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Semi-seasonal groundwater forecast using multiple

data-driven models in an irrigated cropland

Alessandro Amaranto, Francisco Munoz-Arriola, Gerald Corzo,

Dimitri P. Solomatine and George Meyer
ABSTRACT
In agricultural areas where groundwater is the main water supply for irrigation, forecasts of the water

table are key to optimal water management. However, water management can be constrained by

semiseasonal to seasonal forecast. The objective is to create an ensemble of water table one- to five-

month lead-time forecasts based on multiple data-driven models (DDMs). We hypothesize that data-

driven modeling capabilities (e.g., random forests, support vector machines, artificial neural

networks (ANNs), extreme learning machines, and genetic programming) will improve naïve and

autoregressive simulations of groundwater tables. An input variable selection method was used to

carry the maximum information in the input (precipitation, crop water demand, changes in

groundwater table, snowmelt, and evapotranspiration) and output relationship for the DDMs. Five

DDMs were implemented to forecast groundwater tables in an unconfined aquifer in the Northern

High Plains (Nebraska, USA). Root mean squared error (RMSE) and Nash–Sutcliffe efficiency index

were used to evaluate the skill of the model and three hydrologic regimes were determined

statistically as high, mid, and low groundwater table levels. Additionally, varying storage regimes

were used to construct rising and falling limbs in the tested well. Results show that all models

outperform the baseline for all the lead times, ANNs being the best of all.
doi: 10.2166/hydro.2018.002
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ABBREVIATIONS
DDM
 Data-driven model
GW
 Groundwater
ANN
 Artificial neural network
P
 Precipitation
ET
 Evapotranspiration
SNM
 Snowmelt
AD
 Average water demand
IVS
 Input variable selection
CIVS
 Constrained input variable selection
EnsAnn
 Ensemble artificial neural network
EnsSvm
 Ensemble support vector machines
EnsRf
 Ensemble random forests
EnsElm
 Ensemble extreme learning machines
EnsGP
 Ensemble genetic programming
RMSE
 Root mean squared error
NSE
 Nash–Sutcliffe efficiency index
ROC
 Receiver operating characteristic curve
MLP
 Multilayer perceptron
SVM
 Support vector machines
RF
 Random forest
GP
 Genetic programming
ELM
 Extreme learning machines
AR
 Autoregressive model
LWR
 Low water range
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Middle water range
HWR
 High water range
AUC
 Area under the curve
RL
 Rising limb
FL
 Falling limb
INTRODUCTION

Groundwater is a key resource to sustaining hydrological

conditions of a watershed as well as agricultural activities.

The availability of groundwater (GW) during droughts

helps when it is doubtful there will be enough precipitation

to sustain crops and their yields. When withdrawals exceed

the recharge rate of an aquifer for a long period, GW

depletion occurs. Common consequences of aquifer overex-

ploitation are water rationing, drying up of wells, less water

in streams and lakes, water-quality degradation, increased

pumping costs, land subsidence, decreased well yields

(Bartolino & Cunningham ; Nayak et al. ), and

unsustainable agriculture. Therefore, implementing effective

(and, preferably, efficient) water management strategies is

crucial for conserving hydrological conditions and sustain-

ing water and agricultural resources and ecosystem services.

Reliable water supply policies require accurate esti-

mations of current and future water table depths and their

fluctuations (see, for example, Coulibaly et al. ). For

this purpose, physically based, statistical, and data-driven

modeling techniques are widely used. For example,

Hanson et al. () implemented the physically based

model MODFLOW and the farm process package (MF-

FMP), parameterizing the micro- and macro-scale crop irri-

gation requirements or evapotranspirative needs to

simulate the conjunctive use of surface water and ground-

water. Also, models like MF-FMP are promising tools to

reproduce supply-constrained and demand-driven hydrolo-

gic budgets; however, their implementation requires a full

hydrogeological characterization of the aquifer including

anisotropic and spatially distributed properties (Coppola

et al. a; Mohanty et al. ). Places where networks

of groundwater well measurements enable local to regional

water management, can be used to track spatiotemporal

variability of groundwater in response to urban as well as
nline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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irrigation water supplies and demands (Scanlon et al.

). In agricultural areas where GW-based irrigation is

used to satisfy evapotranspirative needs, variables such as

evapotranspiration, crop water demand, precipitation and

groundwater well levels could integrate the imbedded com-

plexity of aquifer recharge with respect to streamflow,

precipitation fluctuations, and well management.

Developments in the area of machine learning have

greatly expanded the capabilities of data-driven models

(DDMs) to diagnose and forecast hydrological states

(Maier & Dandy ; Solomatine et al. ). DDMs are

recognized by their ability to reconstruct the relationships

among inputs, states and outputs of a system, without an

explicit knowledge of the system’s physical behavior. For

this reason, DDMs can play a complementary role to phys-

ically based models and help overcome some of the

limitations associated with multiple and complex variables

(Coppola et al. b).

DDMs are widely used in hydrology (Abrahart et al.

) for applications ranging from rainfall–runoff modeling

(Solomatine & Dulal ), river flow forecasting (Dibike &

Solomatine ; Akhtar et al. ; Taormina & Chau

a), flood forecasting (Campolo et al. ; Solomatine

& Xue ) to drought forecasting (Kim & Valdés ;

Le et al. ). The most widely used technique is artificial

neural networks (ANNs). However, the number of studies

using DDMs to forecast water table levels is limited. For

example, Daliakopoulos et al. () tested multiple ANN

architectures to identify the most suitable to predict water

table fluctuations over an 18-month lead time. Coppola

et al. () studied the ability of ANNs to predict water

table levels with lead time of 30 days near a public supply

wellfield. Sun et al. () analyzed the ability of ANNs to

predict water table depth in a swamp forest in Singapore.

They concluded that accurate estimates could be obtained

with a daily lead time, whereas the performance decreased

when the lead time was increased to a week. Tsanis et al.

(), Mohanty et al. (), and Djurovic et al. () also

used ANNs to forecast the GW levels at weekly and monthly

lead times, discovering that additional input variables, such

as precipitation, evaporation, and river stage, increased the

model performance in single or multiple wells. Regarding

semi-seasonal to seasonal forecasts at six months’ lead

time, Varouchakis () and Lohani & Krishan ()
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used a Kalman filter adaptation algorithm with exogenous

inputs and ANNs in the Mires basin in Crete, Greece, and

in Punjab, India, obtaining accurate estimations of GW

levels.

The need for better planning and management of water

resources in the world has driven the focus on increasing

lead times and on determining how the uncertainty associ-

ated with increased lead times could influence results.

Also, no clear procedure exists for selecting appropriate

DDM to represent GW dynamics. Optimal model tuning

has evolved, and one of the main recommendations by

Galelli et al. (), for example, is to improve input variable

selection (IVS) for a better performance.

The human impact on groundwater is quite high in cer-

tain regions and, therefore, is an important variable to

include, even though it is not easily measured. For a

proper assessment of forecast capabilities, DDMs have

been studied per regimes in surface water systems (Corzo

& Solomatine ). These regime analyses in surface

hydrology aim to evaluate models’ performance in the

rising and falling limbs (FLs), as well as in high- and low-

flow conditions. In GW systems, it could be used to quantify

and improve GW predictability groundwater withdrawals

and recharge (falling and rising limb, respectively), as well

as in water shortages and surpluses (low and high water

table level, respectively).

Therefore, the objective of this paper is to assess and

compare the capability of five DDMs to forecast water table

levels one to five months ahead in response to integrated

hydro-climatological forcings and water management. This

will be achieved by developing a fully fledged framework

employing IVS (including lags) and assessing the DDMs’

performance for different regimes of GW levels.

The hypotheses of the present work are: (1) the models’

performance will improve when crop water demand is

included in the input set. This hypothesis is based on the

assumption that crop water demand is a valid proxy to rep-

resent the influence of human intervention (when pumping

data are unavailable); (2) variability of the performance of

DDMs can be significantly different for different ground-

water levels’ regimes; and (3) models’ performance vary

with respect to the increase in lead time. Thus, the scientific

question for this study is to find out the extent of such

variation.
://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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The proposed approach complements previous studies

by performing a comparative analysis of DDMs for forecast-

ing GW levels at five different lead times. For this

experimental analysis, we tested an improved version of

the exhaustive search IVS technique, which allowed us to

have a better variable input set. In addition, the human

impact on the GW system was addressed (in the absence

of pumping data) by introducing the crop water demand

as a proxy. This choice relies on the assumption that the

amount of water pumped and the available surface water

are proportional to the evapotranspirative needs of crops

(also known as crop irrigation requirements). Moreover,

this paper assesses the performance of different models in

different hydrological regimes by quantifying their predict-

ing capabilities in the falling (withdrawal) and rising

(recharge) limbs of the water level, as well as in water short-

age and high water availability conditions.

The paper is structured as follows: the study area and

the data available are described and a basic characterization

of the groundwater system is provided. Then, methodology

is presented, including the IVS methods, the modeling tech-

niques, and the metric of performance. Results and

discussions follow. The last section of the paper summarizes

the main findings and conclusions of the study, as well as its

limitations and future directions.
STUDY AREA AND AVAILABLE DATA

The study area is located in the central-east part of the state

of Nebraska, USA, in the Middle Platte-Prairie hydrogeolo-

gical unit (Figure 1). This area is crossed by the Platte

River, which brings water from the Rocky Mountains to

the Missouri River, draining northeast Colorado, southeast

Wyoming, and central Nebraska (Eschner et al. ). The

Middle Platte-Prairie is part of the High Plains aquifer

(Figure 1(a)), which is the largest (450,000 km2) in the

United States and has been intensively developed for irriga-

tion purposes. The High Plains aquifer water levels have

shown declines of more than 30 m in the past 30 years, lead-

ing to a reduction in saturated aquifer thickness in some

areas of more than 50% (Scanlon et al. ). In the

Nebraska portion of the High Plains aquifer (Figure 1(b)),

the number of registered wells has grown from 1,200 in



Figure 1 | Location of the High Plains aquifer (a), of the State of Nebraska (b), and of Middle Platte-Prairie hydrogeological unit (c).
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1936 to about 100,000, serving about 85% of the state’s irri-

gation land (Flowerday et al. ; Wen & Chen ).

According to Scanlon et al. (), groundwater storage

decreased about 330 km3 between the 1950s and 2007.

This amount represents about 8% of the available GW sto-

rage. Depletion is particularly severe in the central and

southern part of the aquifer (Kansas and Texas). Those

areas in particular can be considered a hot spot for aquifer

depletion.

The High Plains aquifer consists of hydraulically con-

nected deposits of late Tertiary and Quaternary age.

Among those, the Late Tertiary age Ogallala formation (a

heterogeneous deposit of interlayered stream sediments,

lakebeds, and eolian sand, silt, and clay) covers about

342,000 km2 of the aquifer (about 75% of the total area).

The Middle Platte-Prairie hydrogeological unit

(Figure 1(c)) has an area of approximately 2,800 km2. It is

constituted by unconsolidated Quaternary alluvial deposits

(generally more permeable than those of the Ogallala for-

mation; Gutentag et al. ). The average saturated

thickness of the area is about 100 m. The main use of the

land is corn agriculture. NAS-USDA () estimated that

the irrigated corn yield was between 2 and 2.5 tons/ha in
om http://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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2011 in this particular area (state average¼ 2.2 tons/ha).

The irrigation system is usually a center pivot sprinkler.

This type of system has several pipes joined together to

form a robotic arm mounted on a tower. The robotic arms

move in a circular pattern and release water through sprink-

lers. Water is usually pumped from the aquifer and fed to the

sprinklers from the pivot point located at the center of the

circle.

Precipitation (P, mm) data in the Middle Platte Prairie

were monitored by a weather station from the High Plains

Regional Climate Center located in Central City. Hydrocli-

matic variables observed by the GLDAS (Global Land

Data Assimilation System; Rodell et al. ) provided

monthly estimations of evapotranspiration (ET, mm) and

snowmelt (SNM, mm) at a spatial resolution of (1/8)� lati-

tude × longitude (≈16 km). Pumping data were unavailable

for this particular region. As a consequence, pumping is par-

tially represented by the use of the corn water demand as an

input variable. This choice relies on the assumption that the

amount of water pumped by farmers is proportional to the

amount of water required by the crop. Average water

demand data (AD, mm) were obtained by Kranz et al.

(), who computed the long-term monthly average of
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water amounts required by corn. It is, therefore, a time series

that repeats identically every 12 months and does not take

into account inter-annual demand variation.

The USGS () has monitored water table data for the

Middle Platte-Prairie hydrogeological unit. Data are avail-

able daily and monthly. Figure 2(a) shows the GW time

series for the monitoring well in the hydrogeological unit,

while Figure 2(c) zooms into the three years from January

2012 to December 2014. Figure 2(c) shows major water

level declines during the crop growing season, followed

by partial recharge during the off-season. Water level

declines are due to withdrawal (pumping) from farmers

and to the high evapotranspiration (Figure 2(b)) rate
Figure 2 | (a) Time series of groundwater (GW) levels in the monitoring well (USGS 2015) for 1

demand (AD) from 2012 to 2014; (c) GW level from 2012 to 2014.

://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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characterizing the crop growing season. The highest

water demand for corn is in July, when the crop grows tas-

sels. Recharge to the aquifer occurs when withdrawal stops

(September–October) and when there are precipitation and

snowmelt (Figure 2(b)). Snowmelt usually occurs at the end

of winter and the beginning of spring (February–April). Pre-

cipitation is generally high during autumn and spring, with

sporadic events during winter and summer. Soil freezing

during winter prevents rainfall from recharging the aquifer.

The water year is characterized by strong water level

depletion from April to September–October, followed by

a fast natural recovery from October to November. The

recovery usually stops during winter and starts again
987 to 2016; (b) precipitation (P), evapotranspiration (ET), snowmelt (SNM), and corn water
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with snowmelt and precipitation at the beginning of

spring.

As can be seen from Figure 2(a), water level declines

were particularly severe during the July 2012–February

2013 period, when the lowest amount of precipitation ever

recorded in Nebraska led to an increase in withdrawals

from the aquifer.

Table 1 provides a summary of the descriptive statistics

of the data, compared with the average value in the North-

ern High Plains (where available).
METHODOLOGY

Methodological framework

To test the hypotheses above, a suite of data-driven modeling

approaches were used to forecast GW levels in response to

environmental forcings and anthropogenic regulations

(Figure 3). The implementation of this multi data-driven

model testing starts by dividing the data into training and

testing sets. Data were also normalized (block data division

and transformation). To select themost relevant input variables

and lags, the so-called constrained input variable selection

(CIVS) procedure is developed and implemented. CIVS is

applied to precipitation, snowmelt, evapotranspiration, GW

level, and crop water demand in the training set. The resulting

variables from CIVS are then used to force the models.

The training set is split into training and cross-validation

set. The training set is used to optimize the value of the

model’s parameters (e.g., the weights in the ANN). The

cross-validation set is used to optimize the architectures of

the DDMs (e.g., hidden nodes number in ANN), aiming at
Table 1 | Descriptive statistics of the dataset for the period February 1987–September 2016 (35

Plains (NHP)

GW depth (m) P (mm/mo)
SA SA; NHP

Minimum �3.2 0; 1.18

Maximum �0.52 263.3; 195.2

Average �1.71 61.8; 51.0

St. deviation 0.54 52.9; 39.0

Skewness �0.23 1.09; 0.93

GW, groundwater; P, precipitation; SNM, snowmelt; ET, evapotranspiration; AD, corn water dem

om http://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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minimizing the error on this set. The procedure is repeated

ten times (ten-fold cross validation) for each of the five

models, generating an ensemble of ten neural networks

(EnsAnn), ten support vector machines (EnsSvm), ten

random forests (EnsRf), ten genetic programming models

(EnsGp), and ten extreme learning machines (EnsElm).

Simple ensemble averaging of each model type outputs is

used. The testing set is used to evaluate and compare the

performances (root mean squared error (RMSE) and

Nash–Sutcliffe efficiency index (NSE)) of the aforemen-

tioned ensemble models. Performances of models are also

evaluated at different water level regimes. Discriminating

ability of the models is tested per each water regime by

means of the receiver operating characteristic (ROC) curve.

Data division and transformation

Theory of DDMs states that the training and test sets come

from approximately the same statistical distribution. To

achieve this, several splits of data can be made and then the

training and testing sets in each split compared. Conse-

quently, the split providing the closest statistical properties

of the training and testing sets can be chosen. However, par-

ticular implementations of DDMs are often constrained by

requirements relevant to a particular application area, and

in the hydrological field, it is often required to test the predic-

tor on the most recent data. As a consequence, the authors

decided to select the initial 70% of the data (February

1987–October 2007) as the training set, and the remaining

30% (November 2007–September 2016) as the testing set.

The training set was then normalized, and the normalization

parameters (minimum and maximum) were used to normal-

ize the testing set.
6 instances) in the study area (SA), compared with the average value in the Northern High

SNM (mm/mo) ET (mm/mo) AD (mm/mo)
SA; NHP SA; NHP SA

0; 0 0.04; 1.38 0

70.4; 43.06 175.1; 134.43 248.2

3.23; 2.72 57.9; 48.42 59.6

8.44; 5.19 45.7; 36.17 87.4

4.71; 3.47 0.60; 0.38 0.98

and.



Figure 3 | Methodological framework.
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Input variables selection

One of the most critical aspects in the implementation of

DDMs is deciding about the list of the input variables, a pro-

cedure often referred to as ‘input variables selection’ (IVS).

Ideally, if the dynamics of the system are clearly understood,

the input variables (input vector space) could be chosen by a

domain expert. When the knowledge of the system is insuf-

ficient, one option would be to perform an exhaustive search

in the input space to select the best input variables subset.

The input selection process can be computationally expens-

ive, for example, to select up to n input variables out of n,

there are 2n�1 possible combinations. The complexity of
://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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the problem grows further when considering also the appro-

priate lags to be chosen. Therefore, finding the best input

subset for a DDM requires an algorithm which is also com-

putationally efficient. This can be posed as an optimization

problem, e.g., Bowden et al. () proposed an IVS

method based on a combination of a genetic algorithm

and general regression neural network (GAGRNN), May

et al. () and Elshorbagy et al. (a) suggested using a

partial mutual information based selection algorithm, and

Galelli & Castelletti () reported a tree-based iterative

search method. Interested readers can find an evaluation

framework of IVS algorithms in Galelli et al. (). For

this study, we use exhaustive search which is however
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physics. This method is referred to as the ‘constrained

input variable selection’ (CIVS) method, and it is

implemented as follows.

The basic environmental variables included in the devel-

opment of the models are P, ET, SNM, AD, and GW level.

Performing an exhaustive search on those non-lagged vari-

ables would suggest considering d¼ 25¼ 32 candidate

input sets. When we allow for k possible lags for each of

the variables, the number of candidate sets increases to dk.

To limit the complexity, we have formulated a number of

constraining rules aimed at reducing the number of candi-

date input sets and which were made part of the CIVS

algorithm. The following five rules were chosen for

implementation:

1. The number of lags for the autoregressive GW term is

fixed to two, and the lags corresponds to the two most

recent observations.

This choice relies on the fact that the autocorrelation of

GW level decreases as the lag increases. Therefore, the most

recent observations can intuitively be considered the best

predictors. Considering that autoregressive models’ perform-

ances did not improve when the order of the model was

increased beyond two, the maximum number of lags was

fixed accordingly (even though there is no unique way to

determine the number of lags to be used as predictors).

2. The maximum number of lags for P, ET, and SNM is

equal to 3. Being x any of the three aforementioned vari-

ables, the only lagged variables included are xt�1, xt, and

xtþ1 (under the assumption of perfect monthly forecast).

The case study under investigation is a shallow uncon-

fined aquifer. The water table depth varies between 0.5

and 3.5 meters below the soil surface. Consequently, the

effect of the meteorological variables such as P, ET, and

SNM on water table changes occurs in a relatively short

period of time. Considering this, and after time series exam-

inations on the inputs and output variables, the search in the

input space was limited to the lags corresponding to t� 1, t,

and tþ 1.

3. Among the three aforementioned variables, at least two

must be considered in the input set at the same time.
om http://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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The study area is in an intensely cultivated region (high

ET influence) in Nebraska. It is also located in the area of

the aquifer where the precipitation and snowfall are

higher. It is, therefore, likely that at least two of the three

variables play a role in the dynamics of the GW level

changes.

4. Lag ‘jumps’ are not allowed. This means that if xtþ1 is

considered as an input, then xt�1 cannot be an input can-

didate in the considered subset to predict the output y.

This choice is based on the reasonable assumption that

if xtþ1 is considered a driver for changes in y, then the only

other reasonable driver would be xt, rather than xtþ1.

5. The choice of including AD or not is a binary variable: if

m is the number of candidate subsets resulting from

implementing rules 1 to 4, the overall number of candi-

dates will be 2m. Half of them will be the original

candidates, the other half will be the same candidates

with the addition of the crop water demand in the time

interval (t, tþ Δt), where Δt is the forecasting lead time

(one to five months).

Since AD does not change from year to year, future esti-

mations of the variable are available. This rule represents

the choice of including or not AD in the input set.

After implementation of the rules, the total number of

input subsets was reduced from 32,768 (if we consider five

variables and three lags) to 346. Then, the CIVS algorithm

was run through each of the 346 possible combinations of

the (lagged) variables. For each combination, the data

were divided into a training and a testing set; a ten-fold

cross-validation was performed on the training set to train

an ensemble of ten multilayer perceptrons; the average

RMSE on the cross-validation set was computed; and the

result was stored. The best input subset was the one that

minimized the average RMSE on the cross-validation set.

The effectiveness of the CIVS method was assessed by com-

paring the performance of the models with those obtained

by implementing the GAGRNN algorithm developed by

Bowden et al. (). The effect of the perfect forecast

assumption is instead assessed by comparing the CIVS

results with those obtained with no input at tþ 1 (no perfect

forecast).



Table 2 | Minimum, maximum, and sequence type for the candidates’ tuning parameters

used to optimize the SVM ensemble architecture

C γ ε

Minimum 0.0313 0.01565 0.0005

Maximum 16 2 1

Sequence type Geometric Geometric Geometric

Sequence ratio 2 2 2
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Modeling techniques

The selected variables from the CIVS method were the input

for the five DDMs implemented in this study. The five

models had a standardized and consistent training set used

to produce GW level forecasts from one- to five-month

lead times. The techniques used are nonlinear statistical

(learning) models whose characterization is provided

below and in the Abbreviations.

Artificial neural networks

Multilayer perceptron (MLP) neural networks are a widely

used and very well-developed technique (Haykin ),

and they are indeed also widely used in water-related studies

(see, for example, Elshorbagy et al. a; Abrahart et al.

). A MLP is constituted by an input, a hidden, and an

output layer. The input layer has as many nodes as the

number of inputs. The number of nodes in the hidden

layer is usually proportional to the complexity of the pro-

blem analyzed. The output layer usually has a single node.

The connection between layers is ensured by a set of

weights, which express the strength of the connection. Non-

linearity is provided by a sigmoidal transfer function in the

hidden layer.

The structure of an ANN may be subject to optimiz-

ation, and it is typically optimized in establishing the

number of nodes in the hidden layer. The number of neur-

ons in the hidden layer in each member of the ensemble

was optimized from a set of values ranging from 3 to 15.

The resilient backpropagation algorithm was used to train

all neural networks using the R package RSNNS (Bergmeir

& Benítez ). After iterative experimentation with the

learning function parameters values, it was found that

their choice was not affecting the speed of the convergence.

Support vector machines

Support vector machines have their foundation in the pio-

neering works of Vapnik (e.g., Vapnik , ). They

were originally developed for classification problems and

attracted a great deal of attention because of their peculiarity

of being a linear machine with the capability of implement-

ing nonlinear class boundary. For that to be possible, they
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map the input space into a higher dimensional space,

where it is possible to find a set of linear models (hyper-

plane) that maximizes the classification accuracy. Among

those, the best one will be the one that maximizes the separ-

ation between classes. The instances located closer to the

hyperplane margin are called ‘support vectors’. Regression

support vector machines (SVM) have been developed from

the idea of producing a model that can be applied to non-

linear problems using few support vectors (Witten &

Frank ).

There are several parameters in SVM to be identified by

optimization. They are typically named C, ε, and γ. C deter-

mines the tradeoff between the flatness of the regression and

the magnitude of the error, ε determines the maximum

allowable error, and γ is the kernel parameter. The values

of C, γ, and ε for each member of the ensemble were opti-

mized from the set of values summarized in Table 2. The

R package e1071 (Dimitriadou et al. ) was used to

train the SVM models with radial basis function kernel.
Random forests

Random forests (RF) is a relatively new machine learning

technique that belongs to the area of ‘ensemble learning’

(EL). Like all other EL methods, RF generates a series of

linear predictors and then aggregates the results of each pre-

dictor. Each predictor in the ensemble is created using a

random selection in the input space at each node of the

tree. This randomness has been shown to perform well in

both classification and regression problems, and it ensures

robustness against overfitting and outliers (Breiman ).

The number of trees (NT) and the number of variables

(NV) to be used at each split are the parameters to be

found during training. They were optimized from a set of

NT values ranging from 1 to 5 and from NV ranging from
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1 to the total number of variables. The R package random-

Forest (Liaw & Wiener ) was used to train the RF

models.

Genetic programming

Genetic programming (GP) (Koza ) is based on an idea

of randomly combining operators and elementary functions

in a single formula, using the randomized search

(typically using a genetic algorithm) in the space of all poss-

ible combinations and aiming at obtaining the resulting

accurate formula (being a nonlinear regression equation)

representing the input–output mapping. Discipulus software

(Francone ) was used to implement the program-based

GP. The probability of crossover and mutation was selected

by combining the values 0.1, 0.3, 0.5. The final values were

those minimizing the error on the cross-validation set; in

this, we followed the findings of an earlier study by Elshor-

bagy et al. (b).

Extreme learning machines

Extreme learning machines were initially proposed as an

alternative training algorithm for ANN, with the main pur-

pose of reducing the networks to a linear system and

allowing an analytical solution to the determination of the

output weights (Taormina & Chau b). For that to be

possible, the input weights and hidden biases are randomly

assigned. These simplifications drastically increase the

speed of the learning process. The number of hidden

nodes is the parameter to be optimized. The number of

hidden neurons of each member of the ensemble was opti-

mized from a set of values ranging from 3 to 15. The R

package elmNN (Gosso ) was used to train the ELM

models.

Metrics of model performance

Model performance: error statistics

The predictive capabilities of the modeling techniques used

are evaluated using the root mean squared error (RMSE)

and the Nash–Sutcliffe efficiency index (NSE). These com-

parative estimators provide information about the model’s
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accuracy (based on the RMSE), and the model’s accuracy

divided by the standard deviation of the process (based on

the NSE). The RMSE is, therefore, a measurement of the

error variance, while the NSE provides a score in the

interval (�∞; 1] for the error variance. NSE values equal

to one represent a perfect predictor, while NSE values

equal to zero represent the predicting capability of the aver-

age of the population. Their mathematical formulations are

expressed in Equations (1) and (2):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼i Oi � Pið Þ2
N

s
(1)

NSE ¼ 1�
PN

i¼1 Oi � Pið Þ2PN
i¼1

�O�Oi
� �2 (2)

where N is the number of instances in the set, and Pi, Oi, �P,

and �O are correspondingly the predicted variable, the

observed one and their respective mean values.
Baseline: autoregressive and naïve model

Apart from the five models presented above, two simple

models have also been implemented: the naïve model

and the autoregressive one. These models are widely used

in DDM studies as baseline models to which other

models are compared. The naïve model assumes no vari-

ation in the state of the system between the subsequent

time steps. In other words, given a prediction horizon i,

the naïve model states that the GW depth remains the

same between time t and time tþ i. The autoregressive

model is a linear estimator that assumes the output of a

system y is linearly dependent on a set of previous model

outputs:

yt ¼ α1 yt�1 þ α2 yt�2 þ . . . þ αn yt�n (3)

where n represents the order of the model (i.e., the number

of lags to be considered) and α1...n are the model’s coeffi-

cients, estimated by minimizing the least squares of

model residuals.

In this study, the order of the AR model is progressively

increased until the variation in the RMSE in the
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cross-validation set becomes marginal. This procedure has

led to the selection of an autoregressive model of order 2

(AR2) for all the lead times analyzed.

Model evaluations for rising and FLs

Figure 4 shows the water table level for a yearly cycle, and it

is possible to distinguish the two separate water level

regimes. The first one is represented by a FL, driven by farm-

ers’ water withdrawals and a high evapotranspiration rate

during the growing season. The second one, a rising limb,

is driven by natural aquifer recharge, recharge from precipi-

tation, and snowmelt. The built models are assessed for

these different hydrological regimes.

Model evaluations for various water level ranges

The models are tested also for three ranges of water levels.

The test set is divided into three blocks based on the 15%

and the 85% quantiles of the empirical distribution of GW

levels. These values are used to determine the low (LWR,

in the bottom part of Figure 4), middle (MWR, in the central

part of Figure 4), and high (HWR, in the upper part of

Figure 4) water level ranges. The first of them is used to

assess the predicting capability of the models in water
Figure 4 | Schematic representation of the FL, the rising limb and of the three water level ran

://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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shortage conditions, while the second and the third provide

insights regarding the models’ performances in the average

and high water-level conditions.
Receiver operating characteristic

ROC curves were used to judge the discrimination ability

of forecasting methods. They are a function of sensitivity

and specificity. Sensitivity (SE) is the probability of obtain-

ing a value above a certain threshold among all the cases

above the threshold itself. Specificity (SP) is the probability

of a negative test result, or a value below a threshold,

among all the cases below the threshold itself. The ROC

curve is a graphical representation of 1-SP (false positive

rate) versus SE (true positive rate), and perfect discrimi-

nation ability is identified by two perpendicular lines that

intersect each other in (1, 1). By using ROC to evaluate

models’ performances, the most important statistic is the

area under the curve (AUC). The value of AUC goes

from 0.5 (no discrimination ability) to 1 (100%) discrimi-

nation ability. In this study, the AUC statistic is

computed for the HWR and the LWR in order to assess

the discrimination ability of the models in the two different

water availability conditions.
ges used to evaluate the different models’ performances.
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RESULTS AND DISCUSSION

CIVS results

Table 3 presents the variable selected by the CIVS method,

for each of the lead times considered in this study. The

selected variables show consistency as lead time increases.

The contribution of SNM to forecast GW level changes is

minimized due to the absence of snow storage in the initia-

lization time produced by CIVS. This might be attributed to

the contribution of snowmelt (occurring in March and

April) to recharge as lead time reaches five months (July

and August) when groundwater withdrawals are at their

top, so crop irrigation requirements can be supplied. This

is evidenced by the consistent sensitivity of P, ET, and AD

in all lead times. Considering that pumping data are inte-

grated to the variations in corn water demands and ET in

irrigated working lands, the sensitivity analysis on this par-

ticular input results in an average increase of 15% in the

NSE when AD is used. Certainly, corn water demand is

fixed according to Kranz et al. (), which also constrains

the ability of the model and the inherent improvement of the

NSE.

To test the effectiveness of the CIVS methodology, we

used the testing set to compare the NSE of the models

obtained by CIVS algorithm with the one obtained by imple-

menting the GAGRNN algorithm developed by Bowden

et al. (). This algorithm uses self-organizing maps to

reduce the input dimensionality and then develops a

hybrid genetic algorithm and regression ANN to determine

significant inputs. For the sake of the current case study,

Table 3 shows that both methods were capable of capturing

the nonlinearities of the system in good agreement,
Table 3 | Variables selected by the CIVS at each lead time and NSE comparison with the GAG

τ Output

NSE

CIVS GAGRNN

1 GWtþ1 0.93 0.93

2 GWtþ2 0.89 0.88

3 GWtþ3 0.76 0.76

4 GWtþ4 0.73 0.70

5 GWtþ5 0.72 0.68
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providing similar performances. The reduction of the per-

formance along the forecast horizon seems not to change

significantly; even LT3 and LT4 are in a very close range.

By observing the variables selected by the CIVS in

Table 3, one might wonder why, for example, ETtþ1 influ-

ences GWtþ1 but not GWtþ2. Data experiments for the

current case study show that including such a variable in

the input set for two-month lead time will, on the one

hand, ensure physical consistency, but on the other hand,

leads to the selection of a least accurate model. Ensuring

physical consistency or using a better model is a decision

subject to the modelers’ judgement. For this case study,

the authors chose the most accurate model.
Models’ performance without the perfect forecast

The aquifer under study being shallow, it is reasonable to

suppose that interaction between future values of climatic

variables and changes in GW level occurs. In the absence

of weather forecasts, the authors assume perfect forecast

(PF) of P, ET, and SNM. To test the validity of the

assumption, a model run without using the forecasted

values has also been performed, and the results were com-

pared with those obtained with the use of forecasts

(Table 4).

Analysis of the NSE values in the table shows that the

use of future meteorological information marginally

improves the performance of the models (0.05 average

improvement). This supports the authors’ opinion of fast

weather–GW system interaction. However, NSE statistics

for the ‘no PF’ model structure shows that models of good

quality can still be obtained without the forecasts.
RNN algorithm forecasting lead time

Selected input variables (CIVS)

Ptþ1, Pt, ETtþ1, SNMt, ADt::tþ1, GWt�1, GWt

Ptþ1, Pt, ETt�1, SNMt, ADt::tþ2, GWt�1, GWt

Ptþ1, Pt, ETtþ1, ETt, SNMt, ADt::tþ3, GWt�1, GWt

Ptþ1, Pt, ETt, ETt�1, SNMtþ1, ADt::tþ4, GWt�1, GWt

Ptþ1, Pt, ETtþ1 ADt::tþ5, GWt�1, GWt



Table 4 | Comparison of the models results obtained with and without forecasts (NO F)

τ Output

NSE

Input variables (NO F)CIVS NO F

1 GWtþ1 0.93 0.91 Pt, SNMt, ADt::tþ1, GWt�1, GWt

2 GWtþ2 0.89 0.84 Pt, ETt�1, SNMt, ADt::tþ2, GWt�1, GWt

3 GWtþ3 0.76 0.72 Pt, ETt, SNMt, ADt::tþ3, GWt�1, GWt

4 GWtþ4 0.73 0.66 Pt, ETt, ETt�1, ADt::tþ4, GWt�1, GWt

5 GWtþ5 0.72 0.63 Pt, ADt::tþ5, GWt�1, GWt
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Evaluation of model performance

The performance of the various DDMs for the five lead

times (one to five months) of the analysis is provided in

Figure 5 (here model performance is shown for the training

and testing set. All subsequent figures refer to the testing set

only). As expected, model performance is marginally better

in the training set. Average increase of 6 cm in RMSE in the

testing set supports the idea that all the models are robust

against overfitting. It can be seen from Figure 5 that the per-

formance of all models deteriorates with an increase in lead

time, as is evidenced by an average decrease of 0.37 in NSE

between month 1 and 5. This is particularly pronounced for

the two baseline models, AR and the naïve; nonetheless, the

error statistics for a lead time of one month are comparable

to those of the other models (NSE baseline¼ 0.85; NSE

DDMs¼ 0.88–0.94). The reason why AR and naïve models

have good performance for a monthly forecast lies in the

presence of an autocorrelated input (the correlation

between the output and the previous month’s groundwater

depth is 0.9), which dominates the dynamics of the system

for short lead times This is also evidenced by Elshorbagy

et al. (b), who found, in a rainfall–runoff case study,

that good linear models’ performance occurs when systems

are strongly autocorrelated. However, when the lead time

increases, the effect of the autocorrelated input becomes

weaker, and the performances of the two linear models

with no exogenous input deteriorate much more than the

others. Given the poor performances of the baseline, further

analysis in this paper will be regarding only the five DDMs.

Integrating the remaining techniques into the assess-

ment of performance, from Figure 5, we can see that none

of the techniques completely outperforms the others for all
://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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the considered lead times. Differences in NSE and RMSE

values hardly reach differences beyond 20%. However, it

is possible to observe that EnsAnn, EnsSvm, EnsGp, and

EnsElm can be considered the best predictors for this par-

ticular case in terms of accuracy with NSE about 15%

above EnsRf, which provided better results than did the

two linear modes, but those results still are not comparable

with the ones obtained from using the other four techniques.

The ensemble averages of all the various DDMs for the

five lead times of the analysis are represented in Figure 6.

The performance deterioration with the increase in the fore-

casting horizon is clearly visible. This is particularly true in

the summer of 2012, when a so-called flash drought occurred

in Nebraska favoring an increase in pumping in the well

assessed. In this case, while preserving good forecasting accu-

racy, the pumping proxy formed by integrated corn water

demand, ET, and precipitation were not fully able to help in

capturing the inter-seasonal variability in water abstraction,

leading to an underestimation of the water table depth.

Models’ performance for rising and FLs

In this study, the performance of the different models was

assessed also in withdrawal and recharge-driven conditions.

Withdrawal conditions are identified with the FL of the

water level, usually occurring during the crop growing

season. Recharge conditions reflect the rising limb, which

is usually associated with autumn and winter. Figure 7

shows the performance of the models in the rising and FL

of the GW table. On average, all the techniques show

higher (80%) error in the FL, and lower in the rising limb.

For example, one can observe that the RMSE in the rising

limb goes from less than 10 cm (EnsElm) to 32 cm (EnsRf)



Figure 5 | Comparison of NSE (a) and (b) and RMSE (c) and (d) for the different DDMs in the training (a) and (c) and testing set (b) and (d).
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for a lead time of one and five months, respectively; while in

the FL for the same lead times the RMSE goes from 18 cm

(EnsGp) to 45 cm (EnsRf). This phenomenon might be

explained by the following.

First, the rising limb is influenced by the occurrence of

natural forcings, and their influence on the GW system is

easily captured by the model. On the other hand, the FL

occurs under the influence of integrated natural and manage-

ment-induced conditions, which are much more difficult to

monitor. Please note that in the current study, the pumping

data are imbedded in the integrated contributions of corn

water demand, ET, and precipitation, which integrate the

inter-annual variation of farmers’ management practices,

weather variations, and crop responses.
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Second, the rising limb is recharge-driven (natural

aquifer recovery, precipitation, and snowmelt), while the

FL is withdrawal-driven (pumping and evapotranspira-

tion). Usually, recharge takes place at a much lower

speed than withdrawal, so the slope of the FL is usually

much sharper than the rising one. This is particularly true

for the winter part of the rising limb. During the winter,

frost on the soil prevents precipitation and snowmelt

from recharging the water table, the level of which remains

almost constant.

In this comparison among the different modeling tech-

niques, EnsRf again proved to be the worst predictor, with

an RMSE value averaging 40% (rising limb) and 20% (FL)

higher than the other techniques. This might be due to the



Figure 6 | Ensemble average for each lead time of the five DDMs in the testing set.

Figure 7 | RMSE in the rising and FL.
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fact that EnsRf is an ensemble of several linear machines,

while the other predictors are purely nonlinear. EnsAnn

provides marginally better performances in the rising limb

with four and five months’ lead time. For any other con-

ditions, it is impossible to establish the best predictor.
://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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Models’ performance for various water level ranges

Figure 8 shows the errors of the different techniques in three

different water level ranges: the low (LWR), middle (MWR),

and high (HWR) water levels. As presented earlier, they



Figure 8 | RMSE plot in the HWR, MWR, and LWR. (a) EnsAnn, (b) EnsSvm, (c) EnsRf, (d) EnsGp, (e) EnsElm.
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represent the GW data above the 85% quantile, intermedi-

ate, and below the 15% quantile, respectively. One may

see good and similar model performances in the HWR

and in the MWR. This result was expected: the MWR

usually includes the winter season, when the water table

rise is delayed by soil frost. The HWR occurs after the

spring recharge generated by precipitation and snowmelt.

Spring recharge is much faster than the winter one, and

therefore, the average error increases by about 13% (from

19.5 to 22 cm). However, the error of all predictors increases

in the LWR, i.e., in a water shortage situation. In particular,

the RMSE range in the MWR and HWR is 9–31 cm

(EnsAnn, one month’s lead time; EnsRf, five months’ lead

time), while in the LWR it is 19–76 cm (EnsGp, one

month’s lead time; EnsRf, five months’ lead time). The

explanation lies in the dominating phenomena driving

water table levels in the LWR: pumping (FL in the LWR)

and natural aquifer recharge (rising limb in the LWR).

They are, in fact, responsible for the fastest changes in
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water table level. As a consequence, when they occur, the

accuracy of the model decreases. In addition, despite show-

ing good extrapolation ability, DDMs show a decrease in

accuracy when forecasting a condition not represented in

the training set. In 2012, one such condition occurred; the

drought of 2012 (included in the LWR), also known as

flash drought was the highest recorded (NOAA ) since

the Dust Bowl era in the 1930s (when no GW data were

available).

The aforementioned findings are in good agreement

with Huang et al. (). Despite the fact that a water level

ranges’ analysis was not carried out in their study, the analy-

sis of the results showed an increase in the error in water

shortage conditions.

Interestingly, in the HWR and in the MWR, some of the

models show marginally better performance when the lead

time is set to five months instead of four. Data analyses per-

formed on the testing set lead us to believe that the

explanation of this phenomenon lies in the overall ‘error



Figure 9 | EnsAnn ROC for the HWR and the LWR.
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compensation’ in the training process: when the lead time is

four months, the higher error in the HWR and MWR is com-

pensated by lower error in the LWR, leading to an overall

better performance with respect to the five months’ lead

time.

Regarding the comparison among various models,

EnsElm and EnsGp provide the best estimations in LWR

for short lead times. The RMSE value of EnsElm and

EnsGp on a monthly forecast in the LWR was about 30%

lower than the one obtained with EnsAnn (RMSE¼
0.19 m for EnsGp, 0.21 m for EnsElm, and 0.30 m for

EnsAnn). On the other hand, EnsAnn proved the most

stable technique in the LWR when the forecasting horizon

increases (RMSE¼ 0.61 m, 0.66 m, and 0.69 m, respect-

ively). EnsRf shows a similar performance with respect to

the other predictors in the HWR and in the MWR. However,

for the LWR, the RMSE value shows an average increase of

30% with respect to the other techniques. It is, therefore,

very likely that the overall worst performance of EnsRf

shown in Figure 5 was due to a systematic underestimation

of the water table level in the LWR.

Receiver operating characteristic

Figure 9 represents the ROC curves of the five analyzed lead

times in the HWR and in the LWR. The ROC of Figure 9

refers only to results obtained with EnsAnn. Similar
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performances were found for the other four DDMs. The

AUC identifies the probability of correct classification of

the aforementioned water level conditions. Analysis of the

two curves shows encouraging classification accuracy

(>90%), even in LWR conditions and with lead times of

five months. With reference to the numerical values in

Figure 9, when the lead time is increased from one to five

months, the AUC value shows a decrease of 5% in the

HWR and of 7% in the LWR. It is, therefore, possible to

say that the deterioration in classification accuracy with

increased lead time is marginal in both water level ranges.

Surprisingly, as can be seen from the numerical values in

Figure 9, even if the error in the LWR is usually higher,

the HWR is characterized by a marginally lower classifi-

cation accuracy. The explanation for this might lie in the

fact that the HWR is much narrower than the LWR. In

fact, the LWR includes all the water levels between �2.3

and �3.2 m below ground level (width¼ 0.9 m), while the

HWR only includes values between �0.65 and �1.17 m

below ground level (width¼ 0.53 m). This is also confirmed

by the right-skewed distribution of the data.
CONCLUSIONS

This study assessed the ability of five data-driven techniques

to forecast groundwater levels from one to five months in
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different hydrogeological regimes. The predictive accuracy

of the models was determined by computing three different

error statistics (NSE, RMSE, and AUC) for various water

level conditions. Analysis of the results, related to the

hypothesis posed earlier, showed the following:

• Replacing the unknown pumping rates by a proxy (crop

water demand) appeared to be useful; it increased the

performance of all models.

• In this experiment, ANNs, GP, support vector machines,

and extreme learning machines provided similar predict-

ing abilities. However, ANNs performed marginally

better when the lead time was increased up to five

months. All the models outperformed the baseline tech-

niques, represented by the autoregressive and the naïve

models. This was particularly true with increase in the

lead time and the behavior of the system becomes

strongly nonlinear.

• Overall, the random forests model was the worst estima-

tor among the five DDMs tested in this study. In

particular, it systematically underestimated the water

table level in conditions of water shortage.

• The RMSE of all the models was higher in the withdra-

wal-driven (falling) limb rather than in the recharge-

driven (rising) limb. This can be explained by the high

uncertainty (lack of knowledge) of the pumping patterns,

which were the dominant forcing when the water table

level was decreasing.

• All the models showed good agreement and encouraging

performance in the high water range (HWR) and in the

middle water range (MWR). The magnitude of the

RMSE was higher in the low water range (LWR). In

water shortage conditions, extreme learning machines

and GP provided highest forecasting accuracy for short

lead times, while ANNs were less sensitive to the

increase in the forecasting horizon.

• Analysis of the ROC AUC statistics performed on the

HWR and LWR showed a good overall ability of the

models to discriminate the water level ranges under con-

sideration, with AUC values always higher than 90%.

The results obtained from this case study are encoura-

ging. The high error in the FL and in the LWR (when

pumping takes place) can be perhaps explained by the

absence of water withdrawal (pumping) data.
om http://iwaponline.com/jh/article-pdf/20/6/1227/505912/jh0201227.pdf
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Despite encouraging findings, one of the limitations of

the current research is the use of monthly forecasts of hydro-

meteorological variables as inputs. Being aware of the

uncertainty associated with the estimation of those values,

one of the future research efforts can be towards quantifi-

cation of the sensitivity of groundwater variability to the

uncertainty in the meteorological input estimation. Possible

developments can be directed towards the application of the

proposed methodology at the aquifer scale and the develop-

ment of a guideline for the use of GW level forecasts for

water management in agriculture in a wider context.

While preserving good discrimination and extrapolation

ability, and good forecasting accuracy, the error of the

models increased during the flash drought of 2012. Consid-

ering the better capability of physically based models to

extrapolate data unseen during the calibration, another

possible research direction would be building composite

(hybrid) models, combining data-driven and physically

based approaches (distributed groundwater models), so

that the best features of both would be combined. A possible

architecture then could be based on the idea of the ‘fuzzy

committees’ (Fenicia et al. ; Kayastha et al. )

which ensure a smooth shift from one model to another

depending on hydrological conditions.
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