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Abstract
This thesis shows the detailed design of the control and software of a DC microgrid of a tiny house
community on the roof of a high­rise building in the city of Rotterdam in the Netherlands, consisting of
twelve tiny houses powered by solar and wind energy. This thesis is part of a project with two other
subgroups, focusing on the microgrid design and the powerline communication.

First, an introduction to the problem is given together with a description of the tiny house community.
After that, the general program of requirements is presented, as well as the requirements of this sub­
group. Next, an artificial neural network design is presented, which is used to forecast solar and wind
generation and energy demand. The designed dense neural network resulted in predictions with mean
errors of 10.11%, 12.56%, and 6.95% as a fraction of the maximum value for solar generation, wind
generation, and energy demand, respectively. The predictions functioned as an input for the model
predictive controller, which used them to place restrictions on appliances in the community when nec­
essary, to reduce dependency on the main power grid of Rotterdam. Using a mathematical optimization
algorithm, a simulation of one year showed that the controller could reduce the grid dependency up to
25%, compared to simulating without the controller. The conclusion summarises the achieved results,
discusses whether the requirements are met, and considers possible future works.
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1
Introduction

With climate change being a more pressing matter than ever, many people are looking for ways to
minimize their ecological footprint. One of the most effective ways for individuals to reduce their impact
on the environment is sustainable living. In the last two decades, sustainable housing has been gaining
popularity with at the forefront of the movement a concept called ’tiny houses’ [1]. According to the US­
based International Residential Code (IRC) a tiny house is as a dwelling that has a floor area of less
than 37 𝑚2 [2]. This description, however, is insufficient as tiny houses cannot be described merely
by their size. Tiny houses are commonly designed to achieve efficient use of internal space, greater
environmental sustainability, and the ability to live off­grid while minimizing possessions [3]. This is
mainly achieved by multi­functional interior design, minimizing energy demand, and operating on green
energy by using Renewable Energy Sources (RESs). As space is scarce, many tiny house users put or
build their tiny houses in communities to share resources. According to [4], one of the key motivators
for people deciding to live in a tiny house is being part of a community. And while these communities
are connected socially, many of them consist of separately built homes that each have their own energy
generation and storage. Designing a tiny house community that can collaborate on a technical level
was the goal of the tunus project [5].

1.1. Tunus
In the tunus project, first, the design of a single tiny house was made. This tiny house was called tunus.
Then, the electricity, heat, and water grids of 12 tuni ­ the plural of tunus ­ were connected. Besides
the tiny houses, a common area (or central hub) was added to the tiny house community. It consists
of batteries, a controller, and washing machines.

The tunus community is designed to be on top of larger buildings in the city of Rotterdam. Power is
provided by Photo­Voltaic (PV) panels and Vertical Axis Wind Turbines (VAWTs) and distributed by an
intelligent DC Grid (DCG). Batteries are used to store or provide extra power.

This thesis elaborates on the tunus project [5]. Whereas the tunus project mainly discussed the con­
cepts of all technical aspects, for this thesis, code was written, and simulations were made to implement
the concepts of the electricity grid. Both will be presented in this report.

It is likely no coincidence that the project coincides with an increasing interest in microgrid technol­
ogy. Microgrids are relatively small to medium­sized energy supplying systems operating within the
framework of clearly defined boundaries for the generation, storage, transmission, and distribution of
energy [6]. This clearly includes both the tunus project and the scope of this thesis. Now, a situation
assessment and state­of­the­art analysis of microgrids are made.

1.2. Microgrid Analysis
For the past decades, the electricity grid has functioned on centralized generation and transmission
using Alternating Current (AC) [7]. Generation mainly was done using fossil fuels. This meant large
generators and long transmission lines. The first renewable energy sources connected to the grid were

1



1. Introduction 2

hydroelectric, which is often also generated far from cities and thus requires transmission. Although
these big interconnected AC networks were and still are the global standard, it is vital to remember that
”AC electrical energy is a transportation medium and not a commodity in itself” [8, p. 1].

According to the International Energy Agency (IEA), the world’s energy consumption is expected
to grow by 4.6% in 2021. 70% of this growth is projected to be in emerging economies [9]. To ac­
commodate this kind of growth, all losses should be minimized. In Europe, losses in transmission and
distribution stages can be up to 11% of the total energy consumption [10]. To combat these losses, new
methods are introduced. One relatively new method that is increasingly used, is microgrids. They can
decrease the losses in the overall system by spatially reducing the distance between generation and
consumption. Perhaps the most crucial advantage of microgrids is their ability to integrate residential
RESs without drastically interfering with the AC main grid. The current main grid is not explicitly de­
signed to accommodate for smaller amounts of energy supplied by many residential nodes even though
the use of residential RESs is quickly increasing. Due to the reduction of price and improvement of
quality of PV panels and more developments in smaller VAWTs, these renewable and decentralized
generation methods become more affordable and accessible. These renewable sources do present
issues, as discrepancies between generation and demand can occur. New developments in energy
storage technology and control strategies are increasing the feasibility of these microgrids, and their
use cases are growing. This can help the transition from the old centralized fossil fuel­based system to
a new, more sustainable decentralized system. Besides improving the integration of RESs and reduc­
ing losses, microgrids can also improve reliability by operating in islanded mode when the grid goes
down, reduce emissions when making use of renewable sources, and, in larger cities, reduce costs by
relieving the grid at critical areas [11].

Optimizing control strategies in order to make microgrids ’smart’ will further improve usability and
thus popularity. Another important upcoming trend is the use of Direct Current (DC) grids instead of AC
as this technology is more compatible with PVs and battery systems which both operate on DC. As DC
is gaining in popularity, the market for DC appliances is growing as well [12]. These trends make for a
promising future as a DC microgrid with DC appliances is estimated to be more than 30% more energy
efficient compared to the current grid and appliances [13]. Especially in more remote areas, microgrids
can be a more efficient way to provide reliable electricity to consumers. According to the IEA [14],
microgrids are the most economical way to expand access to energy in remote regions and regions
which lack electricity infrastructure. They predict that by 2030, 30–40% of people living in developing
countries will be supplied by microgrids supplied by renewable energy sources.

1.3. Problem Definition
It is clear that microgrids will play an important role in the future. This project will contribute to this future
by building on the work of the tunus project, though only the electricity grid will be considered. This
means that several of the designs and design choices that were made for the tunus project will remain
unchanged for the purpose of this study. These include the location (on a Rotterdam rooftop), the heat
grid, and the design of a single tiny house. Unsolved or unfinished characteristics of these topics will
not be treated here as they are of little relevance. For example, how to get on the roof is not part of
this project’s scope. The topology and control system are subject to change, as well as the choices on
electricity generation and demand and the grid connection.

The result of this project should be a design of the DC smart grid of a tunus tiny house community.
It should serve more as a Proof of Concept (PoC) than a finished design or instruction manual. Further,
it should contribute to the development of microgrids, for tiny house communities and elsewhere.

1.4. Subdivision
The design of the microgrid is split into three parts. A different subgroup treats each part. The first part
considers the hardware of the microgrid. It treats the design choices for all the components used in the
grid, responsible for energy demand, generation, storage, and distribution. It considers the topology
and layout of the microgrid, including its safety and stability. This part is done by the DC Grid (DCG)
subgroup.

The second part considers the control and software of the microgrid. It discusses the forecasting
of energy generation and demand using Artificial Neural Networks (ANNs). This forecast is used in
combination with the measurements performed by the DCG subgroup to control the microgrid. This
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part also treats the design of this control algorithm. This part is done by the Control & Software (CNS)
subgroup.

The third part considers the communication within the microgrid. It treats the communication over
the DC power line. It discusses the modulation technique, error detection, bit rate, and transmission
and receiver module. Lastly, it considers the communication protocol. This part is done by the Power
Line Communication (PLC) subgroup.

1.5. Thesis Outline
This thesis treats the Bachelor Graduation Project of the Control & Software (CNS) subgroup. Chapter 2
will provide the Program of Requirements (PoR). First the project­wide PoR is given in Section 2.1,
followed by a listing of the subgroup­specific PoR in Section 2.2.

In Chapter 3, an algorithm will be designed that is able to make predictions on the energy generation
and demand in the tiny house community, with the predictions’ results discussed in Section 3.4. These
predictions are used by the controller to anticipate the future. This controller is described in Chapter 4,
with the results in Section 4.6. Lastly, in Chapter 5, all is concluded, and recommendations for future
work are made.

In Appendix A.2, some of the derivations for the text are detailed. In Appendix B, supplementary
tables are shown. A survey that was conducted is described in Appendix C. Lastly, details about the
used software and all relevant code are given in Appendix D and Appendix E, respectively.

The full overview of the system is shown in Figure 1.1. The arrows show the information flow
between the different subsystems within the control system. All blocks will be designed, discussed, or
treated in this thesis to create a PoC.

Figure 1.1: An overview of the overall control system. Measurements of the energy generation and demand and weather
forecasts converge in the database. The database is used to make predictions which the optimization model uses. Based on
the Optimal Control Strategy Solution, the controller makes control actions and decides on whether a grid connection should be

present.



2
Program of Requirements

2.1. Overall Requirements
The following section will deal with the top­level system requirements of the Bachelor Graduation
Project ’Distribution of the electricity grid of a tiny house community’.

The MoSCoW method [15] will be used to prioritize requirements. The method involves dividing re­
quirements into ’Must have’, ’Should have’, ’Could have’, and ’Won’t have’.

Must haves are essential requirements (primary). Should haves are secondary and have less prior­
ity. Could haves are nice to have (tertiary/bonus requirements). Won’t haves will not be implemented.

2.1.1. Functional Requirements
Must have

• RQ­M.SYS.1: The system must use the designed DCG, where information will be sent to the
CNS subsystem using the designed PLC.

• RQ­M.SYS.2: The system must be able to supply the 12 tiny houses and the common usage of
the community.

• RQ­M.SYS.3: The system must use renewable energy sources as supply units only.

• RQ­M.SYS.4: The system should have an availability of at least 90%.

• RQ­M.SYS.5: The system must be able to do forecasting of factors influencing the system based
on the users’ behaviour and the weather.

• RQ­M.SYS.6: The system must be able to communicate grid information over the power lines
using a power line communication system.

Should have
• RQ­S.SYS.1: The system should be designed such that the costs are minimized for the given
functional requirements.

• RQ­S.SYS.2: The system should be designed such that the efficiency is optimized.

Could have
• RQ­C.SYS.1: The system could be designed to operate in islanded mode all of the time.

• RQ­C.SYS.2: The system could be designed to be scalable, i.e., both the number of tiny houses
per community and the number of communities can be easily increased.

4



2. Program of Requirements 5

2.1.2. Non­Functional Requirements
Below, all non­functional requirements of the top­level system will be given. They describe how the
system should operate.

• RQ­NF.SYS.1: The minimum speed of the power line communication system should be such
that it can sustain a transfer that is fast enough such that all data can be delivered to the devices
within a timely manner.

2.2. Specific Requirements
The following section will deal with the specific requirements for the CNS subsystem.

2.2.1. Functional Requirements
Below, all functional requirements of the CNS subsystem will be given. They set boundaries on what
the system should do.

Must have
• RQ­M.CNS.1: The system must retrieve weather data from the internet.

• RQ­M.CNS.2: The system must receive the hourly electricity usage, provided by the DCG,
through the PLC subsystem.

• RQ­M.CNS.3: The system must forecast energy generation.

• RQ­M.CNS.4: The system must forecast energy demand.

• RQ­M.CNS.5: The system must estimate the state of charge of the battery using the forecasts.

• RQ­M.CNS.6: The system must reduce the time connected to the grid by altering power use.

• RQ­M.CNS.7: The system must ensure that the State of Charge (SoC) of the battery remains
between its critical thresholds by deciding on whether a connection with the grid is necessary.

Should have
• RQ­S.CNS.1: The system should be able to update the database.

• RQ­S.CNS.2: The system should be able to update the forecasting algorithm.

Could have
• RQ­C.CNS.1: The system could give warnings based on discrepancies between predictions and
measurements.

• RQ­C.CNS.2: The system could give warnings based on defects that are detected by the DCG
subsystem.

Won’t have
• RQ­W.CNS.1: The system won’t have instantaneous, on a scale smaller than one hour, volt­
age/current control.

• RQ­W.CNS.2: The system won’t have instantaneous, on a scale smaller than one hour, power
control.

2.2.2. Non­Functional Requirements
Below, all non­functional requirements of the CNS subsystem will be given. They describe how the
system should operate.

• RQ­NF.CNS.1: The system should forecast with an accuracy of at least 80%, evaluated using a
mean error as a fraction of the maximum value.

• RQ­NF.CNS.2: The system should forecast 7 days ahead.



3
Forecasting

The system requirement RQ­M.SYS.5 states that forecasts must be made of factors influencing the mi­
crogrid. This is to improve the performance of the controller by enabling it to anticipate the (forecasted)
future [16]. In the subgroup­specific requirements, RQ­M.CNS.3 and RQ­M.CNS.4 specify that the
energy generation and demand should be forecasted. These predictions will be made using weather
forecasts (RQ­M.CNS.1) and measurements made in the microgrid (RQ­M.CNS.2).

First, it will be argued why Machine Learning is used for making these predictions. Further, it is
detailed why an Artificial Neural Network is chosen as an appropriate Machine Learning (ML) algorithm.
Then, it will be described how these ANNs are used to create a prediction model. A schematic showing
the implementation of this prediction model is shown in Figure 3.1.

Figure 3.1: Schematic of the prediction algorithm. Data, either from the database or newly gathered, is processed and then
used for the prediction models. These make predictions that are fed into the controller. The database is constantly being

updated with the processed data. The arrows indicate the steps of the process.

3.1. Prediction Algorithm
In order to make a prediction, an algorithm is needed that uses information on factors that influence
what is forecasted.

3.1.1. Machine Learning
Several studies have, with great success, used ML to predict both the generation of renewables and the
demand of certain communities [17, 18, 19, 20]. Such precedents strongly support ML’s suitability for
this project. Their success may be due to an essential similarity between the forecasting of renewable
energy generation and household energy demand: both depend on the weather ­ PV panels depend
on the sun, wind turbines on the wind, and electricity usage depends (among others) on the outside
temperature.

Another valuable advantage of using a ML algorithm is its flexibility. This flexibility is manifested as
having a tailored model for a particular configuration for the energy generation forecasts. This is be­
cause a ML algorithm ’learns’ from past data: patterns in the past will give rise to predictions in the
future. Consider, for example, the influence of a building next to a solar panel configuration. A simple
model that uses the expected solar irradiance and efficiency of the PV panels as input is not capable of
taking the building into account. More complex models can be made that do this, but a different model

6



3. Forecasting 7

must be made for every single solar panel of the configuration. This leaves little flexibility for moving
the solar panel configuration to a different location. Now, consider a ML algorithm. It will notice a power
dip from past data ­ at the moment that the building is in between the sun and the solar panels. The al­
gorithm will then incorporate the building’s influence in the final model. As the solar panel configuration
is moved around, the ML algorithm will notice different influences and include them in the prediction
model that is created.

Besides accounting for the influence of buildings surrounding a solar panel configuration, the ML
algorithm can also detect the influence of other external factors of a solar panel configuration, the effi­
ciencies of the solar panels, the specific aerodynamics of a wind turbine’s environment, and even the
aging of solar panels or wind turbines.

The flexibility also enormously benefits the forecasting of energy demand. Two aspects are identified:
capturing human behavior (that is changing through time) and enabling scalability.

Human behavior has a significant influence on energy demand [21]. The algorithm that predicts
the energy demand must therefore be able to capture this human behavior. With information on the
inhabitants ­ such as their sleep pattern or working hours ­ a tailored model can be created that takes
the habits of the residents into account when predicting the energy demand.

For different sets of inhabitants, however, new models will need to be created. The challenge of
being able to easily make several tiny house communities corresponds to the second ’could have’ func­
tional requirement of the overall project: RQ­C.SYS.2. Since ML algorithms use past demand data as
opposed to information on the inhabitants’ lives and schedules, they dynamically tailor their prediction
models to the residents. This will improve the scalability of the technology, making the successful
completion of requirement RQ­C.SYS.2 more likely.

Further, every time a resident would move out, a new prediction model must be devised based on
the new resident’s behavior. Moreover, the model should be updated even when the current residents
change their behaviors because of a job change, the arrival of a baby, or simply because of aging.
This updating of the model is also described in the second ’should have’ functional requirement of the
CNS subgroup: RQ­S.CNS.2. Because of their flexibility, some ML algorithms, such as ANN, are well
suited to be updated regularly with minimal human input [22]. The ML algorithms that are designed to
be updated are called ’online machine learning’ [23].

Lastly, it can be noted that the documentation of applications of prediction algorithms for tiny houses is
scarce. This makes it difficult to develop models that have good predictive performance. Once again,
the wide range of applications that ML can be used for, i.e., ML’s flexibility, is a crucial advantage.

3.1.2. Artificial Neural Network
Having opted for the use of ML, there remains the trade­off of which ML algorithms should be used.
The three reasons that influenced the decision to choose for an ANN are discussed here, although this
will be elaborated on later.

The main advantage of ANNs is that their use does not require knowledge of what it is applied on.
In this case, that means that there is no need to know who will be living in the tiny house community or
even how many people will be living there. Training the ANN will be similar in all cases.

Further, ANNs will simplify the completion of requirement RQ­S.CNS.2. They can be updated rela­
tively quickly, by running the training algorithm, without the need for much external input [24].

Lastly, it must be remarked that ANNs often outperform alternative ML algorithms, which makes
them an appealing option [17, 25].

In the following sections, ANNs will be designed. The first and arguably most crucial step of devel­
oping an accurate ANN is the collection of data [26]. Gathering much data is advantageous to any ML
algorithm. However, ANNs differ from most ML algorithms in that they require little feature selection,
i.e., the selection of features that are relevant for a prediction [24]. The next step in making an ANN is
thus training the actual model [26]. When such a model has been designed, it must be tested with an
independent data set. As more data is gathered throughout the operation of the tiny house community,
a new ANN can be trained and tested, thus updating the prediction model.

This process of data gathering, training using an ANN, and updating the model as the database is
updated is illustrated in Figure 3.2.
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Figure 3.2: Schematic of training a prediction algorithm composed of several stages: data gathering, data processing, and
creating a prediction model using ANNs. Two prediction models are developed: one for demand and another for generation.

The arrows indicate the steps of the process.

3.2. Data
Data collection is essential for ANNs. The acquired data will be used for training, validating, testing,
and improving the prediction model. Multiple attributes of the data are important to be able to train an
accurate model. These consist of the following:

• Time­step size: The controller needs hourly forecasts. The forecasts must thus be made for
intervals of one hour. The time­step size of the data should then be equal to (or smaller than) one
hour. Data sets using smaller time­steps can be converted to hourly data by averaging the data
of every hour.

• Location: The data sets should resemble the end­user as closely as possible. The location of
the measurements of the data should thus be as close as possible to the Rotterdam area, as this
is the location of the initial design of the tiny house community.

• Aggregation level: The aggregation level defines to what extend data has been summed up:
data of a community can be on a per­household basis (low aggregation) or can be given as
a single data point for the whole community (high aggregation). For ANNs, the latter is often
beneficial and will be used here because data on individual households is more prone to noise
and random behavior, increasing the difficulty of making predictions.

• Overlap: Different data sets will be acquired of different phenomena. These data sets will contain
past years of data points. When the different data sets are combined, which will happen for
simulating the controller, typically only the overlap of these data sets can be used. So, ideally, all
data will have overlapping data points for the same year(s).

• Amount of data: Besides the quality of the data, the amount of available data has a large influ­
ence on the ANN [17]. Better performance can be achieved if more data can be used.

3.2.1. Data Usage Strategy
Energy generation and demand are to be forecasted. As designed by the DCG subgroup, the former
consists of generation by PV panels and multiple VAWTs. The latter describes the energy used by all
tiny houses in the community combined with any shared appliances. Two different data usage stages
are identified: making the models (that make the predictions) and making the predictions (using the
models).

1. The models that make these forecasts will be trained or created with:

∘ past weather data
∘ past data of solar energy generation
∘ past data of wind energy generation
∘ past data of demand

2. When the prediction models are in operation, they will need:

∘ weather forecasts of the upcoming hours, days, or weeks
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∘ measurements of generation and demand, these include:
– energy generated by solar panels
– energy generated by wind turbines
– energy used by the tiny houses
– energy used by the shared appliances

The second stage can be implemented using the internet and work of the DCG and PLC subgroups of
the project. The weather forecasts can be provided by services on the internet. All measurements are
made by the DCG subgroup and are then transmitted to the controller using the PLC network of the
PLC subgroup.

Implementation of the first stage needs a more elaborate discussion. It entirely depends on the
availability of past data. As time passes by, more data will become available. Because the prediction
models are updated at regular intervals, e.g., every week, this will enable the training of increasingly
accurate models. There are four phases in the accumulation of past data.

1. In the first phase, there is no actual past data on energy generation or demand. This is simply
because there is no tiny house community as designed by tunus and the DCG subgroup yet [5].
This means that other data must be gathered and processed in order to approximate the eventual
data. The prediction models based on this data will serve the first tiny house community in the
first period after it becoming operational.

2. Next follows a transition phase. In this phase, the prediction models will be trained using a com­
bination of the data of Phase 1 and new data gathered in the community. The new data can be
given more weight to make the prediction model more tailored to the community.

3. As more data of the actual community is added to the database, and the prediction model is
regularly updated using the database, there may come a time at which the accuracy becomes
better if the data from Phase 1 is neglected. At this moment, the database will consist solely of
data from the tiny house community, making the models even more customized to the residents.

4. When a second tiny house community is built, the same problem as in Phase 1 is encountered:
there is no past data for this specific community. However, this time, the data from the first
community can be called upon besides that of Phase 1. As such, the second community will
have access to a more extensive database in its first period. Later, it will repeat Phase 2 and
Phase 3. This exact procedure is also followed for the third, fourth, and any community that is
built afterward.

The process of estimation in Phase 1 will be done in Section 3.2.2. This data will also be used for
creating the prediction models and simulating the controller in this thesis.

3.2.2. Gathering Data
The first phase of data collection, as described in Section 3.2.1, is detailed here for weather, sun, wind,
and demand data.

For each one, it will first be established what is desired. Then, the actual data sets that were found
are listed. These data sets then need to be extracted from the data files into Python. They must be
put into the same format. Missing or erroneous data must be dealt with. Lastly, they must be edited
to acquire a database that realistically approximates what can be expected of an actual tiny house
community.

Weather
Since weather data will be used for all three prediction models, its overlap with the other data sets
will dictate the amount of available data for training the models. This underlines the need for many
data points. Further, it is desired that the weather data set has many features for every data point ­ to
maximize the performance of the ANN ­ and that these features are predictable to a certain degree ­
as weather predictions will be used in the second stage, i.e., when the prediction model is in operation.
Lastly, the weather data should, ideally, be for the exact location of the tiny house community.

A weather data set was extracted from the Koninklijk Nederlands Meteorologisch Instituut (KNMI).
This data set consists of hourly weather data of Rotterdam of the past 30 years ­ which should satisfy the



3. Forecasting 10

needs. It comprises 22 data features (listed in Appendix B.3) documented every hour at a Rotterdam
weather station [27]. The KNMI also provides accurate weather predictions for these data features that
extend a week into the future, thus enabling the satisfaction of requirement RQ­NF.CNS.2. They are
accessible at [28] using their Application Programming Interface (API).

The weather data was extracted from the csv data file and then put into an array. The function that
performs this is given in Appendix E.1.1 as: retrieveWeatherData().

Sun
According to the DCG subgroup, the tiny house community consists of 1.7𝑚2/𝑝𝑎𝑛𝑒𝑙 ∗ 36𝑝𝑎𝑛𝑒𝑙𝑠 =
61.2𝑚2 of LG Neon R solar panels. The desired data set thus would comprise multiple years of data
on energy generation of 61.2𝑚2 of LG solar panels. Moreover, the solar panels used for this data set
would ideally be configured in the same way and on the same location as the DCG­designed tiny house
community.

The EEMCS faculty building at the Delft University of Technology has solar panels on top of the
building and solar panels installed next to it. The latter is part of an e­bike charging station. EEMCS
faculty members were contacted to get access to this data ­ it is available at [29, 30]. The data starts
in 2016 and goes until the time of writing this report, Summer 2021, with the number of data points per
hour increasing throughout the years. The raw data consists of: a timestamp, the PV voltage, and the
PV current, among other less relevant data.

Only data of 2019 has been considered. It is the most recent, non­leap year. There are an incon­
sistent amount of data points per hour, ranging from none to over 60 for one hour. There are also
multiple data gaps, with the amount of missing data ranging from an hour to several days. Because
of the inconsistencies and missing samples, the data of solar panel generation needs several edits for
it to approximate the PV installation of the tiny house community. Appendix A.1 describes the steps
that were taken to obtain a consistent data set without missing values. The acquired data must still be
scaled: it is for an installation of a few square meters instead of the 61.2𝑚2 of LG solar panels. This
scaling is done using a Scaling Factor (SF). In order to obtain a total yearly generation equal to that
of the tiny house community, this SF comprises the mean generation of the data set and the designed
installation.

𝑃new = 𝑆𝐹 ∗ 𝑃old =
𝑃mean, installation
𝑃mean, data set

∗ 𝑃old (3.1)

The resulting data set should be a good approximation of what can be expected from the tiny house
community. The data was interpreted as power (in𝑊), but the same number can represent the energy
generated by this power in one hour (in𝑊ℎ). The Python code that performs the steps described above
is given in Appendix E.1.2.

Wind
From the DCG subgroup, it is inferred that the tiny house community will consist of 6 VAWTs of the
model Aeolus V 2kW. So the desired data set would consist of several years of data of the energy
(in Wh) generated every hour by six operational Aeolus V wind turbines. As with the solar panels,
ideally, these wind turbines would be configured in the same way and on the exact location as the
DCG­designed tiny house community.

On [31], a data set was found that gives the hourly Capacity Factor (CF) of Horizontal Axis Wind
Turbines (HAWTs) in different regions of the European Union (EU), including Rotterdam, for a period
of 30 years, 1986 to 2015. The CF is the fraction of the nominal power that is produced by a wind
turbine. This makes it a relevant metric that can be used to approximate the generation of 6 Aeolus V
wind turbines.

The CF data is consistent and contains no missing hours. A selection of data was made to ensure
overlap between the weather data and the wind data: the period of 2001 to 2015 was taken. Further,
the data has to be scaled. This scaling is done with Equation (3.1) using the same method as for the
solar data. The result should be a reasonable approximation of the desired data set. The data was
first interpreted as power (in 𝑊) but, from now on, it will be treated as the energy that is generated by
this power in one hour (in 𝑊ℎ). The Python function that performs this is given in Appendix E.1.1 as:
retrieveWindData().



3. Forecasting 11

Demand
The ideal data of demand would stem from a tiny house community as designed by tunus and the DCG
subgroup [5].

For the demand data, there is a more significant gap between what is desired and what is available
at the moment. Usage data of tiny houses is scarce, if not non­existent. Much of the concept of tunus,
and tiny houses in general, is to rethink a household and (among others) its energy demand [5]. This
makes data on regular households relatively unfit for approximating the tiny house community of this
project. It will be used nonetheless because of the aforementioned lack of reliable data on tiny houses.
because this project serves as a PoC rather than a detailed instruction manual, using household data
for the predictions should suffice to demonstrate the correct working of both the forecasting algorithm
and the controller. A data set of 82 households, provided by Liander [32], was found. Liander is a Dutch
utility company connecting millions to the Dutch electricity grid [33]. Only a single year of data on the
82 households, being 2013, is available. This is due to privacy concerns, which regularly complicate
the acquisition of household demand data. The data is on in Wh on a 15 minute basis.

The demand data from Liander consistently has 4 data points per hour representing the amount
of energy used in that quarter of an hour (in 𝑊ℎ). For every hour, these 4 data points have to be
summed. There are also missing values that have to be dealt with: not every hour has a value for all
82 households. Some are missing. These missing values are replaced by the mean of all households
with data at that hour. Then, the data of all households is summed for every hour to get to a higher
aggregation level. Now, the data must still be scaled. In this case, it will be scaled according to the
means of the Liander and tiny house community demand. This ensures that the final data set will have
the same yearly usage as the tiny house community. The SF is calculated by dividing the former by
the latter. All values of the data set are then multiplied by this SF. The Python function that performs
this is given in Appendix E.1.1 as: retrieveDemandData().

3.2.3. Preparing Data to Train the First Model
The data can now be retrieved from the data files. Although it is partly processed ­ missing values
replaced and in the correct format ­ it still needs to be divided into an input and output that the ANN
can operate on. An overview of this division is given in Table 3.1.

The input of the solar model is the weather data. As mentioned, the ideal output of the solar model
would be data on the PV installation of the actual tiny house community. For both training and the
controller, however, data on the PV installation next to the EEMCS building is used as the output of the
model. Notice that for the controller, data of 2019 is used, as opposed to 2013 that is used for wind
and demand. This imperfection is inevitable due to a lack of overlapping data.

For the wind model, the input is the weather data as well. The ideal output would be data on the
VAWT generation in the tiny house community. For training, 15 years of recorded CFs can be used.
For the controller, only 2013 is considered.

To save time during training and testing, the demand model uses only a selection of the weather
data features (as from Appendix B.3): temperature (T), sunshine duration (SQ), rain (R), thunder (O).
This selection was made to identify features that influence household electricity demand. However,
because of the shallowness of this selection, in later stages, more features should be added, and their
influence should be evaluated. Besides this, information on the time was added as a feature to the in­
put data. This includes the month number (1­12), week number (1­7), and hour (1­24). This was done
based on [17], to enable the ANN to better learn about the ­ extremely time­dependent ­ behaviour
of humans. The perfect output would be data on the usage of the tiny houses in the community. For
both training and the controller, data on 82 Dutch households will be used, however. Although it is not
ideal, it is partially countered by the more aggregated ­ and thus more predictable ­ household data (82
houses instead of 12).

The nature of the data and the code both allow for the database to be updated as new data becomes
available, therefore enabling requirement RQ­S.CNS.1.
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Table 3.1: An overview of the inputs and the ideal, training, and controller outputs of the ANNs that will be trained in Section 3.3.

data model

solar wind demand

input weather weather weather and date
ideal output PV installation of VAWTs of Usage by the tiny houses

tiny house community tiny house community
training output PV installation next to CF of HAWTs surrounding 82 households (2013)

EEMCS building (2019) Rotterdam (2001­2015)
controller output PV installation next to CF of HAWTs surrounding 82 households (2013)

EEMCS building (2019) Rotterdam (2013)

3.3. Training
All data is now preprocessed and formatted as such that it can easily be used by the Python ML Li­
braries. First, the procedure for training a model will be treated. Methods of evaluating a model are
then discussed. Using these, some configurations of the ANN are tried, and their result is given. In Ap­
pendix E.1.4, a script is given that will, among other operations, train a prediction model based on the
data that is inputted. Using the most accurate model, a new feature can be considered: the prediction
of the previous hour. The results of adding this new feature are then analyzed.

3.3.1. Procedure
Before using the data for training, it is good practice to split it into a training and test set. Here, this split
­ whether a data point ends up in the training or test set ­ is done randomly to ensure that all months
are represented in both the training and test set. Standard allocation distributions are 70/30 and 80/20,
representing training/test. The former distribution is chosen here because there is sufficient data.

Then, the base model of the ANN is defined. It consists of a certain amount of layers, with a
certain amount of neurons per layer. Both these variables are hyperparameters, parameters that are
used to configure the ANN. The base model will determine the structure of the ANN. The concept of a
base model is visualized in Figure 3.3. As can be seen, the ANN starts with an input layer, where the
features are given as input, and ends with an output layer, out of which come the results. In between
the input and output layers are the so­called hidden layers. When counting the number of layers in a
configuration, only the amount of hidden layers will be reported: a one­layered ANN has one hidden
layer. Different configurations of the base model will be tried for each prediction model ­ sun, wind, and
demand ­ later.

Figure 3.3: A denseANN with 𝑛 layers of which the first and nth layer have 4 neurons. Features from the input layer are fed into
the first hidden layer and propagate to the output layer, where finally a prediction is presented.

With the base model established, all that is still needed to train the ANN using the data is to define
the batch size and amount of epochs. The former is ”a hyperparameter that defines the number of
samples to work through before updating the internal model parameters” [34, Ch. 3]. The latter is ”a
hyperparameter that defines the number of times that the learning algorithm will work through the entire
training dataset” [34, Ch. 4]. Four hyperparameters can now be identified:

• The number of layers
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• The number of neurons (for every layer)

• The batch size

• The number of epochs

In the following sections, the objective will be to find the ideal values for each of these parameters
that maximize the accuracy. If the database is updated, as described in Section 3.2.3, the same pro­
cedure described above and code, described below, can be used to update, i.e., make more accurate,
the ANN. Therefore requirement RQ­S.CNS.2 is satisfied.

Notice that other hyperparameters exist, though they will not be considered here. They could be
tuned later to further improve the performance of the ANN. Nonetheless, some of them must be chosen
in order to make a model. The choices for those relevant for creating the models of this project were
based on [35]. These hyperparameters with corresponding choices are taken to be:

• Kernel Initializer: ’Normal’

• Activation: ’ReLU’

• Loss: ’Mean Squared Error’

• Optimizer: ’adam’

• Top­Level Architecture: ’Dense’

3.3.2. Evaluating
Two methods of evaluating a specific model will be reviewed. They have in common the fundamental
method of training ANNs: For the batch size 𝑏 and the number of epochs 𝑒, the base model is run
through 𝑒 times, with the internal model parameters updated every 𝑏 samples. By updating the internal
model parameters, it is attempted to minimize the loss.

The first method will make a model by training the ANN on the training set. The trained model is
then used to predict all values of the test set. The discrepancy between the expected and predicted
test set is then reported as a result. It is often given as Mean Squared Error (MSE).

A second method of evaluating is cross­validation. It is a more elaborate alternative to the first
method. For 𝑛 split cross­validation, the ANN is trained 𝑛 times. Each iteration, the complete training
data set is divided into a smaller training set and a validation set. The ANN is then trained with the
training set and evaluated on the validation set using the method described for the first method. After
the 𝑛 iterations, all scores are combined into a single score. This final score is comparable to the
result of the first method, though more accurate. The increased accuracy stems from the repetition
and changing training/validation splits. Further, the model can be evaluated on a test set independent
and separate from the training data set. This method is well suited for evaluating the structure (layers
and neurons) of the prediction model. A Python function that performs cross­validation is given in
Appendix E.1.1 as: performCrossValidation(X_train, y_train, n_splits, model). A scheme visualizing
the concept of cross­validation is given in Figure 3.4.

3.3.3. Hyperparameter Tuning
Cross­validation can now be used to find values for the hyperparameters that yield reasonable accu­
racies.

First, a reference configuration will be presented, based either on a precedent or, if few are available,
on intuition. For this reference, different combinations of specific batch sizes and certain amounts of
epochs will be tried. Using those that yield the best result, three different layer configurations will be
considered with more or fewer layers than the reference. For each of these configurations, a different
amount of neurons per layer will be tried. The Python code that was used to do hyperparameter tuning
is given in Appendix E.1.3.

A figure that visualizes this scheme is given in Figure 3.5. Notice that all training done in this scheme
will be performed using cross­validation to minimize the influence of randomness during training.

As can be deduced from the figure, actually finding the best hyperparameters for an ANN config­
uration is an iterative process. In order to fully maximize the capabilities of the ANN, the scheme will
have to be run through many times until a satisfactory result is acquired, or the result is not improving
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Figure 3.4: Visualization of 4­fold cross validation with a training set (grey), dynamic validation set (blue), and test data (white).
In the training phase, different splits into training and validation sets are made. They serve to better evaluate the model. Finally,

the model is evaluated using the final test data set.

Figure 3.5: Possible scheme for finding the best hyperparameters for an ANN configuration. A reference configuration is made
using intuition or from a precedent in a source. From there starts an iterative process of trying different batch sizes and

amounts of epochs, trying layer configurations, and trying different neuron counts for the layers. The process ends with the
parameters for a final model. The arrows indicate the steps of the process, with contained information or conditions.

anymore. However, only one iteration is performed here, as it is not the project’s scope to find the best
possible values.

Moreover, since the data sets used are not ideal for the actual tiny house community, there is
little point in tuning the model to ideal circumstances. Nonetheless, one could use the scheme with
its accompanying code to systematically find the best hyperparameters for a prediction model. That
process will bear fruit when data from an actual implementation of the tiny house community becomes
available.

Sun
From precedents of predicting the generation of a PV installation, it can be inferred that one hidden
layer should suffice to create a well­performing ANN [19, 36, 37, 38]. Jeff Heaton further mentions that,
in general, one hidden layer suffices to the needs of most problems [39]. This also supports starting
with a reference of one hidden layer.

The number of neurons in this one hidden layer can initially be set on the input dimension, a method
supported by [39, 35]. Given that the weather data set contains 22 features (listed in Appendix B.3),
this makes for an initial neuron count of 22.

Using this initial ANN, appropriate values for the batch size and amount of epochs are looked for.
The following options are tried for the batch size: [200, 500, 1000]. Regarding the epochs, the follow­
ing amounts are used for training: [10, 25, 50, 100, 200, 500]. Of these two sets of numbers, all possible
combinations are tried and evaluated using 3­fold cross­validation. Table 3.2 gives the losses of the
18 different combinations that were tried: the lower the loss, the better the prediction approximates the
actual value.

A batch size of 200 with 500 epochs gives the best result. Further possibilities for the number of
epochs are tried, using a batch size of 200: [1000, 2000, 5000].
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Table 3.2: The losses of different combinations of batch sizes and amounts of epochs for solar generation. The loss is given as
an unscaled MSE in𝑊2ℎ2.

epochs batch size

200 500 1000

10 204492 228035 235501
25 106797 203709 229059
50 97573 111524 215740
100 95007 97076 107474
200 95280 96200 95481
500 91735 92287 94310
1000 91943 ­ ­
2000 100853 ­ ­
5000 94815 ­ ­

The loss starts to increase again as the amount of epochs surpasses 500. More batch sizes could
be tried as well, and more simulations can be done to better approximate the ideal amount of epochs.
However, it suffices to use a batch size of 200 with 500 epochs from now on for this project.

Now, the number of neurons can be tuned to increase performance. For a one­layered configuration,
the following neuron counts were tried: [10, 15, 20, 25, 30]. As 20 was found to be the best neuron count
of these options, further neuron counts were tried to better approximate the ideal amount of neurons:
[16, 18, 20, 22, 24]. The result of these simulations is given in Table 3.3.

Table 3.3: The losses for different neuron counts in the first layer of a one­layered ANN configuration for solar generation. The
losses are given as an unscaled MSE in𝑊2ℎ2.

neurons loss [𝑊2ℎ2]
10 94796
15 92197
16 91073
18 92154
20 88385
22 91881
24 91997
25 94459
30 92115

Of these options, 20 remained the best­performing neuron count. Moreover, the model with a loss
of 88385𝑊2ℎ2 should already make for a reasonable prediction model. With the MSE of the unscaled
data at 88385𝑊2ℎ2, the Mean Error becomes √88385𝑊2ℎ2 = 297𝑊ℎ, or 297𝑊ℎ/2383𝑊ℎ = 12.48%
of the maximal value.

Of a two­layered ANN, different amounts of neurons in the first layer, [15, 20, 25], and second layer,
[10, 15, 20, 25, 30], were tried. Once again, all combinations were trained with the result of these simu­
lations given in Table 3.4.

Finally, a three­layered ANN is considered. Contrary to what one may think, a well­performing
neuron count for a one­layered configuration does not guarantee that the first layer best has the same
amount of neurons in a three­layered configuration. Nonetheless, the best neuron count for a one­
layered configuration (20) is chosen for the first layer here due to computational limits. Different neuron
counts were tried for the second and third layers: [5, 10, 15] and [5, 10, 15, 20, 25, 30] respectively. The
results of which are given in Table 3.5.
Out of all these 42 possibilities with different layer and neuron counts, The best performing ANN was
the three­layered configuration with 20 neurons in the first layer, 5 in the second, and 30 in the third.

If the prediction model were to be implemented, for example, these steps would have only been the
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Table 3.4: The losses for different neuron counts in the first and second layer of a two­layered ANN configuration for solar
generation. The losses are given as an unscaled MSE in𝑊2ℎ2.

Neurons Neurons layer 1

layer 2 15 20 25

10 90102 89541 96710
15 93303 90031 91321
20 97351 92529 90138
25 93342 92191 89852
30 89704 91279 93313

Table 3.5: The losses for different neuron counts in the second and third layer of a three­layered ANN configuration for solar
generation. The first layer is taken to have 20 neurons. The losses are given as an unscaled MSE in𝑊2ℎ2.

Neurons Neurons layer 2

layer 3 15 20 25

5 243615 93430 145280
10 90619 89113 90190
15 89622 94431 92954
20 91579 91289 91118
25 90350 94020 92372
30 87350 91623 89211

start of a long iterative process to find the best possible hyperparameters for the tiny house community.
For the best performing configuration so far, the batch size and number of epochs can be optimized
again. Using those, different configurations with more, or less, layers can be tried once more. After­
ward, a new iteration can follow until the result ceases to improve or is satisfactory.

The mean error as a fraction of the maximum value is calculated by taking the square root of the
MSE and dividing it by the maximum value, in this case, 2383 𝑊ℎ. The mean error is then found to
be √87350𝑊2ℎ2/2383𝑊ℎ = 12.40% of the maximum value, which suffices for establishing a PoC and
satisfies requirement RQ­NF.CNS.1. Hence, the following prediction model for wind can be considered
now.

Wind
The ANN for wind generation will be initialized as that of the solar generation: one hidden layer with 22
neurons. Such an initial configuration is supported by [37, 39].

Different combinations of batch sizes [200, 500, 1000] and amount of epochs [10, 25, 50, 100, 200, 500]
are used for training. The results that this yields are given in Table B.1 in Appendix B.1. The best combi­
nation is found to be that with a batch size of 200 and 200 epochs. This combination will be used below.

In tuning the number of neurons, three different layer constructions are considered: one­, two­, and
three­layered. For each, different combinations of neurons are tried, with a total of 34 different struc­
tures.

For the one­layered construction, the following neuron counts were used: [5, 10, 15, 20, 25, 30, 35].
The losses of the ANNs with these neuron counts are given in Table B.2 in Appendix B.1. This yielded
a best performance of √0.020836 = 0.1443/1 = 14.43% of the maximum value, for 10 neurons.

The results of the two­layered construction are given in Table B.3 in Appendix B.1. Multiple combi­
nations of neuron counts in both layers were used for training. In the first layer, [5, 10, 15] were used
as amounts of neurons. In the second layer, the applied neuron counts were: [5, 10, 15, 20].

Finally, a three­layered ANN was considered. Once again, with different combinations of neurons
in the second layer [5, 10, 15] and in the third layer [10, 15, 20, 25, 30]. For the first layer, the neuron
count was 10: the best performing neuron count for a one­layered configuration. The results of these
simulations are given in Table B.4 in Appendix B.1.
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Out of all configurations with different layer and neuron counts, the best performing ANN was found to
be the three­layered ANN with ten neurons in the first layer, 15 in the second, and 25 in the third.

The mean error is √0.1334/1 = 13.34% of the maximum value, which satisfies RQ­NF.CNS.1.

Demand
The initial model of the demand prediction model is based on [17]. Del Real [17] uses this ANN to
predict the demand of the French grid. Their model’s structure is given in Table 3.6.

Table 3.6: The ANN layer configuration used by [17] to predict the demand of the French grid.

Layer Neurons Activation function

1 256 ReLU
2 128 ReLU
3 64 ReLU
4 32 ReLU
5 16 ReLU

With the ANN of Table 3.6, different batch sizes [200, 500, 1000] and amounts of epochs [10, 25, 50, 100,
200, 500, 1000, 2000] were used for training. As can be seen from Table B.5 in Appendix B.2, the best
performing combination uses a batch size of 500 and 1000 epochs.

For this five­layered configuration, 32 combinations of neuron counts were tried. For each layer,
two options were given: [150, 300] for Layer 1, [100, 200] for Layer 2, [50, 100] for Layer 3, [25, 50] for
Layer 4, and [10, 20] for Layer 5.

The result of this simulation is given in Appendix B.2. The best performing option is that with 150,
200, 50, 25, and 20 neurons for the first, second, third, fourth, and fifth layers.

The mean error of this configuration is √266685𝑊2ℎ2/6222𝑊ℎ = 0.082998 = 8.30% of the maxi­
mum value. No other layer structures are tried because of the computational difficulty of evaluating
five­layered structures and the satisfactory result that has already been achieved ­ a mean error or
inaccuracy of 8.3% corresponds to an accuracy of 91.7%, far exceeding the required 80% of RQ­
NF.CNS.1.

3.3.4. Adding the Previous Hour
In the previous section, already good results were obtained. Further features could be added to improve
the performance of the models further. However, in this case, the amount of available data limits the
number of features that can be added. Nonetheless, one feature can be added without extra data,
which might improve performance significantly: the (prediction of) the previous hour.

In many cases, the generation or demand of a particular hour is correlated to that of the hour pre­
ceding it. This makes it interesting to use the generation or demand of the previous hour as a feature
for the next one. Two options can be identified: using the actual value of the previous hour (method
1) or using the prediction after hour preceding that to be predicted (method 2). Both options will be
evaluated in this section.

Using the previous hour’s generation or demands (method 1) is more straightforward to simulate than
using the predictions. However, it is more challenging to implement method 1 in an actual tiny house
community. This is due to the simple fact that when training the algorithm, the actual usage or genera­
tion is already known. When implementing in a tiny house village, on the other hand, data of the actual
previous hour can only be used to predict the hour immediately following the current time.

Assuming that method 2 becomes more advantageous when the prediction of the previous hour is
better, it can be beneficial to combine both methods. The hour succeeding the current time can use
the actual value of the current time, therefore becoming more accurate. This, in turn, makes it a more
helpful feature for the hour succeeding it, and so on. This spillover effect will be especially interesting
for short time horizons.
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The described spillover effect could be simulated. However, this would need thorough hyperparameter
tuning for the models used to notice subtle differences that might surface.

Because of the limited amount of time and computational equipment available, only the simpler
methods 1 and 2 are evaluated. For this evaluation, the best performing ANN structures of the previous
section will be used.

The Python code that was used to evaluate the two methods is given in Appendix E.1.5. Notice that
the code in Appendix E.1.1 is imported and is thus necessary for running the script.

Method 1
A model was trained using the actual past hour as a feature with 70% of the available data. This model
was then evaluated on a test set containing 30% of the available data. The acquired mean error as a
fraction of the maximum was:

• Solar: 9.80% as opposed to 12.40%

• Wind: 4.20% as opposed to 13.34%

• Demand: 6.40% as opposed to 8.30%

All three models significantly improve. However, the prediction for wind generation improves the most.
Its inaccuracy more than halves. This discrepancy might be due to the difference in available data:
there is 15 times more data for wind than for the two other models.

Nonetheless, these improvements make method 1 very suitable for predicting the hour immediately
after the current time.

Method 2
As for method 1, a model was trained, this time, however, using the predicted past hour as a feature.
For the training, 70% of the available data was used. The remaining 30% was used for the evaluation.
The acquired mean error as a fraction of the maximum was:

• Solar: 9.86% as opposed to 12.40%

• Wind: 12.53% as opposed to 13.34%

• Demand: 7.41% as opposed to 8.30%

Although the improvement is not as significant as for method 1, method 2 yields improvements for all
three models compared to the models that do not use the predicted previous hour as a feature. This,
as well, supports the use of previous hours when making predictions for the next one.

3.4. Results
For each prediction model, an ANN configuration has been established that yields good results. How­
ever, in previous sections, cross­validation was used, meaning that no final model is required because
multiple models are created to evaluate a configuration.

A final model is now created with a training set. For this model, forecasts by an earlier model (cre­
ated using the Python code in Appendix E.1.4) are used as a feature. A final evaluation of the model
on a test set, comprising 30% of the data, is given in Table 3.7. The model’s prediction of a separate
week of data ­ not used for training or testing ­ is shown in Figure 3.6.

After evaluation, the acquired model is used to make predictions of the whole year. This is necessary
for simulations of the controller. Notice, however, that the results of this are not entirely representative
since the training set is used for both training and prediction.

The predicted generation and demand of a whole year are given in Table 3.8. They are compared
with the actual yearly generation and demand, as designed by the DCG.
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Table 3.7: The final results of the three prediction models. For each model, the best performing batch size, amount of epochs,
and structure are given. The corresponding mean error, as a fraction of the maximum value, is presented as well, for evaluation.

Solar Wind Demand

Batch size 200 200 500
Epochs 500 200 1000
Layer 1 20 10 150
Layer 2 5 15 200
Layer 3 30 25 50
Layer 4 ­ ­ 25
Layer 5 ­ ­ 20

Mean Error 10.11% 12.56% 6.95%

Table 3.8: The predicted and actual total of a whole year, for all three models. The deviation between the predicted and actual
total is given as well.

Model Predicted [𝑀𝑊ℎ] Actual [𝑀𝑊ℎ] Deviation

Solar 11.81 12.27 3.9%
Wind 10.56 10.86 2.8%

Demand 15.13 14.97 1.1%

Figure 3.6: The solar and wind generation and energy demand of an 8 day period in May. The actual value (black) and
prediction (blue) are both given. Notice that for solar generation, the model correctly anticipates on the generation having a dip

every day at around noon (the middle of the day).



4
Controller

To operate the microgrid in the tiny house community, a controller is required. This is implemented as
an algorithm governing the system’s behavior, trying to drive it to its desired state, guided by its inputs.
To obtain this desired state, a controller needs to be able to correct the behavior. Different types of con­
trollers perform these tasks in different ways. All these different types of controllers have their benefits
and drawbacks, and the controller choice is highly dependent on application and circumstances.

In this chapter, different controller options are presented as well as the controller choice. This
choice should meet RQ­M.CNS.5, which states that the forecasts should be used in the control strategy.
Further, the controller should reduce the time spent connected to the grid asmentioned in RQ­M.CNS.6.
Lastly, it should operate according to a controller scheme such that the battery stays between its critical
threshold, as in RQ­M.CNS.7. This controller is then implemented using the data of the tiny house
community. After implementation, the controller will be tested using a simulation, and the results will
be presented to check whether the requirements are met.

4.1. Controller
To make use of the ANNs and meet RQ­M.CNS.5, the controller should use the predictions in its
decision­making process. Several well­established and widely used controllers are not able to uti­
lize predictions in their decision­making process. For example, the Proportional Integral Derivative
controller, better known as the PID controller, known for its simplicity and many use cases, lacks this
ability. Controllers that do have this ability are called predictive controllers. Only a handful of these
controllers have been successfully employed in industrial control applications [40]. Of those, two pre­
dictive controllers are most prevalent, namely Model Predictive Control (MPC) and the Linear Quadratic
Regulator (LQR).

4.2. Predictive Controllers
Before discussing the advantages and disadvantages of both MPC and LQR, it is essential to establish
the framework of the control strategy they both employ. This control strategy is called optimal control.
As this name implies, both MPC and LQR determine the control strategy through optimization. Although
they use a similar approach, they differ in one key element. To explain this and other differences, it is
important to explain what optimal control is.

4.2.1. Optimal Control
Optimal control theory is a branch of mathematical optimization that handles controllers of dynamic
systems over a period of time. In optimal control, the controller action is determined through minimizing
or maximizing the objective or cost function [41]. The objective is a mathematical equation representing
the phenomenon that needs to be optimized. Examples are the profit of a company, the hours spent
on a project, or the cruising speed of a car.

Often when optimizing such an objective, the system is subject to constraints. The advantage of
optimal control is that it can minimize the objective while accounting for these constraints. Examples

20
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of constraints related to the previous examples are the maximum store capacity, the maximum number
of hours that some team members can spend on the project, and the maximum acceleration of the car.

In optimal control, the cost function is minimized over a time horizon. This time horizon has a finite
length 𝑁 and a finite time step resolution 𝑘. The difference between MPC and LQR lies in the way they
define this time horizon.

A further benefit of optimal control is that it translates well from verbal constraints to mathematical
constraints to code implementation. An example of such a mathematical formulation is shown in Equa­
tion (4.1), where cost function 𝐽 is minimized over time horizon 𝑁 with time steps 𝑘, while subject to the
constraint that 𝑓(𝑘) ≥ 0.

min𝐽 𝐽 = ∑𝑁𝑘=1 𝑓(𝑘)
s.t. 𝑓(𝑘) ≥ 0

(4.1)

4.2.2. Controller Selection
As mentioned above, MPC and LQR differ in how they define the time horizon. LQR uses one­time
optimization for the time horizon. This optimization is done offline and, thus, does not require recal­
culation as all has been done before implementation. The optimal controller actions are determined
in advance and cannot respond to dynamic behavior. MPC, however, optimizes across a smaller and
receding time horizon [42]. This means that it requires the optimization to be recalculated every time
step, which is computationally heavier than LQR. Although calculated for the whole time horizon, only
the control strategy for the next time step is implemented, resulting in a dynamic controller as shown in
Figure 4.1. The figure shows the time horizon during three time steps, where it recalculates the optimal
control strategy and only implements the first control strategy. Because MPC is run over shorter time
horizons, this can sometimes lead to sub­optimal solutions, but this is compensated by the frequency
of recalculations.

Figure 4.1: Functionality of an MPC controller showing a receding time horizon for three time steps, where it recalculates the
optimal control strategy and only implements the first control strategy.

Furthermore, MPC can handle non­linear models and hard constraints, something LQR lacks. A
hard constraint sets a condition for a variable that is required to be satisfied. The non­linearity of the
ANN and hard constraints on the control strategy and battery size render the choice between MPC and
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LQR obvious, namely MPC. Furthermore, as the predictions will always be off, recalculating the ap­
propriate response is preferable over one­time optimization. Lastly, as long as the time steps between
recalculations are larger than the calculation time, there is no drawback in the MPC being computa­
tionally more expensive.

4.3. Model Predictive Control
As mentioned above, MPC is an iterative process over a receding time horizon. When looking at an
iterative process, it can prove helpful to first look at one cycle of the process. A cycle is defined here, as
all actions performed during one iteration. A schematic of one cycle of the MPC is shown in Figure 4.2.
The MPC uses the the measurements and predictions as inputs to find an optimal solution to minimize
the objective. The objective function will be formulated so that it reduces the microgrid’s dependency on
the main grid. Minimizing this objective function leads to the optimal control strategy at the output. This
control strategy is presented as a control level that influences the usage of the tiny house community
by posing restrictions on certain facilities.

Figure 4.2: Overview of the MPC showing the inputs, being the current time, predictions, and measurements and the output,
being the control level.

4.3.1. Time Step
Before defining the details of the inputs and outputs of the system, it is vital to establish the time step
resolution for the inputs and output values to be formatted accordingly. The time step used for the
optimization was chosen to be one hour. This is primarily because of the resolution of the weather data
available at the input of the prediction model. The predictions that are available at the output of this
prediction model also have this one­hour resolution. This limits the time step of the optimizer model.
Further, the time horizon was chosen to be seven days to meet RQ­NF.CNS.2.

4.3.2. Inputs
The optimization model of the MPC has three inputs. These are the measurement of the SoC of the
battery, the predictions of the generation and demand, and the current time. These values are required
for the optimization of every time step.

Measurements
The measurement of the SoC is communicated to the controller via the PLC every time step and pre­
sented at the input of the optimizer. The measurement is used to set the initial value for the battery at
every time step. This will get rid of any errors remaining from calculations in the previous time step.

Predictions
The prediction model uses the weather data for the coming week to make predictions on generation
and demand. The predictions are presented in𝑊ℎ to the optimizer. To keep the optimization as simple
as possible, 𝑊ℎ is converted to SoC percentages. The battery chosen by the DCG group has a total
capacity of 72200 𝑊ℎ, corresponding to 100% SoC. Thus 1% SoC is 72200𝑊ℎ/100% = 722𝑊ℎ/%.
The actual input to the optimization model is the change in the SoC of the battery due to the predicted
generation and demand. This is calculated for every time 𝑡 in the horizon as shown in Equation (4.2).

Δ𝑆𝑜𝐶[𝑡] = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛[𝑡] − 𝐷𝑒𝑚𝑎𝑛𝑑[𝑡]
722𝑊ℎ/% (4.2)

Current Time
The current time is presented to the optimizer every hour. This is used to initiate the set for the opti­
mization model. Besides the functionality in initiating the model, it is also used to estimate the influence
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the control level at the output has. For example, if the output control level dictates that the street lights
can only operate at 50% to save power, then this restriction can only save power when the lights would
generally have been on. This means that this control level can only save power during the night. This
way, the actual savings are highly time­dependent.

4.3.3. Output
The output of the MPC is the control level. The control level can place restrictions on certain appliances
to limit power use if needed. The control level is an integer that ranges from 0 to 4. Here, level zero
is the base level without any restrictions, and level four has maximum restrictions. Every level above
zero places restrictions on the appliances of the previous level and one extra. Because the optimizer
cannot predict when and how often these devices are used and how much power this saves, it uses an
estimation. The four restrictable devices are the boiler, streetlights, washing machine, and induction
cooker. All of the devices have two operational states. They either are in regular operation or restricted
operation. The power savings are calculated using the differences of these states on average per hour.
In Appendix A.2, the average hourly energy use per appliance is calculated. The power consumption
and usage per day of all devices are obtained from the DCG subgroup. The resulting average hourly
energy usages are 253𝑊ℎ, 30𝑊ℎ, 18.9𝑊ℎ, and 140.6𝑊ℎ for the boiler, streetlights, washing machine
and, induction cooker, respectively.

For some of the devices, this average might not always be realistic and for other devices, assump­
tions are made to simplify calculations. Actual savings vary drastically per hour, per day, per person,
and per season. Because the MPC recalculates the optimal solution every hour based on the current
measurements, a rough estimation on the average suffices. Furthermore, because of the type of op­
timizer utilized, the control levels will be linearly approximated, and thus accurate calculations might
lose their accuracy during this process.

Control Levels
Some restrictions are more intrusive on the behavior of the residents. How intrusive the restrictions
are will determine the order in which they are implemented at the control level. This is to minimize
inconvenience for the residents. To determine the order, a survey was conducted amongst 31 people.
The survey was sent to a group of green­minded people with ages ranging from 15 to 60. The full survey
with responses is shown in Appendix C. The results show that the participants rated the induction cooker
as the most intrusive restriction. All other three restrictions were deemed almost equally intrusive.
Therefore it is beneficial to arrange them from most effective to least effective to reduce the total time
restrictions are required. The order as follows from the survey and the previously mentioned argument
is:

1. Boiler (B)

2. Street Lights (SL)

3. Washing Machine (WM)

4. Induction Cooker (IC)

Using this order, the control levels can be constructed as shown in Table 4.1. The estimated energy
saving per hour for the control levels is calculated by summing the estimated savings of the restricted
appliances in that control level. The result is shown in the second to last column. The last column
contains the estimated saving on the SoC.

As will be mentioned in Section 4.4.1, the control level is required to be linearized, as a linear solver
will be used. The continuous linearization is shown in Figure 4.3. The linearization function can be
written as 𝑦𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = 116.49 ∗ 𝑥𝐶𝐿 where 𝑦𝑠𝑎𝑣𝑖𝑛𝑔𝑠 is the estimated savings in 𝑊ℎ and 𝑥𝐶𝐿 the control
level. The linearization was chosen to have the lowest MSE while intersecting zero. The intersection
in zero is required as the controller would otherwise assume it affects the system when no controller
action is taken.
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Table 4.1: The restrictions on the boiler (B), street lights (SL), washing machine (WM) and induction cooker (IC) for every
control level with their respective estimated energy savings in𝑊ℎ and SoC percentage per hour.

Control level Restricted Estimated energy Estimated savings

B SL WM IC savings per hour [Wh] on SoC per hour [%]

0 No No No No 0 0
1 Yes No No No 253 0.350
2 Yes Yes No No 283 0.367
3 Yes Yes Yes No 301.9 0.391
4 Yes Yes Yes Yes 442.5 0.573

Figure 4.3: The estimated savings in𝑊ℎ per control level (blue dots) and the linearization of the control level (blue line).

4.4. Optimization Model
After clearly defining the inputs and the output, the optimization model can be constructed. In the
following sections, the optimizer selection, the mathematical structure of the model, and the relevant
code will be discussed. First, the optimizer selection is discussed, followed by elaboration on sets,
parameters and variables, the objective function, and the constraints.

4.4.1. Optimizer Selection
To create the optimization model, the Pyomo optimization framework is used [43, 44]. Pyomo is a
collection of Python packages for formulating optimization problems. Pyomo itself is not a solver but is
compatible with many respected Python solvers. Pyomo also has a handful of solvers that it is optimized
for. From these solvers, the GNU Linear Programming Kit (GLPK) was chosen [45]. GLPK is a linear
optimizer that is specialized in large­scale linear programming. Furthermore, it allows for discretized
optimization, which some non­linear counterparts lack. The model itself is also easily linearized, which
makes it run faster. Lastly, both Pyomo and GLPK are free to use for commercial purposes, making
them suitable for implementation in the tiny house community.

4.4.2. Pyomo
APyomomodel is defined using sets, variables, parameters, an objective, and constraints. The order of
these is critical, as there exist dependencies between the five concepts. The parameters and variables
depend on the set. Further, both the objective and the constraints depend on the set, parameters,
and variables. These dependencies also determine the order in which they are treated in the following
sections. The code for the initialization of the model is shown in Appendix E.2.1 and will be discussed
in more detail in the following sections.

4.4.3. Set, Parameters, and Variables
First, the set is defined as both the parameters and variables depend on it. After the set is defined,
the parameters and variables are defined. If all three are defined, this concludes the input, output, and
internal variables.
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Set
The set defines the index of the parameters and variables. This means that the parameters and vari­
ables indexed in the set can obtain a different value at every index. For the case of this MPC, the set
is defined in time or more specifically in hours as this is the time step of the MPC. It ranges the whole
time horizon, which is one week. This results in a set containing integers representing hours ranging
from 0, the current hour, to 24ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦 ∗ 7𝑑𝑎𝑦𝑠 = 168ℎ𝑜𝑢𝑟𝑠, precisely one week later.

Parameters
Parameters are values that are immutable during optimization. They are the input for the optimizer
and can be changed every time the optimizer recalculates. Two types of parameters exist. These are
indexed parameters that change over time and constant parameters, that remain constant over time.
The names used for the parameters are the same as used in the code in Appendix E.2.1. The indexed
parameters are:

• SoCDiff: The SoCDiff represents the SoC of the battery due to the predicted difference between
generation and demand at every hour. This is the output of the prediction model that uses weather
forecast data as an input.

• setPoint: The set point in this case is the reference SoC. The controller will try to get the real
SoC as close as possible to this reference SoC. The set point is kept constant for this project
but could be altered during different seasons. For example, during the winter, when there is less
solar power generation, the set point might be set higher such that the controller takes controller
actions sooner.

• weight: The weight is the cost attached to the difference between the predicted SoC and the set
point. It influences the minimization of the cost function in the objective. As weather forecasts
for hours further in the week are less accurate, a lower weight can be given to the deviation far
ahead.

• dCost: The dCost is the cost attached to changing the control level.

• cCost: The cCost is the cost attached to the control level itself. A higher control level is more
intrusive, and thus has a higher cost.

The non­indexed parameters are:

• SoCIni: The SoCIni represents the measured SoC of the battery at hour zero.

• controlLevelIni: The controlLevelIni represents the currently implemented control level.

• dMax: dMax is the maximum allowed change in the control level per hour. This prevents the
controller from jumping from the lowest to the highest restriction­level in one hour.

Variables
Variables are values that are mutable during optimization. They are mutable according to the con­
straints. Variables do not have to be provided outside of the initialization of the optimizer. They function
purely within the optimizer itself. Variables have one more important property, namely their domain that
can bound them. The names used for the variables are the same as used in the code in Appendix E.2.1.
The first two variables are:

• controlLevel: The control level is used as the output of the optimizer. It is an integer ranging from
0 to 4. This control level then results in restricted appliances as mentioned in Table 4.1.

• SoC: The SoC represents the measured SoC at 𝑡 = 0 and the calculated SoC due to the predic­
tions on generation and demand for 𝑡 > 0.

Two more variables are required to represent the deviation of the SoC from the set point and the de­
viation from zero of the control level. The former is represented in the code by the variables deltaSet­
PointPos and deltaSetPointNeg and the latter by controlLevelPos and controlLevelNeg. The reason
for utilizing a total of four variables instead of two is discussed in Section 4.4.5
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4.4.4. Objective Function
After defining the set and all the parameters and variables, the objective function can be defined. For
the MPC, this is done using a cost function, 𝐽. In an objective function, a cost or weight is assigned
to undesirable behavior. The objective is to minimize the total cost. The objective function, or cost
function, of the MPC consists of three behaviors that have a cost associated with them, one of which is
the main objective. Within MPC, two options for formulating the main objective are often considered.
The formulation can be done using a reference trajectory or a set point. A reference trajectory is the
ideal trajectory the controller tries to follow. This is used in cruise controllers, as a smooth transition
from one speed to the next is required. The trajectory shows the ideal path towards a desired state.
A set point is the ideal state of the system. This is used when the path towards the end goal is not
required to follow a trajectory. As the trajectory of the SoC itself is not relevant, the objective function
was chosen to be formulated using a set point, rather than a reference trajectory.

Deviation from Set Point Cost
The first ­ and main ­ part of the cost function assigns a cost, 𝑤Δ𝑠𝑝[𝑡], to the difference between the SoC,
𝑥𝑆𝑜𝐶[𝑡], and the set point, 𝑥𝑠𝑝[𝑡], at every time, 𝑡, in the horizon, 𝑁. The set point is initialized as 60%
SoC. Intuitively, the set point would be at the middle of the range of an SoC: 50%. Here, however, the
SoC is only used for a range of 10%­100%. The middle then becomes 55%. Because overproducing
is preferred over underproducing, this is rounded to 60%. In Section 4.6.2, the set point is tuned to
obtain the best results. This is the part of the cost function that will reduce the actual grid dependency.
The goal is to minimize the deviation from the set point over the whole time horizon. This is done by
summing the deviation for every time over the horizon. Because the cost function is minimized, the
difference needs to be squared as the deviation should be non­negative. Squaring a function, however,
is not linear. Thus another approach is required. Using an absolute function is also not linear, but within
optimization modeling, methods exist for handling these absolute functions. This will be discussed in
Section 4.4.5. The first cost function, 𝐽Δ𝑠𝑝, can be mathematically represented as in Equation (4.3).

𝐽Δ𝑠𝑝 =
𝑁

∑
𝑡=0
𝑤Δ𝑠𝑝[𝑡] ∗ 𝑎𝑏𝑠(𝑥𝑠𝑝[𝑡] − 𝑥𝑆𝑜𝐶[𝑡]) (4.3)

Change in Control Level Cost
Changing the control level and thus changing the restrictions every hour is undesirable as the restric­
tions can feel random to the residents. Minimizing this discomfort is important for creating a livable
community. The cost, 𝑤𝐷𝐶𝑜𝑠𝑡[𝑡], is assigned to the change in control level, 𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1], at every
time over the horizon. The change in control level is always zero for 𝑡 = 0. This way, the summation can
be performed over the whole time horizon. The second cost function, 𝐽𝐷𝐶𝑜𝑠𝑡, is shown in Equation (4.4).

𝐽𝐷𝐶𝑜𝑠𝑡 =
𝑁

∑
𝑡=0
𝑤𝐷𝐶𝑜𝑠𝑡[𝑡] ∗ 𝑎𝑏𝑠(𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1]) (4.4)

Control Level Cost
The last cost function assigns a cost to the control level itself. A higher control level is less desirable as
it places restrictions on the residents of the community. The cost, 𝑤𝐶𝐶𝑜𝑠𝑡[𝑡], is assigned to the control
level, 𝑥𝐶𝐿[𝑡]. Because the control level is always positive, it does not require an absolute function. If,
however, a negative control level would be added, the absolute value could be added in the same way
as for the other cost functions. Just as for the other cost functions, for the last cost function, 𝐽𝐶𝐶𝑜𝑠𝑡, the
summation is performed over the whole time horizon. The last cost function is shown in Equation (4.5)

𝐽𝐶𝐶𝑜𝑠𝑡 =
𝑁

∑
𝑡=0
𝑤𝐶𝐶𝑜𝑠𝑡[𝑡] ∗ 𝑥𝐶𝐿[𝑡] (4.5)

Cost Function
By summing the cost functions mentioned in the previous section 𝐽Δ𝑠𝑝, 𝐽𝐷𝐶𝑜𝑠𝑡, and 𝐽𝐶𝐶𝑜𝑠𝑡, the total cost
function, 𝐽, can be calculated. The total cost function will be minimized by the model. Minimization is
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then called the sense of the objective function. The total cost function, as it is obtained from summing
Equation (4.3), Equation (4.4), and Equation (4.5), is shown in Equation (4.6).

𝐽 =𝐽Δ𝑠𝑝 + 𝐽𝐷𝐶𝑜𝑠𝑡 + 𝐽𝐶𝐶𝑜𝑠𝑡

=
𝑁

∑
𝑡=0
{𝑤Δ𝑠𝑝[𝑡] ∗ 𝑎𝑏𝑠(𝑥𝑠𝑝[𝑡] − 𝑥𝑆𝑜𝐶[𝑡])

+ 𝑤𝐷𝐶𝑜𝑠𝑡[𝑡] ∗ 𝑎𝑏𝑠(𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1])
+ 𝑤𝐶𝐶𝑜𝑠𝑡[𝑡] ∗ 𝑥𝐶𝐿[𝑡]}

(4.6)

4.4.5. Constraints
Constraints in Pyomo perform the function of both constraints ­ assigning an upper and/or lower bound
­ and equations ­ assigning equalities. Although one could argue that an equation can be considered
a constraint, within mathematical modelling, they will be treated separately. As mentioned before,
constraints can also be used to handle the non­linear absolute function in linear programming. The
latter is discussed first, after which the equations and constraints will be treated.

Handling the Absolute function
To show the way an absolute function can be used within linear programming, an example is used [46].
Consider the following:

min
𝐽

𝐽 =∑
𝑖∈𝐼
𝑐𝑖|𝑥𝑖| 𝑐𝑖 > 0 (4.7)

To avoid using the absolute function |𝑥𝑖|, 𝑥𝑖 can be replaced by two other values. Instead of using |𝑥𝑖|
in the cost function, it gets replaced as follows:

|𝑥𝑖| = 𝑥+𝑖 + 𝑥−𝑖
𝑥𝑖 = 𝑥+𝑖 − 𝑥−𝑖
𝑥+𝑖 , 𝑥−𝑖 ≥ 0

(4.8)

As long as either 𝑥+𝑖 or 𝑥−𝑖 is zero for all values of 𝑖, these statements hold and 𝑥𝑖 = 𝑥+𝑖 for 𝑥𝑖 ≥ 0
and 𝑥𝑖 = −𝑥−𝑖 for 𝑥𝑖 < 0. Now assume neither is zero and thus both are a positive value. Let 𝛿 =
𝑚𝑖𝑛{𝑥+𝑖 , 𝑥−𝑖 }. Subtracting 𝛿 > 0 from both 𝑥+𝑖 or 𝑥−𝑖 leaves the value of 𝑥𝑖 unchanged but reduces the
value of |𝑥𝑖|. This contradicts the optimal solution as the cost function could be further minimized by a
factor of 2𝛿𝑐𝑖. The absolute function can now be altered in the cost function in the same way as in the
example. This gives Equation (4.9).

𝑎𝑏𝑠(𝑥𝑠𝑝[𝑡] − 𝑥𝑆𝑜𝐶[𝑡]) = 𝑥+Δ𝑠𝑝[𝑡] + 𝑥−Δ𝑠𝑝[𝑡], 𝑥+Δ𝑠𝑝[𝑡], 𝑥−Δ𝑠𝑝[𝑡] ≥ 0
𝑎𝑏𝑠(𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1]) = 𝑥+𝐶𝐿[𝑡] + 𝑥−𝐶𝐿[𝑡], 𝑥+𝐶𝐿[𝑡], 𝑥−𝐶𝐿[𝑡] ≥ 0

(4.9)

Equations
The optimizer is governed by onemain equation that defines the SoC of the battery and two initialization
equations that initialize the current control level and SoC. In Equation (4.10) the initialization of the
control level at 𝑡 = 0 is done by setting it equal to the controlLevelInit parameter. The SoC is initialized
in similar to the control level, which is shown in Equation (4.11).

𝑥𝐶𝐿[0] = 𝑥𝐶𝐿𝑖𝑛𝑖𝑡 (4.10)

𝑥𝑆𝑜𝐶[0] = 𝑥𝑆𝑜𝐶𝑖𝑛𝑖𝑡 (4.11)
Lastly, the equation that describes the SoC over time remains. The SoC, 𝑥𝑆𝑜𝐶, at time 𝑡 is calculated
by summing the SoC at time 𝑡−1, the SoC due to the predicted generation and demand, 𝑥Δ𝑆𝑜𝐶, at time
𝑡 − 1, and the estimated effect of the controller at that control level, 𝑥𝐶𝐿, at time 𝑡 − 1. This equation
holds for 𝑡 ≥ 1 ∨ 𝑡 ≤ 𝑁 with 𝑁 being the horizon length, as shown in Equation (4.12). Because of the
linearization of the control level and the conversion from𝑊ℎ to SoC%, 𝑥𝐶𝐿 is multiplied with 116.49 and
divided by 722, which results in a multiplication by 116.49/722 = 0.1613.

𝑥𝑆𝑜𝐶[𝑡] = 𝑥𝑆𝑜𝐶[𝑡 − 1] + 𝑥Δ𝑆𝑜𝐶[𝑡 − 1] + 0.1613 ∗ 𝑥𝐶𝐿[𝑡 − 1] for 𝑡 ≥ 1 ∨ 𝑡 ≤ 𝑁 (4.12)
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Constraints
To limit the change in control level, a constraint needs to be formulated. It constrains the control level
to change more than Dmax every hour. The constraint is split in two, where one constrains the control
level from going down more than Dmax and the other constrains the control level from going up more
than Dmax. The constraints are shown in Equation (4.13) where 𝑥𝐶𝐿 is the control level, and 𝐷𝑚𝑎𝑥 is
the maximum allowed change in the control level.

𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1] ≤ 𝐷𝑚𝑎𝑥
𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1] ≥ −𝐷𝑚𝑎𝑥

(4.13)

4.4.6. Finishing the Optimizer
The set, parameters, variables, the objective, and the constraints are all defined. Now that everything
is defined, a mathematical notation for the optimization problem can be created by adding everything
together. The complete optimization problem is shown in Equation (4.14).

min
𝐽

𝐽 =
𝑁

∑
𝑡=0
{𝑤Δ𝑠𝑝[𝑡]𝑥+Δ𝑠𝑝[𝑡] + 𝑥−Δ𝑠𝑝[𝑡]

+ 𝑤𝐷𝐶𝑜𝑠𝑡[𝑡] ∗ 𝑥+𝐶𝐿[𝑡] + 𝑥−𝐶𝐿[𝑡]
+ 𝑤𝐶𝐶𝑜𝑠𝑡[𝑡] ∗ 𝑥𝐶𝐿[𝑡]}

s.t. 𝑥𝑠𝑝[𝑡] − 𝑥𝑆𝑜𝐶[𝑡] = 𝑥+Δ𝑠𝑝[𝑡] + 𝑥−Δ𝑠𝑝[𝑡]
𝑥+Δ𝑠𝑝[𝑡], 𝑥−Δ𝑠𝑝[𝑡] ≥ 0

𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1] = 𝑥+𝐶𝐿[𝑡] + 𝑥−𝐶𝐿[𝑡]
𝑥+𝐶𝐿[𝑡], 𝑥−𝐶𝐿[𝑡] ≥ 0

𝑥𝐶𝐿[0] = 𝑥𝐶𝐿𝑖𝑛𝑖𝑡
𝑥𝑆𝑜𝐶[0] = 𝑥𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑥𝑆𝑜𝐶[𝑡] = 𝑥𝑆𝑜𝐶[𝑡 − 1] + 𝑥Δ𝑆𝑜𝐶[𝑡 − 1]

+ 0.1613 ∗ 𝑥𝐶𝐿[𝑡 − 1], for 𝑡 ≠ 0
𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1] ≤ 𝐷𝑚𝑎𝑥
𝑥𝐶𝐿[𝑡] − 𝑥𝐶𝐿[𝑡 − 1] ≥ −𝐷𝑚𝑎𝑥

(4.14)

4.5. Simulation and Testing
Now that both the prediction model and optimization model, as shown in Figure 4.2, are completed, a
simulation is conducted and testing can be performed. Before simulating, the three different costs are
initialized and later improved. After that, one cycle of the MPC is simulated to verify its proper function.
After this is verified, the control scheme will be briefly explained as well as the simulated controller
effect. When all is finished, simulations for multiple cycles will be performed.

4.5.1. Cost Factors
The three different cost factors 𝑤Δ𝑠𝑝, 𝑤𝐷𝐶𝑜𝑠𝑡, and 𝑤𝐶𝐶𝑜𝑠𝑡 are all dependent on the hour. They decay
linearly to zero. This way, the weight of an hour always has more impact on the cost function than
the next. This is done because weather predictions get more inaccurate the further in the future they
are, and therefore the predictions should influence the controller less. The weight 𝑤Δ𝑠𝑝 is the weight
associated with the deviation from the set point. The other two weights are calculated relative to the
first. Using this relative term allows for setting the importance of both 𝑤𝐷𝐶𝑜𝑠𝑡 and 𝑤𝐶𝐶𝑜𝑠𝑡. For example,
if 𝑤𝐷𝐶𝑜𝑠𝑡 = 5 ∗𝑤Δ𝑠𝑝, this means that within 5% of the set point, a change in the control level is deemed
as a worse option regardless of the deviation. Alternatively, if 𝑤𝐶𝐶𝑜𝑠𝑡 = 5∗𝑤Δ𝑠𝑝 then a control level of 4
is deemed less beneficial than level 3 when within 20% from the set point. The initial values of 𝑤𝐷𝐶𝑜𝑠𝑡
and 𝑤𝐶𝐶𝑜𝑠𝑡 are 5 and 2 respectively. These will later be changed to look for possible improvements.



4. Controller 29

4.5.2. One Cycle Optimization
After initializing the weights, one cycle of the optimization can be run, the code of which can be found
in Appendix E.2.2. Here the controller optimizes one week or 168 hours of data according to the
cost factors. Plotting the controller action and predicted SoC provides relevant information about the
controller.

(a) (b)

Figure 4.4: Plot of the SoC of the battery over one week (upper) with the SoC with controller action (blue) and the SoC without
controller action (black) and the controller action over one week (lower) starting at hour 600 (a) and at hour 220 (b) of the year.

Figure 4.4a gives an example of a plot of the SoC starting at hour 600 and initialized at 55% is
given. Visible is that it surpasses 100%, which is, of course, impossible. Limiting this would enforce
non­linearity on the system, which is not solvable for a linear solver. For the multi­cycle simulation,
this issue is tackled as described in the next chapter. Furthermore, the plot shows that the constraint
on raising and lowering the control level performs as expected. Figure 4.4b shows the influence both
𝑤𝐷𝐶𝑜𝑠𝑡 and 𝑤𝐶𝐶𝑜𝑠𝑡 have on the system. As of hour 220, it is visible that it falls below the set point, but
the controller does not respond because a change in control level and higher control level are deemed
to be worse than remaining as is. The controller can conclude this from future predictions that show
high generations: thus responding is unnecessary.

4.5.3. Control Scheme
To not exceed the 100% and 10% SoC boundaries of the battery, a control scheme is needed. This
involves when to connect to the grid and how to use the batteries, thus meeting RQ­M.CNS.7. Here a
simple control scheme is implemented as shown in Figure 4.5. It shows a Finite State Machine (FSM)
that determines the power flow. In short, when the generation is higher than demand, the battery is
charged, and when demand is higher than generation, the battery is used. This holds until the battery
is either at 100%, when it supplies to the grid until generation goes below demand, or at 10%, when it
uses the grid until generation rises above demand.

Figure 4.5: Sketch of the FSM of the control scheme which depends on the Generation (G), Demand (D) and the State of
Charge (SoC).
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4.5.4. Controller Effect
Using the estimated savings of the controller, as mentioned in Table 4.1, for the simulation would
provide an unrealistic result, as all the savings are highly time­dependent. In the code provided in
Appendix E.2.3, the effect is calculated using the current hour of the day as an input. The effect of the
streetlights is only during the night, and the other restrictions are only effective during the day. The
latter’s effect uses the built­in ’random’ library from Python to randomize the actual effect to create a
more realistic simulation, as the time the residents are home and use the appliances varies from day
to day.

4.5.5. Full Simulation
The entire simulation uses the predictions to optimize for one week in the same way as the one­cycle
optimization. After the optimization is performed, it implements the controller action and calculates
how much energy is saved. Then the actual SoC is calculated according to the actual generation and
demand and the controller scheme and updated. This process is iterated over one month or year and
can then be plotted. Relevant parameters are printed and can be used for improving the controller.
The code for the simulation is presented in Appendix E.2.4.

4.6. Results
After finishing the simulations, the results can be analyzed. In the following sections, the initial results
are discussed, and simulations with different parameters are run to explore the controller’s potential.

4.6.1. Initial Results
The first simulation was performed using the initial values 5, 2, and 60 for 𝑤𝐷𝐶𝑜𝑠𝑡, 𝑤𝐶𝐶𝑜𝑠𝑡 and the set
point, respectively. To make the predictions, the weather, wind generation, and demand data of 2013
were used. Because no solar data was available for this period, the predictions and generation of
the year 2019 were used. Table 4.2 shows the energy delivered to and taken from the grid with and
without the controller. It also shows the relative improvement due to the controller. The improvement,
𝐼, is calculated using Equation (4.15) with 𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡 the energy taken from the grid without the controller,
and 𝐸𝑤𝑖𝑡ℎ the energy taken from the grid with the controller.

𝐼 = 𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡 − 𝐸𝑤𝑖𝑡ℎ
𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡

∗ 100% (4.15)

Table 4.2: Results of the simulation running for one year, with initial values 5, 2, and 60 for 𝑤𝐷𝐶𝑜𝑠𝑡, 𝑤𝐶𝐶𝑜𝑠𝑡, and the set point,
respectively, showing energy taken from the grid, percentage the controller is active and the relative improvement with the

controller.

Energy used from Energy used from controller active [%] improvement [%]
the grid without the grid with
controller [kWh] controller [kWh]

775.55 629.76 9.19 18.79

Over one year, 629.76 kWh is required from the grid when using the controller instead of 775.55
kWh. The usage of the tiny house community is 41 kWh, as calculated by the DCG sub­team. The
improvement of 18.79% saves (775.55𝑘𝑊ℎ−629.76𝑘𝑊ℎ)/(41𝑘𝑊ℎ/𝑑𝑎𝑦) = 3.56𝑑𝑎𝑦𝑠 worth of energy
usage of the village. During the summer and spring, the controller is inactive, as is shown in Figure 4.6a,
which shows the months April, May, and June. Interestingly, the controller does not raise the control
level during the dip below the set point as it anticipates on the good weather that is predicted. Likely, a
simpler controller would have reacted to this dip.

Because the control level remains at zero during the summer and spring, all the controller actions
are in the winter. This means that the controller activity is effectively twice the average during the winter
and thus becomes 2∗9.19% = 18.38%. This can also be seen in Figure 4.6b, showing months January
through March.

To show the effect of generation and demand on the battery’s SoC, a sunny week was selected.
Figure 4.7 shows the generation, demand, and SoC from hour 1020 through hour 1200. It shows that,
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(a) (b)

Figure 4.6: Plot of the SoC of the battery during the simulation (upper) and the corresponding controller action (lower) from
April 1st till June 30th (a) and from January 1st till March 31th (b).

during the day, the battery charges when the solar generation peaks and that the battery discharges
during the night, when there is close to no generation.

Figure 4.7: Plot of the solar and wind generation, demand, and SoC of the battery during hours 1020 through 1200 of the year.
this shows the effect generation and demand have on the SoC.

4.6.2. Improving the Parameters
All previous results were obtained using the initial values for the weights and set point. Changing these
values results in different behavior of the controller. Table 4.3 shows the effect of varying the 𝑤𝐷𝐶𝑜𝑠𝑡
parameter. The table shows that the controller improvement and activity decrease between 0 ∗ 𝑤𝛿𝑠𝑝
and 7.5∗𝑤𝛿𝑠𝑝 as changing the control level becomes costlier. It drops down to 5.3% for 10∗𝑤𝛿𝑠𝑝, which
is undesirable. Lowering the value of 𝑤𝐷𝐶𝑜𝑠𝑡 will cause more controller activity and more changes of
the control level, which is not necessarily the desired behavior, but it does show that the controller could
improve 2% more. Table 4.4 shows the effect of varying the 𝑤𝐶𝐶𝑜𝑠𝑡 parameter. It also shows that the
improvement and activity decrease as 𝑤𝐶𝐶𝑜𝑠𝑡 increases, but does not show a drop­off in improvement
within the simulated range. When set to zero, the 𝑤𝐶𝐶𝑜𝑠𝑡 parameter improves the system by 1%. This
might result in unnecessary controller actions that could otherwise be avoided. Lastly, Table 4.5 shows
the effect of varying the set point. This has drastic consequences as, for too low values, the controller
has no effect at all, but for higher values, the controller is active for long consecutive periods.

In short, improving the controller is achievable, but only at the cost of the residents’ comfort. When
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the simulation is run with 0, 0, and 80 for 𝑤𝐷𝐶𝑜𝑠𝑡, 𝑤𝐶𝐶𝑜𝑠𝑡, and the set point, respectively, this results in
an improvement of 25.61%: 25.61−18.78 = 6.83% better than the first case considered. This extreme
case has a controller activity of 14.89%. This shows that improving the controller is possible but at the
cost of restricted appliances.

Table 4.3: Results of the simulation running for one year, with initial values 2 and 60 for 𝑤𝐶𝐶𝑜𝑠𝑡 and, the set point respectively
and a varying 𝑤𝐷𝐶𝑜𝑠𝑡, showing energy taken from the grid, percentage the controller is active, and the relative improvement

with the controller.

𝑤𝐷𝐶𝑜𝑠𝑡 Energy used from Energy used from controller active [%] improvement[%]
the grid without the grid with
controller [kWh] controller [kWh]

0 ∗ 𝑤𝛿𝑠𝑝 775.55 617.54 9.88 20.36
2.5 ∗ 𝑤𝛿𝑠𝑝 775.55 625.08 9.51 19.39
5 ∗ 𝑤𝛿𝑠𝑝 775.55 629.76 9.19 18.78
7.5 ∗ 𝑤𝛿𝑠𝑝 775.55 633.30 8.92 18.33
10 ∗ 𝑤𝛿𝑠𝑝 775.55 734.29 3.92 5.3

Table 4.4: Results of the simulation running for one year, with initial values 5 and 60 for 𝑤𝐷𝐶𝑜𝑠𝑡 and the set point, respectively
and a varying 𝑤𝐶𝐶𝑜𝑠𝑡, showing energy taken from the grid, percentage the controller is active and, the relative improvement

with the controller.

𝑤𝐶𝐶𝑜𝑠𝑡 Energy used from Energy used from controller active [%] improvement[%]
the grid without the grid with
controller [kWh] controller [kWh]

0 ∗ 𝑤𝛿𝑠𝑝 775.55 625.99 9.46 19.27
1 ∗ 𝑤𝛿𝑠𝑝 775.55 632.38 9.37 18.45
2 ∗ 𝑤𝛿𝑠𝑝 775.55 629.76 9.19 18.78
3 ∗ 𝑤𝛿𝑠𝑝 775.55 632.00 9.09 18.50
4 ∗ 𝑤𝛿𝑠𝑝 775.55 638.05 8.71 17.71

Table 4.5: Results of the simulation running for one year, with initial values 5 and 2 for 𝑤𝐷𝐶𝑜𝑠𝑡 and 𝑤𝐶𝐶𝑜𝑠𝑡, respectively and a
varying set point, showing energy taken from the grid, percentage the controller is active, and the relative improvement with the

controller.

Set point Energy used from Energy used from controller active [%] improvement[%]
the grid without the grid with
controller [kWh] controller [kWh]

40 775.55 775.55 0 0
50 775.55 775.55 0 0
60 775.55 629.75 9.19 18.78
70 775.55 607.45 11.71 21.66
80 775.55 583.73 14.07 24.72



5
Conclusion

The thesis demonstrated the design and testing of a control system. The system consisted of two
parts, namely forecasting and control. Forecasting was performed using a prediction model created
using ANNs. Three different models were created for predicting solar generation, wind generation, and
energy demand. The controller was implemented using an MPC to make use of the prediction model.
The MPC utilizes an optimization model that tries to minimize the time spent connected to the grid.

The system successfully predicts both energy generation and demand, asmentioned in RQ­M.CNS.3
and RQ­M.CNS.4. The prediction model uses the weather data at the input. The thesis discusses
the possibility of retrieving this data from the internet as in RQ­M.CNS.1. The system can receive
and use the hourly measurements for the predictions and the controller mentioned in RQ­M.CNS.2.
Although not implemented, the report discusses the possibility of updating the database and the pre­
diction model, partially satisfying RQ­S.CNS.1 and RQ­S.CNS.2. The forecasting was done with a
mean error of 10.11%, 12.56%, and 6.95% for solar, wind, and demand, respectively. This shows an
accuracy higher than 80%. Thus the system meets RQ­NF.CNS.1.

The controller uses the predictions to estimate the SoC of the battery for the upcoming week. This
satisfies RQ­M.CNS.5. After simulating the controller system for a year, a reduction of 18% to 25% of
energy needed from the grid could be achieved. This reduced the time spent connected to the grid by
altering the power use, complying with RQ­M.CNS.6. The control scheme allowed the battery to remain
between its critical boundaries during the simulation. This meets RQ­M.CNS.7. Lastly, all controller
actions and the forecasts could be performed seven days ahead, satisfying RQ­NF.CNS.2.

All ’must have’ requirements of the CNS subsystem were met as well as all relevant system re­
quirements (RQ­C.SYS.2 and RQ­M.SYS.5). All ’should have’ requirements were partially met but
described in the thesis as well. Due to time constraints, none of the ’could have’ requirements were
met. Lastly, all non­functional requirements were met as described above.

Future Work
While the results comply with the requirements, there is still room for improvement and future work:

• Data from actual tiny houses can be used to perform hyperparameter tuning. This would be a
better fit than the scaled values used in this thesis.

• More control levels can be utilized than the four mentioned in this thesis. These could reduce
power consumption more and be less intrusive, further increasing the effect of the MPC.

• A more optimal control scheme could be researched. Although simple to implement, the current
control scheme reduces the battery life by deep cycling the batteries. Smarter control schemes
could consider this.

• If a prototype of a tiny house community, using this DC grid, could be built, testing can be per­
formed to validate the simulation and allow for further development of the controller.

• The software can be implemented on a microprocessor. This could allow for testing the run time
of the prediction and optimization. If deemed possible, the time step, currently one hour, could
be reduced to increase the controller effect.
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Derivations

A.1. Processing Sun Data
The following steps were taken to extract the information of the solar data, to remove inconsistencies,
and to replace the missing values.

1. First, the time and date, with their corresponding voltage and current, are extracted from the data
set.

2. The time and date are used to calculate what hour of the year the moment corresponds to. It will
range from 1 ­ January 1st, 00h00 ­ to the last, or 24 ∗ 365 =8,760th hour of the year ­ December
31st, 23h00. This supporting variable will facilitate the creation of a single data point per hour. It
is needed because of the inconsistent many­to­one correspondence of the data set ­ an irregular
amount of data points point to the same hour.

3. Before the different data points that correspond to the same hour can be combined, a conversion
of voltage and current to power must occur using the formula for electrical power: 𝑃 = 𝑉 ∗ 𝐼.

4. Combining data points of the same hour is done by taking the average of all of them. There is,
however, the problem that the amount of data points per hour is inconsistent and thus unknown.
There are different ways to solve this. Here, the average is calculated using a weight factor that
changes as more samples corresponding to the same hour are encountered. The weight factor
is unique for every hour, is initialized for every hour as 1, and increases by 1 for a particular hour,
every time a calculation for that hour is made. It is implemented using the following equation,
where 𝑃 is the power during a certain hour, 𝑤 is the weight factor of this hour, and 𝑝 is a new data
point corresponding to the same hour.

𝑃new = 𝑃old ∗ 𝑤 +
𝑝

𝑤 + 1 (A.1)

5. Now, there is at most a single data point per hour. However, there are still many missing data
points: over 4% of hours in the year do not have a corresponding power yet. There are several
options to fill these gaps. The missing data points could be left out entirely. This would not pose
issues for training the predictionmodel. However, it would gravely complicate making simulations.
Another option is to fill the data points with the overall average. That would make simulations
possible. However, this could have an immense impact on the training of prediction models: data
points during the night that would previously never contain power generation now suddenly do.
This would reduce the capabilities of the ANN’s learning patterns. An option that combines the
advantages of the previous two, but has none of their disadvantages, is replacing the missing
data with the value of the same hour, the day before. This should have a minimal influence on
the forecasting ­ since it is only for 4% of the data points ­ and enables the simulation of long
periods.
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A.2. Control Level Calculations
Street Lights
When turned on, the street lights use a total of 120 Wh per hour. These lights are on for an average of
eight hours per day when in normal operation. This results in 120 ∗ 8 = 960𝑊ℎ per day on average.
When restricted, the street lights will be on at 50% power during the first two hours and last two hours
of the night and turned off during the rest of the night. Though they are still allowed to turn on when
movement is detected, as this is only a fraction of the night, it is not considered in the estimation. This
results in (2ℎ𝑜𝑢𝑟𝑠 ∗ 0.5 + 4ℎ𝑜𝑢𝑟𝑠 ∗ 0 + 2ℎ𝑜𝑢𝑟𝑠 ∗ 0.5) ∗ 120𝑊 = 240𝑊ℎ per day when in restricted
mode. Thus on average, the street lights save (960 − 240)/24 = 30𝑊ℎ per hour. In reality, the street
lights either save nothing, 60 Wh or 120 Wh per hour. This is, however, difficult to implement in a
mathematical optimizer.

Boiler
When in regular operation, the boiler uses high amounts of power for short durations spread over an
entire day. One boiler uses on average 1700 Wh per day. Twelve boilers, one for every tunus, use a
total of 12∗1700 = 20400𝑊ℎ per day or 20400/24 = 850𝑊ℎ per hour. In restricted mode, the boiler is
turned off if no one is home. Let us assume that every tunus resident works a total of 40 hours a week
and spends an additional 10 hours per week on other activities like doing groceries, meeting friends,
or exercising. During these 50 hours every week, a resident is not at home, and the boiler is turned off
when in restricted mode. Then the boiler is turned off 50/(7 ∗ 24) ∗ 100% = 29.8% of the time. This
results in an average saving of 0.298 ∗ 850 = 253𝑊ℎ per hour.

Washing Machine
The community has two washing machines in the central hub that use an average of 1512 Wh per day.
In restricted mode, the washing machine can only operate on eco­mode. All modern washing machines
have this capability which can reduce energy consumption by 30% on average [47]. This results in an
average saving of 1512/24 ∗ 0.3 = 18.9𝑊ℎ per hour.

Induction Cooker
One induction cooker uses on average 1125Wh per day during regular operation. All induction cookers
together use on average 1125∗12/24 = 562.5𝑊ℎ per hour. This is roughly equivalent to every house­
hold using two induction zones on boost, which is the highest setting. When restricted, the induction
cooker is limited to one induction zone in boost and one to half the capacity. This way, proper cooking
is still possible while, on average, this allows for a power­saving of 25%. This results in an average
saving of 562.5 ∗ 0.25 = 140.6𝑊ℎ per hour.



B
Tables

B.1. Hyperparameter Tuning of Wind Generation
Table B.1: The losses of different combinations of batch sizes and amounts of epochs for wind generation. The loss is given as

an unscaled MSE in𝑊ℎ2.

epochs batch size

200 500 1000

10 0.03933 0.051497 0.609744
25 0.032044 0.03141 0.051694
50 0.043442 0.027233 0.055289
100 0.03963 0.025429 0.050772
200 0.01912 0.027899 0.033007
500 0.01934 0.025442 0.043416

Table B.2: The losses for different neuron counts in the first layer of a one­layered ANN configuration for wind generation. The
losses are given as an unscaled MSE in𝑊ℎ2.

neurons loss [𝑊ℎ2]
5 0.022607
10 0.020836
15 0.029482
20 0.032803
25 0.035767
30 0.067064
35 0.033442

Table B.3: The losses for different neuron counts in the first and second layer of a two­layered ANN configuration for the wind
generation. The losses are given as an unscaled MSE in𝑊ℎ2.

Neurons Neurons layer 1

layer 2 5 10 15

5 0.02036 0.050966 0.050322
10 0.051871 0.019937 0.019523
15 0.019571 0.018521 0.018366
20 0.020018 0.018288 0.018784
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Table B.4: The losses for different neuron counts in the second and third layer of a three­layered ANN configuration for the
wind generation. The first layer is taken to have 10 neurons. The losses are given as an unscaled MSE in𝑊ℎ2.

Neurons Neurons layer 2

layer 3 5 10 15

10 0.018705 0.050833 0.018422
15 0.018505 0.018123 0.018031
20 0.018272 0.0183 0.018073
25 0.017787 0.018022 0.018132
30 0.01891 0.018797 0.018012

B.2. Hyperparameter Tuning of Demand
Table B.5: The losses of different combinations of batch sizes and amounts of epochs for energy demand. The loss is given as

an unscaled MSE in𝑊ℎ2.

epochs batch size

200 500 1000

10 681748 2117969 4139132
25 691954 630963 848661
50 830852 653520 635523
100 769615 723732 675698
200 737150 924448 700238
500 408707 636226 697733
1000 493284 342509 991998
2000 814383 484059 1702872

Table B.6: The losses of different combinations of neurons in the first (l1), second (l2), third (l3), fourth (l4), and fifth layer (l5) of
a five­layered ANN for energy demand. The loss is given as an unscaled MSE in𝑊ℎ2.

l1=150 l1=300

l4 l5 l2=100 l2=200 l2=100 l2=200

l3=50 l3=100 l3=50 l3=100 l3=50 l3=100 l3=50 l3=100

25 10 507554 756537 1050996 2821384 363330 509004 474422 591607
25 20 879559 434989 266685 1193883 721197 446616 576589 514398
50 10 640687 538554 454299 980643 508894 975895 1220269 707768
50 20 353251 544433 291881 303912 499885 407672 833902 727576
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B.3. Features of the Weather Data
Table B.7: The 22 features of the weather data set from [27]. Their code and description is given.

Code Description

YYYYMMDDdate (YYYY=year,MM=month,DD=day)
HH time (HH uur/hour, UT. 12 UT=13 MET, 14 MEZT. Hourly division 05 runs from

04.00 UT to 5.00 UT
DD Mean wind direction (in degrees) during the 10­minute period preceding the time

of observation (360=north, 90=east, 180=south, 270=west, 0=calm 990=variable)
FH Hourly mean wind speed (in 0.1 m/s)
FF Mean wind speed (in 0.1 m/s) during the 10­minute period preceding the time of

observation
FX Maximum wind gust (in 0.1 m/s) during the hourly division
T Temperature (in 0.1 degrees Celsius) at 1.50 m at the time of observation
T10N Minimum temperature (in 0.1 degrees Celsius) at 0.1 m in the preceding 6­hour period
TD Dew point temperature (in 0.1 degrees Celsius) at 1.50 m at the time of observation
SQ Sunshine duration (in 0.1 hour) during the hourly division, calculated from global

radiation (­1 for <0.05 hour)
Q Global radiation (in J/cm2) during the hourly division
DR Precipitation duration (in 0.1 hour) during the hourly division
RH Hourly precipitation amount (in 0.1 mm) (­1 for <0.05 mm)
P Air pressure (in 0.1 hPa) reduced to mean sea level, at the time of observation
VV Horizontal visibility at the time of observation (0=less than 100m, 1=100­200m,

2=200­300m,..., 49=4900­5000m, 50=5­6km, 56=6­7km, 57=7­8km, ..., 79=29­30km,
80=30­35km, 81=35­40km,..., 89=more than 70km)

N Cloud cover (in octants), at the time of observation (9=sky invisible)
U Relative atmospheric humidity (in percents) at 1.50 m at the time of observation
WW Present weather code (00­99), description for the hourly division.
IX Indicator present weather code (1=manned and recorded (using code from visual

observations), 2,3=manned and omitted (no significant weather phenomenon to
report, not available), 4=automatically recorded (using code from visual observations),
5,6=automatically omitted (no significant weather phenomenon to
report, not available), 7=automatically set (using code from automated observations)

M Fog 0=no occurrence, 1=occurred during the preceding hour and/or at the
time of observation

R Rainfall 0=no occurrence, 1=occurred during the preceding hour and/or at the
time of observation

S Snow 0=no occurrence, 1=occurred during the preceding hour and/or at the time
of observation

O Thunder 0=no occurrence, 1=occurred during the preceding hour and/or at the time
of observation

Y Ice formation 0=no occurrence, 1=occurred during the preceding hour and/or at the time
of observation



C
Survey on Control Level

C.1. Questions
Before answering the questions on intrusiveness of the control levels, the participants were asked to
read the text as shown in Figure C.1. After reading the text the participants answered in order questions
1 through 4 as shown in Figure C.2, Figure C.3, Figure C.4 and Figure C.5. The answers to these
questions can be found in Appendix C in Table C.1

Figure C.1: The reading performed by the participants during the survey, before answering the questions.

39



C. Survey on Control Level 40

Figure C.2: The first question answered by the participants.

Figure C.3: The second question answered by the participants.

Figure C.4: The third question answered by the participants.
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Figure C.5: The fourth question answered by the participants.

C.2. Answers
Appendix C shows the answers of 31 participants to the survey questions as shown in Appendix C.1.

Table C.1: Answers to a survey on intrusiveness of restrictions on appliances

Age Gender Lighting Boiler Washing machine Induction cooker green­minded

10­25 Male 1 2 3 4 Yes
10­25 Female 3 2 1 4 Yes
10­25 Female 3 2 1 4 Yes
10­25 Male 3 4 1 2 Yes
10­25 Male 4 2 1 3 Maybe
10­25 Male 3 2 1 4 Yes
10­25 Other 1 2 3 4 Yes
26­40 Male 1 2 3 4 Yes
41­55 Female 3 2 1 4 Yes
10­25 Male 1 2 3 4 Maybe
26­40 Female 1 2 3 4 Yes
10­25 Male 1 4 2 3 Maybe
10­25 Male 3 1 4 2 Maybe
10­25 Male 1 3 2 4 No
10­25 Male 2 3 1 4 Yes
10­25 Male 2 1 4 3 Yes
26­40 Female 2 1 4 3 Yes
10­25 Female 2 3 1 4 Yes
10­25 Male 4 2 1 3 Yes
10­25 Male 2 1 3 4 No
10­25 Female 1 2 3 4 Maybe
10­25 Male 1 3 2 4 Maybe
56+ Female 3 1 2 4 Yes
56+ Female 2 3 1 4 Yes
10­25 Female 3 2 1 4 Yes
10­25 Male 2 1 4 3 Maybe
10­25 Female 2 1 3 4 Yes
10­25 Female 4 3 1 2 Maybe
10­25 Female 1 4 3 2 Yes
10­25 Female 4 3 1 2 Yes
41­55 Female 1 2 3 4 Maybe

Total 67 68 67 108



D
Software

In this chapter, an overview of the software that was used throughout the thesis project, is presented.
First, it is argued why Python will be the main programming language that is used. Then, the Python
libraries that are needed for the code are summarized.

D.1. Programming Language
Python is used for both the forecasting and the control. This is because of the extensive availability
of Python libraries, that offer high­quality algorithms and functions. Further, Python is open­source,
which makes it more suitable for implementation in a tiny house village than licensed software, such
as MATLAB.

D.2. Python Libraries
When imported into a script, Python Libraries enable the use of its included functions. To handle the
Python Libraries, the popular Python Distribution, Anaconda [48], is used.

Libraries for Forecasting
The Python Libraries used for forecasting are shown in Table D.1.

Table D.1: List of Python libraries used for Forecasting

Package
keras [49]

matplotlib [50]
scikit­learn [51]
tensorflow [52]

Libraries for Control
The Python Libraries used for control are shown in Table D.2.

Table D.2: List of Python libraries used for Control.

Package
glpk [45]

matplotlib [50]
pyomo [43, 44]

scipy [53]
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E
Code

E.1. Forecasting
This section contains the code that was needed to perform the calculations and simulations done in
Chapter 3.

E.1.1. Forecasting Functions

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: Different functions are defined that are used to

retrieve/process/evaluate data.↪

4 '''
5

6

7 import datetime as dt
8 import matplotlib.pyplot as plt
9 import numpy as np
10 import numpy.ma as ma
11 import sklearn as sk
12 import sklearn.impute
13 from keras.layers import Dense
14 from keras.models import Sequential
15 from keras.wrappers.scikit_learn import KerasRegressor
16 from sklearn.metrics import mean_squared_error
17 from sklearn.model_selection import KFold, cross_val_score,

train_test_split↪

18 from sklearn.preprocessing import StandardScaler
19 from tensorflow import keras
20

21

22 # print the shapes of the train and test sets
23 def printSets(X_train, X_test, y_train, y_test):
24 print(”shape of X_train: {}”.format(X_train.shape))
25 print(”shape of X_test: {}”.format(X_test.shape))
26 print(”shape of y_train: {}”.format(y_train.shape))
27 print(”shape of y_test: {}”.format(y_test.shape))
28

29

30 # retrieve the weather data from the data file
31 def retrieveWeatherData():
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32 # extracting input data from txt file
33 try:
34 data = np.genfromtxt('dataFile.txt',
35 dtype=float, delimiter=',', skip_header=33)
36 except:
37 print('Error while retrieving weather data'); exit()
38

39 return data
40

41

42 # retrieve the wind data from the data file
43 def retrieveWindData():
44 # extracting wind data from csv file
45 try:
46 data = np.genfromtxt('dataFile.csv',
47 dtype=float, delimiter=',', skip_header=1, skip_footer=1)
48 y = data[:,1] # only relevant stuff; all rows of column 1
49 except:
50 print('Error while retrieving y'); exit()
51

52 # extracting weather data from txt file
53 try:
54 data = np.genfromtxt('dataFile.txt',
55 dtype=float, delimiter=',', skip_header=33)
56 X = data[:,3:] # only relevant stuff; all rows of column 3 till end
57 except:
58 print('Error while retrieving X'); exit()
59

60 return X, y
61

62

63 # retrieve the solar data from the data file
64 def retrieveSolarData():
65 y = np.load('savedData.npy')
66

67 try:
68 data = np.genfromtxt('dataFile.txt',
69 dtype=float, delimiter=',', skip_header=33)
70 X = data[:,3:] # only relevant stuff; all rows of column 3 till end
71 except:
72 print('Error while retrieving X'); exit()
73

74 return X, y
75

76

77 # retrieve the demand data from the data file; it is also already processed
78 def retrieveDemandData():
79 # extracting input data from txt file
80 try:
81 data = np.genfromtxt('dataFile.txt',
82 dtype=float, delimiter=',', skip_header=33)
83 X = data[:,[1,2,7,10,21,23]] # only relevant stuff:
84 # select YYYYMMDD (col 1; datum), HH (col 2; hour), T (col 7;

temperature),↪

85 # SQ (col 10; sunshine duration), R (col 21; rain), O (col 23;
storm)↪
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86 except:
87 print('Error while retrieving input data'); exit()
88

89 # we want the weeknumber and daynumber instead of the date
90 timeInfo = np.empty((0,2), int)
91 for i in X[:,0]:
92 # get the date info from the data file
93 year = int(str(i)[0:4])
94 month = int(str(i)[4:6])
95 day = int(str(i)[6:8])
96

97 # make a date and season from the date info
98 time = dt.datetime(year, month, day)
99 season = time.month%12//3+1 # month2season: from

https://stackoverflow.com/a/44124490↪

100 month = time.month
101

102 # timeInfo will contain the month and the daynumber (%u)
103 timeInfo = np.append(timeInfo, np.array([[month,time.weekday()]]),

axis=0)↪

104

105 # the date­column is replaced by a season­number and daynumber column
106 X = np.append(timeInfo, np.delete(X,0,1), 1)
107

108 # extracting output data from csv file
109 try:
110 data = np.genfromtxt('dataFile.csv',
111 dtype=float, delimiter=',', skip_header=1, skip_footer=34992)
112 y = data[:,2:­2] # only relevant stuff:
113 # select YYYYMMDD (col 1; datum), HH (col 2; hour), T (col 7;

temperature),↪

114 # SQ (col 10; sunshine duration), R (col 21; rain), O (col 23;
storm)↪

115 except:
116 print('Error while retrieving output data'); exit()
117

118 # conversion of /15min to /1hr data
119 y = y.reshape(­1,4,y.shape[­1]).sum(1) # summing every 4 columns
120

121 # dealing with nans: from https://stackoverflow.com/q/18689235
122 y = np.where(np.isnan(y), ma.array(y,

mask=np.isnan(y)).mean(axis=1)[:, np.newaxis], y)↪

123 y = y.sum(1) # summing all 'households'
124

125 # scaling the output data
126 y_days = y.reshape(­1,24).sum(1) # create /day data
127 mean_of_one_day_liander = np.mean(y_days) # calc mean of one day
128 mean_of_one_day_tunect = 41000 # mean of 1 day at tunect (from DCG)
129 scalingFactor = mean_of_one_day_tunect/mean_of_one_day_liander
130 y = scalingFactor*y # scaling the data
131

132 return X, y
133

134

135 # make a single model and evaluate it with the test set
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136 def trainWithoutCurve(X_train, y_train, X_test, y_test, model):
137 model.fit(X_train,y_train)
138 y_pred = model.predict(X_test)
139 MSE = mean_squared_error(y_test, y_pred)
140 return MSE
141

142

143 # make a single model and show the learning curve
144 def trainWithCurve(X_train, y_train, model):
145 history = model.fit(X_train,y_train)
146 print(history.history.keys())
147

148 # summarize history for loss
149 plt.plot(history.history['loss'])
150 plt.title('model loss')
151 plt.ylabel('loss')
152 plt.xlabel('epoch')
153 plt.show()
154

155

156 # make multiple models using cross_val_score and evaluate it using
validation sets from the training set↪

157 def performCrossValidation(X_train, y_train, n_splits, model):
158 kfold = KFold(n_splits=n_splits)
159 results = cross_val_score(model, X_train, y_train, cv=kfold)
160

161 MSE = results.mean().item()
162 STD = results.std().item()
163 rootMSE = abs(results.mean().item())**0.5
164

165 return MSE,STD
166

167

168 # print the results
169 def printTrainingResults(X_train, epochs, batch_size, n_splits,

baseline_model, MSE):↪

170 # print('\n\n')
171 baseline_model().summary() # enable to print a summary of the NN model
172

173 print('\nParameters:')
174 print('\tepochs:\t\t', epochs)
175 print('\tbatch_size:\t', batch_size)
176 # print('\tn_splits:\t', n_splits)
177 print('\tinput shape:\t', X_train.shape)
178

179 print('\nMSE becomes: {:.4f}'.format(abs(MSE)))
180 print('Root MSE becomes: {:.4f}'.format(abs(MSE)**0.5))

E.1.2. Processing Solar Data

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, the data of solar panels next to the EEMCS

building is processed.↪
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4 '''
5

6

7 import numpy as np
8 import datetime as dt
9 import math
10

11

12 # retrieve the data
13 data = np.genfromtxt('forecasting/generationData/2019Bikechargerdata_
14 voltageandcurrentWithoutQuotes.csv', dtype=None, encoding=None,

delimiter=',', skip_header=0, comments='#')↪

15 # note on the data: date, id, charger on/off, charge state, pv voltage, pv
current, ...↪

16

17

18 # return the hour of the year, given a certain date
19 def hourOfYear(date):
20 beginningOfYear = dt.datetime(date.year, 1, 1, tzinfo=date.tzinfo)
21 return int((date ­ beginningOfYear).total_seconds() // 3600)
22

23

24 # extract the date from the data
25 time = []
26 for t in data:
27 time.append(dt.datetime(year=2019, month=int(t['f0'][3:5]),

day=int(t['f0'][0:2]), hour=int(t['f0'][9:11])))↪

28 time = np.array(time)
29

30 # convert the date to the hour of the year
31 timeAsHour = []
32 for t in time: timeAsHour.append(hourOfYear(t))
33 timeAsHour = np.array(timeAsHour)
34

35 # create a numpy array from the hour, volt, and current data
36 data =

np.concatenate((data['f4'][:,np.newaxis],data['f5'][:,np.newaxis]),
axis=1, dtype=None)

↪

↪

37

38 # calculate power from the voltage and current
39 irregularPowerData = []
40 for t in data: irregularPowerData.append(t[0]*t[1])
41 irregularPowerData = np.array(irregularPowerData)
42

43 # initialize
44 hourlyPowerData = np.empty(np.max(timeAsHour)+1)
45 hourlyPowerData[:] = np.NaN
46 i = 0
47 w = np.ones(np.max(timeAsHour)+1)
48

49 # mean for every hour
50 for t in timeAsHour:
51

52 if math.isnan(hourlyPowerData[t]):
53 hourlyPowerData[t] = irregularPowerData[i]
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54 else:
55 hourlyPowerData[t] =

(hourlyPowerData[t]*w[t]+irregularPowerData[i])/(w[t]+1) #
weight is equal for every variable

↪

↪

56 w[t] += 1 # this requires the weight factor to be increased
throughout iterations↪

57

58 i += 1
59

60 # replace all nans with the value of 24 hours earlier
61 replacementValue = np.nanmean(hourlyPowerData) # calculate the mean
62 nanCount = 0
63 for i in range(len(hourlyPowerData)): # loop through all elements
64 if math.isnan(hourlyPowerData[i]): # check for nans
65 hourlyPowerData[i] = hourlyPowerData[i­24]
66 # hourlyPowerData[i] = replacementValue # replace nans with

the mean↪

67 nanCount += 1
68

69

70 # save the acquired array
71 np.save('hourlyPowerData', hourlyPowerData)

E.1.3. Hyperparameter Tuning

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: With this script, the hyperparameters of the ANN for a

certain data set can tuned.↪

4 '''
5

6

7 import datetime as dt
8 import matplotlib.pyplot as plt
9 import numpy as np
10 import functions as fs
11 import sklearn as sk
12 import sklearn.impute
13 import math
14 from keras.layers import Dense
15 from keras.models import Sequential
16 from keras.wrappers.scikit_learn import KerasRegressor
17 from tensorflow import keras
18 from sklearn.metrics import mean_squared_error
19 from sklearn.model_selection import KFold, cross_val_score,

train_test_split↪

20 from sklearn.pipeline import Pipeline
21 from sklearn.preprocessing import StandardScaler
22 from sklearn.model_selection import GridSearchCV
23 from playsound import playsound
24

25

26 # suppress depreciation warnings
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27 import tensorflow.python.util.deprecation as deprecation
28 deprecation._PRINT_DEPRECATION_WARNINGS = False
29

30

31 # retrieve data of one of these three
32 # X, y = fs.retrieveSolarData()
33 # X, y = fs.retrieveWindData()
34 # X, y = fs.retrieveDemandData()
35

36

37 # splitting data in test and training sets
38 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3,

random_state=42)↪

39 fs.printSets(X_train, X_test, y_train, y_test) # enable to print set
shapes↪

40

41 # checking and handling missing values
42 imp = sk.impute.SimpleImputer(missing_values=np.nan, strategy='median')
43 X = imp.fit_transform(X)
44 X_train = imp.fit_transform(X_train)
45 X_test = imp.fit_transform(X_test)
46

47

48 # defining certain variables
49 epochs = 1000
50 batch_size = 500
51 verbose = 2 # 0 to show nothing; 1 or 2 to show the progress
52 n_splits = 2
53

54 # from https://machinelearningmastery.com/regression­tutorial­keras­deep­
learning­library­python/↪

55

56 # define solar base model
57 def solarBaselineModel(neurons1=1, neurons2=1, neurons3=1):
58 # create model
59 model = Sequential()
60

61 model.add(Dense(neurons1, input_dim=22, kernel_initializer='normal',
activation='relu'))↪

62 model.add(Dense(neurons2, kernel_initializer='normal',
activation='relu'))↪

63 model.add(Dense(neurons3, kernel_initializer='normal',
activation='relu'))↪

64

65 model.add(Dense(1, kernel_initializer='normal'))
66 # Compile model
67 model.compile(loss='mean_squared_error', optimizer='adam')
68 return model
69

70 # define generation base model
71 def windBaselineModel(neurons1=1, neurons2=1, neurons3=1):
72 # create model
73 model = Sequential()
74 model.add(Dense(neurons1, input_dim=22, kernel_initializer='normal',

activation='relu'))↪
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75 model.add(Dense(neurons2, kernel_initializer='normal',
activation='relu'))↪

76 model.add(Dense(neurons3, kernel_initializer='normal',
activation='relu'))↪

77 model.add(Dense(1, kernel_initializer='normal'))
78 # Compile model
79 model.compile(loss='mean_squared_error', optimizer='adam')
80 return model
81

82 # define demand base model
83 def demandBaselineModel(neurons1=1, neurons2= 1, neurons3=1, neurons4=1,

neurons5=1):↪

84 # create model
85 model = Sequential()
86 model.add(Dense(neurons1, input_dim=7, kernel_initializer='normal',

activation='relu'))↪

87 model.add(Dense(neurons2, kernel_initializer='normal',
activation='relu'))↪

88 model.add(Dense(neurons3, kernel_initializer='normal',
activation='relu'))↪

89 model.add(Dense(neurons4, kernel_initializer='normal',
activation='relu'))↪

90 model.add(Dense(neurons5, kernel_initializer='normal',
activation='relu'))↪

91 model.add(Dense(1, kernel_initializer='normal'))
92 # Compile model
93 model.compile(loss='mean_squared_error', optimizer='adam')
94 return model
95

96 # create the model of one of these three
97 # model = KerasRegressor(build_fn=solarBaselineModel, epochs=epochs,

batch_size=batch_size, verbose=verbose)↪

98 # model = KerasRegressor(build_fn=windBaselineModel, epochs=epochs,
batch_size=batch_size, verbose=verbose)↪

99 # model = KerasRegressor(build_fn=demandBaselineModel, epochs=epochs,
batch_size=batch_size, verbose=verbose)↪

100

101

102 # define the grid search parameters
103 batch_size = [200, 500, 1000]
104 epochs = [10, 25, 50, 100, 200, 500, 1000, 2000]
105

106 neurons1 = [150, 300]
107 neurons2 = [100, 200]
108 neurons3 = [50, 100]
109 neurons4 = [25, 50]
110 neurons5 = [10, 20]
111

112 param_grid = dict(batch_size=batch_size, epochs=epochs,
neurons1=neurons1, neurons2=neurons2, neurons3=neurons3,
neurons4=neurons4, neurons5=neurons5)

↪

↪

113

114

115 # evaluate all combinations using 3­fold cross validation
116 # from https://machinelearningmastery.com/grid­search­hyperparameters­

deep­learning­models­python­keras/↪
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117 grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=­1,
cv=3)↪

118 grid_result = grid.fit(X, y)
119 # summarize results
120 print(”Best: %f using %s” % (grid_result.best_score_,

grid_result.best_params_))↪

121 means = grid_result.cv_results_['mean_test_score']
122 stds = grid_result.cv_results_['std_test_score']
123 params = grid_result.cv_results_['params']
124 for mean, stdev, param in zip(means, stds, params):
125 print(”%f (%f) with: %r” % (mean, stdev, param))

E.1.4. Creating Predictions

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, ANN models are trained with a training set

and evaluated on a test set.↪

4 '''
5

6

7 import datetime as dt
8 import matplotlib.pyplot as plt
9 import numpy as np
10 import functions as fs
11 import sklearn as sk
12 import sklearn.impute
13 import math
14 from keras.layers import Dense
15 from keras.models import Sequential
16 from keras.wrappers.scikit_learn import KerasRegressor
17 from tensorflow import keras
18 from sklearn.metrics import mean_squared_error
19 from sklearn.model_selection import KFold, cross_val_score,

train_test_split↪

20 from sklearn.pipeline import Pipeline
21 from sklearn.preprocessing import StandardScaler
22 from sklearn.model_selection import GridSearchCV
23

24

25 # suppress depreciation warnings
26 import tensorflow.python.util.deprecation as deprecation
27 deprecation._PRINT_DEPRECATION_WARNINGS = False
28

29

30 # retrieve all input and output data
31 X_s, y_s = fs.retrieveSolarData()
32 X_w, y_w = fs.retrieveWindData()
33 X_d, y_d = fs.retrieveDemandData()
34

35 # check for nans in the output data
36 if sum(np.isnan(y_s))+sum(np.isnan(y_w))+sum(np.isnan(y_d)) != 0:

print('nans found')↪



E. Code 52

37

38 # scaling
39 meanSunPower = 12.27*10**6/365/24 # average sun generation per hour
40 y_s = meanSunPower/np.mean(y_s)*y_s # [Wh/hour] # scale the data
41

42 meanWindPower = 10.87*10**6/365/24 # [W] # average wind generation per
hour↪

43 y_w = meanWindPower/np.mean(y_w)*y_w # [Wh/hour] # scale the data
44

45

46 # splitting data in test and training sets
47 X_train_s, X_test_s, y_train_s, y_test_s = train_test_split(X_s, y_s,

test_size=.3, random_state=42)↪

48 X_train_w, X_test_w, y_train_w, y_test_w = train_test_split(X_w, y_w,
test_size=.3, random_state=42)↪

49 X_train_d, X_test_d, y_train_d, y_test_d = train_test_split(X_d, y_d,
test_size=.3, random_state=42)↪

50

51 # checking and handling missing values
52 imp = sk.impute.SimpleImputer(missing_values=np.nan, strategy='median')
53

54 X_s = imp.fit_transform(X_s)
55 X_train_s = imp.fit_transform(X_train_s)
56 X_test_s = imp.fit_transform(X_test_s)
57

58 X_w = imp.fit_transform(X_w)
59 X_train_w = imp.fit_transform(X_train_w)
60 X_test_w = imp.fit_transform(X_test_w)
61

62 X_d = imp.fit_transform(X_d)
63 X_train_d = imp.fit_transform(X_train_d)
64 X_test_d = imp.fit_transform(X_test_d)
65

66 # defining certain variables
67 verbose = 0 # 0 to show nothing; 1 (much) or 2 (little) to show

the progress↪

68 n_splits = 5
69

70 # from https://machinelearningmastery.com/regression­tutorial­keras­deep­
learning­library­python/↪

71

72 # define solar base model
73 def solarBaselineModel():
74 # create model
75 model = Sequential()
76 model.add(Dense(20, input_dim=22, kernel_initializer='normal',

activation='relu'))↪

77 model.add(Dense(5, kernel_initializer='normal', activation='relu'))
78 model.add(Dense(30, kernel_initializer='normal', activation='relu'))
79 model.add(Dense(1, kernel_initializer='normal'))
80 # Compile model
81 model.compile(loss='mean_squared_error', optimizer='adam')
82 return model
83

84 # define generation base model
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85 def windBaselineModel():
86 # create model
87 model = Sequential()
88 model.add(Dense(10, input_dim=22, kernel_initializer='normal',

activation='relu'))↪

89 model.add(Dense(15, kernel_initializer='normal', activation='relu'))
90 model.add(Dense(25, kernel_initializer='normal', activation='relu'))
91 model.add(Dense(1, kernel_initializer='normal'))
92 # Compile model
93 model.compile(loss='mean_squared_error', optimizer='adam')
94 return model
95

96 # define demand base model
97 def demandBaselineModel():
98 # create model
99 model = Sequential()
100 model.add(Dense(150, input_dim=7, kernel_initializer='normal',

activation='relu'))↪

101 model.add(Dense(200, kernel_initializer='normal', activation='relu'))
102 model.add(Dense(50, kernel_initializer='normal', activation='relu'))
103 model.add(Dense(25, kernel_initializer='normal', activation='relu'))
104 model.add(Dense(20, kernel_initializer='normal', activation='relu'))
105 model.add(Dense(1, kernel_initializer='normal'))
106 # Compile model
107 model.compile(loss='mean_squared_error', optimizer='adam')
108 return model
109

110 # solar
111 batch_size_s = 200
112 epochs_s = 500
113

114 # wind
115 batch_size_w = 200
116 epochs_w = 200
117

118 # demand
119 batch_size_d = 500
120 epochs_d = 1000
121

122

123 # combine base models, batch sizes, and epochs
124 solarModel = KerasRegressor(build_fn=solarBaselineModel, epochs=epochs_s,

batch_size=batch_size_s, verbose=verbose)↪

125 windModel = KerasRegressor(build_fn=windBaselineModel, epochs=epochs_w,
batch_size=batch_size_w, verbose=verbose)↪

126 demandModel = KerasRegressor(build_fn=demandBaselineModel,
epochs=epochs_d, batch_size=batch_size_d, verbose=verbose)↪

127

128

129 # make predictions on the test set
130 MSE_s = fs.trainWithoutCurve(X_train_s, y_train_s, X_test_s, y_test_s,

solarModel)↪

131 y_pred_s = solarModel.predict(X_s)
132

133 MSE_w = fs.trainWithoutCurve(X_train_w, y_train_w, X_test_w, y_test_w,
windModel)↪
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134 y_pred_w = windModel.predict(X_w)
135

136 MSE_d = fs.trainWithoutCurve(X_train_d, y_train_d, X_test_d, y_test_d,
demandModel)↪

137 y_pred_d = demandModel.predict(X_d)
138

139

140 # print all results
141 print('\n############################## SOLAR

##############################\n')↪

142 fs.printTrainingResults(X_s, epochs_s, batch_size_s, n_splits,
solarBaselineModel, MSE_s)↪

143 print('Mean Error as fraction of Maximum:', abs(MSE_s)**0.5/np.max(y_s))
144

145 print('\n\n############################## WIND
##############################\n')↪

146 fs.printTrainingResults(X_w, epochs_w, batch_size_w, n_splits,
windBaselineModel, MSE_w)↪

147 print('Mean Error as fraction of Maximum:', abs(MSE_w)**0.5/np.max(y_w))
148

149 print('\n\n############################# DEMAND
#############################\n')↪

150 fs.printTrainingResults(X_d, epochs_d, batch_size_d, n_splits,
demandBaselineModel, MSE_d)↪

151 print('Mean Error as fraction of Maximum:', abs(MSE_d)**0.5/np.max(y_d))

E.1.5. Creating Predictions Using the Previous Hour

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, ANN models are trained with a training set

and evaluated on a test set. The training set consists of the data of
the previous hour: either the actual value or a prediction.

↪

↪

4 '''
5

6

7 import datetime as dt
8 import matplotlib.pyplot as plt
9 import numpy as np
10 import functions as fs
11 import sklearn as sk
12 import sklearn.impute
13 import math
14 from keras.layers import Dense
15 from keras.models import Sequential
16 from keras.wrappers.scikit_learn import KerasRegressor
17 from tensorflow import keras
18 from sklearn.metrics import mean_squared_error
19 from sklearn.model_selection import KFold, cross_val_score,

train_test_split↪

20 from sklearn.pipeline import Pipeline
21 from sklearn.preprocessing import StandardScaler
22 from sklearn.model_selection import GridSearchCV
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23

24

25 # suppress depreciation warnings
26 import tensorflow.python.util.deprecation as deprecation
27 deprecation._PRINT_DEPRECATION_WARNINGS = False
28

29

30 # retrieve all input and output data
31 X_s, y_s = fs.retrieveSolarData()
32 X_w, y_w = fs.retrieveWindData()
33 X_d, y_d = fs.retrieveDemandData()
34

35 # check for nans in the output data
36 if sum(np.isnan(y_s))+sum(np.isnan(y_w))+sum(np.isnan(y_d)) != 0:

print('nans found')↪

37

38 # scaling
39 meanSunPower = 12.27*10**6/365/24 # average sun generation per hour
40 y_s = meanSunPower/np.mean(y_s)*y_s # [Wh/hour] # scale the data
41

42 meanWindPower = 10.87*10**6/365/24 # [W] # average wind generation per
hour↪

43 y_w = meanWindPower/np.mean(y_w)*y_w # [Wh/hour] # scale the data
44

45

46 # adding data of the previous hour
47 dataForControl = np.load('savedData.npz')
48 predSolar = dataForControl['predSolar']
49 predWind = np.load('predWind.npy')
50 predDemand = dataForControl['predDemand']
51

52 # # using the actual previous hour
53 # newFeature = np.delete(np.insert(y_s,0,y_s[0]),­1)[:,np.newaxis]
54 # X_s = np.append(X_s, newFeature, axis=1)
55 # newFeature = np.delete(np.insert(y_w,0,y_w[0]),­1)[:,np.newaxis]
56 # X_w = np.append(X_w, newFeature, axis=1)
57 # newFeature = np.delete(np.insert(y_d,0,y_d[0]),­1)[:,np.newaxis]
58 # X_d = np.append(X_d, newFeature, axis=1)
59

60 # # using the prediction of the previous hour
61 # newFeature =

np.delete(np.insert(predSolar,0,predSolar[0]),­1)[:,np.newaxis]↪

62 # X_s = np.append(X_s, newFeature, axis=1)
63 # newFeature =

np.delete(np.insert(predWind,0,predWind[0]),­1)[:,np.newaxis]↪

64 # X_w = np.append(X_w, newFeature, axis=1)
65 # newFeature =

np.delete(np.insert(predDemand,0,predDemand[0]),­1)[:,np.newaxis]↪

66 # X_d = np.append(X_d, newFeature, axis=1)
67

68

69 # splitting data in test and training sets
70 X_train_s, X_test_s, y_train_s, y_test_s = train_test_split(X_s, y_s,

test_size=.3, random_state=42)↪

71 X_train_w, X_test_w, y_train_w, y_test_w = train_test_split(X_w, y_w,
test_size=.3, random_state=42)↪
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72 X_train_d, X_test_d, y_train_d, y_test_d = train_test_split(X_d, y_d,
test_size=.3, random_state=42)↪

73

74 # checking and handling missing values
75 imp = sk.impute.SimpleImputer(missing_values=np.nan, strategy='median')
76

77 X_s = imp.fit_transform(X_s)
78 X_train_s = imp.fit_transform(X_train_s)
79 X_test_s = imp.fit_transform(X_test_s)
80

81 X_w = imp.fit_transform(X_w)
82 X_train_w = imp.fit_transform(X_train_w)
83 X_test_w = imp.fit_transform(X_test_w)
84

85 X_d = imp.fit_transform(X_d)
86 X_train_d = imp.fit_transform(X_train_d)
87 X_test_d = imp.fit_transform(X_test_d)
88

89

90 # defining certain variables
91 verbose = 0 # 0 to show nothing; 1 (much) or 2 (little) to show

the progress↪

92 n_splits = 5
93

94 # from https://machinelearningmastery.com/regression­tutorial­keras­deep­
learning­library­python/↪

95

96 # define solar base model
97 def solarBaselineModel():
98 # create model
99 model = Sequential()
100 model.add(Dense(20, input_dim=23, kernel_initializer='normal',

activation='relu'))↪

101 model.add(Dense(5, kernel_initializer='normal', activation='relu'))
102 model.add(Dense(30, kernel_initializer='normal', activation='relu'))
103 model.add(Dense(1, kernel_initializer='normal'))
104 # Compile model
105 model.compile(loss='mean_squared_error', optimizer='adam')
106 return model
107

108 # define generation base model
109 def windBaselineModel():
110 # create model
111 model = Sequential()
112 model.add(Dense(10, input_dim=23, kernel_initializer='normal',

activation='relu'))↪

113 model.add(Dense(15, kernel_initializer='normal', activation='relu'))
114 model.add(Dense(25, kernel_initializer='normal', activation='relu'))
115 model.add(Dense(1, kernel_initializer='normal'))
116 # Compile model
117 model.compile(loss='mean_squared_error', optimizer='adam')
118 return model
119

120 # define demand base model
121 def demandBaselineModel():
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122 # create model
123 model = Sequential()
124 model.add(Dense(150, input_dim=8, kernel_initializer='normal',

activation='relu'))↪

125 model.add(Dense(200, kernel_initializer='normal', activation='relu'))
126 model.add(Dense(50, kernel_initializer='normal', activation='relu'))
127 model.add(Dense(25, kernel_initializer='normal', activation='relu'))
128 model.add(Dense(20, kernel_initializer='normal', activation='relu'))
129 model.add(Dense(1, kernel_initializer='normal'))
130 # Compile model
131 model.compile(loss='mean_squared_error', optimizer='adam')
132 return model
133

134 # solar
135 batch_size_s = 200
136 epochs_s = 500
137

138 # wind
139 batch_size_w = 200
140 epochs_w = 200
141

142 # demand
143 batch_size_d = 500
144 epochs_d = 1000
145

146

147 # combine base models, batch sizes, and epochs
148 solarModel = KerasRegressor(build_fn=solarBaselineModel, epochs=epochs_s,

batch_size=batch_size_s, verbose=verbose)↪

149 windModel = KerasRegressor(build_fn=windBaselineModel, epochs=epochs_w,
batch_size=batch_size_w, verbose=verbose)↪

150 demandModel = KerasRegressor(build_fn=demandBaselineModel,
epochs=epochs_d, batch_size=batch_size_d, verbose=verbose)↪

151

152

153 # make predictions on the test set
154 MSE_s = fs.trainWithoutCurve(X_train_s, y_train_s, X_test_s, y_test_s,

solarModel)↪

155 y_pred_s = solarModel.predict(X_s)
156

157 MSE_w = fs.trainWithoutCurve(X_train_w, y_train_w, X_test_w, y_test_w,
windModel)↪

158 y_pred_w = windModel.predict(X_w)
159

160 MSE_d = fs.trainWithoutCurve(X_train_d, y_train_d, X_test_d, y_test_d,
demandModel)↪

161 y_pred_d = demandModel.predict(X_d)
162

163

164 # print all results
165 print('########################### WITH PREV HOUR

###########################')↪

166 print('\n')
167

168 print('\n############################## SOLAR
##############################\n')↪
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169 fs.printTrainingResults(X_s, epochs_s, batch_size_s, n_splits,
solarBaselineModel, MSE_s)↪

170 print('Mean Error as fraction of Maximum:', abs(MSE_s)**0.5/np.max(y_s))
171

172 print('\n\n############################## WIND
##############################\n')↪

173 fs.printTrainingResults(X_w, epochs_w, batch_size_w, n_splits,
windBaselineModel, MSE_w)↪

174 print('Mean Error as fraction of Maximum:', abs(MSE_w)**0.5/np.max(y_w))
175

176 print('\n\n############################# DEMAND
#############################\n')↪

177 fs.printTrainingResults(X_d, epochs_d, batch_size_d, n_splits,
demandBaselineModel, MSE_d)↪

178 print('Mean Error as fraction of Maximum:', abs(MSE_d)**0.5/np.max(y_d))
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E.2. Control
E.2.1. Optimizer Initialization

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, the optimization for the mpc is initialized.
4 Parameters and variables are defined and a model is created.
5 '''
6 import os
7 # Importing libraries
8 from pyomo.environ import *
9 from pyomo.dae import *
10

11 '''
12 function: create and initialize the optimization for the mpc
13 Inputs:
14 time ­ list of length 169 representing every hour in the

coming week↪

15 SoCIni ­ integer respresenting the SoC at t = 0
16 SoCDiff ­ List of length 169 with the predicted difference

in time↪

17 setPoint ­ Set of length 169 with the Setpoint for every hour
18 weight ­ Set of length 169 with the associated weight for

deviation from the setpoint for every hour↪

19 dCost ­ Set of length 169 with the associated weight
penalty for changing the control level↪

20 cCost ­ Set of length 169 with the associated weight for
deviation of the control level from level zero↪

21 dMax ­ integer respresenting the maximum change in the
control signal per hour↪

22 controlLevelIni ­ integer respresenting current control level
23 output:
24 Mpc ­ the model for the optimizer of the model

predictive controller↪

25 '''
26

27 def modelPredictiveControl(time, SoCIni, SoCDiff, setPoint, weight, dCost,
cCost, dMax, controlLevelIni):↪

28

29 #initializing the mpc model using pyomo
30 mpc = ConcreteModel()
31

32 # Define the Set
33 mpc.time = Set(initialize= time) # Define the time steps from 0 to 168

hours↪

34

35 # Define Parameters
36 mpc.SoCDiff = Param(mpc.time, initialize=SoCDiff, mutable=True)
37 mpc.setPoint = Param(mpc.time, initialize=setPoint, mutable=True)
38 mpc.weight = Param(mpc.time, initialize=weight, mutable=True)
39 mpc.dCost = Param(mpc.time, initialize=dCost, mutable=True )
40 mpc.cCost = Param(mpc.time, initialize=cCost, mutable=True )
41 mpc.SoCIni = Param(initialize=SoCIni, mutable = True)
42 mpc.controlLevelIni = Param(initialize=controlLevelIni, mutable =

True)↪



E. Code 60

43 mpc.dMax = Param(initialize=dMax, mutable = True)
44

45 # Define Variables
46 mpc.controlLevel = Var(mpc.time, within = Integers, bounds = (0,4))
47 mpc.SoC = Var(mpc.time, within = Reals)
48 mpc.deltaSetPointPos = Var(mpc.time , within = NonNegativeReals)
49 mpc.deltaSetPointNeg = Var(mpc.time , within = NonNegativeReals)
50 mpc.controlLevelPos = Var(mpc.time , within = NonNegativeIntegers)
51 mpc.controlLevelNeg = Var(mpc.time , within = NonNegativeReals)
52

53 # Define Objective functions
54 mpc.obj = Objective(expr = sum(mpc.weight[t]*(mpc.deltaSetPointPos[t]

+ mpc.deltaSetPointNeg[t]) + mpc.cCost[t] * mpc.controlLevel[t] +
mpc.dCost[t] * (mpc.controlLevelPos[t] + mpc.controlLevelNeg[t])
for t in mpc.time), sense = minimize )

↪

↪

↪

55

56 # Define Constraints
57 # constraint calculating absolute value for change in Control level
58 def controlLevelNegcnstr(mpc, t):
59 if t == 0:
60 return Constraint.Skip
61 else:
62 constr = mpc.controlLevel[t]­mpc.controlLevel[t­1]
63 return constr == mpc.controlLevelPos[t] ­

mpc.controlLevelNeg[t]↪

64 mpc.controlLevelNegcnstr = Constraint( mpc.time, rule=
controlLevelNegcnstr)↪

65

66 # constraint calculating absolute value for change in SoC
67 def deltaSetPointcnstr(mpc, t):
68 constr = mpc.SoC[t]­mpc.setPoint[t]
69 return constr == mpc.deltaSetPointPos[t] ­ mpc.deltaSetPointNeg[t]
70 mpc.deltaSetPointcnstr = Constraint( mpc.time, rule=

deltaSetPointcnstr)↪

71

72 # constraint constraints the controller level from changing more than
one level up in an hour↪

73 def constrDMax(mpc, t):
74 if t == 0:
75 return Constraint.Skip
76 else:
77 Constrnt = (mpc.controlLevel[t]­mpc.controlLevel[t­1] <=

mpc.dMax)↪

78 return Constrnt
79 mpc.constrDMax = Constraint( mpc.time, rule= constrDMax )
80

81 # constraint constraints the controller level from changing more than
one level down in an hour↪

82 def constrDMin(mpc, t):
83 if t == 0:
84 return Constraint.Skip
85 else:
86 Constrnt = (mpc.controlLevel[t]­mpc.controlLevel[t­1] >=

­1*mpc.dMax)↪

87 return Constrnt
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88 mpc.constrDMin = Constraint( mpc.time, rule= constrDMin )
89

90 # constraint initializes the first value of the Control level
91 mpc.controlSoCInicnstr = Constraint(expr = mpc.controlLevel[0] ==

mpc.controlLevelIni)↪

92

93 # constraint initializes the first value of the SoC
94 def constrSoCini(mpc,t):
95 if t == 0:
96 return mpc.SoC[t] == mpc.SoCIni
97 else:
98 return Constraint.Skip
99 mpc.constrSoCini = Constraint( mpc.time, rule= constrSoCini)
100

101 # constraint calculates the next value of the SoC
102 def constrSoC(mpc,t):
103 if t == 0:
104 return Constraint.Skip
105 else:
106 Constrnt = (mpc.SoC[t] == mpc.SoC[t­1] +

139.85*mpc.controlLevel[t­1]/722 + mpc.SoCDiff[t­1])↪

107 return Constrnt
108 mpc.constrSoC = Constraint( mpc.time, rule= constrSoC)
109

110 # Return the model
111 return mpc

E.2.2. One Cycle Optimization

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, the functionality of the controller for one

week is programmed↪

4 It used different functions and a loop to control the system.
5 '''
6

7 import os
8 from numpy.core.function_base import linspace
9 from numpy.lib.function_base import append, diff
10 os.system('cls') # clears the command window
11 import datetime as dt; start_time = dt.datetime.now()
12 # display a ”Run started” message
13 print('Run started at ', start_time.strftime(”%X”), '\n')
14

15 # import libraries and python functions
16 import numpy as np
17 import matplotlib.pyplot as plt
18 from pyomo.environ import *
19 from pyomo.dae import *
20 from measurements import readMeasurement
21 from measurements import readPredictions
22 from measurements import determineControlSoC
23 from optimizationSetup import modelPredictiveControl
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24

25 # load predictions
26 dataForControl = np.load('dataForControl.npz')
27 predSun = dataForControl['predSolar']
28 predWind = dataForControl['predWind']
29 predDemand = dataForControl['predDemand']
30

31 # load actual data
32 Sun = dataForControl['realSolar']
33 Wind = dataForControl['realWind']
34 Demand = dataForControl['realDemand']
35

36 # Setup input data for the initialization of the model
37 # Initialize the time array, this represents all hours in the upcoming

week.↪

38 # This will initialize the Set for the Pyomo model
39 time = []
40 for i in range(169):
41 time.append(i)
42

43 # Initialize all other values and create key parameter pairs
44 # This will initialize the indexed Parameters for the Pyomo model
45

46 # Initialize the difference in state of charge due to the predicted demand
and generation↪

47 SoCDiff_ini = readPredictions(0,len(time),predSun,predWind,predDemand) #
one week↪

48 SoCDiff = {time[i]: SoCDiff_ini[i] for i in range(len(time))} # Make it a
Dictionary↪

49

50 # Initialize the setpoint the controller tries to reach, this will
determine the objective in the Pyomo model↪

51 setPoint_ini = []
52 for i in range(len(time)):
53 setPoint_ini.append(60.0) # Is constant, but can be variable
54 setPoint = {time[i]: setPoint_ini[i] for i in range(len(time))} # Make it

a Dictionary↪

55

56 # Initialize the weight for the deviation of the SoC from the setpoint, is
used by the objective↪

57 weight_ini = []
58 for i in range(len(time)):
59 weight_ini.append(float(len(time)­i)) # The weight decreases linearly

over time↪

60 weight = {time[i]: weight_ini[i] for i in range(len(time))}# Make it a
Dictionary↪

61

62 # Initialize the weight for the change in control signal, is used by the
objective↪

63 dCost_ini = []
64 for i in range(len(time)):
65 dCost_ini.append(5*weight_ini[i])# The weight decreases linearly over

time↪

66 dCost = {time[i]: dCost_ini[i] for i in range(len(time))}# Make it a
Dictionary↪
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67

68 # Initialize the weight for the deviation of the control signal from zero,
is used by the objective↪

69 cCost_ini = []
70 for i in range(len(time)):
71 cCost_ini.append(2*weight_ini[i])# The weight decreases linearly over

time↪

72 cCost = {time[i]: cCost_ini[i] for i in range(len(time))}# Make it a
Dictionary↪

73

74

75 # Initialize all other non indexed values
76 # This will initialize the non indexed Parameters for the Pyomo model
77 dMax = 1 # The maximum chance allowed in the control signal per hour
78 SoCIni = 55.0 # The measured SoC at t=0
79 controlLevelIni = 0 # The currently employed control signal
80

81 # Create controller model, parameters are set to mutable such that the
model can be resolved with different parameters↪

82 mpc = modelPredictiveControl(time, SoCIni, SoCDiff, setPoint, weight,
dCost, cCost, dMax, controlLevelIni)↪

83

84 # Optional line usefull for debugging the controller
85 #mpc.pprint()
86

87 # Select a solver for solving the model
88 solver = SolverFactory('glpk') # glpk is a linear solver that can handle

discrete values↪

89

90 # Solve the model
91 solver.solve(mpc, tee = False) # solving the model, tee = true provides

extra information on the solution of the solver↪

92

93 # Read values from the model
94 tempSoC = [mpc.SoC[i].value for i in mpc.time]
95

96 # Calculate what happens without the controller
97 SoCRaw = [SoCIni]
98 for i in range(len(time)­1):
99 SoCRaw.append(SoCRaw[i] + SoCDiff_ini[i])
100

101 # plot the SoC over time
102 plt.subplot(2,1,1)
103 plt.plot(time,tempSoC, c = '#0C7CBA', ls = '­') # plot the SOC
104 plt.plot(time,setPoint_ini, c = 'black', ls = '­­') # plot the set point
105 plt.plot(time,SoCRaw, c = 'black', ls = '­') # plot the SoC without the

controller↪

106 plt.xlabel(”Time [hours]”)
107 plt.ylabel(”State of Charge [%]”)
108 plt.title(”State of charge of the battery over one time horizon”)
109 plt.subplots_adjust(wspace=0.05, hspace=.5)
110 # plot the optimized control level over the time horizon
111 tempControlLevel = (mpc.controlLevel[i].value for i in time)
112 tempControlLevel = list(tempControlLevel)
113 plt.subplot(2,1,2)
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114 plt.plot(time,tempControlLevel, marker ='o', c = '#0C7CBA', ls ='')
115 plt.xlabel(”Time [hours]”)
116 plt.ylabel(”control level”)
117 plt.title(”Control level over one time horizon”)
118 # plot the difference when using the controller or not using the controller
119 #SoCDiffRaw = []
120 #for i in range(len(time)):
121 # SoCDiffRaw.append(tempSoC[i] ­ SoCRaw[i])
122 #plt.subplot(3,1,3)
123 #plt.plot(time,SoCDiffRaw, c = '#0C7CBA', ls ='­')
124 #plt.xlabel(”Time [hours]”)
125 #plt.title(”Difference in SoC due to the controller action”)
126

127 # print the runtime
128 print('\nRuntime was', (dt.datetime.now() ­ start_time).total_seconds(),

'seconds')↪

129

130 #show plot
131 plt.show()

E.2.3. Measurements and Controller Effect

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, three functions are writen regarding reading

prediction data, reading the current measurement and calculating the
influence of the controller using the random library and the current
hour.

↪

↪

↪

4 '''
5 # add libraries
6 import numpy as np
7 import random as rnd
8

9 '''
10 Function: calculates the predicted change in SoC due to the predictions
11 inputs: index ­ current hour
12 length ­ length of the time horizon
13 sun ­ predictions of solar generation over the time horizon
14 wind ­ predictions of wind generation over the time horizon
15 demand ­ predictions of demand over the time horizon
16 output: SoCChange ­ predicted change in SoC of the battery due to the

predicted generation and demand↪

17 '''
18 def readPredictions(index,length,sun,wind,demand):
19 SoCChange = [] # initiate list
20 length = length +index
21 for i in range(index,length):
22 SoCChange.append((sun[i] + wind[i] ­ demand[i])/772.0) # read the

predictions for every hour and scale Wh to SoC↪

23 return SoCChange # return Change in SoC
24

25 '''
26 Function: Reads the current value of the SoC



E. Code 65

27 inputs: index ­ current hour
28 sun ­ measured solar generation at the current hour
29 wind ­ measured wind generation at the current hour
30 demand ­ measured demand at the current hour
31 output: SoCChange ­ actual change in SoC of the battery due to the

measured generation and demand↪

32 '''
33 def readMeasurement(index,sun,wind,demand):
34 SoCChange = (sun[index] + wind[index] ­ demand[index])/772.0 # read

the measured generation and demand and scale Wh to SoC↪

35 return SoCChange # return Change in SoC
36

37 '''
38 Function: calculates the effect of the controller at the current hour

using the control level↪

39 inputs: index ­ current hour
40 controlLevel ­ current control level
41 output: SoCChange ­ actual change in SoC of the battery due to the control

level↪

42 '''
43 def determineControlSoC(index, controlLevel): # TODO switch the first two
44 ControlSoC = 0 # intialize the change in SoC as zero
45 hour = index%24 # calculate which hour of the day it is
46 if controlLevel > 0: # control level 1 or higher
47 if hour > 5 and hour < 21:
48 for i in range(12): # calculate at random who is not home
49 temp = rnd.randint(1,1000)
50 if temp < 408:
51 ControlSoC += 70 # when not home boiler is turned off
52 else:
53 ControlSoC += 0
54 if controlLevel > 1: # control level 2 or higher
55 if hour == 20 or hour == 21 or hour == 4 or hour == 5:
56 ControlSoC += 60 # use lighting at 50% during these hours
57 elif hour > 21 or hour < 4:
58 ControlSoC += 120 # dont use lighting during these hours
59 else:
60 ControlSoC += 0 # no savings during the day
61 if controlLevel > 2:# control level 3 or higher
62 if hour > 5 and hour < 22:
63 for i in range(12): # calculate at random who is using

the wachingmachine↪

64 temp = rnd.randint(1,1000)
65 if temp < 400:
66 ControlSoC += 10.5 # when using it it can only

use eco mode↪

67 else:
68 ControlSoC += 0
69 if controlLevel >3:# control level 4
70 if hour > 17 and hour < 22:
71 for i in range(12):# calculate at random who is

using the stove↪

72 temp = rnd.randint(1,1000)
73 if temp < 250:
74 ControlSoC += 281.25# when using it it can

only use one on high and one on medium↪
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75

76 ControlSoC = ControlSoC/722 # convert Wh to SoC
77

78 return ControlSoC # return the change in SoC

E.2.4. Simulation

1 '''
2 Authors: Aart Rozendaal and Pieter Van Santvliet
3 Description: In this script, the functionality of the controller is

programmed↪

4 It used different functions and a loop to control the system.
5 '''
6

7 import os
8 from numpy.core.function_base import linspace
9 from numpy.lib.function_base import append, diff
10 os.system('cls') # clears the command window
11 import datetime as dt; start_time = dt.datetime.now()
12 # display a ”Run started” message
13 print('Run started at ', start_time.strftime(”%X”), '\n')
14

15 # import libraries and python functions
16 import numpy as np
17 import matplotlib.pyplot as plt
18 from pyomo.environ import *
19 from pyomo.dae import *
20 from measurements import readMeasurement
21 from measurements import readPredictions
22 from measurements import determineControlSoC
23 from optimizationSetup import modelPredictiveControl
24

25 # load predictions
26 dataForControl = np.load('dataForControl.npz')
27 predSun = dataForControl['predSolar']
28 predWind = dataForControl['predWind']
29 predDemand = dataForControl['predDemand']
30

31 # load actual data
32 sun = dataForControl['realSolar']
33 wind = dataForControl['realWind']
34 demand = dataForControl['realDemand']
35

36 # Setup input data for the initialization of the model
37 # Initialize the time array, this represents all hours in the upcoming

week.↪

38 # This will initialize the Set for the Pyomo model
39 time = []
40 for i in range(169):
41 time.append(i)
42

43 # Initialize all other values and create key parameter pairs
44 # This will initialize the indexed Parameters for the Pyomo model
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45

46 # Initialize the difference in state of charge due to the predicted demand
and generation↪

47 SoCDiff_ini = readPredictions(0,len(time),predSun,predWind,predDemand) #
one week↪

48 SoCDiff = {time[i]: SoCDiff_ini[i] for i in range(len(time))} # Make it a
Dictionary↪

49

50 # Initialize the setpoint the controller tries to reach, this will
determine the objective in the Pyomo model↪

51 setPoint_ini = []
52 for i in range(len(time)):
53 setPoint_ini.append(60.0) # Is constant, but can be variable
54 setPoint = {time[i]: setPoint_ini[i] for i in range(len(time))} # Make it

a Dictionary↪

55

56 # Initialize the weight for the deviation of the SoC from the setpoint, is
used by the objective↪

57 weight_ini = []
58 for i in range(len(time)):
59 weight_ini.append(1/(1+i)) # The weight decreases linearly over time
60 weight = {time[i]: weight_ini[i] for i in range(len(time))}# Make it a

Dictionary↪

61

62 # Initialize the weight for the change in control signal, is used by the
objective↪

63 dCost_ini = []
64 for i in range(len(time)):
65 dCost_ini.append(0.1*weight_ini[i])# The weight decreases linearly

over time↪

66 dCost = {time[i]: dCost_ini[i] for i in range(len(time))}# Make it a
Dictionary↪

67

68 # Initialize the weight for the deviation of the control signal from zero,
is used by the objective↪

69 cCost_ini = []
70 for i in range(len(time)):
71 cCost_ini.append(0.1*weight_ini[i])# The weight decreases linearly

over time↪

72 cCost = {time[i]: cCost_ini[i] for i in range(len(time))}# Make it a
Dictionary↪

73

74

75 # Initialize all other non indexed values
76 # This will initialize the non indexed Parameters for the Pyomo model
77 dMax = 1 # The maximum chance allowed in the control signal per hour
78 SoCIni = 55.0 # The measured SoC at t=0
79 controlLevelIni = 0 # The currently employed control signal
80

81 # Create controller model, parameters are set to mutable such that the
model can be resolved with different parameters↪

82 mpc = modelPredictiveControl(time, SoCIni, SoCDiff, setPoint, weight,
dCost, cCost, dMax, controlLevelIni)↪

83

84 # Optional line usefull for debugging the controller
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85 #mpc.pprint()
86

87 # Select a solver for solving the model
88 solver = SolverFactory('glpk') # glpk is a linear solver that can handle

discrete values↪

89

90 # Solve the model
91 solver.solve(mpc, tee = False) # solving the model, tee = true provides

extra information on the solution of the solver↪

92

93 # prepare lists for plotting
94 # general
95 timePlot = [0]
96 setPointPlot = [60.0]
97 # With controller
98 SoCPlot = [SoCIni]
99 controlLevelPlot = [controlLevelIni]
100 gridPowerGivePlot = [0]
101 gridPowerTakePlot = [0]
102 # without controller
103 SoCRawPlot = [SoCIni]
104 gridPowerGiveRawPlot = [0]
105 gridPowerTakeRawPlot = [0]
106

107 #loop
108 # optimize for the coming week every hour
109 for t in range(1,8760­(len(time)+1)):
110 #update control level
111 controlLevelIni = mpc.controlLevel[1].value
112

113 # Retrieve the measurements when using the controller
114 prevControl = determineControlSoC(t­1, mpc.controlLevel[0].value)
115 if (SoCPlot[­1] + readMeasurement(t,sun,wind,demand) + prevControl >

100):↪

116 mpc.SoCIni.value= SoCIni = 100
117 gridPowerGive = abs(SoCPlot[­1] +

readMeasurement(t,sun,wind,demand) + prevControl ­ 100)↪

118 gridPowerTake = 0
119 elif (SoCPlot[­1] + readMeasurement(t,sun,wind,demand) + prevControl <

10):↪

120 mpc.SoCIni.value= SoCIni = 10
121 gridPowerGive = 0
122 gridPowerTake = abs(10 ­ (SoCPlot[­1] +

readMeasurement(t,sun,wind,demand) + prevControl))↪

123 else:
124 mpc.SoCIni.value= SoCIni = SoCPlot[­1] +

readMeasurement(t,sun,wind,demand) + prevControl↪

125 gridPowerGive = 0
126 gridPowerTake = 0
127

128 # Retrieve the measurements without using the controller
129 if SoCRawPlot[­1] + readMeasurement(t,sun,wind,demand) >100:
130 SoCRaw = 100
131 gridPowerGiveRaw = abs(SoCPlot[­1] +

readMeasurement(t,sun,wind,demand) ­ 100)↪
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132 gridPowerTakeRaw = 0
133 elif (SoCPlot[­1] + readMeasurement(t,sun,wind,demand)< 10):
134 SoCRaw = 10
135 gridPowerGiveRaw = 0
136 gridPowerTakeRaw = abs(10 ­ (SoCPlot[­1] +

readMeasurement(t,sun,wind,demand) ))↪

137 else:
138 SoCRaw = SoCPlot[­1] + readMeasurement(t,sun,wind,demand)
139 gridPowerGiveRaw = 0
140 gridPowerTakeRaw = 0
141

142 # Make predictions using the ANN for demand and generation and prep
for the model↪

143 SoCDiff_ini = readPredictions(t,len(time),predSun,predWind,predDemand)
144 mpc.SoCDiff[i].value = [SoCDiff_ini[i] for i in range(len(time))]
145 #SoCDiff = {time[i]: SoCDiff_ini[i] for i in range(len(time))}
146 mpc.controlLevelIni.value = controlLevelIni
147 # Solve the pyomo optimizer model
148 # mpc = modelPredictiveControl(time, SoCIni, SoCDiff, setPoint,

weight, dCost, cCost, dMax, controlLevelIni)↪

149 solver.solve(mpc, tee = False)
150

151 # update plot values for both with and without controller
152 timePlot.append(t)
153 SoCPlot.append(SoCIni)
154 setPointPlot.append(60.0)
155 controlLevelPlot.append(controlLevelIni)
156 gridPowerGivePlot.append(gridPowerGive)
157 gridPowerTakePlot.append(gridPowerTake)
158 SoCRawPlot.append(SoCRaw)
159 gridPowerGiveRawPlot.append(gridPowerGiveRaw)
160 gridPowerTakeRawPlot.append(gridPowerTakeRaw)
161

162 # print confirmation every 25 cycles
163 if t%25 == 0:
164 print('cycle: ', t , ' is done')
165

166 # loop back and repeat for the next hours
167

168 #plot relevant data for both with and without controller to compare the
effect of the controller↪

169 print('\n­­­­­­ With controller ­­­­­­\n')
170 print('power delivered to grid:{:.2f}Wh'.format(sum(gridPowerGivePlot)))
171 k=0
172 for i in gridPowerGivePlot:
173 if i>0:
174 k += 1
175 print('Hours of power delivered to grid: {} hours, which is {:.2f}

%'.format(k,k/len(gridPowerGivePlot)*100))↪

176 print('power taken from grid:{:.2f}Wh'.format(sum(gridPowerTakePlot)))
177 k=0
178 for i in gridPowerTakePlot:
179 if i>0:
180 k += 1
181 print('Hours of power taken from grid: {} hours, which is {:.2f}

%'.format(k,k/len(gridPowerGivePlot)*100))↪
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182 k=0
183 for i in controlLevelPlot:
184 if i>0:
185 k += 1
186 print('Hours the controller is active: {} hours, which is {:.2f}

%'.format(k,k/len(controlLevelPlot)*100))↪

187

188 print('\n­­­­­­ Without controller ­­­­­­\n')
189 print('power delivered to

grid:{:.2f}Wh'.format(sum(gridPowerGiveRawPlot)))↪

190 k=0
191 for i in gridPowerGiveRawPlot:
192 if i>0:
193 k += 1
194 print('Hours of power delivered to grid: {} hours, which is {:.2f}

%'.format(k,k/len(gridPowerGiveRawPlot)*100))↪

195 print('power taken from grid:{:.2f}Wh'.format(sum(gridPowerTakeRawPlot)))
196 k=0
197 for i in gridPowerTakeRawPlot:
198 if i>0:
199 k += 1
200 print('Hours of power taken from grid: {} hours, which is {:.2f}

%'.format(k,k/len(gridPowerGiveRawPlot)*100))↪

201

202 # Plot SoC over time
203 plt.subplot(2,1,1)
204 plt.plot(timePlot,SoCPlot, c = '#0C7CBA', ls = '­') # plot the SOC
205 plt.plot(timePlot,setPointPlot, c = 'black', ls = '­­') # plot the set

point↪

206 plt.plot(timePlot,SoCRawPlot, c = 'black', ls = '­') # plot the SoC
without the controller↪

207 plt.xlabel(”Time [hours]”)
208 plt.ylabel(”State of Charge [%]”)
209 plt.title(”State of charge of the battery over one time horizon”)
210 plt.subplots_adjust(wspace=0.05, hspace=.5)
211 # plot the optimized control level over the time
212 plt.subplot(2,1,2)
213 plt.plot(timePlot,controlLevelPlot, marker ='o', c = '#0C7CBA', ls ='')
214 plt.xlabel(”Time [hours]”)
215 plt.ylabel(”control level”)
216 plt.title(”Control level over one time horizon”)
217

218 # print the runtime
219 print('\nRuntime was', (dt.datetime.now() ­ start_time).total_seconds(),

'seconds')↪

220

221 # show plot
222 plt.show()



Acronyms
AC Alternating Current.

ANN Artificial Neural Network.

API Application Programming Interface.

CF Capacity Factor.

CNS Control & Software.

DC Direct Current.

DCG DC Grid.

EU European Union.

FSM Finite State Machine.

GLPK GNU Linear Programming Kit.

HAWT Horizontal Axis Wind Turbine.

IEA International Energy Agency.

KNMI Koninklijk Nederlands Meteorologisch Instituut.

LQR Linear Quadratic Regulator.

ML Machine Learning.

MPC Model Predictive Control.

MSE Mean Squared Error.

PID Proportional Integral Derivative.

PLC Power Line Communication.

PoC Proof of Concept.

PoR Program of Requirements.

PV Photo­Voltaic.

RES Renewable Energy Source.

SF Scaling Factor.

SoC State of Charge.

VAWT Vertical Axis Wind Turbine.

71



Bibliography
[1] Timothy Carlin. “Tiny homes: Improving carbon footprint and the American lifestyle on a large

scale”. In:Celebrating Scholarship &Creativity Day (Apr. 24, 2014). URL: https://digitalcommons.
csbsju.edu/elce_cscday/35.

[2] The International Residential Code. ICC. Mar. 20, 2015. URL: https://www.iccsafe.org/
products­and­services/i­codes/2018­i­codes/irc/ (visited on 06/09/2021).

[3] Heather Shearer and Paul Burton. “Towards a Typology of Tiny Houses”. In: Housing, Theory
and Society 36.3 (June 24, 2018). Publisher: Routledge, pp. 298–318. ISSN: 1403­6096. URL:
https://www­tandfonline­com.tudelft.idm.oclc.org/doi/abs/10.1080/
14036096.2018.1487879 (visited on 06/09/2021).

[4] Maria Jebbink. “Life in a shoebox: About people and their motivation to go tiny”. In: Twente Uni­
versity (), p. 45. URL: http://essay.utwente.nl/78118/1/Jebbink_BA_BMS.pdf.

[5] Wim Landuyt et al. “tunus ­ tiny house project: an interdisciplinary approach to architecture”. In:
(2021). URL: http://resolver.tudelft.nl/uuid:de3a7d8b­f558­4bd7­affb­
27e7fedf3b8f (visited on 04/26/2021).

[6] B. Urishev. “Microgrid Control Based on the Use and Storage of Renewable Energy Sources”.
en. In: Applied Solar Energy 54.5 (Nov. 2018), pp. 388–391. ISSN: 0003­701X, 1934­9424.
DOI: 10.3103/S0003701X18050201. URL: http://link.springer.com/10.3103/
S0003701X18050201 (visited on 04/19/2021).

[7] Zengxun Liu et al. “Development of the interconnected power grid in Europe and suggestions for
the energy internet in China”. In: Global Energy Interconnection 3.2 (2020), pp. 111–119. ISSN:
2096­5117. DOI: https://doi.org/10.1016/j.gloei.2020.05.003. URL: https:
//www.sciencedirect.com/science/article/pii/S2096511720300451.

[8] M. Safiuddin. “HISTORY OF ELECTRIC GRID”. In: Jan. 2013, pp. 6–11. ISBN: 978­1­60263­
070­3.

[9] IEA. “Global Energy Review 2021”. en. In: 5 (2021). URL: https://www.iea.org/reports/
global­energy­review­2021 (visited on 05/10/2021).

[10] Council of European Energy Regulators. “CEER Report on Power Losses”. en. In: (Oct. 2017).
URL: https://www.ceer.eu/documents/104400/­/­/09ecee88­e877­3305­6767­
e75404637087 (visited on 05/10/2021).

[11] Greg Young Morris et al. “Evaluation of the costs and benefits of Microgrids with consideration
of services beyond energy supply”. In: 2012 IEEE Power and Energy Society General Meeting.
2012, pp. 1–9. DOI: 10.1109/PESGM.2012.6345380.

[12] Karina Garbesi, Vagelis Vossos, and Hongxia Shen. Catalog of DC Appliances and Power Sys­
tems. LBNL­5364E, 1076790. Oct. 13, 2010, LBNL–5364E, 1076790. DOI: 10.2172/1076790.
URL: http://www.osti.gov/servlets/purl/1076790/ (visited on 06/10/2021).

[13] Vagelis Vossos, Karina Garbesi, and Hongxia Shen. “Energy savings from direct­DC in U.S.
residential buildings”. In: Energy and Buildings 68 (Jan. 1, 2014), pp. 223–231. ISSN: 0378­
7788. DOI: 10.1016/j.enbuild.2013.09.009. URL: https://www.sciencedirect.
com/science/article/pii/S0378778813005720 (visited on 06/10/2021).

[14] IEA. “Energy Access Outlook 2017”. en. In: (2017). URL: https://www.iea.org/reports/
energy­access­outlook­2017 (visited on 04/22/2021).

[15] Wikimedia Foundation. Moscow Method. Last accessed 30 September 2020. URL: https://
en.wikipedia.org/wiki/MoSCoW_method.

72

https://digitalcommons.csbsju.edu/elce_cscday/35
https://digitalcommons.csbsju.edu/elce_cscday/35
https://www.iccsafe.org/products-and-services/i-codes/2018-i-codes/irc/
https://www.iccsafe.org/products-and-services/i-codes/2018-i-codes/irc/
https://www-tandfonline-com.tudelft.idm.oclc.org/doi/abs/10.1080/14036096.2018.1487879
https://www-tandfonline-com.tudelft.idm.oclc.org/doi/abs/10.1080/14036096.2018.1487879
http://essay.utwente.nl/78118/1/Jebbink_BA_BMS.pdf
http://resolver.tudelft.nl/uuid:de3a7d8b-f558-4bd7-affb-27e7fedf3b8f
http://resolver.tudelft.nl/uuid:de3a7d8b-f558-4bd7-affb-27e7fedf3b8f
https://doi.org/10.3103/S0003701X18050201
http://link.springer.com/10.3103/S0003701X18050201
http://link.springer.com/10.3103/S0003701X18050201
https://doi.org/https://doi.org/10.1016/j.gloei.2020.05.003
https://www.sciencedirect.com/science/article/pii/S2096511720300451
https://www.sciencedirect.com/science/article/pii/S2096511720300451
https://www.iea.org/reports/global-energy-review-2021
https://www.iea.org/reports/global-energy-review-2021
https://www.ceer.eu/documents/104400/-/-/09ecee88-e877-3305-6767-e75404637087
https://www.ceer.eu/documents/104400/-/-/09ecee88-e877-3305-6767-e75404637087
https://doi.org/10.1109/PESGM.2012.6345380
https://doi.org/10.2172/1076790
http://www.osti.gov/servlets/purl/1076790/
https://doi.org/10.1016/j.enbuild.2013.09.009
https://www.sciencedirect.com/science/article/pii/S0378778813005720
https://www.sciencedirect.com/science/article/pii/S0378778813005720
https://www.iea.org/reports/energy-access-outlook-2017
https://www.iea.org/reports/energy-access-outlook-2017
https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/MoSCoW_method


Bibliography 73

[16] Agustín Agüera­Pérez et al. “Weather forecasts for microgrid energy management: Review, dis­
cussion and recommendations”. In: Applied Energy 228 (2018), pp. 265–278. ISSN: 0306­2619.
DOI: https://doi.org/10.1016/j.apenergy.2018.06.087. URL: https://www.
sciencedirect.com/science/article/pii/S0306261918309565.

[17] Alejandro J. del Real, Fernando Dorado, and Jaime Durán. “Energy Demand Forecasting Using
Deep Learning: Applications for the French Grid”. In: Energies 13.9 (May 3, 2020), p. 2242.
ISSN: 1996­1073. DOI: 10.3390/en13092242. URL: https://www.mdpi.com/1996­
1073/13/9/2242 (visited on 05/01/2021).

[18] Adel Mellit and Alessandro Massi Pavan. “A 24­h forecast of solar irradiance using artificial neural
network: Application for performance prediction of a grid­connected PV plant at Trieste, Italy”. In:
Solar Energy 84.5 (2010), pp. 807–821. ISSN: 0038­092X. DOI: https://doi.org/10.
1016/j.solener.2010.02.006. URL: https://www.sciencedirect.com/science/
article/pii/S0038092X10000782.

[19] Fermín Rodríguez et al. “Predicting solar energy generation through artificial neural networks
using weather forecasts for microgrid control”. In: Renewable Energy 126 (2018), pp. 855–864.
ISSN: 0960­1481. DOI: https://doi.org/10.1016/j.renene.2018.03.070. URL:
https://www.sciencedirect.com/science/article/pii/S0960148118303793.

[20] Sobrina Sobri, Sam Koohi­Kamali, and Nasrudin Abd. Rahim. “Solar photovoltaic generation
forecasting methods: A review”. In: Energy Conversion and Management 156 (Jan. 15, 2018),
pp. 459–497. ISSN: 0196­8904. DOI: 10.1016/j.enconman.2017.11.019. URL: https:
//www.sciencedirect.com/science/article/pii/S0196890417310622.

[21] Frédéric Haldi and Darren Robinson. “The impact of occupants’ behaviour on building energy
demand”. In: Journal of Building Performance Simulation 4.4 (Dec. 1, 2011). Publisher: Taylor &
Francis _eprint: https://doi.org/10.1080/19401493.2011.558213, pp. 323–338. ISSN: 1940­1493.
DOI: 10.1080/19401493.2011.558213. URL: https://doi.org/10.1080/19401493.
2011.558213 (visited on 06/03/2021).

[22] Alexander Rakhlin. 6.883: Online Methods in Machine Learning. URL: http://www.mit.edu/
~rakhlin/6.883/#notes (visited on 06/04/2021).

[23] Jason Brownlee. 14 Different Types of Learning in Machine Learning. Machine Learning Mastery.
Nov. 10, 2019. URL: https://machinelearningmastery.com/types­of­learning­
in­machine­learning/ (visited on 06/04/2021).

[24] Jinjiang Wang et al. “Deep learning for smart manufacturing: Methods and applications”. In:
Journal of Manufacturing Systems. Special Issue on Smart Manufacturing 48 (July 1, 2018),
pp. 144–156. ISSN: 0278­6125. DOI: 10.1016/j.jmsy.2018.01.003. URL: https:
//www.sciencedirect.com/science/article/pii/S0278612518300037 (visited
on 05/17/2021).

[25] K. Liu et al. “Comparison of very short­term load forecasting techniques”. In: IEEE Transactions
on Power Systems 11.2 (May 1996). Conference Name: IEEE Transactions on Power Systems,
pp. 877–882. ISSN: 1558­0679. DOI: 10.1109/59.496169.

[26] Jason Brownlee. Your First Deep Learning Project in Python with Keras Step­By­Step. Ma­
chine Learning Mastery. July 23, 2019. URL: https://machinelearningmastery.com/
tutorial­first­neural­network­python­keras/ (visited on 05/17/2021).

[27] KNMI. Uurgegevens van het weer in Nederland. 2021. URL: https : / / www . knmi . nl /
nederland­nu/klimatologie/uurgegevens (visited on 04/24/2021).

[28] KNMI. Actuele waarnemingen. 2021. URL: https://www.knmi.nl/nederland­nu/weer/
waarnemingen (visited on 04/24/2021).

[29] Joris Koeners.Solar Powered Bikes. VictronData. URL: http://solarpoweredbikes.tudelft.
nl/phpmyadmin/index.php (visited on 06/06/2021).

[30] PVLEWI. URL: http://pvlewi.ewi.tudelft.nl/ (visited on 06/06/2021).
[31] Carine Nieuweling. European Meteorological derived high resolution renewable energy source

generation time series. EU Science Hub ­ European Commission. Nov. 17, 2016. URL: https:
//ec.europa.eu/jrc/en/scientific­tool/emhires (visited on 06/14/2021).

https://doi.org/https://doi.org/10.1016/j.apenergy.2018.06.087
https://www.sciencedirect.com/science/article/pii/S0306261918309565
https://www.sciencedirect.com/science/article/pii/S0306261918309565
https://doi.org/10.3390/en13092242
https://www.mdpi.com/1996-1073/13/9/2242
https://www.mdpi.com/1996-1073/13/9/2242
https://doi.org/https://doi.org/10.1016/j.solener.2010.02.006
https://doi.org/https://doi.org/10.1016/j.solener.2010.02.006
https://www.sciencedirect.com/science/article/pii/S0038092X10000782
https://www.sciencedirect.com/science/article/pii/S0038092X10000782
https://doi.org/https://doi.org/10.1016/j.renene.2018.03.070
https://www.sciencedirect.com/science/article/pii/S0960148118303793
https://doi.org/10.1016/j.enconman.2017.11.019
https://www.sciencedirect.com/science/article/pii/S0196890417310622
https://www.sciencedirect.com/science/article/pii/S0196890417310622
https://doi.org/10.1080/19401493.2011.558213
https://doi.org/10.1080/19401493.2011.558213
https://doi.org/10.1080/19401493.2011.558213
http://www.mit.edu/~rakhlin/6.883/#notes
http://www.mit.edu/~rakhlin/6.883/#notes
https://machinelearningmastery.com/types-of-learning-in-machine-learning/
https://machinelearningmastery.com/types-of-learning-in-machine-learning/
https://doi.org/10.1016/j.jmsy.2018.01.003
https://www.sciencedirect.com/science/article/pii/S0278612518300037
https://www.sciencedirect.com/science/article/pii/S0278612518300037
https://doi.org/10.1109/59.496169
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
https://www.knmi.nl/nederland-nu/weer/waarnemingen
https://www.knmi.nl/nederland-nu/weer/waarnemingen
http://solarpoweredbikes.tudelft.nl/phpmyadmin/index.php
http://solarpoweredbikes.tudelft.nl/phpmyadmin/index.php
http://pvlewi.ewi.tudelft.nl/
https://ec.europa.eu/jrc/en/scientific-tool/emhires
https://ec.europa.eu/jrc/en/scientific-tool/emhires


Bibliography 74

[32] Liander.Beschikbare data | Liander. URL: https://www.liander.nl/partners/datadiensten/
open­data/data (visited on 05/17/2021).

[33] Over Liander | Liander. URL: https://www.liander.nl/over­ liander (visited on
06/06/2021).

[34] Jason Brownlee.Difference Between a Batch and an Epoch in a Neural Network. Machine Learn­
ing Mastery. July 19, 2018. URL: https://machinelearningmastery.com/difference­
between­a­batch­and­an­epoch/ (visited on 06/08/2021).

[35] Jason Brownlee. Regression Tutorial with the Keras Deep Learning Library in Python. Machine
LearningMastery. June 8, 2016. URL: https://machinelearningmastery.com/regression­
tutorial­keras­deep­learning­library­python/ (visited on 06/11/2021).

[36] Ming Ding, Lei Wang, and Rui Bi. “An ANN­based Approach for Forecasting the Power Out­
put of Photovoltaic System”. In: Procedia Environmental Sciences 11 (2011), pp. 1308–1315.
ISSN: 18780296. DOI: 10.1016/j.proenv.2011.12.196. URL: https://linkinghub.
elsevier.com/retrieve/pii/S187802961101019X (visited on 06/11/2021).

[37] G Amarasinghe and S Abeygunawardane. “An artificial neural network for solar power generation
forecasting using weather parameters”. In: 112th Annual Sessions, Institution of Engineers Sri
Lanka. Colombo, Sri Lanka, Oct. 19, 2018, pp. 431–438. URL: https://www.researchgate.
net / publication / 328530283 _ An _ artificial _ neural _ network _ for _ solar _
power_generation_forecasting_using_weather_parameters.

[38] Jose Manuel Barrera et al. “Solar Energy Prediction Model Based on Artificial Neural Networks
and Open Data”. In: Sustainability 12.17 (Jan. 2020). Number: 17 Publisher: Multidisciplinary
Digital Publishing Institute, p. 6915. DOI: 10.3390/su12176915. URL: https://www.mdpi.
com/2071­1050/12/17/6915 (visited on 06/11/2021).

[39] Jeff Heaton. Introduction to Neural Networks with Java. Google­Books­ID: Swlcw7M4uD8C. Heaton
Research, Inc., 2008. 440 pp. ISBN: 978­1­60439­008­7.

[40] P Zhang. Advanced Industrial Control Technology. Elsevier, 2010. DOI: 10.1016/c2009­0­
20337­0. URL: https://doi.org/10.1016/c2009­0­20337­0.

[41] I Ross. A primer on Pontryagin’s principle in optimal control. Carmel, Calif: Collegiate Publishers,
2009. ISBN: 978­0­9843571­0­9.

[42] Liuping Wang. Model predictive control system design and implementation using MATLAB. Lon­
don: Springer, 2009. ISBN: 978­1­84882­331­0.

[43] William E. Hart, Jean­Paul Watson, and David L. Woodruff. “Pyomo: modeling and solving math­
ematical programs in Python”. In: Mathematical Programming Computation 3.3 (2011), pp. 219–
260.

[44] Michael L. Bynum et al. Pyomo–optimization modeling in python. Third. Vol. 67. Springer Science
& Business Media, 2021.

[45] GLPK. GNU Linear Programming Kit, Version X.Y. URL: http://www.gnu.org/software/
glpk/glpk.html.

[46] Ferguson. T. S. Linear Programming A Concise Introdcution. Springer, 1998.
[47] Milieu Centraal. Wasmachine. 2020. URL: https://www.milieucentraal.nl/energie­

besparen/apparaten­in­huis/wasmachine/.
[48] Anaconda Software Distribution. Version Vers. 2­2.4.0. 2020. URL: https://docs.anaconda.

com/.
[49] François Chollet et al. Keras. https://keras.io. 2015.
[50] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engineering

9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.
[51] F. Pedregosa et al. “Scikit­learn: Machine Learning in Python”. In: Journal of Machine Learning

Research 12 (2011), pp. 2825–2830.
[52] Martı́n Abadi et al. TensorFlow: Large­Scale Machine Learning on Heterogeneous Systems. Soft­

ware available from tensorflow.org. 2015. URL: https://www.tensorflow.org/.

https://www.liander.nl/partners/datadiensten/open-data/data
https://www.liander.nl/partners/datadiensten/open-data/data
https://www.liander.nl/over-liander
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/
https://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/
https://doi.org/10.1016/j.proenv.2011.12.196
https://linkinghub.elsevier.com/retrieve/pii/S187802961101019X
https://linkinghub.elsevier.com/retrieve/pii/S187802961101019X
https://www.researchgate.net/publication/328530283_An_artificial_neural_network_for_solar_power_generation_forecasting_using_weather_parameters
https://www.researchgate.net/publication/328530283_An_artificial_neural_network_for_solar_power_generation_forecasting_using_weather_parameters
https://www.researchgate.net/publication/328530283_An_artificial_neural_network_for_solar_power_generation_forecasting_using_weather_parameters
https://doi.org/10.3390/su12176915
https://www.mdpi.com/2071-1050/12/17/6915
https://www.mdpi.com/2071-1050/12/17/6915
https://doi.org/10.1016/c2009-0-20337-0
https://doi.org/10.1016/c2009-0-20337-0
https://doi.org/10.1016/c2009-0-20337-0
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://www.milieucentraal.nl/energie-besparen/apparaten-in-huis/wasmachine/
https://www.milieucentraal.nl/energie-besparen/apparaten-in-huis/wasmachine/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://keras.io
https://doi.org/10.1109/MCSE.2007.55
https://www.tensorflow.org/


Bibliography 75

[53] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592­019­0686­2.

https://doi.org/10.1038/s41592-019-0686-2

	Abstract
	Preface
	Introduction
	Tunus
	Microgrid Analysis
	Problem Definition
	Subdivision
	Thesis Outline

	Program of Requirements
	Overall Requirements
	Functional Requirements
	Non-Functional Requirements

	Specific Requirements
	Functional Requirements
	Non-Functional Requirements


	Forecasting
	Prediction Algorithm
	Machine Learning
	Artificial Neural Network

	Data
	Data Usage Strategy
	Gathering Data
	Preparing Data to Train the First Model

	Training
	Procedure
	Evaluating
	Hyperparameter Tuning
	Adding the Previous Hour

	Results

	Controller
	Controller
	Predictive Controllers
	Optimal Control
	Controller Selection

	Model Predictive Control
	Time Step
	Inputs
	Output

	Optimization Model
	Optimizer Selection
	Pyomo
	Set, Parameters, and Variables
	Objective Function
	Constraints
	Finishing the Optimizer

	Simulation and Testing
	Cost Factors
	One Cycle Optimization
	Control Scheme
	Controller Effect
	Full Simulation

	Results
	Initial Results
	Improving the Parameters


	Conclusion
	Derivations
	Processing Sun Data
	Control Level Calculations

	Tables
	Hyperparameter Tuning of Wind Generation
	Hyperparameter Tuning of Demand
	Features of the Weather Data

	Survey on Control Level
	Questions
	Answers

	Software
	Programming Language
	Python Libraries

	Code
	Forecasting
	Forecasting Functions
	Processing Solar Data
	Hyperparameter Tuning
	Creating Predictions
	Creating Predictions Using the Previous Hour

	Control
	Optimizer Initialization
	One Cycle Optimization
	Measurements and Controller Effect
	Simulation


	Acronyms
	Bibliography

