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Prediction in ungauged estuaries: An integrated theory
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1Water Resources Section, TU-Delft, Delft, Netherlands

Abstract Many estuaries in the world are ungauged. The International Association of Hydrological
Sciences completed its science decade on Prediction in Ungauged Basins (PUB) in 2012 (Hrachowitz
et al., 2013). Prediction on the basis of limited data is a challenge in hydrology, but not less so in
estuaries, where data on fundamental processes are often lacking. In this paper, relatively simple, but
science-based, methods are presented that allow researchers, engineers, and water managers to obtain
first-order estimates of essential process parameters in estuaries, such as the estuary depth, the tidal
amplitude, the tidal excursion, the phase lag, and the salt water intrusion, on the basis of readily
obtainable information, such as topographical maps and tidal tables. These apparently simple relation-
ships are assumed to result from the capacity of freely erodible water bodies to adjust themselves to
external drivers and to dissipate the free energy from these drivers as efficiently as possible. Thus, it is
assumed that these systems operate close to their thermodynamic limit, resulting in predictable pat-
terns that can be described by relatively simple equations. Although still much has to be done to
develop an overall physics-based theory, this does not prevent us from making use of the empirical
‘‘laws’’ that we observe in alluvial estuaries.

1. Introduction

1.1. Estuaries as Essential Life Support Systems
Estuaries form essential parts of the human-earth system. They are intensively used to sustain a wide range
of economic activities. In rapidly urbanizing coastal areas, estuaries are both a crucial resource and a sup-
port system for human settlements, agriculture, transport, and ecosystem services. As the connecting ele-
ment between ocean and river, estuaries have properties of both: they contain both fresh and saline water;
they experience tides, but also river floods; and they host both saline and fresh ecosystems. But more
importantly, they have unique properties of their own: a unique brackish aquatic environment and hydrody-
namic behavior different from all other water bodies.

Being such a crucial element of the terrestrial system, one would expect that estuaries are intensively
gauged worldwide, but this is rarely the case. Only the most intensively used estuaries are closely moni-
tored, particularly if they form part of a busy navigation network. But most estuaries in the world are poorly
gauged, in the sense that we hardly know their geometry (depth, slope, and cross-sectional properties) or
the amounts of freshwater and sediments that they receive. If there is information on tidal water levels,
then this is seldom measured continuously or at more points along the estuary. Consistent information on
salinity, water quality, ecology, and morphology is generally lacking, even in the more intensively inhabited
estuaries and deltas. This is not so strange because the intensive, consistent, and permanent monitoring of
estuaries is both costly and difficult. So, if science can help to estimate essential physical properties of estua-
ries with readily available or easily obtainable information then this would be an important contribution to
society.

1.2. The Paradox of Simplicity
Because estuaries are such complex systems, where so many different physical and biological processes
interact, one would expect that only the most complex models would be able to describe estuary behavior,
but here we see a remarkable paradox. Estuaries manifest surprisingly simple behavior, particularly alluvial
estuaries, where the water body has been able to modify its shape in a way that it can efficiently absorb
and evacuate flood waters and sediments from the terrestrial system, as well as the energy fluxes generated
by the oceans in the form of tides, waves, and storm surges.
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The most evident manifestation of this simplicity is the shape of alluvial estuaries. The cross-sectional areas
of alluvial estuaries, when plotted against the longitudinal axis, follow an exponential function, and so does
the surface width. Moreover, in long alluvial estuaries (with a length longer than about half a wave length),
there appears to be almost no bottom slope and the amplitude of the tidal velocity is almost constant along
the estuary axis. This surprisingly simple behavior only occurs if the system is able to adjust its shape to
external drivers (i.e., in alluvial estuaries) and not in estuaries with fixed boundaries, such as fjords and
sounds. Figure 1 is a schematic representation of an alluvial estuary, but Figure 2 presents a selection of real
estuaries, where the geometry is plotted on semilogarithmic paper, demonstrating straight lines. A larger
selection of estuaries and more detailed information can be found on the web site www.salinityandtides.
com.

The physical explanation for this apparent behavior is not trivial, but is probably related to the most efficient
way in which alluvial systems organize their energy dissipation. This hints toward optimality associated with
maximum entropy production [e.g., Kleidon et al., 2013]. When a system operates close to its thermody-
namic limit of maximum power [Kleidon and Renner, 2013; Kleidon et al., 2014], a complex physical system
may demonstrate predictable and simple behavior. Although, as yet, there is no consistent theory to derive
this ‘‘optimal shape’’ from basic physical principles, it does not prevent us from using the patterns we
observe empirically. Moreover, the exponential function is a very attractive equation to be used in the solu-
tion of differential equations, and as such, nature has done us a great favor.

In the book ‘‘Salinity and Tides in Alluvial Estuaries,’’ Savenije [2005, 2012] presented a range of analytical sol-
utions of the fundamental equations for hydraulics, tidal mixing, and salt intrusion that have practical
applicability in alluvial estuaries and that can be used if only limited information is available. The book

Figure 1. Definition sketch showing the exponentially varying width and cross-sectional area and the inflection point at x1. A is the cross-
sectional area, B is the width, and h is the depth. H is the tidal range, the vertical distance between high water (HW) and low water (LW). t
is the tidal velocity amplitude. Ub, hb, Bb, and Qb are the bankfull velocity, depth, width, and discharge at the transition point of estuary to
river.
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makes ample use of the literature and is based on many field investigations carried out in estuaries in differ-
ent parts of the world (downloadable from www.salinityandtides.com). In this overview article, we do not
present and discuss the underlying material in detail, but rather focus on how this theory can be applied in
situations where limited information is available.

1 

10 

100 

1000 

10000 

0 5000 10000 15000 20000 25000 30000 35000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Kurau Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

100000 

0 10000 20000 30000 40000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Perak Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

100000 

0 10000 20000 30000 40000 50000 60000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Bernam Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

0 5000 10000 15000 20000 25000 30000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Selangor Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

0 5000 10000 15000 20000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Linggi Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Muar Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

0 10000 20000 30000 40000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Endau Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

0 20000 40000 60000 80000 100000 

C
ha

ra
ct

er
is

tic
 

Distance, x (m) 

Geometry of Rompin Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

Figure 2. Variation of the cross-sectional area (A), width (B), and cross-sectional average depth (h) of 28 estuaries, plotted on semilogarithmic paper.
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1.3. The Predictability of Estuarine Behavior
Not only is the behavior of alluvial estuaries surprisingly simple, it also appears to be predictable. One
important property of alluvial estuaries is that the amplitude of the tidal velocity at spring tide (cross-sec-
tional average) is approximately 1 m/s, throughout the estuary. This is a remarkable property that Bruun
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Figure 2. (Continued)
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and Gerritsen [1960] showed to be valid for tidal inlets, but which also appears to apply to the entire tidal
region of alluvial estuaries. Cai and Savenije [2013] showed that the tidal amplitude and associated velocity
amplitude in estuaries have asymptotic values toward which they converge at some distance from the estu-
ary mouth. This asymptotic situation corresponds to an ‘‘ideal estuary,’’ where there is no tidal damping and
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Figure 2. (Continued)
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where the celerity of the tidal wave is the same as in a frictionless channel with constant cross section
(equal to c0 5

ffiffiffiffiffiffi
gh

p
). This is the more remarkable, because natural estuaries are neither prismatic (they have

an exponentially varying cross section) nor frictionless. Savenije and Veling [2005] showed that estuaries
that are dredged, and hence are deeper than under natural circumstances, have amplified tidal waves that
progress faster than c0, as is the case in, for instance, the Scheldt, the Elbe, and other dredged estuaries. But
in ungauged estuaries, where the economic use is—not by chance—less intensive, the morphology is gen-
erally more natural and the ideal estuary condition may be assumed to apply, at least in the part of the estu-
ary that is not significantly affected by the river discharge (where the tidal velocity amplitude is an order of
magnitude larger than the freshwater velocity).

This offers opportunities for prediction in poorly gauged estuaries. If the hydraulic behavior and the geome-
try are predictable, then also the salinity intrusion can be modeled with limited uncertainty. For the model-
ing and prediction of salt intrusion, however, predictive equations are needed that provide estimates of
essential parameters that describe tidal mixing. But fortunately also these can be found in alluvial estuaries
[Savenije, 1993], probably as a result of the same energetic optimum that is responsible for the exponential
shape of estuaries, but this is still speculation.

1.4. The Need for an Integrated Theory and the Giant’s Perspective
Although there is still fundamental research required to answer the question why alluvial estuaries demon-
strate such predictable behavior, there is already practical use that we can make of the ‘‘laws’’ and patterns
that we observe empirically. Condition is that we consider an estuary as an integrated system, whereby its
shape, tidal hydraulics, and salt intrusion are intertwined and cannot be considered in isolation. For these
‘‘laws’’ to apply, we have to consider the system as a whole and not to consider the processes in too much
detail. We have to zoom out to the macroscale where the processes have had the opportunity to cancel out
local-scale variability. Simplicity and predictability only manifest themselves at the system scale while locally
there may be (temporary) deviations from the expected values.

The shape being the crucial boundary condition for hydraulics and salt intrusion, the next section is dedi-
cated to estuary shape. Because the paper aims at providing estimates for ungauged estuaries, we assume

1 

10 

100 

1000 

10000 

100000 

0 20000 40000 60000 80000 100000 

C
hr

ac
te

ri
st

ic
 

Distance, x (m) 

Geometry of Pungue Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

0.1 

1 

10 

100 

1000 

10000 

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 

C
hr

ac
te

ri
st

ic
 

Distance, x (m) 

Geometry of Incomati Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

100000 

0 20000 40000 60000 80000 100000 120000 

C
hr

ac
te

ri
st

ic
 

Distance, x (m) 

Geometry of Solo Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

1 

10 

100 

1000 

10000 

100000 

1000000 

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 

C
hr

ac
te

ri
st

ic
 

Distance, x (m) 

Geometry of Gambia Estuary 

Area, A (m2) Width, B (m) Depth, h (m) 

Figure 2. (Continued).
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the ideal estuary condition to apply. The subsequent two sections present the tidal hydraulics and the salt
intrusion, while the final section presents a summary and a discussion.

2. Estuary Shape and What We Can Read From it

Over time, alluvial estuaries develop their geometry in a state of (intermediate) dynamic equilibrium that
allows terrestrial and oceanic free energy to dissipate efficiently. Kleidon et al. [2013] demonstrated that the
terrestrial morphology can be explained by thermodynamic principles and gave a plausible explanation for
patterns that appear in freely erodible systems. They indicated that the (self)-organization of structures in
the terrestrial system could be explained by maximum entropy production and optimality of energy
expenditure, close to the thermodynamic limit. Something similar is happening in alluvial estuaries,
although the precise formulation in thermodynamic terms still needs to be done. What we know empirically
is that alluvial estuaries tend toward an exponentially varying cross section and width, and, if the estuary is
long enough, a constant tidal average depth. This exponential shape causes the tidal velocity amplitude to
be virtually constant along the estuary axis, and allows the development of an asymptotic situation of con-
stant tidal amplitude, which corresponds to an ideal estuary [Cai and Savenije, 2013]. As a result, the amount
of free kinetic and potential energy per unit volume of estuary water is constant along the estuary axis,
which corresponds to the ‘‘most likely state’’ of a system in dynamic equilibrium.

Generally, estuaries can be schematized in one or two segments each with a different convergence length
(see Figure 1). As a result, the following equations apply:

A5Ai exp 2
ðx2xiÞ

ai

� �
(1)

B5Bi exp 2
ðx2xiÞ

bi

� �
(2)

where the subscript i indicates properties of the different segments, A and B are the cross-sectional area
and width, and ai and bi are the convergence length of the cross-sectional area and width, respectively. The
point xi is the position of the (internal) boundary and Ai and Bi are the values at the (internal) boundary. If
the convergence lengths of A and B are the same, then there is no bottom slope. If they are different, then
there is an exponential variation of the depth with a convergence length equal to ab/(a 2 b). Often we see
that the exponential shape has two segments, a short part of less than 10 km close to the ocean with a
short convergence length, and then, after a well-defined inflection point (at x 5 x1), the second reach with a
longer convergence length. The second reach tends exponentially to the river width Bb. Formally, this would
imply an adjustment of equations (1) and (2) subtracting the river cross section and width from the parame-
ters A and B, but in the part of the estuary where salt intrusion occurs, this adjustment has a minor influ-
ence. Figure 2 presents an illustration of this geometry for a selection of real estuaries [from Gisen, 2015]. In
Table 1, the geometric data of a large collection of estuaries is presented, where the subscript 0 refers to
the estuary mouth or the first reach. The subscript 1 refers to the inflection point or to the second estuary
reach.

2.1. What Determines the Shape?
The estuary shape is obviously the result of the interaction between the river discharge and the tide. But
what are the characteristic values of river discharge and tide that determine it, and which of the shape
parameters do each of them determine? The regime theory of alluvial rivers offers an opening. Gisen et al.
[2015] showed that the upstream geometry of the estuary (essentially the depth and the width) is deter-
mined by the bankfull discharge, in agreement with the regime theory of Lacey [1930] and Simons and
Albertson [1960].

Regime theory links the width to the bankfull discharge through the famous formula of Lacey:

Bb5ksQ0:5
b (3)

where Qb is the bankfull discharge and the factor ks depends on the sediment composition. Gisen et al.
[2015] used data from 23 estuaries to test these relationships and found:
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Bb53:74Q0:467
b (4)

with a correlation R2 5 66%. For the regime discharge, Gisen et al. [2015] used the annual maximum dis-
charge with a return period of 1.5 years. Given the uncertainty in the determination of the bankfull dis-
charge, this is a good correlation and well in agreement with Lacey’s equation.

2.2. Depth
In addition, they derived an expression for the depth, assuming the ideal estuary conditions to apply, with a
correlation of 62%:

h150:69Q0:31
b (5)

Using (4), this implies that:

h150:28B0:67
b (6)

where the exponent 0.67 corresponds with the one found in regime theory [e.g., Cao and Knight, 1996].

Knowing the depth at the upstream end appears to be the key to knowing the depth of the entire estuary
segment. Gisen et al. [2015] showed that the depth at the upstream boundary determines the depth of the
estuary in the upstream reach, the slope in the tidal region being minor. This is an important finding for
ungauged estuaries, because it allows us to estimate the estuary depth from a map, using equation (6), sim-
ply by measuring the stream width at the limit of the tidal influence.

2.3. Convergence
But what determines the convergence? Intuitively we feel that the convergence results from the balance
between the strength of the river discharge and the tide. If an estuary is riverine (determined by large river
discharge and limited tidal influence), we expect the estuary to be more prismatic (to have a long conver-
gence length), such as we see in the branches of delta systems. If however the tidal influence is much stron-
ger than the river discharge, we expect a pronounced funnel shape. The proportion of the amount of

Table 1. Characteristics of a Selection of Estuariesa

No Estuary A1 (103 m2) a1 (km) B1 (m) Bf (m) b1 (km) h1 (m) x1 (km) H0 (m) T (h)

1 Kurau 0.7 46 130 20 28 6.2 3.6 2.3 12.4
2 Perak 9.2 37 2,070 130 21 6.3 4 2.8 12.4
3 Bernam 4.5 25 1,270 45 17 5.3 4.3 2.9 12.4
4 Selangor 1 13 270 35 13 3.7 2.8 4.0 12.4
5 Linggi 1.5 8 320 25 13 3.2 0.5 2.0 12.4
6 Muar 1.6 100 280 55 31 8.2 3.9 2.0 12.4
7 Endau 2 44 310 72 44 6.5 4.8 1.9 12.4
8 Rompin 0.8 110 140 50 110 6.1 19 2.5 12.4
9 Ulu Sedili Besar 0.7 38 140 35 49 4.1 4.3 2.5 12.4
10 Maputo 4.7 16 1,150 100 16 4.1 5.1 3.3 12.4
11 Thames 10.9 23 780 50 40 8.2 31 5.3 12.4
12 Corantijn 26.8 64 5,000 400 48 6.7 18 3.1 12.4
13 Sinnamary 1.1 39 470 95 12 3.9 2.7 3.3 12.4
14 MaeKlong 1.1 150 240 150 150 4.6 3.2 3.6 12.4
15 Lalang 2.9 167 360 130 94 10.3 0 2.6 24
16 Limpopo 1.1 115 180 90 115 6.3 20 1.9 12.4
17 Tha Chin 1.4 87 260 45 87 5.6 5.0 2.6 12.4
18 ChaoPhya 3.1 130 470 200 130 6.5 12 3.4 24
19 Edisto 5.2 15 1,250 60 15 4.1 2.0 3.2 12.4
20 Elbe 43 66 2,880 350 50 11.7 0 4.6 12.4
21 Pangani 0.9 15 270 35 15 3.2 3.1 4.2 12.4
22 Landak 2 60 230 100 60 8.7 0 1.6 24
23 Delaware 255 41 37,655 120 42 6.4 0 1.8 12.4
24 Schelde 150 27 16,000 50 27 9.4 0 4.0 12.4
25 Pungue 14.5 19 5,200 50 19 2.8 0 6.7 12.4
26 Incomati 1.1 40 380 22 40 2.8 15 3.3 12.4
27 Solo 2.1 226 225 95 226 9.2 0 1.8 24
28 Gambia 35.7 96 3,700 110 100 8.8 33 1.83 12.4

aFor location and more data, see www.salinityandtides.com. Note: H0 is the tidal range (twice the tidal amplitude) at the estuary
mouth, during spring tide.
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freshwater entering the estuary during a tidal period to the tidal prism P (the volume of saline water enter-
ing the estuary during a tidal period) is the Canter-Cremers number. For bankfull discharge, this amount
equals QbT . The tidal prism at the inflection point can be approximated by B1h1t1T=p [see Savenije, 2012].
Moreover, Qb is proportional to Bb (Qb5UbhbBb), Hence, the Canter-Cremers number for bankfull flow at the
inflection point can be written as:

QbT
P

5
QbT

B1t1h1T
p5

BbUbhbT
B1t1h1T

p5kbp
Bb

B1

� �
(7)

where kb is a proportionality factor, defined by:

kb5
Ubhb

t1h1
(8)

which under regime condition is expected to be constant, the regime condition being a bankfull flood
at the upstream boundary and an extreme spring tide with a velocity amplitude of 1 m/s at the inflec-
tion point. A constant value of kb indeed appears to apply, and Gisen et al. [2015] found that with
kb 5 1.44, a high correlation was found of R2 5 80% for the ideal estuary assumption. This factor implies
that under bankfull conditions, the river velocity would be about 1.4 m/s (since hb and h1 are expected
to be equal).

Hence, we can conclude that the bankfull discharge determines the depth of the estuary and that the pro-
portion between freshwater and saline water, under regime conditions, determines the width ratio and
hence the convergence (note: the convergence length b is the ratio of the estuary length to the natural log-
arithm of the width ratio).

2.4. Bottom Slope
In long open-ended estuaries, there is not expected to be a bottom slope, at least not in an equilibrium sit-
uation. An estuary which is shorter than a quarter of the wave length generally has a significant bottom
slope (a significant depth convergence length whereby b> a), even though the cross-sectional area still
obeys an exponential function. In these estuaries, we cannot read the depth from the regime width. But in
long (not dredged) alluvial estuaries, we can. If there is a slope, as can be seen in several estuaries in Figure
2, then this slope is generally modest and probably reflects an intermediate situation, where the estuary is
restoring the balance between tide and river-dominated regime. Apparently, a tide-dominated regime is
likely to cause landward shallowing (e.g., Linggi), while a river-dominated regime may cause an inverse
slope (e.g., Muar, Lalang, and Sinnamary). The inverse slope is likely the result of a recent flood, where the
high sediment carrying capacity in the upstream narrow part of the estuary causes bottom erosion, while
sediments deposit further down as the estuary becomes wider. If there is a long enough period without
floods, then this inverse slope may be expected to gradually level out. Similarly, landward shallowing may
be the result of gravitational circulation, carrying marine sediments inland, with insufficient floods to flush it
back out. Whether these slopes have a more permanent or temporal character depends on the time scales
of these processes.

In closed estuaries, a bottom slope may occur near the natural limit or a closure structure. At an obstruction,
a standing wave occurs, where the tidal velocity is zero. As a result, we observe shallowing at the foot of a
closure structure (e.g., in the Thames and the Scheldt estuary). But even if there is an obstruction in a con-
vergent estuary, the fact that the reflected wave loses its energy quickly, due to divergence, causes the area
of influence of the obstruction to be relatively small (10–20 km depending on the convergence).

3. Predicting the Tidal Hydraulics on the Basis of Estuary Shape

In predicting tidal hydraulics, we make use of the analytical solutions of the St. Venant equations, as pro-
vided by Savenije et al. [2008]. These equations are only applicable in open-ended estuaries where there
is no reflected wave, or in estuaries where the tidal barrier is sufficiently far removed from the area of
interest (see H. Cai et al., An analytical approach to determining resonance in semi-closed convergent
estuaries, submitted to Journal of Geophysical Research: Oceans, 2015). The four equations are summar-
ized in dimensionless form in Appendix A, presenting the governing equations and the definitions of the
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dimensionless variables in equations (A1)–(A2). Also the dimensional variables are explained in Appendix
A.

If observations of tidal water levels are available at a number of locations, then the tidal damping and the
tidal amplitude can be determined at different places, which allows solution of these equations, given that
the geometry is known.

In an ungauged estuary, the cross-sectional convergence is not know, and one has to assume that the
cross-sectional convergence length a equals the width convergence length b, which in fact is the assump-
tion of no bottom slope. Since in an ungauged estuary, there is, by definition, no observation of the tidal
damping, we assume the condition of an ideal estuary, where there is no damping and the tidal wave prop-
agates with the classical wave celerity c0 (d 5 0 and k 5 1). In long alluvial estuaries, this is an acceptable
premise, particularly for the second segment. This leads to the following rather simple hydraulic equations
(the parameters are explained in Appendix A):

l25
1

c211
(9)

tan e5c21 (10)

In addition, the condition of zero damping (d 5 0, k 5 0) leads to c5vl2, which translates into:

C25
t2

g
b1

h1
(11)

In dimensional form, equation (9) can be written as:

t
g

5rS
xb1

h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0

c2
01x2b2

1

s
(12)

For given width convergence and tidal period, an estimated storage width ratio (a good guess is rs � 1.1), and
a depth estimate by equation (6), equation (12) provides a relation between the amplitudes of the tidal water
level and tidal velocity. This equation can be used for different purposes, for instance, to compute the tidal
excursion (E5tT=p) for a given certain value of g, required for the salt intrusion calculation. Another applica-
tion would be to check the depth estimate made by equation (6). If we assume that during spring tide the
velocity amplitude is approximately 1 m/s, and if we obtain the spring tidal amplitude from tidal tables (near
the estuary mouth), then we obtain a depth estimate. However, this will be an overestimation of the depth,
because the spring tidal amplitude is generally damped in an ideal estuary (whereas the neap tide amplitude
is amplified) to asymptotically reach the ideal tidal amplitude. So assuming 1 m/s for the tidal velocity ampli-
tude and the spring tidal amplitude from the tidal table would lead to an overestimation of the depth [see
Gisen et al., 2015]. But comparison with equation (6) will certainly help to make a better depth estimate.

With equation (11) we can estimate the channel roughness. If one assumes a velocity amplitude of 1 m/s at
spring tidal range, equation (11) provides a first estimate of the roughness for an ideal estuary. Alternatively,
equation (12) can be substituted into (11):

C25rStx
b2

1

h2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0

c2
01x2b2

1

s
(13)

after which the roughness entirely depends on the geometry, with the exception of the velocity amplitude,
which may be assumed to be close to unity. This equation hinges strongly on the prediction of the estuary
depth, which has a relatively large uncertainty. Therefore, this equation may be less accurate.

So in an ungauged estuary, knowing the width convergence and having an estimate of the depth by equa-
tion (6), the assumption of the ideal estuary allows us to obtain a first estimate of the tidal hydraulics, and
particularly the tidal wave celerity (which is the same as c0), the damping (which is zero), and the tidal veloc-
ity amplitude (which under ideal conditions should be somewhat less than 1 m/s). We can also determine
the channel roughness from equation (11), and the phase lag between high water (HW) and high water
slack (HWS) from equation (10), which in an ideal estuary purely depends on the convergence.
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4. Predicting Salt Intrusion on the Basis of Estuary Shape

An often asked question to water managers is how much salt water intrusion one may expect in an estuary, espe-
cially as a result of planned upstream withdrawals. A full hydrometric survey to calibrate salt intrusion models is
generally very costly and time demanding. A first estimate based on the procedure described here would not
only provide an order of magnitude of the problem at hand, it could also provide the basis for a more intensive
survey, whereby it is possible to home-in on the most important part of the estuary to be studied in more detail.

The procedure for determining the salt intrusion in ungauged estuaries is based on the work done earlier
by Savenije [1986, 1993], which is summarized in Savenije [2005, 2012]. This procedure is based on the expo-
nential shape of alluvial estuaries and on the method of Van der Burgh [1972], and uses two predictive equa-
tions for the two model parameters: the dispersion at the upstream boundary and the Van der Burgh shape
coefficient. Recently, Gisen et al. [2015] reanalyzed the available database, including seven previously not
surveyed Malaysian estuaries, and came up with revised predictive equations for the model parameters.
These are the equations we present her.

The basis of the salt intrusion model is the steady state salt balance equation:

jQf j
A

S2Sfð Þ1D
dS
dx

50 (14)

where S is the tidal average salinity, Qf is the freshwater discharge at the upstream boundary with salinity Sf,
and D the dispersion coefficient. The latter is an essential model parameter that different authors have
handled in very different ways. Most common is to link the parameter to the salinity gradient [e.g., Prandle,
1981] under the assumption that the dispersion is governed by gravitational, or density-driven, circulation
[e.g., Thatcher and Harleman, 1972]. This process is indeed dominant in prismatic channels and flumes, on
the basis of which much theoretical work has been done, but in natural channels, mixing is caused by a
combination of tide-driven and density-driven circulation [e.g., MacCready, 2004]. Many researchers have
tried to decompose all different dispersion processes in detail, sometimes distinguishing more than 60 com-
ponents [Park and James, 1990].

Fortunately, in alluvial systems, the process is not that complex. Also, here a broader view, looking at the
system as a whole, would help. Mixing is a process of relaxing gradients, to which also principles of maxi-
mum efficiency can be applied. The theoretical basis for this approach still needs to be provided, but fact is
that alluvial estuaries appear to manifest predictive and relatively simple mixing behavior. The empirical
equation of Van der Burgh [1972] is surprisingly simple, dimensionally correct, and appears to perform very
well in practice. The coefficient K is a sort of shape factor determining the form of the salt intrusion curve:

dD
dx

52K
jQf j

A
(15)

where K is Van der Burgh’s coefficient, which can assume values between 0 and 1. Interestingly, it can be
shown that D relates to the salinity gradient to the power K/(1 2 K). Combination of (14) and (15) results in
D / SK . Subsequent substitution into (14) results into D being proportional to dS/dx to the power K/(1 2 K):

D
Di

5
ADi

jQf jSi

dS
dx

� � K
12K

(16)

where the subscript i refers to a boundary condition. If K 5 0.5, then this power is 1; if K 5 2/3, then the
power is 2; if K 5 3/4, then the power is 3, which are powers one finds in the literature [e.g., MacCready,
2004; Prandle, 1981], depending on the dominant mixing mechanism. The Van der Burgh coefficient, thus,
allows the tuning of an estuary to the right combination of mixing mechanisms.

Combination of equations (14) and (15) yields an explicit expression for the salt intrusion (for the derivation
see equations (5.43)–(5.48) in Savenije [2012]):

S2Sf

Si2Sf
5 12

Kai jQf j
Di Ai

exp
x2xi

ai

� �
21

� �� �1=K

(17)
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where i 5 0,1 represent the two segments of the estuary shape and Di are the values of the dispersion coef-
ficient at the mouth and the inflection point. In this approach the boundary condition is chosen at the
inflection point (at x 5 x1). The total salt intrusion length follows from equating the right hand member of
equation (17) to 0 at x 5 L:

L5x11a1ln
Di Ai

Kai jQf j
11

� �
(18)

where L is the total salt intrusion length at tidal average condition. For the maximum intrusion at high water
slack half a tidal excursion E5tT=p needs to be added.

For given geometry and river discharge, these equations can be solved explicitly if values for K and D1 are
provided. If salinity observations along the estuary are available, then K and D1 can be determined by cali-
bration, but to use equation (17) in a predictive mode (providing the salinity distribution for a given river
discharge and tide) predictive equations are needed. The reanalysis of Gisen et al. [2015] provided the fol-
lowing two equations ((19) and (20)) to be used in ungauged basins:

D1

t1E1
5a

Dq
q

gh1

t2
1

jQf jT
A1E1

� �0:57

(19)

where the argument is the estuarine Richardson number consisting of the densimetric Froude number and
the Canter-Cremers number, and reflecting the balance between the potential energy of the river water
over the kinetic energy of the tide. Here Dq is the density difference between the salinity of sea and river
water. The proportionality factor a depends on the channel roughness (a50:396ðg=C2Þ0:21). The channel
roughness can be determined by equation (13), but otherwise a constant value of a 5 0.117 performs
almost equally well.

The other predictive equation is for the Van der Burgh coefficient, which determines the shape of the curve,
particularly the shape of the tail. Gisen et al. [2015], based on dimensionless numbers of 20 estuaries, revised
the original equation of Savenije [1993] into:

K58:0331026 B0:30
f g0:93H0:13

1 T 0:97p0:71

B0:30
1 C0:18t0:71

1 b0:11
1 h0:15

1 r0:84
S

� �
(20)

with a standard error of 0.11, and considering 0< K< 1. These are all parameters that depend directly on
the topography, can be estimated (rs � 1.1, t � 1 m/s), determined from tidal tables (T and H, being the
tidal period and the spring tidal range � 2g) or determined with equations (6) and (11). A positive aspect of
equation (20) is that the most uncertain parameters (C and h1) have only small exponents, which prevents
this equation from giving highly uncertain estimates. For details on the regression analysis and the reliabil-
ity of the results, reference is made to Gisen et al. [2015].

5. A Fully Integrated Predictive Estuary Model, Dream or Reality?

The combined theory of shape, hydraulics, and salt balance provides a complete solution for prediction
in ungauged estuaries, where all processes are determined by estuary shape, particularly the width, sim-
ply observable from a map. This is a rather remarkable finding, considering that estuarine processes are
complex and intertwined. But maybe the answer lies in this complexity. The feedback mechanisms pres-
ent in estuaries, where potential and kinetic energy from river flow and tide and chemical energy con-
tained in the saline-freshwater gradient are dissipated, and where the estuary has the capacity to adjust
its morphology, result in a predictable and simple shape, probably because the system operates close to
its thermodynamic limit. Estuary shape is the result of the morphology finding a configuration where
energy is dissipated in the most efficient way, and hence the shape holds the key to the simple behav-
ior we observe. Similarly, the tendency of the system to approach an ideal estuary, where the tidal
amplitude is constant, is the result of the most efficient way of dissipating energy and maintaining the
most probable state in the estuary, where tidal energy is equally distributed. Also the balance between
tide-driven and density-driven mixing, resulting in an efficient combination of mixing mechanisms along
the estuary axis, well described by the Van der Burgh equation, is probably related with mixing effi-
ciency. Of course this is mostly speculation, and still much has to be done to develop a closed theory
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on integrated behavior. But there is enough
empirical evidence to suggest that such a
theory can be found.

Meanwhile, this paper provides a set of equa-
tions that are useful to provide first estimates on
essential estuarine processes, which can be
obtained by a simple desk study without the use
of complex mathematical models. Not only can
this be useful in situations where no funds are
available for detailed field observations, it can
also provide a basis for more detailed observa-
tions, where a field campaign would focus on
areas of maximum uncertainty.

Appendix A : Dimensionless Equations and Parameter Definitions

Table A1 presents the four dimensionless hydraulic equations and the five dimensionless variables, where c
is the only independent variable. These variables consist of combinations of dimensional variables where c0

is the classical celerity of a frictionless wave in a prismatic channel defined by c05
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gh1=rs

p
, c is the actual

phase speed (apparent wave celerity) in the estuary, rS is the ratio of storage width to stream width
(accounting for the fact that the tidal flats store water but do not contribute significantly to the longitudinal
flow), C is the Chezy coefficient, g is the tidal amplitude, t is the tidal velocity amplitude, and x52p=T is the
tidal frequency, where T is the tidal period. The phase lag e is the phase difference between high water
(HW) and high water slack (HWS), or similarly between low water (LW) and low water slack (LWS).
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Table A1. Dimensionless Equations and Parameter Definitions

Phase lag equation tan e5 k
c2d (A1)

Scaling equation l5 sin e
k 5 cos e

c2d (A2)

Damping equation d5 l2

l211 c2vl2k2� �
(A3)

Celerity equation k2512d c2dð Þ (A4)
Shape number c5 c0

xb

Friction number v5rs
g

C2
c0g
xh2

Velocity number l5 1
rs
� th

gc0

Damping number d5 c0
xg

dg
dx

Celerity number k5 c0
c
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