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SUMMARY

Excitation of optical transitions in solids using ultrashort pulses of light allows to selec-
tively perturb microscopic degrees of freedom in order to change and control material
properties on very short timescales. In this thesis we study how ultrafast resonant exci-
tation of optical transitions can induce coherent structural dynamics in wide-bandgap
insulators and control magnetic interactions, manipulate magnetic order and induce
(propagating) spin dynamics in insulating antiferromagnets. In time-resolved all-optical
pump-probe experiments, we use ultrashort pulses of light to target specific lattice vibra-
tions, orbital resonances and electronic transitions in various insulating materials and
optically probe the structural and magnetic dynamics on the picosecond timescale.

Chapter 1 provides an introduction to the field that studies ultrafast optical control
of solids, with a focus on resonant optical control of magnetic properties and the gen-
eration of propagating excitations. Chapter 2 discusses the basic concepts of magnetic
interactions, magnetic order and spin waves. In chapter 3 we briefly discuss the main
experimental methods and experimental setups used in this work.

In chapter 4 we study the coherent structural dynamics initiated by ultrafast resonant
excitation of an infrared-active lattice vibration in the wide-bandgap insulator LaAlO3.
We observe the excitation of a coherent THz phonon mode, corresponding to rotations
of the oxygen octahedra around a high-symmetry axis, and identify the underlying non-
linear phonon-phonon coupling through density functional theory calculations. The
resonant lattice excitation is also shown to generate both longitudinal and transverse
strain wavepackets, the result of optically induced anisotropic strain.

In chapter 5 we demonstrate that light-driven infrared-active phonons can be used to
control fundamental magnetic interactions and coherently manipulate magnetic states
on picosecond timescales. Resonant optical excitation of lattice vibrations in the an-
tiferromagnet DyFeO3 results in nonthermal, ultrafast and long-living changes in the
exchange interaction between the Dy orbitals and the Fe spins. We identify phonon-
induced coherent lattice distortions as the underlying mechanism and show that we can
use this change in magnetic interaction to induce picosecond coherent switching from
a collinear antiferromagnetic ground state to a weakly ferromagnetic phase.

Having explored the structural and magnetic dynamics following excitation of lat-
tice vibrations, we explore the effect of optical excitation of orbital resonances in the van
der Waals antiferromagnet NiPS3 in chapter 6. We demonstrate that ultrashort pulses
of light, with the photon energy tuned in resonance with orbital transitions within the
magnetic nickel d-orbital manifold, can excite a subterahertz magnon mode with two-
dimensional behaviour. We show that this selective excitation results from a photoin-
duced transient magnetic anisotropy axis, which emerges in response to excitation of
the ground-state electrons to orbital states with a lower orbital symmetry.
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x SUMMARY

Finally, we show in chapter 7 that ultrashort pulses of light can generate a wavepacket
of coherent propagating spin waves in insulating antiferromagnets. The nanometer con-
finement of ultrafast optical excitation in resonance with electronic charge-transfer tran-
sitions in the antiferromagnet DyFeO3 creates a strongly non-uniform spatial spin ex-
citation profile close to the material surface. This results in the emission of a broad-
band wavepacket of coherent subterahertz spin waves into the material. We optically
probe individual spectral components of this spin-wavepacket with wavelengths down
to 125 nm in a time-resolved fashion using the magneto-optical Kerr effect.

Chapter 8 provides the main conclusions of the work presented in this thesis. We
reflect on unanswered questions and give possible directions for future research.



SAMENVATTING

Het aanslaan van optische overgangen in materialen met behulp van ultrakorte lichtpul-
sen maakt het mogelijk om selectief microscopische vrijheidsgraden te verstoren, met
als doel om op hele korte tijdschalen controle te krijgen over materiaaleigenschappen.
In deze thesis bestuderen we hoe ultrasnelle, resonante excitatie van optische overgan-
gen kan leiden tot dynamische veranderingen in de kristalstructuur van materialen met
een grote bandkloof en daarnaast in antiferromagneten de magnetische interactie kan
controleren, de magnetische orde kan manipuleren en (voortbewegende) spin dynamica
kan opwekken. In volledige optische ‘pump-probe’ experimenten met een tijdsresolu-
tie van minder dan een picoseconde gebruiken we ultrakorte lichtpulsen om specifieke
roostertrillingen, orbitaalresonanties en elektronische overgangen in verschillende niet-
geleidende materialen aan te slaan en vervolgens de structurele en magnetische dyna-
miek op deze tijdschalen optisch te meten.

Hoofdstuk 1 geeft een korte introductie tot het veld dat de ultrasnelle optische con-
trole over vaste stoffen bestudeert, met een focus op de resonante optische controle over
magnetische eigenschappen en het genereren van voortbewegende excitaties. Hoofd-
stuk 2 bediscussieert de basisconcepten van magnetische interactie, magnetische orde
en spingolven. In hoofdstuk 3 bediscussiëren we kort de belangrijkste experimentele
methoden en opstellingen die in deze studie gebruikt zijn.

In hoofdstuk 4 bestuderen we de coherente dynamiek van de kristalstructuur als ge-
volg van de ultrasnelle resonante excitatie van een infrarood-actieve roostertrilling in
het niet-geleidende LaAlO3 met een grote bandkloof. We observeren het aanslaan van
een coherente THz fonon, die gerelateerd is aan rotaties van de octaëders van zuur-
stofatomen rondom een as van hoge symmetrie, en bestuderen de onderliggende niet-
lineare fonon-fonon koppeling met behulp van dichtheidsfunctionaaltheorie bereke-
ningen. Het resonante aanslaan van de roostertrilling resulteert daarnaast in golfpak-
ketten van longitudinale en transversale vervorming, het gevolg van optisch opgewekte
anisotrope vervorming.

In hoofdstuk 5 tonen we aan dat infrarood-actieve fonon die door licht worden aan-
gedreven kunnen worden gebruikt om fundamentele magnetische interacties te beheer-
sen en magnetische toestanden coherent te manipuleren op de tijdschaal van picose-
condes. De resonant optische excitatie van roostertrillingen in de antiferromagneet DyFeO3

resulteert in een niet-thermische, ultrasnelle en langlevende verandering in de uitwisse-
lingsinteractie tussen de Dy orbitalen en de Fe spins. We stellen vast dat dit het gevolg
is van een coherente vervorming van het kristalrooster. Tot slot laten we zien we deze
verandering in de magnetische interactie kunnen gebruiken om in enkele picoseconden
een overgang van een collineaire antiferromagnetische grondtoestand naar een zwakke
ferromagnetische toestand te realiseren.

xi



xii SAMENVATTING

Na de dynamiek van de kristalstructuur en magnetische dynamiek na het aanslaan
van roostertrillingen te hebben bestudeerd, onderzoeken we het effecten van optische
excitatie van orbitaaltoestanden in de van der Waals antiferromagneet NiPS3 in hoofd-
stuk 6. We tonen aan dat ultrakorte lichtpulsen, met de fotonenergie afgestemd op over-
gangen tussen verschillende d-orbitaaltoestanden van het magnetische nickel ion, een
subterahertz magnon met twee-dimensionale kenmerken kunnen aandrijven. We laten
zien dat deze selectiviteit het gevolg is van een kortstondige magnetische anisotropie-as
die wordt opgewekt door het laser licht en ontstaat doordat elektronen vanuit de grond-
toestand naar orbitaaltoestanden met een lagere orbitale symmetrie worden gebracht.

Tot slot laten we in hoofdstuk 7 zien dat ultrakorte lichtpulsen een golfpakket van
coherente spingolven in isolerende antiferromagneten kunnen opwekken. Ultrasnelle
optische excitatie in resonantie met elektronische overgangen die ladingsoverdracht met
zich meebrengen wordt op de nanometer schaal opgesloten in de antiferromagneet DyFeO3.
Dit creëert een sterk niet-uniform spin-excitatie profiel dicht bij het oppervlak van het
materiaal en resulteert in het uitstralen van een breedbandig coherente golfpakket van
subterahertz spingolven. Met een optische methode gebaseerd op het magneto-optische
Kerr effect detecteren we de individuele componenten van dit spingolfpakket met golf-
lengtes tot 125 nm en volgen we hun evolutie in de tijd.

Hoofdstuk 8 bevat de belangrijkste conclusies van het werk in deze thesis. We reflec-
teren op onbeantwoorde vragen en geven richtingen voor mogelijk vervolgonderzoek.



1
INTRODUCTION

“In the right light, at the right time, everything is extraordinary."

Aaron Rose

In this introductory chapter I provide an outline of the context and scope of the work pre-
sented in this thesis. It is a broad introduction to the field that studies control of macro-
scopic material properties by bringing materials out of equilibrium using ultrashort laser
pulses, followed by a discussion on the importance of selective excitation of specific degrees
of freedom in the material under study. This chapter specifically focuses on the resonant
optical control of magnetic properties and the generation of propagating excitations. I
conclude with a brief outline of this thesis.

1
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2 1. INTRODUCTION

We live in an era in which information and communications technology (ICT) has
found its way into every aspect of our lives. The amount of information stored, trans-
mitted and processed is ever-increasing and this trend does not appear to be changing
in the near-future, with technologies such as the ‘Internet of Things’ still only in their
infancy [1]. There are a few technological drivers that have underpinned the dramatic
improvement of information technology. The most prominent example is the doubling
of the transistor density on chips every two years for more than fifty years, following the
so-called Moore’s law [2–4]. The downscaling of integrated circuits has been the result
of technological progress and tremendous investments of time and money. In the com-
ing years, despite increasing investments, these building blocks will reach their ultimate
limit in terms of both speed and size [4, 5]. This provides a challenge, as society has not
only become dependent on information technology itself, but also relies on its rapid de-
velopment. In addition, the rise of information technology comes with a large increase
in energy consumption: some models predict that the ICT’s electricity use could exceed
20% of the global electricity demand in 2030 [6]. These two factors are a threat to impor-
tant economic and industrial sectors that are intimately linked to continued improve-
ments in information technology [7]. Moreover, an upper limit to computing power se-
riously hinders the human ability to solve a set of increasingly complex problems that we
are now facing. Faster supercomputers can play a key role in climate change modelling,
health care and disease prevention and the development of new materials [8]. Research
aimed at exploring radically different strategies to process and store information there-
fore plays a crucial role in overcoming these future challenges.

These societal and technological challenges, in combination with an improving de-
scription of the world around us, might very well have contributed to a paradigm shift
that has taken place in the physical sciences. For many years, the central goal of con-
densed matter physics has been to understand and describe naturally occurring phe-
nomena, both in macroscopic and microscopic terms. Over the past years, a new cen-
tral goal has emerged, which is to experimentally realize new states of matter that are
not found in nature [9–12]. Alongside answering fundamental scientific questions, con-
trol over and knowledge of potential ‘exotic’ phases also holds promise to create a new
and radically different generation of data processing devices [9, 10, 13]. The complex
interplay between different degrees of freedom in so-called correlated, or quantum, ma-
terials plays an important role in this artifical material quest. The electron orbitals, crys-
tal lattice, electron spins and electron charges are interacting complex entities, together
giving rise to a material ground state, exhibiting certain macroscopic properties, as ex-
emplified in figure 1.1a. The interplay between the different degrees of freedom results
in a delicate balance between the coexisting and competing ground states, making these
materials highly sensitivity to external influences.

One particular approach to create new ground states is to bring materials out of equi-
librium and toward desired states by selectively perturbing microscopic degrees of free-
dom [14]. In this way, the system can be dynamically steered to a desired new state that
is not accessible in thermodynamic equilibrium (see Fig. 1.1b). A type of external stim-
ulus which has shown to be particularly successful in dynamically controlling material
properties are sub-picosecond electric field transients [14, 15].
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Figure 1.1: Dynamical control of material properties. a, The interplay between the different microscopic
degrees of freedom in a solid gives rise to a correlated phase (figure from Ref. [16], Annual Reviews, with per-
mission). b, By bringing one of the degrees of freedom out of equilibrium using an external stimulus, the
material can be dynamically steered into a metastable state.

1.1. ULTRAFAST CONTROL OF MATERIAL PROPERTIES
EXCITING MATERIALS USING LIGHT

There are two intrinsically related reasons to focus on ultrashort bursts of light in the
form of laser pulses as means to control materials:

(i) Electromagnetic radiation (light) can couple to the excitations of many degrees
of freedom in ordered states, provided that the radiation has the right frequency.
Due to recent technological progress, laser pulses with central frequencies over a
wide range can presently be generated by commercially available table-top laser
setups [17–21]. Intense optical pulses with wavelengths spanning from the ex-
treme ultraviolet (XUV) to the terahertz enable the resonant, and therefore selec-
tive, excitation of particular electronic transitions and a wide variety of collective
modes. This in turn provides an extremely diverse experimental toolbox to ma-
nipulate materials, as different excitations enable different control techniques (see
Fig. 1.2).

(ii) The width of these laser pulses can be less than 100 fs (1 femtosecond (fs) = 10−15 s),
which makes them the fastest stimuli available. This brings the advantage of ultra-
fast control over material properties and the possibility to monitor the dynamics
of materials on their intrinsic timescales. A sub-picosecond time resolution makes
it possible to ‘watch’ the energy flow between the interacting energy reservoirs and
thus to study some of the most fundamental processes.

PROBING ULTRAFAST DYNAMICS

The most commonly used approach to excite materials and detect the effect of ultra-
short pulses of light on their properties is time-resolved (optical) spectroscopy. The
standard optical pump-probe experimental scheme uses one ultrashort pump pulse to
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which ultrashort laser pulses can be created. b, Different methods and their associated frequencies that can be
used to control materials through coupling to specific transitions and collective modes. Figure with permission
from Ref. [22], APS (a), Ref. [14], Nature Publishing Group (b).

excite the material, followed by a second time-delayed probe pulse to monitor the time-
evolution of the material’s optical properties. By changing the delay time between the
two pulses and analyzing the properties of the probe pulse after interaction with the
excited medium, it is possible to temporally resolve the laser-induced phenomena on
(sub)-picosecond timescales. The time-resolved spectroscopy can be extended by in-
tegrating femtosecond lasers with a multitude of other scattering probes such as X-ray
diffraction [23], angle-resolved photoemission spectroscopy (ARPES) [24] or scanning
probes like scanning tunneling microscopes (STM) [25] and scanning near-field micro-
scopes (SNOM) [26]. The combination of several probing techniques is crucial to get a
full understanding of the transient material state.

The dynamics and evolution of spectroscopic features following excitation of one of
the microscopic degrees of freedom can be best understood by considering the equilib-
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rium free-energy landscape of the material (see Fig. 1.3). Weak optical excitation can
excite collective modes, which are oscillations of the material’s order parameters around
the stable minimum (ground state) (see Fig. 1.3a). By tracking these modes in the time-
domain using a delayed (optical) probe one can (i) study the equilibrium properties of
these collective modes and (ii) infer and disentangle the interaction between the dif-
ferent microscopic degrees of freedom directly after excitation. Sufficiently strong and
efficient optical excitation can bring the system beyond the perturbative regime. This
can result in strongly nonlinear dynamics and even dynamical effective interactions[22].

If the excitation is strong enough, the ultrashort laser pulse can lift the system over
an energy barrier and drive it into a metastable state that is not accessible in equilib-
rium (see Fig. 1.3b). These metastable phases can persist for very long times[27] after
the excitation. The phenomenon of optical switching between different material phases
is quite universal, with examples range from light-induced insulator-metal transitions to
magnetic phase transitions in different classes of materials. It constitutes the prototyp-
ical example of control over material properties using light and is often explored for its
potential in future devices that could work at unprecedented speeds.

Finally, ultrafast photoexcitation can also affect the energy landscape itself. One
could argue that this pathway forms the most ‘out-of-equilibrium’ instance of transient
dynamics, as the excited oscillations of the order parameter in this case take place in
an altered potential (see Fig. 1.3c). For large-amplitude oscillations, or when the energy
barrier in the energy landscape is reduced to zero, the system can again be driven into
an initially metastable state. If coherent oscillations of the order parameter persist in
this altered landscape, their frequency should be changed. In chapter 5 we will see that
the frequency softening can indeed serve as a measure of the transient landscape in an
(antiferro)magnetic system.

a b c
switching

linear 
and 

nonlinear dynamics
non-equilibrium potential

order parameter

energy

Figure 1.3: Pathways through energy landscapes after laser excitation. Laser excitation can drive different
kinds of dynamics of the order parameter in the energy landscape. Weak excitation can drive oscillations in a
stable minimum (ground state) (a). Strong excitation can bring the system in a metastable state either through
large-amplitude oscillations (b), or via a transient change of the energy landscape itself (c).



1

6 1. INTRODUCTION

1.2. RESEARCH CONTEXT AND SCOPE OF THIS THESIS
In the broad field concerning ultrafast control of matter and non-equilibrium dynamics,
notable achievements include the optical excitation of coherent lattice and molecular vi-
brations [28], the ultrafast melting of magnetic order [29] and charge-density waves [30,
31], photo-induced insulator-to-metal transitions [27, 32, 33], switching between mag-
netically ordered phases [34], the light-induced enhancement of superconducting prop-
erties [35, 36] and the ultrafast switching of the magnetization direction [37, 38]. The
wide variety of materials and their associated phases that have been subjected to phase-
control experiments using light, reflects the broad applicability of laser pulses for ma-
terial control. In line with this wide variety, this thesis concerns all-optical experiments
on different materials using different excitation energies. Their common denominator
is the selective perturbation of microscopic degrees of freedom in order to change and
control material properties on very short timescales. The results can be subdivided in
two main themes: control of magnetic properties and the generation of propagating ex-
citations in insulating materials.

1.2.1. ULTRAFAST CONTROL OF MAGNETIC PROPERTIES
Magnetic materials have permeated our society for a long time and will probably con-
tinue to do so for many more years to come. Its use has evolved from the first application
in early compasses, guiding the sea sailors in the Middle Ages in the right direction, to
key component in modern magnetic hard drives used extensively for storing enormous
amounts of data. The purpose of studies on ultrafast control of magnetic properties is
therefore two-fold. Although highly fundamental in nature, studying microscopic inter-
actions and phenomena on their natural timescales, these studies are also very relevant
for future technological applications [39]. Using ultrashort pulses of light, the funda-
mental speed limits on magnetic switching and magnetic dynamics can be explored. The
applications could range from vast improvements in the field of ‘conventional’ magnetic
storage and information processing technologies [39] to novel terahertz (THz) spintron-
ics applications [40].

A phenomenon that has acquired specific interest in recent years is the existence of
intrinsically two-dimensional (2D) magnets. The first demonstration of layered 2D (van
der Waals) magnets [41] attracted great interest, as it enabled a wide variety of both fun-
damental and application-based studies. Such ultrathin magnets do not only provide
the best platform to study magnetism in the 2D limit, but also have the potential for im-
proved efficiency in spintronic devices [42]. Optical techniques were shown recently to
be able to probe the magnetic order in ferro- and antiferromagnets down to the mono-
layer limit [42], but could also be used to investigate and control the order on very short
timescales [43].

The field of ultrafast magnetism was founded 25 years ago with the discovery of the
sub-picosecond demagnetization of a thin Ni film by a 60 fs ultrashort laser pulse [29]
(see Fig. 1.4a). This loss of magnetic order occured orders of magnitude faster than pre-
dicted on the basis of spin-orbit and electron-lattice interaction times. While it sparked a
debate on the exact physical mechanism underlying the ultrafast transfer of angular mo-
mentum [44], this demonstration showed that ultrafast manipulation of magnetic order
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using light is possible. The laser-induced magnetization in metals is often captured in
the simple phenomenological three-temperature model (see Fig. 1.4b): the spins, lattice
and charge carriers form interacting energy reservoirs [39]. A laser-induced increase in
the electron temperature will via different channels be transferred to the spin system,
which results in an increase in the spin temperature and melting of the magnetic order.

a b electrons

spins

lattice

ge-l

ge-s

gl-s

Figure 1.4: Ultrafast demagnetization of a Ni film. a, The transient remanent magneto-optical signal from
a thin Ni film measured as a function of time after excitation with a 60 fs laser pulse. The transient signal
demonstrates a loss of the magnetic order in the film within several picoseconds after excitation (figure with
permission from Ref. [29], APS). b, The three-temperature model that describes the electrons, lattice and spins
as three interacting reservoirs.

OPTICAL MANIPULATION OF MAGNETIC ORDER

In the years following the discovery of the ultrafast demagnetization using laser pulses,
several works demonstrated and studied the optical excitation of coherent magnetic pre-
cession in ferromagnets in time-domain measurements [45]. The laser-driven sudden
change in magnetic anisotropy due to absorbed heat triggers magnetic precession if this
change occurs faster than the precession period. This precession with a frequency of sev-
eral GHz takes place around a new equilibrium (see Fig. 1.5a): the ultrashort laser pulse
affects the magnetic anisotropy and changes the effective magnetic field. Only a few
years thereafter, the concept of laser-driven uniform magnetic precession was taken to a
different class of magnetic materials: the antiferromagnets. These materials have intrin-
sic resonance frequencies up to hundreds of gigahertz, due to the exchange interaction
between the oppositely oriented magnetic sublattices. Ultrashort pulses of light were
shown to excite the antiferromagnetic spin dynamics (see Fig. 1.5b) [46, 47], where the
phase of the precessional motion can be controlled by the polarization of the light [47,
48].

Coherent magnetic precession corresponds to spin oscillations around a minimum
in the magnetic potential or energy landscape, which indicates a stable equilibrium po-



1

8 1. INTRODUCTION

Heff
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ultrafast lasers in magnetic devices.
The interaction o�ight with magnetized media is manifested

in various magneto-optical phenomena. A good example is the
Faraday e�ect, observed as a rotation of the polarization plane of
light transmitted through a magnetic medium11:

a F ¼
x
n
Mzk ð1Þ

wherea F is the specific Faraday rotation,M is the magnetization,n
is the refractive index, k is the wave vector o�ight, and x is the
magneto-optical susceptibility, which is a scalar value in isotropic
media12,13. Various devices, such as magneto-optical isolators and
modulators, make use o�arge values of Faraday rotation in
transparent magnetic compounds.
Much less known is the inverse Faraday e�ect, where high-

intensity laser radiation induces a static magnetizationM(0):

Mð0Þ ¼
x

16p
½EðqÞ£ E*ðq 2Þ

whereE(q) and E*(q) are the electric field of the light wave and its
complex conjugate, respectively13–16. It follows fromequation (2) that
circularly polarized light at frequencyq should induce a magnetiza-
tion along the wave vectork. Note that symmetry considerations of
equation (2) indicate equivalence between photoexcitation by circu-

magnetization has remained an intriguing challenge until now.
The material of choice for our study was dysprosium orthoferrite

M1

M2

z

f = 10 GHz

f = 200 GHz

a b

Figure 1.5: All-optical excitation and detection of uniform spin precession. a, Laser-induced coherent mag-
netic precession of the net magnetic moment around an effective field H eff in a ferromagnetic Ni film. Due to
the effect of the laser pulse, the direction of the effective field becomes different from the equilibrium direc-
tion. b, Optically-induced coherent spin precession in antiferromagnet. In an antiferromagnet the oppositely
oriented magnetic sublattices precess around the easy-axis direction. Note the frequency difference between
the spin precession in the ferro- and antiferromagnet. Figure with permission adapted from Ref. [45], APS (a),
Ref. [47], Springer Nature (b).

sition (see Fig. 1.6a). As outlined in the previous section (see Fig. 1.3), the magnetic po-
tential is a function of a certain coordinate or order parameter. In this case the parameter
is often chosen to beϕ, the angle between the net or sublattice magnetization and a cer-
tain crystallographic axis. The ability to excite spin oscillations using laser pulses hints at
a more exciting and technologically relevant application: bringing the magnetic material
from one magnetic configuration to the other (see Fig. 1.6b). As switching between two
stable phases can be used to store information in binary memories, this may enable new
technologies for faster magnetic recording [49]. To induce such a magnetic order-order
phase transition at will in the fastest and most efficient way therefore forms an ongo-
ing challenge. For ferromagnets and ferrimagnets this switching would correspond to
(precessional) magnetization reversal: changing from one stable orientation of the net
magnetization to another one. Also in antiferromagnets there can exist multiple stable
orientations for the antiferromagnetic sublattices.

Indeed, there have been demonstrations of ultrafast magnetic order-order phase tran-
sitions in several types of magnetic materials. Magnetization reversal was studied in fer-
romagnets [50] and metallic ferrimagnets close to the compensation temperature [37,
51]. Similarly, spin-reorientation transitions were triggered on picosecond timescales in
the rare-earth orthoferrite antiferromagnets [34, 52] and ferromagnetic order was gener-
ated by inducing an AFM-FM phase transition in FeRh [53, 54]. As laser-induced heating
formed the basis of all these instances of magnetic order-order transitions, this stimu-
lates to find less dissipative ways of switching.

RESONANT OPTICAL CONTROL OF MAGNETIC ORDER

Efficient pathways to control magnetic order crucially rely on the ability to manipulate
the microscopic interactions that stabilize the macroscopic order. In this regard, exci-
tation of optical resonances that involve degrees of freedom that are tightly coupled to
the magnetic order might provide these pathways. Over the past decade there have ap-
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Figure 1.6: Laser-induced magnetic dynamics. a, Magnetic or spin precession corresponds to oscilllations
around a minimum in the magnetic potential. b, Magnetic potential as function of an order parameter ϕ.
Large-amplitude precession can eventually bring the system to a metastable equilibrium.

peared several works that focus on the excitation of a specific degree of freedom and the
effect on magnetism. One of the first examples concerned the resonant excitation of spin
precession using intense terahertz pulses [55] that directly couple to the spins through
their magnetic field component. Resonant excitation of infrared-active phonons led
to ultrafast melting of magnetic order [56], the excitation of spin-precession [57], and
was used to study spin-lattice coupling in ferrimagnetic yttrium iron garnet [58]. The
net magnetization in a dielectric, transparent cobalt-doped ferrimagnetic garnet was
switched to a different stable state using ultrashort pulses to resonantly pump the d −d
transitions of the cobalt ions [38], which are responsible for the strong magnetocrys-
talline anisotropy in the material. Terahertz electromagnetic pulses were used to directly
excite electronic orbital transitions and induce large-amplitude coherent spin oscilla-
tions [59] and a subsequent ballistic spin-reorientation transition [60]. Finally, direct
optical excitation of d − d orbital transitions was used as a mechanism to resonantly
change the exchange interaction in iron oxides [61]. These very recent successes invite
for further studies on resonant excitation and their potential to induce magnetic dynam-
ics and dynamically change magnetic properties on very short timescales.

1.2.2. PROPAGATING EXCITATIONS IN INSULATING MATERIALS
The concepts of coherent, uniform spin precession and laser-induced phase changes
as discussed in the previous section and summarized in Fig. 1.6 occur locally and are
restricted to the volume initially excited by the optical pulse. The generation of propa-
gating modes is another topic of interest, as propagating excitations offer a compelling
feature: they allow for the transport and processing of information. Specifically, the con-
cept of short-wavelength spin waves as information carriers and key constituents of fu-
ture wave-based computing devices [62–65] (see Fig. 1.7a) has attracted a lot of attention.
The generation of spin waves with a varying degree of coherency and their subsequent
propagation over macroscopic distances has been demonstrated in insulating ferrimag-
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nets and studied heavily over the past years [66–68]. On the contrary, the generation of
coherent short-wavelength propagating spin waves in antiferromagnets, has not been
demonstrated. This is because the intrinsic resonance frequencies of antiferromagnets
are orders of magnitude higher, which not only provides potential for future devices at
THz frequencies, but also results in increased difficulty for coherent excitation.

The nature of normal modes, be it magnetic or vibrational, as determined by its
wavelength and the dispersion relation (Fig. 1.7b), defines whether the excitation can
propagate away from the excited volume. The light-induced generation of high-frequency,
short-wavelength quasi-particles requires a broadband stimulus that can simultaneously
provide the required momentum. It has been known for a long time that confined optical
excitation can result in the emission of broadband propagating wavepackets of coherent
acoustic phonons [69]. This observation led to the emergence of the field of picosecond
ultrasonics [70] with demonstrations of strain-induced dynamical functionalities in ox-
ides and potential to use the gigahertz to terahertz acoustic phonons for ultrafast light
processing [71]. Apart from the direct applicability of dynamical strain in the form of
propagating strain pulses, detection of these pulses can also inform us on the type and
amplitude of the strain initially present in the optically excited volume.

As the optical absorption of materials is intimately connected to the presence of
optically-active transitions, resonant optical excitation is inevitably confined to a vol-
ume close to the material’s surface, the so-called skin depth. Additionally, resonant ex-
citation can alter specific microscopic degrees of freedom, with the capability to induce
excitations of significant amplitude. This makes it a powerful tool to excite broadband
wavepackets of propagating quasi-particles, which will be the topic of chapter 4 and
chapter 7.
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Figure 1.7: Propagating spin excitations. a, Short-wavelength propagating spin waves can be used to transport
information. b, The dispersion relation defines the frequency and propagation velocity vg of the excitation.

1.3. STRUCTURE OF THIS THESIS
In this thesis we explore how ultrafast resonant excitation of optical transitions can be
used to induce localized and propagating structural dynamics in wide-bandgap insu-
lators and control magnetic interactions and manipulate magnetic order in antiferro-
magnets. We do this by resonantly targeting specific lattice vibrations and orbital and
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electronic transitions with ultrashort pulses of light. Chapter 2 and 3 provide the neces-
sary background information and tools to understand the work in this thesis. Chapter 2
discusses the basic concepts of magnetic order and spin waves that are important to this
thesis. It also includes an introduction to magnetic interactions. Chapter 3 gives a brief
overview of the main experimental methods and the typical experimental setups that
were used.

We then proceed with the core of this thesis, which consists of four works that study
the structural and magnetic dynamics of various materials in response to resonant exci-
tation of optically-active transitions:

• In chapter 4 we introduce the concept of nonlinear phononics and study the co-
herent structural dynamics after resonant excitation of infrared-active optical pho-
nons in LaAlO3. We show in this wide-bandgap insulator that ionic Raman scatter-
ing drives coherent rotations of the oxygen octahedra, which is the result of anhar-
monic phonon-phonon coupling. The resonant lattice excitation also generates
longitudinal and transverse strain wavepackets, which are the result of anisotropic
optically induced strain.

• In chapter 5 we demonstrate that light-driven infrared-active phonons can be
used to manipulate microscopic interactions on ultrashort timescales, which re-
sults in control over macroscopic magnetic states. When mid-infrared laser pulses
are tuned to resonance with a lattice mode in the antiferromagnet DyFeO3, they
can induce nonthermal, long-living changes of the exchange interaction between
the Dy orbitals and the Fe spins. We identify nonlinear phonon-phonon coupling
as the underlying mechanism. With this renormalized interaction we can tip the
balance and induce picosecond coherent switching from a collinear antiferromag-
netic to a weakly ferromagnetic phase.

• Chapter 6 explores the effect of resonant excitation of orbital transitions within
the magnetic nickel ion d-orbital manifold in the van der Waals antiferromag-
net NiPS3. We demonstrate the selective excitation of a magnon mode with cor-
responding two-dimensional characteristics. We show that the excitation of this
mode is the result of a transient photo-induced magnetic anisotropy, which emerges
in response to photoexcitation of the electrons into states with lower orbital sym-
metry.

• Chapter 7 describes how ultrashort pulses of light can be used to generate a wave-
packet of coherent propagating spin waves in the insulating antiferromagnet DyFeO3.
The nanometer confinement of laser pulses with photon energies above the mate-
rial’s bandgap creates a strongly non-uniform spatial spin-excitation profile. This
results in the emission of a broadband wavepacket of coherent antiferromagnetic
magnons, propagating from the sample surface into the material.

In chapter 8 we summarize the main observations of this thesis, reflect on unanswered
questions and provide perspectives for future research.





2
MAGNETIC ORDER AND SPIN WAVES

“Needle in a haystack’s easy — just bring a magnet."

Keith DeCandido, in The Zoo Job (2013)

In this chapter we provide the theoretical background required to understand the results
presented in the subsequent chapters. We introduce atomic magnetic moments in solids
and discuss the most important fundamental magnetic interactions. After reviewing the
different sources of magnetic anisotropy, the chapter ends with a derivation and compar-
ison of the spin-wave dispersion relation in ferro- and antiferromagnets.
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2.1. MAGNETIC MOMENTS AND ELECTRON ORBITAL STATES IN

CRYSTAL FIELDS
Generating a macroscopic net magnetic moment requires the existence of microscopic
ones. Understanding the origin of a net magnetic moment thus boils down to finding
the small magnetic moments that constitute it. It turns out that it is the electron that
possesses the microscopic magnetic moment and thus forms the small building block of
magnetic materials.1

The total magnetic moment of an electron consists of two contributions: an orbital
magnetic moment and a spin magnetic moment. The orbital magnetic moment is re-
lated to the electron’s orbital angular momentum l, while the spin magnetic moment
arises from the intrinsic (spin) angular momentum s. In all atoms other than hydro-
gen, there is more than one electron present. This means that the total angular mo-
mentum (and therefore total magnetic moment) of a localized magnetic ion becomes
a function of the moments of the many (interacting) electrons in the outer shell. The
way in which the different types of angular momentum add up, depends on the relative
magnitude of the orbit-orbit coupling, spin-orbit coupling and spin-spin coupling. For
magnetic 3d transition metal ions, for which the spin-orbit coupling is quite weak, the
Russell-Saunders coupling is applicable [72]. The orbital angular momenta li of all elec-
trons are first combined into the total orbital angular momentum L and the spin angular
momenta si in the total spin angular momentum S. The total angular momentum J is
then given as J = L+ S. For angular momentum states that are well-described by the
Russel-Saunders coupling, Hund’s rules can identify the ground state electronic config-
uration [73].
With the total angular momentum J in the atom’s ground state determined, the magni-
tude of the corresponding magnetic moment µt is given by:

µJ = 〈µt〉 =−g JµB

√
J (J +1). (2.1)

Here J is the total angular momentum quantum number, and g J the Landé g-factor [73].
µB is the Bohr magneton defined by µB = eħ

2me
, with e and me the electron charge and

mass, respectively and ħ the reduced Plank constant.

2.1.1. QUENCHING THE ORBITAL MOMENT
In the previous section we have discussed the total magnetic moments of free atoms
with full spherical symmetry. We can associate a certain energy E0 with the Coulomb
interactions leading to Hund’s rules that determine the lowest-energy configuration of a
multielectron ion. In real solids, however, the crystal environment in combination with
spin-orbit coupling affects the systematics of the free atom electronic levels. We will fo-
cus on the 3d transition metal ions. In this class of materials, the 3d sub shell is not filled
completely, with the electronic configuration given by [Ar]3d n4s2, 1 ≤ n ≤ 10 2. In their
natural oxidation states, the 3d electrons determine the electronic and magnetic prop-
erties of these ions. In order to deduce the properties of the magnetic moments in solids,

1The atomic nucleus also possesses a magnetic moment, but it is around 3 orders of magnitude smaller than
the electron’s magnetic moment and therefore often neglected.

2For zinc and chromium the 4s shell contains only one electron
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we can treat the crystal field (energy ECF) and the spin-orbit interaction (energy Eso) be-
tween the spin and orbital angular momentum as perturbations with E0 > ECF > Eso as
hierarchy of the different interactions.3 Specifically, this means that the Coulomb and
exchange interaction within the magnetic atom are considered most important. As a
result, we consider one-electron d orbitals [74]. When the 3d magnetic ions are sur-
rounded by a regular octahedron of negatively charged ligands such as O2 – and S2 –

(which is one of the most common environments in the broad class of transition metal
oxides), the spherical symmetry is violated and the five-fold degenerate d levels are split
into a lower triplet (t2g) and higher doublet (eg ). This energy splitting ∆CF (or associated
energy ECF) between the t2g and eg states is caused by the interaction of the d-electrons
with the surrounding ligands [72]. The negatively charged anions induce a cubic poten-
tial, which leads to an increase in energy for wavefunctions with a large electron density
in the direction of the octahedral corners (see Fig. 2.1).

eg

t2g
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y

dz²

dx²-y²

dxy
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dxz

ΔCF

Figure 2.1: Crystal field splitting. Crystal field splitting of the five-fold degenerate electron d levels of the 3d-
ion (grey) in an octahedral field into the eg and t 2g manifolds. The angular distribution of the electron density
for the conventional basis states is shown. Wavefunctions from Ref. [75].

The crystal field splits the five degenerate d-orbitals, which can be denoted by
∣∣l = 2, lz

〉
,

or
∣∣lz

〉
for short. An important consequence of the crystal field becomes apparent when

looking at the expressions of the eg and t2g wavefunctions as linear superpositions of the
basis states [72]:

eg :


∣∣∣z2

〉
= |0〉∣∣∣x2 − y2

〉
= 1p

2

(|2〉+ |−2〉)

t2g :


∣∣x y

〉 = −ip
2

(|2〉− |−2〉)
|xz〉 = −ip

2

(|1〉− |−1〉)∣∣y z
〉 = ip

2

(|1〉+ |−1〉) .

(2.2)

3Deviations from this hierarchy and competition between E0 and ECF lead to the phenomenon of high-spin
and low-spin states [72]



2

16 2. MAGNETIC ORDER AND SPIN WAVES

Here we used real combinations of the
∣∣lz

〉
as basis states for the t2g manifold. Looking

at the expressions in Eq. 2.2, we immediately see that the orbital angular momentum
l = 2 for free atoms with spherical symmetry is quenched or reduced in an octahedral

crystal field environment. In the eg doublet, all diagonal matrix elements
〈

eg

∣∣∣ l
∣∣∣eg

〉
= 0.

Moreover, the off-diagonal matrix elements that are related to lx and ly operators are
also 0, as these operators (or the linear combinations l± = lx ± i ly ) can only mix states
with difference in angular momentum projection ∆lz = ±1. The same reasoning shows
that for the t2g triplet in the chosen basis the diagonal matrix elements are 0 and some
off-diagonal matrix elements can have non-zero values.4

The magnetic moment of a state is given by the average value of the operator µB(L+
2S). Applying a magnetic field along the z-direction, we see that the orbital contribution,
linear in the expectation value of lz , vanishes. Note that the levels still have a definite
total angular momentum, but that the different vector components are no longer con-
stants of motion. The consequence is that the contribution of the orbital magnetic mo-
ment is said to be ‘quenched’. This can be experimentally confirmed by measuring the
effective magnetic moment of these ions in magnetically dilute salts, where the ions ex-
perience octahedral crystal fields [76]. In the simple case of 3d ions in octahedral fields,
the magnetic moment is mainly determined by the spin moment, with little orbital con-
tribution.5

2.2. MAGNETIC INTERACTIONS
In the previous section we discussed the origin of isolated atomic magnetic moments. An
ensemble of localized microscopic magnetic moments can only produce a macroscopic
net magnetization if a large fraction of them are oriented in the same direction. More
generally, in order for some sort of magnetic order to spontaneously appear and prevail
over other types of magnetic ordering, there needs to be an associated energy gain. This
requires the presence of interaction, either between the magnetic moments themselves
or with an external magnetic field. In this section we discuss the different microscopic
interactions that give rise to spontaneous magnetic order and the existence of preferred
directions for the magnetic moments in solids. We have seen in the previous section that
in many materials of interest this magnetic moment mainly comes from the spin angular
momentum. For reasons of simplicity we will therefore assume in the rest of this section
that the localized moments are carried completely by the spins.

2.2.1. EXCHANGE INTERACTION
With a rather simple calculation, it can be shown that the magnetic dipole interaction
between the different localized moments is so weak that thermal excitation would de-
stroy magnetic order at temperatures of several Kelvin [77]. There exist, however, many
ferromagnetic materials that sustain their order up to room temperature. This implies
the presence of a stronger interaction that keeps the magnetic moments ordered.

4More specifically, the triplet can be mapped onto the p-orbitals (l = 1), provided that the effective moment
should actually taken to be negative [72].

5Spin-orbit coupling can result in orbital contributions, as we see in the following section.
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DIRECT EXCHANGE

The first phenomenological explanation for the high ordering temperatures was pro-
posed by Pierre Weiss in 1906, who explained ferromagnetism in terms a huge internal
‘molecular field’, proportional to the applied magnetic field. It took two more decades
before it was found that the origin of this effective internal field lies in the exchange in-
teraction between the different electrons. This interaction derives from a combination
of Coulomb repulsion between the electrons that carry the spin and have overlapping
wavefunctions, and the symmetrization postulate. As result of this interaction and a
charge distribution that depends on the spin configuration, there is an energy difference
between states with parallel and antiparallel spins. For a two-electron system, with spin
S1 and S2, this means that there is an energy difference between the singlet state (S = 0)
and the triplet states (S = 1). This can be captured in a Hamiltonian of the following
form, which is called the Heisenberg Hamiltonian:

Hexch = AS1 ·S2, (2.3)

with A the singlet-triplet energy splitting. More generally, the Heisenberg Hamiltonian is
an exchange model that describes the effect of exchange interaction in a many-electron
system (N electrons) in terms of the individual spin operators Si :

Hexch =−
N∑

i 6= j
Ji j Si ·S j , (2.4)

with Ji j the exchange integral that captures the exchange interaction between the dif-
ferent spins and depends on the overlap of the electronic wavefunctions (see Fig. 2.2a)
and the sum over all pairs of spins. The coupling energy constant Ji j is positive for ferro-
magnetic, parallel coupling and negative for antiferromagnetic, antiparallel coupling. If
this interaction occurs between electrons on neighbouring atoms, this is known as direct
exchange.

SUPEREXCHANGE

The electrons that carry the magnetic moments in insulating materials such as many
magnetic transition-metal (TM) oxides are localized. Moreover, the magnetic ions are
often separated by non-magnetic ones, such as oxygen. As a result there is very little di-
rect overlap between the 3d orbitals from nearest-neighbour magnetic ions. However,
the 3d-orbitals of both these ions are hybridized with the 2p-orbitals of the oxygen ions.
The non-magnetic oxygen ion therefore ‘connects‘ the two magnetic ions and acts as a
mediator that helps the magnetic ions to interact. We consider the situation that the 3d
transition metal ions are magnetic and have a single localized d-electron or a half-filled
shell (Fe3+, Mn2+). The oxygen atoms have filled p-orbitals and the TM-O-TM bond is
180° (see Fig. 2.2b). The d t2g-orbitals hybridize in that case with the oxygen p-orbitals.
Without considering hopping of electrons (spins) between the different ions, the ground
state has one electron localized on each TM-ion, due to the strong Coulomb repulsion
U between two electrons at one site. The two spins can be aligned either ferromagnet-
ically or antiferromagnetically. Using second-order perturbation theory, starting from



2

18 2. MAGNETIC ORDER AND SPIN WAVES

the Mott-insulator ground state, the energy gain due to hopping with a small associ-
ated energy t can be calculated. The second-order process allowing electrons to hop to
the other magnetic ion, is forbidden by the Pauli principle when the spins on nearest-

neighbour magnetic ions are aligned. As a result there is only an energy gain J ∼ −t 2

U
for the antiferromagnetic ground state, which is why it is favored over the ferromagnetic
ground state. Summing up different hopping possibilities, the superexchange interac-
tion effectively favours oppositely oriented spins on the magnetic ions and the exchange

constant becomes J =− 2t 2

U [74].
In general, the different d-orbitals are split in the crystal field, can be only partially

filled and TM-O-TM bonds can also have values close to 90°. The sign and strength of the
exchange still follow regularities, which are formulated as the Goodenough-Kanamori
rules [72]. In most cases of transition metal oxides with octahedral crystal environments
and 180° TM-O-TM bonds, however, the exchange favours antiferromagnetic alignment.

There are several other type of exchange interactions. Some of them result in mag-
netic anisotropy, which is the topic of section 2.3.

TM TM
O

a b

Figure 2.2: Exchange interaction. a, Direct exchange is the result of overlapping wavefunctions of the mag-
netic ions. b, Schematic illustration of the superexchange interaction in a 3d magnetic oxide. The 3d-ions have
one unpaired electron and the oxygen shell is filled. Antiferromagnetic alignment allows for hopping through
second-order processes, which reduces the overall energy.

2.2.2. ZEEMAN INTERACTION
Magnetic moments µ orient in external magnetic fields H. This is due to the Zeeman
interaction, which gives an energy

HZee =−µ0µ ·H

= g Jµ0µB

ħ J ·H.
(2.5)

Even in antiferromagnets, which possess no net magnetic moment in zero fields, this en-
ergy term can play an important role. Large applied fields result canting of the magnetic
sublattices and in spin-flop transitions.
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2.2.3. SPIN-ORBIT INTERACTION
In section 2.1.1 we argued that the magnetic moment of many 3d ions in solids (expe-
riencing octahedral crystal fields) is determined by the spin only, as the orbital contri-
bution is quenched. The interactions between the different spins is due to the exchange
interaction, which is intrinsically isotropic. The reason that the spins can still ‘feel’ the
crystal lattice, is the spin-orbit interaction that couples the spin and orbital magnetic
moments.

Spin-orbit interaction describes the interaction between the spin angular momen-
tum S and the orbital angular momentum L. S and L can either be single-electron angu-
lar momenta or represent the sum of coupled electron momenta. While the existence of
their coupling with the correct factors follows naturally from the relativistic Dirac equa-
tion [78], we can picture spin-orbit coupling with a semi-classical model as well [74].
Consider the situation shown in figure 2.3, where an electron (mass me) moving in a cir-
cular orbit or radius r is associated with current loop I and has orbital magnetic moment
µorb =−µB

ħ L =− e
2me

L. This results in a magnetic field H in the center of the loop, which
then interacts with the spin magnetic momentµs =− e

me
S. θ is the angle between S and L

in a vector model. The field in the center is given by Horbit = I /2r . Using that a magnetic
moment µloop of a current loop with current I and area S = πr 2 is given by |µloop| = I S,
this can be rewritten to

Horbit =
µorb

2πr 3 =− eL

4πmer 3 . (2.6)

The spin-orbit energy is then given by

Eso =−µ0µs ·Horbit =− e2

4πε0m2
ec2r 3

L ·S (2.7)

with ε0 = 1
c2µ0

the vacuum permittivity, c the speed of light and both L and S in units of

ħ.
An alternative derivation [77] considers the situation from the electron frame (with

spin (orbital) angular momentum s (l)), where the orbiting nucleus constitutes a mag-
netic field at the static position of the electron that acts on the spin magnetic moment.

Including the relativistic Thomas factor
(

1
2

)
to account for the reference frames that ac-

celerate with respect to each other, the correct expression for the intrinsic spin-orbit
interaction can be obtained. This leads to an expression for the spin-orbit Hamiltion of
the form

Hso =−1

2
µ0µs ·H

= eħ2

2mec2r

dV

dr
l ·s

(2.8)

Here V (r ) is the potential energy corresponding to the electrostatic interaction between
the nucleus and the electron. For an electron in the Coulomb field of a hydrogen-like
atom with quantum numbers n, l , the spin-orbit coupling ξnl is given by integrating
over the wavefunction. This results in ξnl ∼ Z 4 1

n3l (l+1/2)(l+1)
and scales rapidly with the

nucleus charge Z . The formalism can be extended to the resulting spin S and angular
momentum L of a multi-electron system [76, 78]. This will give the term HSO = λS ·L,
with λ= 〈ξ〉/2S.
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S

L

H, m

I

r

θ

Figure 2.3: Semi-classical spin-orbit coupling. Schematic of a simple model to derive the spin-orbit coupling
energy (Eq. 2.7). The electron orbiting the nucleus has an orbital angular momentum L, orbital magnetic
moment m and causes a magnetic field H in the center of the loop. This magnetic field interacts with the spin
magnetic moment.

2.3. MAGNETIC ANISOTROPY
Magnetic anisotropy refers to the situation that in many magnetic materials the fer-
romagnetic or antiferromagnetic axis lies along some fixed crystallographic directions.
This behaviour can be treated phenomenologically by expressions for the anisotropy en-
ergy density Ean of the form

Ean = K1 sin2θ, (2.9)

where θ is the angle between the magnetization vector (ferromagnets) or Néel vector
(antiferromagnets) and the easy axis. K1 is called the uniaxial anisotropy constant and
depends on temperature. Deflecting the magnetic or antiferromagnetic order parame-
ter from the easy axis comes with a certain energy cost. Eq. 2.9 only suffices to describe
the simple uniaxial magnetic systems. Most magnetic materials exhibit anisotropy con-
tributions of higher-order. In general, expressions like Eq. 2.9 need to remain invariant
under all operations that together form the crystal symmetry group.

A general Heisenberg Hamiltonian (Eq. 2.4) might describe whether the system is or-
dered ferromagnetically or antiferromagnetically, it does not provide indications along
which axis the spins will orient themselves. The exchange interaction itself is isotropic,
and we need spin-orbit interaction to couple the spins to certain crystallographic or
sample orientations. Regardless of the exact microscopic origin, a term in the Hamilto-
nian of the form ξnl L ·S (see previous section), gives an energy gain if L and S are aligned
(anti)parallel compared to perpendicular orientations. The orbital angular momentum
L does couple to the crystal field. This gives rise to the concept of magnetocrystalline
anisotropy: preferential directions of the (spin) magnetic moments in the crystal. Below
we describe a few interactions that result into magnetic anisotropy.
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2.3.1. SINGLE-ION ANISOTROPY
The first contribution to anisotropy depends on the energy of a single ion in the crystal
environment. It arises from the combination of the spin-orbit coupling and the elec-
tronic configuration of the anisotropic d-orbitals in the crystal field. As the spin-orbit
interaction energy is much smaller than the intra-atomic exchange interaction and the
crystal field-splitting, it can be treated using perturbation theory. The strength and ex-
act expression of the single-ion anisotropy depend on the details of the electronic con-
figuration and the occupation of different electronic levels ψn , with energy En . Us-
ing second-order perturbation theory, the effective anisotropic Hamiltonian for an elec-
tronic ground state corresponding to an orbital singlet, can be written as [78]:

Ĥeff =−λ2
(
Λxx Ŝ2

x +Λy y Ŝ2
y +Λzz Ŝ2

z

)
, (2.10)

with

Λi i =
excited states∑

n

〈
ψ0

∣∣ L̂i
∣∣ψn

〉
En −E0

. (2.11)

Looking at the expressions in Eqs. 2.10 and 2.11, we see that anisotropy arises from the
way the different electronic levels are mixed by the orbital angular momentum operator.
Another effect of the spin-orbit coupling is that it recreates part of the orbital momentum
that was quenched by the crystal field interaction.

An important note must be made here. For 4 f (rare-earth) magnetic ions, the situ-
ation is completely different. For these magnetic ions, the crystal field energy is small
compared to the spin-orbit interaction, and the magnetic moment consists of a large
orbital component. The magneto-crystalline anisotropy is then calculated using first-
order perturbation, with the crystal field as perturbation [79]. The resulting anisotropy
is in general very large compared to the situation for magnetic transition metal ions.

2.3.2. TWO-ION ANISOTROPY
Two-ion anisotropy is the collective name given to anisotropy resulting from the inter-
action between two magnetic ions. It arises from different types of interaction, often
competing within the same system, depending on which type of magnetic ions interact
and the nature of the material. The most important ones are:

• Dipolar interactions and shape anisotropy: Pairs of magnetic moments can inter-
act with each other through dipole-dipole coupling. While this coupling is in gen-
eral weak compared to exchange interactions, it is long-range and highly anisotropic
and can be decisive in determining the final preferred orientation. Due to the long-
range character of this interaction, the orientation of a magnetic moment depends
on the macroscopic magnetization orientation. This factor is referred to as shape
anisotropy.

• Indirect exchange: In metallic materials, localized magnetic moments can be cou-
pled through intermediary conduction electrons. While in the simplest approx-
imation this interaction is isotropic, orbital contributions in 4 f ions can lead to
higher-order corrections [79].
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• Anisotropic (symmetric) exchange: Anisotropic exchange is a general term that
refers to a situation where the interaction strength between two spins depends on
the orientation of the spins relative to their bond vector. This means that the terms
instead of the isotropic Heisenberg Hamiltonian (Eq. 2.4) become of the form

Jxx Sx,i Sx, j + Jy y Sy,i Sy, j + Jzz Sz,i Sz, j , (2.12)

with Si , j the spin-operators of two neighbouring spins and the exchange param-
eters Ji i not necessarily equal. Microscopically, such terms can arise from third-
order perturbation contributions. For example, for 3d S-type ions with a non-
degenerate orbital ground state, this contribution can be evaluated and contains
products containing the spin-orbit interaction in the two interacting ions com-
bined with their exchange interaction [80]. The physical interpretation is as fol-
lows. The spins on both sites turn slightly due to spin-orbit interaction. This has
an effect on the shape of the atomic electron shells, which then alters the exchange
energy between the spins.

• Antisymmetric exchange: A special contribution to the total magnetic exchange is
given by the antisymmetric exchange. This is a relativistic correction to the regular
superexchange, and given by a term in the Hamiltonian of the form:

H DM = Di j ·
(
Si ×S j

)
. (2.13)

In general the tensor Di j is determined by the crystal and magnetic symmetry and
the orientation of the neighbouring magnetic ions. This term was introduced phe-
nomenologically by Dzyaloshinskii [81] with a microscopic origin given by Moriya
a few years later [82]. Moriya showed that taking into account spin-orbit interac-
tions for both magnetic ions and the exchange interaction between them, second-
order perturbation theory gives a term of this form, which is now conventionally
referred to as Dzyaloshinskii-Moriya interaction (DMI). The most important effect
of this interaction is that it favours non-collinear spin ordering. The competition
between the superexchange and DMI-interaction leads to weak ferromagnetism:
a slight canting of the spins results in a small, but measurable net magnetic com-
ponent. Examples of weak ferromagnets are the rare-earth (R) orthoferrites RFeO3

and α-Fe2O3 hematite.

2.3.3. ANISOTROPY IN TWO-DIMENSIONAL MAGNETS
A system is considered to be magnetic if the microscopic magnetic moments order over
long-range distances, with an associated spontaneous breaking of time-reversal symme-
try. The interaction between the magnetic moments that drives the ordering competes
with thermal fluctuations that tend to destroy this long-range order and become larger
at higher temperature. Ultimately, at the ordering temperature TC, the thermal fluctu-
ations are victorious and the long-range order is indeed destroyed. The thermal fluc-
tuations become more decisive as the dimensionality of the system is lowered. While
ordering is possible in three-dimensional magnetically isotropic systems, thermal fluc-
tuations destroy long-range magnetic order in the two-dimensional equivalent. The
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Mermin-Wagner theorem [83] states that no finite-temperature ordering as a result of
isotropic and short-ranged interactions is possible in two-dimensional magnets. How-
ever, if the spin dimensionality is lowered as well, for example by introducing anisotropy,
which favours certain spin directions, a gap in the spin-wave spectrum opens. The fre-
quency gap suppresses the effect of thermal fluctuations and a transition to a magnet-
ically ordered phase becomes possible. This highlights the importance of anisotropy
for the mere existence of magnetic 2D materials. Indeed, after many years of theoreti-
cal predictions, the existence of two-dimensional (mono-layer) magnetic materials was
demonstrated very recently [41, 42].

2.4. MAGNETIZATION DYNAMICS AND SPIN WAVES
Ferro- and antiferromagnets have in common that at finite temperature the sponta-
neous magnetization (of the sublattices) decreases due to magnetic excitations. The
lowest-energy magnetic excitations are called spin waves and can be thought of as spa-
tial and temporal oscillations in the relative orientations of all spins on the lattice. These
collective excitations were first predicted by Bloch in the case of the spins in a ferromag-
net [84]. As the spin deviations spread over the whole lattice, they can be described by
a wavevector k, with an energy εk = ħωk. While we can visualize spin waves as classical
excitations, they are a true quantum phenomenon and their quanta are called magnons.
The relation between the wavevector k and the frequency ωk is called the dispersion re-
lation. One of the most interesting properties of antiferromagnets is the so-called ex-
change enhancement or exchange amplification of all antiferromagnetic dynamic pa-
rameters compared to those in ferromagnets. This exchange enhancement results in
high magnetic resonance frequencies and spin wave velocities. In this section we discuss
the different energies scales in ferro- and antiferromagnets and derive the dispersion re-
lation using a semi-classical approach.

2.4.1. UNIFORM SPIN PRECESSION

FERROMAGNETS

Standard ferromagnetic materials are described by a non-zero average value of the spin
density 〈S〉 or magnetization M. The magnetization is related to the average spin density
by M =−gµB〈S〉. Here g is the Landé factor, which for ions in the s-state takes the value
g ≈ 2. The occurrence of a net magnetization has as result that time-reversal symmetry
is broken, as M →−M under inversion of time.

Some phenomena in ferromagnets can be described using the continuum approach.
Fortunately the most important dynamical processes fall in that category. We start by
defining the magnetization

M = 1

V

∑
n
µn , (2.14)

The sum is taken over all microscopic magnetic moments µn in the small, but macro-
scopic volume V , which in this case are the spin magnetic moments. The continuum
approach now allows us to use classical theory to derive the dynamical properties of an
isotropic ferromagnet [85]. We assume that the magnetization M(r, t ) is uniform or only
changes very slowly in space, so that all microscopic magnetic moments in the volume
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form a ‘macrospin’ M. The equation of motion for M in a magnetic field H is then simply
given by [85]:

dM

dt
= γ [M×H] (2.15)

and is called the Landau-Lifshitz equation. γ is the gyromagnetic ratio, the proportion-
ality constant between the magnetic moment µ and the total angular momentum. This
means that it is not necessarily equal to the spin g -factor, but often very close, as the
small difference is due to the orbital magnetic moments. An important feature of Eq. 2.15
is that it follows that the magnitude |M| remains constant in time: M precesses around
the magnetic field direction with frequency ωH = γH , which is called the ferromagnetic
resonance. In the more general case of an anisotropic ferromagnet, the Landau-Lifshitz
equation becomes

dM

dt
= γ[

M×Heff
]

, (2.16)

with Heff =− ∂U
∂M and U =Uan+UZ the magnetic energy density that contains an anisotropy

(Uan) and Zeeman (UZ ) contribution. The exchange energy is neglected, as it does not
enter the equation of motion [85]. The magnetization precesess around an effective
magnetic field (see Fig. 2.4a) which is the sum of an anisotropy field Han =− ∂Uan

∂M and the
applied magnetic field H. This causes a non-zero value of the ferromagnetic resonance
(FMR) frequency f = γ

2πHan at zero applied field, due to the presence of anisotropy. The
value of the FMR is usually in the several GHz range.

Heff

M
M1

M2

z

Figure 2.4: Uniform spin precession. a, In ferromagnets, the net magnetization M precesses around an effec-
tive magnetic field Heff. b, In antiferromagnets, both magnetic sublattices precess around their equilibrium
direction.

ANTIFERROMAGNETS

In antiferromagnetic materials, time-reversal symmetry is also broken, but there is no
net macroscopic magnetic moment M. The reason for this is the existence of a finite
number n of magnetic sublattices, each with a net magnetization Mi , which cancel each



2.4. MAGNETIZATION DYNAMICS AND SPIN WAVES

2

25

other such that
∑

i Mi = 0. We restrict ourselves to the simplest situation with two oppo-
sitely oriented magnetic sublattices M1 and M2. In this case, it is the antiferromagnetic
or Néel vector L = M1−M2

2
6 that serves as order parameter. It is important to note that this

does not exclude the presence of a small magnetic moment. Both an applied magnetic
field H and interactions of relativistic origin such as the Dzyaloshinskii-Moriya interac-
tion can lead to canting of the magnetic moments Mi and incomplete compensation.

Antiferromagnetic dynamics is qualitatively different from the dynamics in ferro-
magnets. The equations of motion are derived for the magnetic sublattices M1 and M2.
The magnetic energy density UAFM contains in that case a term that derives its origin
from the interaction between the two sublattices [85] that is given by [86–89]:

UAFM, ex = 1

4M0
Hexm2. (2.17)

Here M0 is the sublattice magnetization, m = (
M1 +M2

)
/M0 and Hex is the amplitude

of the exchange field Hex, which can be on the order of 106 Oersted. In the equations
of motions for the magnetic sublattices this now gives a very large effective field. The
full derivation is given in appendix 2.5, but the most important result is stated here:
in zero magnetic field, the antiferromagnetic resonance is ω = γ

p
HexHan. As typicallyp

Hex/Ha ∼30-100, this is the first manifestation of the exchange enhancement of dy-
namical parameters. In antiferromagnets with ordering temperatures of several hundred
Kelvin, which is not uncommon, this will give frequencies in the THz range.

2.4.2. DISPERSION RELATION
Uniform spin precession corresponds to a spin wave with infinite wavelength, i.e. k = 0.
The spins can also precess with a phase difference between neighbouring spins (see
Fig. 2.5a), which corresponds to a travelling spin wave. The frequency of these spin wave
modes is determined by the dispersion relation, the relation between the wavevector k
and the frequency ω of the spin wave at this wavevector.

FERROMAGNETS

We can add a nonuniform term Uex to the energy of exchange interaction of a ferromag-
net, to account for the increased exchange energy when neighbouring magnetic mo-
ments are not aligned:

Uex = 1

2

3∑
i=1

3∑
j=1

qi j
∂M

∂xi

∂M

∂x j
, (2.18)

with qij the components of a tensor q. This is the lowest-order term that takes deviations
from a uniform magnetization into account. For an isotropic ferromagnet this then takes
the form

Uex = q∇2M (2.19)

Working out the equations of motions, this gives a dispersion [85]

ω2 =
(
ω0,FM +ηk2

)(
ωH +ηk2 +ωdip sin2θk

)
. (2.20)

6Following convention, we use the symbols L and l for the Néel vector and its normalized version, respectively.
Unfortunately these are the same symbols that are conventionally also used for angular momentum. From
this point onwards, l and L will always refer to the (normalized) Néel vector in this thesis.
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ω0,FM = γH0 is the spin-wave gap due to the internal magnetic field H0 (taking into ac-
count the geometrically dependent demagnetization field). ωdip = γµ0M0 results from
the anisotropy of dipolar interaction, and θk is the angle between the wavevector k and
the static magnetization M0. η = γM0q is often referred to as a nonuniform exchange
constant or spin stiffness. Most important to note is:

• For ω0,FM,ωdip ¿ ηk2
(
¿ ηπ

2

a2

)
the dispersion becomes quadratic:

ω∼ ηk2. (2.21)

This approximate dispersion is plot in Fig. 2.5b, with a small spin-wave gap.

• The group velocity in this regime is equal to vg = ∂ω
∂k = 2ηk. Using the quantum

mechanical derivation of the spin wave dispersion [85], we find that η= 1
3

Z S J
ħ a2 ∼

J
ħ a2, with Z the number of nearest neighbours, J the exchange integral, S the spin
quantum number and a the lattice parameter.

ANTIFERROMAGNETS

In the case of antiferromagnets, the full dispersion consists of two branches and (for
wavenumber k ¿ π

a , a the lattice parameter) is given by (see section 2.5):

ω1,2(k) =
√(

ω(1,2)
0

)2 + c2k2, (2.22)

There are some differences with the dispersion relation for ferromagnets. As mentioned
before, the antiferromagnet spin-wave gap ω1,2

0 will be much larger than for ferromag-
nets. The characteristic velocity c can have values up to tens of km/s in antiferromagnets
with high Néel temperatures. In Fig. 2.5b we can see that the physical sense of this quan-
tity is that it equals the limiting spin wave group velocity vAFM, g = ∂ω

∂k . This value can be

estimated as c ' J
ħ a [87]. Comparing this to the ferromagnetic group velocity given by

vFM,g = 2ηk ∼ J
ħ a2k, we find that vAFM,g À vFM,g for k ¿ 1

a . We conclude see that the
spin-wave velocity is another example of an exchange enhanced dynamical parameters
in antiferromagnets compared to ferromagnets.

FM

AFM
a b

vg = c

fre
qu

en
cy

, ω
 

wavenumber, k 

Figure 2.5: Spin-wave dispersion. a, Localized spins precessing around an (effective) magnetic field with a
phase difference between neighbouring spins constitute a spin wave with non-zero wavenumber. b, The spin-
wave dispersion for ferro- (FM) and antiferromagnets (AFM). The AFM spin-wave frequency is orders of mag-
nitude larger than for ferromagnets and the dispersion converges to a linear form with limiting group velocity
vg = c.
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2.5. APPENDIX: MAGNETIC DYNAMICS IN ANTIFERROMAGNETS
In antiferromagnetic materials there is no net macroscopic magnetic moment M. The
reason for this is the existence of a finite number n of magnetic sublattices, each with a
net magnetization Mi , which cancel each other such that

∑
i Mi = 0. In order to describe

spin dynamics in antiferromagnets, we restrict ourselves to the simplest example of an
antiferromagnet consisting of two oppositely oriented magnetic sublattices M1 and M2,
such that |M1| = |M2| = M0, with M0 the saturation magnetization: M0 = N gµBħS, with
N the number of spins per unit volume and S the spin of the magnetic ions.
Regardless of the presence or absence of a small magnetic moment M = M1 +M2, the
antiferromagnetic order is best described by introducing the antiferromagnetic vector
or Néel vector L = M1 −M2. This vector serves as an order parameter for the antifer-
romagnetic order. The equations of motion for the two magnetic sublattices (ignoring
dissipation) are obtained from the Landau-Lifshitz equation [90]:

dM1,2

dt
= γM1,2 ×Heff,1,2. (2.23)

γ= gµB/ħ is the gyromagnetic ratio and Heff
1,2 represents the effective fields that acts

on the sublattice magnetizations M1,2 and are given by the functional derivative of the
total magnetic energy density w(M1,M2) with respect to M1,2:

Heff
1,2 =−∂w(M1,M2)

∂M1,2
. (2.24)

Now we introduce the vectors m = M/2M0 and l = L/2M0, which are normalized
variants of the magnetization M and Néel vector L. It follows that

l2 +m2 = 1, m · l = 0 (2.25)

Substituting the expressions from Eq. 2.24 into these definitions leads to the following
equations of motion [89]:

2M0
∂m

∂t
= γ[

m×Hm
]+γ[

l×Hl
]

,

2M0
∂l

∂t
= γ[

m×Hl
]+γ[

l×Hm
]

,
(2.26)

where the effective magnetic fields Hm,l are defined as:

Hm =−∂w

∂m
, Hl =−∂w

∂l
. (2.27)

As the dynamics of the normalized irreducible vectors is completely determined by
the energy density w , we need to take a closer look at this quantity. A general expres-
sion [86–89] is given by:

w(m, l) = M0Hexm2 −2M0m ·H0 + α

2

(∇l
)2 +w0(l)+wD. (2.28)

Here, Hex is the so-called exchange field of the AFM, a crucial characteristic of any
AFM. This quantity is defined as the minimum value of the external magnetic field H0
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for which the magnetizations for the two magnetic sublattices becomes parallel, such
that |M| = 2M0 and L = 0. Note that as this field needs to overcome the direct exchange
between the two sublattices, it typically has very large values, up to 1000 T. α is the inho-
mogeneous exchange energy constant, and w0(l) the anisotropy energy density. In this
expression we already made use of the condition |m| ¿ |l| and omitted terms the terms
with (∇m)2 and ignored the dependence of the anistropy energy density w0 on m. This
assumes sufficiently weak magnetic fields: |H|¿ Hex.

The first two terms are universal, in the sense that they have the same form for all
AFMs. The first term accounts for the isotropic exchange between the magnetic sublat-
tices. As we will see later, the presence of this term (including the large constant Hex)
is what leads to exchange amplification of the dynamical parameters compared to fer-
romagnets. The second term is the Zeeman energy of the net magnetic moment in an
external applied field H0. The third term accounts for spatial variations of the magne-
tization of the sublattices M1 and M2. It has the same meaning as for ferromagnets. It
is important to note that α ∼ HexM0a2, with a the lattice parameter. The fourth term
accounts for anisotropy of the antiferromagnet. The fifth term is special, as it is bilinear
in the components of m and l [87]: wD = Di j mi lk . In general the tensor Di j (l) is deter-
mined by the AFM symmetry and can depend on the antiferromagnetic vector l [91]. This
term was introduced phenomenologically by Dzyaloshinskii [81] with a microscopic ori-
gin given by Moriya a few years later [82]. Moriya showed that taking into account ex-

change and spin-orbit interactions, this gives a term of the form wD = HD

[
d̂(m× l)

]
,

which is called the standard antisymmetric form. The direction of the unit vector d̂ is
determined by the symmetry of the AFM. Contributions of this form are now conven-
tionally referred to as Dzyaloshinskii-Moriya interaction (DMI). The DMI is responsi-
ble for canting of the sublattice magnetization, resulting in a weak magnetic moment
m ∼ (HD/Hex)l. Note that the contribution of the DMI interaction can also be included
by a term 2M0m · HD using an effective Dzyaloshinskii field HD. The parameter HD

is the amplitude of this effective Dzyaloshinskii field and can be much larger than the
anisotropy field, but is still much smaller than the exchange field Hex [89, 91].

Of course the resulting equations of motion take a different form for different anti-
ferromagnetic systems. However, it is insightful to study the behaviour for simplest case,
setting the applied magnetic field equal to zero and using that the exchange field Hex is
significantly larger than all other effective fields. This results in |m| ¿ |l|. In this case a
compact and closed equation of motion for the vector l can be obtained, which is called
the sigma model equation [88]: a set of equations independent of m.

The equation of motion for the antiferromagnetic vector l can first be rewritten, using
the expression for the energy density in Eq. 2.28. All terms in this expression are bilinear
in the components of m and l, meaning that it contains terms of the form mi m j , li m j

and li l j . By grouping those terms and using the relative sizes of the constants involved,
several terms can be omitted. For example, the term containing the inhomogeneous
exchange with constantα∼ M0Hexa2 ¿ M0Hex is negligible in the long wavelength (λÀ
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a) limit. This leaves us with the following form of Eq. 2.26 [89]:

1

γ

∂l

∂t
= 1

2M0

[
m×Hl

]+ 1

2M0

[
l×Hm

]
≈ Hex(l×m)+ (H(eff) × l), (2.29)

where H(eff) = H0 +HD.
In small magnetic fields |H0| ¿ Hex, this leads to the following expression for the

magnetization [88, 89]

m = 1

Hex

[
H(eff) − l(H(eff) · l)

]
+ 1

Hexγ

∂l

∂t
× l. (2.30)

This expression gives two important insights:

• The Dzyaloshinskii field can lead to a net equilibrium magnetization, even when
the applied field is zero, given by the first term.

• The second term shows that a dynamical net magnetization component can emerge
due to dynamics of the antiferromagnetic vector, even when a net magnetization
is absent in equilibrium.

Substituting this expression into Eq. 2.29 gives the desired dynamic equation for l.

However, a more compact form of this equation can be obtained by considering the
Lagrangian density L of an AFM which has the form [87, 89, 91]:

L =
∫

dr

 M0

γ2Hex

(
∂l

∂t

)2

− 2M0

γHex

H(eff) ·
[

l× ∂l

∂t

]− α

2

(
∂l

∂xi

)2

−wr(l)

 , (2.31)

with wr(l) a potential energy term containing contributions from the anisotropy energy
wa(l) and the external field:

wr(l) = wa(l)+ M0

Hex

[
(H0 · l)2 −H2

0

]
(2.32)

While the expression in Eq. 2.31 looks complex, it is again insightful to consider dif-
ferent terms and take a look at a simple mechanical analogy, for which the langrangian
is given by L = T +G −W , with T,G ,W the kinetic, gyroscopic and potential energy

term respectively. Now this first term, quadratic in the time derivative
(
∂l
∂t

)
determines

the so-called inertial properties of AFM spin dynamics. This in contrast to ferromag-
nets, where this term is absent in the Lagrangian. The result is that antiferromagnetically
coupled spins have inertia, which means that a short stimulus can trigger inertial spin
motion [92]. The second term is the gyroscopic term, linear in ∂l

∂t , also present for ferro-

magnets. Its presence depends on the effective magnetic field H(eff). The last two terms
describe the potential energy of the AFM and contain contributions of spatial variation
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of the sublattice magnetization and relativistic corrections in wr. Now making some as-
sumptions, we can derive expressions for the frequencies of the spin dynamics. Setting
H0 = 0 and neglecting the contribution of the Dzyaloshinskii field HD to the dynamics,
which is valid if HD is of the form HD(d̂(m× l)) [87–89], the Langrangian Eq. 2.31 leads to
the following sigma model equation for the antiferromagnetic vector l [89]:

1

ωex

(
l× ∂2l

∂t 2

)
= γα

2M0
(l×∇2l)− γ

2M0

(
l× ∂wa

∂l

)
(2.33)

We study the linear case, where the deviation of l from its equilibrium position is
small. We consider the vector l, with li its projections along the unit vectors êi . In the
quadratic approximation, the potential energy term then has the form

wa = M0(Ha1l 2
1 +Ha2l 2

2 ), (2.34)

with Ha1,2 the anisotropy fields.

Equation 2.33 then reduces to the set of equations for the two components for l

∂2l1

∂t 2 − c2∇2l1 +
(
ω(1)

0

)2
l1 = 0

∂2l2

∂t 2 − c2∇2l2 +
(
ω(2)

0

)2
l2 = 0

(2.35)

Here the characteristic velocity c = γ
√

αHex
2M0

and frequencies ω(1)
0 = γ

p
HexHa1, ω(2)

0 =
γ
p

HexHa2 are introduced. The plane-wave solution to equations 2.35 provides a relation
between the frequencyω(1,2) and the wavenumber k. This dispersion relation for the two
magnon branches of the system is then given by [87]:

ω(1,2)(k) =
√(

ω(1,2)
0

)2 + c2k2, (2.36)

There are some differences with the dispersion relation for ferromagnets. First of
all, the spin-wave gapω(1,2)

0 will be much larger than for ferromagnets, as in that case the
uniform spin precession frequency is given byωFM = γpHa1Ha2. As typically

p
Hex/Han ∼

30-100, this is the first manifestation of the exchange enhancement of dynamical param-
eters. In antiferromagnets with ordering temperatures of several hundred Kelvin, which
is not uncommon, this will give frequencies in the THz range. The characteristic velocity
c can have values up to tens of km/s in AFM with high Néel temperatures. In Fig. 2.5 we
can see that the physical sense of this quantity is that it is the limiting spin wave group
velocity vg = ∂ω

∂k . The spin-wave velocity is another example of an exchange enhanced
dynamical parameters in antiferromagnets compared with ferromagnets.



3
EXPERIMENTAL TECHNIQUES

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.”

Richard Feynmann

In this chapter we give a brief overview of the different experimental setups and optical
techniques that form the basis for the work presented in this thesis. While the schematics
look rather compact, the realization of these setups involves many optical components to
control the direction, beamsize and polarization of the light pulses. Careful alignment of
the setup is crucial to reduce noise and allow for correct interpretation of the data.
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Time-resolved spectroscopy is the study of dynamical processes using spectroscopic
techniques. The type of dynamical processes that can be studied is defined by, among
many other factors, the sensitivity and spatial and temporal resolution of the spectro-
scopic technique. The highest time-resolution is given by ultrafast optical spectroscopy
techniques that use sequences of ultrashort pulses of light (femtosecond duration) in
order to study dynamical processes on very short timescales in a wide variety of mate-
rial systems. This field of research has greatly expanded over the last decades due to
technological process that enabled the generation of high-stability ultrashort pulses of
electromagnetic radiation in a very wide frequency range [17–21].

The most conventional technique to study ultrafast dynamical processes is pump-
probe spectroscopy. After excitation with a strong external stimulus (the pump), the
system is monitored through its interaction with a probe. By repeating this process after
starting in the same ground state and changing the delay between the moment of ex-
citation and probing, we get a full time-resolved picture of the system’s response to the
stimulus. In this thesis we perform all-optical experiments, in which a strong laser pulse
excites the system and the weaker probe pulse measures transient changes in the ma-
terial’s optical properties. In this chapter we give a short overview of the experimental
setup and techniques that are used in these experiments.

3.1. ALL-OPTICAL PUMP-PROBE SPECTROSCOPY
The generic scheme used for all-optical pump-probe experiments is shown in Fig. 3.1.
The first step is to divide the output of an (amplified) pulsed laser system (repetition rate
f ) into two beams with a large difference in power. The large-power pulses can be down
converted in frequency through several nonlinear processes and then used to excite the
system and bring it out of equilibrium. The other, weaker, pulses are delayed in time and
used to monitor the optical properties of the material after excitation through changes
in the probe’s transmission or polarization plane. The difference in arrival time between
the pulses is precisely controlled by sending the probe pulse via a mechanical delay line,
which consists of a retroreflector on a moving stage. The delay line allows to control the
delay time with a precision of less than ∼6 fs (displacement∆x < 1µm) over a total range
of more than a nanosecond. In order to monitor the effect of the pump pulse, the probe
signal coming from the excited material needs to be compared directly to the situation
in which the pump beam was absent. The standard scheme uses an optical chopper sys-
tem (Thorlabs) in the optical path of the pump that is synchronized with the laser and
works at half the repetition rate 1

2 f . This means that every second pump pulse is blocked
and detection of the signal at frequency 1

2 f allows to only measure the pump-induced
changes which reduces the noise substantially. This detection is performed using a stan-
dard lock-in scheme at frequency 1

2 f , where a boxcar can be included for increased noise
reduction.

3.2. TUNABLE ULTRASHORT LASER PULSES

3.2.1. ULTRAFAST TI:SAPPHIRE AMPLIFIER
The key component in the experimental setup described in the previous section is the
amplified pulsed laser system that generates the high-power ultrashort light pulses. We
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Figure 3.1: All-optical pump-probe setup. In an all-optical pump-probe experiment the output pulses (fre-
quency f ) of a powerful amplified Ti:Sapphire laser system are split into two beams. A small portion is sent via
a mechanical delay line and used as a probe of the pump-induced structural and magnetic dynamics. A large
fraction of the light is used to obtain ultrashort pulses of light in a wide range of frequencies and will be used
as excitation pulses. The chopper in the pump path is synchronized with the laser and operates at a frequency
1
2 f , effectively blocking every second pulse.

use a commercially available table-top system (Astrella, Coherent) that provides pulses
at a central wavelength of 800 nm (photon energy 1.55 eV), with a duration of 100 fs and
pulse energy of more than 7 mJ at a repetition rate f of 1 kHz. The system consists of a
mode-locked seed laser and a regenerative amplifier module.

The Ti:sapphire seed laser provides broadband ultrashort pulses with central fre-
quencies around 800 nm at a repetition rate of 80 MHz. In order to obtain high-power
ultrashort pulses, the regenerative amplifier module is crucial. Using the chirped pulse
amplification (CPA) technique [93], the pulses are stretched temporally using a system of
gratings before they are amplified inside a cavity. By lengthening the pulses and thereby
reducing the peak power, energy can be extracted from the Ti:sapphire gain medium
inside the cavity, while avoiding damage to this medium. After amplification, the high-
energy pulses are recompressed back to nearly the original duration. The large increase
in energy per pulse comes at the cost of a much lower repetition rate, which is set by the
1 kHz repetition rate of the amplifier module.

3.2.2. TUNABLE PULSE FREQUENCY

OPTICAL PARAMETRIC AMPLIFIER

While the Ti:sapphire amplifier has the ability to provide high peak power ultrashort
pulses of light, the central frequency of these pulses cannot be changed. An optical para-
metric amplifier (OPA) forms the core component in the system used to obtain ultrashort
pulses of light in a wide range of frequencies. The OPA consists of several stages in or-
der to generate these high-amplitude pulses at different frequencies. The output of the
amplifier that enters the OPA is split in a weak and strong beam (see Fig. 3.3). The weak
beam is used to generate a white light continuum inside a sapphire crystal. The strong
beam and the white light continuum are combined inside a nonlinear β-barium borate
(BBO) crystal. Due to the nonlinearity of the crystal, electric fields at different frequen-
cies can interact to produce a time-varying polarization with mixed frequency compo-
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nents. The induced polarization can therefore emit radiation at these new frequency
components. Optical parametric amplification [18] is the specific nonlinear process in
which energy from a strong pump beam (frequency ωp ) is transferred to a weak signal
beam at the desired frequency ωs in a nonlinear crystal. In addition, a third beam (the
idler beam) at frequency ωi is created, with ωi < ωs < ωp. Aside from energy conserva-
tion,

ħωp =ħωs +ħωi (3.1)

the momentum conservation (or phase matching) condition must be satisfied in order
for the process to be efficient:

ħkp =ħks +ħki, (3.2)

with kp,ks,ki the wavevectors in the crystal of the pump, signal and idler beam respec-
tively. Rewritten in terms of the refractive index n, the phase matching condition is given
by

np = niωi +nsωs

ωp
. (3.3)

In negative uniaxial birefringent materials (ne < no the refractive indices of the ex-
traordinary (e) and ordinary (o) axes), this phase matching condition can be met for
some combinations of frequencies by polarizing the pump beam along the extraordinary
axis with the lower refractive index. In the system used for the experiments in thesis, the
process relies on type II phase matching, where either the signal or idler beam is polar-
ized parallel to the pump beam and the other one perpendicular to it. In order to achieve
phase matching over a wide range of frequencies, the angle θpm between the wavevector
of the beams and the optical axis is adjusted by rotating the crystal [18] (see Fig. 3.2). This
means that the phase matching condition plays a crucial role as it allows to selectively
amplify the frequency component within the white light continuum by changing the an-
gle θpm to satisfy this condition only for the component at the desired signal frequency.
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Figure 3.2: Angular phase matching. a, Angular phase matching of optical parametric amplification in a uni-
axial birefringent crystal with two ordinary (o) and one extraordinary (e) axis with refractive index ne < no. The
pump, signal and idler beam are propagating in the x y plane, with an angle θ between wavevector k and the
extraordinary x-axis. The signal polarization is oriented along an ordinary direction. By rotating the crystal
around the z-axis, the pump and idler encounter a changing effective extraordinary refractive index ne′ (θ).
Figure adapted from Ref. [94]. b, The angle tuning curves for a BBO OPA with pump wavelength λp = 800 nm
for type I phase matching (dotted curve) and type II phase matching (solid curve: idler and pump parallel,
dashed curve: signal and pump parallel). Figure with permission from Ref. [18], AIP Publishing.
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We use a commercially available dual OPA (TOPAS twins, Light Conversion) to obtain
two independently tunable outputs with a single white light seed (see Fig. 3.3). The OPA
delivers pulses with a duration of less than 100 fs, and, by considering both the signal
and idler beams, an output range of λ = 1.1–2.7µm (0.45–1.1 eV). The photon energy
of these output pulses can then be doubled or tripled using second and third harmonic
generation by focusing them in a BBO crystal (see Fig. 3.3). This means that we can cover
the range of wavelengths in the range 0.34–2.7µm (0.45–3.3 eV)

MID-INFRARED GENERATION

Alternatively, the signal output beams of the two OPAs can be combined in a nonlinear
GaSe crystal to generate low-frequency radiation using difference frequency generation
(DFG) (see Fig. 3.3). DFG is a process that differs from optical parametric amplifica-
tion only in the initial conditions. Initially, two powerful beams at frequency ω1 and ω2

are present with ω2 < ω1. The beam at ω1 loses power to the beam at ω2 and a newly
generated beam at frequency ωMIR =ω1 −ω2. Similar to the situation with optical para-
metric amplification described in the previous section, we use a type-II angular phase
matching process to achieve efficient conversion in the GaSe crystal. The signal outputs
have the same polarization and the newly generated beam has a polarization perpen-
dicular to this. By taking signal outputs that are relative close in energy and fulfilling
the phase matching condition, the DFG process will generate linearly polarized, carrier-
envelope-stable mid-infrared (MIR) pulses [20] with wavelengths in the range 5–19µm
(65–250 meV). The MIR-pulses are selected by a germanium filter that blocks the OPA
output and other residual beams.

OPA 1

OPA 2

WLG

BBO
2 1

3 1

1

2

GaSe

( 1  - 2)

pump signal

idler

SHG

DFG

Figure 3.3: Frequency conversion. A large fraction of the amplified laser system is used inside the TOPAS
twins to pump the two OPAs. A small fraction of the light is used to generate white light (WLG) in a sapphire
crystal and sent into the two OPAs. The pulse at the desired wavelength is amplified through optical parametric
amplification (see inset) in a β-barium borate (BBO) crystal. The output beams can either be combined to
generate MIR-pulses by difference frequency generation (DFG) in a GaSe crystal (see inset), or a single output
beam can be doubled or tripled in frequency inside another BBO crystal using second and third harmonic
generation (SHG, THG) (see inset).
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3.3. DETECTION METHODS
In order to determine the (magneto-)optical response of the sample under study, we
track the transient changes in reflection and rotation of the polarization plane of the re-
flected or transmitted probe pulse (see Fig. 3.4). The pump beam is focused to a spot
that is usually a few times larger than the focused probe pulse. The rotation of the po-
larization plane is determined through a scheme that uses a Wollaston Prism (WP) to
split the probe into two orthogonally polarized rays s and p. These rays with intensities
Is and Ip are focused onto the photodiodes D1 and D2 of a balanced amplified silicon
photodetector (PDB210A, Thorlabs), which outputs the difference I− = Is − Ip and the
sum I+ = Is + Ip . The half-wave plate in front of the WP rotates the polarization plane
of the light in order to balance the two beams in equilibrium. The pump-induced dif-
ference in intensity I− is a measure of the rotation ∆θF or ∆θK of the polarization of the
probe pulse, while the sum provides the total reflected or transmitted intensity. With the
time-dependent total transmitted intensity I0(t ) we can expand the signals in the small
polarization rotation angle ∆θF:

I− = I0(t )cos2
(
π

4
+∆θF

)
− I0(t )sin2

(
π

4
+∆θF

)
= 2I0(t )∆θF

I+ = I0(t )cos2
(
π

4
+∆θF

)
+ I0(t )sin2

(
π

4
+∆θF

)
= I0(t ).

(3.4)

These two output signals can therefore be used to extract the transient polarization ro-
tation ∆θF and total transmitted or reflected intensity I0(t ).

For more sensitive detection of changes in the intensity of the probe pulse, we use
a differential detection scheme. This requires comparison between intensities of the
probe pulse reflected by or transmitted through the sample and a stable reference beam.
The probe pulse and reference beam are sent to the two different diodes of the balanced
amplified photodetector. This gives a typical sensitivity of ∆R/R ∼ 5 ·10−5, when mea-
suring for 1 second and the given 1 kHz repetition rate of the system.

MAGNETO-OPTICAL DETECTION

The interaction of light with matter can be affected by the magnetic state of the material,
usually characterized by the magnetization. Macroscopically, it can be ascribed to the
anti-symmetric off-diagonal components of the dielectric tensor [95]. The Faraday effect
and Kerr effect are the two most well-known magneto-optical phenomena that describe
changes to light propagating through (Faraday) or reflecting from (Kerr effect) magnetic
materials. The Faraday effect causes a rotation of a linearly polarized light beam θF,
proportional to the projection of the magnetization M on the direction of propagation k:

θF =V M ·ek. (3.5)

The Verdet constant V is a material-dependent empirical proportionality constant that
depends on the probe wavelength and temperature, ek is the unit vector in the direction
of wavevector k. The effect can be understood when looking at the decomposition of the
linearly polarized beam into left- and right-circularly polarized components:
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Figure 3.4: Detecting transient changes in optical properties. a, After excitation with a pump pulse (red), the
optical properties of the material can be affected through various mechanisms. The optical probe experiences
changes in the reflection ∆R and transmission ∆T and rotation of its polarization. b, (top) The small changes
in the polarization of the probe pulse are detected in a scheme with a half-wave plate (HWP), Wollaston Prism
(WP) and balanced photodiodes D1, D2. (bottom) Transient changes in the reflection are measured by com-
paring the intensity of the reflected probe with an unaffected reference beam.
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The different circularly polarized components experience different refractive indices n±,
which results in rotation of the linear polarization.

The optical anisotropy of a magnetized material also affects the reflection of light
from its surface. The different phenomena that arise are generally referred to as the
magneto-optical Kerr effect (MOKE). The polar and longitudinal Kerr effect rely on a
non-zero projection of the wavevector k on the out-of-plane (polar Kerr effect) and in-
plane (longitudinal Kerr effect) magnetization. These effects can also be ascribed to a
different refractive index for oppositely oriented circularly polarized components.

In addition to these well-known effects, there exist several other so-called quadratic
magneto-optical effects such as magnetic linear dichroism and magnetic linear birefrin-
gence [96].

PHONON DETECTION

After excitation of optically-active vibrational modes, e.g. through stimulated Raman
scattering processes, a second time-delayed probe pulse can be coherently scattered by
the vibrational distortion. This is most easily understood by considering that the optical
Raman-active mode affects the linear susceptibility, due to the phonon-induced change
in the electronic polarizability of individual ions [97, 98]. Impulsive excitation of this Ra-
man mode then results in a time-dependent light scattering, which can be experimen-
tally detected either through the effect on the probe pulse spectrum, or by monitoring
the transient reflectivity or polarization of the probe.
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For a long time it has been known that light can inelastically scatter with thermal
acoustic phonons and teach us about the elastic properties of materials, such as the
sound velocity [99]. In the 1980s, this technique was brought to the ultrafast timescales,
when it was discovered that ultrashort pump laser pulses can generate broadband coher-
ent acoustic wavepackets and time-delayed probe pulses can be used to detect them [69].
Applied to transparent materials, the technique was referred to as picosecond acoustic
interferometry [100]. The detection relies on interference between probe light reflected
from the surface and light scattered by the propagating acoustic wavepacket in the ma-
terial. This results in an oscillating intensity of the total reflected light, with a frequency
f given by [101]:

f = 2nvs cos
(
θ
)

λ
, (3.6)

with n the refractive index of the material at the probe wavelength λ, θ the refracted an-
gle of incidence and vs the speed of sound. More generally, the opto-acoustic detection
process relies on interference between the probe pulse and the spatial strain distribu-
tion, which gives sensitivity to an acoustic phonon with a wavenumber ka = 2kp, with kp

the probe wavenumber inside the medium in case of normal incidence and neglecting
probe absorption [102]. The frequency of the oscillation in the reflected probe intensity
is then equal to the intrinsic frequency of this acoustic phonon.
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NONLINEAR PHONONICS AND

ULTRAFAST STRAIN WAVE

GENERATION IN LAALO3

“Somewhere, something incredible is waiting to be known."

Sharon Begley

In this chapter we study the concept of nonlinear phononics in the insulator LaAlO3, char-
acterised by its large optical bandgap. We give a brief introduction to the linear optical
properties of insulating ionic materials close to an infrared(IR)-active phonon resonance
and introduce the effects of nonlinear coupling between different phonon modes. We then
perform time-resolved all-optical pump-probe experiments to study ultrafast lattice dy-
namics initiated by impulsive light excitation tuned in resonance with the highest-energy
IR-phonon in LaAlO3. Aside from the excitation of octahedral rotations, expected within
the framework of nonlinear phononics, we observe the generation of propagating longi-
tudinal and transverse acoustic wavepackets. The wavepackets result from anisotropic
strain, optically induced by the resonant lattice excitation. The efficient generation of dy-
namical shear strain close to the phonon resonance hints at the strong connection between
optically excited IR-phonons and acoustic deformations and opens excited perspective for
ultrafast material control. The observations described in this chapter provide essential in-
sights for the understanding of the ultrafast phonon-induced magnetic phase transition
studied in chapter 5 and antiferromagnetic spin-wavepackets, which is the topic of chap-
ter 7.

Parts of this chapter have been published in npj Quantum Materials 5, 95 (2020) by J. R. Hortensius, D.
Afanasiev, A. Sasani, E. Bousquet and A. D. Caviglia [103].

DFT calculations were performed by A. Sasani and E. Bousquet
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Epitaxy can be used to impose misfit strain capable of altering the properties of
materials. Notable examples include the enhancement of ferroelectric and ferromag-
netic order [12] and even the engineering of artificial multiferroics at room tempera-
ture [104]. Whereas static strain engineering is a well-established paradigm [105–107],
ultrafast strain engineering has emerged only recently as an effective method to manipu-
late functional properties of oxides [71, 108], control collective excitations [52, 109–111],
induce changes in the band topology [112, 113] and drive optoelectronic phase switch-
ing [114, 115]. The generation of strain pulses traditionally relies on opto-acoustic con-
version processes either in the functional material itself or in opto-acoustic transducers,
often involving electronic excitation [70] and accompanied by excessive dissipation of
coherent heat.

Infrared-active (IR-active) phonons are low-energy elementary excitations of the crys-
tal lattice that can directly couple to electromagnetic waves. Compared to electronic
excitation, resonant driving of the phonons thus represents an alternative and more di-
rect route to excite the lattice, avoiding the production of excessive heat and provid-
ing applicability in wide-bandgap insulators. This novel approach has gained momen-
tum over the last decade due to a dramatic progress in nonlinear optics allowing for
the generation of pulses of mid-infrared radiation with electric field strengths exceed-
ing 100 MV/cm [20]. The mid-infrared pulses, tuned in resonance with the IR-active
phonons have proven to be a powerful approach in controlling material properties on
ultrashort timescales, with demonstrations of ultrafast insulator-metal transitions [116],
melting of magnetic order [56] and most interestingly ánd controversially: transient su-
perconductivity [35, 36]. In line with static and ultrafast strain engineering, ultrashort
pulses of light have also been tuned in resonance with an IR-active atomic vibration of
a substrate, in order to transform the structural and electronic properties of an epitaxial
thin film [114]. This mechanism, applied extensively to insulating lanthanum alumi-
nate (LaAlO3) substrates, governs ultrafast metal-insulator transitions [114], ultrasonic
magnetic dynamics [117], and sonic lattice waves [118] in various thin films of strongly
correlated oxides. However, the nature of the nonlinear lattice dynamics initiated in the
substrate material is not yet fully understood.

Most of these and other demonstrations have been subsumed under the umbrella
of nonlinear phononics [119]. This is a qualitative description, starting from the con-
cept of Ionic Raman scattering [120, 121], in which the excitation of an IR-active phonon
mode results in a sub-picosecond lattice distortion along the coordinate of a coupled
Raman mode. It is this transient displacement along a Raman coordinate that has been
identified as the crucial effect that underlies the observed control of functional collective
properties after resonant phonon excitation [35, 36, 116, 119, 122].

In this chapter we study the concept of nonlinear phononics in the wide-bandgap
insulator LaAlO3. We begin with a quick overview of the concept of nonlinear phonon-
ics[119]. We describe the optical properties of insulating materials close to IR-active
phonon resonances and introduce the methodology of nonlinear phonon-phonon cou-
pling. We then proceed to show that in LaAlO3, impulsive optical excitation at the photon
energy tuned in resonance with a polar stretching of the Al-O bonds drives a non-polar
rotational mode of oxygen octahedra via ionic Raman scattering. The resonant lattice ex-
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citation also induces anisotropic strain, which generates propagating longitudinal and
transverse acoustic wavepackets. Importantly, shear strain wavepackets are found to be
produced with extraordinary efficiency close to the phonon resonance. These results
uncover an hitherto unknown microscopic feature of ultrafast strain engineering that
opens wide perspectives for material control via optically tunable strain.

4.1. NONLINEAR PHONONICS

4.1.1. PHONON-POLARITONS AND OPTICAL PROPERTIES
Transverse IR-active optical phonons can interact with transverse electromagnetic waves.
When the electromagnetic waves and the phonon mode are close in frequency, this inter-
action will have a profound effect on the way these electromagnetic waves travel through
the material. This is reflected in the material’s optical properties close to the phonon res-
onance frequency.

IR-active phonons can be considered as quantized, charged harmonic oscillators [123]
with mass M , resonance frequency ωT and effective charge Q. We assume that these
charged harmonic oscillators are not damped and evenly distributed in the (isotropic)
material and can find the displacement u in response to a spatially (coordinate r) and
temporally (time t ) varying electric field E(r, t ) = E0e i (k·r−ωt ) with wavenumber k through
the oscillator’s equation of motion

M
d2 u

dt 2 =−Mω2
Tu+QE. (4.1)

Here k is the wavenumber of the plane wave electric field. Since all charged harmonic
oscillators have the same displacement u, they produce a macroscopic polarization

P = NQu, (4.2)

with N the density of harmonic oscillators. The displacement vector D of the material is
given by

D = ε0E+P = ε0εE, (4.3)

where ε is called the dielectric function of the material. This gives for the contribution of
the crystal lattice to the dielectric function [123]

εl = 1+ NQ2

ε0M(ω2
T −ω2)

, (4.4)

Aside from interacting with the crystal lattice, electromagnetic waves can also in-
teract with the valence electrons. In order to account for these valence electrons, we
introduce their contribution to the dielectric function εe(ω). Assuming that the bandgap
Eb is much larger than the energy of the radiation ħω close to the phonon energy, the
radiation field appears to be static (ω= 0) for the valence electrons. This means that the
electronic contribution εe(ω) can be approximated by εe(0). In the region of frequencies
with ωT ¿ ω¿ Eb/ħ, the radiation field oscillates too fast for the lattice resonances to
respond (εl → 1) and the total dielectric function ε is then constant and defined to be
ε= εl+εe := ε∞. This is called the high-frequency dielectric constant, since it is the value



4

42 4. NONLINEAR PHONONICS AND ULTRAFAST STRAIN WAVE GENERATION IN LAO

at frequencies much higher than the phonon resonance frequency ωT. Including this
value in the total dielectric function we obtain for ω¿ Eb/ħ [123]:

ε(ω) = ε∞+ ω2
T(εst −ε∞)

ω2
T −ω2

. (4.5)

Here we introduced the variable εst := ε(0), the low-frequency dielectric constant. Gen-
eralized to to a collection of phonon modes (charged harmonic oscillators) with different
resonance frequencies, the different contributions to the dielectric function of the form
Eq. 4.5 will add up. Note that this model neglects any dissipation as we started with an
ideal, undamped harmonic oscillator (Eq. 4.1).

With the dielectric function at hand, we can now consider the Maxwell equations to
calculate the material’s optical response close to the phonon frequency. First we con-
sider the electric displacement D which satisfies

∇·D = 0
(
ε(k ·E0) = 0

)
. (4.6)

This equation has two solutions

1. Transverse field (k ·E0 = 0)
This implies that the electric field is perpendicular to the wavevector. The re-
sponse of the phonons (charged harmonic oscillators) is then given by the dielec-
tric function ε(ω). The resonance frequency of the medium equals the resonance
frequency ωT of the phonon.

2. Longitudinal field (k ∥ E0 or ε= 0)
When k ·E0 6= 0, ε(ω) needs to vanish in order to satisfy Eq. 4.6. Using Eq. 4.5, we
see that this is the case at the frequency ωL, defined by:

ω2
L =ω2

T
εst

ε∞
. (4.7)

PHONON-POLARITONS

In order to proceed and obtain the dispersion curve of a coupled light wave and lattice
vibration, we need to consider all four Maxwell equations in an insulating non-magnetic
medium. We consider transverse electromagnetic plane wave solutions (wavevector k,
k = |k|) with electric components E(r, t ) and magnetic component H(r, t ). The Maxwell
equations lead to the relation [123]:

k2 =ω2ε, (4.8)

the dispersion of a transverse electromagnetic wave in a lossless, non-magnetic medium.
Now substituting the expression for the dielectric constant (Eq. 4.5) gives the following
relation between wavenumber k and frequency ω:

k2 =ω2

(
ε∞+ ω2

T(εst −ε∞)

ω2
T −ω2

)
. (4.9)
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Rewriting this relation gives a fourth order equation in ω with a solution given by [124]:

ω2 = ω2
Tεst + c2k2

2ε∞
± 1

ε∞

√√√√(
ω2

Tεst + c2k2

2

)2

− c2k2ω2
Tε∞ (4.10)

The two positive solutions to this equation form the coupled phonon-polariton disper-
sion relation (frequency ω as function of wavenumber k), shown in Fig. 4.1. For every
wavenumber k, there are two solutions for ω, giving two dispersion branches. The two
branches originate from the ‘original’ photon and phonon dispersion; the coupling leads
to an avoided crossing and the frequencies are altered. It is important to note that this
plot only depicts a very small part of the Brioullin zone, so we can consider k ≈ 0 at the
avoided crossing. Without the phonon resonance, the photon dispersion would be given
by ω= cp

ε∞ k, determined by the contribution from the valence electrons and propagat-

ing at velocity cp
ε∞ . The phonon-polariton dispersion converges to this dispersion for

large k and ω: light at frequencies much higher than the phonon resonance frequency
is not affected by the phonon. Interesting to see is that the phonon also affects the po-
lariton dispersion for ω¿ωT, where the photon-like dispersion shows a velocity of cp

εst
.

As k → 0, the upper branch converges to the constant value ωL. For large k, the lower
branch converges to the constant value ωT and there are no solutions for ωT < ω < ωL.
This remarkable result indicates that light with these frequencies cannot propagate into
the material, which leads to a high reflection, as we will see below.
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Figure 4.1: Phonon-polariton dispersion. Schematic diagram of the dispersion curves of the uncoupled light
wave (black small-dashed line) and transverse optical phonon (large-dashed line at ω = ωT). The coupling
leads to the phonon-polariton dispersion, consisting of an upper- and lower-polariton branch (solid lines).
The blue dashed line, indicating the ω= ck/

p
ε∞ indicates the dispersion of light in the medium without any

coupling to the IR-active phonon. The red dashed line (ω= ck/
p
εst) indicates the combined effect of electrons

and phonons on electromagnetic waves with low frequencies. Parameters: ε∞εst
= 1.52.
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LATTICE ABSORPTION AND REFLECTION

In figure 4.1 we see that for frequencies ωT <ω<ωL, there are no solutions to the wave
equation in the material. This is exactly the region where ε(ω) < 0. We now proceed to
study the linear optical properties of the material close to this region.

We add a damping term γdu
dt to the equation of motion (Eq. 4.1) for the charged

harmonic oscillators (phonons). This changes the expression for the dielectric constant
(Eq. 4.5), which then becomes complex, into

ε(ω) = ε1(ω)+ iε2(ω)

= ε∞+ ω2
T(εst −ε∞)

ω2
T −ω2 − iγω

(4.11)

The linear optical response of the material is best captured by considering the complex
refractive index ñ(ω) = n(ω)+ iκ(ω) = p

ε(ω). The real part n determines the speed of
light in a material (c/n), while the imaginary part κ is directly related to the absorption
coefficient α by α = 4ωκ(ω)

c . By equating the real and imaginary parts, we see that the
dielectric permittivity and the refractive index are related by

ε1 = n2 −κ2

ε2 = 2nκ
(4.12)

These relations can be inverted to calculate the complex refractive index from the dielec-
tric permitivity. The real and imaginary part of ñ are shown in Fig. 4.2a. We see that the
imaginary part κ peaks at the phonon resonance frequency ωT, which means that the
optical absorption is largest. In the region ωT <ω<ωL, the real part n is very close to 0.

The reflectivity R of the material, is calculated from the complex refractive index as

R =
∣∣∣∣1− ñ

1+ ñ

∣∣∣∣2

(4.13)

and plot in Fig. 4.2b for different values of the damping constant γ. The reflectivity rises
from nearly 0 at ωL to nearly R = 1 at ωT. This region with high reflectivity is called the
Reststrahlenband.

4.1.2. NONLINEAR COUPLING
In the previous section, we considered the phonons as quantized charged harmonic
oscillators. This Lorentz model of an oscillator allowed us to derive the linear optical
properties of a material close to a phonon resonance. In present-day experiments, ul-
trashort pulses of light with frequencies in the 15–50 THz range can be generated by
commercially available technology (see chapter 3). These pulses of light can resonantly
excite lattice vibrations to large amplitudes in oxide materials [116, 119]. In response
to these short intense laser pulses, the phonon dynamics becomes nonlinear, and an-
harmonic contributions start to play a role [122]. This allows to excite Raman-active
phonons via scattering with IR-active phonons, a mechanism that was proposed more
than 50 years ago [120, 121] and coined ionic Raman scattering (IRS). This process is
comparable to impulsive stimulated Raman Scattering (ISRS), but in this case the IR-
active phonons rather than electronic states serve as the intermediate states for Raman
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Figure 4.2: Linear optical properties close to the phonon resonance. a,b, Plot of the real (n) and imaginary (κ)
part of the refractive index ñ (a) and the resulting reflectivity R of the material (b). For small damping, nearly
all light in the frequency range between ωT and ωL is reflected. Parameters: γ/ωT = 0.05 (refractive index),
εst = 4.52,ε∞ = 32.

scattering. This means that the effect is mediated by phonon-phonon coupling instead
of electron-phonon coupling.

In order to describe the nonlinear coupling between different phonon modes, we
consider the potential energy surface of the material in terms of the displacement along
both infrared-active (IR) and Raman-active (R) phonon coordinates Qi , i = IR,R. We use
a simple model with a single IR-active and R-active mode, with resonance frequencies
ωT and ωR respectively, and investigate the effect of coupling between these modes. Im-
portant to note is that in this thesis we only consider centrosymmetric materials, which
indeed allows us to make a distinction between odd-parity infrared-active modes and
even-parity Raman-active modes. First considering only the IR-active mode, the poten-
tial energy can be expanded as function of the parameter QIR:

UIR = 1

2
ω2

TQ2
IR +αQ3

IR +βQ4
IR + ..., (4.14)

where ωT is the phonon transverse optical resonance frequency and α and β are the
material- and mode-specific expansion coefficients.

A very similar expansion can be made for the potential energy in terms of the dis-
placement along the coordinate of the Raman-active mode. Now including anharmonic
phonon-phonon interactions, the potential surface energy becomes

U (QIR,QR) = 1

2
ω2

TQ2
IR + 1

2
ω2

RQ2
R − cQRQ2

IR + ... (4.15)

Here we ignore terms quadratic and higher-order in QR, as only the IR-driven mode
can be resonantly excited by the laser pulse and driven to large amplitudes. As the
material is centrosymmetric, the cubic anharmonic coupling cQRQ2

IR is the lowest or-
der coupling term that is allowed by symmetry. Moreover, the existence of this term
imposes additional restrictions on the symmetry of the modes. The coupling is only
symmetry-allowed when the product of the irreducible representations Γi of the phonon
modes contains the totally symmetric representation of the crystal’s point group [122,
125, 126]:

[
ΓIR ×ΓIR

]×ΓR A A1g. In practice, this has some important consequences. A
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non-degenerate IR-mode can only couple to a totally symmetric Raman mode. When
two IR modes are excited simultaneously, or when the IR-mode is (doubly) degenerate,
coupling to other Raman modes becomes possible [126].

0 1 2 3
time (ps)

QR

Laser pulse 

IR mode

Raman mode

U

a b

t = 0

t > 0

Figure 4.3: Nonlinear phononics. a, An ultrafast laser pulse (top panel) tuned in resonance with an IR-active
phonon can drive the IR-mode to large amplitudes (middle panel). As a result of nonlinear coupling, a coupled
Raman mode will oscillate around a displaced equilibrium (bottom panel). b, Total energy as function of the
Raman mode amplitude before (t = 0) and shortly after (t > 0) excitation of the IR-mode. Figure inspired
by [127].

Given that the coupling is allowed, this energy term can result in a force FR on the
Raman-mode, as FR = − ∂U

∂QR
. The force from the laser field that drives the IR-mode is

given by Fl = F sin
(
ωLt

)
e

−t2

2σ2 , with F the amplitude, ωL the driving frequency and σ the
duration of the light pulse. The equations of motion for the two modes (including damp-
ing) are then given by

d2 QIR

dt 2 +γIR
dQIR

dt
+ω2

TQIR = 2cQRQIR +Fl(t )

d2 QR

dt 2 +γR
dQR

dt
+ω2

RQR = cQ2
IR.

(4.16)

The term 2cQRQIR can often be ignored, as it is very small compared to the driving
field. The solutions to Eqs. 4.16 are shown in Fig. 4.3a. The ultrashort laser pulse reso-
nantly drives the IR-active mode. The Raman mode experiences an effective forcing field
cQ2

IR, which has a rectified, non-zero average value. This rectified component is propor-
tional to the envelope of the IR-displacement and causes a transient displacement along
the coordinate of the Raman mode. In the impulsive limit, when the displacive force
rises quickly compared to the Raman mode frequency ωR, the Raman mode starts os-
cillating around a displaced position. The displaced position, which signals a deformed
lattice structure, survives for the duration of the lifetime of the IR mode. The displace-
ment can also be visualized in terms of a transient energy potential surface as function
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of the Raman coordinate QR, where the potential is changed due to the effective force
provided by the coupling to the driven IR mode (see Fig. 4.3b). The transient potential
has a minimum at a different position from the equilibrium potential.

4.2. ULTRAFAST LATTICE EXCITATION IN LAALO3
We investigate light-induced structural dynamics in LaAlO3, an insulating substrate uti-
lized extensively in oxide electronics for the epitaxy of correlated materials, including
high-Tc cuprate superconductors [128], magnetoresistive manganites [129] and nicke-
lates [130]. At room temperature, LaAlO3 exhibits a distorted perovskite structure (rhom-
bohedral space group R3̄c, see Fig. 4.4a). To resonantly drive the lattice vibrations in
(001) LaAlO3 single crystals, we use ultrashort pump pulses in the mid-IR frequency
range. We tune the photon energy of the pump pulses continuously across the closely ly-
ing highest-frequency Eu and A2u infrared-active phonon resonances [131, 132]. Schemat-
ics of the atomic motion corresponding to the Eu and A2u mode are shown in Fig. 4.4b
and Fig. 4.10. The energy was tuned in the experimentally accessible range of 70–180 meV
(17–41 THz) and allowed us to compare dynamics excited in the optical transparency
window (> 130 meV) with structural transient dynamics induced by pulses tuned in res-
onance with the lattice vibrational modes centered at 81 meV. A high efficiency of ionic
Raman scattering is anticipated in LaAlO3 as mutual coupling between optical phonon
modes exists and even results in a small negative Lyddane-Sachs-Teller splitting be-
tween longitudinal and transversal optical modes [133]. The large bandgap of LaAlO3

(5.6 eV [134]) as well as the absence of electronic in-gap states [135] ensures the purely
structural nature of the photoinduced response.

To track the ensuing dynamics of the lattice, time-resolved optical reflectivity and
birefringence measurements are performed using near-infrared probe pulses. The two
complementary experimental techniques are schematically illustrated in Fig. 4.4c. In the
first scheme we monitor the transient differential reflectivity ∆R. The structural dynam-
ics initiated by the pump pulse modulate the sample’s dielectric function resulting in a
perturbation of the refractive index n, which is imprinted on the∆R signal. In the second
scheme we track the transient optical birefringence ∆θB. The phonon modes of LaAlO3

are intrinsically highly anisotropic, meaning that coherent dynamics of these modes can
also modify the off-diagonal components of the permittivity tensor, thereby resulting in
a transient birefringence.

4.3. PHOTO-INDUCED STRUCTURAL DYNAMICS
Measurements of transient changes to both the reflectivity and birefringence, using pump
pulses at the photon energy tuned in resonance with the infrared-active phonon modes,
hν ' 85 meV (21 THz), reveal multiple oscillatory responses at frequencies significantly
below the one of the pump, see Fig. 4.5a,b. The highest-frequency oscillation is centered
at 1.1 THz and is assigned to the Raman-active Eg soft mode of LaAlO3 [132, 136] as-
sociated with a rhombohedral instability of the R3̄c lattice structure (see section 4.8.1).
This mode comprises rotations of the oxygen octahedra around an axis perpendicular
to the [111] pseudocubic direction as shown in Fig. 4.5c. The longer time delay further
reveals oscillatory components at two discrete frequencies fTA and fLA in the GHz fre-
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Figure 4.4: Crystal structure and experimental geometry. a, The crystal structure of LaAlO3, with indica-
tions of the different crystallographic directions. The rhombohedral distortion from the high-temperature
cubic phase is due to out-of-phase rotations of the oxygen octahedra about the [111]pc axis. b, Atomic mo-
tion corresponding to the infrared-active Eu stretching mode, polarized in the (111) plane in the x-direction.
c, Schematic illustration of the experimental scheme. The mid-IR pulse is generated by difference frequency
mixing of two near-infrared pulses in a GaSe crystal, after which the mid-IR pulses are filtered by a germanium
(Ge) filter. Following the mid-IR excitation, the transient changes in optical properties are probed with a time-
delayed near-infrared pulse (λ =800 nm, hν =1.55 eV). The pump-induced changes to the reflection intensity
∆R and rotation ∆θB of the polarization plane are monitored.

quency range. This pattern originates from interference between light pulses reflected
at the crystal surface and reflections from an acoustic wavefront propagating into the
bulk (Fig. 4.5d). In transparent materials, the frequency of the oscillations f is related to
the refractive index n of the material at the probe wavelength [135], the speed of sound
vs, the angle θ w.r.t. the sample normal and the wavelength λ of the probe by the re-
lation [101] f = 2nvs cos

(
θ
)
/λ. In our experiments we vary the angle of incidence of

the probe beam and find that, while the frequency of the Eg mode remains unchanged,
the frequency of the GHz oscillations decreases in agreement with the relation shown
above. We extract the corresponding propagation velocities, obtaining vLA = 6.67km/s
and vTA = 4.87km/s, and find that they match the speed of longitudinal acoustic (LA)
and transverse (TA) phonons in LaAlO3 propagating in the [001] direction [137]. This
acousto-optic conversion is strongly peaked at a phonon wavenumber ka determined
by the probe wavenumber [102]. This experiment is sensitive to a specific frequency
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component of the generated strain pulse at ka =3.2 ·105 cm−1. Our experiments show
that optical excitation with ultrashort resonant mid-IR pulses initiates coherent struc-
tural dynamics in both the acoustic and optical branches of the phonon spectrum. Al-
though the optical excitation of a broadband longitudinal acoustic wavefront is expected
from electrostriction in LaAlO3 [138] and/or optical absorption [70], the optical genera-
tion of shear strain requires the presence of an equilibrium or light-induced structural
anisotropy. We discuss this aspect below, after the analysis of the THz Raman-active
mode.
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Figure 4.5: Photo-induced structural dynamics. a,b, Transient changes in the intensity of the reflected 1.5 eV
probe pulse ∆R/R (a) and the polarization rotation ∆θB of the probe pulse (b) after excitation of the LaAlO3
substrate with a mid-infrared pump pulse of 86 meV (a) and 89 meV (b) and a fluence of 10 mJ/cm2 (T =10 K).
The insets show the Fourier spectra of the signals. The top axis in (b) shows the distance z which the longitu-
dinal sound wave has travelled at that time. c, The real-space atomic motion corresponding to the excited Eg
mode indicated with arrows. d, A schematic picture of a strain wave propagating with speed vsound leading
to interference between probe light (wavelength λ) reflected at the interface and scattered at the strain wave,
depending on the distance z that the strain wave has propagated.

4.4. COHERENT OXYGEN OCTAHEDRA ROTATIONS
In our experiments only the lowest-energy Raman-active Eg optical phonon mode was
observed. The frequencies of the remaining higher-energy modes (e.g. of Ag symme-
try) lie outside the bandwidth of our excitation pulses and thus cannot be not excited
in the experiment. To unveil the mechanism of excitation of the Eg mode, we vary the
pump photon energy across the phonon absorption band. Fig. 4.6a compares time-
resolved transient reflectivity∆R/R induced by pumping close to the phonon resonance
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(hν= 85 meV) with off-resonant pumping (hν= 124 meV), revealing a striking selectivity
of the low-energy mode excitation. The inset in figure 4.6a shows that the amplitude
of the excited Raman Eg mode measured for various pump photon energies increases
strongly and peaks at 95 meV close to the absorption peak attributed to the Eu phonon
mode centered at 81 meV.

Recently, ionic Raman scattering (IRS) or nonlinear phononics, was proposed as a
mechanism to resonantly and nonthermally activate coherent low-energy Raman-active
(nonpolar) phonon modes upon exciting infrared-active (polar) lattice vibrations [119].
This mechanism relies on the anharmonicity of the lattice potential, which leads to a
nonlinear response when large-amplitude infrared-active ionic vibrations QIR are ex-
cited. The anharmonicity causes a short-living net distortion of the lattice along a Ra-
man coordinate QR accompanied by coherent oscillations of the corresponding Raman-
active mode around this displaced metastable position (see Fig. 4.3a). In the general case
the nonlinear coupling can be described by introducing an invariant nonlinear term
α′Q2

IRQR in the lattice potential, with α′ defining the strength of the coupling and QR

corresponding to the normal coordinate of a Raman phonon mode. Despite the strong
correlation between the phonon absorption and the Eg mode amplitude, we note that
the largest amplitude is observed at a pump photon energy shifted from the peak of the
linear phonon absorption. Moreover, the lineshape of the amplitude as function of the
pump photon energy is significantly broader than the linear aborption. These obser-
vations indicate that the excitation of the Eg mode is more efficient at the reststrahlen
band, where the absorption processes are not dominant and the optical response of the
medium is non-dissipative.

To verify and study this nonlinear coupling in the specific case of LaAlO3, we perform
a symmetry analysis and density functional theory (DFT) calculations with the ABINIT
code [139] to fit a nonlinear phonon-phonon model potential of bulk R3̄c LaAlO3 (see
section 4.7 and section 4.8.2). The DFT calculations show that the coupling between
the A2u and Eg mode is negligible and confirm a strong coupling between the Eu and Eg

mode. In the case of rhombohedral LaAlO3, with a high-symmetry three-fold rotation
axis along the pseudocubic [111] direction, the IR-active Eu mode has two orthogonal
components (Ex

u, Ey
u) oriented in the natural rhombohedral plane (pseudocubic (111))

(see inset Fig. 4.4a for a schematic including the different orientations). The coupling
term is given by α′ = αcos

(
2θ

)
, with α a material-dependent constant and θ the angle

between the laser polarization projected onto the (111) plane and the x-component of
the Eu mode.

In Fig. 4.6c we show the DFT results for the evolution of the effective coupling coeffi-
cient α′ with respect to the pump polarization angle φ, oriented in the (001) plane, such
thatφ= 0 corresponds to the pump polarization oriented along the [100] axis. In order to
calculate the coupling constant α′, the laser polarization in the pseudocubic (001) plane
needs to be projected on the (111) plane. As a result α′ evolves as a non-trivial periodic
function with extrema around φ= 0° and 112.5° (see section 4.8.2). To verify this behav-
ior, we measured the amplitude of the Eg oscillation for the pump polarization plane
oriented along several pseudocubic crystallographic directions, as shown in Fig. 4.6b.
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Figure 4.6c summarizes the observations, showing a good agreement with predic-
tions of the nonlinear phonon model built from DFT. Together with the dependence on
the pump photon energy, this confirms that excitation of the Eg Raman-active mode is
governed by the IRS mechanism. Moreover, these selection rules are another strong in-
dication that these lattice dynamics are not driven by the absorption, but are rather non-
dissipative and rely on the resonant enhancement of the scattering process [119]. The
relevance of this mechanism is further corroborated by measurements of the fluence de-
pendence of the oscillation amplitude (see figure 4.12), revealing a linear increase in the
Eg mode amplitude [28]. These findings are therefore a clear manifestation of the effi-
cient nonlinear phononics mechanism in a wide bandgap insulator in conditions pro-
moting exclusively coherent phonon-phonon coupling. In this sense IRS differs substan-
tially from regular impulsive stimulated Raman scattering (ISRS) in which excitation of
coherent phonons is mediated by virtual electronic transitions [28]. Note that the obser-
vation of the net structural distortion along the Eg coordinate responsible for the oscilla-
tions is not feasible in an all-optical experiment alone and requires use of time-resolved
X-ray diffraction [140].

4.5. TUNABLE SHEAR STRAIN
The Fourier analysis (FFT) of the light-induced coherent strain waves as a function of the
pump photon energy is summarized in Fig. 4.7a. We observe that acoustic waves are ex-
cited both in the optical transparency window, and in the reststrahlen band. The inset of
Fig. 4.7a shows that upon reaching the reststrahlen band, the amplitudes of both strain
waves experience a pronounced growth indicating an enhancement at the phonon res-
onance. The dependence of the strain waves on the pump fluence and polarization are
given in section 4.8.3. The relation between the resonant excitation of IR-active phonons
and the generation of macroscopic strain [142] and strain wavepackets has been an un-
derstudied subject.

Conventionally, the generation of strain in the transparency window is described by
electrostriction [70, 143], even though there exist only a few experimental observations
of this mechanism [144]. Large static electrostriction effects have been found in the case
of thin LaAlO3 films on SrTiO3 [138]. In this regard the observation of strain waves af-
ter excitation in the transparency window is a remarkable observation, but can still be
explained by electrostriction. In principle, the enhancement of the TA and LA mode am-
plitudes close to the phonon resonance could simply originate from an increased pho-
ton absorption and the anisotropic elastic response of [001] LaAlO3, as this crystal cut
is different from the high-symmetry [111] direction, providing a coupling between shear
and transversal strain. However, analyzing the strain wave amplitudes, we observe that
the presence of the phonon resonance also dramatically renormalizes the ratio r be-
tween the amplitudes of the TA and LA modes (see Fig. 4.7b). Our experiments indicate
that while their ratio r is around 0.2 in the transparency window, it shows a pronounced
increase up to 2 in the reststrahlen band. As seen in the inset of Fig. 4.7a, the renormal-
ization is due to a strong enhancement in the generation of the TA strain wave, which
seemingly occurs at the expense of the LA phonon mode. Such an evolution of the ratio
with photon energy cannot be explained by direct TA mode excitation via dissipative ef-
fects due to an increased photon absorption, especially as the peak of the ratio does not
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Figure 4.6: Light-induced excitation and dynamics of oxygen octahedra rotations. a, Time resolved reflec-
tivity changes of the probe pulse after mid-IR excitation at different photon energies. Inset: the amplitude of
the coherent phonon oscillations at 1.1 THz, as extracted from fitting an exponentially damped sine function
to the transient reflectivity changes for different pump photon energies. The thick blue solid line indicates the
linear absorption due to the Eu phonon mode, data taken from Ref. [114, 141]. The spectral full width at half
maximum of the excitation pulses is indicated by the shaded band. b, Time-resolved transient polarization
rotation of the probe pulse after excitation with the pump pulses with a changing polarization of φ degrees
with respect to the pseudocubic [100] axis (pump: hν =89 meV). c, Amplitude of the observed Eg mode exci-
tation (square markers) as extracted by fitting sine functions to the data in (b) and DFT calculated coupling of
the excited phonons to the Eg mode (blue circles) vs pump polarization angle φ with a sine fit. The errorbars
account only for the uncertainty of the fit.

coincide with the phonon absorption peak. Strikingly, the ratio peaks at a higher photon
energy, comparable to the position of the maximum amplitude of the Eg mode (see inset
Fig. 4.6a). We propose that this relative and absolute increase in TA mode generation is
the result of a phonon-driven enhancement of the coupling between TA and LA modes,
in combination with an ionic enhancement of the electrostriction [142]. In section 4.8.2
we quantify the elastic constants of LaAlO3 using DFT and show that, out of equilibrium,
the distortion along the Eg Raman coordinate driven by the rectification of the phonon
field, alters the off diagonal elastic constants. This change of elastic constants shows that
the anisotropic Eg mode can transfer longitudinal strain into shear strain.

4.6. CONCLUSIONS
Using a combination of time-resolved reflectivity and polarimetry we have studied co-
herent structural dynamics in LaAlO3 induced by ultrashort excitation of a selected IR-
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Figure 4.7: Tunable shear strain. a, Fourier transforms of the measured polarization rotation signals corre-
sponding to strain wave propagation after excitation with different pump energies. Inset: Pump photon en-
ergy dependent amplitude of the two oscillations corresponding to LA and TA strain waves for fixed pump and
probe polarizations as obtained from the Fourier transforms shown in panel a. The solid and dashed lines are
guides to the eyes. The errorbars account for the uncertainty of the fit. b, Linear absorption due to the infrared
active phonon modes, as taken from Ref. [114] (left axis) and ratio r of the TA and LA mode amplitudes (right
axis) vs photon energy at constant incident fluence. The black line serves as a guide to the eye. The spectral
full width at half maximum of the excitation pulses is indicated by the errorbars.

active phonon mode. Our experimental and theoretical analysis uncovers a previously
unknown remarkable feature associated with the excitation of the crystal lattice. In addi-
tion to the displacement along a Raman coordinate and coherent THz atomic vibrations,
expected within a nonlinear lattice excitation regime, we observe an efficient generation
of shear strain wavepackets. Shear strain following resonant pumping of the crystal lat-
tice in LaAlO3 is likely to be a key element of the metal-insulator transitions, ultrasonic
magnetic dynamics and sonic lattice waves observed in recent years. Importantly, the
ratio between the longitudinal and transversal strain waves can be tuned by the pump
photon energy in vicinity of the phonon resonance, which hints at a close relation be-
tween nonlinear lattice dynamics, coherent lattice symmetry breaking and (shear) strain
generation. Tunable shear strain available on the ultrafast timescales via resonant lattice
excitation can be exploited for material control using a wide array of perovskite wide-
bandgap anisotropic substrates beyond LaAlO3. Since equilibrium shear strain is an im-
portant element for ferroelectric [12], flexoelectric [145], piezoelectric and magnetoelec-
tric effects, we envision opportunities for ultrafast manipulation of collective excitations
in solids.

The effects of macroscopic strain after resonant excitation of phonon resonances in
insulating materials is a seemingly universal mechanism that invites further study. The
effect might also play an important role in phonon-induced changes in macroscopic
properties taking place on longer timescales than expected from nonlinear phononic
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effects. In this regard, in finding the exact microscopic origin of a phenomenon induced
by resonant phonon excitation, it is crucial to be able to distinguish strain effects from
effects resulting from nonlinear phononics mechanisms.

4.7. METHODS

SAMPLE AND EXPERIMENTAL SETUP
In our experiments we use commercially available 5×5 mm (001) LaAlO3 single crys-
tals with a thickness of 0.5 mm from Crystec GMBH. The mid-infrared pulses (200 fs) are
generated in a 0.35 mm thick GaSe crystal by difference frequency mixing the output of
two optical parametric amplifiers (OPAs). The OPAs share the same white light, gener-
ated in a sapphire crystal, by the output of a laser amplifier (800 nm, 100 fs, 5 mJ, 1 kHz),
which ensures carrier-envelope-phase (CEP)-stability of the pulses [20]. A small part of
the laser output is used to probe the structural dynamics. The transient differental re-
flectivity ∆R is monitored using a balanced photodetector. The optical birefringence θB

is tracked using an optical polarization bridge (Wollaston prism) and a balanced pho-
todetector. In both experimental configurations, the probe pulses were focused to a spot
with a diameter of 80µm. The spatial overlap between the pump and probe pulses is ob-
tained by co-propagation of the beams, using an off-axis parabolic mirror, which focuses
the pump beam to a spot of about 150µm.

DFT CALCULATIONS
The DFT calculations and symmetry analysis were performed by A. Sasani and E. Bous-
quet. We simulated the R3̄c phase of LaAlO3 through density functional theory (DFT) [146,
147] as implemented in the ABINIT package (Ver 8.10.2) [148, 149]. We used Norm-
conserving pseudopotentials [150] to account for the interaction of the nuclei and the
electrons. These pseudopotentials were downloaded from the Pseudodojo website [151].
For La we considered 5s, 5p, 5d , 6s and 4 f as valence states and for Al and O the valence
states were considered to be 3s, 3p and 2s, 2p respectively. We used the PBEsol GGA
functional for the exchange correlation interaction [152] and all the calculations were
done with a 5×5×5 mesh of k-points for sampling of reciprocal space and a cut-off en-
ergy on the plane wave expansion of 45 Hartree. To calculate the phonons, we used
density functional perturbation theory as implemented in ABINIT [153, 154].

4.8. SUPPLEMENTARY INFORMATION

4.8.1. TEMPERATURE DEPENDENCE OF THE Eg MODE
In order to confirm that the observed oscillation at 1.1 THz corresponds to the Raman-
active Eg mode, we tracked the frequency and lifetime of the excited oscillations as a
function of temperature. In Fig. 4.8 we summarize the experimental findings. Although
the frequency f of the oscillation demonstrates only weak softening upon tempera-
ture increase, its lifetime demonstrates a strong temperature dependence. This behav-
ior, as well as the exact value of its frequency, are cogent hallmarks of the Eg Raman-
active vibration, a soft-mode of the rhombohedral-to-pseudocubic structural transition
in LaAlO3 at T ≈ 750 K [155]. The temperature-dependent lifetime is the result of a decay
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into acoustic phonon modes [156]. We also note that in our experiment the amplitude
of the Eg mode shows a pronounced decay upon temperature increase. These obser-
vations cannot be the result of a temperature-dependent oscillator strength of the ex-
cited infrared-active Eu phonon mode, as the optical properties of LaAlO3 close to the
phonon resonance are nearly temperature-independent in this temperature range [131]
and might be the result of a temperature-dependent coupling coefficient between the Eu

and Eg modes.
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Figure 4.8: Temperature dependence of the Eg mode. a, Time-resolved measurements of the transient change
in reflectivity of the probe pulse after excitation of the sample at different temperatures (hν= 89 meV). The
thicker solid lines represent damped sine fits. b,c, Lifetime (b), frequency f (inset (b)) and amplitude (c) of the
Eg mode oscillations vs. the temperature T , extracted using the fits of the data in panel a. All errorbars account
only for the uncertainty of the fit of the oscillations.

4.8.2. DFT CALCULATIONS ON NONLINEAR LATTICE DYNAMICS
The technical details of the calculation are given in section 4.7.

PHONONS

The relaxed lattice parameters are shown in Table 4.1, together with experimental and
DFT calculation values available from literature. There is a good agreement between all
of them, besides the usual underestimation of the bandgap given by GGA functionals.

Table 4.2 shows the calculated phonon frequencies for the lowest-frequency Raman
active (Eg, A1g, A2g) and highest-energy infrared active (A2u and Eu) modes relevant to
our study. The calculated phonon frequencies are in good agreement with reported ex-
perimental values.

PHONON-PHONON COUPLING MODEL

In our experiment, the resonant amplification of the Eg mode amplitude is observed
when the pump photon energy is around 85 meV with the propagation vector in the [001]
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Table 4.1: Calculated and experimental ground state parameters of the R3̄c phase of LaAlO3. The first column
shows the lattice parameter a, the second shows the angle Θ between the lattice vectors, the third reports the
energy band gap and the last column shows the oxygen octahedral rotation angle around the [111] axis.

a (Å) Θ(◦) bandgap (eV) φ[111](◦)
this work 5.337 60.2 4.16 5.97

DFT 5.29[133] 60.1[133] 3.88[133] 5.9[157]
EXP 5.357[158] 60[158] 5.5[159] 6[158]

Table 4.2: Phonon labels of the R3̄c phase of LaAlO3 and their frequencies as calculated in this work (column
2), experimentally measured (column 3) and previously DFT calculated (column 4).

Irrep Freq. (meV) Exp DFT[160]/ DFT[133]
Eg(1) 3.82 4.22[136] 4.09/ 2.91
Eg(2) 18.89 18.84[136] 18.10/ 19.40
A1g 22.97 16.37[132] 15.99/ 20.36

A2g(1) 16.84 17.48/ 17.91

A2u(3) 79.78 77.74/ 83.19
Eu(5) 81.66 81.45[161] 78.98/ 84.43

pseudocubic direction. As can be seen from Fig. 4.9a this direction makes a 55° angle
with the high symmetry [111] crystallographic axis. This means that the polarization has
one component in the [111] direction and one in the (111) plane (from a symmetry point
of view, every vector in this space group can be written through the A2u-[111] and Eu-
(111) irreducible representation). Considering the phonon mode energies, the laser can
only excite the highest frequency A2u and Eu phonon modes. Hence, we only focus on
the excitation of the A2u(3) and Eu(5) modes (from this point on referred to as A2u and
Eu respectively) and their coupling to lower frequency modes. All the other modes are
lower in energy and cannot be exited directly by the laser. We further show that although
the light can couple to the A2u mode, its excitation cannot account for our experimental
findings.

Since the calculations are done in a rhombohedral setting while the orientation of
the pump polarization plane is located in the (001) pseudocubic plane, this needs to be
taken into account when comparing the results of the calculations to experimental re-
sults. Figure 4.9b shows the projection of the in-plane vectors of the pseudocubic system
to the x, y axes in the (111) plane. Rotating the laser polarization from the [100] to the
[010] direction in the pseudocubic setting corresponds to rotating the polarization di-
rection from x in the (111) plane by 120°. Rotating the laser polarization from [010] to
[-100] corresponds to rotation of the polarization from 120° to -x which is a 60° angle.
This leads to two different functions to describe the connection between results of the
experiment to the theory.
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a b

Figure 4.9: Crystallographic orientations. a, Schematic view of the lattice planes and directions of pseudocu-
bic and rhombohedral cells. The surface of the sample is [001] oriented but the crystallographic rhombohedral
main axis is along the [111] direction. b, projection of the pseudocubic directions onto rhombohedral coordi-
nates in the (111) plane

Phonon modes
The Eu mode is a two-dimensional degenerate phonon mode and depending on the ori-
entation of the polarization plane of the excitation pulse, we can excite different linear
combinations of these two degenerate modes. These modes can be excited along the two
main axes (orthogonal x and y , see Fig. 4.9a) or through a linear combination of them.
Hence, for the Eu mode we studied 3 different cases:

(i) Ex
u polarized in the x direction in the (111) plane (P1(9)) (Fig. 4.10c),

(ii) Ey
u polarized in the y direction in the (111) plane (P2(5)) (Fig. 4.10d),

(iii) Ex y
u with symmetry C1(1), a linear combination of the Ex

u and Ey
u modes, making a

45° angle with the x or y directions.

The A2u mode is not degenerate and is polarized in the [111] direction perpendicular to
the (111) plane as presented in Fig 4.10b.

We studied the nonlinear coupling of the form αQIRQ2
R of the IR-active Eu and A2u

modes with several low frequency modes Raman (R) modes (results not shown here),
where we found that all the modes except Eg(1) (the lowest frequency one) have negli-
gible coupling to them. Hence, from this point we focus on the coupling between the
Eu, A2u and Eg(1) modes (from now on referred as Eg). The Eg mode is also doubly de-
generate and therefore can have two different symmetries in which the modes could be
excited depending on its orientation (Ea

g and Eb
g with P1(15) symmetry shown in Fig. 4.10

and Eab
g with C1(2) symmetry (similar to Fig 4.10b with different orientation). Here, Ea

g

and Eb
g are rotated 60° with respect to each other.

Eu and Eg coupling
To study the coupling of Eu and Eg modes, we can first consider 3 special cases:
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Figure 4.10: Real-space atomic motion for different phonon modes. Schematic pictures of phonon modes
vibrations for the Eg mode (a), A2u mode (b) and Eu modes (c and d).

(i) (Ex
u 6= 0 with Ey

u=0) mode with Ea
g and Eab

g modes,

(ii) (Ey
u 6= 0 with Ex

u=0) mode with Ea
g and Eab

g modes,

(iii) (Ex y
u with Ey

u = Ex
u) mode with the Ea

g mode.

For cases (i) and (ii), we can consider the nonharmonic potential given in Eq. 4.17
and fit the results with DFT calculations.

V (Q) = aQ2
Eu

+bQ4
Eu

+a′Q2
Eg

+b′Q3
Eg
+

c ′Q4
Eg

+αQEgQ2
Eu

+βQ2
Eg

Q2
Eu

(4.17)

In the general case where we have the Eu polar modes excited in two directions, we define
an effective α′ parameter, which is a function of the laser polarization direction and can
be written as follows:

α′ =−αcos2θ, (4.18)

where θ = arccos

 QE x
u√

QE x
u
+Q

E
y
u

.

The results of the fit are shown in Table. 4.3 where we obtain that the constant α '
1.61. For the Ex y

u case (iii) (with Ey
u = Ex

u), the α′ parameter is zero and the higher order
couplings are not large enough to create any considerable dynamics. This situation oc-
curs when the polarization component of the laser in the (111) plane is exactly between
the x and y axis (θ = 45°).

Fig. 4.11 shows the evolution of the potential energy V as a function of the Ea
g mode

condensation amplitude for different amplitudes of Ex
u (Fig. 4.11a) and Ey

u (Fig. 4.11b)
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Table 4.3: Coupling coefficients between Ea
g mode and Ex

u 6= 0 with E
y
u=0 (shown as Ex

u), E
y
u 6= 0 with Ex

u=0

(shown as E
y
u) or E

y
u = Ex

u (shown as E
x y
u ). The units are eV/Ån, where n is the order of the coupling.

a b a′ b′ c ′ α′ β

Ex
u 13.418 11.049 0.027 0.077 1.075 -1.611 -3.922

Ey
u 13.425 10.895 0.028 0.079 1.074 1.616 -4.802

Ex y
u 13.422 10.95 0.028 0.073 1.076 -0.001 -4.406

modes. The modes Ex
u and Ey

u tend to displace the minimum of the Ea
g mode toward dif-

ferent directions. These behaviours are due to opposite signs of the α′ coefficients that
couples the two Ex

u and Ey
u modes to the Ea

g mode. Hence, this shifts the minimum of
the energy in two different directions, which could be the reason why we observe oscil-
lations of the Eg modes in the experiments with different phases for excitation with 0°
(exciting Ex

u mode) and 90° polarization (mainly exciting the Ey
u mode) of the laser. A

minimum horizontally shifted from 0 Å, means that excitation of the Ex
u and Ey

u modes
quasi-statically freezes the Ea

g mode (lowering the symmetry), which is the characteristic
of nonlinear phononics [119].

To further understand the effects of polarization direction of the laser on the Ea
g

mode, we have analysed the evolution of α′ with respect to the polarization angle φ in
the (001) plane. Figure 4.6c shows the results with α′ changing in an oscillatory manner.
The evolution of α′ with the angle φ is not trivial and has two regimes. The origin of
these two regimes is the polarization in the (001) plane which has to be projected on the
(111) plane, which results into two types of periodicity, one of 60° and one of 120° (see
Fig. 4.9b).
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Figure 4.11: Eg mode displacement. The potential energy V as a function of the Ea
g mode displacement for

different amplitudes of the Eu mode (Ex
u (a), E

y
u (b)). The arrows show the direction of increasing Eu mode

amplitude, with amplitudes of 0, 0.03, 0.06 and 0.09 Å respectively.

We also studied the coupling of the Eu modes with the Eb
g mode. The results are sim-

ilar to the ones presented for the Ea
g case with the difference that the b′ coefficient is

positive in the Ea
g case while it is negative in the Eb

g case. However, the effects of this bi-
quadratic coefficient b′ are smaller than the third order α coefficient.
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Fluence dependence of the Eg mode
We measured the dependence of the observed oscillations corresponding to the non-
polar Eg mode as a function of the pump fluence at the resonance conditions (with the
pump photon energy of 89 meV). As shown in Fig. 4.12, the oscillation amplitude de-
pends linearly on the pump fluence. This observation, combined with the resonant
character, indicates a quadratic dependence of the Eg mode amplitude on the ampli-
tude of the pump driven Eu mode.
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Figure 4.12: Pump fluence dependence of the Eg mode. a, Time-resolved measurements of the transient
change in reflectivity of the probe pulse after excitation of the sample at a pump energy of 89 meV with different
fluences (offset for clarity). The thicker solid lines represent sine fits. b, Amplitude of the Eg mode oscillations
vs. pump fluence, extracted using the fits of the data in panel a. Inset: Amplitude of the Eg mode vs. pump

electric field E with a power fit giving E1.93±0.15. Errorbars account for the uncertainty of the fits in panel a.

A2u and Eg coupling
Unlike the Eu mode, the A2u mode has no degeneracy and it could couple to different
directions of the Eg mode (Ea

g and Eb
g and Eab

g modes). We fitted Eq. 4.17 to study the A2u

mode coupling with Eg mode where α is equal to zero (it is not allowed by symmetry, as
the A2u mode is non-degenerate). The resulting fitted coefficients are shown in Table 4.4.

Table 4.4: coupling coefficients between the A2u mode and Ea
g , Eb

g and Eab
g modes. The units are eV/Ån, with

n the order of the coupling.

a b a′ b′ c ′ β

Ea
g 12.81 8.01 0.027 0.078 1.059 -3.161

Eb
g 12.81 8.00 0.027 -0.084 1.062 -3.159

Eab
g 12.82 8.02 0.027 -0.012 -0.012 -3.167

In this case the only coupling term between the polar mode and the Eg mode is the
higher order bi-quadratic β coefficient, which is smaller than the Eu case such that the
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dynamics resulting from the A2u excitation can be neglected.

STRAIN WAVES

In the experiment, both longitudinal acoustic (LA) and transverse acoustic (TA) waves
are observed after resonant optical phonon excitation. Although exciting the LA mode
is straightforward, exciting the TA mode is not evident in nearly-isotropic materials. We
have studied two possible origins to excite the TA mode: (i) by having the crystal with off-
axis orientation with respect to the sample surface or (ii) through the phonon-phonon
coupling that induces anisotropic strain.

In case (i), the experimental set-up is such that the LaAlO3 sample surface is ori-
ented in the pseudocubic [001] direction, which makes an angle of 55° with respect to
the proper rhombohedral [111] high symmetry direction (as can be seen in Fig. 4.9a).
This is evidenced from the calculated elastic constants of both the pseudocubic and the
rhombohedral phases reported in Table 4.5. We can see that the transition from pseu-
docubic to R3̄c phase creates anisotropy compared to the pseudocubic elasticity with a
pronounced splitting between the rhombohedral x y directions and the z direction. In
this case the shear strain will be exited due to anisotropy arising from off-axis orientation
of the crystal.

In the second case (ii) the phonon-phonon coupling induced by the laser excites the
Eg mode, which in turn can induce an out-of-equilibrium anisotropy into the elasticity.
To further show the effect of this dynamically induced phonon induced stress, we relaxed
the lattice parameters by keeping the Eg mode frozen in the crystal and compared the
resulting elastic constants with respect to the ones of pseudocubic and rhombohedral
LaAlO3 (Table 4.5). It is seen that the anisotropy arising from the Eg mode condensation
has a strong impact on the C35 and C51 elastic constants. These off-diagonal constants
indeed couple longitudinal and shear strain, which makes it likely that they contribute to
the strain conversion when energy of the pump photon is swiped across the Eu phonon
resonance.

4.8.3. PUMP FLUENCE AND POLARIZATION DEPENDENCE OF THE STRAIN

WAVES
In this work, the strain waves were measured for different photon energies. These strain
wave amplitudes increased linearly with pump fluence, as shown in Fig. 4.13a for all
photon energies. In addition the strain waves were measured for different pump polar-
ization. The time-resolved traces are shown in Fig. 4.13b. No strong dependence of the
TA/LA ratio r on the pump polarization is observed.
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Table 4.5: Elastic constants of LaAlO3 (in the respective coordinate systems) for the pseudocubic, rhombohe-
dral (R3̄c) and rhombohedral with the Eg mode condensed. The amplitude of the distortion is 0.13 Å. Units are
in (GPa)

pseudocubic Rhombo Rhombo+Eg

C11 366 404 410
C22 366 404 394
C33 366 406 406
C12 130 124 124
C23 130 98 97
C31 130 98 100
C44 161 124 123
C55 161 124 124
C66 161 140 140
C46 0 -22 -23
C51 0 22 18
C52 0 -22 -22
C35 0 0 -4
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5
CONTROL OF MAGNETIC

INTERACTIONS VIA ULTRAFAST

RESONANT LATTICE EXCITATION

“The most exciting phrase to hear in science,
the one that heralds new discoveries,

is not ‘Eureka!’ but ‘That’s funny’. "

Isaac Asimov

In the previous chapter we introduced resonant ultrafast excitation of infrared-active phonons
as a powerful technique to control functional material properties through transient struc-
tural deformations. In this chapter we show that light-driven phonons can be utilized to
coherently manipulate macroscopic magnetic states. Intense mid-infrared electric field
pulses, tuned to resonance with a phonon mode of the antiferromagnet DyFeO3, induce
ultrafast and long-living changes of the fundamental exchange interaction between rare-
earth orbitals and transition metal spins. This nonthermal lattice control over the mag-
netic exchange, which defines the very stability of the macroscopic magnetic state, allows
us to perform picosecond coherent switching between competing antiferromagnetic and
weakly ferromagnetic spin orders.

This chapter has been published with minor differences in Nature Materials 20, 607 (2021) by D. Afanasiev,
J. R. Hortensius, B. A. Ivanov, A. Sasani, E. Bousquet, Y. M. Blanter, R. V. Mikhaylovskiy, A. V. Kimel and A. D.
Caviglia [162].

DFT calculations were performed by A. Sasani and E. Bousquet
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The ability to control macroscopic states of matter by light on the fastest possible
timescale crucially relies on finding efficient routes to manipulate the various micro-
scopic interactions defining the very stability of the cooperative state [14]. In magnetism,
these interactions either involve the electrons of only one magnetic ion (single-ion mag-
netic anisotropy [38, 59]), or rely on a mutual interaction between pairs of magnetic ions
(two-ion anisotropy [163]). Despite the intrinsic differences, both of these interactions
originate from the same electrostatic Coulomb repulsion, which is strongly sensitive to
the lattice symmetry and the electronic overlap. Terahertz control of magnetism is a
thriving field, but its main focus until now has been limited either to the direct excita-
tion of spins by the magnetic field component of the single-cycle terahertz pulse [55]
or to resonant pumping of the electronic degrees of freedom [59, 60]. Resonant pump-
ing of infrared-active phonons with multi-terahertz pulses in the mid-infrared spectral
(MIR) range has emerged as a low-energy route to drive large-amplitude net structural
distortions. These coherent lattice distortions, emerging on the timescale of several pi-
coseconds, modulate the spatial overlap of the electronic wavefunctions and have been
shown to transiently melt charge [164] and orbital ordering [165], drive insulator-to-
metal phase transitions [116] and even enhance superconducting correlations in high-
Tc cuprates [35, 36]. Although pioneering experiments have demonstrated that driving
optical phonons can also affect magnetism [57, 58, 166, 167], no coherent switching of
the spin orientation or coherent light-induced magnetic symmetry breaking has been
shown so far.

Here we investigate phonon-induced magnetism (phonomagnetism) in dysprosium
orthoferrite (DyFeO3), a material where a strong exchange interaction between the spin
of the transition metal (TM) ion and the orbital momentum of the rare-earth (RE) ion
leads to a distinctive first-order spin-reorientation phase transition accompanied by a
change of the magnetic symmetry from the antiferromagnetic (AFM) to the weakly fer-
romagnetic (WFM) [168]. We show that a sub-ps pulse of an intense multi-terahertz
electric field, tuned in resonance with a phonon mode (see Fig. 5.1a), drives a coherent
spin-reorientation, developing long-living WFM order within a half-cycle of the spin pre-
cession. Phonon-induced magnetism emerges via a non-equilibrium metastable state
(see Fig. 5.1b), inaccessible not only via a thermodynamic transformation but also via
optical pumping of the high-energy electronic transitions. We experimentally and the-
oretically demonstrate that phonomagnetism originates from phonon-induced lattice
distortions that modify the RE-TM exchange interaction within a few picoseconds.

5.1. MAGNETIC PROPERTIES OF DYFEO3
The magnetic insulator DyFeO3 crystallizes in a perovskite orthorhombic structure (see
Fig. 5.2a) and exhibits antiferromagnetic order of the iron spins set by the Fe-Fe isotropic
exchange interaction. Although the rare-earth Dy3+ magnetic moments only order below
4K, they play a crucial role in determining the magnetic properties of the iron spins at
much higher temperatures (< 100K).

While the singlet state of the Fe3+ ion (6S ground state) results in negligible single-ion
magnetic anisotropy, its anisotropic exchange interaction with the large angular mo-
mentum of the dysprosium (6H15/2 ground state) mediates the strong coupling of the
iron spins to the crystal lattice, thereby setting up the magneto-crystalline anisotropy [168].
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Figure 5.1: Phonon-driven reconfiguration of the magnetic potential in DyFeO3. a, The eigenmode of the
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(solid orange) phonon excitation. The red and blue arrows depict the spin configurations corresponding to
the antiferromagnetic (AFM) and weakly ferromagnetic (WFM) magnetic phases. The orange arrow highlights
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phases.

Around 51 K DyFeO3 experiences a spontaneous spin-reorientation transition, in which
the spins rotate in the x y-plane, accompanied by the emergence of a small net mag-
netic moment. This transition can also be induced by a magnetic field applied in the
crystallographic z-direction and detected using the magneto-optical Faraday-rotation
(see Fig. 5.2b). The thermal population of the two lowest Dy3+ Kramers doublets (energy
gap ∆E =6.4 meV, corresponding temperature T ≈ 75K) changes the orbital state of the
rare-earth ion and therefore directly links the origin of the first-order phase transition to
the Fe-Dy exchange interaction.

35 43 51

0.05

0.10

0.15

M
ag

ne
tic

fie
ld

,B
z

(T
)

Temperature, T (K)

-1.5

-0.99

-0.49

0.010

Faraday rotation (a.u.)

yx

yx

b

AFM

WFM

Faraday 
rotation

a

x y

z

Fe

Dy

O

M

Figure 5.2: The magnetic properties of DyFeO3 a, Crystal structure of DyFeO3. b, Phase diagram of the mag-
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measured by hysteresis loops using the static magneto-optical Faraday effect.

In order to describe this spin-reorientation transition, we introduce the normalized
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net magnetization m and Néel vector l

l = M1 −M2

2M0
, m = M1 +M2

2M0
, (5.1)

where M1,2, with |M1,2| = M0, are the individual magnetizations of the antiferromagneti-
cally coupled magnetic sublattices. Due to the planar character of the spin reorientation
in DyFeO3, the unit vector l can be written as l = (sinϕ,cosϕ,0), with ϕ the angle be-
tween the spins and the y-axis. The anisotropy energy can be written as function of the
different components of l and the temperature-dependent anisotropy parameters and
rewritten in terms of ϕ (see section 5.7.2). The spin-reorientation is then described by
the magnetic potential F which depends on the temperature and the angleϕ [168, 169]:

F (ϕ,T ) = 1

2
K2(T )cos2ϕ− 1

4
K4 cos4ϕ (5.2)

K2,K4 are phenomenological anisotropy constants of very different microscopic origin.
While K2 originates from the temperature-dependent anisotropic exchange interaction
between the iron and dysprosium ions, K4 is the nearly temperature-independent mag-
netic anisotropy of the iron ion, with contributions of different origin (dipole, direct spin-
orbit coupling and Dzyaloshinskii-Moriya interaction (DMI)) [170]. This potential func-
tion features two characteristic minima at ϕ = 0°,90° in a broad temperature range (see
Fig. 5.3a), indicating the presence of two ordered (meta)stable states. At the Morin tem-
perature TM =51 K, the direction of the magnetic easy-axis for the iron spins and Néel
vector l changes abruptly between the y- and x-crystal axis, as the relative potential en-
ergy of the two minima changes sign. This first-order phase transition is accompanied
by a change in magnetic symmetry, from a collinear AFM, to a canted WFM state char-
acterized by the emergence of a net magnetization m. The evolution of the magnetic
landscape close to the phase transition also has a pronounced effect on the frequency f
of the antiferromagnetic spin precession mode, the soft mode of the Morin phase tran-
sition (see Fig. 5.3b). The reason for this is the sensitivity of the soft-mode to the local
curvature of the magnetic potential:

f 2 ∝ ∂2F

∂ϕ2

∣∣∣
ϕ=ϕ0

, (5.3)

both in the AFM (ϕ0 = 0°) and WFM (ϕ0 = 0°) phase.
The height of the potential barrier separating the two competing states, as well as

their relative energy, is controlled by the strength of the Fe-Dy exchange through the pa-
rameter K2. This interaction is presumably not only sensitive to the temperature but also
to changes in the crystal environment, both via direct modulation of the Fe-Dy electronic
overlap and via structurally-driven changes in the orbital state of the RE 4 f multiplet [59,
171]. In our study we consider light-induced oscillations of atoms driven far from their
equilibrium positions in order to control the strength of the Fe-Dy exchange [172, 173]
and to realize lattice control of the spin arrangement on the ultrafast timescale.
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5.2. PHONON-DRIVEN RECONFIGURATION OF THE MAGNETIC

POTENTIAL
In our experiments we investigate spin dynamics in single crystals of z-cut DyFeO3.
The phonon excitation is provided by an intense (electric field in excess of 10 MV/cm),
phase locked mid-infrared impulsive source (250 fs, 1 kHz), tunable in a broad photon
energy range from 65 to 250 meV (16–60 THz). This energy range covers the highest fre-
quency infrared-active TO phonon mode (Bu) centered at 70 meV, associated with pe-
riodic stretching of the Fe-O bonds (see Fig. 5.1a and Fig 5.16). The ensuing spin dy-
namics are measured in a conventional pump-probe scheme, by tracking the polariza-
tion rotation θR, imprinted by the magneto-optical Faraday effect, on co-propagating
near-infrared probe pulses at the photon energy of 1.55 eV. Therefore the Faraday ro-
tation probes the magnetization along the normal direction in our experimental geom-
etry. This also allows to measure the net magnetic component resulting from canting
of the magnetic sublattices in the course of antiferromagnetic spin precession (see sec-
tion 5.7.2). Similarly to Refs. [174, 175], we use this precession frequency as probe of the
magnetic potential (see section 5.7.3).

Figure 5.4a and 5.4b show light-induced dynamics of the Faraday signal in the AFM
and WFM phases revealing coherent oscillations, corresponding to spin precession around
their respective equilibria. These dynamics are induced by pump pulses tuned in reso-
nance with the lattice vibrational mode (hν= 85 meV). As a control experiment, we excite
magnon oscillations via impulsive stimulated Raman scattering (ISRS) [48] using pulses
tuned away from lattice or electronic resonances (hν= 165 meV). We note that the fre-
quencies of the magnon oscillations excited by ISRS match exactly with the tabulated
values reported in the literature [169, 175] and therefore serve as in-situ probe of the
curvature of the potential F at equilibrium. A comparison of the Fourier spectra (insets
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Figure 5.4: Phonon-driven reconfiguration of the magnetic potential in DyFeO3. a,b, Time-resolved tran-
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sponding spin precessions, with the resulting oscillating magnetic component ∆Mz . c, Central frequency of
the excited soft mode as a function of the photon energy of the pump pulse in the two magnetic phases. The
solid lines serve as a guide to the eye. The background, shaded, curve shows the sample’s optical density. The
insets schematically indicate changes in the local curvature of the magnetic potential.

in Fig. 5.4a and 5.4b) reveals that the frequency of the spin precession excited by pulses
in resonance with the lattice mode is shifted as compared to the equilibrium value. The
sign of the shift ∆ f depends on the initial magnetic configuration, being red in the AFM
phase and blue in the WFM phase. To underscore the resonant character of the fre-
quency shift, we tune the photon energy of the pump pulse across the phonon resonance
and extract the central frequency of the spin oscillations (Fig. 5.4c). The data acquired
in both magnetic phases show that the onset of the frequency shift closely follows the
spectrum of the linear absorption of the Bu phonon mode, revealing a correlation be-
tween light-driven phonon and spin dynamics. These observations contain important
information on the effects of the phonon-pumping on the magnetic potential, as the fre-
quency serves as a measure of the magnetic potential curvature, following the relation
in Eq. 5.3. The red shift indicates a flattening of the potential energy in vicinity of the
AFM minimum (ϕ = 0°), which may lead to a phase instability. The blue shift observed
in the WFM phase points at an increased curvature of the potential and enhanced phase
stability in vicinity of the WFM minimum (ϕ= 90°).

Time-resolved Fourier analysis indicates that the oscillations are chirped and the
change in frequency occurs already within a half-cycle of the first spin oscillation, defin-
ing an upper bound for the phonon-driven changes in the magnetic potential of about
5 ps (see Fig. 5.5). This time is an order of magnitude shorter than reported in Ref. [175],
where the heat-driven dynamics of the magnetic potential were governed by the inter-
action of incoherent acoustic phonons with the Dy3+ electrons. Thus, the observed ul-
trafast response excludes heat-driven spin-lattice relaxation as the origin of the initial
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kinetics. Remarkably, the change in frequency persists for a time τ > 100 ps, exceeding
the precession period by nearly an order of magnitude. We also note that the value of τ
closely follows the characteristic equilibrium decay time of the spin precession (see inset
Fig. 5.5b).
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5.3. OUT-OF-EQUILIBRIUM METASTABLE STATE
As shown in Fig. 5.6a, measurements of the frequency of the magnetic mode at equi-
librium as a function of temperature reveal a cusp-like evolution in proximity to TM, in
excellent agreement with Ref. [169]. In contrast, the temperature-dependent frequen-
cies of the magnons launched via resonant phonon excitation are characterized by a
pronounced discontinuity at TM of more than 50 GHz (see Fig. 5.6a). The discontinuity
is accompanied by magnetic responses at frequencies well below the minimum equi-
librium value (140 GHz). Although the heat capacity of DyFeO3 changes by a factor of
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20 between 10 and 60 K [176], the magnitude of the observed frequency change is nearly
temperature-independent in the range 10–80 K, providing another indication that a non-
thermal process is at play.

From the analysis of the temperature dependence of the magnon frequencies, we
map out the magnetic potential F (see section 5.7.3) before (t < 0) and after (t > 0) laser
excitation (see Fig. 5.6b). One can see that phonon-pumping significantly increases the
energy of the AFM state, simultaneously lowering the potential barrier, such that close to
TM the AFM phase may lose its stability. We note that the frequency difference between
the excited phonon (17 THz) and the magnon (0.2 THz) rules out direct phonon-magnon
coupling.
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Figure 5.6: Out-of-equilibrium metastable magnetic state. a, Spin precession frequency f as a function of
temperature across the Morin phase transition for different photon energies of the pump excitation. Refer-
ence values: [169] b, Reconstructed magnetic potential F before (t < 0) (dashed black) and after (t > 0) (solid
orange) the phonon-pumping. The position of the red ball represents the energy state of the system. Inset: The
eigenmode of the Ag lattice distortion considered as a driving force for the dynamics of the magnetic potential.

The orange arrows depict the motions of the Dy3+ ions, antipolar in the adjacent layers.

To describe our experimental findings, we propose a simple phenomenological model
that indicates that all the changes of the magnetic potential can be explained by a renor-
malization of a single value parametrizing the strength of the Fe-Dy exchange by about
5µeV/u.c. (see section 5.7.3 and Fig. 5.13). In order to identify the microscopic pathways
that connect the light-driven optical phonons with the transient changes in the Fe-Dy
exchange, we use density functional theory (DFT) calculations (see section 5.6 and 5.7.5
for details). The computations suggest the presence of a transient coherent lattice dis-
tortion in response to resonant pumping of the Bu mode. This distortion has the same
lifetime as the infrared-active mode (∼1 ps) and emerges as a consequence of an an-
harmonic interaction of different phonon modes, generally known as ionic Raman scat-
tering or nonlinear phononics [122], which rectifies and transfers the large-amplitude
excitation of the Bu polar mode into a finite time distortion along the coordinate of a
coupled, Raman-active Ag phonon mode (see inset Fig. 5.6b and Fig. 5.15). This lattice
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distortion involves antipolar motions of the heavy Dy3+ ions reaching values of about
0.2 pm for the pump fluences employed in our experiment (see section 5.7.5). The DFT
results also show that such displacements can alter the Fe-Dy exchange integral by about
1–2µeV/u.c., consistent with the estimation of the phenomenological model (see sec-
tion 5.7.5). The long-living effect of the distortion on the Fe-Dy exchange is presumably
governed by the spin-lattice interaction, which also defines the lifetime of the spin pre-
cession (see inset Fig. 5.5).

5.4. ULTRAFAST PHONON-DRIVEN MAGNETIC PHASE TRANSI-
TION

To demonstrate the potential of the phonomagnetism for ultrafast control of magnetic
states we transiently modify the RE-TM exchange interaction in proximity to TM. Two
distinct regimes of the magnetization dynamics are observed above and below a critical
fluence Ic = 10 mJ/cm2 (see Fig. 5.7a,b). For fluences below Ic the pump drives a nearly
harmonic response of the spins, mainly influencing its amplitude and frequency. How-
ever, upon exceeding the value of Ic, the course of the magnetization dynamics changes
dramatically. A long-lived (>250 ps) offset, odd parity with respect to the sign of the
applied field, develops within a half-period of the spin precession (<5 ps), marking the
coherent emergence of a transient magnetization ∆M . As the temperature is varied, it
becomes apparent that the induced magnetization peaks nearly at TM and completely
vanishes for T > TM (see Fig. 5.7c). The presence of a well-defined fluence threshold, as
well as the observation of the phonon-induced macroscopic magnetization inherent to
the WFM phase, are clear signatures that phonon pumping drives the coherent reorien-
tation of spins accompanied by a change in the magnetic symmetry.

It is important to compare the observed kinetics of the ultrafast phase transition
launched via the phonon-pumping with those driven via a dissipative mechanism. There-
fore, we perform an auxiliary experiment in which we excite the sample with visible light
with a photon energy of 2.3 eV and 3.1 eV, above the change-transfer electronic gap [177]
(see section 5.7.1). Here the optical absorption is large (αÀ 1000 cm−1), and the transi-
tion is expected to be driven by the heat deposited in the medium. In Fig. 5.8 we compare
the spin-reorientation transition obtained in DyFeO3 via conventional ultrafast heating
(excitation with photon energy 2.3 eV and 3.1 eV, above the material’s band gap) with the
phonomagnetism discussed here. Note that especially at 3.1 eV the optical absorption
is significantly larger than the optical absorption due to phonons at 85 meV. Ultrafast
heating results in a net magnetization that develops on a time scale of 50–100 ps, con-
sistent with the spin-lattice relaxation time [175]. The slow dynamics can be explained
by the slow heat transfer from the excited electrons to the 4 f electrons of Dy3+, which
determine the dynamics of the magnetic potential [178]. This kinetics stands in sharp
contrast with the one induced by phonon pumping, where the potential is altered on a
timescale shorter than a single-cycle of the coherent spin precession, below 5 ps, indi-
cating its coherent character. This leads us to conclude that a very different mechanism
from regular heating is at play in the case of phonon pumping.
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5.5. CONCLUSIONS
By resonantly pumping infrared-active phonons with strong-field ultrashort multi-terahertz
pulses of light, we have investigated a new route to reshape magnetic potentials and
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initiate ultrafast coherent magnetic phase transitions. Using a phenomenological de-
scription and first-principles calculations, we have demonstrated that the mechanism is
based on a phonon-driven change of the exchange interaction between the rare-earth
and transition metal ions. We anticipate that a similar mechanism will be active in
other magnetic materials featuring anisotropic exchange interactions such as rare-earth
based compounds (manganites, vanadates, and orthochromites) and type-II multifer-
roics [179]. Our findings fill the gap between manipulation of magnetism with single-
cycle terahertz pulses [55, 59] and ultrashort pulses at optical frequencies [39], high-
lighting new avenues for the manipulation of ferroic order on ultrafast timescales and
providing a new platform for magnonics and antiferromagnetic spintronics [180].

5.6. METHODS
SAMPLE AND EXPERIMENTAL SETUP

We used a monocrystalline, 63µm-thick DyFeO3 sample grown by floating-zone melt-
ing. The sample is cut perpendicularly to the z-crystallographic axis in the form of a
thin slab. The sample was kept in a dry-cycle cryostat (Montana Instruments) which al-
lowed to cool it down to 10 K, far below TM. Static bias fields up to Bext = 700 mT from an
electromagnet were applied within the (xz)-plane of the crystal at an angle of about 70°
relative to the z-axis to provide a single domain magnetic state of the sample.

The intense pump pulses with wavelengths in the mid-infrared (MIR) spectral range
used in this experiment, were generated via difference frequency generation (DFG) in a
GaSe crystal using the output beams of two commercially available, independently tun-
able optical parametric amplifiers (OPAs) integrated into a single housing (Light Con-
version, TOPAS-Twins). The OPAs were pumped by a commercially available amplified
Ti:Sapphire laser system (Coherent, Astrella) delivering pulses at a 1 kHz repetition rate
with a duration of 100 fs and a photon energy of 1.55 eV (λ = 800 nm). The OPAs were
seeded by the same white light generated in a sapphire crystal, which ensures separately
tunable, but phase-locked output pulses [20] with photon energies in the range 0.45–
1.1 eV (λ = 2.7–1.1µm). As a result, when the pulses are mixed in the GaSe crystal, the
generated MIR pulses are carrier envelope phase (CEP) stable [181], linearly polarized
and their energy lies in the range from 65–250 meV (λ = 19–5µm) with an average pulse
duration of around 250 fs.

To generate pump pulses in the visible spectrum with a photon energy larger than
the electronic band gap, we used a β-barium borate (BBO) single crystal to double or
triple the photon energy of a single OPA output. This provided tunable excitation pulses
with energies in the range of 0.9–3.3 eV. In the experiments, the mid-infrared pulses
were focused onto the sample surface to a spot with a diameter of about 150µm, using
an off-axis parabolic mirror. The pump-induced dynamics were measured in a trans-
mission geometry. The polarization rotation θR of the linearly polarized probe pulse,
imprinted by the magneto-optical Faraday effect, was measured with the help of a po-
larization bridge (Wollaston prism) and a pair of balanced Si photodetectors. The loss
function of the sample in the MIR spectral range was measured using a Nicolet 6700
Fourier transform infrared (FTIR) spectrometer. The optical absorption in the visible
spectral range was measured using a halogen lamp and an Ocean Optics spectrometer.
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The optical setup is described in more detail, including a figure, in chapter 3.

DFT CALCULATIONS

We simulated the Pnma phase of DyFeO3 through density functional theory (DFT) [146,
147] and its projected augmented wave (PAW) [182] flavour as implemented in the ABINIT
package [148, 183]. The PAW atomic potentials used for Fe and O were downloaded from
the GBRV pseudopotential library [184] with 3s, 3p, 3d, 4s and 2s, 2p considered as va-
lence states for Fe and O respectively. For Dy we used the PAW atomic potential from M.
Topsakal et al. [185] where the valence states are 4f, 5s, 5p and 6s (with f electrons in the
valence). We used the PBEsol GGA functional [152] for the exchange correlation inter-
action and Hubbard corrections [186] on both Fe and Dy of respectively 4 and 7 eV have
been used to have the closest possible properties with respect to experiments (lattice
constants). All the calculations were done with a 6x6x4 mesh of k-points for the recipro-
cal space and a cut-off energy on the plane wave expansion of 36 Hartree and 72 Hartree
for the second finer grid inside the PAW spheres. To calculate the phonons, the frozen
phonon technique has been used through the phonopy software [187].

5.7. SUPPLEMENTARY INFORMATION

5.7.1. OPTICAL ABSORPTION SPECTRUM
DyFeO3 is an insulator with a large optical bandgap. At the photon energies above 2.1 eV,
the optical absorption is dominated by the dipole-active charge-transfer electronic tran-
sitions from the O2 – to the Fe3+ ions [177] (see Fig. 5.9). The several broad absorption
peaks below 2.1 eV correspond to optical transitions due to spin-forbidden d-d transi-
tions within the Fe3+ multiplet. The optical losses at photon energies below 150 meV
are due to absorption and reflection of the nearly degenerate, highest-frequency TO-
phonon modes, with B1u and B3u symmetries and the dipole moment oriented along
the x- and y-axis respectively. The eigenvectors of the atomic motion comprising these
phonon modes are shown as inset in Fig. 5.9.
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Figure 5.9: Optical absorption spectrum. a, Loss function and optical absorption for the 63µm thick (001)
DyFeO3 sample in a broad energy range. The B1u and B3u phonon modes are nearly degenerate and dominate
the loss function at energies below 0.15 eV.
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5.7.2. FIRST-ORDER SPIN REORIENTATION AND SPIN DYNAMICS IN DYFEO3

SPIN REORIENTATION

Below the Néel temperature TN = 650 K, the Fe3+ spins in DyFeO3 are ordered antifer-
romagnetically. The magnetic phase diagram of DyFeO3 includes a collinear antiferro-
magnetic (AFM) phase with the spins oriented along the y-axis and a weakly ferromag-
netic (WFM) phase with the spins oriented along the x-axis [144, 170, 188–192]. The
AFM phase is stabilized at low temperatures (T < TM = 51 K) and can be transformed
to the WFM phase either by an increase in temperature or by application of an exter-
nal magnetic field along the z-crystallographic axis [144]. The spin reorientation oc-
curs in the (x y) crystallographic plane and thus can be fully parametrized by an angle ϕ
that the spins form with the y-axis [168, 169]. It proceeds as a first-order phase transi-
tion and demonstrates a very narrow (< 0.2 K) temperature hysteresis [144, 170], due to
a high sensitivity of the spin-reorientation transition to lattice deformations and crystal
defects. These factors contribute to a prompt nucleation of the new magnetic phase,
once the energy balance between the AFM and the WFM states changes its sign, making
the hysteresis extremely narrow in vicinity of TM.

The following discussion heavily builds on section 2.5. To describe the phase transi-
tion we introduce the normalized net magnetization and Néel vector:

l = M1 −M2

2M0
, m = M1 +M2

2M0
, (5.4)

where M1,2, with |M1,2| = M0 are the individual magnetizations of the antiferromagneti-
cally coupled magnetic sublattices that are related to the mean values of the atomic spins
s1,2 as M1,2 = gµBs1,2/v0, with v0 the volume per iron ion, g the Landé factor and µB the
Bohr magneton. The Dzyaloshinkskii effective field in DyFeO3 is given by:

HD = HD[ey × l], (5.5)

with ey a unit vector along the y-axis, corresponding to the even C2 crystal axis in DyFeO3.
As HD is large (∼ 1×105 Oe), the external field H0 can be neglected from this point on.
Due to the planar character of the spin reorientation in DyFeO3, the unit vector l can be
written as l = (sinϕ,cosϕ,0) (withϕ the angle between the spins and the y-axis). Putting
this in Eq. 2.30, we find that the normalized static magnetization m(static) is given by:

m(static) = HD

Hex
[ey × l] =− HD

Hex
sinϕez . (5.6)

It is thus clearly seen that the net magnetization is absent when the spins are aligned
along the y-axis (ϕ0 = 0°, AFM phase) and is oriented along the z-axis when the spins are
oriented along the x-axis (ϕ0 = 90°, WFM phase).

The spontaneous spin-reorientation between these two states is governed by the de-
pendence of the energy of the magneto-crystalline anisotropy on the temperature T .
To describe the behavior of spins in DyFeO3 in the vicinity of the Morin transition, the
anisotropy energy should include a large number of invariants, both quadratic and bi-
quadratic with respect to components of the vector l. However, due to the planar char-
acter, it can be effectively reduced to terms quadratic and biquadratic in ly , such that the
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anisotropy energy reads [168, 169]:

wplanar
a (l) = 1

2
K2(T )l 2

y −
1

2
K4l 4

y (5.7)

Note that the magnetic anisotropies defined by the parameters K2 > 0 and K4 > 0 are of
very different microscopic origin. While K2 originates from the temperature-dependent
anisotropic exchange interaction between the iron and dysprosium ions, K4 is the nearly
temperature-independent magnetic anisotropy of the iron ion, with contributions of dif-
ferent origin (dipole, direct spin-orbit coupling and Dzyaloshinskii-Moriya interaction
(DMI)) [170]. Written in terms of the angleϕ, this energy acquires the form of the double
well magnetic potential F (ϕ,T ) considered in the main text:

F (ϕ,T ) = 1

2
K2(T )cos2ϕ− 1

4
K4 cos4ϕ (5.8)

SPIN DYNAMICS IN VICINITY OF THE SPIN-REORIENTATION

Starting from the Landau-Lifshitz equations for the two magnetic sublattices (Eq. 2.26)
and using the expression for the Dzyaloshinskii field (Eq. 5.5) we can arrive at an expres-
sion for the normalized magnetization m (Eq. 2.30)

m = HD

Hex
[ey × l]+ 1

ωex

[
∂l

∂t
× l

]
, (5.9)

with ωex = γHex. The first term again gives the equilibrium magnetization, Eq. 5.6. Even
though the equilibrium net magnetization m = 0 in the AFM phase, a dynamical com-
ponent (second term) emerges due to dynamics of the antiferromagnetic vector. In the
AFM phase this dynamical contribution is the only source of the magnetization along
the z-axis probed by the magneto-optical Faraday effect in our experiments. Substitut-
ing Eq. 5.9 into the Landau-Lifshitz equation for m (Eq. 2.26), we obtain an equation for
dynamics of the vector l alone:

l×
(
∂2l

∂t 2 +ωex
γ

2M0

∂wa

∂l

)
= 0 (5.10)

It can be shown that for any ground state with the l vector parallel to crystal axis,
like the AFM phase with lAFM = ey , mAFM = 0 or the WFM phase with lWFM = ex , m =
(HD/Hex)ez , Eq 5.10 allows for two classes of simple dynamical solutions with planar
oscillations of the vector l within two orthogonal crystal planes, containing the ground
state direction of l [193]. For these planar regimes, it is indeed sufficient to consider in
the anisotropy energy wa(l) only terms quadratic and biquadratic in components of the
vector l that lie in the corresponding planes. In particular, this leads to the expression

for the planar anisotropy energy wplanar
a introduced in Eq. 5.7.

In the linear approximation these two regimes correspond to two normal modes of
spin dynamics. Namely, for the AFM state (l = ey in the ground state) one mode corre-
sponds to non-zero values of lz (t ) and mx (t ), and the other mode to non-zero values of
lx (t ) and mz (t ). The second one is the soft mode near the Morin phase transition and
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the main subject of our research. For the WFM phase (lWFM = ex , mWFM = (HD/Hex)ez

in the ground state) these two modes are usually called the quasi-FM (q-FM) mode and
quasi-AFM (q-AFM) mode. The q-AFM mode, where l is moving in the x y-plane, is the
soft mode near the Morin phase transition. This mode has non-zero lx (t ) and only one
time-dependent component of magnetization, mz (t ). For the soft-mode oscillations,
the magnetization has a time-dependent z-component in both magnetic phases that al-
lows using Faraday effect for their detection in z-cut samples. The motions of l and m
for the soft-modes in both phases are schematically shown in Fig. 5.10a,b.
The character of the motion of spins (and the related magnetization of the sublattices
M1,2) can be easily restored through the equations s1 = s(m+l) and s2 = s(m−l), s = |s1,2|.
Contrary to the planar motions of l and m, the motion of the spins and sublattice mag-
netization is elliptic, as shown in Fig. 5.10c,d
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Figure 5.10: Soft mode spin dynamics in DyFeO3. a,b, Planar motion of the Néel vector L corresponding to
the soft spin precessional mode in the AFM (a) and WFM (b) phase. The resulting oscillation of a net magneti-
zation component ∆Mz is shown by the blue arrow. c, d, Precessional motion of the magnetic sublattices M1,2
corresponding to the same magnetic mode in the AFM (c) and WFM (d) phase.

5.7.3. RECONSTRUCTING THE MAGNETIC POTENTIAL USING THE SPIN PRE-
CESSION FREQUENCY

EQUILIBRIUM POTENTIAL

Using the equilibrium magnetic potential F (ϕ,T ), given by Eq. 5.8 and shown in Fig. 5.11a,
the frequency of the antiferromagnetic spin precession f , the soft mode of the phase
transition, in the AFM (T < TM , ϕ0 = 0°) and the WFM (T > TM , ϕ0 = 90°) phases can be
obtained from the relation [91]:

ω2(T )

ωex
= γ

2M0

∂2F (ϕ,T )

∂ϕ2

∣∣∣
ϕ=ϕ0

= γ

2M0

−K2(T )+K4, T < TM (ϕ0 = 0°)

K2(T ), T > TM (ϕ0 = 90°)

(5.11)
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Here, ω = 2π f , with ω and f the angular and regular spin precession frequency, re-
spectively; M0 is the saturation magnetization of one magnetic sublattice; ωex is the so-
called exchange frequency, defined as the angular frequency of the spin precession in the
effective field Hex of the Fe-Fe exchange interaction. For our definition of the exchange
field Hex (Hex = 12.8 MOe for orthoferrites);ωex = γHex, γ is the gyromagnetic ratio. Only
planar dynamics of the Néel vector is considered (θ = 90°).
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Figure 5.11: The temperature-dependent magnetic potential. a, Evolution of the magnetic potential with
temperature (blue indicates low temperature) across the Morin temperature. The position of the solid ball in-
dicates the system’s ground state. b, Squared frequency of the equilibrium soft mode as a function of tempera-
ture. The balls indicating the ground state in panel a are mapped on the temperature dependence to match the
frequency with the potential and the ground state. Inset: Fourier spectra of the equilibrium oscillatory mag-
netic dynamics after ISRS excitation at different temperatures T (offset for clarity, arrow indicates increasing
temperature T ). c, The anisotropy parameters K2 and K4 as extracted from the temperature dependence of
the equilibrium soft mode precession frequencies.

Inversely, using the frequency of the spin precession one can obtain absolute values
of the anisotropy parameters K2 and K4 and recover their temperature evolution. Us-
ing the assumption that the anisotropy K4 is nearly temperature-independent, one can
determine its magnitude relatively to K2:

2K2(TM) = K4, (5.12)

valid at T = TM. Hence, the absolute value of K4 using Eq. 5.11 is:

K4 = 4M0

γ

ω2
0(TM)

ωex
, (5.13)

The value of ω2
0 can be found at the intersection of the squared frequency branches

corresponding to the AFM and WFM phases. This value can be obtained from tempera-
ture dependence of the magnon frequency: f0(TM) = 0.1386 THz (ω0 = 0.8704 THz) (see
Fig. 5.11b). To obtain the absolute value of the K4 anisotropy we used the following ma-
terial parameters: Hex = 12.8 MOe, ωex = γHex= 35.84 THz, M0 = 392 G resulting in K4 =
299 erg/cm3, in close agreement with Ref. [169]. Using the volume of a single unit cell
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(u.c.), comprising four formula units, this gives K4 ≈ 40µeV/u.c.. The temperature evo-
lution of the anisotropic exchange represented by the parameter K2 can be extracted
using:

K2(T ) =
K4 − 4M0

γωex
ω2(T ), T < TM

4M0
γωex

ω2(T ), T > TM
(5.14)

The temperature evolution of the K2 and K4 anisotropy parameters at equilibrium is
summarized in Fig. 5.11c.

NON-EQUILIBRIUM POTENTIAL

Our experiment shows that resonant pumping of the Bu mode alters the magnetic po-
tential represented by the function F . This effect can originate from a phonon-driven
renormalization of either the K2 or K4 anisotropy, such that:

K2 := K2 +∆K2

K4 := K4 +∆K4
(5.15)
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Figure 5.12: Changing the soft-mode frequency. a,b, Schematic of the squared spin precession frequencies
for the altered anisotropy parameters K2 + ∆K2 (a) and K4 +∆K4 (b), indicated by dashed lines, following
Eq. 5.15. The temperature dependence of the squared spin precession frequency for the equilibrium values
of the phenomenological constants K2 and K4 is indicated by the solid black line. c, The extracted frequen-
cies after excitation off-resonantly (black open triangles) and on-resonantly at different fluences (filled square
markers). Inset: Fourier spectra of the oscillatory magnetic dynamics after resonant phonon-excitation for
different temperature T (offset for clarity), showing a pronounced frequency gap across the Morin transition.

From Eq. 5.11 one can see that the ∆K2 contribution results in an antisymmetric
shift of the squared magnon frequency across the Morin transition as exemplified in
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Fig. 5.12a. In contrast, the ∆K4 contribution changes the squared frequency exclusively
in the low-temperature AFM phase (see Fig. 5.12b). Our experiment clearly demon-
strates that the frequency shift is present in both phases and is strongly antisymmetric,
underscoring that the phonon pumping is altering the value of the K2 anisotropy but
not of K4. One can also see that the value f 2

0 as defined above is independent of the laser
fluence (Fig. 5.12c) and matches the value at equilibrium. Following Eq. 5.13, this also
suggests the insensitivity of the K4 anisotropy to the phonon pumping. Equation 5.11
allows also to exclude a long-living (more than a period of the spin precession) influence
of the phonon pumping on the strength of the Fe-Fe exchange interactions represented
by the parameter Hex. This possibility is excluded as such a change would induce a fre-
quency shift with the same sign for both magnetic phases, which does not agree with
the experimental data. Using the frequencies of the spin precession obtained for the
resonant pumping of the phonon mode we recovered the absolute values of the out-of-
equilibrium anisotropies (Fig. 5.13a). One can see that phonon-pumping substantially
enlarges the magnitude of the K2 anisotropy, which parametrizes the strength of the Fe-
Dy exchange interaction. The value of ∆K2 is continuous at TM, nearly temperature-
independent and reaches values up to 6µeV/u.c. To illustrate the impact of modulation
of the Fe-Dy exchange on the profile of the magnetic potential we reconstructed the po-
tential before and after the phonon pumping, see Fig. 5.13b,c. It is clearly seen that in
both magnetic phases the phonon-pumping is increasing the energy of the AFM state
and lowering the potential barrier towards switching from the AFM to the WFM state,
thereby destabilizing the AFM state as a ground state.

5.7.4. EFFECT OF THE LASER FLUENCE ON THE SPIN PRECESSION FREQUENCY

AND THE ANISOTROPY PARAMETERS.
The frequencies of the spin precession as function of the pump fluence were extracted
from the time-resolved waveforms for a pump photon energy tuned in- (85 meV) and
off-resonance (165 meV) with the phonon mode. The results are shown in Fig. 5.14a. For
the in-resonance excitation, the frequency of the magnon changes linearly with fluence
for both magnetic phases. One can see that for the off-resonance excitation, the magnon
frequency is nearly independent of the pump fluence. We extracted the values of the∆K2

anisotropy for the in-resonance excitation using Eq. 5.14 and plotted it in Fig. 5.14b. A
clear linear dependence on the pump fluence is observed, independent of the sample’s
magnetic ground state. The linear dependence of ∆K2 on the pump fluence implies a
quadratic dependence on the amplitude of the electric field of the pump pulse. This can
be easily understood considering the expansion of∆K2 in a series of the normal phonon
coordinate QIR of the B1u mode:

K2(QIR) = K2 +∆K2 = K2 + A1QIR + A2Q2
IR + ..., (5.16)

with A1,2 phenomenological constants. The phonon coordinate QIR is defined as QIR

= Q0 sin
(
ΩIRt

)
, where Q0 and ΩIR are the amplitude and the angular frequency of the

B1u mode, respectively. As the frequency of the infrared-active phonon is significantly
higher than the one of the spin precession (ΩIR ¿ ω), Eq. 5.16 has to be time-averaged
(integrated). The averaging shows that the phonon-induced additive ∆K2 is determined
by the rectified part of the phonon-coordinate, which depends quadratically on the am-
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Figure 5.13: Change of the magnetic potential after phonon-pumping. a, The anisotropy parameters K2 and
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plitude Q0, such that:

∆K2 = 1

2
A2Q2

0 ∝ I , (5.17)

where I is the fluence/intensity of the laser pulse tuned in the resonance with the phonon
mode.

5.7.5. NONLINEAR LATTICE DYNAMICS AND THEIR EFFECT ON THE MAG-
NETIC EXCHANGE INTERACTIONS

To find a possible physical origin of this quadratic dependence we performed an exten-
sive set of DFT simulations to find microscopic sources of such a nonlinear lattice-driven
response.

CALCULATED IR AND RAMAN-ACTIVE MODE FREQUENCIES

In Table 5.1, we report the calculated IR and Raman-active mode frequencies in DyFeO3.
Both the Raman and IR active modes are in good agreement with the experiments and
previous DFT calculations done by Weber et al. [194]. The few small deviations between
our results and the previous calculations can be due to the use of different lattice pa-
rameters (experimental cell parameters were used by Weber et al. while we used relaxed
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PBEsol cell parameters), to the different PAW atomic potentials or because we used f -
electrons in the valence for Dy.

Table 5.1: DyFeO3 phonon mode frequencies. Calculated energies of the DyFeO3 IR-active (left) and Raman-
active (right) phonon modes. first column: mode label of the Pnma structure with f electrons in the core;
second column: calculated energy. Reference DFT (Ref.) and experimental (Exp.) energy values reported in
Ref. [194] given in the third and fourth column.

Phonon
mode ΩIR (meV)

B1u(1) 13.14
B1u(2) 21.70
B1u(3) 31.00
B1u(4) 34.47
B1u(5) 39.92
B1u(6) 43.02
B1u(7) 48.72
B1u(8) 61.62
B1u(9) 67.32
B2u(1) 18.84
B2u(2) 20.08
B2u(3) 32.23
B2u(4) 37.19
B2u(5) 43.52
B2u(6) 60.75
B2u(7) 65.34
B3u(1) 12.40
B3u(2) 23.18
B3u(3) 29.01
B3u(4) 35.95
B3u(5) 38.31
B3u(6) 41.16
B3u(7) 52.57
B3u(8) 63.73
B3u(9) 65.09

Phonon
mode ΩR (meV) Ref. Exp.

Ag(1) 13.27 13.89 14.01
Ag(2) 16.49 16.74 17.36
Ag(3) 30.87 32.48 32.36
Ag(4) 40.67 41.16 42.28
Ag(5) 50.58 52.32 52.32
Ag(6) 50.58 51.45 51.70
Ag(7) 51.20 52.32 52.32
Ag(8) 59.51 60.75 61.49
B1g(1) 16.86 16.74 –
B1g(2) 30.38 31.00 –
B1g(3) 43.76 44.51 44.76
B1g(4) 51.95 52.94 52.94
B1g(5) 73.27 73.52 –
B2g(1) 13.27 13.51 13.76
B2g(2) 19.22 19.96 20.21
B2g(3) 36.95 38.56 40.29
B2g(4) 43.15 43.52 –
B2g(5) 58.77 59.76 61.25
B2g(6) 65.34 66.21 –
B2g(7) 75.63 75.88 77.36
B3g(1) 14.88 15.25 –
B3g(2) 38.06 38.56 –
B3g(3) 51.70 52.57 53.68
B3g(4) 56.41 57.03 58.77
B3g(5) 78.98 78.98 79.22
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Figure 5.15: Highest and lowest frequency phonon modes. Schematic picture in which the arrows depict
the polar components of the eigenvectors of the highest-frequency infrared-active, orthogonally polarized B1u
(9) (a) and B3u (9) (b) phonon modes and the eigenvectors of the Ag(1) (c) and Ag(2) (d) phonon modes, as
viewed from two different directions. Grey/green/orange spheres represent dysprosium/iron/oxygen atoms.
The oxygen octahedra are drawn in light-blue. The presence of red and blue colored arrows for a type of atom
indicates opposite movement.

LASER EXCITATION AND NONLINEAR PHONON-PHONON COUPLING MODE

To simulate an excitation of the phonon mode with an ultrashort laser pulse we consider
the laser field to be a Gaussian function:

E(ω) = E0

2πσω
e−

(ω−ω0)2

2σω . (5.18)

We set the central frequency ω0 (ħω0 = 81 meV) and the frequency broadening σω
to match the experiment and consider the peak amplitude strength of the electric field
E0 = 10 MV/cm. The electric field excites the B1u(9) and B3u(9) modes having the high-
est frequencies. These two modes are polar in the x- and y-directions and correspond
to a stretching of the oxygen bonds, see Fig. 5.15a,b. We study different possibilities
of phonon-phonon coupling that can cause a change in the magnetic exchange inter-
actions. One possibility is the nonlinear coupling of the IR modes to other phononic
modes, dubbed nonlinear phononics [119, 122]. According to this mechanism when
large-amplitude atomic vibrations are excited, a nonlinear response sets in, causing a
net shift of the lattice energy potential along a Raman-active normal mode coordinate
for a time given by the lifetime of the infrared-active phonon. The ensuing net distor-
tion of the unit cell can consequently change the magnetic interactions of Fe and Dy
and result in a spin reorientation. To determine the relevant nonlinear phonon-phonon
couplings, we use the potential energy V (Q) containing several anharmonic phonon-
phonon interactions:
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V (Q) = 1

2
ω2

IRQ2
IR + 1

2
ω2

RQ2
R +CRQ3

R +γ1QRQ2
IR +γ2Q2

RQ2
IR + 1

4
dIRQ4

IR + 1

4
dRQ4

R (5.19)

In Eq. 5.19 QX are mode amplitudes of phonon mode X (X = IR,R) with eigenfrequen-
cies ωX. CR, γ1 , dIR, dR and γ2 are coefficients fitted against DFT data in the spirit of
Ref. [125]. We consider the highest IR frequency B1u(9) mode excited by the laser and
its coupling to each Ag mode because they are the first order couplings coming into play
in the 20 atoms perovskite Pnma phase. The Ag mode label being invariant under all
the symmetry operations of the crystal, any coupling order with this mode is allowed
such that the lowest order is of the type QAgQ2

B1u
. As one can see in Table 5.2, of all the

coupling orders, the γ1 parameter gives the strongest coupling with the B1u mode. Fit-
ting the coupling coefficients between the B1u(9) mode and the Ag modes, we find that
the second lowest frequency Ag(2) mode (see its schematic representation in Fig. 5.15d)
gives the strongest coupling γ1, closely followed by the first one Ag(1) (Fig. 5.15c)

Table 5.2: DFT fitted coupling coefficients of Eq. 5.19 for B1u coupling with Ag(1) and Ag(2) modes. The units

are (meV/
p

uÅ)2.

Coupled modes CR dIR dR γ1 γ2

B1u–Ag(1) -0.004 0.0072 0.000 0.0681 0.000
B1u–Ag(2) 0.003 0.0072 0.000 0.1246 0.000

The main difference between the Ag(1) and Ag(2) modes is in the way the antipolar
motions of Dy ions are involved. Using the high symmetry reference cubic perovskite
we can observe that the Ag(1) mode is dominated by the cubic X point antipolar motion
mode of Dy atoms (with coordinate [1/2, 0, 0] of the cubic Brillouin zone and symmetry
label X −

5 ), while the Ag(2) mode is dominated by the R point mode (coordinate [1/2, 1/2,
1/2] of the cubic Brillouin zone and symmetry label R−

4 ). By doing the same analysis for
the B1u(9) mode, we find that this polar mode is dominated by the M+

2 cubic mode label
involving oxygen octahedral rotations (a0a0b+) in Glazer notation [195]) plus the polar
mode label Γ−4 (with polarization direction along the x direction) plus R−

4 antipolar mo-
tions of the Dy atoms. Note that the Dy atoms have a very small amplitude contribution
to the mode eigenvector due to the fact that at high frequency they are much less in-
volved in the phonon vibrations. The fact that the B1u(9) allows, by symmetry, antipolar
motions of Dy of the same type as the Ag(2) mode (R−

4 label for both) can explain why
this Ag(2) mode has a larger coupling with the B1u (9) mode than the Ag(1) mode.

The dynamics of the Ag(1) and Ag(2) modes in response to the laser excitation of the
B1u mode is shown in Fig. 5.16. One can see that although the laser field drives the B1u

atomic motions with zero average displacement about the equilibrium crystal structure,
the Ag(1) and Ag(2) are rectified. The periodic motion is not around the equilibrium
value of zero, but rather around a non-zero value which signals a distorted unit cell as
compared to the equilibrium. This net distortion quickly decays, as its lifetime is defined
by the lifetime of the coherent infrared-active phonon mode (several picoseconds). The
displacement of the Ag(1) mode reaches a value of Q = 0.015

p
uÅ (see Fig. 5.16). Using

the eigenvector containing the atomic motion corresponding to this mode (partly shown
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in Table 5.3) and the atomic mass of the Dy ion (162.5 u), this amplitude can be converted
into an atomic displacement. This is done by multiplying the eigenvector component of
a Dy ion with the Ag displacement and dividing by the square root of the Dy mass leads
to an atomic displacement of around 0.2 pm.

0.0 0.5 1.0

Delay time (ps)

0.02

0.0

−0.02

−0.04

Ag(1)
Ag(2)

Q
 √

u 
Å

distortion

Figure 5.16: DFT simulations of the phonon dynamics. Time-evolution of the Raman-active phonons Ag(1)
and Ag(2) following the resonant excitation of the B1u mode.

Table 5.3: Part of the normalized Ag(1) eigenvector corresponding to Dy3+ ion motion for the four different Dy
ions in a unit cell in the three crystallographic directions x, y , z.

Dy1 Dy2 Dy3 Dy4

x -0.165 0.165 0.165 -0.165
y 0.465 0.465 -0.465 -0.465
z 0 0 0 0

MAGNETIC EXCHANGE INTERACTIONS

To study how the indirectly driven Ag modes can change the magnetic interaction be-
tween Fe and Dy, we used a Green’s function method to calculate the superexchange
interaction as a function of the Ag modes amplitude following the scheme of Korotin et
al. [196] as implemented in the TB2J code [197]. We report the evolution of the Fe-Dy
and Fe-Fe superexchange with respect to both Ag(1) and Ag(2) mode amplitudes. We ob-
serve that the two Raman-active modes can drive different modifications of the Fe-Dy
superexchange interaction, which can be decomposed into eight contributions related
to the eight Fe ions surrounding one Dy ion as shown in Fig. 5.17a,b. Table 5.4 sum-
marizes the normalized variation of exchange with respect to the amplitude of the mode
( 1

J
dJ
dQ ) for both Fe-Dy and Fe-Fe superexchanges. One can see that Ag modes affect much

more the Fe-Dy exchange than the Fe-Fe one, making the Fe-Fe exchange variation being
negligible.

To have the net change in exchange interaction between each ion and its neighbours,
we summed all the exchanges and fit the data with a linear equation. Figure 5.17c shows
the change in this net superexchange for the Ag(1) and Ag(2) modes. As can be seen,
the Ag(2) mode has nearly the same influence on the Fe-Dy exchange as the Ag(1) mode.
Both interactions result in a change with same sign and the final change in the superex-
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Table 5.4: Summary of the absolute values (second column) and normalized variations dJi /(Ji dQ) of the Fe-Dy
and Fe-Fe exchange interactions as a function of the normal phonon coordinates of the Ag(1) (third column)
and Ag(2) modes (fourth column).

Label Exchange dJi
(Ji dQ)

dJi
(Ji dQ)

(meV) Ag(1) Ag(2)
J1 -0.987 -0.011 -0.047
J2 -0.197 0.077 0.060
J3 -0.814 0.022 -0.050
J4 -0.256 -0.129 -0.081
J5 -0.963 0.041 -0.067
J6 -0.090 0.059 0.607
J7 -0.938 -0.001 0.084
J8 -0.217 0.037 0.289

Fe-Fe 0.001 0.001

change will be the sum of the two contributions. Q = 0.015
p

uÅ for both modes leads to
a change in the Fe-Dy exchange interaction of around 1.5µeV.

∆
Ex

ch
an

ge
(µ

eV
/u

.c
.)

x

y

a b c
Ag (1)
Ag (2)

Ag (1) Ag (2)

Fe-Fe

Fe-Dy

Fe-Fe

Fe-Dy Fe-Dy

−0.04 0.040.00−0.2 0.0 0.2−0.2 0.0 0.2

Q √u Å Q √u Å Q √u Å

−4

−2

0

2

−2

−1

0

1

−0.1

0.1
0.0

−0.1

0.1
0.0

∆J
i/J

i (
%

)

2

0

−2

Figure 5.17: Fe-Dy anisotropic exchange as function of Ag mode amplitudes. a, The Fe-Dy superexchange
as decomposed into eight contributions related to the eight Fe ions surrounding one Dy ion. The grey/green
balls correspond to Dy/Fe ions. The empty dashed black circle corresponds to the equilibrium Dy atom as if
not displaced from the high-symmetry cubic position. b, Variations dJi /(Ji ) in the superexchange interactions
between Dy and Fe (bottom) and in the Fe-Fe exchange (top) as a function of the distortions along the Ag(1)
(left) and Ag(2) (right) mode coordinate. c, Change in the net superexchange interaction between each Dy ion
and its eight Fe neighbours for Ag(1) (red line) and Ag(2) (blue line). The result is obtained by summing up the
eight contributions shown in panel b and c and using the absolute values of the exchange interactions.



6
CONTROLLING THE ANISOTROPY OF

VAN DER WAALS

ANTIFERROMAGNET NIPS3 VIA

ORBITAL RESONANCES

“Insight must precede application.”

Max Planck

In this chapter we explore the effect of resonant excitation of orbital resonances on the
anisotropy in the van der Waals antiferromagnet NiPS3. Anisotropy plays a crucial role in
the stabilization of two-dimensional long-range magnetic order, as the Mermin-Wagner
theorem dictates that in reduced dimensions isotropic spin interactions cannot retain long-
range correlations. By tuning the photon energy in resonance with an orbital transition
between crystal-field split levels of the nickel ions, we demonstrate the selective activa-
tion of a sub-THz magnon mode with markedly two-dimensional behaviour. The pump
polarization control of the magnon amplitude confirms that the activation is governed
by the photoinduced magnetic anisotropy axis emerging in response to photoexcitation
of ground state electrons to states with a lower orbital symmetry. Our results show that
the excitation of orbital resonances is a viable route to manipulate magnetic order in low-
dimensional (anti)ferromagnets.

This chapter has been published with minor differences in Science Advances 7, eabf3096 (2021) by D.
Afanasiev, J. R. Hortensius, M. Matthiesen, S. Mañas-Valero, M. Šiškins, M. Lee, E. Lesne, H. S. J. van der Zant,
P. G. Steeneken, B. A. Ivanov, E. Coronado and A. D. Caviglia [198].

The NiPS3 crystal was synthesized by S. Mañas-Valero and E. Coronado. B. A. Ivanov developed the theoretical
formalism to describe the magnetization dynamics.
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The recent discoveries of van der Waals (vdW) two-dimensional (2D) layered mag-
nets have led to a surge of interest due to their potential applications in constructing
atomically-thin spin-processing devices and non-volatile magnetic memories [199, 200].
Unique phenomena and effects are foreseen in 2D magnetic systems due to their re-
duced dimensionality [201]. In contrast to three-dimensional magnets, long-range mag-
netic order cannot exist in two dimensions at any finite temperature without the pres-
ence of magnetic anisotropy [41, 202]. In 2D magnets, the anisotropy not only sets a pre-
ferred direction for spins but also protects the magnetic order against dimensionality-
enhanced thermal spin fluctuations. This intimate relationship between magnetic order
and anisotropy in 2D motivates the ongoing search for efficient pathways to manipulate
the magnetic anisotropy in such systems. As the magnetic anisotropy in most materials
is determined by the coupling of electronic orbitals and spins, stabilizing and control-
ling 2D magnetism is actively pursued through the manipulation of orbital degrees of
freedom, using, for example, mechanical strain [203–205] and electrostatic gating [206,
207]. However, a large anisotropy is normally associated with an unquenched orbital
moment, which is limited to specific oxidation states and to low-symmetry crystal en-
vironments, most notably for rare-earth ions [208]. In most 2D magnets, magnetism
arises from transition metal ions, which typically have a quenched orbital moment in
their ground state. In these systems magnetic anisotropy originates from the spin-orbit
driven mixing of the ground state with higher-energy orbital states with unquenched
momentum, a rather small effect. Optical pumping of the electronic transition towards
the higher-level orbital states (orbital resonances) provides the most direct access to the
admixing and subsequent control of the magnetic anisotropy as manifested by the ex-
citation of spin precession in 3D magnets [59, 61, 209, 210], even to the extent of the
sub-cycle coherent switching of the spin orientation [38, 60, 211]. Resonant pumping
of orbital transitions in two-dimensional magnets, characterized by the subtle interplay
between anisotropy and magnetic order, offers unique insights into dynamics of their
highly-nontrivial elementary excitations, such as for example topological magnons [43,
212].

Here we study resonant optical control of magnetism in nickel phosphorus trisul-
fide NiPS3, a novel van der Waals layered magnet with XY-type antiferromagnetism [213–
215]. The energetic competition between charge-transfer and Coulomb repulsion makes
this system an intriguing example of a strongly correlated 2D magnet, with pronounced
spin-charge correlations [216], spin-orbit entangled excitons [217], and strong spin-lattice
coupling [218, 219]. We optically pump NiPS3 using ultrashort pulses of light and probe
the ensuing spin dynamics on the picosecond timescale. Continuously varying the pump
photon energy across orbital resonances, we identify a transition to the orbital state re-
sponsible for the anisotropic magnetic properties in equilibrium. By resonant optical
pumping of this transition we demonstrate the selective activation of a hitherto unre-
ported two-dimensional magnon mode with a THz frequency demonstrating the XY-
critical scaling with temperature. By studying the mode’s excitation as a function of the
pump polarization and photon energy, we show that the activation indeed proceeds as
a result of the light-induced magnetic anisotropy emerging in response to the resonant
photoexcitation of the higher energy orbital states of Ni2+ electrons. We also find that op-
tical pumping in the region of optical transparency impulsively activates another high-
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frequency coherent mode, a previously unreported candidate for the complementary
magnon mode in NiPS3.

6.1. MAGNETIC AND OPTICAL PROPERTIES OF NIPS3
NiPS3 crystallizes in the monoclinic space group C /2m [220] (see Fig. 6.1a). In the ab
plane, it features a network of edge-sharing NiS6 octahedra arranged on a honeycomb
lattice, each having a small trigonal distortion perpendicular to this plane (Fig. 6.1b). Be-
low the Néel temperature TN = 155 K, the magnetic moments of Ni2+ ions arrange into a
complex compensated antiferromagnetic pattern. The pattern is formed by zig-zag fer-
romagnetic spin chains along the a-axis, which are coupled antiferromagnetically within
the single layer [221] (Fig. 6.1a). A large spacing c = 6.63 Å between adjacent layers leads
to a negligible orbital overlap between the magnetic ions of different layers, thereby sup-
pressing interlayer exchange such that the antiferromagnetic order acquires a 2D char-
acter already in the bulk form.

The orientation of magnetic moments in NiPS3 is governed by a biaxial magneto-
crystalline anisotropy consisting of two distinct contributions: a dominant easy-plane
anisotropy which locks the orientation of the spins to a magnetic plane (x y), slightly
inclined from the crystallographic ab-plane; and a secondary weaker anisotropy which
orients the spins in the magnetic (x y)-plane along the x-axis. Microscopically, the easy-
plane anisotropy develops as a result of a zero-field splitting (D ≈ −1.1 meV [222]) of the
3A2g ground state of the Ni2+ ion (S = 1) in the crystal field of the trigonally distorted NiS6

octahedra (see Fig. 6.1b). Note that 3A2g is an orbital singlet and alone cannot develop
the splitting. The splitting and anisotropy arise indirectly as a consequence of spin-orbit
driven intermixing of the ground state with the first excited orbital triplet state 3T2g,
which is split by the trigonal lattice distortion [222, 223] into a set of low-symmetry dou-
blets 3Eg and singlets 3A1g separated by an energy gap of around 110 meV, as schemat-
ically shown in Fig. 6.1b. Although there are no reports on the origin of the in-plane
magnetic anisotropy along the x-axis in NiPS3, it likely stems from a rhombic distortion
of the NiPS6 octahedra, which further splits the 3A2g levels. Hence, an anisotropic Hamil-
tonian considering not only the axial distortion of the octahedron, but also an in-plane
distortion may be needed to take this observation into account (see section 6.7.3).

The orbital resonances in NiPS3 correspond to a pair of d-d transitions 3A2g → 3T2g

and 3A2g → 3T1g emerging within the 3F ground state multiplet of the Ni2+ ion split by the
octahedral crystal field (Oh) (see Fig. 6.1b). In NiPS3 these transitions result in a pair of
two broad optical absorption bands centred at 1.07 eV (3A2g → 3T2g) and 1.73 eV (3A2g →
3T1g). Note that in contrast to other transition metal ions, the d-d resonances in Ni2+ are
spin-parity allowed (∆S = 0), i.e. they do not involve a spin-flip, and thus cannot directly
affect the exchange interaction between adjacent spins.

6.2. SELECTIVE LIGHT-INDUCED MAGNETIC DYNAMICS
To selectively address the orbital resonances, we employed ultrashort (∼100 fs) pump
pulses with photon energy tunable in a broad spectral range of 0.1–0.9 eV. The pump-
induced dynamics were measured by tracking the intensity I and the rotation of the po-
larization plane θ of time-delayed co-propagating near-infrared probe pulses at a pho-
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Figure 6.1: Magnetic properties of the antiferromagnet NiPS3. a, Crystallographic and magnetic structure of
NiPS3. Green/fade orange/light pink spheres represent nickel/sulphur/phosphorous atoms. The green and
red triple vectors are crystallographic and magnetic frames, respectively. b, Left: Ni2+ ion in the trigonally dis-
torted octahedral sulphide environment. Right panel: Crystal field splitting of the ground state and first excited
triplet state for Ni2+ ion (Oh : octahedral field) in a trigonally distorted octahedral environment (D3h ); S.-O.:
spin-orbit coupling. (0, ±1) correspond to the projection of the spin moment along the trigonal distortion axis.
The coloured arrows represent the different photon energies of the optical excitation used in the experiment.

ton energy of 1.55 eV, as schematically shown in Fig. 6.2a. Whereas I is considered as
a measure of the non-magnetic components of the dielectric tensor, θ is sensitive to
the magnetic order via magneto-optical effects, such as the Faraday effect and magnetic
linear birefringence. The sample was cooled down to 10 K well below TN and pumped
using linearly polarized pulses at variable photon energies. The time-resolved polariza-
tion rotation θ reveals a striking sensitivity of the pump-induced dynamics to the pho-
ton energy of the excitation (see Fig. 6.2b,c). When excited at the 3A2g → 3T2g resonance
(hν= 0.97 eV), θ displays a damped oscillation as a function of the pump-probe time de-
lay ∆t , with frequency f1 = 0.30 THz (see Fig. 6.6 for the Fourier spectra). No coherent
oscillations were observed when exciting at the higher photon energy (hν= 1.8 eV) corre-
sponding to the 3A2g → 3T1g resonance. Detuning the photon energy below the absorp-
tion lines of the resonances (hν = 0.8 eV) shows no signal associated with the frequency
f1, but reveals instead another higher-frequency mode at f2 = 0.92 THz. We found no
match for the frequencies of these oscillations in the phonon spectrum of NiPS3, well
studied in recent years [218, 219, 224], which hints at a magnetic origin.

To understand the significance of the orbital resonances, we tracked the ultrafast dy-
namics while varying the pump photon energies across the subgap states down to the
phonon Reststrahlen band edge at 0.1 eV. The amplitudes of both oscillations at f1,2

were retrieved and their relative values (normalized on the pump fluence) plotted as a
function of the pump photon energy. Figure 6.3a shows that the f2 mode is excited in
the broad window of optical transparency 0.1–0.9 eV, indicating the off-resonant char-
acter of the excitation and impulsive stimulated Raman scattering process (ISRS) as a
plausible mechanism. In striking contrast the excitation of the lower-frequency f1 mode
only occurs in a relatively narrow photon energy range, showing a pronounced reso-
nance with the 3A2g → 3T2g transitions, see Fig. 6.3a. The lineshape of the resonance
reveals a fine structure indicative of the trigonal splitting of the 3T2g manifold (3Eg, 3A1g)
(see Fig. 6.1b). Despite a nearly order of magnitude stronger optical absorption, no os-
cillations were seen upon resonant pumping of the 3A2g → 3T1g higher energy orbital
resonance, underscoring the sensitivity of the oscillations to the photoexcitation of the
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Figure 6.2: Ultrafast light-induced dynamics in NiPS3. a, Schematic of the time-resolved pump-probe exper-
iment. The pump (pink) and near-infrared probe (grey) pulses are collinearly focused onto the sample with
variable time delay ∆t . The pump induced dynamics is measured by tracking the pump-induced polarization
rotation θ and intensity I of the probe pulses. b, Optical absorption spectrum of NiPS3 displaying 3A2g→3T2g

and 3A2g→3T1g absorption bands due to the d-d orbital resonances of Ni2+ ions (in pink and red respec-
tively), and the onset of the above bandgap absorption due to Ni-S charge transfer transitions (black band).
c, Experimentally detected polarization rotation signal θ as a function of the delay time, after excitation with
pump pulses at various photon energies.
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Figure 6.3: Selective excitation of the light-induced coherent dynamics. a, Amplitudes of the coherent os-
cillations corresponding to the modes at frequencies f1,2 normalized to the maximal value of the f1 mode as
a function of the pump photon energy. Solid lines are guides to the eye. Inset: Schematic illustration of the
optical transition at which the f1 mode is observed. b,c, Amplitude of the oscillation as a function of the pump
fluence for the f2 (b) and f1 mode (c). The solid lines are linear fits, including saturation.

3T2g states. Remarkably, whereas the amplitude of the mode at f2 reveals a linear de-
pendence on the pump fluence (Fig. 6.3b), the amplitude of the f1 mode saturates above
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5 mJ/cm (Fig. 6.3c), indicating a possible saturation of the 3A2g → 3T2g transition.

6.3. EXCITATION OF AN IN-PLANE MAGNETIC MODE
The temperature (T ) dependence of the frequencies f1,2 evidences that these modes are
indeed sensitive to the magnetic ordering. Figure 6.4a shows that as T increases, the
damping of the first mode goes up while the frequency f1 gradually decreases and ul-
timately converges to zero at a temperature close to TN. Although the application of a
relatively weak in-plane magnetic field H up to 7 kOe produced no observable shift in
f1 (see section 6.7.2), the observation of the critical softening is a strong indication that
the oscillation is of magnetic origin [225, 226]. The softening can be characterized by
a power law f1(T )∝ (TN −T )β (see Fig. 6.4c), with TN ≈ 155 K, in full agreement with
literature data, and a critical exponent β = 0.23± 0.01 valid down to the temperature
T0 = 0.65TN (see Fig. 6.8). Note that the β value also matches remarkably well with the
critical exponent of the XY-model (βX Y = 0.23) previously proposed to describe the tem-
perature evolution of the 2D magnetic ordering in NiPS3 [227–229]. This observation is
an unambiguous and at the same time surprising indication of the intrinsically 2D char-
acter of the mode observed in the bulk form of NiPS3.

The temperature-evolution of the higher-frequency oscillation at f2 is significantly
different. As T increases, the central frequency f2 shows a slight increase, which above
75 K is followed by a steep, nearly linear, softening. A linear extrapolation of the fre-
quency decrease versus T suggests that a complete softening of the mode occurs at
T = 170 K, in proximity to TN (see Fig. 6.4d). The softening indicates that the oscillation
is either of magnetic origin itself or strongly sensitive to the magnetic ordering. This is
further corroborated by the significant increase of the damping constant upon heating.
Such highly damped behaviour is typical for soft modes in the vicinity of their associated
phase transitions [230].

We now analyze the spin dynamics in NiPS3 from a phenomenological theory per-
spective. Two magnon modes are expected in a compensated antiferromagnet with a
biaxial magnetic anisotropy [90, 231]. The modes correspond to orthogonal deflections
of the Néel vector defined as L = S(S1 −S2), where S = S(T ) is the average value of the
Ni2+ spin and S1,2 is a pair of antiferromagnetically coupled spins. In equilibrium, L is
oriented along the x-axis, and deflections are expected in (∥) and out (⊥) of the magnetic
easy-plane (x y), in such a way that the dynamical components∆Ly and∆Lz emerge (see
Fig. 6.4e,f). The frequencies f∥,⊥ of the magnons are defined by the geometric mean of
the respective magnetic anisotropy (D∥,⊥) and exchange energy Jex and in addition pro-
portional to S(T ) (see section 6.7.3):

ω∥,⊥ ∼ S(T )
√

D∥,⊥ Jex (6.1)

Hence, both should experience a power law temperature scaling inherent to the mag-
netic order parameter L similarly to the one observed for the f1 mode. As the out-of-
plane anisotropy is typically more substantial for easy-plane antiferromagnets such as
NiPS3, f∥ ¿ f⊥ is expected. Note that although there is no net magnetization in the
ground state: M = S(S1 +S2) = 0, a finite magnetization component M ∝ [L̇,L] emerges
due to the dynamics of the Néel vector L (see section 2.5). As a consequence, the in- and
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out-of-plane magnetic modes can be fully described by the orthogonal pairs (Ly , Mz )
and (Lz , My ), respectively.

In Ref. [232] it was recently shown that the application of an in-plane magnetic field
larger than Hsf = 100 kG promotes a spin-flop transition in NiPS3 during which the spins
suddenly rotate in the easy-plane and in addition cant along the field orientation. It can
be easily shown (see section 6.7.4) that the magnitude of the spin-flop field Hsf is a di-
rect measure of the frequency of the in-plane dynamics f∥ = 2πγHsf = 280 GHz, where
γ/2π = 28×10−4 GHz/G is the gyromagnetic ratio. This estimate agrees particularly well
with f1 and thus provides another strong indication that the coherent oscillation excited
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upon resonant pumping of the 3A2g → 3T2g transition is the in-plane magnon mode
characterized by Ly and Mz and a two-dimensional critical scaling. We note that even
though there is an oscillating out-of-plane magnetic component Mz , the experimentally
observed oscillations show a strong phase- and amplitude-dependence on the orienta-
tion of the probe polarization plane with respect to the crystal axes, indicating that the
detection of this mode is given by linear magnetic birefringence due to the Ly compo-
nent rather than Faraday rotation, sensitive to Mz [233].

Having identified f∥ = f1, we propose that the higher frequency oscillation at f2 can
be assigned to the complementary out-of-plane magnon ( f⊥ = f2). Indeed, our phe-
nomenological theory (see section 6.7.5) suggests that excitation of the out-of-plane
magnon mode with linearly polarized light is possible in NiPS3 due to the low-symmetry
(monoclinic) distortion of the crystal lattice. However, these assumptions do not agree
with the recently reported, mutually conflicting, values for the zone-center magnon at
the significantly higher frequencies of 1.69 and 2.4 THz from Ref. [234] and [217] respec-
tively. To unambiguously establish the origin of the coherent mode f2, time-resolved
measurements in high magnetic fields H ≥ Hsf, are of primary importance.

6.4. SELECTION RULES FOR THE MAGNON EXCITATION
To further our understanding of the excitation mechanism of the in-plane ( f1) magnon
and its relation to the light-induced magnetic anisotropy, we varied the orientation of
the pump polarization plane, set by the azimuthal angle φ (see Fig. 6.5a). Although the
optical absorption at the 3A2g → 3T2g orbital resonance is nearly independent of φ, the
amplitude and phase of the induced magnetic oscillations are strongly affected by vari-
ation of the angle. Figure 6.5b shows that the amplitude of the excited magnon follows
a clear π-periodic sinusoid with maxima corresponding to the polarization oriented at
±45° with respect to the orientation of the Néel vector L. This dependence can be un-
derstood as follows: the incident linearly polarized light, at normal to the (ab)-crystal
plane, promptly induces a magnetic anisotropy axis directed along the orientation of
the pump polarization plane. The axis breaks the magnetic symmetry in the basal plane
(x y), providing an in-plane magnetic torque sufficiently short to impulsively trigger pla-
nar spin motion (see Fig. 6.5c). The validity of this scenario is further supported by a
phenomenological theory based on symmetry considerations and general principles of
light-matter interactions in a magnetic medium (see section 6.7.5).

The azimuthal dependence of the oscillation amplitude on the orientation of the
pump polarization allows us to attribute the excitation of the in-plane magnon mode to
an ultrafast light-induced change of the magnetocrystalline anisotropy. This anisotropy
emerges in response to resonant optical excitation of the Ni2+ electrons to the 3T2g or-
bital state, characterized by an unquenched net angular momentum. To estimate the
lifetime of the photoinduced anisotropy we performed a time-resolved analysis of the
frequency of the spin precession at various fluences of the incident pump. A long-living
change in the anisotropy should renormalize the magnon frequency within the lifetime
of the excited state in agreement with Ref. [162, 235] and Eq. 6.1 and thus can be seen
as a measure of the magnetic anisotropy relaxation. Consequently, exciting with greater
fluence would amplify this effect: the spin precession frequency would scale with the
fluence. In contradiction to this, we observe that fluence affects only the amplitude but
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not the frequency of the spin precession (see Fig. 6.12), which indicates that the lifetime
of the anisotropy is at least shorter than the period of the spin precession (<3 ps). The
short lifetime of the anisotropy can originate from the short-lived photoexcited state,
whose lifetime is given by the natural width of the 3A2g → 3T2g absorption line (0.2 eV)
and is on the order of 20 fs. Interestingly, the observed polarization control of the spin
precesion is strongly reminiscent of the inverse Cotton-Mouton effect [48], a particular
variant of the magnetic ISRS also widely considered as an instantaneous photo-induced
magnetic anisotropy [236, 237]. In the magnetic ISRS scenario, the pump photon is scat-
tered in an event wherein an electron momentarily gains orbital angular momentum
from the higher-level orbital states typically having energy higher than the incident pho-
ton. Our experimental results can be thus interpreted alternatively as being indicative
of the resonant enhancement of the scattering process upon approaching the transition
to the higher-level 3T2g orbital state, underlining the strong impact of the low-symmetry
trigonal 3T2g states on the magnetic anisotropy of NiPS3. Indeed, several works reported
that magnetic ISRS processes in iron-based compounds can be significantly enhanced
in the vicinity of the d-d transitions, see for example Refs. [209, 210]. Our experiment
shows that almost no magnon excitation is observed for the photon energies below the
3A2g → 3T2g resonance, contrary to what is expected for the ISRS process. The resonant
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enhancement picture must thus assume that the magnon amplitude falls below our de-
tection limit away from the resonance. Regardless of the exact microscopic nature of
the driving mechanism, we emphasize the crucial role of the d-d transitions for optical
control of magnetic anisotropy in NiPS3.

6.5. CONCLUSIONS
In conclusion, our work establishes selective pumping of orbital resonances as an effi-
cient pathway to control magnetic anisotropy and to reveal high-frequency two-dimen-
sional coherent spin dynamics in van der Waals layered antiferromagnets. While ultra-
fast control of the magnetic anisotropy and sub-THz spin dynamics is demonstrated
here in bulk lamellar NiPS3, due to advances in exfoliating techniques and strong magneto-
optical responses observed in our experiments, we anticipate the applicability of the
suggested approach to atomically thin antiferromagnets [218, 238]. Such systems can
serve as an excellent testbed for the theoretical XY-model, with further possibilities such
as revealing dynamics of nontrivial topological vortex states associated with the Berezinskii-
Kosterlitz-Thouless transition [201, 218].

6.6. METHODS
SAMPLE

Crystals of NiPS3 were grown by chemical vapor transport. First, polycrystalline NiPS3

was synthesized by mixing powders of S (99.998%, from Sigma-Aldrich), P (> 99.99%,
from Sigma-Aldrich) and Ni (99.99%, from Sigma-Aldrich) in a stoichiometric ratio, pressed
into a pellet and sealed in a quartz ampoule (P ∼ 5×10−5 mbar, length: 25 cm, internal
diameter: 1.5 cm). The ampoule was kept at 400°C for twenty days and cooled down
slowly (0.07 °C/min). Next, the previous material was mixed with iodine (99.999% an-
hydrous beads from Sigma-Aldrich; [I2] ∼ 5 mg/cm3), sealed in an evacuated quartz am-
poule (P ∼ 5×10−5 mbar, length: 50 cm, internal diameter:1.5 cm) and placed in a three-
zone furnace in a gradient of temperatures of 700 °C/650 °C/675 °C for 28 days. Phase
and compositional purity were verified by powder X-ray diffraction and ICP-OES (Induc-
tively Coupled Plasma - Optical Emission Spectrometry). The materials were handled
inside an argon glove-box to avoid any possible oxidation. Exact details about tempera-
ture gradients and characterization of crystals from the same batch as the ones studied
in this work can be found in Ref. [203].

EXPERIMENTAL SETUP

The pump pulses at the photon energies of 0.8–1.9 eV (∼100 fs) were obtained using an
optical parametric amplifier (OPA), and to access energies below 0.4 eV (∼ 200 fs) we used
difference frequency generation (DFG) by mixing the outputs of two OPAs in a GaSe crys-
tal [239]. The pump pulses at a 500 Hz repetition rate were focused on the sample sur-
face to a spot with a diameter of 200µm. The time-delayed co-propagating near-infrared
probe pulses at a photon energy of 1.55 eV were focused to a spot of 130µm such that the
spatial overlap between pump and probe pulses was satisfied.
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6.7. SUPPLEMENTARY INFORMATION

6.7.1. EXCITATION OF MAGNETIC AND PHONON MODES
Figure 6.6 shows the Fourier spectra of the time-resolved polarization rotation after ex-
citation at different pump photon energies at or close to the 3A2g → 3T2g absorption line.
The sub-Thz modes correspond to the modes with frequency f1 and f2 as discussed in
section 6.2. The amplitude spectrum also reveals the presence of high-frequency modes,
with frequencies between 4 and 7.5 THz. These modes correspond to previously re-
ported Ag phonon modes in NiPS3 [218, 219, 224, 238].
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Figure 6.6: Light-induced magnetic and phonon modes. a,b, Transient polarization rotation θR as a function
of the delay time between the pump and the probe pulse (left) and the corresponding FFT spectrum (right)
after excitation with pump pulses at a photon energy of 0.8 eV (a) and 1.08 eV (b).

6.7.2. CHARACTERIZATION OF THE SUB-THZ MODES
In order to identify the origin of the sub-THz oscillations, we perform additional mea-
surements. We perform the experiment in different magnetic fields. Fig. 6.7 shows the
pump-induced dynamics in different applied magnetic fields. Both the mode at fre-
quency f1 (Fig. 6.7a) and at frequency f2 (Fig. 6.7b) are not sensitive to the magnetic
field applied in this range. Moreover, we plot the frequency of the f1-mode vs. tempera-
ture on a log-log scale in Fig. 6.8. The linear fit of the high-temperature data points gives
the value of the critical exponent β = 0.23. A deviation from this scaling law occurs for
temperatures below T0 = 0.65TN.
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6.7.3. SUPPORTING SPIN DYNAMICS THEORY
In this section we show that for an anisotropic magnetic Hamiltonian with both an axial
distortion and an in-plane distortion there are two magnon modes. We derive the fre-
quencies of these magnon modes in terms of anisotropy parameters, in order to relate
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them to (known) material parameters. The derivation of antiferromagnetic dynamics
closely follows the one in section 2.5 in chapter 2.

We start with an expression for the magnetic energy density in terms of the normal-
ized variants l and m of the conventional Néel vector L and net magnetization M (see
section 2.5):

w = 2z JS2m2 +2D⊥S2(l 2
z +m2

z )+2D∥S2(l 2
y +m2

y )−2gµBSH ·m. (6.2)

The first term concerns the exchange energy between coupled spins, the second and
third term reflect the anisotropy energy and the final term involves the Zeeman energy.

• J > 0 – phenomenological constant describing the (antiferromagnetic) exchange
interaction between neighbouring spins.

• z is the number of nearest neighbours with antiparallel alignment of the spins.

• D⊥,D∥ > 0 – phenomenological constants describing the strength of the out-of-
plane (⊥) and in-plane anisotropy (∥). The form of the magnetic anisotropy term
is chosen such that the spins are oriented along the x axis in the ground state and
accounts for distortions of the magnetic site along the main symmetry axis (z) and
in the perpendicular x y plane.

• g – value of the Landé factor for the Ni2+ magnetic moment

• µB – Bohr magneton

• H – external magnetic field

S(T ) is the temperature-dependent averaged value of a single spin, whose tempera-
ture behaviour in vincinity of TN is typically described by a power law scaling such that:

S(T ) ∼ (TN −T )β, (6.3)

with β the scaling power and S ≈ 1 at low temperatures.
Note that the exchange and Zeeman terms in the expression in Eq. 6.2 agree with Eq. 2.28
in chapter 2, using that the sublattice magnetization M0 = gµBS = γħS and the exchange
field Hex = 2Sz J

γħ [90].

The corresponding equations of motion for m and l derive from the Landau-Lifshitz
equations for the magnetic sublattices (Eq. 2.26). Neglecting the applied magnetic field
(and again using M0 = γħS) this gives:2ħS dm

dt =
[

m× ∂w
∂m

]
+

[
l× ∂w

∂l

]
2ħS dl

dt =
[

m× ∂w
∂l

]
+

[
l× ∂w

∂m

] (6.4)

In the ground state, the (normalized) Néel vector l is oriented along the x-axis, such that

l = l0ex , m = 0,
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where l0 =±1 accounts for the time-reversal symmetry of the Néel state. From m2+l2 = 1
one obtains l · ∂l = 0. This means that the dynamics of the Néel vector is reduced to
transverse deviations l̃ = (l̃y , l̃z ) of l from the equilibrium value:

l = l0ex + l̃ (6.5)

Here we consider small-amplitude oscillations of the Néel vector. In the linear ap-
proximation we can get A simple, closed expression for the equations of motions for l
and m without resorting to the Lagrangian. Substituting Eq. 6.5 into Eq. 6.4 results in a
pair of coupled differential equations for the deviations l̃,m̃:

2ħS ˙̃m =
[

l0ex × ∂w

∂l̃

]
= 2l0

(
0,−2D⊥S2lz ,2D∥S2ly

)
2ħS˙̃l =

[
l0ex × ∂w

∂m̃

]
= 2l0

(
0,−2(z J +D⊥)S2mz ,2(z J +D∥)S2my

) (6.6)

These equations can be split into two pairs of linear differential equations for (ly ,mz )
and (lz ,my ):ħdmz

dt = 2D∥l0Sly

ħdly

dt =−2(z J +D⊥)l0Smz

ħdmy

dt =−2D⊥l0Slz

ħdlz
dt = 2(z J +D∥)l0Smy

(6.7)

Reducing these two systems of first-order linear differential equations to single second-
order differential equations, we obtain two equations describing the in- and out-of-
plane spin dynamics:

l̈y +
(

l0S

ħ

)2

4(z J +D⊥)D∥ly = 0

l̈z +
(

l0S

ħ

)2

4(z J +D∥)D⊥lz = 0

(6.8)

The corresponding frequencies of the in-plane and out-of-plane oscillatory motion are
then given by:

ω⊥ = 2S

ħ
√

D∥(z J +D⊥) ≈ 2S(T )

ħ
√

(D∥z J )

ω∥ =
2S

ħ
√

D⊥(z J +D∥) ≈ 2S(T )

ħ
√

(D⊥z J ),
(6.9)

where the approximation z J À D⊥,∥ was used. Eq. 6.9 shows that the frequencies of the
in-plane magnon and out-of-plane magnons are governed by the strength of the corre-
sponding anisotropies. This means that the magnon frequencies can be used to estimate
D⊥ and D∥ if the strength of the antiferromagnetic exchange parameter J is known. As

mentioned before, Hex = 2Sz J
γħ [90]. If we substitute Ha,(1,2) = 2SD∥,⊥

γħ [90], we see that the
frequencies are equivalent to the obtained frequencies for antiferromagnetic dynamics
in chapter 2.
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Note that the frequencies are proportional to the average spin value S(T ) and are
thus subjected to a similar power law scaling (Eq. 6.3). The temperature-dependence of
the anistropy constants D⊥,∥ can contribute to the total temperature-dependence of the
magnon frequency. As we observed in the experiments (section 6.3) that f∥ = f1 ∼ S(T ),
we can conclude that the mode is of magnetic origin and that D∥(T ) is independent of
temperature.

6.7.4. RELATION BETWEEN THE SPIN-FLOP FIELD AND THE MAGNON FRE-
QUENCY

We consider a magnetic field H = Hx ex applied along the x-direction. Using Eq. 6.2, this
gives for the magnetic energy:

w = 2z JS2m2 +2D⊥S2(l 2
z +m2

z )+2D∥S2(l 2
y +m2

y )−2gµBSHx mx . (6.10)

In the magnetic (xy)-plane we introduce an angle θ that the vector l forms with the x-axis
(see Fig. 6.9) such that:

m = m
(
ex sinθ−ey cosθ

)
l =

√
1−m2

(
ex cosθ−ey sinθ

) (6.11)

m

l

H

y

xθ

Figure 6.9: Spin-flop experimental geometry. The vector l makes an angle θ with the magnetic x-axis in the
x y-plane. The magnetic field is oriented in the x-direction.

Substituting this expression into Eq. 6.10 gives:

w = 2z JS2m2 +2D∥S2
[(

1−m2
)

sinθ2 +m2 cosθ2
]
−2gµBSHx m sinθ. (6.12)

Minimizing w with respect to m gives:

m(θ) = gµBHx sinθ

2
(
z J +D∥ cos2θ

) . (6.13)

Now substituting this into the expression for the magnetic energy w (Eq. 6.12) gives:

w(θ) =−1

2

(
gµBHx

)
sin2θ(

z J +D∥ cos2θ
)

S
+D∥S2 sin2θ. (6.14)
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Eq. 6.14 can be minimized with respect to the angle θ. Depending on the strength of the
magnetic field, two different solutions exist:

1. For Hx < H1 = 2S
p

D∥(z J+D⊥)
gµB

, the collinear AFM phase is stable and θ = 0, mx = 0.

2. For Hx > H2 = 2S
p

D∥(z J−D⊥)
gµB

, the canted AFM phase is stable and θ = π
2 , mx =

gµB Hx

2
(
z J−D∥

) .

Note that H1 > H2 and for H2 < Hx < H1, the canted and collinear phases coexist. Im-
portantly, the higher field H1 at which the collinear phase becomes unstable is directly
related to the frequency of the in-plance spin precession:

H1 =
ħω∥
gµB

and thus can serve to estimate its value:

ħω∥ = gµBH1

6.7.5. LIGHT-MATTER INTERACTION IN NIPS3 AND THE RESULTING SPIN-
DYNAMICS

To account for the observed interaction between the Ni2+ spins and the ultrashort pulses
we write the free energy term Wint in a quadratic form with respect to the electric field of
light E and the antiferromagnetic vector l:

Wint =Ci kpq Ei Ek lp lq ,

which is allowed by the magnetic and crystallographic point group of NiPS3. Here Ci kpq

are the components of the magnetoelectric susceptibility tensor C .
In the monoclinic system with C2 symmetry along the y-axis, such as NiPS3, the tensor
C reads (in Voigt notation):

C =



C11 C12 C13 C14 0 0
C21 C22 C23 C24 0 0
C31 C32 C33 C34 0 0
C41 C42 C43 C44 0 0

0 0 0 0 C55 C56

0 0 0 0 C65 C66


,



1
2
3
4
5
6


=



xx
zz
y y
xz
y z
x y


.

The electric field E of the laser pulse at normal incidence to the surface of the sample
(ab-plane) is E = (Ea ,Eb ,0). Projecting this electric field E on the (xyz) magnetic refer-
ence frame gives E = (Ex ,Ey ,Ez ) = (Ea cosγ,Eb ,Ea sinγ), where γ is the angle between
the x-axis and the a-axis in the ac plane.
Considering that in the linear approximation lx ly and lx lz are the only non-zero prod-
ucts of the Néel vector components that can contribute to the excitation of the spin dy-
namics, we find:

Wint =
(

AE 2
a +BE 2

b

)
lx lz +GEaEb lx ly ,
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Figure 6.10: Experimental geometry. Relative orientation of the laser polarization with respect to the the
magnetic (x y z) and crystallographic (abc) reference planes.

where

A =C14 cosγ2 +C24 sinγ2 +C44 sinγcosγ

B =C34

G =C56 sinγ+C66 cosγ.

In our experiments, the laser light is linearly polarized, with the polarization plane
oriented at an angle φ with respect to the crystallographic a-axis and therefore

E = (E0 cosφ,E0 sinφ,0),

E0(t ) ≈ E0δ(t ) is the time-dependent component of the electric field of the laser pulse.
Thus, the interaction energy reduces to

Wint = 1

2
E 2

0 (t )
[(

(A+B)+ (A−B)cos2φ
)

lx lz +G sin2φlx ly

]
. (6.15)

The Wint is anisotropic with respect to the components of the l vector and thus during its
presence in the medium, the light acts on the spins as an effective magnetic anisotropy.

This action generates a torque ∂Wint
∂t which leads to a time-dependent force term Fy,z (t )

on the right-hand side of the equations of the motion (Eq.6.6):2ħSṁz = l0

(
2D∥S2ly +Fy (t )l0

)
ħl̇y =−2(z J +D⊥)l0Smz

2ħSṁy =−l0

(
2D⊥l0S2lz +Fz (t )l0

)
ħl̇z = 2(z J +D∥)l0Smy ,

(6.16)
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with
Fy (t ) =G sin2φ ·E 2

0 (t )

Fz (t ) = 1

2

[
(A+B)+ (A−B)cos2φ

]
E 2

0 (t )
(6.17)

The corresponding equations of the spin motion (Eq. 6.8) is then given by:

l̈y +ω2
∥ly =− (z J +D⊥)l0

2ħ2 Fy (t )

l̈z +ω2
⊥lz =− (z J +D∥)l0

2ħ2 Fz (t ).

(6.18)

Considering that duration of the pump pulse (∆t ∼ 100 fs) is much shorter than the pe-
riod of spin oscillations, ∆t ¿ 2π

ω∥,⊥ , the real pulse shape can be replaced by the Dirac

delta function δ(t ) : E 2
0 (t ) → I0δ(t ), where I0 =

∫
E 2

0 (t )dt is the integrated pulse intensity.
This substitution clearly shows that action of the pump pulse is reduced to a nearly in-
stantaneous force/torque impulsively launching the spin dynamics.
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Figure 6.11: Pump polarization dependence. a, Schematic showing the geometry of the experiment. b, The
amplitude of the oscillations with frequency f1 and f2 as a function of the azimuthal angle φ between the
pump polarization plane and the a-axis.

One can see that to excite the in-plane dynamics ly of the Néel vector, the polarization of
light has to be oriented off the a and b axis of the crystal and reaches maxima of opposite
sign at φ = ± 45° in perfect agreement with our experiment and the ultrafast Inverse
Cotton-Mouton effect. Interestingly, the formulas also clearly show that excitation of
the out-of-plane dynamics lz of the Néel vector is also possible at the normal incidence.
Note, the excitation is allowed only because of the monoclinic distortion as the excitation
relies on the non-zero components A,B , each depending on the monoclinic terms Ci 4

of the magnetoelectric susceptibility tensor C .
Remarkably, the dependence of the magnon amplitude on the orientation of the

pump pulse is expected to be the same as for the in-plane mode but 45° degrees shifted
(compare sin2φ and cos2φ in Eq. 6.17). In the experiment, an 180° dependence of the
coherent oscillation at f2 was also observed. However, only a 22° shift was observed as
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compared to the f1 mode, see Fig. 6.11. The discrepancy can be explained by the bire-
fringence of the crystal which influences the linear polarization of the incident pump
light.

6.7.6. FLUENCE DEPENDENCE OF THE MAGNON MODE

a b

Figure 6.12: Pump fluence dependence. a, Time-resolved dynamics of the in-plane magnon mode for two
significantly different fluences of the pump excitation at T = 10 K. Solid lines are damped sine fits to the ex-
perimental data. Inset shows FFT amplitude of the time-varying signals. b, Time-resolved dynamics of the
frequency of the magnon mode. The data points are obtained via sine fit of the individual data segments pre-
sented in (a) using a sliding time window with a width of 5 ps. The horizontal error bars are derived from the
width of the sliding window.





7
BROADBAND SPIN-WAVE EMISSION

IN AN INSULATING

ANTIFERROMAGNET

“Surprise is the greatest gift which life can grant us."

Boris Pasternak

In chapter 4 we observed that confined resonant excitation can generate broadband phonon
wavepackets in wide-bandgap insulators. Ultrashort pulses of light have been routinely
used to excite uniform spin precession in antiferromagnets, as we also observed in chapter
5 and 6. In this chapter we combine these concepts and demonstrate the efficient emission
and detection of a nanometer-scale wavepacket of coherent propagating magnons in the
insulating antiferromagnet DyFeO3 using ultrashort pulses of light. The subwavelength
confinement of the laser field due to large absorption creates a strongly non-uniform spin
excitation profile, enabling the propagation of a broadband continuum of coherent THz
spin waves. The wavepacket contains magnons with a shortest detected wavelength of
125 nm that propagate with supersonic velocities of more than 13 km/s into the material.
This source of coherent short-wavelength spin carriers opens up new prospects for THz
antiferromagnetic magnonics and coherence-mediated logic devices at THz frequencies.

This chapter has been published with minor differences in Nature Physics 17, 1001 (2021) by J. R. Hortensius,
D. Afanasiev, M. Matthiesen, R. Leenders, R. Citro, A. V. Kimel, R. V. Mikhaylovskiy, B. A. Ivanov, and A. D.
Caviglia [240].

The theoretical formalism of the spin-wave detection was developed by R. Leenders and R. V. Mikhaylovskiy.
B. A. Ivanov developed the general theoretical framework describing the spin-wave propagation.
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7.1. INTRODUCTION
Antiferromagnetic insulators (AFMs) are prime candidates to replace ferromagnets (FMs)
as active media in the quest towards high-speed spin transport and large spectral band-
width operation [180, 241, 242]. Integration of AFMs in future wave-based technolo-
gies [62, 67, 243] crucially requires the realization of coherent (ballistic) transport of
antiferromagnetic spin waves over large distances [244]. In this regard, non-uniform
spin-wave modes with short wavelengths (λm < 100 nm) are of particular importance:
they can operate at THz clock rates, exhibit high propagation velocities and enable the
miniaturization of devices down to the nanoscale. Phase-coherent ballistic spin trans-
port in AFMs is also interesting from a fundamental point of view, as it is anticipated to
be a prerequisite for the occurrence of exotic phenomena such as magnetic solitons [91],
Bose-Einstein condensates [245, 246] and spin-superfluidity [247–249]. Such prospects
motivate a search for efficient methods for the excitation, manipulation, and detection
of short-wavelength coherent antiferromagnetic magnons.

Conventional methods of linear spin-wave excitation use spatially varying oscillating
magnetic fields. However, the high frequency of THz resonances inherent to antiferro-
magnetic dynamics make traditional field sources based on microstrip lines or copla-
nar waveguides impractical to be used in antiferromagnetic media. As a result, recent
demonstrations of magnon-mediated spin transport in antiferromagnets were limited to
either diffusive propagation of incoherent magnons [250–252] or evanescent spin-wave
modes [253]. The experimental generation of coherent propagating short-wavelength
magnons, which enables phase-coherent transport in an antiferromagnet, has so far re-
mained elusive.

Ultrashort pulses of light have been routinely used to generate and to control large-
amplitude THz spin precession [46, 47, 55] in antiferromagnets. The small photon mo-
mentum, however, poses a problem: it gives rise to a large momentum mismatch with
short-wavelength spin waves. Consequently, optical techniques have so far been re-
stricted to the generation of k = 0 uniform antiferromagnetic magnons and/or pairs of
mutually coherent magnons at the edges of the Brillouin zone [254], for which group ve-
locities are (near-)zero and no spatial transport of energy and angular momentum takes
place. Here we overcome this problem and present an all-optical method to excite and
detect a broadband wavepacket of short-wavelength coherent propagating magnons in
an insulating antiferromagnet. Optical excitation of intense charge-transfer electronic
transitions in the prototypical antiferromagnet DyFeO3 with ultrashort pulses of light
provides strong confinement of the light field, which creates a narrow exponential pro-
file of deflected spins near the sample surface. This nanoscale magnetic non-uniformity
serves as a source of short-wavelength coherent spin waves propagating into the sam-
ple bulk, as illustrated in Figure 7.1a. Using k-selective magneto-optical Bragg detection
we map out spectral components of the magnon wavepacket and reveal magnon modes
with nanoscale wavelengths, supersonic group velocities and an estimated propagation
length of more than 1µm.
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Figure 7.1: All-optical generation and detection of coherent antiferromagnetic spin waves. a, Schematic of
the generation of propagating AFM spin waves after optical pumping. The optical penetration depth δ of the
light defines the excited region and the width of the magnetic non-uniformity. Inset: Absorption coefficient
α (left axis) and corresponding penetration depth δ (right axis) for DyFeO3 as function of photon energy hν
(see Methods). 6A1g → 6T1u: the charge-transfer transition of interest. b, Schematics for the optical detection
mechanisms of spin waves in transmission (top) and reflection (bottom) geometries, via transient changes
in the Faraday rotation (θF) and Kerr rotation (θK) respectively; γ is the angle of incidence. c, Time-resolved
polarization rotation of a near-infrared probe pulse after excitation with pump pulses with a photon energy
of 3.1 eV (δ = 50 nm) as measured in the transmission (black) and reflection (red) geometries. The thick solid
lines are exponentially damped sine fits. Inset: Fourier spectra of the oscillations with Lorentzian fits (thick
solid lines), with central frequencies f0 and fk . a.u.: arbitrary units.

7.2. ALL-OPTICAL GENERATION AND DETECTION OF COHER-
ENT ANTIFERROMAGNETIC SPIN WAVES

Dysprosium orthoferrite (DyFeO3) is a charge-transfer antiferromagnetic insulator with
Néel temperature TN = 645 K, exhibiting one of the strongest observed interactions be-
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tween spins and ultrashort laser pulses [47, 162, 255]. The optical spectrum of DyFeO3

is dominated by a set of intense electronic O-Fe (2p − 3d) charge-transfer (CT) transi-
tions. The absorption due to these transitions sets in above 2 eV, and promptly brings
the absorption coefficient α to values as high as 5×105 cm−1 (see inset Fig. 7.1a) [256],
corresponding to penetration depths (δ) of less than 50 nm.

In our experiments we study a 60µm thick slab of z-cut DyFeO3. The sample is ex-
cited with 100 fs pump pulses which have photon energy tunable in the spectral range
of 1.5–3.1 eV, covering the lowest energy 6A1g → 6T1u charge-transfer electronic tran-
sition [256]. We use time-delayed probe pulses at various photon energies below the
charge-transfer gap (hν < 2 eV) to detect the photo-induced magnetic dynamics in two
complementary transmission and reflection geometries (see Fig. 7.1b). In both geome-
tries, the pump-induced rotation of the probe polarization plane, originating from the
Faraday effect (θF) or the magneto-optical Kerr effect (MOKE) (θK), is tracked as a func-
tion of the pump-probe time delay. Note that while the Faraday transmission geometry
is routinely used in pump-probe experiments for detecting uniform (k = 0) spin preces-
sion in antiferromagnets [47], the reflection geometry has been shown to enable detec-
tion of finite-k coherent excitations such as propagating acoustic wavefronts [69, 103].
As shown below we demonstrate that the reflection geometry can also be used to probe
the dynamics of short-wavelength propagating coherent spin waves.

Following the optical pumping in the regime of strong absorption (hν = 3.1 eV), the
time-resolved dynamics reveal high-frequency oscillations in the hundreds of GHz range
(see Fig. 7.1c). The frequencies f0 and fk of the oscillations observed in the transmis-
sion and reflection geometry respectively, are substantially different: fk > f0 (see inset
Fig. 7.1c). Notably, the decay time of the oscillations also differs by nearly an order of
magnitude.

To identify the origin of the oscillations, we track their central frequency as a func-
tion of temperature. The antiferromagnetic state in DyFeO3 adopts two distinct spin
configurations, sharply separated by a first-order phase transition at the so-called Morin
temperature TM ' 50 K [144]. At T < TM, the antiparallel iron spins are oriented along
the y-axis and arranged in a compensated collinear AFM pattern. Above TM, the spins
experience a reorientation towards the x-axis accompanied by a mutual canting and sta-
bilization of a canted AFM phase (see Fig. 7.2a). The temperature dependence of the os-
cillation frequency exhibits a characteristic cusp-like softening with a minimum at TM

(see Fig. 7.2b and Fig. 7.7). This frequency softening is an unambiguous hallmark of the
quasi-antiferromagnetic (q-AFM) magnon branch in DyFeO3 and is caused by strong
temperature variations of the magneto-crystalline anisotropy in the vicinity of TM [169].
Indeed, the frequencies f0 observed in the transmission geometry match values reported
in literature for the zone-centre (k = 0) q-AFM magnon [169].

To explain the physical origin of the oscillation at frequency fk seen in the MOKE
experiment, we refer to the dispersion relation for magnons. In both magnetic phases,
below and above TM, the magnon spectrum ωk in DyFeO3, is given by [193]:

ωk =
√
ω2

0 + (v0k)2, (7.1)

where v0 ≈ 20 km/s is the limiting group velocity of the spin waves [193]. This disper-
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illustration of the spin wave corresponding to the oscillatory dynamics at the different frequencies.

sion relation is shown as an inset to Fig. 7.2b. At small wavenumbers kv0 ¿ ω0, it has
a quadratic form due to the magnon gap ω0 = 2π f0, arising from magneto-crystalline
anisotropy. At larger wavenumbers v0k À ω0, the dispersion relation becomes domi-
nated by the exchange interaction (exchange regime), and thus takes a linear form typ-
ical for antiferomagnets [193]. Based on the form and properties of the dispersion re-
lation we identify the MOKE signal at fk as a finite-k magnon on the q-AFM branch: it
follows the characteristic temperature dependence of the f0 zone-center magnon mode
and has a nearly temperature-independent blueshift. The detection geometry implies
that the magnon wavevector k is perpendicular to the sample surface, and its magni-
tude can be deduced from Eq. 7.1 to be k = 4.2×105 cm−1 (λ= 2π/k ≈ 140 nm) (see Fig-
ure 7.2b).

By considering the modulation of the material’s dielectric tensor due to the propagat-
ing coherent spin waves, the attribution of the fk oscillation to a finite-k magnon on the
q-AFM branch can be further supported. A spin wave with a propagation vector along
the z-axis causes a perturbation of the magnetic order and a corresponding periodic
modulation of the off-diagonal components of the dielectric tensor [168], resembling
the magneto-optical analogue of a dynamical volume phase grating. As a result, the po-
larization rotation of the reflected probe beam with wavenumber k0 becomes subject to
a Bragg condition:

km = 2k0n(λ0)cosγ′, (7.2)

where n(λ0) is the optical refractive index of the medium at the probe wavelength λ0, γ′
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is the refracted angle of incidence of the probe, and km is the normal projection of the
k-vector of the probed magnon (see section 7.8.2). Using Eq. 7.2 we find that a probe
pulse at a central wavelength of 680 nm (n ≈ 2.39) [256] and normal incidence (γ′ = 0)
is sensitive to propagating magnons with wavenumber km ≈4.2×105 cm−1. Note that
this independent estimation agrees with the magnon wavenumber retrieved using the
measured frequency and the known dispersion relation (Eq. 7.1).

7.3. OPTICAL CONFINEMENT TO GENERATE PROPAGATING SPIN

WAVES
The generation of finite-k coherent magnons is anticipated to rely strongly on the con-
finement provided by the optical penetration depth δ, which is highly dispersive near
the charge-transfer band. In particular, changing the pump photon energy between
2.4 and 3.1 eV provides a variation in the penetration depth between 300 and 50 nm,
while the real part of the refractive index (influencing the pump wavelength) changes by
only 5 % (see Fig. 7.6). Therefore, the amplitude of the finite-k magnon is expected to
vary strongly as function of the pump photon energy. The time-resolved MOKE signals
obtained in the reflection geometry for different photon energies of the pump excita-
tion, are shown in Fig. 7.3a. The Fourier transforms of the signals (Fig. 7.3b) show that
the spectra are composed of two components, corresponding to the zone-centre and
finite-k (km = 3.7×105 cm−1) magnon modes. One can see that with increasing photon
energy (i.e. decreasing penetration depth), the amplitude of the finite-k magnon mode
increases dramatically (see Fig. 7.3c). The obtained dependence clearly shows that the
finite-k magnon is nearly absent for penetration depths larger than 150 nm, a value close
to the wavelength λm of the probed magnons, and grows dramatically for shorter pene-
tration depths.

We model this observation using a simple assumption: the ultrashort light pulse pro-
motes a spin excitation that is strongly non-uniform along the direction of incidence
z. The excitation leads to a nearly instantaneous deflection of spins by an angle φ(z)
with the spatial distribution following the optical absorption profile given by the Beer-
Lambert law: φ(z, t = 0) = φ0e−z/δ, where φ0 ∼ I0/δ is proportional to the intensity of
the pump pulse I0, and inversely proportional to the light penetration depth (see sec-
tion 7.8.3). The strongly non-uniform spin perturbation distributes the initial deflection
among magnon modes at different wavenumbers k, with the amplitudes Ak given by the
reciprocal space image of the initial excitation (see inset Fig. 7.3c):

Ak ∼ I0

1+ (kδ)2 , (7.3)

This expression not only agrees well with the observations of Fig. 7.3c (km = 3.7×105 cm−1,
λm = 170 nm), where it is plotted as a best fit to the pump intensity I0, but also confirms
the intuitive interpretation that a stronger confinement shifts the spectral amplitude of
the excited magnon wave packet towards larger k.
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7.4. SPECTRAL COMPONENTS OF THE BROADBAND SPIN-WAVEPACKET
The excited spin-wave continuum forms a broadband magnon wavepacket, in which in-
dividual spectral components propagate independently, each adhering to the dispersion
relation ωk = 2π fk (Eq. 7.1). In order to visualize the time evolution of the wavepacket,
we make use of the linearized sine-Gordon equation for the space- (z) and time- (t ) de-
pendent amplitude of the spin deflections φ(z, t ) [193] (see section 7.8.3). The evolution
of the spin dynamics is described by:

φ(z, t ) = 2

π

∫ ∞

−∞
dk

[
Ak coskz cosωk t

]
(7.4)

and is shown in Fig. 7.4a. The dispersion promptly smears out the initial exponential
profile of the spin excitation, simultaneously forming a spin-wave front that propagates
into the bulk, already after around 10 ps. This front is composed of short-wavelength
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magnons with k & 20×105 cm−1 propagating with the limiting group velocity v0.
Applying the Bragg condition of Eq. 7.2, we can experimentally map out the spectral

components of the magnon wavepacket, as well as extract the group velocity and prop-
agation length of individual magnon modes. First, we vary the incidence angle γ of the
probe pulse (inset Fig. 7.4b), and find that the central frequency of the oscillations is re-
duced upon increasing γ′ (Fig. 7.4b), in perfect agreement with Eq. 7.2 and the magnon
dispersion of Eq. 7.1. Next, upon decreasing the probe wavelength, we observe a sys-
tematic increase in the magnon frequency (Fig. 7.4c), once again in accordance with the
Bragg condition.
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Figure 7.4: Revealing spectral components of the broadband antiferromagnetic magnon wavepacket. a,
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To summarize our observations, we plot the extracted central frequencies as a func-
tion of the corresponding wavenumbers km (see Fig. 7.4d). These points, fit to the disper-
sion relation ωk given by Eq. 7.1, yield a limiting group velocity v0 = (19.0±0.7) km/s, in
good agreement with the literature values [193]. Using this extracted value, we evaluate
the group velocities vg = ∂ω

∂k

∣∣
k=km

of the optically detected magnons given by vg = v2
0

km
ωk

.
These values, shown in Fig. 7.4e, indicate that while the zone-center magnons do not
support propagation, the shortest-wavelength components of the magnon wavepacket
detected in our experiment propagate at a supersonic velocity of nearly 13 km/s (vs = 6 km/s,
see section 7.8.4 for a discussion on the broadband wavepacket of coherent acoustic
phonons). We note that these magnons already approach the exchange wave regime
characterized by the limiting group velocity v0. This remarkable feature, inherent to an-
tiferromagnets, stands in sharp contrast with the situation in ferromagnets, where the
quadratic dispersion relation dictates that the exchange value of the group velocity is
reached only for magnons with λ . 10 nm. Although the shortest magnon wavelength
detected in our experiments is 125 nm, magnons at even shorter wavelengths, down to
the penetration depth limit of 50 nm, are anticipated, and could be detected using probe
pulses at higher photon energies or other means to measure non-local ultrafast spin ex-
citations [257–259].

7.5. SPIN-WAVE PROPAGATION DISTANCE
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Figure 7.5: Extracting the spin-wave propagation distance. Time-resolved polarization rotation originating
from a propagating magnon, as obtained in the reflection geometry. The solid line represents a best fit of a
damped sine, giving a lifetime τ of about 85 ps. With the largest estimated group velocities vg of the measured
magnons of about 13 km/s, this gives a propagation distance lc = vgτ=1.1µm.

Using the extracted lifetime of the oscillations τ= 85 ps (see Fig. 7.5), we estimate the
coherence length lc of the spin-wave transport lc = vgτ= 1.1µm. We note that this length,
dramatically enhanced as compared to metallic antiferromagnets [96, 180], also agrees
with studies of diffusive spin transport in other insulating antiferromagnets [250, 260].
One can anticipate even longer propagation lengths for the coherent (ballistic) regime
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reported here: our estimate of the coherence length is only a lower limit, as the propa-
gating spin wave is likely to escape from the region that is probed by the reflected probe
light (∼ λ0/2). These striking observations make antiferromagnetic insulators such as
DyFeO3 a promising platform for the realization of high-speed wave-based magnonic
devices.

7.6. CONCLUSIONS
Through optical pumping of above-bandgap electronic transitions, we have explored an
efficient and virtually universal route for exciting coherent propagating spin waves in
insulating antiferromagnets. The strong optical absorption provides an opportunity to
spatially confine the light to a subwavelength scale, inaccessible by any other means,
such as for example focusing [261–263], enabling the emission of a broadband contin-
uum of short-wavelength antiferromagnetic magnons. The universal mechanism opens
up prospects for terahertz coherent AFM magnonics and opto-spintronics [242] provid-
ing a long-sought source of coherent high-velocity spin waves. We anticipate even higher
propagation velocities to be observed in the broad class of easy-plane antiferromagnets
(e.g. hematite [260] and FeBO3), in which the spin-wave gapω0 is reduced and the high-
velocity exchange wave regime can be achieved at significantly smaller wavenumbers k.
The demonstrated approach holds promise for a wide range of fundamental studies ex-
ploiting the excitation and propagation of nonlinear spin waves such as magnetic soli-
tons [91, 264] as well as the investigation of the giant magneto-elastic coupling between
antiferromagnetic magnons and acoustic phonons [265] directly in the time-domain.

7.7. METHODS
SAMPLE

A single crystal of DyFeO3, 63µm thick, grown by a floating zone melting technique was
used in this work. The sample is cut perpendicularly to the crystallographic z-axis.

TIME-RESOLVED EXPERIMENT

An amplified 1 kHz Ti:Sapphire laser system (Astrella, Coherent, central wavelength 800 nm,
pulse energy: 7 mJ, pulse duration: 100 fs) forms the basis of the experimental setup. A
large fraction of this output is used to pump a dual optical parametric amplifier (OPA,
TOPAS-Twins, Light Conversion). The OPA delivers linearly polarized, 100 fs output pulses,
with photon energies hν in the range 0.45–1 eV (λ0 = 2.7–1.4µm). The photon energy of
these output pulses was doubled or tripled using a β-barium borate (BBO) single crystal
in order to obtain tunable excitation pulses which cover the photon energies in the opti-
cal range of 1.55–3.1 eV (corresponding wavelength 400–800 nm). A small portion of the
amplifier pulses was sent through a mechanical delay line and used as probe of the spin
dynamics in the reflection and transmission geometries. Pump and probe pulse were fo-
cused onto the DyFeO3 sample (pump spot diameter: 300µm, typical fluence 2 mJ/cm2,
probe spot diameter: 80µm), which was kept in a dry-cycle cryostat (Montana Instru-
ments) that allowed to cool it down to 10 K and vary the temperature with high stability
in a wide temperature range (10–250 K). The pump-induced changes in the polarization
θK,F of the reflected or transmitted probe pulse were measured using an optical polar-
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ization bridge (Wollaston prism) and a pair of balanced Si photodetectors. The optical
setup is described in more detail, including a figure, in chapter 3.

EXPERIMENTAL DETERMINATION OF THE ABSORPTION COEFFICIENT.
The unpolarised absorption spectrum of DyFeO3 was directly obtained with light propa-
gating along the crystal z-axis in the spectral region 1–2.2 eV. The resulting absorption is
shown in the inset of Figure 7.1a. In addition, we performed spectroscopic ellipsometry
measurements using a Woollam M5000 ellipsometer over a wide energy range to obtain
the real and imaginary parts of the refractive index. In the photon energy region 2.5–4 eV,
where the transmission measurements are not possible for thick samples, we estimated
the absorption using the acquired complex refractive index. These values are shown in
the inset of Figure 7.1a. The real part of the complex refractive index is shown in Fig. 7.6.

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
2.2

2.4

2.6

n

Photon energy, h (eV)

Figure 7.6: Spectral dependence refractive index. Real part n of the refractive index, as extracted using spec-
troscopic ellipsometry measurements.

7.8. SUPPLEMENTARY INFORMATION

7.8.1. TEMPERATURE-DEPENDENT SPIN-WAVE DETECTION
The time-resolved measurements of the polarization rotation in reflection and transmis-
sion geometry were performed at different temperatures (see Fig. 7.7). There is a pro-
nounced difference in dynamics observed. The central frequencies of the oscillations in
the reflection geometry were extracted and shown in Fig. 7.2.

7.8.2. MAGNETO-OPTICAL DETECTION OF PROPAGATING SPIN WAVES IN AN-
TIFERROMAGNETS

MAGNETIC POTENTIAL

The antiferromagnetic order can be best described by introducing the antiferromag-
netic Néel vector L = M1 − M2 and net magnetization M = M1 + M2, where M1,2 are
the magnetizations of the antiferromagnetically coupled magnetic sublattices, such that
|M1| = |M2| = M0 and |L| ≈ 2M0 = L0. The density of magnetic energy in DyFeO3 written
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Figure 7.7: Time-resolved spin-wave detection at different temperatures.. a,b, Time-resolved polarization
rotation in the transmission (a) and reflection geometry (b) following excitation at hν= 3.1 eV for different
temperatures. The probe-incidence angle is near-normal, with λ0 = 700 nm.

in terms of M and L reads [91, 193]:

w(M,L) = Hex

4M0
M2 − (H0 ·M)− HD

2M0

(
ey · [L×M]

)
+wa(L). (7.5)

In this expression, Hex is the effective exchange field (ωex = γHex), withγ= 1.76×107/(sOe)
the gyromagnetic ratio, H0 is the external magnetic field, HD is the magnitude of the

effective Dzyaloshinskii-Moriya field (HD = HD
2M0

[
ey ×L

]
, ey is the unit vector along the

y-axis, which corresponds to the even C2 crystal axis in DyFeO3). The spontaneous spin-
reorientation between the two competing magnetic states is governed by the temperature-
dependence of the energy of the magneto-crystalline anisotropy [168, 169]:

wa(L) = 1

2
K2(T )L2

y −
1

2
K4L4

y , (7.6)

with K2,4 phenomenological parameters that describe the strength of the magnetic anisotropy.
Within the sigma-model approach, the dynamics of the Néel vector is described by

a closed equation (sigma-model equation, see, e.g., review article [91] and section 7.8.3
for details), whereas the net magnetization M is determined by this vector and its time
derivative via the relation:

M = M0

Hex
HD + 1

2M0ωex

[
∂L

∂t
×L

]
, (7.7)

In DyFeO3 the ground state of the Néel vector as well as its dynamics correspond-
ing to the quasi-antiferromagnetic mode (q-AFM) is restricted to the (x y) plane. For
such dynamics, the Néel vector can be parametrized by introducing the angle φL that
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the vector forms with the y-axis, L = L0
(
sinφL ,cosφL ,0

)
. In the magnetic ground state

of DyFeO3:

φL =
0, T < TM
π
2 , T > TM,

(7.8)

with TM ≈ 51K the Morin temperature.
For this planar dynamics of the Néel vector L, the net magnetization Mz emerges along
the z-axis, such that:

Mz = M0

Hex

(
−HD sinφL + 1

γ

∂φL

∂t

)
, (7.9)

At this point we introduce a variable φ to designate deviations of the vector L from the
equilibrium orientation, such that φ=φL for the collinear AFM state and φ= π

2 −φL for
the canted AFM state. For the case of small deviations of the Néel vector from equilib-
rium, we assume φ¿ 1 and obtain:

Mz =


M0
Hex

(
−HDφL + 1

γ
∂φ
∂t

)
, T < TM

M0
Hex

(
−HD − 1

γ
∂φ
∂t

)
, T > TM

(7.10)

MAGNETO-OPTICAL DETECTION MECHANISM FOR THE FINITE-k MAGNON MODES

Optical detection of magnetization dynamics in a reflection geometry is performed us-
ing the magneto-optical Kerr effect (MOKE). The phenomenon originates from a helicity-
dependent refractive index in the material with broken time reversal symmetry. The re-
fractive index differs for left-handed and right-handed circular polarized light, resulting
in different reflection coefficients. To calculate the rotation of the plane of polarization
after reflection, linearly polarized light is first decomposed into circular polarized com-
ponents. For simplicity, it is assumed that the incident light is polarized along the x-axis,
and the normalized electric field vector ei in the (x y) plane is:

ei = 1

2

(
1
−i

)
+ 1

2

(
1
+i

)
= 1

2
e++ 1

2
e−, (7.11)

where e± =
(

1
∓i

)
. Then the reflected field is

er = 1

2
r+e++ 1

2
r−e− = 1

2

(
r++ r−

i (r−− r+)

)
(7.12)

Now the reflectivity is written as the sum of the static reflectivity r0 and the dynamic
part of the reflectivity ∆r , which is induced by the spin wave:

r+ = r+
0 +∆r+

r− = r−
0 +∆r− (7.13)

We consider the experimental geometry schematically shown in Fig. 7.8a, in which a
probe pulse enters the material at z = 0. To find the change in reflectivity, depending
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on the light helicity, we take an approach similar to the ultrafast detection of acoustic
phonons, where phonon-induced strain affects reflectivity [see Ref. [69], Eq. 32]. In
Ref. [69] the change in reflectivity is derived as function of the time and space dependent
change in permittivity ∆ε(z, t ) due to the strain modulation. Here, the same equation is
employed to calculate the change of reflectivity induced by magnetization. The equation
taken from Ref. [69] reads:

r = r0 +
i k2

0

2k
t0 t̃0

∫ ∞

0
dz ′e2i kz ′∆ε(z ′, t ), (7.14)

where r0 is the reflection coefficient in absence of perturbations in the permittivity, t0

is the transmission coefficient of the light into the medium, and t̃0 is the transmission
coefficient from the medium into free space, k0 is the wavenumber of the light in free
space and k is the wavenumber of light in the medium.

a b
vacuum medium

r0

probe t0

k0

ksw

n

γ γ’

z = 0
z

Figure 7.8: Experimental geometry to probe spin-wave excitations. a, Schematic diagram of the experiment
considered. b, Schematic illustration of the detection condition from Eq. 7.2

Two electromagnetic eigenmodes exist in a magnetic material with (dynamical) mag-
netization along the z-axis, which have left-handed and right-handed circular polariza-
tion (±) and experience different refractive indices n± [95]. From these effective refrac-
tive indices, the effective permittivity modulation ∆ε can be obtained:

n2
± = ε± g = ε+∆ε±, (7.15)

where g is the gyration term. Generally, this gyration term is proportional to the net
magnetization: g (M) = aMz , where a is a proportionality coefficient. From this it is
found that:

∆ε±(z, t ) =±aMz (z, t ). (7.16)

Inserting the expression for ∆ε(z, t ) in Eq. 7.14 for right- and left-handed circular polar-
ization we obtain:

r+ = r+
0 − i t+0 t̃+0

ak2
0

2k+

∫ ∞

0
dz ′e2i k+z ′Mz (z ′, t ) ≡ r+

0 +∆r+

r− = r−
0 + i t−0 t̃−0

ak2
0

2k−

∫ ∞

0
dz ′e2i k−z ′Mz (z ′, t ) ≡ r−

0 +∆r−.

(7.17)
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For the sake of simplicity, we use the approximation of a pure antiferromagnet, such
that the difference in reflection coefficients, transmission coefficients and wave vectors
of light with opposite helicity in statics is negligible (we also neglect higher-order effects
such as magnetic birefringence), simplifying the expression to:

r+ = r0 −∆r

r− = r0 +∆r,
(7.18)

where

∆r = i
ak2

0

2k
t0 t̃0

∫ ∞

0
dz ′e2i kz ′Mz (z ′, t ) (7.19)

Now the rotation angle θK is calculated from equation 7.12, by taking the ratio of the y-
and x-components. Generally, the rotation angles are small such that tanθK ≈ θK so that:

θK ≈ i (r−− r+)

r−+ r+ = i∆r

r0
. (7.20)

As discussed in section 7.4 and 7.8.3, the optical pumping results in the excitation of a
broadband spin-wave wave packet. We consider an arbitrary plane spin wave compo-
nent of the packet with the frequencyωs and the wavevector km(ωs). We show below that
the experimentally detected spin wave component is fully defined by the wavevector k
of the probe pulse.

Following Eqs. 7.8, 7.9, spin dynamics in DyFeO3 results in an oscillatory out-of-
plane magnetization. The magnetization Mz associated with the propagating spin wave
can thus be written as follows:

Mz (z, t ) = Mk e iωs e−i km(ωs)z . (7.21)

Here, Mk is the amplitude of the chosen spin wave component, determined by the am-
plitude of the spin deflection φ, (see Eqs. 7.8, 7.9) and km(ωs) is the wave-vector of the
spin wave, related to ωs through the dispersion relation ωk .

Substituting Eq. 7.21 in Eq. 7.19 and in Eq. 7.20 afterwards, results in the following
expression for the rotation angle:

θK = t0 t̃0

r0

ak2
0

2k
Mk

∫ ∞

0
dze iωst e i (2k−km(ωs)z . (7.22)

Note that in a general case km = κm − iηm, i.e. spin waves decay upon propagation from
the sample boundary with a decrement ηm. For the case ηm 6= 0, the integral in Eq. 7.22
converges and the result is:

θK = i
t0 t̃0

r0

ak2
0

2k
Mk e iωst

(
1

2k −km(ωs)

)
. (7.23)

The fraction
(

1
2k−km(ωs)

)
can be expressed as:(

1

2k −km(ωs)

)
= 2k −κm(ωs)(

2k −κm(ωs)
)2 +η2

m

− iηm(
2k −κm(ωs)

)2 +η2
m

. (7.24)
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Now we can assume ηm ¿ κm and take the limit ηm → 0. Taking into account one of the
definitions of the Dirac function πδ(x) = lim

a→0

a
x2+a2 we obtain:

lim
ηm→0

(
1

2k −km(ωs)

)
= 1(

2k −κm(ωs)
) − iπδ

(
2k −κm(ωs)

)
. (7.25)

Equations 7.23 and 7.25 select the spin waves with wave vectors satisfying the expression
2k −km(ωs) = 0 to be detected as θK ∼ δ(

2k −km(ωs)
)
, assuming km = κm in the limit of

no spin wave damping and taking the real part of θK, which corresponds to the polariza-
tion rotation. If one rewrites this expression in terms of the wavelengths 2λm = λprobe,
with λm the wavelength of the spin wave and λprobe the wavelength of the probe pulse in
the medium, the well-known Bragg condition is obtained. In the specific case of our ex-
periment, the gradient of the excitation is directed in the z-direction which, as discussed
in section 7.8.3, results in spin waves with a wavevector in this particular direction. In
the experiment, however, the incoming probe pulse can be directed under a certain an-
gle γ. Taking refraction into account (see Fig. 7.8b), which leads to a refracted angle γ′
for the incoming probe pulse, the detection expression becomes:

km = 2k0n cosγ′ (7.26)

which equals Eq. 7.2 in section 7.2.
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Figure 7.9: Wavenumber selectivity. a, Wavepacket distribution (black line, left axis) and the normalized sen-
sitivity function as given Eq. 7.23 (blue line, right axis). b,The resulting time-resolved MOKE signal, given by
the wavepacket distribution and the sensitivity function from panel a. Damping parameter ηm = 0.001 nm−1,
wavepacket distribution: ak ∼ 1

1+(kδ)2 (see section 7.8.3).

The result is the following. Assuming a spin wave packet distribution as discussed
in section 7.8.3 (see Fig. 7.9a), the reflection geometry provides a sharp sensitivity to a
single component, depending on the probe photon wavenumber. As a result, the oscil-
lation emerging in the time-resolved probe polarization (Fig. 7.9b) has the frequency of
the spin wave at that particular wavenumber.
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7.8.3. FORMALISM ON THE GENERATION OF THE MAGNON WAVEPACKET
We describe the dynamics of the quasi-antiferromagnetic mode (q-AFM) in DyFeO3 us-
ing the one-dimensional version of the sigma-model, which for the planar dynamics of
the Néel vector can be obtained by the variation of the Lagrangian L[φ] [91]:

L[φ] =
∫

dz

{
α

2

 1

v2
0

(
∂φ

∂t

)2

−
(
∂φ

∂z

)2
−wa(φ)

}
, (7.27)

where α is the non-uniform exchange constant, v0 is the magnon speed at the linear re-
gion of the spectrum, wa(φ) is the anisotropy energy, and the angle φ=φ(z, t ) describes
the deflection of the antiferromagnetic vector L from the equilibrium position (0° and
90° as measured from the y-axis in the collinear and canted AFM phase respectively, see
section 7.8.2). Note that the characteristic speed v2

0 = γαωex/2M0 contains only terms
of exchange origin, the uniform exchange parameter ωex = γHex and the non-uniform
exchange constant α, which results in the large value of this speed.

The general equation obtained from Eq. 7.27 is the nonlinear Klein-Gordon equa-
tion (note that it transforms to the familiar sine Gordon equation for the variable 2φ for
the simplest form of the anisotropy with only one constant, wa ∝ sin2φ). In the lin-
ear approximation over the small deviations of φ from its equilibrium value it takes the
universal form

∂2φ

∂t 2 − v2
0
∂2φ

∂z2 +ω2
0φ= 0, (7.28)

where ω0 is the angular frequency of the spin-wave gap:

ω2
0 =ωexωa, ωa = γ

2M0

d2 wa

dφ2

∣∣
φ=0 (7.29)

The derivative of the anisotropy energy is calculated at the equilibrium value of φ, see
for more details Ref. [255]. Thus, all the parameters are represented by two well-known
quantities: the limiting group velocity v0 ≈ 20 km/s [193] and the value of the magnon
gap ω0, which is directly measured in our experiment. The characteristic space scale is
given by the value v0/ω0.

Ultrashort pulses of light with a corresponding broadband optical spectrum are rou-
tinely being used as an instantaneous excitation to generate high frequency spin dynam-
ics [242]. We start with the assumption that at the time t = 0, the spin deflectionφ(z, t ) in
the material is given by the spatial profile of the optical excitation, schematically shown
in Fig. 7.10a, as the result of an instantaneous excitation (significantly shorter than the
period of the spin precession):

φ(z, t ) =
φ0e−

z
δ , z ≥ 0

0, z < 0
(7.30)

Here, z = 0 forms the interface between the magnetic medium and vacuum, δ is the pen-
etration depth of the excitation pulse and φ0 the amplitude of the initial spin deflection,
proportional to the pump fluence I and inversely proportional to δ (φ0 ∼ I /δ), as to con-
serve the total energy distributed among all the excited magnon modes.
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In order to account for the boundary condition given by the surface of the sample,
we consider the energy flow jE; from the Lagrangian (Eq. 7.27) it follows:

jE = ∂L

∂
(
∂φ/∂z

) ∂φ
∂t

=−α∂φ
∂z

∂φ

∂t
(7.31)

The energy flow should vanish at the surface (z = 0) at all times t . This gives the

boundary condition ∂φ
∂z

∣∣
z=0 = 0 (free spins). The simplest way to find a solution obeying

this boundary condition is to expand the problem symmetrically to z < 0, such that the
solution of the symmetrical problem is φ̃(z, t ) = φ̃(−z, t ) and can be found with the

initial conditions:

φ̃(z, t = 0) =φ0e−
|z|
δ (7.32a)

∂φ

∂z
(z, t = 0) = φ0

δ


−e

z
δ , z > 0

0, z = 0

+e
z
δ , z < 0

(7.32b)

Using the dispersion relation of the material, which is obtained after solving Eq. 7.28, we
obtain that for a given spin wave component ψk :

ψk (z, t ) = Ae i kz−iωk t +Be i kz+iωk t , ωk =
√
ω2

0 + (v2
0k)2 (7.33)

Here, as before, ω0 =p
ωexωa the spin wave gap and v0 the characteristic speed. Having

in mind the symmetry of the wanted solution, the only solution which is symmetric over
inversion of the magnon eigenmodes, is:

ψk (z, t ) =C coskz cosωk t (7.34)

From Eq. 7.32a we can write the spin deflection φ̃(z, t = 0) in a material slab of thickness
d using the Fourier expansion as:

φ̃(z, t = 0) =φ0
∑
k

ak e i kz

ak = 1

d

2δ

1+ (δk)2

(7.35)

From this expression we find that the initial exponential distribution in spin-deflection
in real-space corresponds to a broadband magnon wavepacket, as shown in Fig. 7.10.

Then in the continuous limit (d →∞), combining Eq. 7.30 and Eq. 7.35 we can easily
obtain the final expression, given in section 7.4:

φ(z, t ) = φ̃(z ≥ 0, t ) = 2φ0

π

∫ ∞

−∞
dk

[
δ

1+ (δk)2 coskz cosωk t

]
; (z ≥ 0),φ0 ∼ I0

δ

= 2

π

∫ ∞

−∞
dk

[
Ak coskz cosωk t

]
; Ak = φ0

d

δ

1+ (δk)2 (7.36)

Eq. 7.36 describes the spin deflection as a function of space (z) and time (t ) and therefore
the dynamics of the broadband magnon wavepacket which will start propagating into
the sample. This was shown in Fig. 7.4a in section 7.4.
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Figure 7.10: Real-space spin deflection and momentum distribution. a,b, Real-space distribution of the spin
deflection φ(z, t ) (a) and the corresponding wavevector distribution (b)

7.8.4. PROPAGATING COHERENT ACOUSTIC PHONON WAVEPACKET
Following the excitation with pump pulses at a photon energy of hν= 3.1 eV, the time-
resolved polarization rotation signal θK reveals oscillatory dynamics at two distint cen-
tral frequencies (see Fig. 7.11). As argued in section 7.4, the high-frequency compo-
nent corresponds to a finite-k magnon mode. The slow-varying component is caused
by a broadband wavepacket of propagating acoustic phonons as in details described
in Ref. [69]. The generation and detection of ultrafast light-induced coherent acous-
tic phonons in solids is a well-established research field known as picosecond acous-
tics [70]. Typically, the generation is based on a conversion of the energy of the strongly
absorbed ultrashort pump pulse into photo-induced stress in vicinity of the material
surface [70]. The stress leads to modulation of the intensity of light reflected from the
sample as a consequence of modulation of refractive index due to optoacoustic effects.
The propagating acoustic wavepacket then results in oscillations in the time-resolved
probe pulse polarization rotation, which is also proportional to the intensity of reflected
light.

More generally, the opto-acoustic conversion process can be described similarly to
the magnon detection outlined in section 7.8.2, which causes the probe pulse to be
specifically sensitive to an acoustic phonon with the wavenumber given by Eq. 7.26 [102].
The frequency of the resulting oscillation corresponds to the intrinsic frequency of the
acoustic phonon. Therefore the measured oscillations can be used to map out the phonon
dispersion, just like it is done for the magnon dispersion. We extract the central fre-
quency of the slow oscillations for the different probing wavelengths that are also used in
Figure 7.4. These frequencies are plotted for the wavenumber calculated using Eq. 7.26
and shown in Fig. 7.11b with a linear dispersion fit. The velocity of the sound waves ex-
tracted from this fit is vs = 6.2 km/s. This agrees well with literature values of the lon-
gitudinal sound velocity in the orthoferrites, which all lie in the range of about 6.0–
6.5 km/s at cryogenic temperatures [266–268]. We therefore conclude that optical ex-
citation of the strongly-absorbing charge-transfer transitions excites both a propagating
broadband magnon wavepacket and a propagating broadband acoustic phonon wavepacket.
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Figure 7.11: Observation of a wavefront of propagating acoustic phonons. a, Time resolved polarization
rotation in the reflection geometry following excitation at hν= 3.1 eV, T = 60 K. The solid line represents a best
fit using a double-sine function. The slower oscillations are the result of a finite-k phonon mode. The higher
frequency oscillation corresponds to a finite-k magnon mode. b, Dispersion relation for the magnons, where
the slope of the dispersion defines the (limiting) propagation speed of the waves, with the datapoints from
Fig. 7.4. The extracted phonon frequencies are plot against the wavenumber calculated using Eq. 7.26 and fit
with a linear dispersion, which then represents the (longitudinal) acoustic phonon branch in DyFeO3.

7.8.5. TEMPERATURE AND MAGNETIC FIELD DEPENDENCE OF THE MAGNON

AND PHONON MODES
To further investigate the behavior of the detected acoustic and magnetic finite-k waves,
we studied their excitation at different temperatures across the Morin phase transition
(see Fig. 7.12a). From the Fourier spectra of these signals (see Fig. 7.12b), we can distin-
guish clear contributions from the acoustic phonon mode (∼ 40 GHz) and magnon mode
(> 200 GHz) at all temperatures.
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Figure 7.12: Temperature dependence of the magnon and phonon modes. a, Time-resolved measurements
of the polarization rotation θK of a probe pulse (λ0 = 700 nm) for different temperatures. b, The FFT spectra
of the time-domain signals from panel a. The peaks corresponding to the phonon and magnon mode are fit
with Lorentzians. c,d, The frequency (c) and amplitude (d) of the oscillatory components corresponding to the
magnon and phonon mode, extracted with the Lorentzian fits in panel b. Red spheres: magnon data, black
squares: phonon data.

Another way to confirm the attribution of the slow oscillation to an acoustic phonon
mode and the fast oscillation to a magnon mode is to perform the measurements in a
magnetic field. In the WFM phase, a magnetic field can bias the orientation of the small
net magnetic moment of DyFeO3. As shown in Fig. 7.13, there is a strong dependence
of the magnon amplitude on the polarity of the applied field in contrast to the phonon
mode.
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a probe pulse (λ0 = 800 nm) after excitation with pump pulses (hν= 3.1 eV) in magnetic fields with opposite
polarity. b, The sum and difference of the signals from panel a, highlighting the phonon and magnon mode
respectively.

7.8.6. POLARIZATION DEPENDENCE OF THE MAGNON AND PHONON MODES
The results of the measurements for different probe polarization orientations are sum-
marized in Fig. 7.14. The polarization dependence of the amplitude of the measured
oscillation corresponding to the magnon and phonon modes are substantially differ-
ent. Whereas the phonon amplitude peaks for a probe polarization right in-between the
crystal x- and y-axis (α= 45°, 135°) and undergoes a 180° phase shift (see Fig. 7.14a),
the magnon amplitude is less sensitive to the orientation and largest for the polariza-
tion oriented along the crystallographic x and y-axis. We also note that in vicinity of
TM the amplitude spectra reveal a probe polarization-dependent peak (mode 1) at a low
frequency (∼ 12 GHz), of which the origin remains to be identified.

The pump polarization of the excitation pulse has a profound effect on the amplitude
and phase of the excited spin dynamics. As shown in Fig. 7.15, there is a slight change in
phase as the pump polarization changes and a large change in the measured amplitude.
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8
CONCLUSION AND OUTLOOK

“The important thing is not to stop questioning.”

Albert Einstein

The work presented in this thesis is diverse and explores the capabilities of resonant opti-
cal excitation to change (magnetic) materials on ultrashort timescales. It constitutes just
a very small contribution to an immensely large research field. This contribution, how-
ever, does not just comprise the actual observations, it also consists of ‘potential’ for future
experiments and directions of research. In this concluding chapter I provide the main con-
clusions of the work presented in this thesis and will reflect on unanswered questions and
possible directions to extend this work.

131



8

132 8. CONCLUSION AND OUTLOOK

Ultrashort pulses of electromagnetic radiation allow for materials to be driven strongly
out of equilibrium. The purpose of studies on ultrafast control of material properties is
usually two-fold. First of all, the ability to dynamically control macroscopic properties
and steer systems into different states on short timescales is relevant for application in
future technologies. In addition, these studies can visualize fundamental interactions
between different degrees of freedom on their natural, picosecond timescales, which
gives a unique insight in the different factors that determine the nature of a material’s
ground state.

This thesis covered experimental work on the ultrafast structural and magnetic dy-
namics in different material systems after selective excitation of optical resonances. In
short, the main results of the work presented in this thesis concern: strain generation in
an insulator (chapter 4) and control over magnetic interactions on picosecond timescales
(chapter 5) after resonant lattice excitation, changing the anisotropy in a van der Waals
antiferromagnet by excitation of orbital resonances (chapter 6) and the all-optical gen-
eration and detection of a broadband magnon wavepacket in an antiferromaget using
above-bandgap excitation (chapter 7). The most general and important conclusion one
can make is that the importance of the ability to tune the frequency of the excitation
can hardly be overestimated. Excitation of specific modes provides efficient routes to
bring the system into otherwise inaccessible states and gives crucial insights in the mi-
croscopic mechanisms that underlie the macroscopic observations. Equally important
is the side-effect that comes with this selectivity: the targeted dipole-active transition or
vibration can be driven to large amplitude, while minimizing the dissipation of excess
energy into unwanted channels. In the following, we summarize the main observations
of the work from this thesis, and provide indications for future research directions.

8.1. NONLINEAR PHONONICS AND STRAIN GENERATION
In chapter 4 and 5 we explored resonant excitation of optical phonons in insulating ma-
terials in order to control material properties on ultrashort timescales. Selective driving
of these low-energy lattice vibrations is a way to avoid the large heat-dissipation that
typically comes with the excitation of the high-energy electronic degrees of freedom.
In the insulator LaAlO3 we observed coherent rotations of oxygen octahedra, correspond-
ing to a Raman mode, after the excitation of an IR-active phonon mode. In the frame-
work of nonlinear phononics, this impulsive excitation of Raman modes through ionic
Raman scattering should be accompanied by a displacement along the Raman coordi-
nate. This displacement is often invoked to explain the wide variety of phenomena ob-
served after resonant lattice excitation. Our measurements serve as a confirmation of
the presence of strong phonon-phonon coupling in wide bandgap insulating materials.
In addition to coherent Raman oscillations, we observed the generation of transverse
and longitudinal strain wavepackets. This indicates the presence of a strain gradient
close to the material surface after excitation. The intimate relation between the exci-
tation of optically-active lattice vibrations and macroscopic strain is still understudied.
While different from the classical ‘nonlinear phononics’ mechanism [119], light-induced
dynamical strain can also be used for material control. The presence of a tunable shear
strain on ultrafast timescales can be exploited for control of many functional material
properties such as ferroelectricity, including in ultrathin insulating oxide membranes.
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8.2. CONTROLLING MAGNETIC PROPERTIES VIA RESONANT LAT-
TICE EXCITATION

In chapter 5 we demonstrated that low-energy resonant lattice excitation can be used
to manipulate fundamental magnetic interactions on the picosecond timescales. The
time-evolution of the modified magnetic landscape was imprinted on the frequency of
the relevant magnon mode, which softened with increased laser fluence. In the limit of
large-amplitude phonon excitation, the modified Fe-Dy exchange interaction results in
a coherent phase transition from an antiferromagnetic to a weakly ferromagnetic phase.
Within a few picoseconds, the system is ballistically steered from its ground state into
the competing magnetic phase. This striking observation strongly contrasts with the
incoherent, heat-driven phase transition induced by exciting the electronic degrees of
freedom, which is much slower.

The rare-earth ion plays a crucial role in this observation, as the strong exchange
interaction between its orbital momentum and the ordered transition metal spins lead
to a first-order spin reorientation transition in equilibrium. The rare-earth ion, with its
large angular momentum, therefore provides the coupling of the magnetic system to the
crystal lattice: a crucial component in this phonon-driven process. In this way it serves
as an intermediate agent by connecting the transition metal spins to the crystal config-
uration. More generally, in order for the magnetic degree of freedom to be susceptible
for resonant lattice excitation, there must be strong coupling to the crystal lattice, even
in equilibrium. We therefore anticipate that very similar mechanisms or effects will be
present in other rare-earth based compounds with similar anisotropic exchange inter-
action, such as manganites, vanadates, orthochromates and the other orthoferrites.
In the specific case of the observations studied in chapter 5 there remain several open
questions that could be answered by expanding the spectroscopy toolbox:

• Ultrafast X-ray diffraction can be used to experimentally establish the presence of
transient lattice distortions after excitation.

• While the role of the rare earth ion has been established in our work through a
phenomenological model, supported by DFT calculations, it would be highly in-
teresting to conduct further experimental studies. An ultrafast THz probe could be
used to establish the role of the configuration of the Dy electronic system on the
observed changes in the magnetic interactions.

• Magneto-optical imaging can be used to visualize the nucleation of the weakly
ferromagnetic phase [255], which will give general insight in the factors that deter-
mine the emergence speed and direction of photoinduced net magnetic moments.

It is only recently that selective excitation of optical phonons has been applied to
steer magnetic systems into differently ordered phases [167, 269]. With the vast amount
of insulating (anti)ferromagnets and the increased tunability of ultrashort pulses of light
across the THz spectrum, these demonstrations only form the tip of the iceberg. In ad-
dition to applying the known technique to different material systems, future research
can focus on electric field enhancement by integrating tailored antennas into the exper-
imental setup [60] or to use cavities to enhance light-matter coupling [270]. Moreover
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the concept can be extended to thin films and oxide heterostructures, as the resonant
lattice excitation and the pump-induced effects are naturally confined to a small volume
of less than a micrometer.

8.3. MAGNETIC EXCITATIONS IN A VAN DER WAALS ANTIFER-
ROMAGNET

In chapter 6 we demonstrated that the selective excitation of orbital resonances in a van
der Waals antiferromagnet can induce transient anisotropy and excite a previously un-
reported high-frequency magnon with a two-dimensional character. This work marks
the capability of dynamical control experiments to uncover equilibrium properties in
strongly correlated materials [216]. We anticipate to observe very similar effects on the
magnetic system in the other antiferromagnetic thiophosphates FePS3 and MnPS3. While
the observation of pumping orbital resonances in order to control magnetic properties
by itself is intriguing [61], the application in van der Waals antiferromagnets has the ap-
peal of applicability in future, ultrafast and ultrathin devices. The first step towards this
goal would be to perform pump-probe experiments on ultrathin flakes of these materi-
als. This is a feasible scenario, as the thiophosphates can indeed be exfoliated down to
the few-layer limit while preserving their magnetic properties [238, 271] which can be
optically probed in atomically thin samples [272, 273].

8.4. PROPAGATING COHERENT ANTIFERROMAGNETIC SPIN WAVES
Impulsive excitation of coherent spin dynamics through various mechanisms has been
one of the key topics within the field studying antiferromagnetic order manipulation
ever since its first demonstration [34]. This uniform spin precession (k = 0) is limited
to the optically excited volume, as the group velocity of these spin waves is nearly zero.
Very recently several demonstrations of magnon-mediated spin-transport in antiferro-
magnets were reported. However, the spin transport is in these cases carried by incoher-
ent magnons [250–252] or evanscent spin-waves [253]. In chapter 7 we demonstrated
that confined impulsive excitation, using ultrashort pulses of light, can generate a co-
herent, broadband magnon wavepacket in an insulating antiferromagnet. We study this
wavepacket using an optical detection method that relies on the Bragg reflection of the
light as a result of interference between the probe pulse and the spin-wave packet.

This first demonstration of coherent propagating spin waves with nanometer wave-
lengths in an antiferromagnet is a crucial step towards terahertz antiferromagnetic magnon-
ics. Phase-coherent ballistic spin-wave transport in an antiferromagnet is also interest-
ing from a fundamental point of view and forms the starting point of many different fu-
ture experiments. From the detection point of view, an unanswered question is whether
these propagating antiferromagnetic spin waves can be detected in a non-local experi-
ment. One could think of the experimental geometry shown in Fig. 8.1, where the vol-
ume where the spin waves are detected is physically separated from the optically excited
volume. The detection could be performed in different ways:

• One option is to use near-infrared laser pulses, similar to the experiments de-
scribed in this work (Fig. 8.1a).
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• Another potential optical detection method relies on using AFM/heavy-metal bi-
layers to test whether the antiferromagnet propagating spin waves can result in
THz emission from the heavy-metal film [257] (see Fig. 8.1b). This approach is in-
spired on the success of ultrafast spin-current generation in ferromagnet/heavy-
metal bilayers in recent years [274].

• An important next step is to study the feasibility of electrical detection methods
of the wavepacket of coherent phonons, similar to Refs. [68, 250–252, 260] (see
Fig. 8.1b). Electrical detection is a crucial step towards the integration of the demon-
strated concept in magnonic devices.

In terms of generation methods, future research could focus on generating propagating
antiferromagnetic spin waves in-plane, possibly in thin films. This brings the research
direction more in line with ferromagnetic magnonic studies that often use planar wave
guides [66, 67]. This requires confinement of the excitation in the transverse direction,
as compared to the lateral confinement provided by the penetration depth in our work.

THz emission

V

a b

Figure 8.1: Nonlocal detection of propagating spin waves. a,b, Schematic of two potential experiments to
measure the propagating antiferromagnetic spin waves nonlocally, after their propagation through the anti-
ferromagnetic material: either by probing with laser pulses (a) or detection in a (heavy) metallic layer (black),
using THz emission or a pump-induced voltage through spin-to-charge converion using the inverse spin hall
effect. (b)

8.5. CONCLUDING REMARKS
The results in this thesis are part of the large ongoing effort within condensed matter
physics to steer (quantum) materials into competing groundstates and exert control over
material properties on the fastest timescales [14]. Continuous progress in the generation
of ultrashort (low)-THz pulses [275] and breakthroughs in temporal [276] and spectral
pulse-shaping techniques [21] in the few-THz range, make that the possibilities for se-
lective material control are almost endless.
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