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Abstract—In multi-sensor systems, several sensors produce
data streams, commonly, at different frequencies. If they are let
running wild without synchronization, after a period of time, they
are likely to be disordered, presenting as simultaneous measures
that have been recorded at different times. That can be disastrous
in many data fusion applications. This paper is about their
temporal synchronization and ordering, so they can be coherently
fused. Some sensors do not have timestamps from which order
the streams, and even if they have, they may be not trustable for
different reasons. First, we define mathematically the problem of
multi-sensor data stream synchronization. Then, we handle the
problem of estimating the actual time of sensor measurement
using mean or median filters. Next, we address the issue of
reconstructing incoming sensor data streams according to the
estimated sensor measurement times while maintaining minimal
latency and synchronization error by employing an adaptive
stream buffering technique utilized in distributed multimedia
systems. In order to test our methods, we have recorded an
easy-to-use dataset with a radar and a lidar sensors without
timestamps. We define a synchronization event that is easily
identifiable by a human annotator in both sensor streams. From
this dataset, a suitable filter for timestamp estimation is selected,
and an analysis of the effects of the stream synchronization
algorithm’s parameters on buffering latency and synchronization
error is presented. Finally, the solution is efficiently implemented
on a FPGA.

Index Terms—multi-sensor, synchronization,

I. INTRODUCTION

For precise fusion of different sensors, measurements need
to be synchronized both temporally and spatially. This paper
aims to design a solution of the temporal synchronization
problem for multi-sensor data fusion applications.

Consider a system with multiple data streams provided by
different sensors. Probably, some of them have different mea-
surement frequencies. Even if they have the same data rates,
there may be drifts between their particular sensor timelines.
If they are let running wild without any synchronization, after
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(ECSEL JU), under grant agreement No 876019, the ADACORSA project -
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a period of time, they are likely to be disordered, presenting
as simultaneous measures that have been recorded at different
times. That can be disastrous in many data fusion applications.

Particularly, this work has been motivated by the sce-
narios presented in two European projects: PRYSTINE and
ADACORSA. The PRYSTINE project addresses challenges
in automotive applications, while ADACORSA aims to enable
beyond-visual line of sight (BVLOS) for drone navigation. In
both these projects, the environment perception of the agent
(e.g., automotive or drone) is crucial and is achieved by sensor
fusion of on-board sensors e.g., cameras, radars and lidars.
In both scenarios, the temporal synchronization must to be
realized in real-time, with minimum latency, and low resources
(specially power). While data fusion involving cameras has
been more extensively studied, including its synchronization,
radar and lidar data synchronization and fusion can be more
challenging. The main reason is that camera images are more
easily understandable by the human annotators, allowing for
easier test and calibration mechanisms like chessboards. Our
consider system includes a radar sensor and a lidar sensor,
which provides two data streams without timestamps. The
streams are collected in a centralized processing system. The
module that collects the data streams withing the processing
system is the acquisition system, which can add a timestamp
on the data upon its arrival. The goal is to introduce a
synchronization module, just after the acquisition system, that
can correctly order the data streams, with a minim latency and
resource utilization, before the main data fusion or processing.

Since some sensors do not have timestamps from which
order the streams, and even if they have, they may be not
trustable for different reasons, first we need to estimate the
measurements timestaps. Therefore, the original problem is
divided into two: measure timestamp estimation, and real-time
synchronization of timestamped streams.

To better illustrate the problem we are trying to solve, Fig. 1
shows the synchronization problem for the two streams coming
from the radar and lidar sensors, and the same two streams
correctly synchronized by our solution.

The paper is structured as following: first, a related work
section highlighting the available solutions in the state of the
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Fig. 1. Synchronization events at given timestamps before (left) and after (right) synchronization.

art for both the timestamp estimation problem and the syn-
chronization problem. Then, in section III, we formulate these
problems mathematically, and present the solution algorithm.
Section IV describes the dataset collected for the experimental
results presented in the following section or results. Finally,
in VI, the hardware implementation is described, and in VII
the conclusions.

II. RELATED WORK

To address the issue of timestamping sensor measurements
in free-running sensor network systems, earlier, in simpler
multi-sensor systems, the timestamp on arrival at the acqui-
sition system was used as the true time of measurement for
fusion applications [1]. This approach completely overlooks
the possibility that the sensor data may be subjected to
delays and jitters during transmission and acquisition, causing
asynchrony between the measurements. In [2], a software
timestamping approach which aims to improve the timestamps
quality by reducing delays and jitters during acquisition, is
proposed. However, the the sensor data is still timestamped
after its arrival at the acquisition system and the data is
still subjected to transmission delays and jitters. Hence, these
solutions are not suitable for time critical applications where
timing misalignment cannot be ignored.

A popular approach is to employ hardware based times-
tamping for sensor measurements. In [3], a device is used
to attach a timestamp to each sensor data frame, before it is
transmitted to the acquisition system through the communi-
cation link. It has an embedded GPS receiver to get precise
UTC (Universal Time Coordinate) times for timestamping.
However, this approach cannot be applied to all senors as
it may require the sensors to be programmable and to also
have special interfaces. Similar GPS receiver based hardware
devices have been used for the synchronization of externally
triggered sensors, where the device precisely triggers the
sensors at the right instances [4], [5].

For free running asynchronous sensors systems without ex-
ternal synchronization support, the only timestamping that can

be done, is at the acquisition system. Approaches presented
in [6], [7] utilise these arrival times to estimate the true
sensor measurement times. All these solutions are software
timestamping based on linear Kalman filters to essentially filter
out delay jitters from arrival times while preserving the effect
of the internal sensor clock drift in the true measurement times.
However, the estimation procedures in these solutions are
software based and are not designed for real-time applications.

The problem of synchronizing streams of data has been
extensively investigated in the area of distributed multimedia
systems. A classical example of this scenario is the lip-sync
problem [8], [9], where audio and video streams need to be
accurately synchronized during play-out.

The problem of multimedia synchronization can be classi-
fied based on location, real-time requirement, type of syn-
chronization (within or between streams), purpose of the
synchronization protocol and availability of timing and net-
work information. Based on the real-time requirement of the
stream play-out, synchronization techniques are classified as
live or synthetic. The former deals with synchronizing live
data streams in real-time whereas the later deals with stored
media frames [10]. Here, only live synchronization solutions
are presented, as they are relevant to our problem.

Media synchronization is an end-to-end problem [11],
hence, based on the application, it can be addressed either
on the source [12], receiver [13], [14] side, or both [10], [15].
On the source side, a common solution is to attach timestamps
and sequence numbers to the transmitting frames [13], [14].
Other source-side techniques mainly consists of changing the
properties of the media streams. In some cases, the sources
can interleave streams into a single stream before transmission
as in [16], [17]. This solution succeeds in eliminating the
need for inter-stream synchronization, however, intra-stream
synchronization still needs to be addressed. In [17], [18], the
source changes the transmission rate of the streams depending
on the feedback received from the receiver on the network
conditions to prevent asynchrony. On the receiver side, buffer-
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ing techniques are commonly employed. The buffering time
can either be static based on a maximum jitter value or can
be made to vary depending on the network delays [19] and
the available buffer size [14]. Other receiver-side techniques
consist of dropping late arriving frames [10] or older frames
during buffer full conditions [19]. The dropped frames are
either left empty or interpolated [14].

For intra-stream synchronization, techniques that aim at
reducing the effects of jitter are used. This includes receiver
buffering techniques [19]-[21] to smooth the effects of delay
variabilities. For inter-stream synchronization, normally, mas-
ter/slave techniques are used, where one stream is set as a
master or reference and the rest as slave streams [20], [21].
At a certain point in time, the bottleneck stream, i.e., the
stream affected by the most delay is chosen as the master
or reference. Then, the play-out rates of slave streams are
adapted to maintain the correct temporal relations with the
master stream. In [20], dynamically switch master and slave
streams during run-time. However, it is necessary to first
remove the effects of network jitter by establishing intra-
stream synchronization between the frames before applying
inter-stream techniques [11].

Moreover, the complexity of the synchronization solutions
majorly depend on the nature of the timing of media frames
(as in periodic or non-periodic) and network information such
as delays and jitters. If the nature of frame generation is
non-periodic then timestamps of frame generation from the
source side is compared with the arrival timestamps at the
receiver to estimate jitter and buffer the frames accordingly
[22]. On the other hand, for periodic streams, arrival period at
the receiver can be compared with the period of the stream to
estimate jitters and also, inter-stream synchronization becomes
less complex than the non-periodic case. In certain systems,
assumptions can be made on the network delays and jitter
based on the network characteristics. If exact bounds on
network jitters are known then constant delay buffers at the
receiver would suffice to ensure both inter- and intra-stream
synchronization. Also, this eliminates the need for timestamps
from the source side. However, if the maximum bound on
jitters is too high, then the frames need to buffer for a longer
time, leading to large buffering latencies. Besides, in most
applications, an exact bound on jitters cannot be known. In
such cases, a tolerable synchronization error value is set and
the frames are buffered for lesser time. This leads to a trade
off between the quality and latency of the synchronization
algorithm. To overcome it, adaptive control based solutions are
proposed in [20], [21]. They consists of a control algorithm
which keeps the latency and quality at check by changing the
buffering delays during run-time according to the current jitter
conditions while maintaining a pre-set minimum latency and
synchronization error. Ideally the control algorithm makes sure
that the buffering delays are large enough to compensate for
the effects of jitter and stay within tolerable synchronization
error but not too large, to keep the latency minimum.

TABLE I
SYSTEM EVENTS AND THEIR TIMESTAMPS
Event | Description Timestamp
el Radar measurement TE .
e2 Radar frame transmission starts Tt’f
e3 Arrival of radar frame at acquisition system Tk
ed Lidar measurement TL. .
e5 Lidar frame transmission starts TE
eb Arrival of lidar frame at acquisition system TL .
e7 Radar synchronization output TR,
e8 Lidar synchronization output TL,

III. MATHEMATICAL FORMULATION OF THE
SYNCHRONIZATION PROBLEM

To formulate the problem formally, we first define all the
events in the system, which includes the sensors radar and
lidar, and the acquisition system that collects the data streams
before processing. We introduce a synchronization module just
after the acquisition system. For each event, a timestamp is
assigned. Events and their corresponding timestamps are listed
in Table 1. The events (el, €2, e3) and (e4, eb, €6) occur in
a sequence. We define these sequences of events as: the radar
acquisition process (P : el — 2 — ¢3), and the lidar
acquisition process (P : e4 — 5 — ¢6). These processes
occur asynchronously and are independent of each other. There
are any relationships between the events of the two processes,
since, depending on the sensor sampling rate and the initial
start offset between the sensors, the order can change during
the run time.

The considered radar and lidar sensors do not have clocks
or any other mechanism to record the times of their events.
However, at the acquisition system, the arrival times of radar
and lidar frames (T, and T'L,) are assigned by a common
clock. A solution to this issue may be to connect external
clocks to record the event timestamps. However, this solution
is both expensive and unreliable since the triggering of an
event cannot be observed accurately from external clocks due
to distortions introduced by the interconnecting cables.

From the moment the sensors capture the measurements
to the point they arrive at the acquisition system, the sensor
data stream is subjected to various delays. These delays are
unpredictable and their magnitudes have no definite bounds,
leading to vastly varying arrival latencies. In addition, delays
are different for each sensor data stream resulting in measures
captured at different time being presented as simultaneous to
the fusion algorithm. A good understanding of the nature of
the delays along with the source of delay variability factors is
essential to formulate an efficient synchronization algorithm.
Some of the significant delays in the considered system are:

o Pre-rocessing delays: are delays that are incurred on
the sensors for modifying/processing the raw sensor
measurements. It includes delays due to on-sensor chip
pre-processing steps and packetization of sensor measure-
ments into appropriate format transmission. With respect
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to the model, these are the delays between events el and
€2 in the radar, and between e4 and e5 events in the lidar.

o« Communication delays: are the delays experienced by
the sensor data during its transfer from the sensor to the
acquisition system. Depending on the size of the measure-
ments, a single sensor measurement can be broken down
into several packets/frames'. The delays due to queuing
of these frames, the physical transmission of the data,
all constitute communication delays. In the model, these
are the delays between events e2 and e3 in radar, and
between €5 and e6 events in the lidar.

We now define the term measurement latency, which refers
to the overall latency experienced by the k'h sensor mea-
surement from its capture at the sensor to its arrival at the
acquisition system. Measurement latency (ATR[k], ATE[k])
is given by:

ATU{] = Tarr[k} — Tea [k'] (1)

Measurement latency is essentially an abstraction of all
the delays and their associated delay variability that a sensor
measurement is subjected to, and hence, can also be modelled
as:

AT[k} =d— 6jitte'r [k} (2)

where J;1zer [k] denotes the jitters in delays for the k™ sensor
measurement and, d represent the expected value (mean) of
their respective sensor delays.

With events, timestamps, and delays of the system defined,
we now mathematically formulate the problem. On the top
level, we aim to maintain the same temporal relationships
between the measurements in which they were originally
recorded. We define two types of temporal relations in the
model:

« Intra-stream relations: refers to the temporal relation-
ship between the frames belonging to the same stream.
More precisely, the intra-stream relation is the time
difference between events of two consecutive sensor
measurements captured by the same sensor. The intra-
stream temporal relation between the [k — 1]** and k*"
events of the same stream is:

ATk —1,k] = T[k] - T[k — 1]. 3)

« Inter-stream relations: refers to the temporal relation-
ship between corresponding frames belonging to different
streams. It is the delay difference between events of two
corresponding measurements captured by different sen-
sors. The inter-stream temporal relation between between
the k" radar and lidar events is:

ATRLE) = TR[K] — TV (k). “)
To meet our goal, we need to achieve:

!For simplicity, we associate each measurement with a single frame.

1) Intra-stream synchronization: to maintain the intra-
stream relationships in which the measurements were
originally recorded, the following condition must hold:

ATOUt [k - 17 k] = AT'mea [k - 17 k] (5)
2) Inter-stream synchronization: analogously,
AT [k] = AT, 5L (k). (©6)

However, due to the jitter component of the delay factors,
disturbances are introduced into the temporal relationships of
sensor measurements as they arrive at the acquisition system.
Thus, we can expect

ATarr[k - 17 k} 7é ACrmea [k - 17 k]7 (7)

and
ATIE(K] # AT (k). 8)

arr mea

Using (1), (2), and (3), we can view AT,..[k —
noisy version of AT, ..[k — 1, k]:

1,k] as a

ATqrr [k -1, k] = ATmea[k -1, k] + 5jitter [k] - 5jitter [k - 1]
©))
where Jjitter is assumed to be zero-mean white noise.

With this, a straightforward solution will be to re-construct
the sensor data streams at the acquisition system by buffering
accordingly to compensate for the effect of jitters on each
sensor frame. Unfortunately, in our concerned system, Tﬁ,T
and TL  are the only timing information available. Therefore,
we formulate the solution into the following steps:

1) Estimate intra-temporal relations of measurements

(ATmea[k — 1, k]) by filtering the observed ATg,..[k —
1, kl.

2) Extract estimated timestamps (Tmea) from temporal
relation estimates.

3) Buffer and re-construct the data streams. The main
objective here is to ensure that the incoming sensor
data is streamed out in real-time while maintaining time
synchronization.

As we do not have any measure or estimate of the mea-
surement latency, and since for us it is more important the
stream ordering rather than knowing the exact time of a
measurement, the arrival time of the first sensor measurement
at the acquisition system is assigned as estimator of the first
el and e4 timestamps

Tmea [O] = Tar'f [0]7 (10)

although a better estimate can be obtained if d is known or
estimated

Tmea[o] = Tarr [O] —d. (11)

The timestamps extracted from the above method can be
inaccurate during the following two scenarios and have to be
corrected accordingly:

1) When the calculated measurement timestamp is greater
than its corresponding arrival timestamp (T)eq[k] >
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Torr[k]). It would mean that the measurement is cap-
tured in the sensor later than its arrival at the acquisition
system. Hence, the estimate is reset with (10) or (11)
using the current arrival timestamp.

2) When a frame is lost. In this case, the timestamp of
the next measurement can be wrongly associated to the
timestamp of the lost measurement. The observed cycle
time after a lost measurement is larger than normal
cycle times. Therefore, a threshold is set to detect lost
measurements (Afmea[k —1,k] > Thipst), and Tmea[k]
is reset like in the previous case.

After timestamp estimation, the implemented algorithm
is based on solutions presented in [20], [21], [23]. These
algorithms ensure intra- and inter-stream synchronization in
real-time by employing control-based adaptive buffering tech-
niques. With the estimates and arrival timestamps available,
the algorithm accomplishes synchronization by comparing and
equalising measurement latency of each sensor. The equaliza-
tion is carried out by piece-wise adjustment of buffering times
while meeting a set of Quality of Service (QoS) factors along
with a minimal overall latency. The QoS factors are:

« Maximum intra-stream phase distortion. Intra-stream
phase distortion (Intra-SPD), A@;nirq, is the difference
between the measurement latencies of two consecutive
frames of the same sensor stream. A maximum al-
lowable threshold on intra-SPD is set for each sen-
sor (Th.A¢intrq). If the arrival of an incoming sensor
measurement does not fall within it, then, the frame is
considered to have arrived too late and thus, discarded.
Intra-SPD is calculated as:

Aintralk — 1, k] = |AT[K] — AT[k — 1]|. (12)
Since we do not know Ar[k], we use its estimator
AF[E] = Tare[k] = Trnealk]. (13)

« Maximum inter-stream phase distortion. Inter-stream
phase distortion (inter-SPD) is the difference between the
measurement latencies of two adjacent sensor measure-
ments belonging to different sensor data streams. Here,
adjacent sensor measurements refer to measurements
that have been most closely captured by two different
sensors. A maximum allowable threshold on inter-SPD
(Th.AngffL’tLer) is set. Any frame arriving beyond it, is
discarded. Inter-SPD is calculated as:

A¢R,L

iner ] = [ATE[R] — ATE[R][ (14

Intra-SPD and inter-SPD quantifies the disruption in intra-
and inter-stream relationships, respectively.

The synchronization algorithm can be divided into two
schemes focusing on intra-stream and inter-stream synchro-
nization. On the top level, intra-stream synchronization is first
established by adaptive buffering and then inter-stream syn-
chronization is ensured by maintaining the buffering alignment

of different streams.

It occurs in two steps for every data stream independently:
1) output time decision, and 2) adaptive control algorithm for
buffering.

Output Time Decision: in this step, the output time of the
each sensor measurement (7},,;) is decided. A virtual clock-
timer is employed on the acquisition system and the sensor
measurements are streamed out with respect to the its timeline.
The virtual timer can be set-back or advanced, thereby con-
trolling the buffering times. We define three output cases wait,
nowait and discard where the sensor measurement is buffered,
streamed out immediately and discarded, respectively. The
output case is decided by comparing the time of arrival of
the sensor measurement at the acquisition system, recorded
by the virtual timer, and the estimated time of its capture. The
virtual timer is initialised to the arrival time of the first sensor
data frame. The virtual timer value at current time is denoted
T,:. The conditions for each of the output cases are:

o Wait case: if the arrival time of the incoming sensor
measurement (recorded by the virtual timer) is lesser
than the estimated measurement capture time, means that
the current measurement arrived earlier, compared to the
previous sensor measurement, and hence, it needs to be
buffered. The wait case condition for sensor frame k is

Tarr[k} = Tvt < Tmea%k (15)

In this case, the frame is buffered until the virtual timer
reaches T),eq[k]. Therefore, the buffering time is

ATbuffer [k] = Tmea[k}

« Nowait case: the incoming sensor measurement is con-
sidered to arrive late if its arrival time (recorded by the
virtual timer) is larger than the estimated measurement
capture time. In this case, if its arrival time falls within the
intra-SPD threshold, the frame is streamed immediately.
The nowait case condition for sensor frame k is

— Torr K] (16)

Tmea[k] < Tarr[’ﬂ = Tvt < Tmea[k] + Th~A¢z'ntra-
(r7)
o Discard case: if the incoming frame is too late that its
arrival time falls out of the maximum intra-SPD allowed,
it is discarded. The discard case condition for sensor
frame £k is

Tarr[k] = Tvt > Tmea[k} + Th-A(bintra- (18)

An adaptive control algorithm for buffering is employed to
keep the synchronization error versus buffering time latency
trade-off in check. The control algorithm keeps a count of
each of the output cases. At any point in time, the count
values of the wait, nowait and discard cases represent the
arrival distributions of the sensor measurements. Hence, based
on this values and certain pre-set thresholds, the algorithm
determines whether the sensor measurements are being under-
or over-buffered over the past window of time. Furthermore,
the algorithm setbacks or advances the virtual timer depending
on under-buffer and over-buffer conditions, accordingly.
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o Under-buffer case: if the the count of nowait or dis-
card cases is greater than its threshold (Th,oweir and
T H giscard)- Nowait and discard cases introduce synchro-
nization errors because the frames are not streamed out
at Tmea. So, when under-buffering is detected, the virtual
timer is set-back to ensure higher buffering times and re-
duce the synchronization error. The set-back displacement
(AT),) is

AT, = (1 — #wait/Thyaeir) maz. ATy, (19)

where #wait is the count of wait cases, and max.AT,;
is the maximum shift allowed. Further, the count values
of nowait and discard are reset to 0.

« Over-buffer case: if the count of wait cases is greater
than its upper threshold and nowait and discard counts are
below a lower threshold (LT hpowait and LT hgiscard)-
The virtual timer is advanced to reduce the latency of
future frames, and #wait is reset to 0.

AT = (1 — #nowait ) Thpowait) maz. ATy (20)

Intra-stream synchronization is established by equalising
measurement latencies, thereby, ensuring that the offset be-
tween the virtual arrival time and the measurement capture
time of the sensor measurement is corrected. In a similar
fashion, inter-stream synchronization is established by further
buffering sensor measurements in order to align the virtual
timers of the two streams. Firstly, a reference sensor stream is
selected. The reference stream is the stream whose measure-
ment frames experience larger delays among the considered
sensor streams. It can be easily identified as the stream with
the smallest virtual timer value. This is because, considering
the larger measurement latency, the control algorithm would
have initiated set-back calibrations to the stream. Initially, any
arbitrary sensor stream can be set as the reference stream. We
denote the virtual timer value of the reference stream 77,
and the follower one TJtOl. Overall, the idea is to set-back
the virtual timer of the follower stream if the offset between
the streams is more than a tolerable bound of inter-SPD. The
inter-stream offset condition is

T =T < ThAg Ll —max(Th.Agle], . Th.AgLY ).
Q1)

This condition is checked every time a set-back or advance
calibration is performed on the reference stream. If the con-
dition is not satisfied, then the follower stream is set-back by
the difference between the two sides of the inequality (21).
In addition, any advance displacement of the follower stream
is cancelled to match with the slower buffering rate of the
reference stream.

IV. EXPERIMENTAL DATASET

To verify the accuracy of the temporal synchronization
solution, a moving Meccano contraption, as shown in Fig.
2 was set up to be used as a common target for both
the radar and lidar sensors. The device consists of a clear
and distinguishable target (the twin plates), which revolves

Fig. 2. Rotating device used as a common target of the sensors.

Fig. 3. Example frames of a synchronization event. Left: radar range-Doppler
map. Right: lidar depth map.

around a fixed axis at a constant speed. This setup ensures
that the position measurements obtained by both sensors are
distinguishable for comparison and that the spatial error in
the position measurement is negligible. Thus, the differences
in the positions of the target observed from the sensors are
solely due to the temporal errors.

The radar sensor is a 77GHz radar from RFBeam model
MR3003_RD. And the lidar sensor is a solid state lidar from
Hypersen model HPS-D160-U. Fig. 3 show the captured radar
range-Doppler map and lidar depth map of the rotating device.
The position of the revolving plates can be clearly observed
from both the range-Doppler map as well as the depth map.
To verify the synchronization, the observed positions of the
revolving plates by both the sensors are compared at the output
of the synchronization system. This setup, though simple, is
effective and sufficient enough to evaluate the correctness of
the temporal synchronization solution.

For our experiments, the sensor data acquisition and arrival
timestamping was performed on a Windows 10 based laptop
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TABLE I
MEAN AND VARIANCE OF THE OBSERVED CYCLE TIMES

Mean (ms) | Variance (ms?)
ATE [k —1,K] 99.998 2.25
ATE [k — 1,k 109.315 0.9616
TABLE IIT

INTER-STREAM RELATIONS FOR DIFFERENT ESTIMATORS

Radar filter Lidar filter Average AT (ms)
none none 52.709
mean (W = 16) mean (W = 16) 43.342
mean (W = 16) mean (W = 50) 44,711
mean (W = 16) median (W = 9) 27.390
mean (W = 16) median (W = 59) 28.742
median (W =9) | mean (W = 16) 47.042
median (W =9) | mean (W = 50) 47.685
median (W =9) | median (W =9) 37.997
median (W =9) | median (W = 59) 37.892

with a 1Gb network interface. The radar data stream comes
from an Ethernet port and, the arrival timestamps for the
measurements are generated after the measurement is read
from the TCP/IP socket. Similarly, the lidar data stream comes
from a serial port and, the arrival timestamps are generated
after reading each data measurement from the serial port. The
time resolution of the timestamps is 1ns and stored as a 64bit
unsigned integers.

V. RESULTS

A population size of 5000 frames is used for calculation of
the statistical measures. The mean and the variance values of
the observed intra-stream relations are summarized in Table
II. Fig. 4 shows the observed intra-stream relations at arrival
for the radar and lidar sensors, and the estimators at measure
time obtained by different filters. The radar shows a repeating
pattern of alternating between two Gaussian distributions
with variances of 0.00045ms?> and 0.00046ms’ centered at
100.59ms and 99.40ms, respectively. The median filter is
not very effective in removing this high frequency details.
However, on the lidar, that shows a lot of outliers, the median
filter is more robust.

Fig. 5 shows the corrected inter-stream relation between
synchronization events with different combinations of filters,
and Table III their average. We need them to be preferably
smaller than approximately half the average cycle time of
the sensors (AT'[k — 1, k]) to prevent wrong association with
another sensor measurement.

The choice of appropriate Th.A¢%, . Th.A¢L,. . and
Th.A¢fE  parameters is based on the Intra-SPD and Inter-
SPD. They are set to 0.8ms, 1ms and 2ms, respectively, as
shown in Fig. 6 and 7.

The effect of window size (of the adaptive control buffering
algorithm) on the total number of setback and advance cali-
brations of the virtual timer is shown in Fig. 8. The ratio of
the output events (wait:nowait:discard) was kept constant as
(7:2:1). Next, we observed that the window size did not have

TABLE IV
OUTPUT CASES COUNTS FOR DIFFERENT THRESHOLD RATIOS
Th ratio wait | nowait | discard
1:7:2 739 4239 21
2:6:2 1807 3188 4
3:5:2 2196 2800 3
4:4:2 2424 2572 3
5:4:1 2098 2897 4
6:3:1 2647 2348 4
7:2:1 3548 1148 3
8:1:1 4296 700 3

significant impact on the number of wait, nowait and discard
output cases (Fig. 9). No noticeable trend in buffering latency
or synchronization error was observed, however, we cannot
expect robust results from smaller window sizes as they may
fluctuate the buffering process over small changes in the arrival
delay.

To analyse the effect of wait, nowait and discard thresholds,
results of buffering latency and synchronization error (inter-
SPD on nowait cases) with varying buffer control configura-
tions are shown in Fig. 10 and 11. The maximum calibrating
factor max.AT,; is set to the average delay variation observed
in the stream (average intra-SPD), which is 0.6ms and 0.3ms
for radar and lidar streams, respectively. This ensures a smooth
offsetting of timer reference. Keeping the window size to 100,
the total number of each output case for different threshold
ratios are presented in Table IV. There is a direct correlation
between the corresponding thresholds and the observed num-
ber of events. However, it is to be noted that the set threshold
do not hard guarantee the same ratio of events at output. We
can observe that with a relatively higher Th,., buffering
latency increases and synchronization error decreases. This is
expected because the buffer control algorithm will frequently
hit the under-buffer condition due to lower Th,owai:r and
T Hgiscara and hence, increases buffering latency by setting
back the virtual timer. Overall, the increase in buffering time
also ensures lower synchronisation errors. Conversely, we ob-
serve that with lower T'h,,q;¢, Synchronisation error increases
and buffering latency decreases due to setting of over-buffering
condition leading to advance calibration of virtual timer.

VI. HARDWARE IMPLEMENTATION

The design consists of a buffer, virtual timer, filter, and
control block per sensor stream; and a common inter-stream
control. The buffers store incoming sensor data and eventually
streamed them out as AXI4 streams, according to the decision
of control block (based on the estimators provided by the
filter). First, the arrival time is recorded by the virtual timer
block. Next, the measure timestamp is estimated by the filter.
The estimated measurement timestamp is available 2 clock
cycle after the arrival of the sensor measurement. The control
block also checks the over-buffer and under-buffer cases and
sends appropriate setback or advance commands to the virtual
timer.
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The common inter-stream control block takes care of com-
munications between the streams and ensures inter-stream
synchronization. The timestamps are recorded as 64-bit un-
signed integers (which is standard for sensor measurement
timestamps). A precision of 30ns is used so that drift due to
sensor clock, if present, can be taken into account. The design
is fully parameterized.

TABLE V
RESOURCE UTILIZATION OF SYNCHRONIZATION BLOCK COMPONENTS

Component LUT FF | DSP
Timer 233 136 0
Control 238 92 1
Inter-stream 295 133 0
Full design® || 2105 | 1639 2
2Excluding buffers.

TABLE VI
RESOURCE UTILIZATION OF FILTERS
Filter Window LUT FF | DSP
16 378 569 0
20 296 642 1
Mean 32 438 858 0
50 567 | 1183 1
100 1019 | 2084 1
128 1401 | 2588 0
9 462 443 0
Median 19 1072 624 0
59 || 2240 | 1345 0

Resource utilization of some components of the imple-
mented solution are presented in Table V obtained in Vivado
2018.3 for a Zynq ZC702 evaluation kit. Table VI shows the
resource utilization of different filters.

130



0.90 -

0.85 1

0.80 4 Th A¢;$1tra

- measurements discarded

0.75 1

0.70 -

0.65 -

0.60

Intra-SPD |At[k] — At[k — 1]] (in ms)

0.55 A

0 100

200 300 400

Frame number (k)

Intra-SPD |At[k] — At[k — 1]] (in ms)

Fig. 6. Intra-SPD and its threshold for

—— Lidar
——— Radar

g
o
"

offset corrected

=
5
L

g
=)
1

Th. a¢fe,

Measurement Latency At[k] (in ms)
o
wn

°
=]
1

0 10

20 30

40 50 60 70 80

Frame number (k)

Number of sensor measurements

Fig. 7. Measurement latency of adjacent radar and lidar measurements and
the maximum inter-SPD threshold.

[}
o
1

IS
o
L

N
o
1

Number of virtual timer calibrations
o
<)
!

—&— Lidar
—&— Radar

20

Fig. 8. Effect of window size on the number virtual timer calibrations.

40 60

80 100 120

Buffer Control - Window Size (W)

Buffering latency (ms)

Fi

=

g

131

2.0

1.5

- measurements discarded

200 400 600 800 1000
Frame number (k)

radar (left) and lidar (right).

400

300

200

100

0

0

0 4

0 -

M

—8— wait event
—&— nowait event
—&— discard event

W

r——0—0—0— 00— 00— 00— 00— 00— 00—

20 40 60 80 100 120
Buffer Control - Window Size (W)

Fig. 9. Effect of window size on the buffering output cases.

1.0 1

0.8 4

0.6 1

0.4 1

0.2 1

0.0 1

— 1 T l

{100,700,200} {300,500,200} {500,400,100} {700,200,100} {800,100,100}

{wait, nowait, discard} thresholds

. 10. Box plot of buffering latency for different output cases thresholds.




1.0 4 T
0.8 T

0.6 1 .

0.4 4

0.2 1
001 l 4
T T T T T
{100,700,200} {300,500,200} {500,400,100} {700,200,100} {800,100,100}
{wait, nowait, discard} thresholds

Synchronization error of nowait frames (ms)

i . i -

Fig. 11. Box plot of synchronization error caused by streaming-out immedi-
ately for different output cases thresholds.

VII. CONCLUSIONS

A temporal synchronization of sensor streams is proposed,
which is flexible and can be tuned to the right level of latency
versus synchronization error trade-off, according to the needs
of the application. For the particular application that triggered
this research, composed of 2 streams (radar and lidar), the
most optimal output case thresholds are (500, 400, 100) with
average buffering latency of 0.32ms and synchronization error
of 0.316ms. With a mean filter with window size of 16 for the
radar stream, and a median filter with window size of 9 for
the lidar stream.

We have recorded an easy-to-use dataset with a radar and a
lidar sensors without timestamps. The synchronization event
is easily identifiable by a human in both sensor streams. This
dataset is perfectly suited for other data fusion application
tests. Thus, it is currently on the process of being published.

Finally, an efficient hardware implementation of the syn-
chronization block have been developed, which has a low
resource utilization.

It is to be noticed that the acquisition of sensor measure-
ments was done on a machine with Windows10 OS, which
does not guarantee real-time requirements and can introduce
uncertain delays. Hence, the observed cycle times used in our
analysis are not representative of the cycle times observed
when sensor acquisition is done directly on hardware or on a
real-time operating system.
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