 25.7135 1.41016 1.30103 0.34119 1.42395 -0.01379
30 29.3087 1.46700 1.47712 0.38737 1.47013 -0.00313
50 34.1605 1.53353 1.69897 0.44555 1.52831 +0.00522
100 41.3183 1.61614 2.00000 0.52450 1.60726 +0.00888
200 49.1376 1.69142  2.30103 0.60344 1.68620 +0.00522
300 54.0182 1.73254 2.47712 0.64962 1.73238 +0.00016
500 60.4893 1.78168 2.69897 0.70780 1.79056 -0.00888
For Ay, =1: @ =12.009 - p 202249 4 3 07% for
24.6 £ p < 500.
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Table 7.1/5a/
F’= 1,244754 In (11 p) + 2.704281

Ao = 6.8585 Brp =0.109208 log Agg, =0.83623
p F'  logF’ logp By,.log plogArp* log A,
Bf .log p P
P
10 8.55522 0.93223 1.00000 0.10921 0.94544 -0.01321
20 9.41802 0.97396 1.30103 0.14208 0.97831  -0.00435
30 9.92272 0.99663 1.47712 0.16131  0.99754 -0.00091
50 10.55858 1.02360 1.69897 0.18554 1.02177 +0.00183
100 11.42138 1.05772 2.00000 0.21842 1.05465 +0.00307
200 12.28418 1,08935 2.30103 0.25129 1.08752 +0.00183
300 12.78888 1.10683 2.47712 0.27052 1.10675 +0.00008
500 13.42474 1.12791 2.69897 0.29475 1.13098  -0.00307
1000 14.28754 1.15496 3.00000 0.32762 1.16385 -0.00889
For A =1: F'=6.8585 . p* 199298 4 0. 719,
P for 23.7 $p 3 500.
@ = 20°. Table 7.1/5b/
F’ = 0.974020 In(11 p) + 2.121784
Agq = 5.3728 By = 0.10911  log Agp, =0.73020
P F’ log F’ log p Bf .log pIOgAf¢+ log Af
’ ? Bf .logp P
P
10 6.70015 0.82608 1.00000 0.10911 0.83931 -0.01323
20 7.37529 0.86778 1.30103 0.14195 0.87215  -0.00437
30 7.77021 0.89043 1.47712 0.16117 0.89137 -0.00094
50 8.26777 0.91739 1,69897 0.18537 0.91557 +0.00182
100 8.94291 0.95148 2.00000 0.21822 0.94842 +0.00306
200 9.61806 0.98308 2.30103 0.25106 0.98126 +0.00182
300 10, 01298 1.00056 2.47712 0.27027 1.00047 +0.00009
500 10. 51054 1.02162 2.69897 0.29448 1.02468 -0.00306
For A= 1: F’=5.3728. p?-10911 4 707%
P for 238<p < 500
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F’=0.805268 In(11 p) + 1.758406

57

Table 7.1/5¢/

Af<p = 4.4456 qu, = 0.10906 log Af@ =0.64793
p F’ log F’ log p Bf .log plog Af¢ = log Af
P B log p P

fo-

10 5.54355 0.74378 1.00000 0.10906 0.75699 -0.01321
20 6.10172 0.78545 1.30103 0.14189 0.78982 -0.00437
30 6.42823 0.80809 1.47712 0.16109 0.80902 -0.00093
50 6.83958 0.83503 1.69897 0.18529 0.83322 +0.00181
100 7.39775 0.86910 2.00000 0.21812 0.86605 +0.00305
200 7.95593 0.90069 2.30103 0.25095 0.89888 +0.00181
300 8.28243 0.91816 2.47712 0.27015 0.91808 +0.00008
500 8.69379 0.93921 2.69897 0.29435 0.94228 -0.00307

For A =1: F’=-4.4456 , p’ 10906 4 o 709,

for 2385 p < 500.

m

Table 7.1/5d/

F’ =0.688370 1ln (11 p) + 1.506497

Af¢= 3.8034 Bf@ =0.10899 log Af@ =0.58017

P ) 2 log F’ logp B, .logp 103\1@*- log Af

fo-
10 4.,74217 0.67598 1.00000 0.10899 0.68916 -0.01318
20 5.21931 0.71761 1.30103 0.14180 0.72197 -0.00436
30 5.49842 0.74023 1.47712 0.16099 0,74116 -0.00093
50 5.85006 0.76716 1.69897 0.18517 0.76534 +0.00182
100 6.32720 0.80121 2.00000 0.21798 0.79815 +0.00306
200 6.80434 0.83278 2,30103 0.25079 0.83096 +0.00182
300 7.08345 0.85025 2.47712 0.26999 0.85016 +0.00009
500 7.43509 0.87129 2.69897 0.29417 0.87434 -0.00305
For A =1: F’ -3.8034. p?- 10899 0 707%
P for 23.8 $p < 500.
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Table 7.1/6a/

R’ - 1.244754 In(11 p) + 2.704281
= G n p) + 5.

Ap=0.73272 B, = 0.020945 log A, = 9.86494
Iog A+
P R’ log R’ log p BI"P -logpp re log Arp
re.logp
10 0.760165 9.88091 1,00000 +0.02095 9.88589 -0.00498
20 0.777242 9.89056, 1.30103 +0.02725 9.89219 -0.00163
30 0.786149 9.89550 1.47712 +0.03094 9.89588 - 0.00038
50 0.796406 9.90113 1.69897 +0.03558 9.90052 +0.00061
100 0.808846 9.90786 2.00000 +0.04189 9.90683 +0.00103
200 0.819853 9.91374 2.30103 +0.04820 9.91314 +0.00060
300 0.825724 9.91683 2.47712 +0.05188 9.91682 +0.00001
500 0.832597 9.92043 2.69897 +0.05653 9.92147 -0.00103
1000 0.841099 9.92485 3.00000 +0.06284 9.92778 -0,00293
[For A =1: R -0.73272. p?- 020945, 4 237 % for 24.8%p% 500.

|§=20°.l

Table 7.1/6b/

R’ - 0.974020 . 1In (11 p) + 2,121784
- 0. . In p) + 4.

Ao=0.73172 B =0.02108  log A= 9.86434
p R’ log R’ logp B .log plog Arcp 4 log A

g B__.logp TP

re

10 0.759273 9.88040 1.00000 0.02103 9.88537 -0.00497
20 0.776382 9.89008 1.30103 0.02736 9.89170 -0.00162
30. 0.785307 9.89504 1.47712 0.03106 9.89540 -0.00036
50 0.795586 9.90068 1.69897 0.03573 9.90007 +0.00061
100 0.808056 9.90744 2.00000 0.04206 9.90640 +0.00104
200 0.819092 9.91334 2.30103 0.04839 9.91273 +0.00061
300 0.824979 9.91644 2.47712 0.05209 9.91643 +0.00001
500 0.831871 9.92006 2.69897 0.05675 9.92109 -0.00103
For A =1: R'=0.73172 . p0- 02103 5 240 % for24.6% p < 500.
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Table 7.1/6¢/
R’= 0.805268 . In (11 p) + 1.758406
- 0. . In p) + 3.

Arcp = 0,72968 B = 0,02118 log ArQ = 9,86313
s s logA__+
R log R lo B__lo > o log A
p g gp re- gp Br(P.lggp og rp

10 0.757292 9,87927 1.00000 0.02118 9.88431 -0.00504
20 0.774488 9.88901 1,30103 0,02755 .89068 -0.00167
30 0.783462 9.89402 1.47712 0,03128 .89441 -0.00039
50 0.793800 9.89971 1.69897 0.03598 .89911 +0,00060
100 0.806345 9.90652 2.00000 0,04235 9,.90548 +0.00104
200 0.817451 9.91246 2.30103 0,04873 9.91186 +0.00060
300 0.823376 9.91560 2.47712 0.05246 9.91559 +0,00001
500 0,830315 9.91925 2,69897 0.05716 9.92029 -0,00104

For A_ = R!=0.72068 . pl- 02118 % 4 940 & £or24.95 p < 500.

p = 30°. | Table 7.1/6d/
e - 0.688370 . In (11 p) + 1.506497
- 0. . In p) + 3.

© © ©

App = 0.72638 B,p = 0.021460  log A = 9.86117
log A__ +
P R’ log R’ 1lo B__ 1o re log A
og gp rp-108 P B, log p og A,

10 0,754333 9.87756 1,00000 0.02146 9.88263 -0.00507
20 0,.771664 9.88743 1.30103 0.02792 9.88909 -0.00166
30 0.780713 9.89249 1,.47712 0.03170 9.89287 -0.00038
50 0.791141 9,89825 1,69897 0.03646 9.89763 +0.00062
100 0.803801 9.90515 2.00000 0.04292 9.90409 +0.00106
200 0.815014 9.91117 2.30103 0.04938 9.91055 +0.00062
300 0.820998 9.91434 2.47712 0.05316 9.91433 +0.00001
500 0.828008 9.91803 2.69897 0.05792 9.91909 -0.00106
0.021460

ForA =1: R'=0.72638.p +0.244 % for247% p < 500.

P
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Table 7.1/7a/

B+ ﬁo = 1.244754 1n (11 p) + 5.318022

App =9.2804 By, - 0.088795  log Ay, - 0.96757
logAb +

P B+B, log(B+B;) logp Bb¢ .logp Bbqo'Ing 1ogAbp
10 11.16896 1.04801 1.00000 0.08880 1.85637 - 0.00836

20 12,03177 1.08033 1.30103 0.11552 1.08309 -0.00276

30 12.53646 1.09818 1.47712 0.13116 1.09873 -0.00055

50 13.17232 1.11967 1.69897 0.15086 1.11843 +0.00124
100 14.03512 1.14722 2.00000 0.17759 1.14516 +0.00206
200 14.89792 1.17313 2.30103 0.20432 1.17189 +0.00124
300 15.40262 1.18759 2.47712 0.21996 1.18753 +0.00006
500 16.03848 1.20516 2.69897 0.23966 1.20723 -0.00207
1000 16.90128 1.22792 3.00000 0.26639 1.23396 - 0.00604
For A =1: 8+ 8y =9.2804 . p’~ 988795, 0 475 % for 23. 253 500.

m

Table 7.1/7b/

B+ By = 0.974020 In (11 p) + 4.135563

Abq) = 7,2375 Bb‘P = 0.08901 log Ab(p = 0.85959
log Abq> +
P B+ B, log(B+B;) logp Bbcp.logp Bbq,-logp log Abp
10 8.713925 0.94022 1,00000 0.08901 0.94860 -0.00838
20 9.389066 0.97262 1.30103 0.11581 0.97540 -0.00278
30 9.783993 0.99052 1.47712 0.13148 0.99107 -0.00055
50 10.281551 1.01206 1.69897 0.15123 1,01082 +0.00124
100 10.956693 1.03968 2.00000 0.17802 1.03761 +0.00207
200 11.631835 1.06565 2.30103 0.20482 1.06441 +0.00124
300 12.026761 1.08015 2.47712 0.22049 1,08008 +0.00007
500 12.524320 1.09775 2.69897 0.24024 1.09983 -0.00208
0.08901

ForAb =1:

o

B+Bgy = 7.2375 . p +0.477% fc;or23.2§p<= 500




m

Table 7.1/7¢c/

B+ By = 0.805268 In (11 p) + 3.400201
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Abq> = 5.9660 Bbcp = 0.08919 1log Abcp = 0.77568
log A, _+
P B+ BO log(B+Bo) log p Bbq,.log P Bb?-log 5 log Abp
10 7.185347 0.85645 1,00000 0.08919 0.86487 -0.00842
20 7.743519 0.88894 1.30103 0.11604 0.89172 -0.00278
30 8.070023 0.90687 1.47712 0.13175 0,90743 -0.00056
50 8.481378 0.92847 1.69897 0.15154 0.92722 +0.00125
100  9.039549 0.95615 2,00000 0.17839 0.95407 +0.00208
200 9.597721 0.98217 2.30103 0. 20524 0.98092 +0.00125
300 9.924225 0.99670 2.47712 0.22094 0.99662 +0.00008
500 10.335580 1.01433 2,69897 0.24073 1.01641 -0.00208
p0'08919 + 0.48% for23.25p £ 500.

For Abp =13 B+BO = 5.9660 .

Table 7.1/7d/

B+ By = 0.688370 In (11 p) + 2.891576
App = 5.0864 By, = 0.08936 log Ay, = 0.70641
log Ab<p+

P Bt+B log(B+BO) log p Bb‘P log p Bb log p og Abp

10 6.12774 0,78730 1.00000 0.089360 0.79577 -0.00847
20 6.60488 0.81986 1.30103 0.116260 0,82267 -0.00281

30 6.88399 0.83784 1.47712 0.131995 0.83841 - 0.00057

50 7.23562 0,85948 1.69897 0.151820 0.85823 +0.00125
100 7.71277 0.88721 2.00000 0.178720 0.88513 +0.00208
200 8.18992 0.91328 2.30103 0.205620 0.91203 +0.00125
300 8.46902 0.92783 2.47712 0.221355 0.92777 +0.00006
500 8.82067 0.94551 2.69897 0.241180 0.94759 - 0.00208
For A= 1:8+8 = 5.0864 . p*" 9% 4+ 0. 48% 10r23.3%p 2 500.
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® = 15 . Table 7.1/8a/
I’ = 1.244754 1n (11 p) + 2.771323
Aiq; = 6.9199 Bi<P = 0.108561 log Aqu = 0.84010
log Ai +
P r log I’ log p Bi@. log p Bicp' log p log Aip

10 8.62226 0.93562 1.,00000 0.10856 0,94866 -0.01304
20 9.48507 0.97704 1.30103 0.14124 0.98134 -0.00430
30 9.98976 0.99957 1.47712 0.16036 1.00046 -0.00089
50 10.62562 1,02635 1.69897 0.18444 1.02454 +0.00181
100 11.48842 1,06026 2.00000 0.21712 1.05722 +0.00304
200 12.35122 1,09171 2,30103 0.24980 1.08990 +0.00181
300 12.85592 1.10910 2.47712 0.26892 1,10902 +0.00008
500 13.49178 1,13007 2.69897 0.29300 1.13310 -0.00303
1000 14.35458 1.15699 3.00000 0.32568 1.16578 -0.00879
0.108561

For A, =1:1" =6.9199 . p +0.702% for 23.695 p < 500.

P

Table 7.1/8b/

I’ = 0.974020 In (11 p) + 2.207429

Aig = 5.4502 Bi(p = 0.108096 log Aigg = 0.73642
—
log Ai<p +
r log I’ lo B. ..lo log A.
P og gP ip gP Bi?-logp € Aip

10 6.78579 0.83160 1,00000 0.10810 0,.84452 -0,01292
20 7.46093 0.87280 1.30103 0.14064 0.87706 -0.00426
30 7.85586 0.89519 1.47712 0.15967 0.89609 -0.,00090
50 8.35342 0.92186 1.69897 0.18365 0.92007 +0.00179
100 9.02856 0.95562 2.00000 0.21619 0.95261 +0.00301
200 9.70370 0.98694 2.30103 0.24873 0.98515 +0.00179
300 10,09863 1.00426 2.47712 0.26777 1,00419 +0.00007
500 10.59619 1.02515 2.69897 0.29175 1.02817 -0.00302

For Ay = 1: 1 =5.4502. p0-108096 | § 6959 for 23.72 < p < 500




0.805268 In (11 p) + 1.862054

Ai ;4.5399 Bi

P

63

Table 7.1/8¢c/

log A;, = 0.65705

P

P

I:

= 0.107547

log I

log p

log A. _ +
P log Aip

B. ..l
ip ngBiqp.logp

10
20

5.64720
6.20537
6.53188
6.94323
7.50140
8.05957
8.38608
8.79743

0.75183
0.79277
0.81504
0.84156
0.87512
0.90631
0.92355
0.94435

1.00000
1,30103
1.47712
1.69897
2.00000
2.30103
2.47712
2.69897

0.10755 0.76460 -0.01277
0.13992 0,79697 -0.00420
0.15886 0.81591 -0.00087
0.18272 0.83977 +0.00179
0.21509 0.87214 +0.00298
0.24747 0.90452 +0.00179
0.26641 0.92346 +0.00009
0.29027 0.94732 -0.00297

ForAip=1 : I” =4,5399 - p

0.107547 + 0.688% for 23.70 £ p < 500,

Table 7.1/8d/

0.688370 1n (11 p) + 1.627882
= 0.106933 log A, = 0.59266

= 3.9143

i

®

I’

log I’

log p

log A. _+

i
Biq).log p Bicp‘ log p log Aip

10
20
30
50
100
200
300
500

4,86355
5.34070
5.61980
5.97144
6.44859
6.92573
7.20484
7.55648

0.68695
0.72760
0.74972
0.177608
0.80947
0.84046
0.85762
0.87832

1,00000
1.30103
1.47712
1.69897
2.00000
2.30103
2.47712
2.69897

0.10693 0.69959 -0.01264
0.13912 0.73178 -0.00418
0.15795 0.75061 -0.00089
0.18168 0.77434 +0.00174
0.21387 0.80653 +0.00294
0.24606 0.83872 +0.00174
0.26489 0.85755 +0.00007
0.28861 0.88127 -0,00295

=1:01"=3.9143 .

0.106933
p

+0.679% for 23.76 < pz 500,
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7.2. NUMERICAL CALCULATIONS OF FORMULAE FOR A AS
FUNCTION OF p.

These calculations are compiled in Tables
7.2./9/10/11/12/  for
A. , respectively.

fp ’ Abp ’ o o I
The values of log Ap are found in the last columns of the

A ;
qp

tables of section 7.1. It is seen that the values of e.g. qu are

practically equal for the dlfferent values of P , and the same
applies to the other A ’s. The values in the tables of section 7.2.

are taken as the mean values and denoted by (log Ap)
m
The corresponding values of ey from formula 6.3.(70) are

next found, and the values e20’ e100 and €500 are introduced in

formulae 6.3.(71 through 75), which give the values of a, b and c
indicated in the following tables. These values introduced in
formulae 6. 3. (76a)b)c) thus give the definite formulae for the Ap s.

The errors of these formulae are found by calculation of

the values of eg according to 6.3.(70a)
2 . P
6.3.(70a e,=cta log®(§)-

The differences ep -e° =Ae are proportional to the

errors; the absolute values of the errors are found by multi-
plication byélep of the errors for p = 100 stated in the tables of

section 7.1.



A . ble 7.
- Table 7.2/9/

ep = e,é“ by

p ({09 Aqpl, fgﬁqﬁo 6.3(70a) “¢p

10 -0.04202 -4.7320 -4.0575 -0.6745
20 -0.01380 -1.5541 0.0000
30 -0.00314 -0.3536 -0.4815 +0.1279
50 +0.00521 +0.5867 +0.4585 +0.1272
100 [+0.00888| [+1.0000] +1.0000 0.0000
200 +0.00521 +0.5867 +0.6967 -0.1100
300 +0.00015 +0.0169 +0.1225 -0.1056
500 -0.00889 -1.0011 0.0000
1000 -0.02543 -2.8637 - 3.2659 +0.4022
By 6.3 (71 through 75) :
a=-4.6619 , b =110.262, c = 1.0084 , logb = 2.04243

By 6.3 (76a)b)c) : for ~ 17.5 $p < ~ 622

- ; ’ P T
| Agp = 1-020619 - 0.095322 * log® (r15.957) - 0-265 %
Agy: Table 7.2/10/

ep = ep by

(log Ag,)  log Afp Ade
e 7P IOQAfloo 6.3(70a) °
10  -0.01321 -4.3170 -3.8322 -0.4848

20 -0.00436 -1.4247 - 0.0001
30 -0.00093 -0.3039 -0.3968 +0.0929
50  +0.00182 +0.5948 +0.4980 +0.0965
100 [+0,00306] [+1.0000] +1.0002 +0.0002
200 +0.00182 +0.5948 +0.6813 -0.0865
300 +0.00009 +0.02941 +0.1143 -0.0549
500 -0.00306 -0.9997 -0.0003
1000 -0.00889 -2.9053 -3,2243 +0.3190
By 6.3 (71 through 75) :
a=-4.52842, b = 108.035, c = 1.0053 , log b = 2.03356
By 6.3 (76a)b)c) :  for 17.4 < p < 616
A, = 1.007083 - 0.031907 * log® (TO'BF—TTTQIB') ¥ 0.068 %

fp
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App: Table 7.2/11/
€o = es by
e (logAbp)m /gg jbroo 63(70a) <%
10 -0.00840 -4.0508 -3.6917 -0.3663
20 -0.00278 -1.3431  +0.0001
30 -0.00056 -0.2705 -0.3432 +0.0727
50 +0.00125 +0.6039 +0.5238 +0.0801
100 [+0.00207] [+1.0000] +0.9998 +0.0002
200 +0.00125 +0.6039 +0.6694 -0.0655
300 +0.00007 +0.0338 +0.1023 -0.0685
500 -0.00208 -1.0050 +0.0002
1000 -0.00604 -2.9179 -3,2079 +0,2900
By 6.3 (71 through 75) :
a=-4,44962 , b = 106.46 , c = +1.0031 , logb = +2.02718
By 6.3 (76a)b)c) : for 17.2 £ p < 605
App = 1.0047812 - 0.0212087 - log? (mgpjg) ¥0.0382 %
A Table 7.2/12/
o=, & by
p [09’490)"7 % 6.3(70a) 4dep
10 -0.01284 -4.2943 -3.8208 -0.4735
20 -0.00424 -1.4182  +0,0001
30 -0.00089 -0.2977 -0.3927 +0.0950
50 +0.00179 +0.5987 +0.5001 +0.0986
100 [+0.00299] [+1.0000] +0.9999 +0.0001
200 +0.00178 +0.5953 +0.6801 -0.0848
300 +0.00008 +0.0268 +0.1132 -0.0864
500 -0.00299 -1.0002  +0.0002
1000 -0.00879 -2.9398 -3.2229 +0.2829

By 6.3 (71 through 75) :
a=-4.5216 , b =107.914, c = +1,0048 , logb = +2.03307
By 6.3 (76a)b)c) : for 17.3 Sp < 636

= a . P t
Aip =1.0069177 - 0.031130 * log® (-Im) 0.0679 %
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8. GENERAL REVIEW OF FORMULAE FOR Q’,
F’, v’ R’, B’, I’ AND v’ AND OF -
FORMULAE FOR THE ABSCISSAE $ As

FUNCTIONS OF @ FOR FIXED VALUES OF
THE ORDINATES -

8.1. THE DEFINITIVE FORMULAE FOR THE DIMENSIONLESS

QUANTITIES Q’, F’, vm‘, R’, B’, I’ AND v .

These are given in the following tables:

Q’ in Table 8.1./13/, Formulae (89) and(89a)b)c)d)e)
e - - 8.1./14/, - (90) - (90a)b)c)d)e)
Vi - - 8.1/15/, - (91) - (91a)b)c)d)e)
R’ - - 8.1./186/, - (92) - (92a)b)c)d)e)

=B+, - -  8.1./17, - (93) - (93a)b)c)d)e)
r - - 8.1./18/, - (94) - (94a)b)c)d)e)
Vi - - 8.1./19/, - (95) - (95a)b)c)d)e)

The coefficients chp etc. are in general functions of P

they are given as functions of m = cot® ; in some cases the

variation with @ is so slight that a mean value near the correct
value for @ = 20° is used.

The exponents Bp in most cases vary so little with ¢

that a mean value can be used. The factors A etc. are

y
generally functions of p = —nﬁix as indicated. For R’, B’ and

Vi these factors can bé put equal to unity, because the simple
power formulae have already very small errors.

In the tables are given the directly calculated values for
o

A and Bg for @ = 15% 20°, 25° and 30°.

The tables also state the ranges of validity of the simple
power formulae and of the complete formulae, including the
factors Ap with the corresponding maximum errors as well.



Table 8.1/13/

g Q -
(89) @ = — P | “qe qP
2.5)5— - Ymax 150 | 21.8184| 0.26247
‘ 20° | 17.094 | 0.26235
A _.p ¥ A o
qe" ap 25° | 14.143 | 0.26230
(o]
Q for half of total section. 30 12.099 0.26225

P

89d) B__ mean - 0.26234
(894d) -

= _ : P
(89e) A = 1.020619 - 0.095322 log® (110352

89c) A__ = 3.1815. A

1A

ForA =1 and 25 £ p < 500 :
qp

B
@t 207%

[\

(8%92) Q" = A P

qe -’

HA

Complete formula and 17.5 = p 3 622 :
B

89b) @ = A _.p ¥ A T 0. 265%

(89b) Q ap* P - o




Table 8.1/14/
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(90) F’

F
& A B
ymaxz = fe fo
15° | 6.8585 |0.10921
qu) o
=A,_.p P a 20° [5.3728 [0.10911
fp fp -
25° | 4.4456 [0.10906
F for half of total section] 30° |3.8034 [0.10899

(90c)  Ago= 1.03153 + 1.63688.m - 0.02187-m* + 0.000437-m®
(90d) Bf?mean = 0.1091
(90e)  Ag, = 1.007083 - 0.031907 . log? (Ingvs‘s)
For Ag, = 1 and 25 £ p < 500 :
(90a) F = Ag . p fet .71 9
Complete formula and 17.4 £pZ 616,
B
s fo . A
(90b) F = A . p ? Ag, *0.068 %
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Table 8.1/15/

" _ V.
91) v2 = o P | % e
3.5y—% — 15° | 3.1815 | 0.15324
. i ‘vaq;- % 20° | 3.1816 | 0.15324
ve vp 25° | 3.1813 | 0.15324
30° | 3.1811 | 0.15326

(91c) Avp mean = 3.1815

(91d) Bvq> mean = 0.15324

_ _ . P
(9e) A, = 1.0135645 - 0.0634373 log (11773

= < =z g
ForAvp—l and 25 = p < 500 :

B
(912) v, = Ao P VPt 1.31%

Complete formula and 17.5% pZ 620

B
’ _ VQ
(91b) Vi = Avq) . P . Avp + 0.195 %




Table 8.1/16/

. R
(92) R’ = e ? ro| Bro
3 15° | 0.73272 | 0.02095
= Ao P o B 202 0.73172 | 0.02103
25° | 0.72968 | 0.02118
30° | 0.72638 | 0.02146

(92¢) A, mean = 0.732 for 15 @ 2 20°

(92d) B, mean 2 0.0210 - 159 2 20°

(92e) Arp = 1 as simple power-formula sufficient

For A =1 and 25 £ p < 500

B
(92a,b) R = A _ . p TP ¥ 0.24%

71
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Table 8.1/17/

, B
93) B’ = —_ = +
(93) e G ? | %o | Boe
15° | 9.2804 | 0.08880
Bbcp o
=A__.p . A 20" | 7.2375 | 0.08901
b bp -
' 25 |5.9660 | 0.08919
B for@ of total section. 30o 5.0864 | 0.08936

(93c) A, = 1.29443 + 2.23919-m - 0.03069-m® + 0.00109-m®

b
93d) B mean = 0.0890
b

(93e) Ay, = 1.0047812 - 0.0212087-log? ,(TGEIT’R)

ForAbp=1 and 25 5p < 500

b® . .48 %

(93a) B’ = Abq;‘ P -

p < 605

A

Complete formula and 17. 2

B
(93b) B’ = A, _ . p °P. Ay, *0.038 %

be




Table 8.1/18/
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3 .F .1
(94) I —E__T P Ao Bio

.(E) o)

Ymax 15 | 6.9199 | 0.108561

B, 20° | 5.4502 | 0.108096
= A._.p ?. A. o

ip ip 25° | 4.5399 | 0.107547

30°| 3.9143 | 0.106933

(94c) A; o = 1.27988 + 1.51750-m + 0.00519.m? - 0.00184-m3

¢

(94d) B;, mean = 0.10833 for 15°5 ¢ 2 20°

" N ; P
(94€) A, = 1.0069177 - 0.031130+log* (rrPgry)

= £ =
For Aip-l and 25 = p z 500

B.
: ip +
(94a) I' = A, . p = 0.70%

Complete formula and 17.3 £ p < 636

(94b) I = A,_.p P A 4

¢'P ip T 0.068 %.
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Table 8.1/19/

P A*cp B*cp
15° |1.1630 | - 0.01015
N 20° | 1.1604 | - 0.00997
a3 *P | 25° |1.1584 | - 0.00983
30° | 1.1566 | - 0.00970
:« (0] 5 = (o]
(95c¢) A*‘P mean = 1.160 forl5 =9 < 25
(85d) B, mean < 0.0100 for 15° P I 25°
(95e) A*P = 1 as simple power-formula sufficient.
ForA, =1 and 25 2 p < 500
B +
(95a)b) v> = A._ .p ** t 9.119




SEC. 8.2. 75

8§.2. FORMULAE FOR THE ABSCISSAE g AS FUNCTIONS OF
m = cotP .

These formulae are found by the method indicated in
Sec. 6.5. and are based on the values of £ , which are found
for fixed values of @ and for the four different values of ¢
as listed in Tables 3.3./2a/b/c/d/.

The numerical coefficients a, b, ¢ and d in the formulae:
(96) € =a+b-:m+cm?+dmd,

(96a) where m = cot@ .
are given in Table 8.2./20/.

A separate formula for § is consequently available for
each of the fixed values of 7 .

For later use we have computed by means of these
formulae the numerical values of & for @ = 149, 16°, 17°,

18° and 19°". These are, together with the previously found values

for @ = 15°, 20°, 25° and 30° (Tables 3.3.(2a)b)c)d) ), compiled
in the Table 8.2./21/.
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Table 8.2/20/

n § 1° m- m?- m>.
0 g€, - o 0 0 0
0.1 0.1 = +0.00723 +0.10041 +0.00049 -0.000065
|0.2 $9 o = +0.02898 +0.20256 +0.00179 -0.00024
0.3 §9.3 = *+0.06579 +0.30833 +0.00365 -0.00051
0.4 $9.4 = +0.11622 +0.42315 +0.00455 -0.00070
0.5 §0.5 = *+0.18331 +0.54901 +0.00447 -0.00082
0.6 $0 g - +0.27246 +0.68819 +0.00360 -0.00090
0.7 §, 7 = +0.38875 +0.84935 +0.00049 -0.00078
0.75  §g 5= +0.46333 +0.93745 -0.00083 -0.00078
0.8 §) g - +0.54583 +1.04230 -0.00555 - 0.00039
0.85 §; g5= +0.64936 +1.15793 -0.01000 -0.00007
0.9 €99 - +0.78211 +1.29522 -0.01590 +0.00039
0.95  §; g5= +0.97200 +1.47634 -0.02432 +0.00107
0.98 g gg= +1.15392 +1.63955 -0.03239 +0.00175
1.0 § o - *+1.46574 +1.90032 -0.04441 +0.00274
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5

¢ p=14° @=15° @=16° ¢=-17° - 18°
0 0 0 0 0 0

0.1 0.41364 0.38543 0.36060 0.33863 0.31901
0.2  0.85471 0.79740 0.74698 0.70227 0.66235
0.3 1.32825 1.24081 1.16382 1.09549 1.03443
0.4 1.84141 1.72240 1.61757 1.52446 1.44123
0.5 2.40426 2.25187 2.11750 1.99816 1.89142
0.6 3.03248 2.84419 2.67807 2.53045 239835
0.7 3.75287 3.52483 3.32366 3.14480 2.98468
0.75 4.15957 3.90979 3.68943 3.49342 3.31790
0.8 4.61183 4.33820 4.09672 3.88201 3.68976
0.85 5.12818 4.82792 4.56295 4.32735 4.11634
0.9 5.74634 5.41474 5.12223 4.86212 4.62914
0.95 6.57108 6.19867 5.87020 5.57814 5.31653
0.98 7.32166 6.91261 6.55199 6.23136 5.94415
1.0 8.54989 8.08172 7.66902 7.30216 6,97354

To be continued
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Table

8.2/21/

5

% o= 19° @=20° @=125° ¢-=30°
0 0 0 0 0

0.1 0.30138 0.28545 0.22415 0.18226
0.2 0.62648 0.59404 0.46923 0.38394
0.3 0.97955 0.92989 0.73877 0.60813
0.4 1.36637 1.29864 1.03770 0.85917
0.5 1.79535 1.70843 1.37312 1.14338
0.6 2.27942 2.17176 1.75597 1.47056
0.7 2.84046 2.70984 2.20476 1,85730
0.75 3.15977 3.01649 2.46225 2.08050
0.8 3.51653 3.35955 2.75167 2.33244
0.85 3.92618 3.75381 3.08587 2.62459
0.9 4.41914 4.22878 3.49046 2.97984
0.95 5.08068 4.86682 4.03673 3.46169
0.98 5.68520 5.45034 4.53826 3.90564
1.0 6.67722 6.40843 5.36379 4.63820

(continued)
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9. DETERMINATION OF ISOVELS IN
THE EQUILIBRIUM PROFILE.

The principal assumptions made in the foregoing sections,
which made it possible to determine a definite equilibrium profile
for fixed values of ¢ , Tmax’? , k and Q, are expressed by the

formulae 1.(1), 2.1(3), 2.2(9), 4.2.(19), 4.4.(45), giving the
distribution of the shearing stresses, the relation between hydraulic
lifting force and shearing stress, the logarithmic law of velocity
distribution and the principle of minimum cross section.

On the same assumptions it is possible to calculate the
accurate form of the isovels and thus, by comparing these with the
results from actual measurements, to get a certain check on the
correctness of the assumptions.

We therefore indicate the method of determination of
isovels having velocities expressed as multiples of the mean
v elocity of the total cross section.

The velocity at a point P of the cross section is denoted
by v, . Here the subscripts indicate that P is situated at: the

£

distance z from the bottom in a normal to this with the length
g * Yoo between the bottom and the water surface. By 4, 2, (18)

and 4.2.(19) we find this velocity to be

(97) T = 2.%/1“;3" .‘/g . [3.392 + 1“(122)]

Substituting
(98) v
__zi = r and
v
m
z N
(99) -z
ymax

.
we get, with _"%E_ = p as usual:

(100) r = ‘2,'—5\/1";3" \/g < In [29.725 p- z’]
m

Further we have from Table 8.1./15/

0.15324 | ,

= 3.1815 - p -

8.1.(91b)c)d)
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and
8.1.(91e) A = 1.013565 - 0.063437 log” ( ITta3sg) Whence

(101) r = V€ - In[29.725p - 2]

3.1815 » por 100t - A

This formula gives the velocity at the point P measured
with the mean velocity Vo, @S unity as function of the dimension -

less quantities g , total length of the normal, z’, distance from

:
the bottom,and p = {?ﬂ N

If we choose the normals gm used in the numerical

integration, these will vary with @ ; but if the normals are chosen

as fixed multiples of Yinas and introduced in a drawing of the

equilibrium profile in question, the relative velocities will depend
only on p, i.e. the relative roughness of the bottom.

From (101) we get:

3.1815 » po-1932% | 4

[(101a)] 2> - ~££ V'E
' 29.725 - p

vp -r)

For a fixed value of p a complete set of isovels, e.g.
with relative velocities
72 1,2 5 dal 5 L0 5 8 5 sisseepane
can be drawn by cheosing suitable values of f .

As an example the isovels are worked out for an equi-

Y
librium profile with @ = 30° and p = _rl%al = 50.

We get

29.725 « p = 1486.25 and from 8.1.(91e)
A - 1.00583
vp

A 0.15324 )
3.1815 - p A, 5.8281
(58281 |
» e ;
(101aa) Z’ = —1436.35

For the values € we have chosen the values fm, for

which Vg’m can be found in Table 4.6./3d/.
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The results are shown in Fig.7.

It will be seen that the form of the isovels compares
fairly well with the results of actual measurements, and it can
consequently be concluded that the assumption made concerning
the distribution of shearing stresses must be at least approx-
imately correct.

10. STUDY OF MODELTESTS CARRIED OUT
IN VIENNA,1916. COMPARISON WITH THEORY.

DESCRIPTION OF MODEL TESTS AND RESULTS.
2_] ; the

10. 1.

These model tests are briefly mentioned in
complete report is found in [3
The sand used had a median grain diameter of about
d50% ~
1.4 mm and a-—" =
‘ 10%
with 38% of voids, measured in loose filling, and with a specific
weight of 1.64 kg/l.

Three different profiles were shaped by three different
constant discharges, and when the profile had become stationary,
its size and shape was carefully measured by a photogrammetric
method. The limiting tractive force for the sand, =t was

1.8 ; it was a rather sharp quartz sand

max’
found by separate tests on a nearly horizontal bottom and turned
out to be 0.075 kg/m?. :

For each equilibrium profile the discharge and the slope
of the water surface (at uniform movement) were further measured.

The observed results are given in the following
Tables 10.1 /22/and 10.1 /23/.

Table 10.1 /22

Dimensions, Slope and Discharge,
Width of Slope Area of Maximum | Discharge
Test | water surface I cross section depth 2Q
No 2B Yoo ' 2F y
max .
(cm) (cm?) (cm) (1/sec)
100 1.35 446. 2 5.6 13.8
198 0.79 1444.0 9.0 53.5
280 0.65 2475.0 10.5 87.0




82 SEC. 10.1.-10.2.

Table 10.1./23/
Co-ordinates x and y. (See Fig.3)

Test | Depths Abscissae x
No y (cm)
(cm) [ 2.5 5 =0 10 15 20 25 30 40 50

y 1.1 2.05 2.8 3.45 4.3 4.8 5.1
2 y 1.2 2.3 3.2 4.0 5.2 6.1 6.7 7.2 7.8 8.2
y 1.6 2.8 3.8 4.8 6.2 7.2 7.9

Test | Depths Abscissae x

No 4 (cm)
(cm) 60 70 80 90 100 110 T20 I30 140
Y

y [8.6 8.8 8.9 9.0 9.0
y 9.4 9.6 9.8 10.0 10.1 10.2 10.3 10.4 10.5

10.,2. COMPARISON OF THEORY WITH MODEL TESTS;
COMMENTS.

If we compare the results of these tests with the theory
developed in the present paper, we should note that the area
of the cross section necessary to carry a definite discharge
without erosion varies only insignificantly with the angle of
friction @ . This will be seen by the formulae given in Sec. 11.

The relative width of the cross section will, how-

max
ever, vary considerably with @ , the value of which cannot be
predicted with any degree of certainty.

We have therefore chosen to use our theory to calculate
such profiles of equilibrium as can carry the same discharge
as in the test in an area of the same size and with the same

% . This is done for a number of values for cP and the
max

dimensions and the shape of the calculated profiles are compared
with those of the tgsts. We also calculate for each value of @
the values of p = —%ﬁ and thereby find k and further the value

of the slope I, which latter quantity can be compared with the
measured values. I is probably the least accurate of the measured
values because uniform motion only existed over a length of about
10 m, so that a very strict agreement between calculated and
measured values of I can hardly be expexted.

That value of is chosen which in the most essential
features gives a good agreement in the shape of the profile, and
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it is at the same time found that in this selection the values of
I agree quite well.

It also becomes possible to compare the calculated value
of the roughness k at the bottom with the diameter of the sand
grains, and a ratio of these quantities can be found which seems
to agree quite well with statements from elsewhere.*

10.3. DERIVATION OF FORMULAE SUITABLE FOR ANALYSIS
OF MODEL TEST DATA.

As known quantities are considered
Ps® + Tinay Q and F , and we want to find

Ymax
P =~ Frmag k, B and I, whereupon the complete cross

section can be drawn and compared in detail with the observed
one, and the computed value of I can be compared with the
measured one.

We have

102 v = Q as a known quantity and start from the formulae
m F

in Table 8.1./15/

(91)(91c)d) mT = 3.1815 - p0'15324 - A , whence
2.5 ‘max P
§ 6.5257
Ymax Ym 1
(103) P = = T ® —-—-6—5-2-5'7 » Where
2.5\/-‘““- 3.1815 Avo
(91e) A, = 1.013565 - 0.063437 log’ (1rr773)

From (103) p can be found; according to 8.1.(91e) Avp
is a function of p, so we start with Avp =1 and use successive
approximation. p is seen to be independent of f :

When p is found, the other unknown quantities can be found
directly:

From Table 8.1./14/ we find:

L) pn' 1091 A 5 whence:

=Af?. - Ag,

(90)(90d)

ymax

*)
For tests Nos. 1, 2 and 3 are found respectively 2.91, 1.84
and 3.00.
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F
(7;;)
(104) Ymax 2 ,  where
. fp
(90c) qu, =1.03153 + 1.63688 cotp - 0,02187 cot?®

+0.000431 cot’®

(90e)  Ag, =1.007083 - 0.031907 log® ( rrglsys).

is seen to vary with @ ., because qu> is far from

Ymax
being a constant.

For the hydraulic roughness k we have

Y.
(105) k = ‘;‘a" .
From Table 8.1./17/ we find
. 0.0890
(93)(93d)] B = Abq) o : Abp " Ymax , where

(93c) A, =1.29443 +2.23919 cotq - 0.03069 cot’p

+ 0.00109 cot"CP

(93e) A,, =1.0047812 - 0.0212087 - logz(ro-&q—g).
From Table 8.1./18/ we find

L |

A,
1(94);(94d) I =(—i§i) . (Tr;ax) . A— po' AR Aip » Where

= 2
(94c) Ai? = 1.27888 + 1.51750 cotq + 0.00519 cot’p
- 0.00184 cot’®

e = p
(94e) Aip = 1.0069177 - 0.031130 log® (m)

10.4. NUMERICAL CALCULATION OF -
MODEL TESTS.

The formulae developed in Sec.10.3. are used. As units
we use grams and centimeters.

B, I, and k FOR

For all three tests is reckoned

- 2 _ 2
T max = 0-075 kg/m 0.0075 gr/cm?®.

Specific weight y = 1 gr/cm?®.
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Acceleration of gravity g = 981 cm/sec?,

T
%a}_ = 2.7125 cm/sec , and 10.3 (103) becomes
- 6.5257
103 _ Ymax _ m 1
(0%) p= % ° [zr57s t 4 65
vp

which formula is valid for all three tests and independent of
the choice of P -

For the calculations are used the other formulae from
10.3 besides (103a).

10.4.1 Test No 1.

Measured: =«

0.0075 gr/cm?,

G = 223 LS | g5t om® faec,
2
F = &gﬁi: 223. 1 sz,
I1=1.350/00 = 0.00135,
Fonam = 5.6 cm,
B -199°m . 50,0 cm.
(102, 1) Vs = %%O—T = 30.928 cm/sec.
'm
3T 575 ° 1.4335 and from 10.4(103a)
(103a, 1) .. 5
vp

where Avp is taken from 8. 1(91e)
p = 13.58 gives
A = 0.96059
vp
_ 10.45
- 0.7696

; A 89237 _ 4 4606
vp

p = 13.58, final value for all P’s.
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For use in 10.3(104) we find

p0- 05455 _ 13. 58005455 _ | 1533 -

_ ) . 13.58
Ay, = 1.007083 - 0.031907 - log? ( ro5-035)
Ay, = 0.981200 ‘\,Afp = 0.99056,

and 10.3(104), with F = 223.1 cm®, becomes:

223.1
J f
Ymax ~ TI. *
13.075
(104,1) y = 201D,
max foq)

This expression for y is valid for Test No.l1 and all
max
values of @ .
For use in 8.1(93) we find

p0-0890 _ ;3 560-0890 _ 4 2620  and

13.58
Ay, = 1.0047812 - 0.0212087 log® ((pgpgg ) = 0-987819
and 8.1(93) becomes

(93,1) B = 1.24663 A

b ./ — (valid for all ¢'s).

For use in 8.1(94) we find Aip = 0.981693.

"max _ 0.0075
Yy T
F = 223.1 cm?
and 8.1(94) becomes:
A

- i . - - % -
I = TB‘CEI 0.0075 - 1.3270 - 0.981693
-5

= 0.0075 cm

ymax

4.37934 - 10 (valid for all @ &)

(94,1) I

Ai@ " Ymax
For the calculation of Test No 1 for different values of?
we now have p = 13.58 and (104,1) , (93,1) and (94,1).
The respective values of Af¢ . Ab¢ and Ai? are found
by 8.1(90c) , 8.1(93c) and 8.1(94c).

The results found for @ = 18°, 19° and 20° are compiled
in Table 10.4.1/24/, where the calculated and observed values of

. SO B and I can be compared, and the calculated value of k is
given.
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Table 10.4.1/24/
Test No.1. p = 13.58.
P = | 1g° 19° 20°
\/A 2.4238| 2.3689 | 2.3179
_13.015 7P (cm) [5.39 | 5.52 |5.64
ymax -_VA—— e . .
fe
. I observed (cm) 5.6
AbQ 7.9270| 7.5624 | 17,2375
B = 1.24663 - AbQ. Toran (cm) 53,31 52,06 50,90
B observed (cm) 50
AicP 5.9458 | 5.6857 |5.4502
-5 =5
1=4,37934- 10 - AiQ‘ Yeaai 10 .7|140.5 137, 4 134.‘6
I observed 107° 135
y
Kk = “;f‘x (cm) [0.397 | 0.407 |0.415
10.4.2 Test No. 2.
Measured: T = 0.0075 gr/cm?
Q= 53—‘6#5: = 26800 cm®/sec,
2
F - l_ﬂ‘%ﬂﬁ = 722.0 cm?,
I = 0.79 0/oo = 0.00079,
- 9.0 cm,
B = 1928 €M . 99.0 cm
The calculations are made similarly to those applying to
Test No. 1.
We find:
26800 _
(102, 2) Vm = m = 37.050 Cm/sec
v
sT 575 = 1.7173  and from 10.4(103a)
(103a, 2) p = 34,08 ; whence
A O

vp
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p = 34.698
(104,2) y__ - 22;48 for all @’s.
Vace
(93,2) B = 1.3709 Ab?' ¥riax for all @’s
(94,2) I = 1.5244 - 1072 Aig " Ymax for all @’s.

The results are given in Table 10.4.2/25/

Table 10.4.2/25/
Test No. 2. p = 34.698

= & 18° 19°
\/Af . 2.4833| 2.4238| 2.3689
y 22148V ¥ (cm) [8.92 | 9.14 | 9.35
max ‘/K_‘ : : :
fep
. S observed (cm) 9.0
Ape 8.3283| 7.9270| 7.5654
B = 1O - A Fge (cm) 101.83| 99.30 | 96.97
B observed (cm) 99
Aiq) 6.2345| 5.9458| 5.6857
-5 -5
I-1.5244-107°- Ao * Ymax |10 84.8 82.8 81.0
I observed 10-5 79
y
k = ‘;lax (cm)  [0.257 | 0.263 | 0.270

10.4.3 Test No, 3.

Measured: 1 = 0.0075 gr/cm?,

Q = BL.0 l/see | 43500 cm®/sec,
F

_ 2475 cm?® _ 2
= 5= = 1237.5 cm?,
= 0.65 o/oo = 0.00065,

I
. 10.5 cm,
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_ 280 cm _
B__z__140cm.

The calculations are made similarly to those applying to
Test No. 1.

We find:
(102,3) v_ = o0 - 35.152 cm/sec
vm
ST 575 - 1.6293 and from 10.4(103a)
(103a, 3) p = 24.180 whence
L
p = 26.10
(104,3) y, . =202H7 for all @ ’s
VA
fg
(93, 3) B = 1,3332 - AbcP * Yipax for all@ ’s
-5 "
(94,3) I = 0.85874 - 10 -Ai?- Y max for all @ ’s.

The results are given in Table 10.4.3/26/
Table 10.4.3/26/
Test No.3. p = 26.10

P = 14° 15° 16°
A 2.6969| 2.6189 | 2.5481
29.517Y I®
Ymax = —Fm—— (cm) |10.94 | 11.27 | 11.58
“/Af?
- observed (cm) 10.5
Ao 9.8520| 9.2804 | 8.7764
B =1.3332 - Ayo * Ymax (cm) |143.76| 139.45 | 135.04
B observed (cm) 140
Ai? 7.3310| 6.9199 | 6. 5571
-5 . -5
I - 0.85874 - 10 ° . Aip Y max 10_5 68.9 | 66.9 |[65.2
I observed 10 65
y
k = ’;‘ax (cm) |0.420 | 0.431 |o0.444
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10.5. ADJUSTMENT OF THEORETICAL EQUILIBRIUM PROFILES
TO THOSE OF MODEL TESTS.

From Tables 10.4.1/24/, 10.4.2/25/ and 10.4.3/26/ we
already get a rough idea of the value of @ that will give the
best adjustment of the theoretical equilibrium profiles to the
observed ones.

To compare the profiles more closely the theoretical
profiles are drawn according to the co-ordinates given in
Table 8.2/21/.

The observed profiles, the co-ordinates of which
are given in Table 10.1/23/, are then reduced to the same scale
as the theoretical ones, and superimposed correctly upon the
theoretical profiles, i.e. with coinciding axes and water surfaces.

This has been done for three different values of CP for
each tested profile.

That value of @ is chosen which in general gives the
best conformity between calculated and observed profile for
each test.

The following values of @ were chosen:

Test 1 : 4>=19°
- 2: @ =117°
= 3z ¢=14°.

The results are shown in Figs. 8, 9 and 10.

It is seen from the Tables /24/, /25/ and /26/ that the
agreement of I corresponding to this choice is quite good
considering the uncertainty of these observations, as mentioned
in SEC.10. 2.

As seen in the figures the agreement is considerably
better for ®sts 1 and 2 than for Test 3.

If we study the data for Test 3 we find, however, that its
mean velocity P is smaller than v for Test 2 although . —-—

is ~ 17% greater in the former case. This is in disagreement
with the well-known fact that for equal tractive force a greater
mean velocity is needed to move the sand grains when the depth
is greater. It therefore seems as if some uncertainty must exist
in some of the observed data.

It does appear from all three tests that the angle of
internal friction @ , which must be introduced in the theory put
forward to get a tolerably good agreement, is considerably
smaller than would generally be expected.

If we remember, however, the fact that the sand grains
in a state of incipient motion hardly exert any normal pressure



SEC. 10.5.- 11. 91

on the underlying ones and that the angle @ is known to de-
crease with decreasing density of the sand, it is hardly sur-
prising that ¢ is found to be small.

In Figs. 8, 9 and 10 the slope of the banks in the model
tests is seen everywhere to be greater than for the theoretical
profiles, which fact might seem to contradict the reasoning above.

It does seem possible, however, that the capillary tension
in the sand above the water surface may be able to give the
banks a certain cohesion causing them to be locally steeper than
in the case of a true cohesionless material.

A similar effect in a full-size channel or natural water-
course would of course be relatively insignificant.

We, therefore, provisionally conclude that the angle of
internal friction @ for a sand material llke that used in the
model tests should be estimated at 18 to 20°, but it is clear that
a further study of this question is highly de31rable (see Sec.14 ).

11. FORMULAE FOR THE DIMENSIONS OF
EQUILIBRIUM PROFILES FOR GIVEN

VALUES OF Q, frnax’? s K AND? .
In the formula 8.1(89) for Q in Table 8 1/13/ we insert

8.1(89 A _=3.1815 - A
and v
8.1(894d) qu)= 0.26234 = constant
and get
Q - 3.1815 Ay, - p2 2034 LA
max 2 ) ap
2.5 0 - k
where

8.1(89e) A, = 1.020619 - 0.095322 log (115=g3)
and where Af‘? is found from 8.1(90c), Table 8.1/14/.

Solving with respect to p we get

] Q

2.5\/ 238X 2 . 3,1815. A
where \/—r 9 f?

8.1(90c) qu) =1.03153 +1.63688 m - 0.02187 m® + 0.000437 m®

0.44202
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and
m = cot @ .

In the first approximation the factor next to p on the left
side of (106), viz: 1.009114-[_1 - 0.041283 log? (rrop,—m)] is

neglected, whereby a nearly correct value of p is found; p is then
found correctly by successive approximation.

For 20 £ p < 600 the said factor will hardly deviate more
than 1.25% from unity.

k4
When p = 1r{n;ax is found we get directly
(107) Foiag = k « p.

For the half width of the water surface, B, we get from
Table 8.1/17/, formula 8.1(93) with 8.1(93d)

Bbcp? 0.0890 = constant
108 Bak+ A . + p0800 4
( : where b? ’ P
8.1(93c) A,qu = 1.29443 + 2.23919 m - 0.03069 m*+ 0.00109 m®
and
m = cotcp F
further

8.1(93e) Ay =1.0047812 - 0.0212087 log* ( g ) -

As p is known from (106) B can be directly found from

(108).
_ From Table 8.1/14/, formula 8.1(90) we get with
Bf‘P = 0.1091 = constant for the area of the half cross section
.2 . ,2.1091
(109) F = k° - qu: P Afp .

where
. 3 [1- B )]
8.1(90e) Afp 1.007083 [1 0.031682 log? (m) ;

p is known from (106) and F can be directly found from
(109).

We want, however, to find a more explicit form of the
formula for F and therefore insert the expression (106) for p
in (109).

We find :
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2.1091
{1.009114- 1 - 0.041283 log® (rrg—m)]}

z 1.019223-[1 - 0.087070 - log? (Il‘op—z‘e'z)]'
By using the formulae 6.4(77 through 80a) we further find:
1.019223 - [1 - 0.087070 log? R

1.007083 - [1 - 0.031682 log? (TO'E—O'S'B')]

e

1.012051- [1 - 0.055388 log? (n-ﬁ’—ssil ;

and (109) takes the form : 0.832265
013547, 0.067735
P 2.5 " max
(109a) F = , g |
2.97877- [1 - 0.055388 - log? (155 )]
where
8.1(90c) Af‘P= 1.03153 + 1.63688 m - 0.02187 m® + 0. 000473 m®
and
m = cotcp.
In (109a) the factor A; L takes the following values
for the four values of @ : ¥
A 0.067735
? fe
15° | 1.1393
20° | 1.1206
25° | 1.1063
30° | 1.0947,

and it is possible to put with good approximation

0.067735 _ ,
Ao = 1.0560° [1 + 0.02178 cotq],

where upon (109a) takes the following final form :
0,932265

0.354509 k- 13947 [1 +0.02178 cotq) | @
1 - 0.055388 log® ( rri—=x) o 2\ | max
; \3

From (109b) it is clearly seen that F is practically

independent of p = __nk1£ for actual channels, where p will

(109b)] F -
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probabl y be of the order of 100 and that it varies only slowly
with .
For practical calculations it should consequently be

advantageous to judge roughly the value of p from (106) and then
use (109b) to find F.

From (106) it is seen that p varies approximately pro-

-0.88404

portionally to k , and thereby it is seen from (107) that

0.11596

is approximately proportional to k , whereas (108) and

Ymax
(106) show that B is approximately proportional to

k _ k N k0.03728
. L - .
T T
The dimensions proper of the equilibrium profile
consequently are only slightly influenced by an uncertainty of k.

11.1. CHOICE OF THE ANGLE OF INTERNAL FRICTION ¢ AND
THE EQUIVALENT SAND ROUGHNESS k.

11.1.1.¢,

As to the choice of @ we refer to the remarks made in
Sec.10.5 .

The value of @ must probably be lower than those values
used in calculations of soil mechanics, and the results of the Vienna
tests make it probable .that @ = 18° to 20° will be appropriate.
Further studies of this question do, however, seem necessary, and
we refer to the proposals made in the conclusion, Sec. 14.

11.1.2. k.

As to the value of k, the equivalent sand roughness, which
must be introduced in the formulae above, several view points can
be advanced.

If an empirical knowledge of M for chamnels of a similar
character is available, it is easily proved by comparing the Manning
formula with the results of Nikuradse for the resistance number f,

that 25.84

M = (rnl/3/sec)
gik
or 6

(110) k = (ggozr)  (k in meters).
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If Kutter’s n is known we have
(111) M - .

The above-mentioned results of Nikuradse concerning the
resistance number f agree perfectly with the results obtained by
pure calculation on the basis of the logarithmic velocity distribut-
ion, as it is done in this paper.

From the logarithmic velocity distribution in a definite
normal to the bottom of total length zg it is easily found that the

velocities v_ and v_ at points p- Z, and q- zq from the bottom will
have the mean value Vi equal to the mean velocity in the normal
concerned, provided that

(112) P-q*= = 0.1352 ( e basis of natural logarithms).

13 v --B 4

The hydraulic roughness of the bottom in the neighborhood
of the foot of the normal is found to be

29.7 - p -z,
(114) k = (p>q).

vV -V
[,]7 "
Lq

The values p = 0.90 and q = 0.15 e.g. satisfy (112), and
if the velocities are measured at distances 0.90- z and 0.15 - z

from the bottom we get from (113) and (114)

26.7 - 20

Vp

Vp " Yq
6

By taking normals distributed over the whole width of the
channel we can get an idea of the variation of k transversally to
the axis of the channel and obtain a mean value of k.

(114a) k = for p = 0.90and q = 0.15.

If empirical values of k in this way are known from
channels of varying character, a sufficiently good estimate of k
for planing purposes can probably be made.
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Provided that the channel considered is shaped as an equi-
librium profile a relation can be shown to exist between

\4
m

\4
max

mean to maximum velocities for the total cross section.

ymax

p= =5 and 2¢ as well as between p and , the ratio of

F

YA
can easily be found, and the corresponding value of p = o

If the cross section is measured in detail 2€ =

can be read in a diagram; we then find

B Ymax
P
A possible knowledge of -vﬂ——— can similarly be used for

max
finding k.

This method is presented in detail in Sec.12,(see Fig.11).

This method will be developed in detail in the following

Sec.11.2, where formulae for p, s go— B and F are presented

that do not directly contain the roughness k.

11.2 DETERMINATION OF DIMENSIONS FOR GIVEN VALUES OF
Q. ®ooax' ¥ AND @ AND FOR k ASSUMED TO CORRES-

POND TO ROUGHNESS OF NATURAL WATERCOURSES.

As it will perhaps sometimes be doubtful which value must
be assigned to k in the formulae of Sec.1l, we think it useful to
develop formulae not containing any value of k, which can be
chosen more or less arbitrarily.

From a study of many hundreds of observations of
velocities in natural watercourses together with their hydraulic
radii R and their slopes, we have found statistically that k must
be independent of the slope I and is a function of R alone.
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We have found

c. \l-96
k k
(115) R - (_R') .
where
(115a) Cx = 0.425 meters or 1.395 feet.

For small values of R, (R<1.0 m), e.g. for mountain
torrents, the dispersion of the observations in relation to the law
(115) is considerable, but for larger rivers in plain country the
agreement between the observations and (115) is very good.

It must naturally be remembered that k itself varies during
floods and that the same value of Q is known to correspond to
different depths by rising and falling waters. No great exactitude
can consequently be expected.

When we set up a velocity formula based on (115) and on
the ordinary assumption that shearing stresses are uniformly
distributed along the perimeter we find

(116)  v_ = 8.83-[0.750 + log (Efi)n- ﬁ-R-I .

This result is in good accordance with some of the better
formulae for natural watercourses, e.g. those of Hermanek.

This question is further treated in Sec.12. 2,

In the following we therefore use the assumption (115) and
(115a).

(115) is written as follows:
1 56

e\ " ()2 88
(115p) R . (-k‘i) s (‘k‘)

From Table 8.1/16/ we find

R _ ] ~ . 0.0210
= A Arp p

8.1(92
O2 Fax ~ Pre

S _ Ymax .
by multiplication of 8.1(92) by p = X We get:

R

:(117) = = AI"P . Arp i p1.0210' where
8.1(92c) Ar? = 0.1732 and
8.1(92e) A__ = 1.000

rp
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From (115b) and (117) we get

C

k 0.358974 0.3665125
T = (A Ay . p

h 4
By division of p = jm(ﬂ by (118) we get

Ymax -0.358974 0.6334875
(119) . o (Arg - Arp) . B
Using (118) and (119) k and Ymax 3F€ now expressed by p.
In Sec. 11 we found :

11.(106) p - 1.009114 - [1 - 0.041283 log? (rrg“%"z)]

. 8 0.44202
= "0.88404 T
k 2.5 . ‘;a" . 3.1815 -

Ag P

(118) is raised to the power 0.88404 and multiplied by
11.(106) and, when solving with respect to p, results in :

1.479316
1-479318 1~ 0.041283 1og2(mr‘_’2-ﬂi

1 0.653887

(120) p- 1.009114

0.717948

Q- (A - AL)

2.5 « \|—2% ¢ ® . 3.1815 - A J
Q k fe
Introducing the values 8.1(92c) and 8.1(92e)

Ar?Z 0.732 and Arp = 1.000 we get :

(1202)] p - [t - 0.06107 log? (l'mp.—zs’z)]
7 0. 653887

Q
2.5 \/Tin?_a"_ 3 5 Af?J

In (120a) p is expressed by known quantities. The paren-
thesis on the right side is dimensionless. Note that the variation
of Af‘? with @ is considerable.

= 0.39987

For rougrh calculations we take for instance

a0 . ) 0.653887 _
P = 20° 5 Ay, - 5.3728 Afqp = 3.000
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~

and estimate p = 110; i.e. log® - roizgy ° O-

We then get:
0.6539

(120p)] p = 0.1333. Q (P = 20°
2.5 -\Fmax . R

g k
valid for every consistent system of units.
In the Metric System we have

1 B 1 |
—T.3078 - - ,,.1.3078 ~ 0.327 S
Cy 0.425
Q 0.6539 5
(120c)] p = 0.408. (p = 207)
2, 8225
S
In the FPS-System we have
1 B 1 P
— 1.3078 ~ 1.3078 ~ T.545
C 1.395
Q 0.6539 &
(120d p = 0.0863- - (p= 20)
9 5)/_max

From (118) we get

k _ -0.358974 __-0.3665125
(1182) = = (A~ App) P

The equation (120) for p is raised to the power -0.3665125
and multiplied by (118a), whereby we get

: 0.542189
o B [1.009114- [L - 0.041283 - 108 (rpPyry)]
G2 o " fa_. a_ )0 531058 0. 239658
et 0.239658 | 2 .
(3.1815 A_ )" \[max 2
I— fe 2.5 S - Cy
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In formula 11.(109a) we found :

k0'13547 A 0.067735 Q 0.932265

L

2.5 . max

2.97877 [1 - 0.055388 - log® (rrrBes))]

When (121) above is raised to the power 0.13547 and
multiplied by 11.(109a) and observing that
2 -0.13547 = 1.86453 = 2. 0.932265 we get

11.(109a) F =

Q 0.899799 t( 2 0073450
i : 1-0041283( ]
o .. A [ZT—J' T _C:] [r.oosm{ 041283(0G (o 7c5)

.077940,
% 297877 [ArgArp ]0 L 7- 0055388 log*(-2—) | -
We put :
0.073450
[1 - 0.041283 1og2(m§’7%7)] = 1 - 0.00303224 log? (1P —7)

and find by formulae 6.4(77 through 80a)
1 - 0.055388 log® (= t—rr)
IT1.55 = 1 -0.052356 log® (rrfpmy ),
: p .
1 0.00303224log2(rrwjﬂﬂﬁ

which result is inserted in the denominator of (122).
We further have
Arq>= 0.732 , Arp = 1.000
0.071940
(Ar? Arp)

and find the new form of (122)
0.100201 Q 0.899799
A . ~
? 2.5 max c @ 2
, |2- ? 3, |
2 2.97877 - 0.97780-[1 - 0.052356 log? (ITTQggg)]

= 0.97780

,'!1

(122a)

C

=
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0.100201

The variation of the factor Ag @ with@ is only

slight, and we get with good accuracy :

(123) qu,"'“"’z"1 - 1.0956 - (cot)?- 0766
With (123) we finally get from (122a)
0. 37615{cote)’- 0766 . Q 0 899799
F_ _ 2.5 ;a" TN

¢ 1-0.052356 - log? (rr&m{)

It is clearly seen that the variation of F with @ is only
slight.

For rougher calculations we put

@ = 20° , (cotg)? 0786 = 1 0812  and

p ~ 112 e log® (rrriggy) = O

and get

0.9

F ~ . Q : L o

£ 0.40 [ (@ = 20°)
2.5

max 2

c
k - Cy

0.9
0.407 - ¢, % 2. S ' (@ = 20°)
g, 5Y] 2%

g

This expression can be used for every consistent system
of units.

In the Metric System
0.425m ,

~

[a22¢)] F

= 0.8427 (- 2

9

(122q)] ¥ = 0-343: W%Kx (P = 20°
g, S\ SO
§

In the FPS-System

Cx

_ 0.2
ck -
' 0.

]

0,02 )
0.9
(122e)] F = 0.435.[—Q (@ = 20°)

¥

= 1.395 feet - 1.069 (feet?: 2

Cx
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From (119) we get with

Arq? = 0.732 5 Arp = 1.000

0.633488

Y
(124) ::“a" = 1.11852 p
k
When p is found by one of the formulae (120a)b)c)d) y
is directly found by (124) . s
From Sec.1l. we have :

_ . 1.0890
11.(108) B =k Abcp - p . Abp "
We find by division by (118)
B 0.72249
(125) — =1.11852 - A, _ - p - A,
Ck b<P bp

The variation of B with @ is considerable so that the
correct values of A, , should be taken from Table 8.1./17/,

formula 8.1(93c).
The variation of Abp will probably only be small

(cf. formula 8.1(93c)).
By the successive use of the formulae

y
(120a)b)c)d) for p = —p—— and
(122a)b)c)d)e) for F and
(124) for . - and

(125) for B
all the principal dimensions of the equilibrium profile can be found
and the complete profile can be drawn using the tables of the

co-ordinates 7 and § , Table 8.2/21/.
It must not be forgotten that Q, F and B refer to the
half total cross section.
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11.3. ILLUSTRATIVE EXAMPLE OF CALCULATION OF DIMENSIONS
The Metric System is used.

Given :

Q = @29_ m®/sec = 400 m®/sec for half cross section,
T nax = 0-15 kg/m?,

Y = 1026 kg/m?®,

@ = 20°

and

k ~ as for natural watercourses.
For use in the formulae we calculate :

T

T
max _ _max , Ll?ﬁ,ﬂ?_-ﬁl_ = 0.001435 (m/sec)?,

F_SL__ ¥
\_E‘E = 0.03785 m/sec,

1
Q & iy - 4225 m?
2.55 ﬂal ’ ’
_ e
Q 0.9 3.8 0.9
=10°° . 0.4225 7 = 3980 - 0 4606 = 1833
5) max
e
and further have
11.2(115a) ¢, = 0.425 m,
11.2(122d) F =0.343 - 1833 = 628 m?
Total area : = 1256 m?
0. 6539
Q = 1026136 | 42950-6539 _ 415 . ¢ 5700
g Sy .20 © = 234.5
$ y
11.2(120c) p = = = 0.408 - 234.5 = 95.7
p0-6335 _ g5 06335 _ ;4 oo

= 0.425 - 1.1185 - 17.95 = 8,53 m

11.2(124) ,
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Yy g
_ Ymax _ 8.53 _

ko= HEX - 0 - 0.0891 m.

20-7225 _ g5 70.7225 _ 5o oo

From Table 8.1/17/ we get
App = 7-2375, and 8.1(93¢) Ay, = 1.004781 - 0.02121 1o (158—7%)
106.46 _ ; 1125 ; log1.1125 = 0.0462 ; log? 1.1125 = 0.002135
-—95—7-— = . » Og . = . » (0] - = . .
App = 1.004781 - 0.000045 = 1.004736

11. 2(125) B =0.425 - 1,1185 - 17,2375 - 27.0 - 1.0047 =93.2 m
Width of water surface of total section : 2B = 186,4 m,
12. FORMULAE FOR THE MEAN VELOCITY Yor IN
EQUILIBRIUM PROFILES.

12.1 Vm AS A FUNCTION OF HYDRAULIC RADIUS R. FIXED
VALUE OF k.
From Table 8.1/16/ we have

8.1(92)c)d) R’ = —B_ - o.732 . p¥-210 |
max
R _ 1.210
or
R 1.210

From Table 8.1/19/ we have

8.1(95)c)d) v

or

(127) - 1.160 p"? At RI.

From Table 8.1/15/ we have

s m _ . 0.15324
8.1(91b)c)d) L - = 3.1815 - p Avp 3

where
8.1(91e) A, = 1.0135645 - 0.0634373 log® ( 1ria33) -
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0.01 0.15324
v, = 2.5 3.1815 - 1.160 - p -\/g R I:p A
or

_ . .0.16324 _
(128) v =2.5 - 3.1815 - 1.160 - p \/gRI Avp.
For the calculation of Avp we find by means of (126)
1
1 R 1,270
log (T11-478) = log [rm " (om3z) ]

1
=log[(o—73~2—3m_R - e PI—ZTO'.I ‘log(m—k—R. ) »
from which
log® (1rf7s) = ramar © 1€ (3155
and
0.0634373 - log® ( ryymy) = 0.043329 - log® (phrr) .
which inserted in 8.1(91e) gives
R
(129) A, = 1.013565 - 0.043329 log® ( 5155 ) -

We further have from (126):
0.16324
0.16324 _ R T.210 1 R.0- 134909
(130) p - (or33)

. )
0. 7320- 134909 'k

Inserting (130) in (128) we find

_2.5 - 31815 - 1,160 R, 0-134909 VgRI <A,
Ym T T 5,0 134900 ) vP

where Avp is taken from (129) and

0.7320-134909 = o500

We finally get

(131a) v

m
R 0.134909

= 9.6228 . (D) A/eR1I- [1.013565 - 0.043329 log? (71_956_1(_)]

or
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(131)] v,

. [9-6228 '¥g ].30-634909 L2 [1.013565 - 0.043329 1og2(n§—51;i|

k
(131a)b) is valid for every consistent system of units.
In the Metric System we have

Ve = Vo8l = 3.1321 m2]gec ,

which gives

_ 30.14  0.6349 .1/2 ) . R
(131c) "m‘;o.—rsm‘r R -1 [1.0136 0.0433 logz(mq

Herein the last parenthesis (i.e. Av ) is practically
always near unity. P

12.2 Vs AS A FUNCTION OF HYDRAULIC RADIUS R, ASSUMING
k AS FOR NATURAL WATERCOURSES.

From 11.2(115)a), valid for natural watercourses, we have

R _ B
(® = (&)

where
11.2(115a) ¢) = 0.425 meters or 1.395 feet.
This is inserted in 12.1(131a) and we get
R 0.21046
(132) Vo, = 9.6228 - (q) -\gRI - Avp

where

i g )58
(132a) A, =1.013565 - 0.043329 1og'"[m &)

k
We have
1. 56 1.56
1 R : _ R - _ R
m[m‘qj = log| (3177 = 1.56 log (3177 )

1 g O m LB ) . &
og® ETQTE'(Fk’ = 2.4336 1og2(3-1-_-7—c;),

which gives v
. R
(132b). A, = 1.013565 - 0.105445 log? (3'177c—k)'
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Inserting (132b) in (132) we finally get
0.21046

"/gR g [1 013565-0. 105445 1og2(3_7_.)]

(133) v = 9. 6228(—)

or
(133a)] v_
_|9.6228 -V 0.71046 .1/2 R
= |=§5101E-|' R - T/%. 11013565 - 0.105445 1og? (3770
0. :
k

which formulae are valid for an arbitrary consistent system of units
In the Metric System we have

Vg—='V9.81 = 3.1321 m1/?/gec ,

ck = 0.425 m ; 31.7 - Cy = 13.48,

ck0.21046 = 0.4250-21046 _ 0.8350
and (133a) becomes

(133b) v, = 36.0953 - R*- 71046 . (1/2.[1 01357.0. 105445 -1og2(1-337§)]

This formula has much resemblance to the empirical
formulae of J. Hermanek. :

Hermanek gives for R = mean depth of section and
1.5m <R<6.0 m the following formula

(154 v =gk« g%, 2
The last factor in (133b) will be near unity for such
values of R.

12.3 Vm AS A FUNCTION OF Y miax FIXED VALUE OF k.

If we want to express the mean velocity by y

e instead
of by R we insert R from 8.1(92) in 12.1(128) and get

v =2.5-3.1815- 1, 160 0.732%-5. p0.17374 -

s y A

Y nay 0-17374 —— vP
(135) v, = 7.89379 . (2K, VeEYmax 1 Ay |
where

(135a) A = 1.013565 - 0.063437 - log® ey Ymax )

or
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k
(135)a)b) are valid for an arbitrary consistent system of

_[7.89379 -/ 0.67374 .1/2
(135b)] vy, = [‘rr'm#g—-] Ymax ST A

units.
In the Metric System we have
Vg = VQ.BI = 3.1321 ml/z/sec
and
(135¢) v - [24.7241] . 0.67374 /2,
m KO- max vp
A__ will generally be very near unity and the similarity

vp
between (135c) and the Manning formula

_(25.84). r2/3 . /2

v =
m g/k

becomes striking; it must, however, be remembered that (135c)
contains  S—-— and not R.

13. THE RATIO OF MEAN V ELOCITY Vins TO MAXIMUM
VELOCITY L™

ax’
13.1 'm AS A FUNCTION OF _ Ymax
: v . B ®=pg==
max
From Table 8.1/15/ we have
v
8.1(91b)c)d) = - 3.1815 . p0-1532¢ | ,
2.5 max vp
where 9
8.1(91e) A

vp = 1.013565 - 0.063437 log® (rr1ismg) -

For the maximum velocity A which occurs at the surface

where the depth is Ynax ¥O have directly

v y
max max _ .
(136) . - 3.392 +1n 32X - 3.392 [1 +0.67283 - log p]
25 max
We divifle 8.1(91b) by (136) and get
0.15324 P
v 0.950665 - p *|1-0.062588 log® ( )
(s —2- = : L 111.428 ]
v 1 +0.67883 logp



SEC. 13.1.- 13.2. 109

\'4

The ratio of mean to maximum velocities is
max
consequently a function of p alone and quite independent of ? s

The denominator in (137)
1 v

1 +0.67883 logp = gpw - L

2.5 max

can be developed in a form similar to that of the numerator in
(137).

The calculation is made in the same way as that used
for the functions Ap in Sec. 6.3.

We find as a first approximation

(138a) 1+0.67883 logp = 1.31155 p° 12535

for 24.2 5 p < 500.

The logarithmic deviations ep from the simple power
formula are then treated as indicated in Sec. 6.3 and we find
(138b) 1 + 0.67883 log p
= 1.323712 - p* 12935, [1 _ 0. 041934 10¢? (m‘gp—zw)]f 0.104 %
for ~ 18<p<~ 950. '

Inserting (138b) in (137) we get

0.02789
(137 vvm _0.718181 - p [1 - 0.062588 1og® (rrrPmg)]
max [t - 0.041934 10¢ (m-gp_—?”)]

The parentheses are divided by means of the formulae
6.4(77 through 80a) and we finally get the following form of (137a)

v
137b M. 0.718187 - p® 9278011 _ 0, 020654 10g? (
(137)| — 230

max

+ 0.925 %

13.2 DEGREE OF FULLNES 2 OF THE CROSS SECTION OF
EQUILIBRIUM PROFILES,

We define 2€ as follows

_ F _ Ymax F’ F’
4.5(58) 2 = p—

:
Atn
.
3
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From Tables 8.1/14/ and 8.1/17/ we get

(90b)d) F = Agg eLoEl , &
s 0.0890

(93b)d) B Abcy ‘p A
and by division

fp

bp

A A
F’ f 0.0201 f
(139) € = — = A_£ - p . TE
B’ b@ bp
A
For the ratio Af—q) we get from Tables 8.1/14/17/ the
following values BP
P T 20" 209~ 307
A

Afl 0.739031 0.742356 |0.745156 0.747759
b

The variation with P is so small that we take as an
average ,

(139a) Afl = 0.7424 = constant , nearly corresponding to
b

P = 20°.
For Afp and Abp we get from Tables 8.1/14/17/

(90e) = 1.007083+[1 - 0.0316826 log® ( ro55035°)]

Ag,
(93e) Ay 1.004781-[1 - 0.0211078 log* (5857 ]

The ratio of the two parentheses is found by means of the
formulae 6.4(77 through 80a). We finally get

A
fp _ P
(139b = 1.002290+|1 - 0.0105748 log?® ( )]
) A—bp [ 111,245

and by inserting (139a) and (139b) (139) takes the fqllowing form

(139c)] a¢ = 0.7441 - p% °%%0 . [1 - 0.010575 1og® (mﬂLﬂg)] -
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Vm

13.3 RELATION BETWEEN ——— AND 2€.
max
We found
m 0.02789 [1- 0.020654 log? (1yvsmr)
13.1(137b) =10.718187 - p - [ . I 230
max

13.2 (139¢) "2 = 0.7441 - p° 201 [i _ 0.01057510¢? (rBsrs )]
. v *

These equations represent and 2€ as functions of

v
max

Ymax 'm

P = —g— ; the relationship between and @€ is given by

max
Fig. 11 with the parameter p on the curve and the figure can there-
fore also be used for the determination of p and thereby of k when
one of the other two variables is known.

In order to eliminate p between 13.1(137b) and 13.2(139c¢c)
by raising the latter to power 1.38756 and dividing we find

v
(v m ) 1 - 0.020654 log® (1'1'7}.12'3'6)

(140) T e = 1.082324 -
“o¢1- 38758 1 - 0.010575 log® ( rPuys )

In (140) the fraction on the right side is treated according
to the formulae of Sec.6.4 and we get

v
m
() o
(140a = 1.082352-[1 - 0.005981 log® ( ):l .
) ¢ 1. 38756 : 133321

To eliminate p in (140a) we use

13.2(139¢c) 2€ = 0.7441 . p0°0201~[1 - 0.010575 log? (rnp—z;ﬁ)]-

Taking logarithms in 13.2(139c) and noting that the
parenthesis does not deviate much from unity we find

(141) [log ( rrf—mi{ 1 - 0.22851 log (rrlp.—ﬂs)_.[

49.751 log (1.222572¢).
We substitute

(142) € = 1.22259%¢ - 1

and noting that £ will always be small compared to unity (141)
becomes

Eog( rrr?m}[l - 0.22851 1og(rr‘1’_—ﬂs)] = 21.606 - &€ .
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Solving this quadratic equation we find

log ( ryriors) = 2. 1881 - [1 -\/1 " 19.4795] 0

r
(141a) log ( yg3—ggy) = 2.1096 - [1 - 1.0372 /1 - 19.479€ ]

(141a) is inserted in (140a) and we finally find

v
[120p)] = -1 02255 -0¢ 138756y 4 0.5904£+o.05845\ﬁ-19.479£]
max
where & is taken from (142). v
(140b) gives directly the relation between 2€ and - = .
We find for instance v max
x m
Vmax

0.77 0.7478
0.80 0.7929
0.84 0.8479

It must be remembered that (140b) is exclusively valid for
equilibrium profiles. For other channels, e.g. with fixed bottoms,

v
m

y
no definite relation between 2€ and p = —uklai can exist and ~
max

can vary within considerably wider limits.

For an equilibrium profile it will consequently be possible
to determine the mean velocity by measuring the maximum
velocity and sounding the complete cross section of the channel,
i.e. determining 2€.

This should be an advantage in tidal channels, where the
discharge cannot be considered steady for a time sufficient to
carry out velocity measurements at a sufficient number of points
of the cross section.

2¢ depends not alone on the area of the section and its
maximum depth which will probably both be well defined, but also
on the width of the water surface.

This width will e.g. for natural streams often be influenced
by vegetation on the banks and thus be narrower than for the
equilibrium profile, even if the cross section as a whole is near
the equilibrium profile. The area can then be considered correct
and the width of that equilibrium profile which as an average
gives the best adjustment to the profile in question can be used by
the determination of @ . This is what has been done in Sec.10 by
the study of the Vienna model tests.
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SEC. 14. CONCLUSIONS AND SUGGESTIONS
FOR FURTHER STUDIES.

The topics studied in this paper would be of interest for
the problem of stable channels in general, but they do not cover
the whole problem.

The shape of the profile which is stable against erosion
is found, but only provided that no transport of bed load occurs;
neither has the question of silting up of the channel been taken
into account.

It is hoped however that the present study will be useful
if the problem in all its aspects is to be solved.

The whole study is carried through theoretically on certain
assumptions which are clearly stated, and further work in this
field should try better to confirm or to correct these assumptions
by direct control or indirectly by comparing the results with
actual observations. -

The most important assumptions made are:
1) Distribution of 7 according to formula 1. (1) or 4.2(1la).

2) Hydrodynamic lift L. proportional to ¥, 2.1(3) and 2. 2(9) based
on the work of Einstein [1].

3) Logarithmic velocity distribution as indicated in Sec.1; mean
velocity in an infinitesimal wedge-shaped element of area
assumed equal to mean velocity in normal to bottom at the base
of elements, Sec.4.2.

4) Uniform distribution of roughness k, Sec. 4.2.
5) Constant value of angle of internal friction ¢ along perimeter.
6) Principle of minimum area of cross section, Sec. 4.4.

7) For some of the formulae for the dimensions of the channel
and for the mean velocity an empirical relation between
hydraulic roughness k and hydrau'Ixc radius R, as found for
natural watercourses, has been introduced. Thus formulae not
containing k have been established.

The isovels studied in Sec. 9 and the example presented
in Fig.7 seem to some degree to confirm assumption 1) concerning
the distribution of t.

That this choice is better than the usual assumption
taking v proportional to the depth, seems evident, but the question
could be studied further by other methods, and the result possibly
be improved; it seems probable however that such further studies
will be considerably facilitated when an approximately correct
solution is at hand.
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Assumption 2) concerning hydrodynamic lift should also
receive closer study and the size of the proportionality factor
¢ =4.9 might probably be improved. It seems clear however that
this assumption is better than the complete disregard of the hydro-
dynamic lift, and the large size of ¢ may perhaps explain why the
angle@ is found to be so small as is the case (see below).

The logarithmic velocity distribution accepted is probably
so well established that it does not need further comments, but the
hydraulic roughness in real profiles must obviously be expected to
vary along the bottom; the k introduced must therefore be taken as
an average value.

As to the principle of minimum of area it will hardly be
possible to give any strict proof of this assumption, but it almost
seems selfevident and corresponds completely to many similar
cases in hydraulics. A comparison of results with observations
from nature seems desirable.

The values of ¢ have been determined for three model
tests carried out in Vienna,1916, giving = 192, 17° and 14° as
the most probable values for these tests. The values are even
lower than the expected value of about 20°, and it seems highly
desirable that further observations should be made. Time has not
allowed independent model tests to be carried out, but this ought
to be done. Further it seems probable that more insight into the
size of @ might be obtained by three-axial tests with sand where
the hydrodynamic lift is replaced by an upward stream of water in
the cylinder. By such tests the effective grain to grain normal
stress could be reduced even to zero. This can possibly also be
effected by other means, e.g. using a liquid with a specific weight
greater than that of water.

A correct value of @ can thus be found for effective
stresses smaller than those corresponding to the weight of the
grains proper.

The fundamental results of the study are given in the
tables in Sec.8.1 All quantities here are dimensionless and we
have succeeded in expressing Q, F’, v_’, R, B, I’ and vx’

by the product of two functions, one depending on @ alone and

y
another depending on p = —%—i}f— alone.

The limits of validity and the corresponding maximum
deviation of these formulae are given. For many practical purposes
the simple power formulae without the correcting factors A p

should probably suffice; but for the application of the formulae for
model tests, e.g. where p = ymax/k is small, the complete
formulae including Ap should be used.
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For all derivations in this paper the number of digits in
the constants of the formulae might seem exaggerated for practical
purposes; considering however the great number of numerical
operations that have been needed in deriving the formulae, it has
been judged appropriate to retain a surplus number of digits in all
derivations, and the values of the constants can then finally be
rounded off.

The form of the formulae is such that all practical
calculations can easily be carried out by means of a log log slide
rule.

The result found in Sec.1l1l, viz. that the area F of the
half cross section of the equilibrium profile varies only slightly
with the angle of friction ¢ and with the relative roughness, but
mainly depends solely on the discharge @, the limiting tractive
force = and the hydraulic roughness k, might facilitate the
compari‘&?ﬁ‘ of results with observations in nature.

Where the flow in the channel is caused by tides, the use
of the results in Sec. 13 might facilitate the observation of Q.

Until more definite knowledge about the roughness k is
acquired, the results in Sec.11.2, where k is taken to be equal
to the empirically determined roughness of natural watercourses,
might be of use. The results thus obtained should, as far as
possible, be compared with observations in nature.

The formulae for the mean velocity found in Sec.13 also
make it possible to find k from available observations.
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