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Abstract
Automatic Speech Recognition (ASR) systems have trans-
formed human-machine interaction, yet they often struggle with
child speech due to the unique vocal characteristics. This the-
sis investigates age and gender biases, focusing on enhanc-
ing the performance of state-of-the-art ASR model Whisper on
child speech. Initial experiments reveal significant disparities
in recognition accuracy across age groups and genders within
child speech, highlighting the critical need for targeted improve-
ments. The study uses Low-Rank Adaptation (LoRA) to fine-
tune the model using four child-specific datasets, aiming to si-
multaneously enhance recognition performance and mitigate bi-
ases. Results demonstrate substantial reductions in Word Error
Rates (WER) and biases after finetuning, showcasing the ef-
fectiveness of transfer learning in addressing demographic in-
equality. Gender biases decreased by 32.77% relative to their
initial values, and age biases also improved, with a relative de-
crease of 27.52% after finetuning. This research showcases the
potential of tailored approaches to advance ASR technology for
low-resource user demographics, with implications for improv-
ing educational and assistive technologies.

Index Terms: Automatic Speech Recognition, Child speech,
Whisper ASR model, Age and gender biases, Low-Rank Adap-
tation, Transfer learning, Demographic disparities

1. Introduction

Speech serves as the primary mode of human communication,
providing an efficient and natural way to interact with both other
humans and machines. With the rise of innovative AI technol-
ogy for speech and language processing also came a large de-
velopment of ASR systems. These systems are capable of trans-
forming spoken language into written text whilst understanding
context and nuances [1]. ASR systems are increasingly preva-
lent in various applications, such as search engines, voice assis-
tants, educational tools, and accessibility services [2].

However, despite the advancements, most research efforts target
ASR systems for healthy adult speakers [2]. This focus has left
a noticeable gap in ASR capabilities when it comes to recognis-
ing child speech, which differs significantly from adult speech
in pitch variability, pronunciation, and articulation speed [3].
These differences contribute to significantly lower performance
compared to adults, with Word Error Rates (WER) being up
to five times worse [4]. This limitation restricts the effective-
ness of educational tools and assistive technologies for children
[5, 6, 7].

Efforts to address these challenges have involved adapting mod-
els developed for adult speech to child speech using tech-
niques such as data augmentation [8, 9] or transfer learning
[10, 11, 12]. Recent experiments have enhanced ASR for
child speech significantly through finetuning on child speech
datasets. For instance, Southwell et al. achieved a relative re-
duction of 38% in WER using OpenAI’s Whisper model on the
MyST dataset [7], and Jain et al. reported absolute reductions
in the range of 7% to 43% with low-resource finetuning tech-
niques on other child datasets [13].

Despite these improvements, significant disparities in ASR
performance persist across different age groups and genders.
While adults and teenagers generally achieve higher accuracy
in speech recognition, children and elderly speakers often expe-

rience notably lower performance levels [14, 15, 16]. Moreover,
cross-linguistic investigations have revealed biases in speech
recognition based on gender. Some studies report better recog-
nition for male speakers [15, 17], while others found biases
favouring female speakers [16, 18, 19], and still other studies
show no gender-based differences [20].

Recognition bias in speech technology can result from sev-
eral factors, including biased transcriptions, dialectal variations,
under-representation of specific speaker groups in training data,
equipment discrepancies, and intra-group variability in pronun-
ciation and language use [21]. In particular, child speech recog-
nition faces unique biases due to factors such as limited anno-
tated datasets, developmental variations among young speakers,
and inadequate diversity in training data [21]. These biases war-
rant the need for further research into methods that can mitigate
age and gender biases within state-of-the-art ASR models like
Whisper [22].

However, research is lacking on age and gender biases specific
to child speech recognition within state-of-the-art ASR mod-
els, and methods to reduce these biases. This research aims to
address the current research gap by initially exploring age and
gender biases inherent in child speech recognition in the state-
of-the-art ASR model Whisper. Subsequently, it seeks to de-
termine whether finetuning, which has shown promising results
in improving recognition performance, can also help mitigate
these biases. By analysing the intertwined aspects of bias and
recognition performance, this study aims to answer the research
question: ”How does finetuning affect recognition perfor-
mance and biases across age and gender within child speech
recognition using the Whisper model?” To achieve these ob-
jectives, the study addresses the following research questions
sequentially:

1. How effectively does the pre-trained Whisper model recog-
nise child speech across different age groups and genders?

2. What age and gender biases exist in the pre-trained Whisper
model’s recognition of child speech?

3. What changes occur in recognition performance after fine-
tuning the Whisper model with child speech data?

4. How do age and gender biases in the Whisper model’s recog-
nition of child speech evolve following finetuning?

The structure of the paper follows a systematic approach to in-
vestigate the enhancement of ASR systems for child speech.
Section 2 introduces the Whisper ASR model and outlines the
high-level methodology focusing on finetuning along with the
performance metrics. Section 3 examines the three datasets
used, detailing their division into test, training, and validation
sets, and preprocessing. In Section 4, the experimental setup
for the research is described, and relevant hyperparameters are
introduced. The results obtained from benchmarking and post-
finetuning evaluations are then presented and discussed in Sec-
tion 5. Section 6 summaries the findings and suggests future
research directions. Additionally, some ethical considerations
and reproducibility are covered in Section 7.

2. Methodology

This research investigates how finetuning affects recognition
performance and biases across age and gender in child speech
recognition using the Whisper model. Subsection 2.1 intro-



duces the selected state-of-the-art ASR model, Whisper, pro-
viding an overview of its architecture and training process. The
evaluation metrics used to assess the Whisper model’s baseline
performance, including Word Error Rate and bias calculations,
are then discussed in Subsection 2.2. Finally, Subsection 2.3
details the chosen finetuning approach, specifically focusing on
the Low-Rank Adaptation (LoRA) method.

2.1. State-of-the-Art ASR: Whisper Model

Whisper is an ASR model introduced by OpenAI in September
2022 [22]. Inspired by recent advancements in computer vi-
sion and natural language processing, it takes an approach that
scales weakly supervised datasets in order to achieve robust and
generalised models rather than relying heavily on traditional su-
pervised training methods.

This approach has enabled Whisper to make significant ad-
vancements in ASR, outperforming established models such
as Kaldi, DeepSpeech, SpeechBrain, and Wav2Vec 2.0. On
the LibriSpeech dataset [23], Whisper achieved a WER of
5.2% [22], compared to DeepSpeech’s 12.69% [24], Kaldi’s
6.2% [25], SpeechBrain’s 5.77% [26], and Wav2Vec2.0’s 3.3%
[27]. On the Common Voice corpus [28], Whisper achieved
a WER of 9.0% [22], while DeepSpeech had 43.82% [29],
Kaldi had 4.44% [25], SpeechBrain had 15.58% [26], and
Wav2Vec 2.0 had 16.1% [30]. Whisper stands out as the best-
performing model overall, particularly considering that Kaldi’s
dataset overlaps with Common Voice.

Whisper uses an encoder-decoder transformer architecture, a
scalable model that performs various tasks. Interestingly, Whis-
per’s training process is multitask: it takes on several as-
pects of speech processing in a single model, such as multilin-
gual speech recognition, spoken language identification, speech
translation, and voice activity detection. The model has been
trained on a diverse dataset comprising 680,000 hours of la-
belled audio data, enabling it to generalise effectively across
various types of speech in a zero-shot transfer setting. This in-
cludes 117,000 hours spanning 96 languages, 125,000 hours of
translation data from various languages to English, and the re-
mainder consists of English speech data.

The Whisper model family comprises variants with different
numbers of parameters: tiny (39M), base (74M), small (244M),
medium (769M), and large (1550M) [22]. Additionally, within
the large variant, there are three versions: large-v1, large-v2,
and large-v3. The large-v2 model, released in December 2022,
shares the same size as the original large-v1 model but under-
went training for 2.5 times more epochs [31]. In November
2023, the large-v3 model was introduced, maintaining the same
architecture as its predecessors but trained on 1 million hours of
weakly labelled audio and 4 million hours of pseudo-labelled
audio from large-v2 over 2.0 epochs. This resulted in a fur-
ther WER reduction ranging from 10-20% compared to large-
v2 [32].

2.2. Evaluation Metrics

The baseline performance of the Whisper model on the datasets
will be evaluated using WER as well as bias. WER, represent-
ing the percentage of words incorrectly predicted, serves as an
accuracy benchmark and is calculated using:

WER =
S + I +D

N
∗ 100%

where S represents the number of substitutions, I represents the
number of insertions, D represents the number of deletions, and
N represents the total number of words.1

For bias evaluation, the paper adopts the approach proposed by
S. Feng et al. [21]. In this context, bias refers to the difference
in WER across various speaker groups within each assessed di-
mension. This bias calculation can be represented by the fol-
lowing formula:

Bias = WERgroup − WERmin

where WERgroup represents the WER of each speaker group in
a dimension, and WERmin represents the lowest WER among
all speaker groups within that dimension. This calculation al-
lows for the assessment of demographic performance disparities
across age and gender groups.2

This initial benchmarking will establish the Whisper model’s
starting accuracy and bias, providing a baseline for measuring
performance improvements through transfer learning.

2.3. Finetuning Approach

This research evaluates and enhances Whisper’s performance
in recognising child speech. First, Whisper’s baseline perfor-
mance is established using WER and bias metrics across de-
mographic groups. Next, the models are finetuned with child-
specific datasets using transfer learning to improve recognition
of child speech. Finally, the finetuned models are re-evaluated
with the same metrics to assess the effectiveness of transfer
learning in reducing biases and enhancing accuracy.

In machine learning, many approaches involve extensive pre-
training on broad-domain data. However, as models grow
larger, fully retraining all parameters becomes increasingly im-
practical and costly. This challenge is particularly significant
for Whisper models, some of which comprise up to 1.55 billion
parameters. A solution to this problem is provided by Low-
Rank Adaptation (LoRA), a method for parameter-efficient
finetuning [33]. By ”freezing pre-trained model weights and
injecting trainable rank decomposition matrices into each layer
of the Transformer architecture” [33, p.1], LoRA drastically
reduces the number of trainable parameters. Utilising the Hug-
ging Face Parameter-Efficient-Finetuning (PEFT) library [34],
LoRA enables efficient adaptation of the Whisper model to the
nuances of child speech, facilitating more computationally and
storage-efficient computations.

3. Datasets

To ensure the robustness and generalisability of the results,
three diverse child speech corpora were selected: an Icelandic

1For instance, if a reference transcription contains 100 words, and
the ASR system includes 5 substitutions, 3 insertions, and 2 deletions,
the WER would be calculated as 5+3+2

100
= 10%

2For instance, if the WER for male speakers is 60% and the WER for
female speakers is 52%, then the male bias would be 60%−52% = 8%
and the female bias would be 52%− 52% = 0%.



speech corpus, a German speech corpus, and a combined Dutch
and Flemish corpus. These are introduced in Subsection 3.1,
Subsection 3.2 and Subsection 3.3 respectively. Initial prepro-
cessing was required for each dataset to prepare the speech cor-
pora in a format suitable for training and finetuning the Whis-
per model. The transcripts were cleaned by removing non-
verbal parts, annotations (e.g., unintelligible parts, overlapping
parts, phonological/lexical errors), punctuation, and converting
all text to lowercase. An overview of the processed corpora are
provided in Subsection 3.4.

3.1. Samromur Children

This Icelandic speech corpus [35], aimed at ASR, contains 131
hours of read speech from children aged 4 to 17. It includes
137,597 utterances from 3,175 speakers: 78,993 from female
speakers, 53,927 from male speakers, and 4,677 from speakers
with unknown gender information. The audio files for speak-
ers with unknown gender information were removed from the
training and test dataset as this would prohibit calculating the
gender biases.

This dataset was pre-split into a train, test and validation set.
However, this corpus was far larger than the other two corpora
and hence to ensure a more equal comparison with the other
datasets the size of the training set was reduced from roughly
127 hours to roughly 10 hours. This new dataset was approx-
imately the same size as the other datasets, whilst maintaining
the original age and gender distributions from the provided test
set. When creating this smaller test set, the aim was to still in-
clude as many different speakers as possible. Thus, files were
manually selected in such a fashion as to guarantee the correct
age and gender distributions but also to maximise the number
of different speakers, i.e., files with a shorter duration were pre-
ferred over those with a longer duration.

3.2. KidsTALC-v1 Corpus

The KidsTALC-v1 corpus [36] features spontaneous speech
from monolingual German children, designed for ASR training
to aid in speech development research and therapeutic applica-
tions. It includes recordings from approximately 300 children,
ranging from kindergarten to elementary school. The elicitation
contexts span free play, storytelling, conversational discourse,
and read texts, aiming to cover a spectrum of spontaneous lan-
guage.

The dataset was pre-split into training, test, and validation sets.
However, the transcriptions for the test split were not published,
for this reason a new split had to be created such that the WER
can be calculated. The new test split was created from the train-
ing set, maintaining the same age and gender distributions as
the validation split.

Moreover, for this corpora, some additional preprocessing was
needed to segment the audio files. All of the recordings were
longer than 30 seconds, which is the maximum input length for
the Whisper model, so they had to be split up into multiple parts.
This segmentation was possible using the provided timestamps.

3.3. JASMIN-CGN

The JASMIN-CGN project [37] collected Dutch speech from
children, non-natives with various mother tongues, and elderly
people. It also included speech from human-machine interac-
tions. From this corpus, only data from groups one and two was
selected, which only include native child and teenager (children
aged 12 and above) speech. As for the Icelandic dataset, all
speakers with unknown age or gender information were dis-
carded.

For the Jasmin set the data was divided into a Dutch and Flemish
portion each of which contained a further split into read-speech
and human-machine interaction speech. However, each portion
had to be further divided into a test, training and validation set.
To create the validation and test splits, the same methodology as
the KidsTALC dataset was applied, ensuring a balanced repre-
sentation of male and female speakers, with 2 male and 2 female
speakers selected per age group for test and validation sets. The
remaining data was used as the training set.

Again this corpora contained audio files that were longer than
30 seconds which had to be segmented, the individual segments
were taken from the GitHub [38].

3.4. Overview Corpora

An overview of the datasets in terms of their size and age and
gender distributions is provided in Table 1. It is noteworthy that
teenage speech, which is defined as children aged 12 or older,
was only used for testing purposes, i.e., to see how training
impacts the performance of the model on speakers from other
age groups. This decision was made based on comparisons of
word error rates across different age groups. Adult speech is
recognised the best, with teenage speech achieving similar re-
sults [21]. In contrast, elderly speech performs worse, and child
speech is recognised the least accurately. It is interesting to note
that Whisper was trained on 13344 hours of German speech, 16
hours of Icelandic speech and 2077 hours of Dutch speech [22].

Table 1: Data Summary of Corpora

Gender AgeSplit Length #M #F 3-5 6-8 9-11 12+
IS Train 10h0m 407 407 8 222 561 0
IS Val 1h50m 312 308 0 92 258 270
IS Test 1h50m 315 310 0 94 261 270
DE Train 7h47m 11 11 16 2 4 0
DE Val 1h50m 4 4 4 2 2 0
DE Test 1h48m 4 4 4 2 2 0
NL Train 4h51m 19 25 0 11 33 0
NL Val 1h18m 6 6 0 4 4 4
NL Test 1h19m 6 6 0 4 4 4
VL Train 2h33m 12 15 0 10 17 0
VL Val 1h23m 6 6 0 4 4 4
VL Test 1h19m 6 6 0 4 4 4

4. Experiments

This section outlines the experimental procedures used to eval-
uate the performance of the Whisper model on child speech
recognition. It begins with an overview of the zero-shot testing
phase, discussed in Subsection 4.1, where baseline performance
is established across the different demographic groups. Subse-



quently, in Subsection 4.2, the finetuning process is explored,
where the Whisper model is adapted using transfer learning on
child-specific datasets. This section includes details on param-
eter settings and training methodologies. Finally, in Subsec-
tion 4.3, the evaluation phase is discussed, where the metrics of
the finetuned model across various age and gender groups are
reassessed to quantify improvements.

4.1. Zero-shot Testing

Zero-shot testing, as employed in this experiment, evaluates
the performance of the Whisper models on datasets without
prior finetuning for child speech recognition. This approach
assesses the models’ ability to generalise to new languages and
age groups without specific adaptation, providing insights into
their baseline capabilities and informing subsequent finetuning
strategies.

For the initial benchmarking of each dataset (Icelandic, Ger-
man, Dutch, and Flemish), the WERs were calculated by run-
ning Whisper on the test sets. To establish a solid baseline, this
was conducted for the following Whisper models: tiny, base,
small, medium, large v1, large v2, and large v3. The WER was
not only calculated for the corpus as a whole but for individual
demographic groups (where applicable for the corresponding
dataset): Female (ages 3-5), Female (ages 6-8), Female (ages
9-11), Female (ages 12+), Male (ages 3-5), Male (ages 6-8),
Male (ages 9-11), and Male (ages 12+). Then based on the cal-
culated WERs per demographic the gender biases (male vs fe-
male) and the age biases (children aged 3-5 vs children aged
6-8 vs children aged 9-11 vs children aged 12+) were calcu-
lated. The corresponding benchmarking results can be found in
Subsection 5.1.

4.2. Finetuning

After having established the baselines, the next step was then to
finetune the models using transfer learning on the child-specific
datasets. This process involves using pre-existing knowledge
from the Whisper model and adapting it to better accommo-
date the unique acoustic and linguistic characteristics present in
child speech.

This process was conducted for each of the four datasets in-
dividually for the corresponding best-performing model from
the zero-shot testing. As previously stated, in Subsection 2.3,
the low-rank adaptation approach will be taken here. For this
method the following parameters were used: r= 32, lora alpha
= 64, lora dropout=0.05 and, bias=“none”. Regarding the train-
ing phase, the parameters utilised were as follows: batch size of
32 per device, 1 gradient accumulation step, a learning rate of
10−4, 50 warm-up steps, and 10 training epochs with evaluation
performed at each epoch. These parameter settings were taken
from a paper that also employed LoRA for finetuning Whisper
for child speech [39]. Moreover, the temperature parameter was
set to 0.0 in Whisper’s generation process to have a determin-
istic generation i.e. only the most probable token is chosen at
each step [40].

To prevent overtraining, the training process employed a tech-
nique known as early stopping [41]. This approach involved
monitoring the validation error after each epoch. The model un-
derwent training for 10 epochs, with the process halted as soon
as the validation error surpassed that of the previous epoch.

4.3. Evaluation

Following the finetuning process, the recognition accuracy of
the Whisper model was again assessed across various ages and
genders. This evaluation aimed to quantify the improvements
achieved after adapting the model to child-specific datasets. By
analysing recognition accuracy across different demographic
groups, including age and gender, the effectiveness of the fine-
tuning process in mitigating biases and improving overall per-
formance can be assessed. The corresponding results can be
found in Subsection 5.2.

5. Results & Discussion

In this chapter, the results, i.e. the WERs and biases, are pre-
sented. In Subsection 5.1 the initial baseline results after zero-
shot testing are presented and discussed. In Subsection 5.2 the
results after the finetuning process are presented and compared
to the initial results.

5.1. Pre-Finetuning Results

In this subsection, the outcomes of zero-shot testing are dis-
cussed. In Subsubsection 5.1.1, the best-performing model
based on WER and bias is identified. Subsubsection 5.1.2
compares WER across languages and evaluates the influence
of training data volume. Subsubsection 5.1.3 analyses age and
gender biases observed in the initial zero-shot results.

5.1.1. Model Selection

Table 2 provides an overview of the zero-shot results for the dif-
ferent model sizes for each language. The best results for each
language are highlighted, with the large model size demonstrat-
ing the lowest WER for Icelandic (54.91%), Dutch (24.44%),
and the overall average (40.44%). For German and Flemish,
the large-v3 model boasts the best performance with a WER of
54.11% and 27.60% respectively. These findings highlight the
importance of model size in mitigating WER across diverse lin-
guistic contexts. Moreover, when comparing these results to the
WERs achieved by Whisper on adult speech Librispeech (see
Subsection 2.1), it becomes obvious that these results are in a
different order of magnitude, showing that Whisper recognises
child speech far worse.3

Table 2: Average WER for Different Model Sizes (%)

Model
Size IS DE NL VL Overall

Average
Tiny 129.52 98.72 81.51 81.49 97.81
Base 115.05 105.38 72.27 79.74 93.11
Small 96.97 78.24 47.50 53.28 69.00

Medium 80.14 63.28 35.34 39.30 54.51
Large-v1 54.91 54.77 24.44 27.62 40.44
Large-v2 63.90 77.94 32.81 35.99 52.66
Large-v3 54.97 54.11 25.63 27.60 40.58

Based on the WERs the age and gender biases were then com-
puted as explained in Subsection 2.2. In Table 3 the averaged

3Although it should be noted that Whisper was trained significantly
more on English speech.



age and gender biases are presented across different model sizes
for each language. The best results for each language are em-
phasised, with the large-v3 model showing the lowest average
bias German (12.30%), Dutch (6.29%), Flemish (7.10%), and
the overall average (7.84%). The large-v2 model achieved the
lowest bias for the Icelandic dataset (5.38%).

Table 3: Average Bias for Different Model Sizes (%)

Model
Size IS DE NL VL Overall

Average
Tiny 3.42 25.15 6.18 8.61 10.84
Base 1.58 33.70 8.60 10.96 13.71
Small 4.95 24.63 8.51 12.26 12.59

Medium 7.47 19.38 7.43 10.32 11.15
Large-v1 5.68 12.84 6.52 7.13 8.04
Large-v2 5.38 19.86 7.32 11.06 10.91
Large-v3 5.68 12.53 6.29 7.10 7.84

There is a notable performance disparity among Whisper mod-
els, specifically between large-v2 and both large-v1 and large-
v3. Large-v3 benefits from additional training data and archi-
tectural improvements, leveraging one million hours of weakly
labelled audio and 4 million hours of pseudo-labelled data de-
rived from large-v2, which enhances its performance [32]. The
extended training of large-v2 for an additional 2.5 epochs may
lead to over-fitting on healthy adult speech, reducing its effec-
tiveness on child speech. Moreover, manual inspection of tran-
scripts revealed that the model transcriptions contained fabri-
cated phrases or sentences not present in the original audio,
a phenomenon known as hallucinations [42]. The large-v2
model exhibited a significantly higher incidence of hallucina-
tions compared to the large-v1 and large-v3 models. For in-
stance, in one German transcription, the model generated the
phrase ”Ich bin sehr sehr sehr...” repeated 133 times, signifi-
cantly increasing the WER due to these inaccuracies.

Based on these observations and the results presented in Tables
2 and 3, the large-v3 model was selected for finetuning, as it
achieved the best results for bias mitigation and was a close
second in recognition performance. This model is also arguably
the most state-of-the-art, being the most recently released and
trained on the most extensive dataset among the Whisper mod-
els. For the remainder of this report, all presented results are for
the large-v3 model.

5.1.2. WER Results

There is a substantial disparity between the volumes in lan-
guages included in the training data for Whisper’s large-v3
model. Out of the wide variety of languages the model was
trained on it contains 13,344 hours of German speech, 16 hours
of Icelandic speech, and 2,077 hours of Dutch speech [22].
Based on this it was hypothesised that the model would exhibit
the best performance on the German corpus, followed by the
Dutch and Flemish corpora, and the poorest performance on the
Icelandic corpus. The model’s actual performance, measured in
WER is depicted in Figure 1.

Figure 1: WER by Language

The Icelandic corpus yielded the highest WER at 54.97%,
which aligns with expectations due to the minimal training data
(only 16 hours). This limited exposure to Icelandic speech is
insufficient for the model to generalise well, leading to poorer
performance. These results are notably worse than those re-
ported by C. Mena et al. [35], ranging between 24.47% and
43.71%. It should be noted, however, that this paper used the
Kaldi model alongside a language model and a lexicon.

Contrary to the initial hypothesis, the German corpus did not
perform the best despite having the largest amount of training
data. The WER for German was 54.11%, only marginally better
than Icelandic. Several factors contributed to this unexpected
outcome:

• Spontaneous Speech: The German test set exclusively com-
prised spontaneous speech, which is inherently more variable
and complex than read speech. Spontaneous speech includes
more disfluencies, colloquialisms, and varying speech pat-
terns, challenging the model that is predominantly trained on
read speech. In contrast, the Icelandic dataset contained only
read speech, and the Dutch and Flemish datasets included a
mix of read and spontaneous speech.

• Child Speech: The German test set uniquely included speech
from children aged 3-5, which is more challenging for recog-
nition models due to early developmental speech patterns.
Other test sets only included children aged 6-12, whose
speech is less variable.

• Over-Training: There are indications of over-training on
the German data. This is evidenced by peculiar model
behaviours, such as consistently misinterpreting the sound
“oh” as “Untertitlung des ZDFs, 2020,” reflecting an over-
specialisation to the training data, particularly subtitles from
the German public television broadcaster ZDF.4 This over-
specialisation limits the model’s ability to generalise beyond
the specific patterns present in the training dataset.

When comparing the results to those of T.B. Patel et al. [43],
the large-v3 model outperforms the results obtained using the
ESPnet toolkit. Even after applying Speed Perturbation (SP)
and Spectral Augmentation (SpecAug), the ESPnet model only
achieved a WER of 67.20%.

The large-v3 model performed comparably well on Dutch and
Flemish corpora, with WERs of 25.63% and 27.60%, respec-
tively. Flemish, being a dialect of Dutch, shares significant lin-
guistic similarities with Dutch, leading to the model’s similar
performance on these two corpora. This finding corroborates
with a previous study by Feng et al. [16], which also reported
similar WERs for Dutch and Flemish, with Flemish also per-
forming slightly worse.

4This misinterpretation occurred 25 times for the large-v3 model



5.1.3. Bias Results

The WER rates were not only calculated for a language as a
whole, they were also calculated for each specific age & gender
demographic, these results are presented in Appendix A. Based
on these WERs the age and gender biases were then calculated.
These are presented in Tables 4 and 5.

Table 4: Bias by Gender [%]

Gender IS DE NL VL
Female 0.00 6.27 6.52 0.00
Male 3.75 0.00 0.00 10.30

Based on the results presented in Table 4, it is evident that Whis-
per does not exhibit a consistent bias towards a single gender
across different languages. The Icelandic and Flemish datasets
show a preference towards female speakers, while the German
and Dutch datasets tend to favour male speakers. The Icelandic
dataset has a gender bias of 3.75%, however, this difference was
deemed not significant enough to conclude the presence of a
gender bias that would substantially impact the everyday usabil-
ity of these tools. On the other hand, the German, Dutch, and
Flemish datasets exhibit slightly more pronounced biases, with
biases of 6.27%, 6.52%, and 10.30%, respectively. These vari-
ations suggest that the model’s performance may be influenced
by specific demographic and linguistic characteristics inherent
to each dataset.

Table 5: Bias by Age [%]

Age IS DE NL VL
3-5 N/A 29.18 N/A N/A
6-8 14.66 30.06 15.41 19.55
9-11 9.98 0.00 9.54 0.00
12+ 0.00 N/A 0.00 5.64

In Table 5 the age biases are presented.5 The general trend
shows that the younger age groups (3-5 and 6-8) tend to exhibit
the highest biases across all languages. The middle age groups
(9-11) showed either less bias than the younger age group or no
bias. The oldest age group (12+) showed the least bias across all
languages. Notably the age biases are much more pronounced
than the gender biases, with the German dataset showing the
most pronounced biases. The Icelandic dataset is least biased
which may be down to the fact that it contains by far the most
speakers (625 vs about 8-12 in the other data sets) and hence
has the most variability.

5.2. Post-Finetuning Results

In this subsection, the outcomes after applying the LoRA adap-
tion approach that was outlined in Subsection 4.2 are discussed.
In Subsubsection 5.2.1, the WER results post-finetuning are
presented and compared with pre-finetuning results. Subsub-
section 5.2.2 analyses the changes in age and gender biases fol-
lowing the finetuning process. For conciseness, the results in
this section are grouped solely by demographic, as it aligns with
the primary focus of this research. Detailed results grouped by
language are provided in Appendix A.

5Note that N/A indicates that this age group does not exist in the
dataset, and a bias of 0.00% indicates the lowest WER achieved within
this dimension (see Subsection 2.2).

5.2.1. WER Results

The WER results after finetuning show a significant improve-
ment across all demographic groups, indicating the effective-
ness of the finetuning process. The relative percentage differ-
ences in WER by demographic group are summarised in Table 6
and the pre- and post-finetuning WERs are also visually repre-
sented in Figure 2 to give an indication of the absolute values of
the achieved WERs.

Table 6: Relative Percentage Difference in WER by Demo-
graphic Group

Demographic Group Change in WER
Female -19.23%
Male -13.23%

Ages 3-5 -16.16%
Ages 6-8 -19.11%

Ages 9-11 -13.58%
Ages 12+ -8.44%

AVG -14.96%

From Table 6, several interesting observations can be made.
On average, WER improved by nearly 15% across all demo-
graphic groups, indicating that the finetuning process was not
only successful but also generalised well without over-fitting.
The largest improvement in WER is observed for the ‘Female’
and ‘Ages 6-8‘ demographic groups, both with a reduction of
approximately 19%. The ‘Ages 12+’ group shows the least im-
provement, with a reduction of only 8.44%. However, this was
to be expected as the training set only contained child speech
in the age range of 3-11. The main aim of this research was to
finetune ASR systems for ‘child’ speech, and children aged 12
and older were only included in the test set to evaluate how well
the post-finetuning model generalises to teenagers.

Figure 2: Comparison of WER Before and After Finetuning
Across Demographic Groups

However, as illustrated in Figure 2, the absolute values of WER
remain high, especially when compared to the WERs achieved
by Whisper on healthy adult speech. This suggests that further
research and refinement in this field are necessary to achieve
more competitive WERs for child speech.



5.2.2. Bias Results

The bias results following finetuning indicate varied changes
across demographic groups. The relative percentage differences
in bias by demographic group are summarised in Table 7, with
visual representations provided in Figure 3.

Table 7: Relative Percentage Difference in Bias by Demo-
graphic Group

Demographic Group Change in Bias
Female -71.38%
Male +5.84%

Ages 3-5 -60.80%
Ages 6-8 -42.56%
Ages 9-11 -75.51%
Ages 12+ +68.79%

AVG -29.27%

From Table 7, it is evident that the average bias reduction across
all demographic groups is approximately 29.27%, indicating a
generally positive outcome. Notably, excluding the age group
‘12+’ — where an increase in bias was expected due to the
deliberate exclusion of any recordings from this demographic
— the results show significant bias reductions across other age
groups. This suggests effective finetuning for younger age
ranges. The most substantial reduction in bias is observed in
the ‘Ages 9-11’ group, with a decrease of 75.51%, and among
females, with a decrease of 71.38%. On average, gender biases
decreased by 32.77%, while age biases also improved signifi-
cantly, showing an average decrease of 27.52%. These findings
highlight that training on a balanced dataset led to more equi-
table recognition outcomes.

Figure 3: Comparison of Bias Before and After Finetuning
Across Demographic Groups

From Figure 3, one small anomaly becomes evident: the bias
increased very slightly for the male group by 2.84%. Further
inspection revealed that this increase was due to a bias flip in
the German dataset. Before finetuning, the performance was
better for males, whereas after finetuning, it shifted to be better
for females. However, since overall bias decreased, the perfor-
mance now shows more similarity between genders compared
to before finetuning.

6. Conclusions and Future Work

Finally in this section some concluding remarks are made in
Subsection 6.1 and some ideas for future research areas in the
field of Child ASR are proposed in Subsection 6.2.

6.1. Conclusion

This study evaluated the performance of the Whisper ASR
model on child speech across multiple languages and demo-
graphic groups, focusing on improving WERs and mitigating
biases. In the course of this paper the following questions were
addressed:

How effectively does the pre-trained Whisper model recognise
child speech across different age groups and genders?

The initial zero-shot testing highlighted significant challenges
in Whisper model accuracy across different sizes. Specifi-
cally, the large-v3 model emerged as the most effective baseline,
achieving the lowest average WER of 40.58% across Icelandic,
German, Dutch, and Flemish datasets. However, disparities
persisted, particularly in recognising spontaneous child speech
and addressing age biases, notably in younger age groups (3-5
years).

What age and gender biases exist in the pre-trained Whisper
model’s recognition of child speech?

Analysis revealed notable biases in the pre-trained Whisper
model. Gender biases varied across datasets, with the Ger-
man and Dutch datasets favouring female speakers and the Ice-
landic and Flemish datasets favouring male speakers. The av-
erage gender bias was 3.36%. The age biases were far more
pronounced pronounced with the average bias being 13.97%.
These biases are especially pronounced in the younger age
groups, with children aged 3-5 having a bias of 29.18%

What changes occur in recognition performance after finetun-
ing the Whisper model with child speech data?

After applying Low-Rank Adaptation (LoRA) finetuning, sub-
stantial improvements were observed in recognition perfor-
mance. The large-v3 model demonstrated enhanced adaptabil-
ity to spontaneous speech, resulting in an average relative reduc-
tion in WER of 15.23% across all datasets. The most impressive
results were achieved for the Dutch dataset for which a relative
reduction in of 33.39% was achieved, with the post-finetuning
WER dropping to 17.69%. Whilst the WERs achieved a still
not comparable to those achieved by Whisper on healthy adult
speech, the initial results achieved through finetuning with
child-specific data are promising.

How do age and gender biases in the Whisper model’s recogni-
tion of child speech evolve following finetuning?

Finetuning also led to reductions in age and gender biases
within the Whisper model. Gender biases decreased by 32.77%
on average across datasets, indicating a more balanced recog-
nition of male and female speakers. Age biases also showed
improvements, where biases decreased by 27.52% after finetun-
ing. Especially impressive were the reductions in age bias for
the youngest age group, where the relative reduction in WER
was 60.80%.

These findings have important implications for advancing ASR
technology in child-centric applications such as educational



tools and assistive technologies. By improving recognition ac-
curacy and reducing biases, ASR systems like Whisper can bet-
ter support children’s learning and communication needs. This
study employs a direct bias mitigation strategy through finetun-
ing on balanced datasets, emphasising the critical role of di-
verse dataset composition in mitigating bias in speech recogni-
tion technology. These insights aim to promote more inclusive
practices in future dataset curation and model development, en-
suring ASR systems effectively serve diverse user demograph-
ics.

6.2. Future Work

The future work in Automatic Speech Recognition (ASR) for
child speech entails several key areas of focus, these have been
broken down into two parts: recommendations for the current
research and additional research directions.

Based on the current research it becomes obvious that there is a
need to focus on expanding dataset diversity by creating public
speech corpora that feature varied child speech data across dif-
ferent languages, dialects, and age groups to ensure balanced
representation. This specific project selected four Germanic
languages, it would be interesting to see if the same trends hold
true for non-Germanic languages. It would also be interesting
to make more extensive use of the Jasmin dataset: one could in-
vestigate differences in the performance for HMI vs read speech
or investigate the bias in native vs non-native speakers and the
bias between regional accents. Moreover, experimenting with
different hyperparameters and finetuning techniques would help
further improve ASR model adaptation for child speech. On
this topic one could also examine the difference in performance
between LoRA and other finetuning methods from the PEFT li-
brary such as Low-Rank Hadamard Product (LoHa), Low-Rank
Kronecker Product (LoKr), and Adaptive Low-Rank Adapta-
tion (AdaLoRA). Additionally, there is a need to develop a more
robust method that allows us to assess model biases considering
both age and gender. Another key issue that arose was halluci-
nations and these need to be addressed, which requires refining
training data and validation mechanisms. Lastly, one could in-
vestigate whether using other state-of-the-art ASR models such
as Kaldi or Wav2Vec or other versions of Whisper such as distil-
Whisper or faster-Whisper leads to better results.

There also some additional research directions that one could
pursue such as investigating and addressing other biases re-
lated to dialects, regional accents, non-native accents, ethnicity,
race, socioeconomic status, speech rate, and culture. In addi-
tion, it would be interesting to perform an intersectional WER
analysis which would allow us to identify compounding biases.
Moreover, one could explore some advanced bias mitigation
techniques, such as adversarial training or data augmentation
with synthetic data representing under-represented groups. One
could also conduct a longitudinal study that analyses children’s
speech development over time and then use these insights to
create an ASR model that adapts to evolving speech patterns.

7. Responsible Research

When conducting scientific research, researchers inherently as-
sume a significant level of responsibility, necessitating honesty,
thoroughness, transparency, independence, and accountability.
In order to ensure the ethical and reproducible nature of the re-

search conducted for this Bachelor thesis, the TU Delft Code of
Conduct [44] was adhered to. In this section of the report, some
ethical considerations are addressed in Subsection 7.1, the re-
producability of results is scrutinised in Subsection 7.2, and an
overview of the usage of generative AI in this research is pro-
vided in Subsection 7.3.

7.1. Ethical Considerations

When undertaking research involving ASR technology, espe-
cially with child speech, there are several ethical considerations
that must be addressed to ensure the research is conducted re-
sponsibly.

While data collection did not fall within the scope of this spe-
cific project, it was still ensured that the selected datasets were
obtained through ethical means. Notably, attention was paid
that stringent efforts were made to secure consent, which is es-
pecially crucial for individuals under the age of 18, in adher-
ence to General Data Protection Regulation (GDPR) guidelines
[45]. For instance, in situations where parental consent forms
were misplaced, as in the case of some speakers from the JAS-
MIN dataset, data pertaining to these individuals was consci-
entiously discarded6. Moreover, the presence of trained speech
language therapists or speech language therapy students dur-
ing the KidsTALC and Jasmin study ensured the ethical con-
duct of the studies involving child participants. Furthermore
for all datasets any personally identifiable information within
the speech corpora had been replaced with alphanumeric iden-
tifiers.

After discussion with the EEMCS Data Stewards the decision
was made to only execute and store data and code on the secure
DelftBlue servers. By opting for internal university servers over
alternative platforms such as Kaggle or Google Cloud this not
only guaranteed the protection of sensitive child speech data
but also ensured that the speech corpora, some of which are not
publicly available, were not leaked.

Beyond the scope of this project, it is important to contemplate
the long-term implications of ASR technology development for
children. While the primary aim of this project was to pro-
mote inclusivity, it is crucial to continuously evaluate the per-
formance of ASR systems. Vigilance is essential to prevent the
inadvertent perpetuation of biases, especially concerning those
with atypical speech patterns.

7.2. Reproducibility of Methods

To ensure that the conducted research is reproducible great at-
tention was paid to give a very detailed methodology descrip-
tion. In an attempt to allow others to understand and replicate
this methodology the data preprocessing, model adaptation, and
evaluation procedures were documented in detail, with refer-
ence to specific hyperparameters were appropriate. Through-
out the project, the research made use of open-source software
and frameworks such as the Whisper model and PyTorch for
machine learning tasks, so other researchers can use the same
tools to reproduce or build upon the work. Moreover, attention

6In the case of certain speakers from the JASMIN dataset, their data
was deemed unsuitable for inclusion due to the loss of consent forms
by a teacher, under ”mysterious” circumstances, despite purported pro-
vision by parents. As a result, their data was responsibly discarded.



was paid to using standardised metrics such as Word Error Rate
when evaluating the performance such that other researchers
can compare results directly. The code used for data process-
ing, training and evaluation of models has been compiled into a
GitLab repository.7

7.3. Usage of Generative AI Models

During the writing of the Bachelor thesis, three generative AI
tools were utilised: ChatGPT, QuillBot, and GitHub Copilot.
ChatGPT served primarily for proofreading sections of the re-
port and offering feedback. It also facilitated the conversion
of Excel tables to LaTeX format, although this often required
significant input to ensure proper formatting. Prompts such as
“Please give feedback on my abstract” were provided alongside
the abstract, referencing grading rubrics from FeedbackFruits.
Quillbot was employed to correct spelling and grammar errors
throughout the report, and ensuring a suitable tone.

For coding tasks, GitHub Copilot was extensively used, espe-
cially during dataset preprocessing. The approach involved ini-
tially mapping out the program flow and breaking it down into
separate parts. After documenting these different parts and pro-
viding these instructions to Copilot through comments the “gen-
erate” prompt was used which often performed astonishingly
well and certainly increased the efficiency of writing code.

7GitLab Repository: https://gitlab.ewi.tudelft.nl/
cse3000/2023-2024-q4/Zhang_Yue/fzeisler-Exploring-
state-of-the-art-speech-recognisers-for
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A. Appendix - Raw Data

A.1. Early Stopping

Table 8 illustrates the behaviours of validation losses over ten epochs for each language. Values in bold indicate the epoch at which the
training was halted, as validation loss increased beyond these points.

Table 8: Validation Losses across Different Epochs

Epoch IS DE VL NL
1 0.094 0.056 0.047 0.018
2 0.075 0.051 0.123 0.016
3 0.070 0.050 0.024 0.016
4 0.066 0.049 0.023 0.015
5 0.064 0.050 0.024 0.016
6 0.063 0.051 0.024 0.016
7 0.062 0.051 0.024 0.016
8 0.063 0.052 0.024 0.017
9 0.062 0.053 0.024 0.017

10 0.063 0.053 0.025 0.017

A.2. Complete Pre-finetuning Results

This section presents an analysis of zero-shot WERs and bias across different architectures and speaker groups for the four datasets: IS,
DE, and NL. The tables detail WER values for each of the seven Whisper models ranging from tiny to large-v3, evaluating performance
for both female and male speakers, and across various age groups. Additionally, the bias per group is quantified to assess disparities in
model performance.

Table 9: IS - Zero-shot WER Values across Different Architectures and Speaker Groups (%)

IS - WER Tiny Base Small Medium Large Large-v2 Large-v3
Female (3-5) N/A N/A N/A N/A N/A N/A N/A
Female (6-8) 125.15 112.87 89.25 78.98 59.79 66.67 60.05

Female (9-11) 136.12 116.71 103.28 79.95 53.76 63.01 53.76
Female (12+) 125.43 113.22 92.07 69.49 46.34 56.44 45.97

Male (3-5) N/A N/A N/A N/A N/A N/A N/A
Male (6-8) 138.61 120.66 107.72 94.05 62.39 73.77 62.75

Male (9-11) 129.50 114.55 102.41 87.30 59.43 67.66 59.55
Male (12+) 122.32 112.31 87.11 71.06 47.74 55.82 47.72

Table 10: IS - Zero-shot WER per group (%)

IS - WER per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 128.53 114.17 94.76 74.70 50.53 60.66 51.41
Male 128.58 115.06 97.02 81.80 55.04 63.97 55.16

Ages 6-8 132.28 117.00 99.04 86.96 61.17 70.44 61.48
Ages 9-11 132.64 115.58 102.82 83.81 56.74 65.45 56.80
Ages 12+ 123.93 112.78 89.68 70.25 47.02 56.14 46.82

AVG 129.19 114.92 96.66 79.50 54.10 63.33 54.33



Table 11: IS - Bias per group (%)

IS - Bias per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Male 0.05 0.89 2.26 7.10 4.51 3.31 3.75

Ages 6-8 8.35 4.22 9.36 16.71 14.15 14.30 14.66
Ages 9-11 8.71 2.80 13.14 13.56 9.72 9.31 9.98
Ages 12+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AVG 3.42 1.58 4.95 7.47 5.68 5.38 5.68

Table 12: DE - Zero-shot WER Values across Different Architectures and Speaker Groups (%)

DE - WER Tiny Base Small Medium Large Large-v2 Large-v3
Female (3-5) 116.12 123.17 95.76 75.18 67.82 98.60 67.33
Female (6-8) 133.92 152.77 91.29 77.99 66.18 97.75 65.49

Female (9-11) 70.73 59.57 41.99 30.64 37.59 47.78 36.43
Female (12+) N/A N/A N/A N/A N/A N/A N/A

Male (3-5) 108.72 124.60 90.49 80.90 59.07 90.50 57.50
Male (6-8) 112.83 130.02 117.17 80.79 64.86 80.19 64.82

Male (9-11) 50.00 42.16 32.72 34.19 33.09 52.82 33.09
Male (12+) N/A N/A N/A N/A N/A N/A N/A

Table 13: DE - Zero-shot WER per group (%)

DE - WER per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 118.43 127.86 90.21 72.39 64.75 94.51 64.47
Male 105.55 120.12 95.96 76.91 59.07 83.75 58.20

Ages 3-5 113.70 123.62 94.04 77.15 64.81 96.06 64.37
Ages 6-8 126.11 144.38 100.91 79.00 65.70 91.50 65.25
Ages 9-11 63.47 53.61 38.77 31.89 36.00 49.52 35.19

AVG 105.45 113.92 83.98 67.47 58.07 83.07 57.50

Table 14: DE - Bias per group (%)

DE - Bias per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 12.88 7.74 0.00 0.00 5.68 10.76 6.27
Male 0.00 0.00 5.75 4.52 0.00 0.00 0.00

Ages 3-5 50.23 70.01 55.27 45.26 28.81 46.54 29.18
Ages 6-8 62.64 90.77 62.14 47.11 29.70 41.98 30.06

Ages 9-11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AVG 25.15 33.70 24.63 19.38 12.84 19.86 13.10

Table 15: NL - Zero-shot WER Values across Different Architectures and Speaker Groups (%)

NL - WER Tiny Base Small Medium Large Large-v2 Large-v3
Female (3-5) N/A N/A N/A N/A N/A N/A N/A
Female (6-8) 83.84 87.56 60.54 49.34 35.13 42.48 34.16
Female (9-11) 90.83 77.21 50.11 38.08 33.91 38.80 33.91
Female (12+) 78.54 65.85 39.73 29.00 19.72 26.78 20.11

Male (3-5) N/A N/A N/A N/A N/A N/A N/A
Male (6-8) 90.25 83.41 57.86 44.63 21.07 42.00 32.59

Male (9-11) 78.01 63.61 46.93 29.74 21.07 28.25 21.25
Male (12+) 67.60 55.95 29.81 21.25 15.74 18.52 15.74



Table 16: NL - Zero-shot WER per group (%)

NL - WER per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 85.19 77.62 50.81 39.41 30.50 36.80 30.28
Male 79.57 68.50 46.31 32.72 23.80 30.51 23.76

Ages 6-8 87.16 85.42 59.16 46.90 33.98 42.23 33.35
Ages 9-11 84.32 70.30 48.49 33.85 27.39 33.44 27.48
Ages 12+ 73.09 60.92 34.79 25.14 17.74 22.67 17.94

AVG 81.87 72.55 47.91 35.60 26.68 33.13 26.56

Table 17: NL - Bias per group (%)

NL - Bias per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 5.62 9.12 4.50 6.69 6.70 6.29 6.52
Male 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ages 6-8 14.07 24.50 24.37 21.76 16.24 19.56 15.41
Ages 9-11 11.23 9.38 13.70 8.71 9.65 10.77 9.54
Ages 12+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AVG 6.18 8.60 8.51 7.43 6.52 7.32 6.29

Table 18: VL - Zero-shot WER Values across Different Architectures and Speaker Groups (%)

VL - WER Tiny Base Small Medium Large Large-v2 Large-v3
Female (3-5) N/A N/A N/A N/A N/A N/A N/A
Female (6-8) 81.43 109.63 64.01 48.50 32.45 32.49 32.45

Female (9-11) 68.31 57.70 35.20 24.41 17.67 22.68 17.67
Female (12+) 75.56 64.13 40.41 26.27 17.18 25.87 17.18

Male (3-5) N/A N/A N/A N/A N/A N/A N/A
Male (6-8) 94.05 102.69 78.34 66.99 45.14 69.22 45.12

Male (9-11) 74.34 67.73 39.38 27.95 20.74 25.05 20.74
Male (12+) 95.23 76.55 62.34 41.67 32.56 40.63 32.42

Table 19: VL - Zero-shot WER per group (%)

VL - WER per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 75.44 77.73 46.92 33.28 22.51 29.23 22.51
Male 88.19 82.21 60.21 45.50 32.87 44.93 32.81

Ages 6-8 87.83 106.11 71.28 57.88 38.89 54.08 38.88
Ages 9-11 71.57 63.13 37.46 26.32 19.33 23.96 19.33
Ages 12+ 85.62 70.48 51.63 34.15 25.05 33.42 24.97

AVG 81.73 79.93 53.50 39.43 27.73 37.12 27.70

Table 20: VL - Bias per group (%)

VL - Bias per group Tiny Base Small Medium Large Large-v2 Large-v3
Female 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Male 12.75 4.48 13.29 12.22 10.36 15.70 10.30

Ages 6-8 16.26 42.98 33.82 31.56 19.56 30.12 19.55
Ages 9-11 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ages 12+ 14.05 7.35 14.17 7.83 5.72 9.46 5.64

AVG 8.61 10.96 12.26 10.32 7.13 11.06 7.10



A.3. Overview large-v3 Pre-finetuning Results

This section provides a more in-depth overview of the pre-finetuning performance of the Large-v3 model, which was chosen for
finetuning. It presents the WERs and associated biases, segmented by gender and age across the four datasets (IS, DE, NL, and VL).
Additionally, the results for the WERs are displayed graphically in Figure 4.

Table 21: WER and Bias for Large-v3 by Gender [%]

IS DE NL VLGender WER Bias WER Bias WER Bias WER Bias
Female 51.41 0.00 64.47 6.27 30.28 6.52 22.51 0.00
Male 55.16 3.75 58.20 0.00 23.76 0.00 32.81 10.30

Table 22: WER and Bias for Large-v3 by Age [%]

IS DE NL VLAge WER Bias WER Bias WER Bias WER Bias
3-5 N/A N/A 64.37 29.18 N/A N/A N/A N/A
6-8 61.48 14.66 65.25 30.06 33.35 15.41 38.88 19.55
9-11 56.80 9.98 35.19 0.00 27.48 9.54 19.33 0.00
12+ 46.82 0.00 N/A N/A 17.94 0.00 24.97 5.64

(a) WER by Gender (b) WER by Age

Figure 4: WER Analysis

A.4. Comparison Pre-finetuning vs Post-finetuning Results

This section compares the pre-finetuning and post-finetuning performance of the large-v3 model. It presents the WERs and associated
biases for various groups, segmented by gender and age across the four datasets (IS, DE, NL, and VL). The results are displayed in
tabular form to allow for a quick comparison of before (Table 23) and after (Table 24).

Table 23: Pre-finetuning WER per Group [%] and Bias per Group [%]

WER IS DE NL VL AVG
Female 51.41% 64.47% 30.28% 22.51% 42.17%
Male 55.16% 58.20% 23.76% 32.81% 42.48%

Ages 3-5 N/A 64.37% N/A N/A 64.37%
Ages 6-8 61.48% 65.25% 33.35% 38.88% 49.74%
Ages 9-11 56.80% 35.19% 27.48% 19.33% 34.70%
Ages 12+ 46.82% N/A 17.94% 24.97% 29.91%

AVG 54.33% 57.50% 26.56% 27.70% -

Bias IS DE NL VL AVG
Female 0.00% 6.27% 6.52% 0.00% 3.20%
Male 3.75% 0.00% 0.00% 10.30% 3.51%

Ages 3-5 N/A 29.18% N/A N/A 29.18%
Ages 6-8 14.66% 30.06% 15.41% 19.55% 19.92%

Ages 9-11 9.98% 0.00% 9.54% 0.00% 4.88%
Ages 12+ 0.00% N/A 0.00% 5.64% 1.88%

AVG 5.68% 13.10% 6.29% 7.10% -



Table 24: Post-finetuning WER per Group [%] and Bias per Group [%]

WER IS DE NL VL AVG
Female 40.67% 52.69% 20.04% 22.83% 34.06%
Male 43.36% 55.19% 16.38% 32.51% 36.86%

Ages 3-5 N/A 53.97% N/A N/A 53.97%
Ages 6-8 44.95% 55.11% 23.17% 37.71% 40.24%
Ages 9-11 44.01% 42.53% 15.55% 17.86% 29.99%
Ages 12+ 39.23% N/A 15.67% 27.26% 27.39%

AVG 42.44% 51.90% 17.69% 28.84% -

Bias IS DE NL VL AVG
Female 0.00% 0.00% 3.66% 0.00% 0.92%
Male 2.69% 2.50% 0.00% 9.68% 3.72%

Ages 3-5 N/A 11.44% N/A N/A 11.44%
Ages 6-8 5.72% 12.58% 7.62% 19.85% 11.44%
Ages 9-11 4.78% 0.00% 0.00% 0.00% 1.20%
Ages 12+ 0.00% N/A 0.12% 9.40% 3.17%

AVG 2.64% 5.30% 2.28% 7.79% -

Table 25: Relative Percentage Difference in WER and Bias by Language [%]

Language Change in WER
IS -21.88%
DE -9.74%
NL -33.39%
VL +4.10%

AVG -15.23%

Language Change in Bias
IS -53.54%
DE -59.52%
NL -63.78%
VL +9.69%

AVG -37.87%

Figure 5: Effect on WER of finetuning, sorted by language
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