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SUMMARY 

Three methods of presenting wave data are discussed: the significant wave 
(including the "design wave" concept), the wave spectrum, and the directional 
spectra. Their use in calculating wave forces on pile supported structures is 
described, with a discussion of the relative usefulness of the linear versus the 
non-linear approach. The concept of virtual mass is described, and how this 
leads to a type of non-linearity which is of great importance in the reversing 
flow field associated with wave motions. Finally, a plea is made for more wave 
data in order that adequate wave climates can be obtained for use by the design 
engineer, by the constructor, and by the operator. 

INTRODUCTION 

We are all aware of the tremendous forces exerted by hurricane and gale 
generated water waves on structures in the ocean. Man, since ancient times, 
has been constructing boats, breakwaters, and docks in a manner which he has 
hoped would be adequate to withstand these forces, often with success, but 
often failing. In recent years our knowledge of the physics of the phenomenon 
has been developed rather rapidly, permitting us to make better designs now 
than previously. Some concepts and details of the present state of our knowl
edge will be presented in this lecture. 

Wind blowing over the ocean's surface drags water along with it, thus 
forming a current, while at the same time it generates waves. Many of the 
waves grow so steep that they become unstable and break, and in this breaking 
process they generate a substantial amount of turbulence. One of the most 
noticeable features of these waves is their irregularity, both in time and in 
space. Owing to the nature of the wind, the waves generated by the wind blow
ing over the water surface move in a continuous spread of directions, as meas
ured from the direction of the mean wind velocity. Once the waves leave the 
generating area, they become smoother in appearance and are known as swell. 
Due largely to dispersion and angular spreading, the energy density decreases 
with distance travelled from the storm. 

Three methods have been developed to represent these waves. The simplest 
method is to use the concept of a "significant wave" designated by a height 
(Rs )' period (Ts) and direction (see Wiegel, 1964). Another method utilizes 
a "one-dimensional spectrum," that is, the wave energy density as a continuous 
function of both component wave frequency and direction. Both the one
dimensional and directional spectra are based upon the concept of linear super
position of component waves and assuming the statistical independence of phase 
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angles amongst the frequency components. Although most of the wave data that 
are available have been obtained using the significant wave concept, a sub
stantial amount of data is becoming available in the form of one-dimensional 
spectra. 

Almost no directional spectra of ocean waves are available. Obtaining 
information of this type requires an array of wave gages, the use of an elec
tronic analog to digital converter, and the use of a high-speed digital com
puter. Furthermore, the mathematical techniques necessary to obtain reliable 
directional spectra are difficult to use at the present time from a practical 
standpoint. However, it is expected that in the future many designs will be 
made which are based upon directional spectra, with the spectra being a few 
generalized types. 

There are two principal reasons, beside the availability of data, which 
make the significant wave concept useful to the design engineer. One has to 
do with the problem of the conception of a design in the mind of an engineer, 
which, because of the large number of variables involved, requires a rather 
simple visualization of the variables. The second reason is that water waves 
are not a linear phenomenon, and in relatively shallow water where many struc
tures are built, certain non-linearities are of controlling importance; the 
significant wave height, period and direction can be used together with the 
most appropriate non-linear theory for calculations. A variation of this con
cept is the use of the "design wave," a wave which has been estimated to be the 
most extreme which will be encountered during the life of a structure. Ulti
mately, it is expected that the mathematics of non-linear superposition will be 
developed sufficiently for the directional spectra concept to be used even in 
shallow water. 

It is necessary to have information on the "wave climate" in the area of 
interest for the planning and design phases, and synoptic wave data for the 
construction and operation phases. Traditionally, the wave climate has been 
represented by "wave roses" or tables \vhich have been obtained from visual 
observations, from wave recorders, or from hindcasts from weather maps. It 
would be of much greater benefit to the engineer to have wave data in the form 
of cumulative distribution functions in order to be able to make an economic 
design based upon the numerical probability of occurrence. In addition, it 
would also be better to have wave data in another form for use in planning 
construction and other operations; in the form of continuous observations, meas
urements, or hindcasts so that the statistical properties could be determined 
of the number of consecutive days the waves will be less than, or greater than, 
some safe or economic combination of height, period and direction. Continuous 
records would also permit the calculation of "wave spectra," and if an appro
priate array were used, it would permit the calculation of "directional spectra" 
for a site. 

Finally, a design philosophy is needed. Owing to the lack of statistical 
information, details of the forcing functions, and our inability to predict in 
advance our changing needs, it is usually necessary to develop a "plateau" type 
of design, rather than attempting to design for a sharply tuned optimum design. 

LINEAR THEORY FOR PROGRESSIVE WAVES 

Linear Wave Theory 

The coordinate system usually used is to take x in the plane of the undis
turbed water surface and y as the vertical coordinate, measured positive up 
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from the undisturbed water surface. The undisturbed water depth is designated 
as d. Sometimes the vertical coordinate is taken as measured positive up from 
the ocean floor, being designated by S. 

The wave surface is given by 

S 
s 

(1) 

where H is the wave height, L is the wave length, T is the wave period, t is 
time, and the subscript -s refers to the wave surface. The wave length, L, and 
wave speed, C, are given by 

L 

c 
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(3) 

where g is the acceleration of gravity. The horizontal component of water 
particle velocity, u, the local acceleration, 3u/3t, and the pressure, p, are 
given by 

nH cosh 2nS/L 
cos 2n (t - tJ (4 ) u T sinh 2nd/L 

3u 2n2 H cosh 2nS/L 
sin 2n (t - t] (5) at sinh 2 d/L 

+ 
1 cosh 2nS/L [x t) (6) p pgy - pgH 

cosh 2nd/L cos 2JT L - T 2 

where p is the mass density of the water. 

Similar expressions are available for the vertical components, and expres
sions are available of the water particle displacements (see Wiegel, 1964). 

Wave Forces on Piles 

In a frictionless, incompressible fluid the force exerted on a fixed rigid 
submerged body may be expressed as (Lamb, 1945, p. 93) 

(7) 

where Fr is the inertia force, Mo is the mass of the displaced fluid, Ma is the 
so-called added mass which is dependent upon the shape of the body and the flow 
characteristics around the body, and ~is the acceleration of the fluid at the 
center of the body were no body present. CM has been found theoretically to be 
equal to 2.0 for a right circular cylinder by several investigators (see, for 
example, Lamb, 1945). The product of the coefficient of mass, ~, the volume 
of a body, B, and the mass density of the fluid, p, is often called the "virtual 
mass" of a body (Le., Mo + Ma) in an unsteady flow (Dryden, Murnagham and 
Bateman, 1956, p. 97). CM is sometimes expressed as 

1 + C 
a 

3 

(8) 
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where C
a 

is the ~oefficient of added mass.* The mass of the fluid displaced by 
the body enters lnto Eq. 7, with one part of the inertial force being due to 
the pres~ gradient in the fluid which causes the fluid acceleration (or 
deceleration). This force per unit length of cylinder, F , is given by 

p 

F 
P 

rfi pdy 
dU P -- J xdy 
dt 

dU 
P Ao dt (9 ) 

in which Ao is the cross sectional area of the cylinder and rfi is a contour 
integral (McNown, 1957) which follows from the well-known relationship in fluid 
mechanics for irrotational flow 

1 .<.!£. 
p dx 

dU 
dt 

(10) 

where dp/dx is the pressure gradient in the fluid in the absence of the body. 
In many papers on aerodynamic studies using wind tunnels F is called the 
"horizontal buoyancy" (see, for example, Bairstow, 1939). p The added mass 
term, expressed by Ca p Ao per unit length of cylinder, results from the accel
eration of the flow around the body caused by the presence of the body. As the 
fluid is being accelerated around the body by the upstream face of the body 
(,olhich requires a force exerted by the body on the fluid), the fluid decelerat
ing around the downstream face of the body will exert a smaller or larger force 
on the downstream face, depending upon whether the flow is accelerating or 
decelerating. This concept can be seen more clearly for the case of a body 
being accelerated or decelerated, through a fluid. The force necessary to do 
this is proportional to the mass per unit length of the cylinder, M , plus the 

c 
added mass, >1 , 

a 

(M + CpA) 
c a 0 

dU 
dt 

(M + M ) 
c a 

dU 
dt 

(11) 

The leading face of the cylinder pushes on the fluid causing it to accelerate, 
and the fluid decelerating on the rear side of the cylinder pushes on the 
cylinder (with the equivalent reaction of the cylinder). In accelerated motion, 
the reaction at the front must be greater than the reaction at the rear as the 
fluid decelerating at the rear was not accelerated as much, when it was at the 
front, as the fluid in front is being accelerated at that instant. 

It is unfortunate that the ter~added mass and virtual mass have entered 
the literature as they tend to confuse our concept of the phenomenon. MacCamy 
and Fuchs (1954; see also Wiegel, 1964, p. 273) solved the diffraction problem 
of waves moving around a vertical right circular cylinder extending from the 
ocean bottom through the water surface, using linear wave theory. They solved 
for the potential, obtained the distorted pressure field from this potential, 
and integrated the x-component of force around the pile which resulted from 
this pressure field. In our coordinate system, their solution is 

where 

F (S) 
Ih 

fA (D/L) 

~ cosh 2TIS/L 
TI cosh 2TId/L 

2TIt 
fA (D/L) sin (- T - 6) (12) 

1 
(13) 

*In many papers the term virtual mass is used for the term added mass. Owing 
to this, care must be exercised in reading the literature on the subject. 
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in which J and Y
1 

are Bessel functions of the first 
pectively, land the prime indicates differentiation. 
lag, and will not be shown here as S < 5° for values 
is very large for large values of D/L. When D/L + 0, 

cosh 2nS/L 
sinh 2nd/L sin (_ 2nt 

T 

and second kinds, res
S is the angle of phase 
of D/L < 1/10, although it 
fA(D/L) + t n (nD/L)2, and 

S) (14) 

Neglecting S for small values of D/L, it can be seen that this is the commonly 
accepted equation for the inertial force, with CM = 2. 

In a real fluid, owing to viscosity, there is an additional force, known 
as the drag force, FD. This force consists of two parts, one due to the shear 
stress of the fluid on the body, and the other due to the pressure differential 
around the body caused by flow separation. The most COmTI10n equation used in 
the design of pile supported structures is due to Morison, O'Brien, Johnson and 
Schaaf (1953), and is: 

F -2
1 

CD n A Ivi V + C n B dV 
~w M ~w dt (15) 

where A is the projected area and B is the volume of the pile. As V and dV/dt 
vary with position, it is better to use the following equation where Fh(S) is 
the force per unit length of a circular pile. Consider the case of a pile 
installed vertically in water of depth d, extending from the bottom through the 
surface. The water particles move in an orbit due to the waves, with both 
horizontal and vertical components of velocity and acceleration, u, v, du/dt 
and dv/dt, respectively. The horizontal component of wave induced force, per 
unit length of pile, is given by 

Fh(S) 
1 

lui 
nD 2 du 

2 CD Ow D u + eM 0 -
w 4 dt 

(16) 

Here, du/dt is 

du au + u 
au au au - + v + w dt at 3x 3y dz 

(17) 

If we consider only linear theory, the convective acceleration (the last three 
terms on the right-hand side of Eq. 17) can be neglected, leaving only the local 
acceleration; i.e., du/dt ~ 3u/3t. u and 3U/dt are given by Eqs. 4 and 5. It 
can be seen that the drag and inertia forces are in quadrature, so that the 
maximum total force "leads the crest" of the wave .. The larger the drag force 
relative to the inertia force, the closer will be the maximum total force to 
the passage of the wave crest past the pile. As will be pointed out in a later 
section, there is a relationship between CD and CM, so that Eq. 16 is quite com
plicated, although it is not usually treated as such. 

If a circular structure is placed at an angle to the waves, the vertical 
component of wave induced force can be treated in a similar manner, using v and 
dV/dt as well as u and du/dt. 

If strictly linear theory is used the total horizontal component of wave 
force acting on a vertical circular pile can be obtained by integrating 
Fh(S) dS from ° to d. Very often in practice, one integrates Fh(S) from 0 to 
Ss' obtaining results which are somewhere between the results for linear wave 
theory and those for second order wave theory. A digital computer program for 
this operation is available for this purpose, as are graphs and tables of 
results (Cross, 1964; Cross and Wiegel, 1965). 
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Much time and money have been spent in obtaining prototype and laboratory 
values of CD and CM, Most of the work has been done by private companies and 
is not available.* Some data which are available for CD are given in Fig. 1 
(Wiegel, Beebe and Moon, 1957). It is evident that there is a considerable 
scatter of both CD; this is also true for the values of CM. One of the main 
reasons for this is that the analysis of the data was based upon two simplifi
cations: First, that linear theory could be used to reduce the basic data, and 
second, that each wave (and force) of a series of irregular waves could be 
analyzed as one of a series of uniform waves having the height and period of 
the individual wave in the record. 

Agerschou and Edens (1966) reanalyzed the published data of Wiegel, Beebe 
and Moon (1957) and some unpublished data of Bretschneider, using both linear 
theory and Stokes Fifth Order theory. They concluded that for the range of 
variables covered, the fifth-order approach was not superior to the use of 
linear theory. They recommended for design purposes, if linear theory is 
used, that CD should be between 1.0 and 1.4, and that CM should be 2.0, these 
values being obtained for circular piles 6-5/8, 8-5/8, 12-3/4, 16 and 24 inchep 
in diameter. (It should be noted here that the theoretical value of ~M for a 
circular cylinder in potential flow is 2.0.) Wilson (1965; see alsc, Wilson 
and Reid, 1963) report average values of CD = 1.0 and CM = 1.45 fo' a 3D-inch 
diameter pile. At a recent conference, one design engineer stated he used 
values of CD ranging from 0.5 to 1.5 and CM from 1.3 to 2.0, depending upon his 
client (Design and Analysis of Offshore Drilling Structures: Continuing Educa
tion in Engineering Short Course, University of California, Berkeley, California, 
16-21 September 1968). The results reported above were obtained either as 
values of CD and CM at that portion of a wave cycle for which FD "" max and 
FI .. 0, and vice-versa, or for the best average values of CD and 11 throughout a 
wave cycle, assuming CD and C~ to be constant. Both of these metliods of obtain
ing and reporting the coefficlents should be refined, as the coefficients are 
dependent upon each other, and are also time dependent as well as dependent upon 
the flow conditions. 

In the significant wave approach, the sienificant wave height, Hs ' and 
significant wave period, Ts ' are substituted for Hand T in the above equations, 
treating the significant wave as one of a train of waves of uniform height and 
period. In the design wave approach, the chosen values of Hd and Td are used 
in a similar manner. 

~~One Dimensional Wave Spectra Approach 

Recently there have been several papers published on the study of wave 
forces exerted on circular piles, using probability theory. In these studies 
it was assumed that the continuous spectrum of component waves could be super
imposed linearly, that the process was both stationary and ergodic, and that 
the phase relationship among the component waves was Gaussian. 

Some years ago the author obtained both the wave and force spectral densi
ties for a pile installed at the end of the pier at Davenport, California, as 
shown in Fig. 2. It was not evident why the form of the two spectral densities 
should be so similar considering the fact that the product lui u occurs in 
Eq. 16. Professor Leon E. Borgman (19jG) studied this problem in detail and 
developed the following theory. 

appears the results of a long term prototype study of wave forces on 
piles, by a consortium of oil companies, will be released at the Offshore 
Technology Conference, to be held in Houston, Texas, 19-21 May 1969. 
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The basic wave force equation is Eq. 16, which may be expressed as a func
tion of time as 

F(t) (18) 

Here F(t) is the time history of the horizontal component of force per unit 
length of circular pile at an elevation S above the ocean floor, and 

(19a) 

(1%) 

The theoretical covariance function for F(t) using ensemble averaging with the 
Gaussian random wave model is 

(20) 

where ~7V(T) and RAA(T) are the covariance functions of the horizontal compo
nent water particle velocity, Vet), and local acceleration A(t) (i.e., u and 
3u/3t), where 

and 

G(r) 

in which G(r) G(RVV (T)/a 2), and f is the frequency of the component 
wave (f = liT). 

(21) 

(22) 

The covariance function RVV(T) and RAA(T) are calculated from the spectral 
densities SVV(f) and SAA(f) by use of the Fourier transforms 

~V(T) 

RAA(T) 

where 

SVVCf) 

SAA(f) 

and 

(2rr0 2 

f oo (f) ei2rrfT df 
_00 SVV 

f oo (f) ei2rrfT df 
_00 S AA 

(2rrf)2 cosh2 2rrS/L 
sinh2 2rrd/L 

(2rrf)4 cosh2 2rrS/L 
sinh 2 2rrd/L 

2 ' 
~g tanh 2rrd/L 

S (0 
nn 

S (f) 
nn 

TACf) S (f) 
nn 

(23a) 

(23b) 

(24a) 

(24b) 

(25) 

The functions TV(f) and TA(f) are called transfer functions. T~le fundamental 
quantity Snn(f) is the spectral density of the water waves, and is obtained from 
the Fourier transform 
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S (0 
nn 

= R (T) 
nn 

-i2nfT 
e dT (26) 

in which Rnn(T) is the averaged lagged product of net) (i.e., average of 
net) net + T» where net) is the time history of the wave motion at the loca
tion of the pile (i.e., net) = ys(t». 

Borgman found that Eq. 22 could be expressed in series form as 

G(r) (27) 

and that the series converges quite rapidly for 0 ~ r ~ 1.· He found that for 
r = 1, the first term G1 (r) = 8r/n differed from G(r) by only 15%, and that the 
cubic approximation G

3
(r) = (8r + 4r 3 /3)/n differed from G(r) by only 1.1%. 

Substituting the first term of the series into Eq. 20 results in 

C 2 0 4 (8 RFF (T) 
..... J RFF(T) 

1 + + C 2 RM(T) n 0 2 2 
(28) 

The Fourier transform of this is: 

C 2 0
4 

[8 
SVV (0 

..... J SFF (f) 
1 + + C 2 SM (0 n 0 2 2 

(29) 

which is the desired force spectral density. 

Borgman made a numerical analysis of the situation shown in Fig. 2. The 
*numerical integration of S (f) gave 0

2 =1.203 f13/ sec2 and a least square fittin"g of 
the theoretical covarianc~rsf F(t) against the measured force covariance gave 
estimates of CD = 1.88 and ~ = 1.73. The transfer functions TV(f) and TA(f) 
were calculated and plotted; it could be seen that TA(f) was nearly constant in 
the range of circular frequencies (2n/T) for which most of the wave energy was 
associated. The calculated and measured force spectral densities are shown in 
Fig. 3. The reason for the excellent fit is that for the conditions of the 
experiment TV(f) was nearly constant and the linear approximation to G(r), 
G

1 
(r), was a reliable approximation. 

Jen (1968) made a model study of the forces exerted by waves on a 6-inch 
diameter pile in the 200 ft. long by 8 ft. wide by 6 ft. deep wave tank at the 
University of California, Berkeley. In addition to using periodic "\vaves, 
irregular waves were generated by a special wave generator using as an input 
the magnetic tape recording of waves measured in the ocean. The dimensions of 
the waves relative to the diameter of the pile were such that the forces were 
largely inertial. Jen found for the regular waves that CM ~ 2.0, and using 
Borgman's method to analyze the results of the irregular waves tests found 
CM "'" 2.1 to 2.2. The reason for this close agreement bet1:veen theory and measure
ment of CM is probably due to the small value of H/D, which resulted in quasi
potential flow (This will be discussed in a subsequent section). 

Equation 29 permits the calculation of the force spectral density at a 
point. This ~ useful but the design engineer usually needs the total force on a 
pile, and the total moment about the bottom. In addition, the total 
for ce and the total moment on an entire structure is needed. These problems 
have been considered by Borgman (1966; 1967; 1968) and Foster (1968). In 
obtaining a solution to this problem, the integration of the force distribution 
is performed from the ocean bottom to the still water level as this is in 

8 



keeping with linear wave theory. There is no difficulty in obtaining the solu
tion for the inertia force, but cross product terms appear in the solution for 

~~the drag force.* Borgman made use of the linearization of G(r) by restricting 
it to the first term of the series given by Eq. 27 to obtain the approximate 
solution for the total force spectral density SQQ(f). 

~ S (£) r ~ 
nn i /T 

l 

r 2/Tf C 

[sinh 2/T 1 d/L 
Jd O(S) cosh(2/TS/L) 
o 

+ 
[ 

(2/T£) 2 C 

sinh 2/T d~L ~d cosh(2nS/L) dsr } 

in which 

Jd cosh(2/TS/L) dS = 
o 

sinh 2/Td/L 
2/T/L 

(30) 

(31) 

The first integral in Eq. 30 cannot be prevaluated, but must be calculated for 
each sea-surface spectral density used. 

The total moment about the bottom is 

SMM (f) "'" S (£) nn 

+ 

in which 

!-(2/T£) 2 C 

Lsinh 2/Td/L 

Jd S cosh(2/TS/L) dS 
o 

2/Tf C 

lSinh 2/T 1 d/L 
Jd S o(S) cosh(2/TS/L) 
o 

2 1 
cosh (2nS/L) dS] f 

(2/T~L)2 [I-cosh 2/Td/L + (2/Td/L)cosh 2/Td/L] 

As in the case of Eq. 30, the first integral cannot be prevaluated. 

(32) 

(33) 

Borgman (1967; 1968) has found this linearization of the drag term to be 
the equivalent of using (Vrms I87TI1 Vet) in place of IV(t)1 Vet) in Eq. 18; 
the physical reason for this is not clear, however. It should be pointed out 
here, that another linearization has been used by nearly every investigator in 
the past, with essentially no discussion; that is, the use of 3u/3t rather than 
du/dt (see Eq. 17). Work is needed to determine the size of error introduced 
by this linearization compared with the size of the error introduced by the 
linearization of the drag term. 

A relatively simple transfer function has been obtained by Borgman (1966; 
1967) to calculate the total force and overturning moment the pile array of an 
offshore platform, and the reader is referred to the original work for informa
tion thereof. 

~ *A solution to this problem has been obtained by A. Malhotra and J. Penzien, 
University of California, Berkeley, California, and is to be published soon. 
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One Dimensional Wave Spectra 

There have been a number of papers published on one dimensional wave spec
tra (see, for example, National Academy of Sciences, 1963), and a large number 
of measured wave spectra have been published (see, for example, Moskowitz, 
Pierson and Mehr, 1963). There are several possible ways of using actual spec
tra, one being a simulation technique (Borgman, 1968) for a large number of 
spectra, or a large number of wave time histories reconstituted from spectra. 
Another way to use spectra is to develop a "standard" set of spectra. There 
have been a number of such standards suggested. One of these has been given by 
Scott (1965), who re-examined the data of Darbyshire (1959) and Moskowitz, 
Pierson and Mehr (1963), and then recommended the following equation as being 
a better fit of the ocean data 

S(w)/H2 

$. 

r (w - w ) 2 ] 

o . 214 exp - [0:::-.-:O:--::6:-::5:----7{ -;-( w---w-":-:-)-+-0:::-.-:2:--::6""'} 

for - 0.26 < (w - W ) < 1.65 
o 

and, = 0, elsewhere 

t 

(33a) 

(33b) 

(33c) 

where w = 2nf (in radians per second), w is the spectrum peak frequency, Hs 
is the significant wave height (in feet)~ and the energy spectral density 
SeW) is defined by 

Sew) = 1 
n s (n nn 

It is also defined by 

Sew) 
1 ow 
"2 I a~/ow 

l 
(34) 

in which the summation is uver the frequency interval w, w + ow, and ai is the 
amplitude of the i th component, with 

n 

I 
i=l 

a. cos(w. t + ¢.) 
l l l 

(35) 

in which ¢i is the phase angle of the ith component. The factor t enters as 
£ aI/2 is the mean value of YS2 during the motion. The term aI/ow is used, 
as the concept of a i tends to lose physical significance (i.e., a~ + 0) as 
n + 00, whereas a~/ow does not; hence the value of using the energy density as 
a function of frequency. 

Scott also found, using linear regression, that 

l/f 
0 

0.19 H + s 8.5 (36a) 

l/w 0.03 H + 1. 35 (36b) 
0 s 

T 0.085 H + 7.1 06c) 
s 
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where T is the average period (in seconds) of all waves in the record, and can 
be shown to be 

T = 21T (m /m )t 
o 2 

where 

/0 k 
Snn(W) dw ~ W 

0 

For k = 0, we have the "variance," m
o

' and for a narrow (i.e., "Rayleigh" 
spectrum) we have 

H 
s 

t 4 m 
o 

Using quadratic regression, Scott found 

f = (0.501/T) + (1.43/T 2
) 

o 

W = (3.l5/T) + (8.98/T 2
) 

o 

(37) 

(38) 

(39) 

(40a) 

(40b) 

It is of considerable importance to the engineering profession to develop 
means by which the spectral approach can be studied in the laboratory. In 
studying some of the problems, it is necessary to know the relationship between 
the one-dimensional spectra in the ocean and the spectra generated in a wind
wave tank (Plate and Nath, 1968). Comparison of a number of wave spectra 
measured in the ocean, in lakes and in wave tanks have been made by Hess, Hidy 
and Plate (1968). Their results, shown in Figure 4, are fully developed seas' 
wind-wave energy density spectra. The high frequency portion of the spectra 
all tend to lie close to a single curve, with energy density being approximately 
proportional to w- s as predicted by the Phillips' equilibrium theory (see 
Wiegel and Cross, 1966, for a physical explanation of this). A close inspection 
of these data by Plate and Nath (1968) led them to conclude that the high fre
quency portion of the energy spectral density curve varies from the w- s "law," 
being proportional to w- 7 near the spectral peak, and being proportional to 
about w- 4 in the highest frequency range of the spectra. It would appear from 
the one example of Wiegel and Cross (1966), Figure S, in which they compared a 
normalized measured laboratory wind-wave energy density spectrum with one cal
culated by use of Miles' theory, together with other physical reasoning, that 
a theoretically sound basis exists for the development of a "standard" set of 
spectra. 

The argument for the high frequency portion of the energy density spectra 
being proportional to w- 5 is as follows (Wiegel and Cross, 1966), For a train 
of uniform periodic progressive waves, the maximum wave steepness is generally 
considered to be 

H ::::: 1 
tanh 21T d/L L 7 

(4la) 

which, for deep water, reduces to 

H H 
~ 1 

L (g/21T) T2 7 
(42b) 
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and 

(43) 

from which 

(44) 

If the energy spectral dens~ty is proportional to (H/2)2/w, then it must also 
-5 be proportional to w . 

In order for the design engineer to use with confidence the work of the 
type proposed by Borgman, it would be desirable to measure SVV(f) and SAA(f) as 
a function of Snn(f) in both the ocean and in the laboratory to see how reliable 
the linear transfer functions are for different sea states. 

Directional Wave Spectra 

Before directional spectra can be used in the design of structures in 
relatively deep water it is necessary to have measurements of such spectra, and 
to understand them sufficiently to be able to choose a "design" directional 
spectra. Two sets of measurements have been made in the ocean (Chase, et al., 
1957; Longuet-Higgins, Cartwright and Smith, 1963), a few in a bay (Stevens, 
1965) and a few in the laboratory (Mobarek, 1965; Mobarek and Wiegel, 1967; 
Fan, 1968). 

Mobarek (1965) checked several methods that had been suggested for obtain
ing the directional spectra from an array of wave gages, and found none of them 
too reliable. However, making use of simulated inputs, he was able to choose 
the most reliable method and to devise correction factors. Some of his meas
urements are shown in Figure 6. Values in the ordinate are in terms of the 
wave energy, E, rather than the energy density, Snn(f). When normalized, his 
laboratory results were found to be similar to normalized values of the meas
urements made in the ocean by Longuet-Higgins, et al. (1963), as can be seen 
in Figure 7. At the suggestion of Professor Leon E. Borgman, Dr. Mobarek com
pared the circular normal probability function (the solid curve in Figure 7) 
with the normalized data and found the comparison to be excellent. 

~~ The probability density of the circular normal distribution function is 
given by (Gumbel, 1952 and Court, 1952): 

pea, K) 1 exp(K cos a) (45) 
I (K) 

o 

where a is the angle measured from the mean (8m - 8), K is a measure of the con
centration about the mean, and Io(K) involves an incomplete Bessel function of 
the first kind of zero order for an imaginary argument. The larger K, the 
greater the concentration of energy; it is analogous to the reciprocal of the 
standard deviation of the linear normal distribution. 

It has been found that much useful information on directional spectra can 
be obtained from the outputs of two wave recorders, through use of the co-spectra 
and quadrature spectra to calculate the linear coherence and the mean wave direc
tion (Munk, Miller, Snodgrass and Barber, 1963; Snodgrass, Groves, Hasselman, 
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Miller, Munk and Powers, 1966). It appeared to the author that if the direc
tional spectra were represented by the circular normal distribution function it 
should be possible to obtain the necessary statistical parameters in a similar 
manner. It was believed that such a simplified approach could provide data of 
sufficient accuracy for many practical purposes. As a result of discussions 
with Professor Leon Borgman, a theory was developed by Borgman (1967) to do 
this, and tables were calculated to provide a practical means to obtain the 
required information. 

Borgman (1967) used a slightly different representation of the directional 
spectra 

S 2(f, a) 
nn 

S (f) exp[-K cos(6 - 6 )]/2nI (K) 
nnl m 0 

(46) 

where the 2n in the denominator indicates an area under the curve of 2n rather 
than unity, f is the component wave frequency in cycles sec, and Snnl (f) is the 
one-dimensional spectral density. The estimation of the parameters Snnl (f), 
K(f) and 6m(f) is achieved by cross-spectral analysis based on a sea surface 
record at two locations. Snnl (f) and the co- and quadrature spectral densities 
for the two recordings are corr,puted by the usual time series procedures. The 
theoretical relations between measured and unknown quantities is 

C(f) 2n exp[K cos(6 - 6 )] 
f 

m 
cos[kD cose6 - B)] d6 

Snnl (f) 27fI (K) 0 a 
(47) 

Q(f) 
27f exp[K cas(6 - 6 )] 

+ f m sin[kD cos(6 - 13)] d6 
Snnl (f) 27fI (K) 

0 0 

(48) 

where D is the distance between the pair of recorders, k is the wave number 
(27f/L) and S is the direction from wave recorder #1 to wave recorder #2. For a 
given frequency, all quantities are known except 8m and K. Hence these two 
equations represent two nonlinear equations with two unknowns. Borgman has 
prepared tables which enable one to solve for 8m and K, given C(f)/Snnl(f) and 
Q(f)/Snnl(f). Two solutions, symmetric about the direction between the pair of 
recorders result. This ambiguity may be eliminated by using three wave gages 
instead of two, or in many applications using other information regarding the 
main direction of the directional spectra. The relationship between the para
meter K and the directional width of the spectrum can be seen in Figure 8. 

Using simulation techniques devised by Professor Leon Borgman, Dr. Fan 
(1968), continuing the work of Mobarek, made an extensive study of the effects 
of different lengths of data, lag numbers, wave recorder spacings, filters, and 
different samples on the calculation of directional spectra, using several 
methods, using a known circular normal distribution input. An example of the 
effect of gage spacings, relative to the component wave length, on the estimates 
can be seen in Figure 9. He then used the "best" combination to obtain the 
directional spectra of waves generated in a model basin by wind blowing over the 
water surface. As a result of this study it appears that, for the case of waves 
being generated in a nearly stationary single storm, the directional spectra 
can be approximated by two parameters and should be tested for use in the design 
of an offshore structure. 

The results were sufficiently good to encourage Borgman and Suzuki to 
develop a new method for obtaining useful information on directional spectra by 
measuring the time histories of the x and y components of wave induced force on 
a sphere mounted a few feet above the ocean bottom, together with the wave 
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pressure time history at the spheL~. The results of this work (Suzuki, 1968) 
indicated that a practical method is available to the engineer for measuring 
the approximate directional spectra of ocean waves. 

NON-LINEAR PROBLEMS 

There are several types of non-linearities involved in the problem of wave 
induced forces on offshore structures. One, which is due to the term lui u 
of Eq. 16, is important in the wave spectra approach; a method of overcoming 
the handicap has been described in a previous section. A second enters through 
the term du/dt in Eq. 16, which has been linearized through the use of dU/dt in 
place of du/dt. A third non-linearity enters through the generation of eddies, 
and will be discussed subsequently. 

The most commonly considered non-linearity is associated with non-linear 
~~wave theories. Two of these are the Stokes and the Cnoidal wave theories (see, 

for example, Wiegel, 1964). The first is best used for relatively deep water, 
and the second is best used for relatively shallow water. No attempt will be 
made to describe these theories in detail herein; rather a few equations will 
be given to indicate the general nature of the difference between these theo
ries and the linear theory. 

To the third order, the Stoke~ (Stokes, 1880; Skjelbreia, 1959) wave 
profile is given by 

A cos 2n (~- ~J + A2 cos 4n r~ - ~J + A cos 6n (~- ~J 1 L T lL T 3 L T 

where the coefficients AI' A2 and A3 are related to the wave height by 

H/d F3 (d/L)] 

where 

A = n 2 A 3 • f3 (d/L) 3 1 

with f2 (d/L) and f3 (d/L) being functions of d/L. 

(49) 

(50) 

(51) 

The waves have steeper crests and flatter troughs than linear waves, and 
there is a mass transport of water in the direction of wave advance. The 
equations for water particle velocities and accelerations will not be presented 
herein as extensive tables of functions are needed for their use (or the 
availability of a high speed digital computer). 

When the wave length becomes quite long comapred with the water depth, 
about L/d > 10 (the value depending upon H/d as well), the Cnoidal wave theory 
is perhaps a better approximation than is the theory of Stokes waves. The 
theory was originally derived by Korteweg and de Vries (1895). To the first 
approximation the wave profile is given by S , measured from the ocean bottom 

s 

S 
s 

S + H cn 2 [2 K(k) (x/L - tiT), kJ 
t 

(52) 

where cn is the "cnoidal" Jacobian elliptical function and K(k) is the complete 
elliptic integral of the first kind of modulus k, S is the elevation of the 
wave trough above the bottom, and is given by t 
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S 
t 

H 
~ + 1 
H 

{K(k) [K(k) - E(k)]} (53) 

where E(k) is the complete elliptic integral of the second kind of modulus k. 
The wave length is 

L kK(k) (54) 

and the period is related to the modulus k through 

T0 ! I 16d kK 
~ 3H 

+ f2[2 E (k) J J } I 

+E:. [-1 
I 

~ 1 - 3 
d K(k) 

(55) 

The equation for water particle velocities and acceleration and graphs 
which permit the use of the Cnoidal wave theory have been prepared by Wiegel 
(1964; see Masch and Wiegel, 1961 for tables of functions). 

Professor Robert Dean (1968) has made analytical studies of the wave pro
files predicted by these and other theories, including his "stream function 
wave theory," in order to determine the probable useful ranges of the theories. 
His results are shown in Figures 10 and 11. 

It is necessary to be able to calculate the height of the wave crest above 
the water surface in order to determine the deck height on an offshore plat
form, and the work of Dean cited above is useful for this purpose. It is also 
important to be able to estimate the regions of reliability of the several 
theories in the prediction of water particle velocities and accelerations. 
Dr. Bernard Le Mehaute and his co-workers (Le Mehaute, Divoky and Lin, 1968) 
have made careful laboratory studies of the water particle velocities of "shallow 
water waves" for several values of H, T, and d and compared their measurements 
with predictions made using a number of linear and non-linear wave theories. An 
example of their results is shown in Fig. 12. They concluded, that while no 
theory was found to be exceptionally accurate, the Cnoidal wave theory of 
Keulegan and Patterson appeared to be most adequate for the range of wave param
eters and water depths studied. It appears that much more work of this type is 
needed. 

The water particle velocities and accelerations given by the most valid 
non-linear theory are used in Eq. 16 to calculate the force on a pile. These 
velocities and accelerations are usually calculated for the so-called "design 
wave," which is usually the wave considered by design engineers to be the 
largest wave the structure might encounter during its useful life. 

Another reason for the variability of the data is associated with the wake. 
The formation of eddies in the lee of a circular cylinder in uniform steady flow 
has been studied by a number of persons. It has been found that the relation
ship among the frequency (cycles per second) of the eddies, fe' the diameter of 
the cylinder, D, and the flow velocity, V, is given by the Strouhal number, Ns ' 

f D 
e "'" 
V 

N 
s 

(56) 

where NR is the Reynolds number. Except in the range of laminar flow, the 
Reynolds number effect can be neglected. For flow in the sub-critical range 
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(NR < about 2.0 x 10 5
), NS ~ 0.2. For NR > 2.0 x 10 5

, there appears to be a 
considerable variation of Ns ; in fact, it is most likely that a spectrum of 
eddy frequencies exists (see Wiegel, 1964, p. 268 for a discussion of this). 
The most extensive data on N at very high Reynolds numbers, as well as data 
on CD and the pressure distr~bution around a circular cylinder with its axis 
oriented normal to a steady flow, has been given by Rosko (1961), some of which 
are shown in Figure 13. 

What is the significance of Ns for the type of oscillating flow that exists 
in wave motion? Consider the horizontal component of water particle velocity 
as given by Eq. 4. For deep water, the equation is approximately 

u = (nH/T) cos 2nt/T (57) 

at x - O. Then, using an average of u to represent V; i.e., 

V "" u "'" nH/2T w avg 
(58) 

where Vw is the "average" horizontal component 
to a train of waves of height H and period T. 
time to form it is necessary for 

of water particle velocity due 
For at least one eddy to have 

T > llf ~ 2DT/nH N 
e s 

And, if N ~ O. 2 
s 

H > 10 Din 

(59a) 

(59b) 

Keulegan and Carpenter (1958) studied both experimentally and theoreti-
cally the problem of the forces exerted on bodies in an oscillating flow. The 
oscillations were of the standing wave type in which the wave length was long 
compared with the ,vater depth so that the horizontal component of water particle 
velocity was nearly uniform from top to bottom. Furthermore, the body was 
placed with its center in the node of the standing wave. Th,ey found that CH and 
CD depended upon the number umax TID where u = umax cos 2TIt/r. They observed that 
when umax TID \Vas relatively small, no eddy formed, that a single eddy formed 
when um TID was about 15, and that numerous eddies formed for large values of ax 
the parameter. It is useful to note that this leads to a conclusion similar to 
Eq. 59. For example, if one used the deep water wave equation for u = nH/T, 
then max 

u TID> TIH/u > 15 max 
(60) 

and 

H > l5D/n (61) 

It appears from the work described above that a high Reynolds number oscil
lating flow can exist which is quite different from high Reynolds number recti
linear flow unless the wave heights are much larger than the diameter of the 
circular cylinder. It would appear that the Keulegan-Carpenter number is of 
greater significance in correlating CD and CM with flow conditions than is 
Reynolds number (Wiegel, 1964, p. 259), and that the ratio HID should be held 
constant to correlate model and prototype results, or at least should be the 
appropriate value to indicate the prototype and model flows are in the same 
"eddy regime" (see Paape and Breusers, 1967, for similar results for a cylinder 
oscillating in water). 
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When the Keu1egan-Patterson number is large enough that eddies form, an 
oscillating "lift II force 1;vi11 occur with a frequency twice that of the wave 
frequency. For a vertical pile the "life' force will be in the horizontal plane 
normal to the direction of the drag force. Essentially no information has been 
pub1ishec on the coefficient CL for water wave type of flow. In uniform recti
linear flows it has about the same numerical value as CD' 

Photographs taken of flow starting from rest, in the vicinity of a circular 
cylinder for the simpler case of a non-reversing flow, show that it takes time 
for separation to occur and eddies to form. The effect of time on the flow, and 
hence on CD and CM has been studied by Sarpkaya and Garrison (1963; see also 
Sarpkaya, 1963). A theory was developed which was used as a guide in analyzing 
laboratory data taken of the uniform acceleration of a circular cylinder in one 
direction. Figure 14 shows the relationship they found between CD and ~ was 
found which was dependent upon 2/d, where 2 is the distance traveled by the 
cylinder from its rest position and D is the cylinder diameter. They indicated 
the "steady state" (i. e., for large value of 2/D) values of Cn == 1.2 and 
S-1 = 1. 3. 

The results shown in Figure 14 are different than those found by McNown 
and Keu1egan (1959) for the relationship between Cn and eM in oscillatory flow, 
Figure 15. They measured the horizontal force exerted on a horizontal circular 
cylinder placed in a standing water wave, with the cylinder being parallel to 
the bottom, far from both the free surface and the bottom, and with the axis 
of the cylinder normal to the direction of motion of the water particles. The 
axis of the cylinder was placed at the node of the standing wave so that the 
water particle motion was only horizontal (in the absence of the cylinder). 
Their results are shown in Figure 15. Here, T is the wave period and Te is the 
period of a pair of eddies shedding in steady flow at a velocity characteristic 
of the unsteady flow. In their figure, the characteristic velocity was taken 
as the maximum velocity. They found that if TITe was 0.1 or less, separation 
and eddy formation were relatively unimportant, with the inertial effects 
being approximately those for the classical unseparated flow, and if TITe was 
greater than 10, the motion was quasi-steady. 

WAVE CLI'1ATES 

In preparing feasibility studies, in designing, in constructing and in 
operating coastal and offshore structures and facilities it is necessary to 
have reliable information on surface water waves. These structures and facili
ties include harbors, pipelines on the bottom, offshore oil structures and 
drilling vessels, buoys for use in mooring tankers, dredging for offshore min
eral recovery, 1ightering craft and equipment, and waste disposal systems. 

** It is necessary to have information on the "wave climate" in the area of 
interest for the planning and design phases, and synoptic wave data for the 
construction and operation phases. Traditionally, the wave climate has been 
represented by "wave roses" or tables which have been obtained from visual 
observations, from wave recorders, or from hindcasts from weather maps. It 
would be of much greater benefit to the engineer to have wave data in the form 
of cumulative distribution functions in order to be able to make an economic 
design based upon the numerical probability of occurrence. In addition, it 
would also be better to have wave data in another form for use in planning 
construction and other operations; in the form of continuous observations, meas
urements, or hindcasts so that the statistical properties could be determined of 
the number of consecutive days the waves will be less than, or greater than, 
some safe or economic combination of height, period and direction. 
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As an example, the cumulative significant wave height distribution func
tions for swell and sea were constructed for one location in the Pacific Ocean, 
using information obtained from a wave hindcasting study which was made using 
a three year series of weather maps (Figure 16). The distribution functions 
are not too useful as both swell and seas must have occurred simultaneously on 
a number of days; the data were not reported in a manner that permitted the 
recovery of this information. The few data that are available on the ability 
of several types of floating structures to perform their functions in waves 
are given in Tables 1 and 2. These data are not too useful as the capability 
of a floating structure to work in waves depends upon the wave period, winds, 
currents and the crew as well as upon the wave height. However, in the absence 
of other data, these data must be used. Consider either a seaworthy suction 
hopper dredge, with a flexible suction tube, or a seaworthy tin dredge; an 
average workable wave height might be taken to be about 5 feet. This limitatior. 
on wave height, together with the significant wave height distribution functionE 
given in Figure 16 indicate that these two types of dredges would not be usable 
for 24% of the time owing to swell and 18% of the time owing to seas that were 
too high. If one assumes that half of the time the seas were too high occurred 
simultaneously with swell that were too high, one 1;"ould estimate that the site 
was "unworkable" about one-third of the time. Considering the time necessary 
to get a dredge from the work site to a harbor of refuge and back again the 
site would be "umvorkable" for considerably more than one-third of the time 

Similar data are necessary for the safer and more economic use of the 
oceans for transportation. These data are needed for improved ship design and 
routings, as well as for improved terminal facilities. In this regard, it 
should be emphasized that the design of unique ships or shipping techniques 
interacts with the harbors and offshore facilities of many countries. In a 
UNESCO report ("Marine Science and Technology: Surveys and Proposals," Report 
of the Secretary General, E/4487, 24 April 1968) it was pointed out that in 
1966, alone, 112 ships larger than 1,000 gross tons were lost. 

At the present time there are very few places in the world for which we 
have sufficient, or even barely adequate wave data. This is especially true 
of the little-traveled portions of the open oceans. 

It is recognized that considerable advances have been made, and are con
tinuing to be made, in our understanding of the basic phenomenon of the genera
tion of waves by winds, and in the development and use of computer programs to 
calculate wave fields from meteorological inputs. It would be desirable if the 
programs could be developed in such a way, if this is not already the case, 
that the required wave data could be recalled at a reasonable cost for any geo
graphical location for \vhich the data became necessary. 

Associated with the problems of transforming meteorological data to wave 
data are the phenomena of wave scattering, dispersion, energy dissipation, 
refraction, reflection, and diffraction. It is necessary to make reliable meas
urements of wave characteristics on an ocean-wide basis to obtain the data 
needed by the engineer to perform his job properly, and by the geophysicist to 
test and improve his theories. To be useful to the engineers the measurements 
should be made for a long period of time. Measurements should be made in the 
open ocean and along the coasts. It would be desirable, for use by both the 
engineer and the geophysicist, if directional spectra could be measured. At 
the other extreme it would still be useful to obtain consistent visual observa
tions, especially in areas for which few measurenents have been made (Le., most 
areas). Much valuable data could be obtained from a study of newspapers, tech
nical publications, harbor logs, etc., by investigators in each country. These 
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data would be of greater value if damage resulting from wave and wind action 
could be summarized with the wave data. 

Two international standards should be used for data reduction, one simpli
fied and one rather sophisticated. It would appear that the standards proposed 
by 1. Draper (liThe Analysis and Presentation of Wave Data - A Plea for Uniform
ity," Proceedings of the Tenth Conference on Coastal Engineering, ASCE, pp. I
ll, 1967) should be used. 

19 



Table 1. WAVE HEIGHTS LiMITING OPERATIONS 
OF DREDGES AND BARGES 

(after Santema, 1955) 

Equipment and kind of work 

1. Dredging with 
a. Seaworthy suction hopper dredge, with rigid 

suction tube and cutters 
b. Seaworthy s.uction hopper dredge, with flexible 

suction tube 
c. Suction dredges of the non propelled, low pon

toon type, rigid suction tube 
d. Bucket dredge nonpropelled, low pontoon 

type, hard bottom 
e. Seaworthy tin dredges 

2. Mooring barges alongside a dredge with barge 
discharge, or alongside a barge-unloading dredge 

3. Dumping stones, sand, or clay with dump barge 
with bottom doors (up to 400 tons) 

4. Dumping stones and clay with self-tipping barges 
(up to 600 tons) 

timiting 
wave height 

(feet) 

2-3 

1~3 

1~3 

1!-2l-

5. Transport and sinking fascine mattresses 1-1~ 

6. Pumping stones in layers on fascine mattresses It-2:t 
from barges. 

Santema, P., About the estimation 
of the number of days with favorable 
meteorological and oceanographical 
conditions for engineering operations 
on the sea coast and in estuaries, 
Proc. Fifth Conf. Coastal Eng.~ 
Berkeley, Calif.: The Engineering 
Foundation, Council on Wave Research, 
1955, pp. 405-410. 

Glenn, A. H., Progress report on 
solution of wave, tide, current, 
and hurricane problems in coastal 
operations, Oil Gas ,J.~ 49, 
7 (June 22, 1950), 174-77. 

Table 2. GENERALIZED PERFORMANCE DATA FOR MARINE OPERATIONS 
(after Glenn, 1950) 

Type of operation 

Deep sea tug 
Handling oil and water barge 
Towing oil and water barge 
Handling derrick barge 
Hand'ing and towing LST-type vessel 

Crcw boat" 60-90 ft in length 
L"-nderv,"ay 
Loading or unloading crews at platform 

Supervisor's boats, fast craft, 30-50 ft in length 
Cnderway at cruising speed 
Load;ng or unloading personnel at platform or floating equipment 

LeT-type vessel and cargo luggers 
Cnder\\ay 
Loading or un!oading at platform 
Loauing or un:oading at floating equipment 

Buoy laying (using small derrick barge) 

Platform building 
Using ship-mounted derrick 
Csing large derrick barge 

Pipeline construction 

Gravity-meter exploration using surface vessel (limiting conditions caused 
by instrument becoming noisy) 

Seismograph exploration using craft under 100 ft in length 

Large amphibious aircraft (PBY) 
Sea landings and take-offs 
Boat-lo-plane transfer operations in water 

Wave heights' (feet) for 
---------------- ----------------------
Safe, efficient Marginal Dangerous and/or 

inefficient operation operation operation 

0-2 2-4 >4 
0-4 4-6 >6 
0-2 2-3 >3 
0-3 3-5 >5 

0-8 8-15 >15 
0-3 3-5 >5 

-2 2-4 >4 
!J-2 2-4 >4 

• 0-4 4-5 >5 
0-3 3--4 >4 
0-4 4-5 >5 

0-2 2-3 >3 

0-4 4-6 >6 
0-3 3-5 >5 

0-3 3--4 >4 

0-4 4-6 >6 

0-6 6-8 >8 

0-l.S l.S-3 >3 
0-1 1-2 >2 

Small amphibious aircraft 0-1 1-2 >2 

& Wave heights used are those of the average maximum waves. Height limits given are no. (Igld and will vary to some extent with 
locality, local wind conditions, experience of personnel, etc. 
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