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A B S T R A C T

A computational framework based on a Discontinuous Galerkin (DG)/Cohesive Zone formulation
is utilized to simulate the experiments of the Purdue Damage Mechanics Modeling Challenge.
The inelastic response of the additively-manufactured gypsum material used in the experimental
tests is modeled via a dilatational plasticity model. The constitutive and fracture model
parameters are calibrated using the load–displacement curves corresponding to three-point
bending tests initially provided by the Challenge organizers. The test samples contained initial
notches especially designed to force specific types of mixed fracture modes. The calibrated
computational modeling framework is used to blindly simulate the more complex configuration
of the Challenge experiments. The numerical predictions of the load–displacement curve and the
shape of the curved fracture surface are compared to the experimental data provided a posteriori.
It is found that the computational method is able to quantitatively describe the fracture response
of the material including crack propagation, plastic wake, and the curved geometry of the
fracture surface that results from the evolving fracture mode mixity with significant fidelity.

. Introduction

Despite significant and continuous progress, the high-fidelity computational modeling of fracture propagation in realistic
cenarios remains an ongoing and complex challenge. For this reason, collaborative research efforts have emerged with the objective
o assess the state-of-the-art of computational models of fracture, and their ability to describe a variety of experiments representative
f realistic settings. These initiatives include the so-called Sandia Fracture Challenges, whose first edition was held in 2012 [1–3].
ore recently, Purdue University together with the Lawrence Livermore and Sandia National Laboratories proposed the Purdue
amage Mechanics Challenge 2022 [4] as an exercise to determine future directions to improve the community’s ability to simulate
rack formation and evolution in natural and engineered brittle–ductile materials. In this paper, we present the response of our
IT / TU Delft team to the Purdue Damage Mechanics Challenge.

As part of the Challenge, participants were provided with extensive data on several fracture experiments of additively-
anufactured gypsum specimens [5]. Participants were asked to calibrate their computational models based on the experimental
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data, and then to apply the calibrated models to provide blind predictions on the fracture response in a different, more complex
experimental configuration. It bears emphasis that the predictions were truly blind, i.e. only the geometry and loading were disclosed
to the participants, and no qualitative nor quantitative results from the actual physical experiment were released until all participants
had submitted their computational predictions.

The experiments for calibration included material characterization tests (ultrasonic measurements, unconfined compressive
strength, and Brazilian tests), which were intended to provide basic elastic, inelastic and fracture properties, as well as three-
point bending tests with different initial notches to force specific types of crack nucleation and propagation paths. Specifically, by
modifying the offset of the notch with respect to the specimen centerline, and its orientation with respect to the cross section, fracture
propagation under mode I, mixed I–II, and I–III modes were induced. Five repetitions of each type of experiment provided some
quantitative idea of the experimental variability. For each of the samples tested, participants were given load–displacement curves,
digital image correlation data showing the crack path as a function of load, 3D X-ray tomography data with the reconstructions of
the final crack surface geometry, and laser profilometries of crack surface roughness.

The configuration for the prediction Challenge incorporated the additional complexity of a triple combination of mode mixity
of the I, II, and III types. This was achieved by creating a notch in the three-point bending test that was off-center, at an angle with
respect to the cross section of the beam, and that had a variable height through the sample thickness. Participants were challenged
to model this experiment using their preferred computational approach and they were asked to provide predictions of the load–
displacement curve, the position of the crack tip (or tips, in case of multiple cracks) as a function of load and displacement, and the
displacements of the front and back faces of the sample, from initial loading through post-peak failure. Finally, a bonus question
asked to provide additional information on the post-mortem geometry of the two fracture surfaces.

Modeling the experiment in the challenge configuration therefore required the description of the potentially inelastic, large-
deformations of the specimen, but the most critical requirement was the ability to model crack evolution from initiation until
complete failure. In particular, the conditions of the Challenge configuration could give rise to complex crack geometries, including
curved fracture paths and crack branching and coalescence. In addition, the inherently three-dimensional nature of the problem
called for an efficient, high-performance computing algorithm able to describe the multiscale fields with sufficient resolution in a
reasonable time.

A number of well-established computational approaches are available to describe fracture propagation, each exhibiting specific
advantages and limitations depending on the type of damage problem at hand. Cohesive Zone Models (CZM) characterize cracks as
sharp discontinuities that are resisted by cohesive tractions in the vicinity of the crack tips. Pioneered in [6,7], these models have
been extensively employed due to their robust foundation in fracture mechanics and their seamless integration as interface elements
within finite element frameworks. The extended finite element method (XFEM) [8,9] has the advantage of allowing cracks to form
and propagate arbitrarily through the mesh. Crack propagation in XFEM can be modeled via linear elastic fracture mechanics [8,9],
Cohesive Zone Models [10], or phase-field models [11]. However, XFEM methods have not furnished large-scale simulations in 3D
scenarios due to scalability issues [12,13]. Alternative approaches describe cracks as diffuse interfaces where material gradually
transitions from a healthy state to a fully damaged state. Popular approaches of this kind, such as continuum damage models [14]
and phase-field models [15], have been very effective in describing intricate fracture paths in arbitrary geometries. However, these
diffuse-interface approaches do not provide an explicit description of the crack opening geometries, which can only be estimated
during post-processing.

Building upon our MIT/TU Delft team’s experience in the original development and subsequent refinements of the hybrid
Discontinuous Galerkin/Cohesive Zone Model (DG/CZM) framework [12,16–20], and its implementation for large-scale simulation
in our research code 𝚺MIT [21], we have tackled the Challenge with this computational fracture mechanics approach. Key features
of our approach include its ability to resolve intricate fracture paths and provide quantitative descriptions of crack opening
displacements, while also exhibiting massive parallel scalability. These features, which have been demonstrated in a variety of
applications, spanning from ballistic impact on ceramic plates [12] to explosive decompression of airliner fuselages [18] and fluid-
driven fracture [19,20], make the DG/CZM approach an excellent candidate to address the modeling requirements of the Challenge.
The DG/CZM approach is rooted in a discontinuous finite element discretization of the solid mechanics equations, as outlined in [22].
Within this framework, the displacement field is allowed to exhibit discontinuities at the boundaries of the finite elements. Prior to
fracture, the solution’s compatibility across element boundaries is maintained via variationally-consistent interface tractions. These,
also known as fluxes in DG jargon, are replaced by a material-specific traction–separation law (TSL) describing fracture processes at
the onset of fracture. Importantly, this transition occurs without introducing topological changes in the finite element mesh, even
as cracks and fragments develop. This indistinctive treatment of cracked and uncracked interfaces facilitates a neat and highly-
scalable parallel implementation, as demonstrated in [17], where billion-degree-of-freedom explicit dynamics fracture simulations
are conducted on thousands of processors.

In order to describe distributed inelastic deformations in gypsum under the conditions of the Challenge, we adopt a variational
formulation of dilatational plasticity as presented in [23] but with a non-zero yield point under deviatoric loads and linear hardening
under continued deformation. We advance the system in time using a modified version of the explicit Newmark scheme. This
adaptation incorporates dynamic relaxation to attain equilibrium within the quasi-static regime, while also allowing dynamic effects
in case of unstable crack propagation.

A systematic approach was followed to calibrate the computational model to the experiments. We first determined the elastic
material parameters so as to replicate the linear load–displacement response of the mode I experiments. We then calibrated the
2

plasticity model parameters using the unconfined compression strength tests. Next, we calibrated the critical fracture stress and the
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fracture energy release rate required by the CZM to match the load–displacement curves of the mode I, three-point bending tests.
Finally, a similar approach was used to calibrate the mode mixity parameter in the CZM to the mixed-mode experiments.

The calibrated computational model was then applied to simulate the experiments with the specific geometry and loading
rescribed in the Challenge configuration. After the release of the experimental test data [24], the simulation results were
uantitatively compared against them following the requirements of the Challenge. In this paper, we report the results of that
omparison focusing on the ability of the proposed computational framework to capture the details of the fracture response.

The structure of the paper follows the guidance provided by the organizers. In Section 2, we outline the key features of
ur computational framework, including the DG/CZM formulation, the adaptive time-stepping procedure, and the constitutive
odels employed. We then present the specialization of the approach to the calibration experiments and the material model
arameter calibration procedure. In Section 3.2, we present and discuss the results obtained in the calibration and in the challenge
onfiguration. Finally, the findings and contributions of this work are summarized in Section 4.

. Approach information

.1. The team

The proposing team comprises two graduate students, Daniel Pickard and Christopher Quinn, who are conducting their doctoral
tudies at MIT under the supervision of Prof. Raúl Radovitzky, and Prof. Bianca Giovanardi from TU Delft. The team has worked
ogether previously in a number of different areas of research in Computational Mechanics and in modeling fracture using the
G/CZM method. It is important to emphasize that the graduate students’ contribution to this Challenge was work they did in
ddition to their main research projects.

.2. Numerical approach

.2.1. Discontinuous Galerkin/Cohesive Zone modeling framework
For completeness, we summarize the DG/CZM framework for solid and fracture mechanics from [12]. Further details may be

ound in that reference. The weak formulation of linear momentum balance is:

∫𝛺0

𝜌0𝐁 ⋅ 𝛿𝝋 𝑑𝑉 + ∫𝜕𝑁𝛺0

𝐓̄ ⋅ 𝛿𝝋 𝑑𝑆 = ∫𝛺0

(

𝜌0𝝋̈ ⋅ 𝛿𝝋 + 𝐏(𝐅;𝐐) ∶ 𝛁0𝛿𝝋
)

𝑑𝑉 +

∫𝜕𝐼𝛺0

(1 − 𝛼) [[𝛿𝝋]] ⋅ ⟨𝐏(𝐅;𝐐)⟩ ⋅ 𝐍−𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
DG Consistency

+∫𝜕𝐼𝛺0

(1 − 𝛼) [[𝝋]]⟨C𝛁0𝛿𝝋⟩ ⋅ 𝐍−𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
DG Symmetrization

+

∫𝜕𝐼𝛺0

(1 − 𝛼) [[𝛿𝝋]]⊗ 𝐍− ∶ ⟨

𝛽𝑠
ℎ𝑠

C⟩ ∶ [[𝝋]]⊗ 𝐍−𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
DG Stability

+

∫𝜕𝐼𝛺0

𝛼𝐓 ([[𝝋]],𝐐) ⋅ [[𝛿𝝋]]𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cohesive Law

(1)

In Eq. (1), 𝝋 is the discretized deformation mapping and primal unknown field, 𝛿𝝋 are its first variations, 𝐏(𝐅;𝐐) is the first Piola–
irchhoff stress tensor, 𝐅 = 𝛁0𝝋 is the deformation gradients tensor, 𝐐 denotes a suitable set of internal state variables, C = 𝜕𝐏

𝜕𝐅 are
he material tangents, 𝜌0 is the reference mass density, 𝐁 is the body force vector field per unit mass, and 𝐓̄ are the externally-imposed
ractions defined over the Neumann boundary 𝜕𝑁𝛺0.

The first line of this equation contains standard finite element integrals over the reference discretized domain 𝛺0, representing the
virtual work of the applied body forces and surface tractions, the inertia forces, and the internal stresses. The remaining terms contain
surface integrals defined over the set of interior interfaces 𝜕𝐼𝛺0 between adjacent elements, which result from the discontinuous
shape functions utilized to interpolate 𝝋. In these integrals, [[∙]] and ⟨∙⟩ are, respectively, the jump and average operators across the
nterface, whose normal in the reference configuration is 𝐍−. The inclusion of the parameter 𝛼 enables the modeling of fracture

along any particular element interface in the mesh. Prior to fracture initiation, 𝛼 is equal to zero at all interelement boundaries, and
he first three DG surface integrals are included in the formulation. The integrals labeled DG consistency and DG symmetrization
rise directly from the problem’s variational structure [22,25], and are responsible for enforcing linear momentum balance at the
nterface prior to fracture. The DG stability term is necessary to weakly enforce compatibility and obtain a practical numerical
cheme [26]. In that term, 𝛽𝑠 is the stability factor, and ℎ𝑠 is a characteristic mesh size. Upon satisfaction of a critical fracture stress
n both sides of a finite element quadrature point the binary variable 𝛼 is set to one, which replaces the consistency, symmetrization

and stabilization terms with the virtual work of the cohesive tractions 𝐓([[𝝋]],𝐐). The cohesive law models the degradation of the
material’s ability to sustain internal tractions as the interface opens up, at which point the traction vector 𝐓 vanishes, and the
interface becomes a new traction-free boundary. In this approach any interior interface in the mesh is permitted to fracture in this
manner and therefore crack paths are limited only by the fineness of the computational mesh. In addition, the cohesive tractions
resist the opening of the crack and therefore introduce a material fracture energy into the model, which is fully expended when the
interface is fully fractured. The inclusion of a fracture energy endows the framework with a material length scale, which is essential
in the modeling of size effects in brittle solids.
3
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2.2.2. Numerical solution procedure
The finite element discretization of the DG/CZM equations (1) defines the following semi-discrete system of ordinary differential

quations governing the time evolution of the system:

𝐌𝐚ℎ = 𝐑(𝐮ℎ). (2)

n Eq. (2), 𝐮ℎ and 𝐚ℎ are the displacement and acceleration at the discretization nodes, 𝐌 is the lumped mass matrix, and
(𝐮ℎ) = 𝐅ext − 𝐅int(𝐮ℎ), where 𝐅int(𝐮ℎ) and 𝐅ext are the vectors representing the nodal internal and external forces, respectively.

In consistency with the experimental conditions, the system is driven by a quasi-statically applied load, as described in more in
etail in Section 2.3. Consequently, the nodal accelerations in Eq. (2) are expected to be negligible, at least prior to the initiation
f fracture. Nevertheless, once fracture initiation occurs, we anticipate the possibility of unstable crack propagation. To account
or this scenario, we use an adaptive time integration scheme that dampens the dynamic effects in the quasi-static regime, while
llowing the build-up of kinetic energy during unstable crack propagation.

More specifically, we employ a modified dynamic relaxation approach, drawing inspiration from Underwood [27]. The dynamic
elaxation method is an explicit iterative technique for solving quasi-static problems based on the fundamental concept that the
olution to a quasi-static problem is the steady-state solution to a fictitious dynamic problem. The classical dynamic relaxation
olver therefore integrates a dynamic problem repeatedly until a steady-state condition is achieved, that is 𝐑(𝐮ℎ) = 𝟎. To accelerate
he convergence to this steady-state, the method introduces a numerical damping term 𝐂𝐯ℎ into Eq. (2), reformulating it as follows:

𝐌𝐚ℎ + 𝐂𝐯ℎ = 𝐑(𝐮ℎ), (3)

here 𝐯ℎ is the nodal velocity, and 𝐂 is a damping matrix of the form 𝐂 = 𝑐𝐌. The scalar 𝑐 is a damping coefficient that can be
rescribed so that the steady-state solution is obtained as quickly as possible [27].

We solve Eq. (3) with a predictor–corrector scheme. We consider a time step 𝛥𝑡 and we denote with ∙𝑛 the value of ∙ at time
𝑛 = 𝑡𝑛−1 + 𝛥𝑡. We employ the optimal mass scaling of Underwood [27] in our selection of the mass matrix 𝐌 and the time step 𝛥𝑡.
iven 𝐮𝑛ℎ, 𝐯𝑛ℎ, and 𝐚𝑛ℎ, the predictor step consists of computing a prediction of the displacement at time 𝑡𝑛+1 and a prediction of the
elocity at time 𝑡𝑛 + 1

2𝛥𝑡:

𝐮𝑛+1ℎ = 𝐮𝑛ℎ + 𝛥𝑡 𝐯𝑛ℎ +
1
2
𝛥𝑡2 𝐚𝑛ℎ,

𝐯
𝑛+ 1

2
ℎ = 𝐯𝑛ℎ +

1
2
𝛥𝑡 𝐚𝑛ℎ.

(4)

The corrector step computes the new acceleration and velocity:

𝐚𝑛+1ℎ = 1
1 + 1

2 𝑐
𝑛+1𝛥𝑡

(

𝐌−1𝐑(𝐮𝑛+1ℎ ) − 𝑐𝑛+1 𝐯
𝑛+ 1

2
ℎ

)

,

𝐯𝑛+1ℎ = 𝐯
𝑛+ 1

2
ℎ + 1

2
𝛥𝑡 𝐚𝑛+1ℎ .

(5)

Alternating sequences of predictor and corrector steps are repeated until the finite element residual is sufficiently small. We introduce
the following two modifications to this technique: (1) the applied load is incremented during the iterative process and (2) we
adaptively select the numerical damping coefficient 𝑐𝑛+1 based on whether fracture propagation is absent, stable or unstable, as
described in the following.

Phase 1: Before fracture initiation
In the absence of fracture propagation, we employ a simple smoothed-in-time estimate of the optimal damping parameter of

Eq. (7) given by:

𝑐𝑛+1 = (1 − 𝐶1) 𝑐𝑛 + 𝐶1 𝑐𝑛+1 (6)

where 𝐶1 is a small parameter (𝐶1 = 10−2), and 𝑐𝑛+1 is a variant of the optimal damping parameter prescribed by Underwood [27]:

𝑐𝑛+1 = 2

√

√

√

√

√

√

√

max

⎛

⎜

⎜

⎜

⎝

𝐯
𝑛+ 1

2
ℎ ⋅

(

𝐑(𝐮𝑛ℎ) − 𝐑(𝐮𝑛+1ℎ )
)

𝛥𝑡 𝐯
𝑛+ 1

2
ℎ ⋅𝐌𝐯

𝑛+ 1
2

ℎ

, 0

⎞

⎟

⎟

⎟

⎠

. (7)

The applied load increments are held fixed during this stage of the analysis.
Phase 2: Stable fracture propagation

After crack initiation, the strong nonlinearities attendant to the fracture process make the estimate of the optimal damping
parameter of Eq. (7) inapplicable. For this reason, in the quasi-static fracture regime we cease to update the damping parameter
via Eq. (6) and adopt instead an equation penalizing the total kinetic energy 𝐾 exponentially, so as to dampen the energy released
due to fracture propagation. Specifically, we update 𝑐 with the following equation:

𝑐𝑛+1 = (1 − 𝐶1) 𝑐𝑛 + 𝐶1 exp
(

𝐾𝑛+1

𝐾ref − 1
)

𝑐ref, (8)

here 𝐾𝑛+1 is the total kinetic energy at time 𝑡𝑛+1, and 𝑐ref and 𝐾ref denote the value of 𝑐 and 𝐾 at the time of fracture initiation.
4
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Importantly, in this phase, we divide the load increment associated with the current time step by a factor 𝑐𝑛+1

𝑐𝑟𝑒𝑓 . The effect
of this adjustment is particularly important in the presence of significant kinetic energy, which corresponds to a large damping
coefficient. Under this condition, the load increment per time step is effectively reduced, which facilitates convergence towards
the static solution. Conversely, when the kinetic energy decreases to the order of magnitude of 𝐾ref, the load step is increased to
advance the simulation faster.
Phase 3: Unstable fracture propagation

Unstable fracture propagation occurs when the creation of new crack surfaces releases more kinetic energy than can be dissipated
by the fracture process, leading to the accumulation of excess kinetic energy. When the fracture process becomes unstable, the
damping parameter prescribed in Eq. (8) leads to excessive, unphysical damping. To address this, we apply a constant damping
coefficient to traverse the unstable regime with a value

𝑐𝑛+1 = 𝐶2𝑐
ref. (9)

This ensures the effects of damping remain comparable to those introduced in the uncracked range. We have found that values of
𝐶2 ≈ 10 yield the best performance. Similarly to Phase 2, we also rescale the load increment by a factor 𝑐𝑛+1

𝑐𝑟𝑒𝑓 , which is now constant
and equal to 𝐶2.

We estimate the moment when fracture propagation transitions from stable to unstable as the first time when the time rate of
change of the total elastic and total dissipated fracture energy in the simulation coincide [28]. Specifically, denoting with 𝐷 the
total dissipated fracture energy within the simulation, we can estimate the rate of change of the total fracture energy 𝐷̇𝑛+1

smooth and
that of the kinetic energy 𝐾̇𝑛+1

smooth at time 𝑡𝑛+1 with the following equations:

𝐾̇𝑛+1
smooth = (1 − 𝐶3)𝐾̇𝑛

smooth + 𝐶3
𝐾𝑛+1 −𝐾𝑛

𝛥𝑡
(10)

𝐷̇𝑛+1
smooth = (1 − 𝐶3)𝐷̇𝑛

smooth + 𝐶3
𝐷𝑛+1 −𝐷𝑛

𝛥𝑡
(11)

nd switch to Phase 3 when 𝐷𝑛+1
smooth first exceeds 𝐷𝑛+1

smooth. We found values of 𝐶3 ≈ 10−3 yield good estimates of the transition to
nstability.

.3. Defining the problem

.3.1. A Drucker–Prager-type plasticity model for dilatant geomaterial
Following a well-established approach to model geological materials [29–31], we describe ductile damage mechanisms via a

onstitutive plasticity model, whereas brittle fracture is described using a cohesive model, Section 2.4.
The constitutive response of the additively manufactured Gypsum was modeled using an isotropic, finite deformation variation

f the dilatational model [32], formulated within the framework of variational constitutive updates [33,34]. The yield criterion in
erms of the von Mises stress 𝑞 and the pressure 𝑝 is:

𝑞2 + 𝛼2
(

𝑝 − 𝑝0
)2 = 𝜎20 (12)

𝛼 is defined in terms of the friction angle 𝜙 by 𝛼 = 6 sin𝜙
3−sin𝜙 . 𝑝0 is defined in terms of the consolidation pressure [32] by 𝑝0 =

𝑝𝑐
2 − 𝛼

2 𝑝
′
𝑐𝛥𝜖

𝑝

where 𝛥𝜖𝑝 is the plastic increment. To provide the material with an elastic range under tension, 𝜎0 is defined in terms of a yield
stress 𝜎𝑌 and hardening parameter 𝐻 by 𝜎0 = − 𝛼

2 𝑝𝑐 +𝐻𝜖𝑝+𝜎𝑌 . For pressure values in the range
[

𝑝0, 𝑝0 +
𝜎0
𝛼

]

, where this model will
be employed, the yield stress decreases with increasing hydrostatic tension [35–40]. The plastic response is supplemented with an
isotropic Hencky hyperelasticity model.

2.3.2. Computational setup: Mesh and boundary conditions
In the first geometry of the calibration experiments, the notch was at the center of the specimen so as to achieve mode I fracture

propagation. The second geometry consisted of an off-centered notch, leading to fracture propagation under mixed modes I and
II. In the last geometry, the notch was at the center of the specimen but rotated at a 45◦ angle, triggering mixed-modes I and III
fracture. We show two representative calibration geometries in Figs. 1 and 2 and refer the reader to Jiang et al. [5] for more details
on the calibration experiments.

In the challenge configuration, the notch was off-centered, at an angle, and with a variable height through the sample’s thickness,
so as to trigger mixed-modes I, II, and III fracture. The geometry of the challenge configuration in presented in Fig. 3, see Jiang
et al. [24] for more details.

In both the calibration and Challenge experiments, the load was applied by means of aluminum rods in contact with the
specimens, see Fig. 4. While the bottom rods were held fixed, the top rod was displaced in the negative vertical direction at a
constant rate of 0.03 mm∕s.

The computational domain was discretized with second-order tetrahedral elements, with a high mesh density near the notch and
in a large region where the cracks are expected to propagate. For illustration purposes, Fig. 5 shows the mesh corresponding to the
Challenge configuration, which contained 238,000 bulk elements, and a total of 7,140,000 degrees of freedom. The different colors
represent the different partitions used in the 576-CPU parallel calculation.
5



Engineering Fracture Mechanics 306 (2024) 110205D. Pickard et al.
Fig. 1. Sample and notch geometry for the mixed-modes I and II fracture calibration setup. The notch is off-centered and straight through the sample’s thickness.

Fig. 2. Sample and notch geometry for the mixed-modes I and III fracture calibration setup. The notch is at the center of the specimen and skew through the
sample’s thickness.

Fig. 3. Sample and notch geometry for the challenge configuration (mixed-modes I, II, and III). The notch is off-centered, skew, and with variable height through
the sample’s thickness.
6
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Fig. 4. Schematic of the experimental loading conditions (identical in all three-point tests in both the calibration and challenge configurations). The load is
applied by means of aluminum rods placed in contact with the specimens and displaced at a constant quasi-static rate.

Fig. 5. Finite element mesh and mesh partition used for the challenge configuration. The mesh contains 238,000 bulk elements, and a total of 7,140,000 degrees
of freedom. The different colors in the figure represent the mesh partitions used in the 576-CPU parallel calculation, where each mesh partition is assigned to
one CPU.

Dirichlet boundary conditions were used to apply the external load and supports. At the top of the sample, we applied an
incremental displacement in the negative 𝑧 direction at an initial rate of 2.0 nm per time step. During the simulation, the imposed
displacement rate was adjusted using the adaptive algorithm described in Section 2.2.2.

We employed a coarse mesh at the supports to intentionally under-resolve the unphysical singularity associated with the point
load, Fig. 5. This approach helped mitigate the occurrence of spurious cracks induced by these unphysical stress concentrations. In
addition, we implemented measures to prevent fracture initiation in areas adjacent to the Dirichlet nodes.

2.4. Processes & fracturing

The fracture criterion used in the Cohesive Zone Model (Section 2.2.1) is, [12]:
√

(𝝈 ∶ [𝐧⊗ 𝐧])2 + 𝛾−2 (𝝈 ∶ [𝐧⊗𝐦])2 ≥ 𝜎𝑐 , (13)

where 𝝈 is the Cauchy stress and 𝐧 and 𝐦 denote, respectively, the unit normal and tangent vectors to the finite element interface in
the deformed configuration. In Eq. (13), 𝜎𝑐 is the critical fracture stress, and the mode mixity parameter 𝛾 is the ratio of the mode
II to the mode I fracture energies.

Upon satisfaction of the above fracture criterion, a traction–separation law becomes active, describing the degradation of internal
traction across an interface. Following the approach outlined in [41], we decompose the displacement jump [[𝝋]] into its normal
𝛥𝑛 = [[𝝋]] ⋅ 𝐧 and tangential 𝛥𝑚 = [[𝝋]] ⋅𝐦 components, and we prescribe the following traction–separation law:

𝐓 ([[𝝋]],𝐐) =
𝑇 (𝛿,𝐐)

𝛿
(

𝛾2𝛥𝑚𝐦 + 𝛥𝑛𝐧
)

, (14)

where 𝛿 =
√

𝛾2𝛥2
𝑚 + 𝛥2

𝑛 is a scalar effective opening that enables the modeling of fracture modes coupling. In Eq. (14), 𝑇 ([[𝝋]],𝐐) is
a scalar effective cohesive traction defined by the following expressions for loading and unloading:

𝑇
(

𝛿, 𝛿max
)

=

⎧

⎪

⎨

⎪

𝜎𝑐
(

1 − 𝛿
𝛿𝑐

)

for 𝛿̇ ≥ 0 and 𝛿 = 𝛿max (loading)
𝑇max
𝛿 𝛿 for 𝛿̇ < 0 or 𝛿 < 𝛿max (unloading)

(15)
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Here, 𝛿𝑐 is the effective opening at complete fracture, and 𝛿max and 𝑇max are the maximum effective opening and traction occurring
over the prior history of the quadrature point. For 𝛿 > 𝛿𝑐 , we model complete decohesion by setting 𝑇 = 0. In case of crack closure
𝛥𝑛 = 0, 𝛥̇𝑛 < 0), we model the interface traction in the normal direction by the continuum response (i.e. by reinstating the DG form
f the interface terms).

.5. Uncertainty in the model

The experiments contain a number of sources of uncertainty, the most important of which being the stochastic nature of the
aterial response. This is a direct consequence of the variability of the microstructure arising from the additive manufacturing
rocess. The experimental data provided did not contain sufficient information to compute quantitative statistical distributions of
he model parameters, which could enable the application of modern tools of statistical inference and uncertainty quantification.
s a result, no attempt was made to conduct an analysis of this type.

In addition, owing to the expense of the simulations, and the limited time and resources, no attempt was made to conduct
arameter sensitivity studies.

.6. Model calibration

Calibration of the material parameters was performed against the experiments conducted by the Challenge organizers [5]. Of
he set of calibration data available, we employed the load–displacement curves of the three-point bending tests performed with the
our different notch geometries, inducing crack propagation under mode I, and mixed-modes I and II, and I and III.

We utilized these load–displacement curves to calibrate the material parameters of our constitutive model. The calibration process
onsisted of conducting simulations of the calibration experiments adjusting the model parameters in an iterative fashion until an
ptimal match of the load–displacement curves between simulations and experiments was obtained. The initial values were based
n simple analytical estimates of the elastic and yield response. See Section 3.1 for a more detailed discussion of the calibration
ethodology.

Other calibration tests provided data that appeared to be inconsistent with the data of the three-point bending tests. This included
he ultrasonic measurements of elastic properties, and the uniaxial compression tests. We did not investigate the causes of the
iscrepancies among different types of experiments.

.7. Model set-up and run times

The simulation framework described above was already largely implemented in our research group’s software library for large-
cale simulation of complex material response 𝚺MIT [21]. Necessary extensions included modifications to the constitutive material
nd fracture models, and to the load stepping adaptive approach before and after fracture as described above. All the simulations
resented in this paper were conducted using specialized application drivers in C++ that invoked the 𝚺MIT library application
rogramming interface (API), and orchestrated the control flow and parallel execution of the simulation. The computational domain
as created with the software gmsh [42].

All the simulations were performed using the MIT SuperCloud [43,44], a high-performance computing cluster. The calibration
nd Challenge simulations required between 3 and 5 days to complete, using 12 nodes and 48 processors per node (i.e. a total of
76 processors).

.8. Result visualization methods

Throughout the simulations, checkpoint and simulation data were dumped to unstructured parallel VTK files (vtu and pvtu) files
t a given load step frequency for the purpose of restart and visualization. In addition, the reaction forces at the supports (where
he displacement boundary conditions were applied) were extracted from the simulations directly from the residual forces array,
ollected among the pool of parallel processes using the Message Passing Interface (MPI) library, and saved to file at each load
tep. The data from this file was used to plot the load–displacement curves using the Matplotlib Python package [45]. We utilize
araview [46,47] as our main visualization software. A number of scripts using the Paraview Python interface were created to
xtract the relevant data to produce rendered simulation scenes shown in this paper’s figures.

. Results and discussion

.1. Matching or using the calibration data

The calibration of the finite element model was performed in a stepwise manner in which the elastic parameters were calibrated
irst, then the plasticity, and finally the fracture model parameters. The elastic parameters were determined using the mode I
xperiments. Since the results of these experiments were provided for a single orientation of the sample, we did not attempt to
uantify the anisotropy in the material response and we adopted an isotropic material model. An initial estimate of the elastic
odulus 𝐸 = 0.478 GPa was obtained from simple beam theory. It bears emphasis that this was done just for the purpose of

nitializing the calibration process, and is not expected to yield a good match, since beam theory assumptions are violated by
8
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Table 1
Material model and fracture parameters.
Parameter name Symbol Value Units

Young’s modulus 𝐸 0.63 GPa
Poisson’s ratio 𝜈 0.05
Preconsolidation pressure 𝑝𝑐0 75 MPa
Friction angle 𝜙 23.2
Reference pressure 𝑝𝑟𝑒𝑓 50 kPa
Reference volumetric plastic strain (log) 𝜃𝑝𝑟𝑒𝑓 0.1
Linear hardening parameter 𝐻 2 GPa
Yield stress 𝜎0 2 MPa
Fracture strength 𝜎𝑐 3.78 MPa
Fracture energy 𝐺𝑐 140 J∕m2

Mode mixity parameter 𝛾 1.5

the experimental configuration (the length-to-height ratio is about 3, the specimen has a notch, etc.) We then changed the Young’s
Modulus to achieve a satisfactory match with the linear rise of the load–displacement curves, which resulted in a value 𝐸 = 0.63 GPa.
We adopted a Poisson’s ratio of value 𝜈 = 0.05, to account for the large compressibility as well as the relatively large shear wave
speeds reported in the acoustic wave propagation data for this additively manufactured Gypsum material.

We adopted a yield stress of 𝜎𝑦 = 2 MPa which is approximately 30% of the failure strength observed in unconfined compression
testing. This ratio is consistent with dilatancy stress to failure stress ratios reported for a variety of geomaterials [37].

The values of the CZM parameters were calibrated to capture the peak load and post-fracture behavior of the load–displacement
curves. A critical stress value of 𝜎𝑐 = 3.78 MPa and fracture energy value of 𝐺𝑐 = 140 J/m2 were obtained from the mode I tests.
As it is typical in the modeling of softening material response, the model interface energy must be sufficiently large to ensure the
cohesive zone can be resolved by the computational mesh [7], which guided our calibration of 𝐺𝑐 . This parameter controls the
transition to unstable propagation and sets the length scale over which crack-tip singularities are blunted by cohesive openings.
As will be shown in the simulation results, this length scale exceeds the element length scale, as required for obtaining converged
simulations.

The mode mixity parameter was calibrated using the load displacement curves of the mode I and II off-center notch geometries,
and the mode I and III angled-notch geometries. Mode II failures are induced in the experiments by shifting the location of the
notch to one side, where the shear carried by the beam is nonzero. As the notch is shifted to the side, the bending moment that is
carried by tensile stress at the notch decreases in magnitude and consequently the relative importance of in-plane shear and, hence,
the mode II driving force increase. By twisting the notch, the symmetry of the specimen is broken, and out of plane shear develops
which drives mode III fracture propagation. The mode mixity parameter modulates the normal and tangential components of the
traction between the two surfaces of the Cohesive Zone Model, and provides a simple device to characterize the relative importance
of shear stresses at crack tips. A value of 𝛾 = 1.5 was found to be sufficient to capture the transition to instability and subsequent
post-fracture behavior of all the calibration experiments. The final values of the parameters obtained from the calibration procedure
are presented in Table 1.

The results of the model calibration process are shown in Fig. 6. The images show a comparison of the simulation vs experimental
load–displacement curves for the four different type of calibration experiments. In each image, the red line represents the simulation
result, whereas the four black lines are the experimental results obtained in each of the repetitions of a given experiment. The area
shaded in blue are the experimental corridors or envelopes of the minimum and maximum load for each displacement. It can be
seen that there is a reasonable match between the simulation and experimental results for all four experiments. There is some
discrepancy in the elastic response of the load–displacement curves because the elastic parameters were calibrated using only the
mode I fracture experiment. The experiments also show some apparently-elastic stiffening during loading. This could be attributed
to microcrack closure, or other internal microstructural effect in the elastic response which is not captured in the model. The peak
load and deflection at the peak load are found to be in excellent agreement with the experimental results. The calibration of the
fracture parameters did not require a complete simulation of the post-fracture response. Consequently, some of the simulations were
stopped to save computer time on our cluster.

3.2. Matching challenge data

The calibrated computational model was then applied to the Challenge configuration, as described in Section 2.3.2. Setting
up this simulation was very straightforward by small modifications of the geometry file used as input to the mesh generation tool.
Otherwise, the model was used without any modifications either to the formulation or the model parameters. No further assumptions
were required either. In Section 3.2.1, we present the a posteriori comparison between the numerical model and the corresponding
experiment. In Section 3.2.2, we highlight the various physical mechanisms that arise in this experiment that the numerical model
9
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Fig. 6. Results of the model calibration process: Comparison of load displacement curves between experiments (shown in black), and the simulation result
(shown in red) line. The experimental corridors are shown in the shaded blue area.

3.2.1. Comparison between simulation and experiment
The Challenge organizers provided experimental results of the three-point bending test of the final Challenge geometry after the

submission of the blind prediction. The experimental results included the load–displacement curve and the fracture surface for four
different experiments. The simulated load–displacement curve was found to be in excellent agreement with experimental findings up
to and beyond the point of failure as shown in Fig. 7. The residual load that can be observed in the figure is due to material remaining
intact near the region of application of the external load, following the measures implemented to prevent fracture initiation near
the Dirichlet nodes discussed in Section 2.3.2.

In the experiments, the geometry of the fracture surfaces was obtained using laser profilometry. The sample was mounted on
its side and scanned in a direction perpendicular to the cross section of the specimen of dimensions 105 mm by 200 mm, in
increments of 0.1 mm. The asperity height resolution was 0.5 μm. A mean fracture surface was computed from the data across
all four repetitions of the experiment, which was then used as the basis for comparison with the geometry of the fracture surface
predicted by the model. The mean fracture surface was computed by taking the mean of the x coordinate of the fracture surface
𝑥̄(𝑦, 𝑧) = 1

4
∑4

𝑖=1 𝑥𝑖(𝑦, 𝑧) at each (𝑦, 𝑧) coordinate pair. Additionally, the range of the experimental data was computed at each position
as 𝑒(𝑦, 𝑧) = max𝑖 𝑥𝑖(𝑦, 𝑧) − min𝑗 𝑥𝑗 (𝑦, 𝑧), as a measure of the variability of the experimental fracture surface.

We extracted the fracture surface from the simulation by identifying the cohesive elements that had failed. We then interpolated
the numerical fracture surface onto a regular grid in correspondence with the experimental data, giving the positions as values
𝑥ℎ(𝑦, 𝑧). A qualitative visual comparison of the geometry of the simulated vs. the experimental fracture surface for the challenge
experiment is shown in Fig. 9, (see also video animation rendering in the Supplementary Information). These figures show a 3D
rendering of the mean experimental fracture surface in blue, and the numerical prediction in red. The semi-transparent white lines
are the edges of the finite element mesh, which were added to the visual rendering purely for the purpose of helping with the
three-dimensional interpretation of the figure. The visual rendering exposes a remarkable ability of the computational model to
capture the curved geometry of the experimental fracture surfaces.

A pointwise value of the error was computed by subtracting the mean fracture surface x coordinate from the numerical fracture
surface x coordinate for a given (y,z) coordinate pair, i.e. 𝑒ℎ(𝑦, 𝑧) = (𝑥ℎ(𝑦, 𝑧) − 𝑥̄(𝑦, 𝑧)). A contour plot of this local metric of the
numerical error is shown in Fig. 8. It can be observed in this figure that this error remains considerably small in most regions of
the cross section despite the significant complexity of the geometry of the fracture surface. There are a few small zones where the
error can reach ±1mm, which is still quite small relative to the sample dimensions.
10
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𝑥

Fig. 7. Comparison of the experimental (in black) vs. simulation (in red) load–displacement curves for the three-point bending test in the final challenge
geometry. The experimental corridors are shown in the shaded blue area.

Fig. 8. Contour map of the error 𝑒ℎ between the predicted positions of the fracture surface 𝑥ℎ(𝑦, 𝑧) and the mean position of the fracture surfaces from experiments
̄(𝑦, 𝑧).

To quantify the overall error of the predicted geometry of the surface, the 𝐿2-norm of the error with respect to the mean
experimental surface was computed by a simple piecewise-constant Riemann sum. In order to obtain a relative error, this value
was normalized by the 𝐿2-norm of the range of the experimental data, which was computed in a similar way. The normalized error
obtained had a numerical value of 0.25, which indicates that the error in the geometry of the fracture surface predicted numerically
is well within the bounds of the experimental variability. Further insights on the shape of the fracture surface are presented in the
following subsection.
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Fig. 9. Comparison of experimental and predicted geometry of the fracture surface of the blind challenge experiments (front side in top picture, back side
in bottom picture). The blue dots correspond to the mean values of the location of the fracture surface across the four experimental repetitions. The red
dots were interpolated from the location of the failed cohesive elements. A white, semi-transparent wireframe of the mesh is shown to aid in conveying the
three-dimensionality of the problem and to contextualize the fracture surface geometry.

3.2.2. Analysis and discussion
In this section, we discuss some of the physical insights into the fracture response that the simulation of the Challenge provides.
Fig. 10 shows contour plots of the von Mises stress normalized by the critical fracture stress on the front and back surfaces. This

gives a sense of the evolution of the stress field as the crack progresses from the notch into the specimen. It can be observed that
the stress initially intensifies at the notch corners, which causes crack nucleation. Stress intensification persists at the crack tip as it
propagates through the computational domain. It bears emphasis that, in accordance with cohesive theories of fracture mechanics,
the stress at the crack tip remains finite and sufficiently resolved by the finite element interpolation. The figures indicate that the
region surrounding the crack tip where the stress is of the order of magnitude of the failure stress is quite large, as evidenced by the
12
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Fig. 10. Von Mises stress measure normalized by the fracture strength. The front face of the specimen is imaged on the left from an angle to portray the
inclination of the initial notch. The back face is shown on the right.

large red elliptical contours emanating from either side of the advancing crack tip. This millimeter-size region corresponds to the
cohesive zone which for the chosen parameters has a length scale of the order of 𝜋

8
𝐸𝐺𝑐

(1−𝜈2)𝜎2𝑐
= 2.4mm [48]. As the numerical model

employs smaller elements with characteristic sizes of 0.15mm in the center of the domain, this simulation resolves the cohesive
failure zone with many elements possessing several thousand degrees of freedom, which is essential for an accurate characterization
of the fracture path [7].

Upon inspection of Fig. 10 at the end of the simulation, it is apparent that the crack originates at opposite sides of the width
of the notch on the front and back faces of the specimen. On the front (back) face, the crack initiates from the corner of the notch
closest to (farthest from) the center of the specimen. Hence, the crack path actually traverses the width of the initial notch. This is
seen clearly on the right side of Fig. 11 which shows a view of the final deformed state of the notch from beneath the specimen.
There are two physical mechanisms driving the traversal of the crack path across the specimen. The first is that the fracture energy
required to propagate a mixed-mode fracture is larger than in pure mode I, so cracks tend towards mode I propagation. In the
simulation, fracture surfaces perpendicular to the 𝑥̂ are energetically favorable because the stress state is dominated by tensile 𝜎𝑥𝑥
arising from the beam’s bending moment. The second effect is purely geometric and results from the decrease in energy required
to drive crack propagation due to a decrease in the area of the fracture surface. These two mechanisms also cause the crack surface
to twist to be nearly perpendicular to the 𝑥̂ direction as the fracture propagates. The curved geometry of the crack surface, both
experimental and numerical, clearly shows this effect, Fig. 9.

An analysis of the evolution of the various components of the energy as the simulation progresses can also provide important
insights into the stable or unstable character of the crack propagation. This has important implications on the choice of time
integration algorithm, Section 2.2.2. Fig. 12 plots the logarithm of the external work, the kinetic, elastic, and dissipated fracture
energies as a function of the applied displacement. In the initial stages of the simulation, there is no crack propagation, and the
simulation proceeds using the scheme in Phase 1. At a deflection of about 0.07 mm, stable fracture propagation begins, and the
quasi-static time integration algorithm in Phase 2 is used. It bears emphasis that this stable crack propagation persists for most of
the duration of the experiment. The numerical kinetic energy is very small and remains constant during this phase. At the same
time, the fracture energy rises considerably as the crack propagates along multiple element interfaces, although it remains negligible
compared to the elastic energy. At a displacement of approximately 0.37 mm, the crack starts to propagate in an unstable manner.
The fracture energy jumps by an order of magnitude in a very small displacement increment, whereas the elastic energy drops by
almost the same amount. The kinetic energy shows large oscillations due to the sudden release of the elastic energy. This is the
main reason that a different time integration algorithm is required, see Phase 3.

Finally, Fig. 13 shows contours of the volumetric plastic strain. It is clear that there is an almost imperceptible role of inelastic
deformations in this experiment, which are limited to values of the order of 0.1% in the so-called plastic wake of the crack.
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Fig. 11. Final fractured state viewed from beneath the specimen showing how the crack traverses the width of the notch. The top (bottom) of the figure is the
front (back) of the specimen.

Fig. 12. Logarithmic plot of the total energy in the simulation of the three-point bending test of the final challenge geometry.

3.3. Variability

The DG/CZM approach that we adopted in our simulations restricts cracks initiation and propagation to occur only along mesh
interfaces. As the mesh is refined, the set of possible fracture paths becomes richer, ultimately yielding converged crack geometries.
Nevertheless, results obtained on different meshes with identical characteristic element sizes may result in fracture paths that locally
may be different, but will be macroscopically equivalent. The mesh is, therefore, a source of variability inherent to our computational
approach. It bears emphasis that this type of variability in the geometry of the crack is also present in the experiments. However,
due to time limitations we have not investigated this or other sources of variability and we have carried out a single simulation of
the challenge configuration.
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Fig. 13. Volumetric plastic strain at the end of the simulation. Note that the material in the plastic wake has dilated or expanded due to the significant
hydrostatic tension induced by the crack tip.

4. Conclusions

This paper presented the response of the MIT/TU Delft team to the 2022 Purdue Damage Mechanics Challenge. The Chal-
lenge provided a rigorous framework for assessing the predictive capabilities of state-of-the-art computational models of frac-
ture, as well as a rich dataset of well thought-out and carefully-instrumented experiments to quantify the fracture response of
additively-manufactured gypsum.

Simulations of the experiments were conducted using the well-established Discontinuous Galerkin/Cohesive Zone Model
(DG/CZM) computational framework, which our research group has developed and refined over many years. The framework was
specialized to this problem via the implementation of gypsum-specific material models of deformation and fracture. The constitutive
models were calibrated using the ad hoc experimental data provided by the Challenge organizers. The calibrated model was used
to conduct a blind simulation of the Challenge configuration.

A quantitative comparison of the results of our simulations against the experimental data showed that the model predictions
were in excellent agreement with the experiments. The model also provided important insights on the complex evolution of the
curved crack path. The ability of the computational framework to predict the curved geometry of the experimental fracture surface
is particularly noteworthy.
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