

Delft University of Technology

Mining motivated trends of usage of Haskell libraries

Juchli, Marc; Krombeen, Lars; Rao, Shashank; Sawant, Anand Ashok; Bacchelli, Alberto

DOI
10.1109/WAPI.2017.6
Publication date
2017
Document Version
Final published version
Published in
Proceedings - 2017 IEEE/ACM 1st International Workshop on API Usage and Evolution, WAPI 2017

Citation (APA)
Juchli, M., Krombeen, L., Rao, S., Sawant, A. A., & Bacchelli, A. (2017). Mining motivated trends of usage
of Haskell libraries. In R. Bilof (Ed.), Proceedings - 2017 IEEE/ACM 1st International Workshop on API
Usage and Evolution, WAPI 2017 (pp. 11-14). IEEE. https://doi.org/10.1109/WAPI.2017.6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/WAPI.2017.6
https://doi.org/10.1109/WAPI.2017.6

Mining motivated trends of usage
of Haskell libraries

Marc Juchli,∗ Lars Krombeen,∗
Shashank Rao,∗ Chak Shun Yu∗

Delft University of Technology

{M.B.Juchli, L.Krombeen, S.P.Rao, C.S.Yu}@student.tudelft.nl

Anand Ashok Sawant, Alberto Bacchelli
Delft University of Technology

{A.A.Sawant, A.Bacchelli}@tudelft.nl

Abstract—We propose an initial approach to mine the usage
trends of libraries in Haskell, a popular functional programming
language. We integrate it with a novel, initial method to automat-
ically determine the reasons of clients for switching to different
versions. Based on these, we conduct a preliminary investigation
of trends of usage in Haskell libraries. Results suggest that trends
are similar to those in the Java ecosystem and in line with Rogers
theory on the diffusion of innovation. Our results also provide
indication on Haskell libraries being all by and large stable.

I. INTRODUCTION

Choosing the appropriate software library to use for a spe-

cific use case is not an easy task [1]. Even when this decision

is made, it is still not trivial to choose what version should be

used or what updating behavior should be followed [2], [3].

In fact, although newer versions of software libraries tend to

introduce new functionalities, to remove obsolete features, and

to ensure better security, upgrading to the latest version is not

to be taken lightly. For instance, an update might deprecate a

heavily used feature, might break existing functionality with

unforeseen changes, and might change the protocol to interact

with the provided components [2]. Even when adopting a

previously unused API, clients do not necessarily adopt the

latest version of the API, but put more thought into choosing

the appropriate version to use given that introduction of a new

API may be incompatible with existing dependencies. This

behavior is observed in an existing database containing API

usage [4]. Overall, making the right choice in which version

of an API to use is hard.

Mileva et al. theorized that by using wisdom of the crowd,

we can recommend which versions of an API should be

used [2]. They proposed AKTARI, a tool for Java libraries,

that provides such recommendation based on three metrics:

usage trends, current most popular version, and switch backs
to earlier versions. They provided initial evidence that these

three metrics are a useful basis to help developers decide which

version of a library to use.

In this paper, we make the first steps in expanding on this

previous work by: (1) introducing an approach to mine library

usage information for a functional programming language (i.e.,
Haskell), (2) proposing a method to automatically infer the

∗Marc, Lars, Shashank, and Chak contributed equally to the work and are to
be considered all first authors. This work was developed as part of the Master
course Mining Software Repositories at Delft University of Technology.

reasons why developers decide to switch a library version,

and (3) conducting an initial exploration of the behavior of

clients of Haskell libraries. With our effort, we strive to

explore the angle of functional programming paradigm, which

may present differences with respect to the object-oriented

paradigm investigated in the initial approach by Mileva et
al. [2]. In addition, we want to help developers base their

decisions on the version of a library to use not only on trends,

popularity, and switch backs, but also on why these occur.

II. MINING USAGE INFORMATION

We propose a method to mine usage information for

libraries of a functional programming language. As target

language, we select Haskell because it is a purely functional

language and allow us to conveniently use Hackage [5] as our

source of data. Hackage is the Haskell community’s central

programming library archive. It contains the published ver-

sions of each library, how many times these were downloaded,

and the packages that each library depends on. Haskell library

developers use Hackage to publish their libraries so that they

can be used in another project as a dependency, similarly to

how Java API developers use Maven central [6].

The projects on Hackage are APIs/libraries, which can be

treated as regular Haskell projects with dependencies hosted

on Hackage as well. One advantage of using Hackage based

projects is that these projects use the building and packaging

system Cabal [7]. The downside of this approach is that we

focus on a specific type of Haskell projects (i.e., libraries). A

more comprehensive approach would use Haskell projects that

can be found on platforms such as GitHub; however, there

is no guarantee that they use Cabal, thus any data mined

from them would lack in important version information. In

this study, we decide to focus on Hackage based projects and

leave a more comprehensive choice of projects and tackling

the associated challenges to future work.

Similarly to Maven, which uses a POM file to explicitly

declare a projects’ dependencies, Cabal uses a file that declares

all the build dependencies of the Haskell project, including the

version of the API that is being used. One can, thus, determine

the popularity of existing Haskell libraries. Moreover, since the

content of Hackage is stored in a Git repository, one can get

evolutionary data on the packages hosted on Hackage, their

versions, and their cabal files.

2017 IEEE/ACM 1st International Workshop on API Usage and Evolution (WAPI)

978-1-5386-2805-8/17 $31.00 © 2017 IEEE

DOI 10.1109/WAPI.2017..6

11

2017 IEEE/ACM 1st International Workshop on API Usage and Evolution (WAPI)

978-1-5386-2805-8/17 $31.00 © 2017 IEEE

DOI 10.1109/WAPI.2017.6

11

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:48:36 UTC from IEEE Xplore. Restrictions apply.

Our approach parses all the cabal files for each hosted

project on Hackage and all its versions, and collects their build

dependencies. Subsequently, it computes how many times a

package is being used in its various versions. Information

on when a new release was made and when the cabal file

changed is not available from the Git repository. Therefore,

our approach crawls the Hackage website to find the webpage

for each of the versions of a library and parse the release date.

A. Determining the used library version

Resolving the exact version of the library that is being used

by a project is not trivial. In fact, the way in which one can

specify range of versions and wild card characters allows an

undetermined number of library versions to be valid dependen-

cies; as in the following three valid cabal package definitions:

(1) ‘pkgname >= v’, (2) ‘pkgname >= v1 && < v2’,

and (3) ‘pkgname == v.*’. With the following notation,

we describe the ways in which a package can be defined:

GT(v) ; GETandLT(v1, v2) ; EQ(v, wc)

When we are parsing the version information from each

cabal file, we attempt to identify the category of package

definition that is being used in the cabal file. Once we can

identify the type of package definition being used (one of GT,

GETandLT or EQ), the next step is resolving the absolute

version this definition corresponds to. However, in most cases

the version definition in the cabal file corresponds to one of

the GT orGETandLT types, while absolute version definitions

of the type EQ are rarely to be seen. In fact, even in the case

that there is the usage of the EQ type of version definition, we

see that a wild card is used.

We describe two approaches to resolve the version of the

used API and overcome the issues with the various complex-

ities of the version definition mechanism that cabal provides.

With the first approach, one could reconstruct the version

resolving process as it must have happened at the time of

committing the cabal file. Therefore, the publication date of the

release of the library and the dependency we are investigating

serves as the commit date for the version definition. For exam-

ple, if project A-1.0 was released on date D and depends on

library L with version definition V (e.g. L >= 1 && < 2),

one would look up our available data and see which was the

latest possible version of library L that was published at date

D. However, with this approach we would see more version

upgrades than those that actually performed, since it would

not be clear whether the developer is the one who decided

to perform an upgrade of the version being used, given the

version definition is left unchanged.

With the second approach, given a version definition D, the

absolute corresponding version will not be resolved. Instead,

one relies completely on the version definition – in a slightly

modified way. For the EQ version definition wild-cards will be

neglected, for GETandLT, we only consider the upper bound

of the definition and for GT we consider the lower bound of

the definition. Thus, the resolver can be described as follows:

GT(v) → v ; GETandLT(v1, v2) → v2 ;
EQ(v, wc) → v

By always selecting the boundary cases, we ensure that we

get an accurate count of the version upgrade that is performed.

As the boundary case changes to reflect that newer versions

of the library are suitable for this project, we can increment

the version that the project is using. Given that the second

solution does not suffer from the same limitations as the first,

we choose the second one to use in our approach to mine

usage information of Haskell libraries.

III. INFERRING REASONS BEHIND SWITCHING

Mileva et al. analyzed the trend of version usage of a library

over time. They looked at whether the adoption of a new

version of a library was impacted by a bug in that version

and whether this lead to rollbacks of the version being used.

With this paper, we propose a language independent approach

to also analyze the rationale behind the client making a change

to the version of the library being used.
We use Hackage as a source of clients of Haskell APIs.
To infer the reasons behind the change of a library version,

our approach analyzes the commit messages. One caveat here

is that a commit message on its own might not reveal the

reason behind the change in a Cabal file, however, it is the

best resource available to us in this study. In the future it

would be prudent to investigate additional reasons behind the

change in a Cabal file by analyzing resources such as issue

tracker, API documentation and code comments. It starts with

a pre-processing phase to (1) remove the non-alphabetical

characters and stop-words and (2) stem the remaining words.

Stemming simplifies how messages can be group together

based on their content, e.g., “fixed” and “fix” should be

grouped together. Subsequently, our approach classifies the

commits using keywords [8], [9]. We consider the keywords

by Mauczka et al., who created an algorithm that develops a

weighted dictionary of keywords to classify commits based on

their commit messages [10]. The dictionary that they created

using their algorithm had a classification rate of 80.34%

based on 8 open source projects, which all had at least

30, 000 commits [10]. We use the final dictionary created by

the algorithm of Mauzcka et al. to classify commits into 3

categories [10], [11]:

Corrective. Commits that fix errors, failures and bugs con-

cerning performance or the implementation.

Adaptive. Commits that add/change functionalities.

Perfective. Commits that increase performance, decrease re-

dundancy and inefficiency, increase maintainability, or

improve the layout and code style.

We apply this classification mechanism only to commits

interesting to our purpose: Those that make a change to

the build management system configuration. In the case of

Hackage as a source of clients of Haskell APIs, interesting

commits are those that modify the cabal files, e.g., to add a

library or to remove/change the version of a used library.
Based on the type of modification i.e., whether a new

dependency definition was added or whether one was removed,

1212

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:48:36 UTC from IEEE Xplore. Restrictions apply.

we see as to what the change pattern is. For instance a new

version definition could be added and the commit message

could indicate that the modification is of a corrective type,

thus combining these two facts our approach suggests that this

new version of the library fixes some bug that was previously

present probably due to an error in the previous version of the

library. Table I shows a summary.

TABLE I: Reasons behind the change in dependency based on

the type of source code change and the commit category.

Change Category Reason
Addition Corrective Compatible with the project
Addition Adaptive Dependency needed for new patch or feature
Addition Perfective Improvement of project
Deletion Corrective Removed for bugfix
Deletion Adaptive Compatibility issues
Deletion Perfective Not relevant / Unused

a) Addition and Corrective (ADD-COR). The addition of a

library in a corrective commit suggests that the library fixes

some failure or error in the project. When this is combined

with the deletion of another library, it may indicate that this

library may be better than other similar libraries.

b) Addition and Adaptive (ADD-ADP). The addition of

a library in an adaptive commit suggests that the library is

required for correctly implementing a certain patch or feature.

Thus, indicating that the library or the library version added

may be beneficial for the project and aid in its evolution.

c) Addition and Perfective (ADD-PER). A library being

added in a perfective commit could be due to a several

scenarios. For example, a library was added to increase

performance or maintainability, to decrease inefficiency, or to

perform stylistic changes. Since these possible scenarios differ

so much, we conservatively say only that this combination is

a improvement to the project.

d) Deletion and Corrective (DEL-COR). A library deleted in

a commit responsible for fixing errors, faults, or bugs (Correc-

tive) suggests that the usage of the library introduced unfore-

seen and undesired consequences into the project. Therefore,

the library dependency was dropped to fix the bug(s).

e) Deletion and Adaptive (DEL-ADP). The deletion of a

library in a commit that is responsible for adding or changing

functionalities (adaptive) can be down to three potential sce-

narios: (1) the removed library did not provide the desired

functionality, (2) the library was not compatible, (3) another

library is better suited for the project. Overall, the library and

project are not compatible with each other.

f) Deletion and Perfective (DEL-PER). As we consider per-

fective commits to be past the points of actual implementation,

no major changes would be made in perfective commits in-

volving changes in library dependencies. Only minor changes

will be made like cleaning up or beautifying the source code.

In these cases, the deletion of a library dependency will most

likely be the removal of it due to it not being used or it could

have been replaced by another.

Our approach conducts this classification for every library

and its version as specified in the cabal file. After the whole

process of data collection, we obtain for every library with

its version the number of occurrences for each of the com-

binations specified above. A limitation to the validity of our

approach is that we do not conduct a manual validation of

the commits to establish the accuracy of our classification

technique; we propose this validation as future work.

IV. INITIAL EVALUATION

Having implemented the approach, we conduct an initial

exploration of the behavior of clients of Haskell libraries.

A. Popularity of versions over time

To find trends among library versions, we compared the

results computed by our approach on the commonly used

Haskell libraries. We distinguish between versions of an API

that have been popularly adopted and those that are unpopular.

As a preliminary threshold for this initial exploration, we

define as popular a version that is used by at least 30%.

Our results show that certain versions are seldom used. It

often happens that these versions are used by some projects

for a long period of time and these projects never upgrade to

a newer version. This situation may indicate that the projects

are fully satisfied with the version.

From our data, we notice two trends in terms of popularity

when a new version of a library is launched: (1) When a

new version is launched, there are a lot of adopters, hence

the version gains popularity so quickly that we can term it as

a popular version; (2) the new version is barely adopted by

projects, thereby becoming an unpopular version of the library.

The versions that we term as popular are adopted by many

clients. Despite the release of newer versions of the library,

these versions are never completely abandoned. For example,

despite 2 years having elapsed since the release of a popular

version and many newer versions being released, this popular

version is continued to be used. This is similar to the trend

observed in Java projects by Sawant and Bacchelli [12].

We observe that for all versions that become popular, the

number of initial adopters is small. Then quite suddenly there

is a large number of adopters of that version. These results in-

dicate that developers are likely to follow the behavior of other

developers, which is similar to the findings of Mileva et al. [2]

and in line with Rogers theory of Diffusion of innovation [13].

For all the Haskell libraries under investigation we see

similar results. The sole difference being the number of

popular versions that we observe at the same time. For

example, the library ‘directory’ often had two versions that

were popular at the same time, whereas it was possible for

the ‘bytestring’ to have three versions that were simultaneously

popular. Similarly to the findings of Sawant and Bacchelli [12],

libraries with several versions released over time have more

than one popular version at a given time.

B. Reasons behind the switching of libraries

We look at the reasons behind the changing of a library for

1, 250 projects. We obtained 2, 220 unique library dependen-

cies from the dependency files of the projects we target. We

1313

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:48:36 UTC from IEEE Xplore. Restrictions apply.

wanted to see how each of these dependencies change over

time and what the reasons are behind a change being made.

We observe that over 50% of the library dependency

changes were categorized as either “ADD-ADP” or “DEL-
ADP”. This indicates that over 50% of the dependencies were

changed (added or deleted) to either introduce a new feature

or address the compatibility of a feature that might have

been introduced in an earlier version. Furthermore, we see

that only around 500 dependencies were removed due to the

introduction of bugs or were indirectly associated with them.

That number is small when compared to the total number of

changed dependencies. This suggests that Haskell clients may

not be adversely affected by API evolution on a large scale.

Furthermore, the developers have mostly either added or

deleted a dependency due to corrective or adaptive measures

while perfective measures were of less concern. This may

suggest two scenarios: 1) when Haskell APIs evolve they

do not make any major improvements to existing features

(improvements such as efficiency of execution of a feature)

or 2) clients of libraries do not care much about the minor

improvements afforded by an API.

To further support our reasoning about library changes, we

look at the relation between the categorization of the library

change commits with the statistics from its switchbacks. For

this analysis, we have selected one of the most downloaded

and used library dependencies from Hackage, namely the

lens package. We observed that lens had the most number

of commits (515 commits) that modified its dependency file.

Dependencies of lens have been upgraded 30% of the time

to address or introduce a feature. It also indicates that a library

has been upgraded over 60% of the time to maintain stability

of the lens package.

In conclusion, the trend that we observed from our mined

data was that majority of the libraries were upgraded to

introduce new features and address the compatibility of other

newly added dependencies. Most of the popular libraries

showed equal number of addition and deletion of their library

versions and simultaneously being categorized into corrective

and adaptive metrics; this suggests that these libraries are

quite stable and are upgraded to avoid bugs or incompatibility

issues that may occur due to introduction of newer libraries.

Interestingly, the libraries that we studied were not much

affected by perfective measures like errors in documentation,

refactoring or increasing efficiency and maintenance. This

might be an indication that the developers in the Haskell

community have already ensured good level of stability and

efficiency. However, it could also mean that not much im-

portance is given to these kind of measures as compared to

other measures like preventing bugs and adding features. We

believe that by mining and analyzing more commit messages,

we could possibly state better inferences about the perfective

measures. In this initial exploratory investigation, we did not

investigate the trends we found further, but studies can be

designed and carried out using and extending our approach

to determine whether these trends are confirmed and establish

their causes.

V. CONCLUSION

In this paper, we have presented a technique to identify the

version of a library that a Haskell based project might be using,

we also show how this data can be mined from Hackage on a

large scale. Furthermore, we presented a language independent

technique to infer the reasons that behind a project changing

the library or version of the library it uses.

Based on our techniques, we analyzed the popularity of

library versions, showing that a new version of a library

is either popular or completely unused. We found that the

popularity of a version grows all of a sudden. This is in line

to what was seen in previous studies with the Java ecosystem,

thus suggesting a behavior that transcends the programming

paradigm and that brings more evidence to Rogers’ theory

on the diffusion of innovation. We observed that the majority

of the libraries were upgraded to introduce new features and

address the compatibility of other newly added dependencies.

Only few changes made to dependencies were due to the

fact that an upgrade would have been improved existing

functionality. We also see that there are few corrective or

adaptive changes, which suggests that the libraries may be

all by and large stable.

REFERENCES

[1] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code supporting
structure-based search,” in Companion to the 21st ACM SIGPLAN
OOPSLA. ACM, 2006, pp. 681–682.

[2] Y. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends of
library usage,” in Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and
software evolution (Evol) workshops. ACM, 2009, pp. 57–62.

[3] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining
and recommending api usage patterns,” ECOOP 2009–Object-Oriented
Programming, pp. 318–343, 2009.

[4] A. A. Sawant and A. Bacchelli, “A dataset for api usage,” in Proceedings
of the 12th Working Conference on Mining Software Repositories. IEEE
Press, 2015, pp. 506–509.

[5] J. G. Morris, “Experience report: Using hackage to inform language
design,” in ACM Sigplan Notices, vol. 45, no. 11. ACM, 2010, pp.
61–66.

[6] S. Raemaekers, A. v. Deursen, and J. Visser, “The maven repository
dataset of metrics, changes, and dependencies,” in Proceedings of the
10th Working Conference on Mining Software Repositories. IEEE Press,
2013, pp. 221–224.

[7] I. Jones, “The haskell cabal, a common architecture for building appli-
cations and libraries,” 2005.

[8] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane, A. Bacchelli,
and P. Devanbu, “On the naturalness of buggy code,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 428–439.

[9] A. Mockus and L. Votta, “Identifying reasons for software changes
using historic databases,” in Software Maintenance, 2000. Proceedings.
International Conference on. IEEE, 2000, pp. 120–130.

[10] A. Mauczka, M. Huber, C. Schanes, W. Schramm, M. Bernhart, and
T. Grechenig, “Tracing your maintenance work–a cross-project valida-
tion of an automated classification dictionary for commit messages,”
in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2012, pp. 301–315.

[11] A. E. Hassan, “Automated classification of change messages in open
source projects,” in Proceedings of the 2008 ACM symposium on Applied
computing. ACM, 2008, pp. 837–841.

[12] A. A. Sawant and A. Bacchelli, “fine-grape: fine-grained api usage
extractor–an approach and dataset to investigate api usage,” Empirical
Software Engineering, pp. 1–24, 2016.

[13] E. M. Rogers, Diffusion of Innovations, 5th, Ed. Free Press, 2003.

1414

Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2021 at 09:48:36 UTC from IEEE Xplore. Restrictions apply.

